

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Dynamic Block Encryption with

Self-Authenticating Key Exchange

by

Nasser Al-Ismaily

Doctoral Thesis

Submitted in partial fulfillment of the requirements

for the award of PhD

Department of Computer Science

Loughborough University

November 23,2005

@2005 Nasser Al-Ismaily

ý� . ý.., _ýr .., ý -- ----ý_ ... ý.,... , ý, ý

",:, s rý=ý, ý;

,.

ý, ß; ý .

`ý,. ý ý

"ýý,

`The First World War was the chemists' war, because the mustard gas and chlorine were

employed for the first time. The Second World War was the physicists' war, because the

atom bomb was detonated. The Third World War will be the mathematicians war, because

mathematicians will have control over the next great weapon of war - "information"'

Simon Singh

Abstract

One of the greatest challenges facing cryptographers is the mechanism used

for key exchange. When secret data is transmitted, the chances are that there

may be an attacker who will try to intercept and decrypt the message. Having

done so, he/she might just gain advantage over the information obtained, or

attempt to tamper with the message, and thus, misguiding the recipient.

Both cases are equally fatal and may cause great harm as a consequence.

In cryptography, there are two commonly used methods of exchanging secret

keys between parties. In the first method, symmetric cryptography, the key is

sent in advance, over some secure channel, which only the intended recipient

can read. The second method of key sharing is by using a public key exchange

method, where each party has a private and public key, a public key is shared

and a private key is kept locally. In both cases, keys are exchanged between

two parties.

In this thesis, we propose a method whereby the risk of exchanging keys

is minimised. The key is embedded in the encrypted text using a process

that we call `chirp coding', and recovered by the recipient using a process

that is based on correlation. The `chirp coding parameters' are exchanged

between users by employing a USB flash memory retained by each user. If the

keys are compromised they are still not usable because an attacker can only

have access to part of the key. Alternatively, the software can be configured

to operate in a one time parameter mode, in this mode, the parameters

are agreed upon in advance. There is no parameter exchange during file

transmission, except, of course, the key embedded in ciphertext.

The thesis also introduces a method of encryption which utilises dynamic

1

blocks, where the block size is different for each block. Prime numbers are

used to drive two random number generators: a Linear Congruential Genera-

tor (LCG) which takes in the seed and initialises the system and a Blum-Blum

Shum (BBS) generator which is used to generate random streams to encrypt

messages, images or video clips for example. In each case, the key created is

text dependent and therefore will change as each message is sent.

The scheme presented in this research is composed of five basic modules. The

first module is the key generation module, where the key to be generated is

message dependent. The second module, encryption module, performs data

encryption. The third module, key exchange module, embeds the key into

the encrypted text. Once this is done, the message is transmitted and the

recipient uses the key extraction module to retrieve the key and finally the

decryption module is executed to decrypt the message and authenticate it.

In addition, the message may be compressed before encryption and decom-

pressed by the recipient after decryption using standard compression tools.

ii

Acknowledgments

I thank God for giving me the ability, health and knowledge to go through

this work.

I would also like to thank the government of Oman for providing the funds

for me to undertake this research program.

I have been lucky to work with my supervisor, Ana Salagean, who offered me

valuable assistance on many aspects of research work. From her assistance,

inspiration, and positive criticism I have learned a lot about doing research

and presenting the work accordingly. Many thanks to Jonathan Blackledge,

for spending a lot of his precious time offering me guidance and supervision on

my work. I also thank Sekharjit Datta for his involvement with the program.
Thanks to Mohamed Jaffar from De Montfort University for his guidance

and supervision during the first year of this program.

I am grateful to my whole family for their confidence in my work, encour-

agement and unconditional support.

111

Glossary of Terms

ANSI American National Standards Institute

BBS Blum Blum Shub.

CBC Cipher Block Chaining Mode

CFB Cipher Feedback Block Mode

DBX Dynamic Block Encryption

ECB Electronic Code Book Mode

FEAL Fast Data Encipherment Algorithm

GIMPS Great Internet Mersenne Prime Search.

GOST Russian cryptographic algorithm similar to DES in many ways

GPS Global Positioning System

IDEA International Data Encryption Algorithm

IFS Iteration Function System

ISO International Organisation for Standardization

IV Initialisation vector

LCG Linear Congruential Generator

MD5 Message Digest

NSA National Security Agency

OFB Output Feedback Block Mode

OTP One Time Pad

PKI Public Key Infrastructure

PRNG Pseudo Random Number Generator

SEAL Software-Optimised Encryption Algorithm

SHA Secure Hash Algorithm

iv

Glossary (continued)

Asymmetric Encryption

A form of cryptosystem in which encryption and decryption are performed

using two different keys, one of which is referred to as the public key. Also

known as public key encryption.

Authentication

A process used to verify the integrity of transmitted data, especially a mes-

sage.

Block Cipher

A symmetric encryption algorithm in which a large block of plaintext bits

(typically 64) is transformed as a whole into a ciphertext block of the same
length.

Cipher

An algorithm for encryption and decryption. A cipher replaces a piece of
information (an element in plaintext) with another object, with the intent to

conceal the meaning. Typically, the replacement rule is governed by a secret

key.

Ciphertext

The output of an encryption algorithm; the encrypted form of a message

data.

Code

An unvarying rule for replacing a piece of information (e. g., letter, word,

phrase) with another object, not necessarily of the same sort. Generally,

there is no intent to conceal meaning. Examples include the ASCII charac-

ter code (each character is represented by 7 bits) and frequency-shift keying

(each binary value is represented by a particular frequency).

V

Confusion

A cryptographic technique that seeks to make the relationship between the

statistics of the ciphertext and the value of the encryption key as complex

as possible. This is achieved by the use of a complex scrambling algorithm

that depends on the key and the input.

Cryptanalysis

The branch of cryptology dealing with the breaking of a cipher to recover

information, or forging encrypted information that will be accepted as au-

thentic.

Cryptography

The branch of cryptology dealing with the design of algorithms for encryption

and decryption, intended to ensure the secrecy and authenticity of messages.

Cryptology

The study of secure communications, which encompasses both cryptography

and cryptanalysis.

Decryption

The translation of encrypted text or data (called ciphertext) into original

text or data (called plaintext). Also called deciphering.

Differential Cryptanalysis

A technique in which chosen plaintexts with particular XOR, difference pat-

terns are encrypted. The difference patterns of the resulting ciphertext pro-

vide information that can be used to determine the encryption key.

Diffusion

A cryptographic technique that seeks to obscure the statistical structure of

the plaintext by spreading out the influence of each individual plaintext digit

over many ciphertext digits.

vi

Digital Signature

An authentication mechanism that enables the creator of a message to attach

a code which acts as a signature. The signature guarantees the source and

integrity of the message.

Encryption

The conversion of plaintext or data into unintelligible form by means of a

reversible translation, based on a translation table or algorithm. Also called

enciphering.

Hash Function

A function that maps a variable length data block or message into a fixed

length value called a hash code. The function is designed in such a way that,

when protected, it provides an authenticator to the data or message. Also

referred to as a message digest.

Initialisation Vector

A random block of data that is used to begin the encryption of multiple

blocks of plaintext, when a block-chaining encryption technique is used. The

IV serves to foil known-plaintext attacks.

Message Digest

Hash function.

One-Way Function

A function that is easily computed, but the calculation of its inverse is infea-

sible.

Plaintext

The input to an encryption function or the output to a decryption function.

Private Key

One of the two keys used in an asymmetric encryption system. For secure

vi'

communication, the private key should only be known to its creator.

Pseudorandom Number Generator

A function that deterministically produces a sequence of numbers that are

apparently statistically random.

Public Key

One of the two keys used in an asymmetric encryption system. The public

key is made public, to be used in conjunction with a corresponding private

key.

Secret Key

The key is used in a symmetric encryption system. Both participants must

share the same key, this key must remain secret to protect the communica-

tion.

Skip jack

Secure encryption algorithm designed by NASA

Stream Cipher

A symmetric encryption algorithm in which ciphertext output is produced
bit-by-bit or byte-by-byte from a stream of plaintext input.

Symmetric Encryption

A form of cryptosystem in which encryption and decryption are performed

using the same key. Also known as conventional encryption.

vi"

Contents

Abstract

Acknowledgements
iii

Glossary of Terms iv

1 Introduction 1

1.1 Background
3

1.2 Prime Numbers and Cryptography
7

1.3 Research Focus
10

1.4 Original Contribution
11

1.5 About this Thesis
12

2 Basic Cryptographic Methods 17

2.1 History of Cryptography 17

2.1.1 Transposition Ciphers 19

2.1.2 Substitution Ciphers 20

ix

2.2 Block Ciphers 20

2.2.1 Electronic Codebook Mode (ECB)
........... 21

2.2.2 Cipher'Block Chaining Mode (CBC)
.......... 21

2.2.3 Cipher Feedback Block Mode (CFB)
.......... 25

2.2.4 Output Feedback Block Mode (OFB)
... 25

2.3 Stream Cipher
28

2.4 Symmetric Ciphers 29

2.5 Asymmetric Ciphers
30

2.6 Hash Functions
....... 32

2.7 One Time Pads
.......

33

2.8 Cryptanalysis
...........................

33

2.8.1 Ciphertext-only Attack
34

2.8.2 Known-plaintext Attack
35

2.8.3 Chosen-plaintext Attack
35

2.8.4 Adaptive-chosen-plaintext Attack
35

2.8.5 Chosen-ciphertext Attack
.............. .. 36

2.8.6 Chosen-key attack 36

2.8.7 Rubber-hose Cryptanalysis 36

2.8.8 Differential Cryptanalysis 36

2.8.9 Linear Cryptanalysis 37

X

2.9 Discussion 37

3 Encryption Techniques and Systems 39

3.1 Prime Numbers
................... 40

3.1.1 Fermat's Little Theorem
................. 42

3.1.2 The Search for Prime Numbers 42

3.1.3 Prime Types 47

3.1.4 Prime Patterns 48

3.2 Generating Prime Numbers 49

3.2.1 Primality Test 49

3.3 Random Number Generation
................... 53

3.3.1 Pseudo Random Sequences 56

3.3.2 Real Random Sequences
..... 57

3.3.3 Pseudo Random Number Generators
.......... 58

3.3.4 Shuffling
..... 63

3.4 Additive Generators 63

3.4.1 PRNG and Cryptography 64

3.4.2 Gaussian Random Number Generation 68

3.5 Blum-Blum Shub 72

3.6 HotBits using Radioactive Decay 75

xi

3.7 RSA (Rivest Shamir and Adleman) 75

3.8 DES 78

3.8.1 Outline of DES 79

3.8.2 DES Algorithm 80

3.8.3 Security of DES 82

3.9 Rijndael 83

3.9.1 The State and the Cipher 84

3.9.2 Hardware Implementation 85

3.9.3 The Inverse Cipher 87

3.9.4 Strength of AES 87

3.9.5 Advantages and Limitations 88

3.10 Lucifer 89

3.11 FEAL
89

3.12 IDEA
91

3.13 Skipjack 92

3.14 G OST
............................. .. 93

3.15 Blowfish
94

3.16 Cryptography using Chaos 95

3.16.1 Block Ciphers using Deterministic Chaos 99

3.16.2 Encrypting Processes 101

xii

3.16.3 Key Exchange and Authentication
........... 104

3.17 Stream Ciphers 106

3.17.1 SEAL 106

3.17.2 RC4 107

3.17.3 FSAngo 108

4 Digital Watermarking 110

4.1 Background to Watermarking 110

4.2 Applications of Watermarking 113

4.3 The Matched Filter 114

4.3.1 Derivation of the Matched Filter 116

4.3.2 White Noise Condition
...... 117

4.3.3 FFT Algorithm for the Matched Filter 117

4.3.4 Deconvolution of Frequency Modulated Signals 118

4.4 Watermarking using Chirp Coding 124

4.4.1 Basic concepts 124

4.4.2 Matched Filter Reconstruction 128

4.4.3 The Fresnel Transform 128

4.4.4 Chirp Coding, Decoding and Watermarking
...... 130

4.4.5 Code Generation 133

X111

4.4.6 MATLAB Application Programs 137

4.4.7 Discussion 140

4.5 Echelon
. 142

4.6 Embedding Ciphertext into an Image 147

5 Dynamic Block Encryption Algorithm (DBX) 150

5.1 Introduction 150

5.2 Two Modes of Operation
......... 151

5.3 Key Generation Module
.... 152

5.3.1 Data Summation Method 152

5.3.2 Hash Algorithm Method 153

5.3.3 Wavelet Decomposition Method 156

5.3.4 Convolution Method 157

5.4 Encryption Module 158

5.5 Key Exchange Module 162

5.6 Key Extraction Module 170

5.7 Decryption Module 172

5.8 Discussion 172

6 M-Code Development and Test Results 174

6.1 Introduction 174

xiv

6.2 Fixed Length Parameters
..................... 176

6.2.1 Parameter Selection 176

6.2.2 Summation Method 177

6.2.3 Convolution Integral method 180

6.2.4 Wavelet Decomposition Method 180

6.2.5 Hash Function Method 181

6.3 Encryption Module 183

6.4 Key Exchange Module 188

6.4.1 Key Extraction Module
..... 190

6.4.2 Decryption Module 192

6.4.3 Input Parameters
..................... 192

6.5 Changing Parameters Mode 193

6.6 Key Generation Module 194

6.6.1 Encryption Module 195

6.6.2 Inserting Watermark 195

6.6.3 Parameters 195

6.6.4 Key Extraction Module 196

6.6.5 Decryption Module 196

6.7 Analysis 196

6.8 Running DBX with Crypstic
....... 199

xv

6.9 Security of DBX 199

7 Conclusion and Future Directions 204

7.1 Authentication 205

7.2 Key Exchange 206

7.3 Encryption using Deterministic Chaos 207

7.4 Discussion 209

7.5 Future Directions 211

7.5.1 Covert Access 212

7.5.2 Copy Protection 212

7.5.3 Dynamic Key Exchange 212

7.5.4 Plain Text Image Based Encryption
213

A MATLAB Prototyping 216

A. 1 Fixed Version Mode
216

A. 2 Variable Parameters Mode
219

B Crypstic 222

Bibliography 223

xvi

Chapter 1

Introduction

The electronic age has managed to bring a number of changes in the way
individuals conduct their daily routines. One of the most significant of these

changes is the impact it has had upon basic human activities such as decision

making, information processing and communication. Business communities

and government organisations rely heavily on exchange, sharing, and process-
ing of information to assist them in making everyday and strategic decisions.

Security infrastructures have been put in place to help protect and preserve
integrity of the information flowing across different channels. It is therefore

necessary to provide continuous improvements to the security infrastructure

in order to keep up with the fast pace of technology growth in areas of digital

communication and software development.

As the world becomes more dependent on digital information exchange, this,

in turn, threatens the security of the information itself. Information is the

key factor in decision making for most organisations today and so has become

the one of the most important assets that the company owns [92]. Most of

1

the data transported between different locations and recipients is in danger

of being viewed and/or altered by any capable and interested eavesdropper.

For example, the use of digital devices has touched every aspect of our lives.

By using a personal digital assistant (PDA), for example, an individual can

log on and check his/her bank account, make funds transfer, pay bills, or

undertake other transactions such as trading on stock markets. Scientists

rely heavily on computers to get results from different sources around the

world; in 2003 astronomers were busy trying to track down signals from

Beagle 2 on Mars. [33]

Since the introduction of the global positioning system (GPS), an increasing

number of private motorists are relying on the use of GPS, and navigation in

general, as part of their guide to operating in unknown regions. Previously,

GPS was enjoyed by the civil and military services, but now it is at the

disposal of most civilians. In the event of a major terrorist incident, or other

planned `breakins', there is the potential for a major disaster affecting us all

through a breach of information interchange.

In August 11,2003, Jeffrey Parson, an 18 year old high school student was

suspected of unleashing a deadly internet'worm'1. know as the `MS Blaster'.

The alleged worm operated on the weakness of Microsoft Windows operating

system, and is said to have infected over 500,000 personal computers across

the globe [54], [23].

This example is not an isolated incident, as there has been similar, although

lA worm is a hidden file that is typically imported into a computer when accessing

information over the internet. It is a program that makes copies of itself (e. g. from one

disk drive to another, or by copying itself using e-mail or another transport mechanism)

and can provide a number of facilities for accessing the computer remotely

2

uncoordinated attacks, against PCs though the internet. However, this ex-

ample illustrates the extent of damage that can be caused if one were to

penetrate the security built against control centers for space research, global

positioning satellites, or communication channels between financial institu-

tions, as well as those with clients. Thus, it is becoming more and more

important to secure the infrastructure of an increasingly, information depen-

dent society.

Cryptography has been playing an important role in the IT world for secur-

ing and protecting data. Along with cryptography, digital watermarking is

starting to be used in many applications to authenticate objects. There is an

argument that watermarking has taken over what cryptography is missing
[34]. This is because an encrypted file gives away the fact that there is in-

formation that is important and is thus a `red rag to a bull' for the potential

interceptor. Watermarking can provide a way of transmitting information in

data that is seemingly insignificant because it does appear in an encrypted

form. In this thesis, it is shown that both cryptography and digital water-

marking can be used to protect data in a way that is mutually inclusive.

Cryptography and watermarking used separately cannot guarantee security

(some examples of the reasons on Why Cryptography Fails are demonstrated

by Ross Anderson [2]) but, used together, they can enhance the security of

a communications infrastructure.

1.1 Background

Cryptography is the science of writing messages that no one, except the

intended recipient, is able to read. Cryptanalysis [28] deals with the way of

3

trying to break the messages and read them. `Crypto' is from the Greek word
`Krypte' meaning hidden or vault and `Graphy' is also from the Greek `Grafik'

which means to write [601. William F. Friedman defines a cipher message as

one produced by applying a method of cryptography to the individual letters

of the plain text taken as either single entities or in groups of constant length.

Practically, every cipher message is the result of the joint application of a

`general system' (or algorithm) or method of treatment, which is invariable

and a specific key which is variable, at the will of the correspondents, and

controls the exact steps followed under the `general system'. It is assumed

that the general system is known by the correspondents and the cryptanalyst.

Different cryptographic techniques have been developed and employed to

protect information. Most of them make use of algorithms employing public
key exchange protocol which may been broken either by exploiting the weak-
ness in the key exchange mechanisms or through the algorithm itself. There

are a number of ways for checking the cryptographic security of an object
(e. g. data stream). Analysing the algorithm, or looking at the mathematical

model, can assist in revealing the strength or weakness of an object. One

can also try known attacks to determine its strength. However, by applying

various known attacks, without success, does not mean that the object is

secure. This is because most attacks are relatively comparable to 'labora-

tory' experiments', and hence they differ form real world attacks. However,

this can, in theory, be considered as a first step towards stronger resistance

to attack. According to Daemen [25] `... cryptographic security of a cipher

can best be defined as security in the worst possible circumstances. Clearly,

a cipher that is claimed to be cryptographically secure by this definition is

claimed to be secure in all applications'

4

Steganography is another form of cryptography. This goes back thousands

of years. For example, during the war, in order to conceal the messages,
Histaiaues shaved the head of his messenger, wrote the message on his scalp,

then waited for the hair to regrow, once the hair has grown, he would send

the messenger, whom himself was not aware of the message he carried across

the enemy lines. (War then was a little slower than now!) Steganography is

the practice of embedding secret messages in other messages in a way that

prevents an observer from learning that anything unusual is taking place.

Encryption, by contrast, relies on ciphers or codes to scramble a message.

The practice of steganography has a distinguished history. The Greek histo-

rian Herodotus also used steganography and describes how one of his cunning

countrymen sent a secret message warning of an invasion by scrawling it on
the wood underneath a wax tablet. To casual observers, the tablet appeared
blank. Both Axis and Allied spies during World War II used such measures as
invisible inks [22]; for example, using milk, fruit juice or urine which darken

when heated, or tiny punctures above key characters in a document that

form a message when combined.

Modern steganographers have far-more-powerful tools. Software like White

Noise Storm (46] and S-Tools allow a user to embed messages in digitized

information; typically, audio, video or still image files, that are sent to a

recipient. The software usually works by storing information in the least

significant bits of a digitized file; those bits can be changed in ways that

are not dramatic enough for a human eye or ear to detect. It is relatively

simple, for example, to insert a message in the least significant bits of an

image JPEG file that, when viewed, have no substantial differences to the

original JPEG images. Steghide embeds messages in bmp, wav and au files

5

via least significant bits and MP3Stego does the same for MP3 files. One

program, called snow, hides a message by adding extra whitespace at the end

of each line of a text file or e-mail message. Perhaps the strangest example

of steganography is a program called Spam Mimic, based on a set of rules,

called a mimic engine, and designed by Wayner [96]. It encodes a message
into what looks just like a typical, quickly deleted spam message.

Other methods of securing objects are by watermarking. Although encrypt-
ing an object offers security, a culprit can buy a legal copy of an object,

say music or a movie, and then start distributing the copies illegally. The

method of tracking down the original buyer can be quite strenuous. By ap-
plying watermarking to an object, whenever an illegal copy is found, it can
then be verified against the original.

The idea of watermarking can be dated back to the late Middle Ages. The

earliest use has been to record the manufacture's trademark on the product so
that authenticity can be easily established. Governments use it for currencies,

postage stamps, revenue stamps, etc. [6]. Now, due to the information and

computer age, digital watermarking is being rapidly expanded to cover a

wide range of applications.

Digital watermarking is a process of embedding unobtrusive marks or labels

into digital content. These embedded marks are typically invisible and can
later be detected or extracted. The concept of digital watermarking is closely

association with steganography. Watermarks added to digital content serve

a variety of purposes:

" Ownership Assertion - to establish ownership of the content (i. e. im-

age).

6

9 Fingerprinting - to avoid unauthorized duplication and distribution of
publicly available multimedia content.

" Authentication and integrity verification - the authenticator is insep-

arably bound to the content whereby the author has a unique key

associated with the content and can verify integrity of that content by

extracting the watermark.

" Content labeling - bits embedded into the data that give further infor-

mation about the content such as a graphic image with time and place
information.

" Usage control - added to limit the number of copies created where the

watermarks are modified by the hardware and at some point do not
allow further copies to be made (e. g. a DVD).

" Content protection - content stamped with a visible watermark that
is very difficult to remove so that it can be publically and freely dis-

tributed.

Unfortunately, there is no universal watermarking technique to satisfy all of

the above purposes. The content in the environment that is used determines

the watermarking technique.

1.2 Prime Numbers and Cryptography

In the general field of Cryptology and, in particular, cryptography, prime
numbers have emerged to play a central role, especially since the develop-

ment of the programmable computer in Bletchley Park, England, in 1944.

7

Prime numbers and their properties were first studied deeply by ancient
Greek mathematicians. The mathematicians of the Pythagorian school (500

BC to 300 BC) were interested in prime numbers for their mystical and

numerological properties. They understood the idea of primality and were

interested in perfect and amicable numbers. Even though they have been

studied for many years, the full potential of prime numbers, has only rela-

tively recently been realised. Prime numbers have become important when

used within one way functions in encryption algorithms, in particular the

design of one-way functions that exploit modular arithmetic. Proper stud-

ies and analysis of prime numbers can result in implementation of stronger

encryption software. In general, one-way functions are based on exploiting
the joint properties of prime numbers and modular arithmetic and the large

majority of encryption algorithms have come to be based on exploiting the

interplay between these two `elements'.

One of most extensive studies in the field of number theory is knowledge

of exactly how many prime numbers are there. Are prime numbers finite

or infinite? [44] [67] Ever since the study of prime numbers began, a large

number of mathematicians have developed different theories in finding the

primes. Euclid's Elements appeared around 300 BC and by this time several

important results about primes had been proved. In Book IX [32] of the

Elements, Euclid proves that there are infinitely many prime numbers. This

is one of the first proofs known which uses the method of contradiction to

establish a result. Euclid also gives a proof of the Fundamental Theorem

of Arithmetic: Every integer can be written as a product of primes in an

essentially unique way. Euclid also showed that if the number 2n -1 is

prime then the number (2n - 1)(2n - 1) is a perfect number. In 1747, Euler

was able to show that all even perfect numbers are of this form. It is not

8

known to this day whether there are any odd perfect numbers

In about 200 BC, the Eratosthenes devised an algorithm for calculating

primes called the Sieve of Eratosthenes. The next important developments

were made by Fermat at the beginning of the 17th Century. He proved a

speculation of Albert Girard that every prime number of the form 4n +1

can be written in a unique way as the sum of two squares and was able to

show how any number could be written as a sum of four squares. He proved

what has come to be known as Fermat's Little Theorem (to distinguish it

from his so-called Last Theorem). This states that if p is prime then for any
integer a we have ap =a mod p. Fermat's little theorem is actually the fun-

damental basis for asymmetric encryption, e. g. encryption systems that use
public and private keys. Originally derived by GCHQ, Cheltenham, England
in the early 1970s, it was first marketed in the USA in the late 1970s as
the RSA algorithm. Today, the RSA algorithm, which is itself, essentially a
by-product of Fermat's little theorem, now forms the kernel of a wide rage
of encryption systems application, e. g. all PKI (Public Key Infrastructure)

systems. The range of applications is also widespread and apart from being

used in encryption in general, is used in biometrics such as in finger-print

[55] and iris [39] recognition in which access to databases is acquired through

PKI.

The importance of prime numbers in encryption has meant that one of the

principal applications for research into prime numbers and number theory in

general is cryptology. This includes the design of new algorithms that are

applied, in conjunction with powerful computing technology, in the compu-

tation of new prime numbers.

9

1.3 Research Focus

Almost all block cipher algorithms use fixed length blocks. If an adversary

successfully manages to break one block, the chances are that the rest of the

blocks can be cracked by following a pattern. Hence information is compro-

mised.

One way to improve the security of the cipher is to use variable size block

encryption with some form of parameter modulation. Dynamic Block En-

cryption (DBX) uses variable size blocks. This makes it hard to crack because

the block size is randomly selected, hence there is no way of knowing which
block the data belongs to. Further each block is driven by what is in effect
a variation on the theme of the same algorithm or alternative a uniquely
different algorithm (multi-algorithmicity).

The other contribution to this thesis is the key exchange mechanism. In

symmetric ciphers when encrypted data is transmitted, the key has to be

sent separately. One way to send the key is by using a secure channel shared
between the sender and the recipient. This key is then used repeatedly until

users decide to change it. This poses an increased risk because the same
key is used for long periods. Once compromised, the data transmitted is no
longer secure.

The asymmetric cipher uses public key exchange where the user publishes

his/her key on the Internet and the sender encrypts the file using the recipi-

ent's public key. The recipient decrypts using his own private key. One risk

involves exposing the key. Hence a cryptanalyst already acquires a starting

point.

DBX key exchange mechanism is designed to overcome both issues. The key

10

is chirp coded and then embedded in the ciphertext before transmission. This

overcomes the problem of transmitting the key. The key changes every time

the file is transmitted so that, if a key is compromised, it is rendered useless

because the next key is entirely different. The key is transmitted within the

ciphertext so that there is no problem in transmitting and exchanging keys.

1.4 Original Contribution

The original contributions of this thesis can be summerised as follows:

" Dynamic blocks cipher with prime number modulation: The

implementation of dynamic blocks in which each block output is the re-

sult of utilizing a randomly selected prime number from a pre-determined
database to drive a BBS cipher generator. (Section 5.4 and 6.3)

" Key exchange mechanism: A secure method of exchanging keys

between two or more parties that is based on the use of chirp coding

to embed the key used into the cipher text that it (the key) generates

using the block cipher technique above. This method can be applied

either by using fixed parameters or using a `crypstic'. (Section 5.3 and

6.2)

Publications

The following papers have been published based on the above contributions:

" Al-Ismaily, N., Salagean, A., Blackledge, J. and Datta, S., ̀ Digital Wa-

termarking Encryption and Authentication'
, Proc. of EPSRC PREP

11

2004 , EPSRC, Fourth Conference on Postgraduate Research in Elec-

tronics Photonics Communications and Software (PREP 2004), April

2004,189-190, ISBN 1 899371 33 8.

" Al-Ismaily, N., Salagean, A., Blackledge, J. M. and Datta, S., 'Encryp-

tion using Varying Block Length with Embedded Key Exchange Mech-

anism', Proceeedings of EPSRC PREP 2005, University of Lancaster,

April 2005, pp 75-76

Both papers have been included in the accompanying CD.

1.5 About this Thesis

We derive an algorithm that utilizes dynamic length block cipher in which the
block length changes randomly using a database of over one million primes.
The initial seed is generated from a key which has been derived from the

plaintext. The seed is then used to `drive' a linear congruential generator

which selects two primes. These primes are then used to `drive' the Blum-

Blum Shub (BBS) [10] generator to compute variable block lengths which

vary from 5 to 50 characters in length. The block diagram given in Figures

1.1 and 1.2 outline the process.

Once a block length is selected, each character in a block is then XOR'ed with
a random number picked from the second run of BBS generator. The key for

12

Plaintext

1
Generate Key

Encrypt

101110100101
Embed the key

(using chirp coding)

Key generation
module

101110100101

Encryption module

Encrypted data

Key exchange
module

V
Encrypted data with

key

Figure 1.1: Encryption process with key embedding techniques

13

Ciphertext

Ciphertext with
embedded key Key extraction

module Key (binary
stream)

Ciphertext

Decryption module
Key (binary

stream)

Figure 1.2: Decryption process

Plaintext

14

encryption is derived from the plaintext using one of four transforms includ-

ing wavelet decompostion [64]. This provides a unique (plain text dependent)

bit stream which is applied as a binary key. Chapter 2 and Chapter 3 pro-

vide essential background material (including a literature search - Chapter

2) upon which this research has been based.

In Chapter 4, we consider a method of watermarking the ciphertext with

the binary key obtained. The method is based on application of the chirp

function to produce a chirp stream, i. e. applying a linear frequency mod-

ulated waveform (of finite length) to represent a0 or 1 (phase reversed).

This method is then combined with the encryption engine (the prime num-
ber modulation and dynamic block cipher) that is the subject of Chapter 5.

Test results based on m-code developed for this thesis are discussed in Chap-

ter 6 which details those features of the computational procedures that are
fundamental to this work and presents the principal functions and objects

used to design and construct the encryption system developed. Figure 1.2

shows a basic encryption process.

All software development work undertaken for this research is provided in

Appendix A. All prototyping work was undertaken using MathWorks Inc

MATLAB Version 6, in particular, in implementing the prime number mod-

ulation and dynamic block cipher encryption engine with auto-authenticating

key exchange. The m-code is given in Appendix A. In Appendix B we have

included background on crypstic and its application on commercial world.

15

plaintext plaintext

Figure 1.3: Schematic of the basic processes associated with a symmetric

encryption system.

16

Chapter 2

Basic Cryptographic Methods

2.1 History of Cryptography

Cryptography is derived from a Greek word, crypots, meaning hidden. It is

a study of the mathematical techniques related to aspects of information

security such as confidentiality, data integrity, entity authentication, and
data origin authentication. Cryptography is not the only means of providing
information security, but rather, one of a class of techniques. One of the

best examples of early cryptography is the Caesar cipher, named after Julius

Caesar because he is thought to have used it even if there is no strong evidence

that he actually invented it [4].

The Caesar cipher is a substitution cipher. Encryption is achieved by trans-

forming each letter of the plaintext message into a different letter to produce

the ciphertext. For example, if the shift factor is 3 (see Figure 2.1), then: A

becomes K, E becomes M, L becomes J, and Q becomes S. Of course, the

shift is dependent on the language used, whether it is English, Russian, or

17

Greek [75]. This cipher can be described using modular arithmetic. Let P

be the numerical equivalent of a letter in the plaintext and C the numerical

equivalent of the corresponding ciphertext letter. Then

P: ABCDEFGHIJKLMN0PQRST

P: 0123456789 10 11 12 13 14 15 16 17 18 19

P: UVWXYZ

P: 20 21 22 23 24 25

C: 10 17 24 5 12 19 07 14 21 29 16 23 4 11 18 25 6 13

C: KRYFMTAH0VCJQXELSZGN

C: 20 18 15 22 3

C: UBIPWD

Figure 2.1: The correspondence of letters for the cipher with C- 7P + 10 mod (26)

P: plaintext C: ciphertext

This correspondence is obtained in the following way. Letter L is assigned

numerical 11. Since C= 7P + 10 mod 26.7 x 11 + 10 = 87 -9 mod 26. As

we can see from the above table 9 is the numerical equivalent of J.

The example below illustrates enciphering of a message using Ceaser's Ci-

pher. The message is:

PLEASE SEND MONEY.

18

Broken into a group (blocks) of 5 letters, the message now reads.

PLEAS ESEND MONEY.

It does not have to be 5 letters, in fact it can be any number. The reason
for keeping it uniform is not to reveal the actual word size. For example, if

a message contains a lot of 3 letter words, it is easy to guess the word is the.

Skipping details, the ciphertext obtained is

LJMKG MGMXF QEXMW.

Deciphering is, of course, the inverse of the above process.

Since Roman times and, in particular, since the development of programmable

computes, a wide class of ciphers have evolved together with the terminology

associated with Crytography in general. This Section discusses the back-

ground to different ciphers and associated terminology with an emphasis on

that which is used throughout this thesis. Basic encryption systems fall into

two primary categories, transposition and substitution cipher (or both).

2.1.1 Transposition Ciphers

In a transposition cipher the plaintext remains the same, but the order of

characters is shuffled around within a block .A simple transposition cipher

preserves the number of characters of a given type within a block, making it

an easy task for cryptanalysts.

19

2.1.2 Substitution Ciphers

Substitution ciphers are block ciphers which replace symbols by other sym-
bols. Simple substitution ciphers over small block sizes provide inadequate

security even when the key space is extremely large. For example, letter E

occurs more frequently than any other letter in the English text.

2.2 Block Ciphers

Block ciphers are a logical and natural extension to implementing an en-

cryption algorithm and the use of block ciphers is fundamental to the work

undertaken and the encryption system developed for this thesis. A block

cipher is a type of symmetric-key encryption algorithm that transforms a
fixed-length block of plaintext data into a block of ciphertext data of the

same length. This transformation takes place under the action of a user-

provided secret key.

Since different plaintext blocks are mapped to different ciphertext blocks (to

allow unique decryption), a block cipher effectively provides a permutation
(one to one reversible correspondence) of sets of all possible messages. The

permutation affected during any particular encryption is of course secret,

since it is a function of the secret key. When we use a block cipher to

encrypt a message of arbitrary length, we use techniques known as modes

of operation for the block cipher. To be useful, a mode must be at least as

secure and as efficient as the underlying cipher. Modes may have properties

in addition to those inherent in the basic cipher. The standard modes are:

20

2.2.1 Electronic Codebook Mode (ECB)

In ECB [76], each identical block of plaintext gives an identical block of

ciphertext. The plaintext can be easily manipulated by removing, repeat-

ing, or interchanging blocks. ECB allows easy parallelization to yield higher

performance.

Since ciphertext blocks are independent, malicious substitution of ECB blocks

(e. g. insertion of frequency occurring blocks) does not affect the decryption of

adjacent blocks. Furthermore, block ciphers do not hide patterns - identical

ciphertext blocks imply identical plaintext blocks. For this reason, the ECB

mode is not recommended for messages longer than one block, or, if keys

are reused, for more than a single block message. Security may be improved

somewhat by inclusion of random padding bits in each block.

The problem with ECB mode is that if a cryptanalyst has the plaintext and

ciphertext for several messages, he/she can start to compile the codebook

without knowing the key - see Figure 2.1. In most real world situations,

fragments of messages tend to repeat and different messages may have bit

sequences in common. Computer generated messages, like electronic mail,

tend to have regular structures. Further, messages can be highly redundant

or may have long strings of zeros or spaces.

2.2.2 Cipher Block Chaining Mode (CBC)

In CBC [77] mode, each plaintext block is XORed with the previous cipher-

text block and then encrypted. An initialization vector is used as a `seed'

21

Figure 2.1: Electronic codebook mode.

22

for the process. The chaining mechanism causes a ciphertext to depend on

all preceding plaintext blocks (the entire dependency on preceding blocks is,

however, contained in the value of previous ciphertext block). Consequently,

rearranging the order of ciphertext blocks affects decryption. Proper de-

cryption of a correct ciphertext block requires a correct preceding ciphertext

block as illustrated in Figure 2.2.

CBC mode forces identical plaintext blocks to encrypt to different ciphertext

blocks only when some previous plaintext block is different. Two identical

messages will still encrypt to the same cipher text. Worst still, two messages

which begin the same, will encrypt in the same way to the first difference.

Some messages have a common header: a letterhead or a `from' line. While

block replay is still impossible, this identical beginning can give a crypt-

analyst some useful information. A simple solution to this problem is to

encrypt random data over the first block. The block of random data is called

the Initialisation Vector (IV), initialisation variable, or initial chaining value.

The IV has no meaning, it is there just to make each message unique. A

timestamp, or addition of some random bits make a good IV.

With the addition of IVs, identical plaintext messages encrypt to different

ciphertext messages. Thus, it is impossible for an eavesdropper to attempt a

block replay, and more difficult for him/her to build a codebook. While the

IV should be unique for each message and encrypted with the same key, it is

not an absolute requirement.

23

r' 4 Cipher Block Chaining Mode

m, m2 mj

co(IV)

Figure 2.2: Cipher block chaining mode.

24

C, C2 C3

2.2.3 Cipher Feedback Block Mode (CFB)

In CFB [78] mode, the previous ciphertext block is encrypted and the output

produced is combined with the plaintext block using XOR to produce the

current ciphertext block. It is possible to define CFB mode so it uses feedback

that is less than one full data block. An initialization vector is used as a'seed'
for the process - see Figure 2.3.

In CFB, the plaintext patterns are concealed in the ciphertext by the use of
the XOR operation. Plaintext cannot be manipulated directly except by the

removal of blocks from the beginning or the end of the ciphertext. With CFB

mode and full feedback, when two ciphertext blocks are identical, the outputs
from the block cipher operation at the next step are also identical. This allows
information about plaintext blocks to leak. The security considerations for

the initialization vector are the same as in CBC mode.

2.2.4 Output Feedback Block Mode (OFB)

OFB [79] mode is similar to CFB mode except that the data that is XORed

with each plaintext block is generated independently of both the plaintext

and ciphertext. An initialization vector is used as a `seed' for a sequence of

data blocks si, say, and each data block s; is derived from the encryption of

the previous data block si - 1. The encryption of a plaintext block is derived

by XORing the plaintext block with the relevant data block (see Figure 2.4)

25

Cipher Feedback Mode

M3

cppV)

C2 ý3

Figure 2.3: Cipher feedback chaining mode.

26

mi

Figure 2.4: Output feedback chaining mode.

27

OFB mode has an advantage over CFB mode in that any bit errors that

might occur during transmission are not propagated to affect the decryption

of subsequent blocks. The security considerations for the initialization vector

are the same as in CFB mode. A problem with OFB mode is that the

plaintext is easily manipulated. Namely, an attacker who knows a plaintext

block mi may replace it with a false plaintext block x by XORing mti with

the corresponding ciphertext block c;

2.3 Stream Cipher

Stream ciphers [61] [73] form an important class of symmetric key encryption

schemes. What makes them useful is the fact that the encryption transforma-

tion can change for each symbol of plaintext being encrypted. In situations

where transmission errors are highly probable, stream ciphers are advanta-

geous because they have no error propagation problems. They can also be

used when the data must be processed one symbol at a time (e. g. typical

usage in low memory devices such as mobile phone communication). The

security of the stream cipher depends entirely on the keystream generator.

If the generator generates true random bits, the security can be considered

as perfect. If the generator gives out a stream of zeros for example, then the

ciphertext will be the same as the plaintext!

Stream ciphers can be designed to be exceptionally fast, much faster than

any block cipher. While block ciphers operate on large blocks of data, stream

ciphers typically operate on smaller units of plaintext, usually on a bit by

bit basis. The encryption of any particular plaintext with a block cipher will

result in the same ciphertext when the same key is used. With a stream ci-

28

pher, the transformation of these smaller plaintext units will vary, depending

on when they are encountered during the encryption process.

A stream cipher generates a keystream. Encryption is accomplished by com-
bining the keystream with the plaintext, usually with the bitwise XOR oper-

ation. The generation of the keystream can be independent of the plaintext

and ciphertext, yielding what is termed as synchronous stream cipher. It

can also depend on the data and its encryption, in which case, the stream

cipher is said to be self-synchronizing. Most stream cipher designs are for

synchronous stream ciphers.

Current interest in stream ciphers is most commonly attributed to the ap-

pealing theoretical properties of the one-time pad, but there have been, as of

yet, no attempts to standardize any particular stream cipher proposal as has

been the case with block ciphers. Interestingly, certain modes of operation

of a block cipher effectively transform it into a keystream generator and, in

this way, any block cipher can be used as a stream cipher. However, stream

ciphers with a dedicated design are likely to be much faster. A number of

shift registers are implemented and used in stream cipher techniques.

2.4 Symmetric Ciphers

In a symmetric cipher, both parties must agree on the encryption key (and

encryption algorithm) in advance. The key used in symmetric cipher is the

same for both the sender and recipient. Symmetric systems keys are also

termed as shared secret systems or private key systems. Symmetric ciphers

are significantly faster than asymmetric ciphers, but the requirements for key

exchange make them difficult to use. DES (Digital Encryption Standard) an

29

DES3 (essentially the Digital Encryption Standard with triple encryption)

and AES/R. ijndael (Advanced Encryption Standard by Joan Daemen and

Vincent Rijmen) are examples of symmetric ciphers which are used in many
banking systems for example and in some military applications.

2.5 Asymmetric Ciphers

In an asymmetric cipher, the key is negotiated between the parties during

communication. In this system, each person has two keys. The first key, the

public key, is shared publicly. The second key is private, and is kept secret.
When working with asymmetric cryptography, the message is encrypted using

the recipients' public key. The recipient then decrypts the message using
his/her private key. That is what makes the system asymmetric.

Because asymmetric ciphers tend to be significantly more computationally
intensive, they are usually used in combination with symmetric ciphers to im-

plement public key cryptography. The asymmetric cipher is used to encrypt

a session key and the encrypted session key is then used to encrypt the actual

message. This gives the key-exchange benefits of asymmetric ciphers with

the speed of symmetric ciphers. RSA and Diffie-Hellman are asymmetric

ciphers. [61] [41]. Asymmetric ciphers are also know as public key cryptog-

raphy. This concept was first invented by Diffie and Hellman in 1976 [29]

[83]. The public key is made freely available to the public. This may serve as

a convenience, because one does not have to worry about how to exchange

keys. But on the other hand, it is a good starting point for cryptanalysts.

Given that C= Ek(P) where P is the plaintext, C is the ciphertext and E

is the key (k) dependent encryption algorithm, the analyst can guess P and

30

check the answer. This may cause problems if the number of possible text

messages is small enough to allow for an exhaustive search. However, most

of the public key algorithms are designed to resist chosen-plaintext attack.
It is therefore not easy to deduce the secret key from the public key and the

plaintext cannot be easily recovered from the ciphertext.

Even though the public key system with a secure algorithm can be considered

secure, a lot of issues have been raised about the mechanism of key exchange,

and who is involved in the process. In the article, Ten Risks of PKI: What you

are not being told about Public Key Infrastructure, Carl Ellison and Bruce
Shneier [31] highlight some important facts to be considered when using

public key infrastructure. In essence, a detailed analysis of public key and

asymmetric systems in general, reveals that the level of security is not as
significant as that which can achieved using a well designed symmetric system

which is the basis for encryption engines developed in this thesis.

The table below compares the difference on key length when using symmetric

or asymmetric cipher. [83]:

Symmetric Public

Key length Key Length

56 bits 384 bits

64 bits 512 bits

80 bits 768 bits

112 bits 1792 bits

128 bits 2304 bits

31

Table 2.1: Symmetric and public-key lengths with similar resistance and
brute-force attacks.

2.6 Hash Functions

A hash function is a one way function which takes an input and returns a

fixed-size output string [97] [50]. Hash functions have a variety of general

computational usages; they provide one of the best ways for checking the

authenticity of stored files. For example, if a file has been modified, when

its hash function is recalculated, there will be a change in the output value
(hash values). Hash functions are quite useful for network administrators as

they can use them for files that are quite important in running the system,

and do not change at all, or maybe do not change often. Tripwire Inc. [90],

provides software which periodically calculates hash function that a network

administrator could monitor. If there are any changes, the administrator

will be notified which helps to identify a potential attack to the network.
Cryptographic algorithms such as RC5 and SHA1 [89] use hash functions.

When employed in cryptography, the hash functions are usually chosen to

have some additional properties such as:

the input can be of any length;

the output has a fixed length;

H(x) is relatively easy and fast to compute for any given x;

H(x) is one-way;

H(x) is collision-free.

32

where H(x) is the hash function.

2.7 One Time Pads

The One Time Pad (OTP), invented in 1917 [35], is a theoretically unbreak-

able method of encryption where the plaintext is combined with a random

number stream of the same length. Co-invented by Gilbert Vernam, who also

invented stream cipher, OTP is also known as Vernarr cipher. This cipher is

often described as perfectly secure and unbreakable. The method has been

mathematically proven unbreakable. Even though the method is secure, it

is not popular, mainly because of its drawbacks in the key exchange, i. e.

the key cannot be used more than once. The research undertaken within

this thesis, is in a broad sense, an attempt to produce a user friendly OTP

by generating one time key from the plaintext which is: (i) used to encrypt

the plaintext; (ii) transmitted with the ciphertext as a covert watermark.

Even though this is an attempt, the cipher produced in this thesis cannot be

strictly termed as OTP mainly because the random numbers generated by

the BBS are not truly random.

2.8 Cryptanalysis

Any good crypto system must be able to withstand cryptanalysis. While

there are several good books on cryptography, there are not many books on

cryptanalysis. One reason is because this is a fast-moving field, and things

are changing all the time. Thus, any book written on the subject can be ob-

solete before it gets printed (e. g. a self-study course in cryptanalysis [85] and

33

the Hackers Black Book). Cryptanalysts work on `attacks' to try and break

the system. In many cases, the cyptanalysts are aware of the algorithm used,

and will try to break the algorithm in order to compromise the keys or gain

access to the actual plaintext. It is worth noting that even though a number

of algorithms are freely published, this does not in any way mean that they

are the most secure. Major government institutions do not reveal what type

of algorithm they use for their communication. The rationale for this is that,

if we find it difficult to break a code with knowledge of the algorithm then

how difficult it is then to break a code if the algorithm is unknown? On the

other hand, within the academic community, security in terms of algorithm

secrecy is not considered to be of high merit and publication of the algo-

rithm(s) is always recommended. It remains to be understood whether this

is a misconception within the academic world (due in part to the innocence

associated with academic culture) or a covertly induced government policy.
In 2003, it was reported that the US had broke ciphers used by the Iranian

intelligent services [72], which goes to show that the encryption experts and

the cryptanalists are in a leap frog race. What was not mentioned, is the fact

that the Iranian ciphers were based on systems purchased indirectly from the

US and, thus, based on US designed algorithms!

There are several methods by which a system can be attacked. In all the

methods it is assumed that the cryptanalyst has full knowledge of the algo-

rithms used! These are discussed below.

2.8.1 Ciphertext-only Attack

In this type of attack, the cryptanalyst has a ciphertext of several messages

at his disposal. All of these messages have been encrypted using the same

34

algorithm. The challenge for the cryptanalyst is to try and recover the plain-

text of these messages. At the same time, he/she will be in a better position

if he/she can recover the actual keys used for encryption.

2.8.2 Known-plaintext Attack

The cryptanalyst task is simpler in this case because he/she has access to

both the plaintext and the corresponding ciphertext. He/she needs to deduce

the key used for encrypting those messages, or come up with an algorithm

to decrypt any new messages encrypted with the same key.

2.8.3 Chosen-plaintext Attack

In this case the cryptanalyst possesses both the plaintext and the ciphertext.

In addition to this he/she also has the ability to encrypt plaintext and recover

the ciphertext produced. This gives him/her a more powerful tool which

should enable him/her to deduce the keys.

2.8.4 Adaptive-chosen-plaintext Attack

This is an improved version of the chosen-plaintext attack. In this version,

the cryptanalyst has the ability to modify the results based on the previous

encryption. This version allows the cryptanalyst to choose a smaller block

for encryption.

35

2.8.5 Chosen-ciphertext Attack

Here the cryptanalyst has access to several decrypted texts. In addition, the

cryptanalyst is able to use the text and pass it through a `black box' for an

attempted decrypt. The cryptanalyst has to guess the keys in order to use

this method which is performed on iterated basis (for different keys), until a

decrypt is obtained.

2.8.6 Chosen-key attack

This method is based on some knowledge on the relationship between differ-

ent keys and not a very practical attack strategy except in special circum-

stances.

2.8.7 Rubber-hose Cryptanalysis

This is based on the use of human factors such as blackmail, physical threat,

or torture. It is often a very powerful attack and sometimes very effective.

2.8.8 Differential Cryptanalysis

Discovered by Eli Biham and Adi Shamir in the late 1980s, this is a more

general form of cryptanalysis. It is the study of how differences in an input

can affect the resultant difference in the output. Biham and Shamir pub-

lished a number of attacks against various block ciphers and hash functions,

including a theoretical weakness in the Data Encryption Standard (DES).

This method of attack is usually on a chosen plaintext attack, meaning that

36

the attacker must be able to obtain encrypted ciphertexts for some set of

plaintexts of his own choosing.

2.8.9 Linear Cryptanalysis

This is a known plaintext attack which uses linear relations between inputs

and outputs of an encryption algorithm that holds with a certain probability.

This approximation can be used to assign probabilities to the possible keys

and locate the most probable one.

2.9 Discussion

All the attack strategies discussed above are based on a priori knowledge

of the exact algorithm that is being used (published or otherwise). Since

conventional encryption systems are based on a single algorithm that operates

in the same way under different conditions and in a way that is independent

of the input plaintext, it is an example of mono-static data processing.

One obvious way of increasing the security of an encryption system is to con-

sider new algorithms whose functional form is kept secure. But this approach

falls short of the principle of algorithm accessibility insisted upon primarily

by the academic community. However, there is another approach that can

be considered which is based on the modulation of.

(i) the algorithms themselves;

(ii) the parameters that `drive' them.

37

This involves application of a `multi-dynamic' paradigm. In this thesis we

consider both cases. In case (i) above, we review the use of deterministic

chaos [69] for designing a multiplicity of algorithms which can be published

in the knowledge that a multiplicity of new algorithms can be generated rel-

atively easily which is, at least in principle, inexhaustive. This facility exists

because of the infinite variety of non-linear (chaotic) iteration functions that

can be invented for this purpose; a facility that is not available to the same

extent with conventional approaches to algorithm design, i. e. through the

use of pseudo random number generators. This is discussed in section 3.17.

With regard to case (ii) above, with conventional encryption algorithms, the

parameters that `drive' them are invariably prime numbers. Thus, in order

to exercise the principal of multi-dynamicism using conventional encryption

algorithms, we can introduce a design strategy that is based on prime number

modulation which is the subject of Chapter 5. This is based on the theory of

encryption discussed in Chapter 3 which includes a review of the properties

of prime numbers and how these properties can be used to compute prime

numbers efficiently in order to implement prime number modulation in prac-

tice. In addition to applying a multi-dynamic paradigm to the design of an

encryption engine, we also investigate how this approach can be applied to

the generation and exchange of keys which forms the subject of Chapter 5.

38

Chapter 3

Encryption Techniques and

Systems

This chapter begins with an introduction to prime numbers, demonstrating

the importance in their study when it comes to cryptography. It includes

a review that highlights why, in cryptographic applications, prime numbers

are so essential. We then discuss different types of (prime number based)

pseudo random number generators (PRNGs) together with their strengths

and weaknesses and explain how these generators can be implemented in

order to design Dynamic Block Encryption (DBX) systems. Finally we pro-

vide a brief introduction to different types of cryptographic techniques and

discuss the operational characteristics of the more secure ciphers such RSA

and DES.

39

3.1 Prime Numbers

There is huge literature concerning prime numbers and their relationship to

number theory in general. In this section, we shall discuss those properties

of prime numbers that are of specific importance to encryption in terms of

their computation and, in particular, the characteristics that are necessary

to implement a prime number modulation scheme.

A prime number is an integer greater than 1 that is divisible by no other

integer except by 1 and itself [98]. The study of prime numbers has fasci-

nated mathematicians for hundreds of years because of their mystical and

numerological properties, finding the properties of prime numbers very ap-

pealing. However, for years there has never been any real use for them. All

that changed as the need to design encryption systems using programmable

computers grew. This is because prime numbers are building blocks of all

integers. Every integer is either itself a prime or the product of primes. In

this sense, there is a similarity between prime numbers and atoms. Prime

numbers are as important to number theorists and atoms are to materials

scientists.

If P is the set of all prime numbers, then any positive integer a can be written

uniquely in the following form:

a=
Hpap

pEP

where each ap >0

For example,

3600 = 24 x 32 x 52

The value of any positive integer can be specified by simply listing all the

40

nonzero exponents in the foregoing formulation. Integer 12 is represented by

a2 = 2, a3 =1 and integer 18 is represented by a2 = 1, a3 =2 for example.

Multiplication of two numbers is equivalent to adding the corresponding ex-

ponents:

k= mit -º kp = mp + np for all pcP

k= 72 x 60 = 4320

72 = 23 x 32

60 = 22x31x51

k2=3+2=5

k3=2+1=3

k5=1=1

4320 = 25 x 33 x 51

Primes are also quite useful when it comes to determining the greatest com-

mon divisor (gcd) of two integers:

Again we have:

72 = 23 x 32

60=22x3' x51

41

gcd(60,72) = 22 x 31 x 50

and in general,

k= gcd(a, b) --> kp = min (ar, bb) for all p

3.1.1 Fermat's Little Theorem

Fermat's Little Theorem states the following: If p is prime and a is a positive
integer not divisible by p, then

ap-1 =1 (mod p)

For example, given a=7, p = 17

716 =1 (mod 3)

The same formula can also be written as aP -a (mod p).

3.1.2 The Search for Prime Numbers

To date, there is no known rule that tells us what the nth largest prime

is. However, by analysing the pattern of primes we reveal some interesting

42

features. For example, if we compute the differences between successive

primes, we obtain the following list: 1,2,2,4,2,4,6,2,6,6,4,6,6,2,6,

4,2,6,4,6,8,4,2,4,2,4,14,4,6,2,10. (That is, 1=3-2,2 =5-3,
2=7-5,4 = 11 - 7, and so on). The list is somewhat disorderly, but the

numbers in it start to get gradually larger. Of course, they do not increase

steadily, but the numbers as much as 10 and 14 do not appear until quite

late on, while the first few are all 4 or under [37].

If we write out the first ten thousand primes, then the gaps between successive

numbers get larger. This is to be expected because as an integer n becomes

larger, there is a greater likelihood for smaller integers m<n to exist such

that n/m =k where k is an integer. In other words, as an integer increases

in size, the probability of finding successive primes gets smaller.

Numerous scholars have developed different theories on prime numbers. For

example, in 1742 Christian Goldbach [20] wrote to Leonhard Euler and stated

that every even integer greater than 4 is a sum of 2 odd primes and every
integer greater than 5 is a sum of 3 primes. This is the famous Goldbach

conjecture. Because it is a conjecture rather than a proof, there has been

a number of attempts to disprove this statement by using computers with

large word lengths and extremely large numbers. Mathematicians and other

researchers have tested the conjecture against larger and larger even numbers

and `there are strong grounds for believing that Goldbach's conjecture is true,

and it feels like just a matter of time before someone figures out how to prove

it' [68] says Joe Buhler of the Mathematical Sciences Research Institute in

Berkeley, California. `The real justification is algorithmic. In figuring out

how to carry out the computations that far, one has to extend and polish

algorithmic programming techniques, and the nature of the scientific advance

43

in this case is much more in algorithmics than in number theory'.

Like other aspects of mathematics, mathematicians try to identify patterns

which can then be quantified in terms of a probable theorem. The striking

feature about prime numbers is that they appear to have patterns and cor-

relation (in terms of different indirect computational properties), but that

these properties are not universal, i. e. they are not invariant of the scale

in magnitude of the prime numbers that are considered. Thus, prime num-

bers are, in a sense, very elusive entities. Just as one property appears to

be correct, they `play another trick'. To date, there is still controversy as to

whether prime numbers have some deterministic pattern yet to be discovered

or are actually random. Given their apparent random nature, prime num-

bers continue to fascinate modern mathematicians [3]. For example, Ivan

Vinogradov, in 1937, tried to prove the work of Goldbach. He was able to

combine his bilinear form technique and his mean value theorem to reduce

the Goldbach Ternary Problem to checking a finite number of cases.

A number of methods are available to detect primes, most of these are ef-

fective only for smaller primes, but when dealing with large numbers, it

becomes difficult to determine whether a particular number is prime or not.

Even though there are an infinite number of primes, [66] of the first 25 billion

whole numbers, only 1,091,987,405 or about 4 percent are primes, and the

proportion of primes decreases as the numbers get bigger. Since the numbers

get so large, the need for efficient ways of identifying primes is a subject of

continuing research. One method for identifying a number as a prime is by

dividing it by primes; we first test if it is an even number and then find if

it divisible by 3,5,7 and so on. This method is fine for small numbers, but

once the numbers get large it becomes slow and difficult to compute.

44

Since 1945, and the development of programmable computers, cryptogra-

phers have taken a keen interest in prime numbers, and this has increased

the need for analysing them. In cryptography, the need is necessary be-

cause it is trivial to multiply 2 primes together but very difficult to compute

the two primes given the product. For example, given the primes 7317631

and 234239, multiplying them yields 1714074567809. The problem is then

to obtain 7317631 and 234239 from 1714074567801. Clearly, factoring huge

numbers is not an easy task.

Goldbach's conjecture remains just a conjecture. Thus, work continues to be

undertaken to prove Goldbach's conjecture prime pairs.

In 1998, Herman to Riele [45] used a Cray C916 supercomputer to check that

all even numbers up to 1014 satisfy the Goldbach conjecture. His work was

based on: (i) the assumption that under the Generalized Riemann hypothesis,

every odd number >7 can be written as a sum of three prime numbers;
(ii) under the assumption of the Riemann hypothesis, every even positive
integer can be written as a sum of at most four prime numbers. Goldbach's

conjecture has then been verified for all even numbers in the intervals [105i;

105i + 108], for i=3,4,..., 20 and [1010i; 1010i + 109], for i= 20,21,..., 30.

The search for Goldbach's twin primes continues. With the increase in com-

puter power, we obtain results faster. In 2000 Richstein managed to verify up

to 4x 1014 primes. He also investigated a number of different ways in which

a number can be expressed as the sum of two primes. He proved that, as the

even integers get larger, the number of such prime-pairs increases. Richstein

found the number of such sums for all even integers up to 500 million.

Table 3.1 shows how the number of pairs used to express a number increases

as the even number gets larger.

45

Integer No. of Goldbach Partitions

10 2

100 6

1,000 28

10,000 127

100,000 810

1,000,000 5,402

10,000,000 38,807

100,000,000 291,400

Table 3.1: A table showing Goldbach's twin primes

The search for Goldbach's twin primes began some time ago, but picked up

speed with the introduction of computers. Initially, it was taking time for

mathematicians to push the limit for Goldbach's pairs, the table below shows

the nature of the progress over time, i. e. over the last 200 years.

Other mathematicians have taken interest in calculating and detecting prime

numbers. The French mathematician, Mersenne, came up with the theory

that 2' -1 is prime if n is prime. However, it was later proved that not all

numbers under this equation are primes. For example: even though 11 is

prime, 211 -1 is 2047 which is not prime. Since the Mersenne conjecture, a

long search was initiated to find what are known today as Mersenne's Primes.

The Greatest Internet Mersenne Prime Search (GIMPS) [57) project involved

members connecting their PCs to a central computer which tested and ver-

ified Mersenne primes. In May 2004, the 41st Mersenne prime was found.

The number itself contains 7,235,733 decimal digits, with n= 224,036,583.

The search for the largest Mersenne prime still continues and the `race' will

46

Bound Reference

1x 10, Desboves 1885

1x 105 Pipping 1938

1x 108 Stein and Stein 1965ab

2x 1010 Granville et al. 1989

4x 1011 Sinisalo 1993

1x 1014 Deshouillers et al. 1998

4x 1019 Richstein 2001

2x 1016 Oliveira e Silva March 2003

6x 1016 Oliveira e Silva Oct 2003

Table 3.2: The progress in validating Goldbach's twin primes.

no doubt continue for some time to come.

3.1.3 Prime Types

Ferrier's Prime

According to Hardy and Wright (1979), the 44-digit Ferrier's prime F

'7 (2148+1) = 20988936657440586486151264256610222593863921, determined

to be a prime using only a mechanical calculator [16], is the largest prime

found before the days of electronic computers. Mathematica can ver-

ify primality of this number in a (small) fraction of a second, showing how

far the art of numerical computation has advanced in the intervening years.

47

Sophie Germain Prime

A prime p is said to be a Sophie Germain prime if both p and (2p + 1) are

prime. The first few Sophie Germain primes are 2,3,5,11,23,29,41,53,

83,89,113,131, ...

The largest known Sophie Germain prime is 7068555 * 21213°2-1, which has

36523 digits [17]. It is not known if there are an infinite number of Sophie

Germain primes [42].

Wieferich Prime

A Wieferich prime [18] is a prime p which is a solution to the congruence

equation 2P-1 - 1(mod p2)

Note the similarity of this expression to the special case of Fermat's little

theorem 2P-1 =1 (mod p) which holds for all odd primes. The first few

Wieferich primes are 1093,3511, ... with none other less than 4x 1012.

Interestingly, one less than these numbers have suggestive periodic binary

representations: 1092 = 100010001002,3510 = 1101101101102.

3.1.4 Prime Patterns

The fascination with prime numbers still continues and there are a number

of (non-universal))patterns which, when studied, can help us find a way

to succeed in learning more about the prime numbers. With the help of

computers, prime numbers dispay some interesting patterns as seen in [40].

48

Relative Primes

For n+1 integers less than or equal to 2n, there are always two of them which

are relatively prime. For example, if n is 5, then take any 6 integer from the

set: 1,2,3,4,5,6,7,8,9,10. Out of these, there are two which are relatively

prime [42].

3.2 Generating Prime Numbers

A number of methods are available for generating primes. The most widely

used is the sieve of Eratosthenes. This method works fine for primes less

than 100,000,000. For larger values, we need to apply different methods.

3.2.1 Primality Test

When working with large numbers, we often need to test them for primality

before we can use them. Stallings [89] has formalised a routine TEST which

takes a number n and tests for primality. Even though the condition can be

met, it does not mean that the number is prime, but is a highly probable

prime number. Given n is the number to be tested.

1. Find integers k, q, with k>0, q odd so that (n -1= 2kq);

2. Select a random integer a, 1<a<n-1;

3. if aq mod n=1 then return('inconclusive');

4. for j=0 to k-1 do

5. if a2iq mod n=n-1 then return('inconclusive');

6. Return(` composite');

49

The interest in primality testing has grown rapidly since cryptographers in-

troduced the public key exchange mechanism in the 1990s. The security

involved primarily relies in factoring very large numbers. Integer factoriza-

tion poses many problems, a key problem being the testing of numbers for

primality. A reliable and fast test for primality would bring us a step closer

to decoding data containing secret information. Therefore, cryptanalyst re-

search communities have began to address the problem of primality testing

with increased vigor. A primality test is a simple function that determines

if a given integer is prime or composite. Some methods used for primality

testing are addressed below.

Sieve of Eratosthenes

This method exemplifies both the simplicity of testing for primality and the

restraints on the efficiency of such tests. The algorithm itself is a fairly

straightforward process and easy to implement, based almost completely on

the definition of primes [1]. However, even though it is easy to implement, it

is by no means efficient. In cryptography, most primality testing is concerned

with large numbers, usually in excess of 100 digits. If we were to use the Sieve

of Eratosthenes to determine the primality of a number with just 20 digits,

we would need first to find at least all the primes up to 1010. There are

around 450 million primes less than 1010. At the rate of finding one prime

per second (including `crossing off' all the multiples), we would be working

for a little over 14 years to find 450 million primes, which would then have

to be divided into our original 20-digit number. Clearly, the amount of time

50

needed to determine just one number is quite impractical for cryptographic

purpose. Of course, we can use faster and more efficient computers to run this

algorithm. We can also find better methods of storing the primes numbers.

They could be stored in a database for quick retrieval for example. However,

in general, this method is still inefficient.

Trial Division Method

If n is a composite positive integer, then n has a prime divisor p which is less

than or equal to /. The algorithm used for testing first checks for all prime

numbers p that are less than or equal to and whether they divide n. The

prime numbers p: 5 Vfn- can either be generated by the sieve of Eratosthenes

or obtained from a database of prime numbers.

Fermat Test

From Fermat's theorem [15]: If n is prime, then an-1 -1 mod n for all

aEZ with with gcd(a, n) = 1. It can be used to determine that a positive

integer is composite. For example, let n= 341 = 11 * 31, then we have

2340 =1 mod 341, even though n is composite. If we use the Fermat test

with n= 341 and a=3, then n is proven composite. The Fermat test proves

that n is composite, but does not find a divisor of n. It only shows that

n lacks a property that all prime numbers have. Therefore the Fermat test

cannot be used as a factoring algorithm.

Euclid's Theorem

51

Theorem: There are infinitely many prime numbers.

Proof [26]: Suppose there exist only a finite number of primes, pl, p2, p3, ... pn.
Now, consider the integer N= plp2... pn + 1. None of the existing primes

divides N, since the division N/pi will always give the remainder 1. Thus

either N is a (new) prime number, or N contains a (new) prime factor, which

is different from all of those given. This theory therefore proves that there is

an infinite number of primes.

The following example starts with the prime 2 and yields at least one new

prime in each step:

N2=2+1=3

N3=2x3+1=7

N4=2x3x7+1=43

N5=2x3x7x43+1=1807=13x 139

N6=2x3x7x43x 139+1 =251085=5x50207

N7 =2x3x7x 43 x 139 x 50207+ 1

= 12603664039 = 23 x 1607 x 340999

N8 =2x3x7x 43 x 139 x 50207 x 340999 +1

= 429836833293963

= 23 x 79 x 2365347734339

Ng =2x3x7x 43 x 139 x 50207 x 340999 x 2365347734339 +1

= 10165878616190575459068761119

= 17 x 127770091783 x 46802225641471129

There are a number of open questions relating to prime numbers that are the

concern of all cryptologists. Solutions may not necessarily solve and provide

52

a drastic change in cryptographci world, but will help clear some issues which

are currently not properly unserstood. This questions can be found here [65]:

3.3 Random Number Generation

The concept of randomness is part of our daily lives in a range of things

we do, whether it is buying a lottery ticket, checking weather pattern, or

simply running after a ball [51]. The security of a number of cryptographic

algorithms depends on the generation of unpredictable random numbers. It is

quite essential for use with any sequence that is needed to be generated [91],

even though it is difficult to design a true random number generator purely

using software. There are a lot of hardware tools available to create random

numbers. These are true random numbers and the sequence is impossible to

guess. For example, a logic can be constructed in such a way that numbers

are generated by the movement of the mouse. This gives random numbers,

because no one else will be able to produce exactly the same movement. We

can also obtain random numbers by tapping the noise made by a CPU in a

motherboard.

Good random number generators enhance the strength of cryptography and

many different methods of generating random numbers have been developed.

One of the interesting yet simple methods is called the diceware passphrase

[71]. In this method a list of words is generated and each word numbered.

The numbers are generated from ordinary dice, which acts as a random

number generator. The numbers that come up in the rolls are assembled as

a five digit number, e. g. 43146. That number is then used to look up a word

in a word list. A major advantage of the Diceware approach is that the level

53

of unpredictability in the passphrase can be easily calculated. Each Diceware

word adds 12.9 bits of entropy to the passphrase. (That is, log2(65) bits).

Five words (slightly over 64 bits) are considered a minimum length.

The best random numbers are created by harnessing natural physical pro-

cesses, such as radioactivity, which is known to exhibit truly random be-

haviour. A piece of radioactive material used the emissions detected with

a Geiger counter [19]. The emissions sometimes can be detected in rapid

succession, and at other times there is a long delay between emissions; these

delays are unpredictable and random [87]. A display is connected to the

Geiger counter which rapidly cycles through the alphabet at a fixed rate,
but stops momentarily as soon as an emission is detected. The letter on the

display is then used for a random number. The display restarts and once

again cycles through the alphabet until it is stopped at random by the next

emission, and again, the letter on the display is added to the key, and so on.
This process generates truly random numbers but it is impractical to use for

cryptographic purpose.

The term `random' must be used loosely because software based random

number generators as used in cryptography are basically pseudo-random, i. e.

simulations of random processes at best. A pseudo-random generator is a
deterministic algorithm that expands short random seeds into much longer

bit sequences that appear to be random. In other words, although the output

of a pseudo-random generator is not really random, there is no easy method of

telling the difference [36]. The better the pseudo-random number generator,

the better the design of an encryption engine. [88] In turn, most generators

used for encryption exploit the properties of prime numbers and hence are

prime number dependent, hence the importance of prime numbers in applied

54

cryptography.

Random number generators are not random because they do not have to be.

Most simple applications, such as computer games for example, need very few

random numbers. Nevertheless, use of a poor random number generator can

lead to strange correlations and unpredictable results which are compounded

in terms of spurious correlations. These must be avoided at all costs.

The problem is that a random number generator does not produce a random

sequence. In general, random number generators do not necessarily produce

anything that looks even remotely like the random sequences produced in

nature. However, with some careful tuning, they can be made to approxi-

mate such sequences. Of course, it is impossible to produce something truly

random on a computer. As John von Neumann states, `Anyone who consid-

ers arithmetical methods of producing random digits is, of course, in a state

of sin'. Computers are deterministic, stuff goes in at one end, completely

predictable operations occur inside, and different stuff comes out the other

end, a principle that includes a notion that is fundamental to Digital Sig-

nal Processing (DSP) and computing in general, namely, `rubbish in given

rubbish out'. Put the same data into two identical computers, and the same

data comes out of both of them (most of the time!).

A computer can only be in a finite number of states (a large finite number,

but a finite number nonetheless), and the data that comes out will always be

a deterministic function of the data that went in and the computer's current

state. This means that any random number generator on a computer (at

least, on a finite-state machine) is, by definition, periodic. Anything that is

periodic is, by definition, predictable and can not therefore be random. A

true random number generator requires some random input; a computer can

55

not provide this.

3.3.1 Pseudo Random Sequences

The best a computer can produce is a pseudo random sequence generator.

Many attempts have been made to define a pseudo random sequence formally

and in this section, a general overview is given of these attempts. A pseudo

random sequence is one that looks random. The sequence's period should

be long enough so that a finite sequence of reasonable length - that is, one

that is actually used - is not periodic. If for example, a billion random bits

are required, then a random sequence generator should not be chosen that

repeats after only sixteen thousand bits. These relatively short non-periodic

sequences should be as indistinguishable as possible from random sequences.

For example, they should have about the same number of ones and zeros,

about half the runs (sequences of the same bit) should be of length one, one

quarter of length two, one eighth of length three, and so on. In addition,

they should not be compressible. The distribution of run lengths for zeros

and ones should be the same. These properties can be empirically measured

and then compared with statistical expectations.

A sequence generator is pseudo random if it has the following properties:

It looks random, which means that it passes all the statistical tests of ran-

domness that we can find. Considerable effort has gone into producing good

pseudo random sequences on a computer. Discussions of generators abound

in the literature, along with various tests of randomness. All of these gener-

ators are periodic (there is no exception); but with potential periods of 2256

bits and higher, they can be used for the largest applications. The problem

with all pseudo random sequences is the correlations that result from their

56

inevitable periodicity. Every pseudo random sequence generator will produce

them if they are used extensively. A non periodic pseudo random sequence

must have the property that it is unpredictable. It must be computationally

non-feasible to predict what the next random bit will be, given complete

knowledge of the algorithm or hardware generating the sequence and all of

the previous bits in the stream.

3.3.2 Real Random Sequences

Is there such a thing as randomness? What is a random sequence? How

do you know if a sequence is random? Is for example `101110100' more

random than '101010101'? Quantum mechanics tells us that there is honest-

to-goodness randomness in the real world but can we preserve that random-

ness in the deterministic world of computer chips and finite-state machines?

Philosophy aside, a sequence generator is really random if it has the follow-

ing additional property: It cannot be reliably reproduced. If the sequence

generator is run twice with the exact same input (at least as exact as compu-

tationally possible), then the sequences are completely unrelated; their cross

correlation function is effectively zero. This property is not usually possible

to produce on a finite state machine and for some applications of random

number sequences, is not desirable, as in cryptography for example. Thus,

we refer to those processes that produce number streams which look random

(and passes appropriate statistical tests) and are unpredictable as Pseudo

Random Number Generators (PRNG).

57

3.3.3 Pseudo Random Number Generators

The performance of many DSP algorithms depends on the degree of noise

present in the signal and because many types of DSP algorithms are sensi-

tive to noise, it is important to test their behaviour in the presence of noise.

This is usually done by synthesizing noise signals which is accomplished us-

ing pseudo random number generators. Random numbers are not numbers

generated by a random process but are numbers generated by a completely

deterministic arithmetic process. The resulting set of numbers may have

various statistical properties which together are called randomness. A typ-

ical mechanism for generating random numbers is via the iterative process

defined by

xn+l = (ax� + b) mod P, n>0

which produces an integer number stream in the range [0, P] and is known as

the Linear Congruential Generator (LCG) [52]. Here, the modular function

mod operates in such a way as to output the remainder from the division of

ax,, +b by P, e. g.

23mod7=2 and 6mod8=6.

By convention a mod 0=a and a mod b has the same sign as b. The reason

for using modular arithmetic is because modular based functions tend to

behave more erratically than conventional functions. For example consider

the function y= 2' and the function y= 2x mod 13 for example. The table

below illustrates the difference between the output of these two function.

58

x 1 2 3 4 5 6 7 8

2' 2 4 8 16 32 64 128 256

21 mod 13 2 4 8 3 6 12 11 9

This approach to creating random sequences was first introduced by DH

Lehmer in 1949. The values of the parameters are constrained as follows: 0<

a<P, 0<b<P and 0< xo < P. The essential point to understand when

employing this method, is that not all values of the four parameters (a, b, xo

and P) produce sequences that pass all the tests for randomness. Further,

all such generators eventually repeat themselves cyclically, the length of this

cycle (the period) being at most P. When b=0, the algorithm, is faster and

referred to as the multiplicity congruential method and many authors refer

to mixed congruential methods when b 0.

An initial value or seed xo is repeatedly multiplied by a and added to b, each

product being reduced by modulo P. The element xo is commonly referred

to as the seed. For example, suppose we let a= 13, b=0, p= 100 and

xo = 1; we will then generate the following sequence of two digit numbers

1,13,69,97,61,93,09,17,21,73,49,37,81,53,89,57,41, ,,.

For certain choices of a and P, the resulting sequence XO, x1, x2, ... is fairly

evenly distributed over (0, P) and contains the expected number of upward

and downward double runs (e. g. 13,69,97) and triple runs (e. g. 9,17,21,73)

and agrees with other predictions of probability theory. The values of a and

P can vary and good choices are required to obtain runs that are statistically

acceptable and have long cycle lengths, i. e. produce a long stream of numbers

before the stream is repeated. For example, suppose we choose a=7, b

59

12, P= 30 and xo = 0, then the following sequence is generated

0,12,16,4,10,22,16,4,10,22,16,4, ...

Here, after the first three digits, the sequence repeats the digits 4,10,22,16;

the `cycle length' of the number generator is very short. To improve the cycle

length, the value of P should be a prime number whose `size' is close to that

of the word length of the computer. The reason for using a prime number

is that it is divisible by only 1 or itself. Hence, the modulo operation will

always produce an output which is distinct from one element to the next.

Many prime numbers are of the form 2n -1 where n is an integer (Mersenne

prime numbers and not for any value of n). A typical example of a Mersenne

prime number is given by 231 -1= 2147483648. Values of the multiplier a

vary considerably from one application to the next and include values such

as 75 or 77 for example.

For long periods, P must be large. The other factor to be considered in

choosing P is the speed of the algorithm. Computing the next number in the

sequence requires division by P and hence a convenient choice is the word

size of the computer. Perhaps the most subtle reasoning involves the choice

of the multiplier a such that a cycle of period of maximum length is obtained.

However, a long period is not the sole criterion that must be satisfied. For

example, a=b=1, gives a sequence which has a maximum period P but is

anything but random. It is always possible to obtain the maximum period

but a satisfactory sequence is not always attained. When P is the product of

distinct primes only a=1 will produce a full period, but when P is divisible

by a high power of some prime, there is considerable latitude in the choice

of a.

There are a few other important rules for optimising the performance of a

60

random number generator using the linear congruential method in terms of

developing sensible choices for a, b and P, these include:

9b is relatively prime to P.

.a-1 is a multiple of every prime dividing P.

"a -1 is a multiple of 4 if P is a multiple of 4.

These conditions allow a linear sequence to have a period of length P.

Random number generators are often designed to produce a floating point

number stream in the range [0,1]. This can be achieved by normalising the

integer stream after the random integer stream has been computed. A typical

example of a random number generator is given below using pseudo code:

initialise seed

compute random integers

compute maximum output value

divide by maximum value to normalise

Here, the first loop computes the random integer stream using the LCG, the

second loop computes the maximum value of the array and the third loop

nomalizes it so that on output, the random number stream consists of floating

point numbers (to single or double precision) between 0 and 1 inclusively. The

seed is typically a relatively long integer which is determined by the user.

The exact value of the seed should not change the statistics of the output,

but it will change the numerical values of the output array. These values can

only be reproduced using the same seed, i. e. such pseudo random number

61

generators do not satisfy the property that their outputs cannot be reliably

reproduced.

The output of such a generator is good enough for many simulation type

applications. There are a few simple guidelines to follow when using such

random number generators:

(i) Make sure that the program calls the generator's initialization routine

before it calls the generator.

(ii) Use initial values that are `somewhat random', i. e. have a good mixture

of bits. For example 2731774 and 10293082 are `safer' than 1 or 4096 (or

some other power of two).

(iii) Note that two similar seeds (e. g. 23612 and 23613) may produce se-

quences that are correlated. Thus, for example, avoid initialising generators

on different processors or different runs by just using the processor number

or the run numbers as the seed.

A typical C function for computing uniform random noise in the range 0 to

1 is included in the accompanying CD.

In addition to the standard linear congruential generator discussed so far, a

number of `variations on a theme' can be considered such as the iteration

xi = (aixi-1 + a2xi-1 + a3) mod P

or

xi = (aix3_1 + a2x? _1 + a3xi_1 + a4) mod P

and so on where an are predefined (integer) numbers and P is a prime.

62

3.3.4 Shuffling

A relatively simple method that further randomizes the output of a PRNG

is to shuffle the values with a temporary storage. We first initialize an array

xi, i=1,2,..., N with random numbers from the random number generator

given above for example. The last integer random number computed XN is

then set to M say. To create the next random sequence yz, we apply the

following process:

for i=1 to N, do:

j=l+int(N*M)

y(i)=x(j)

M=x (i)

3.4 Additive Generators

An alternative solution to random number generation which creates very

long cycles of values is based on additive generators. A typical algorithm

commences by initialising an array xi with random numbers (not all of which

are even) so that we can consider the initial state of the generator to be

Xl, X2i X3,
We then apply

Xi = (Xi-a + Xi-b + """ + Xi-m) mod 2"

where a, b,..., m and n are assigned integers. An example of this PRNG is

the `Fish generator' given by

Xi = (Xi-55 + x{_24) mod 232.

63

This approach to pseudo random number generation is fast as no multiplica-

tion operations (e. g. ax;) are required. The period of the sequence of random

numbers is also very large and of the order of 2f (255 - 1) where 0<f<n.

A further example is the linear feedback shift register given by

In = (Cixn-1 + C2Xn-2 + Cnxn-m) mod 2k

which, for specific values of cl, C2i ... c, n. has a cycle length of 2ý.

3.4.1 PRNG and Cryptography

In cryptography, pseudo random number generation plays a central role as

does modular arithmetic in general. One of the principal goals in cryptog-

raphy is to design random number generators that provide outputs (random

number streams) where no element can be predicted from the preceding el-

ements given complete knowledge of the algorithm. Another important fea-

ture is to produce generators that have long cycle lengths. A further useful

feature, is to ensure that the Entropy of the random number sequence is a

maximum, i. e. that the histogram of the number stream is uniform. Finally,

the use of modular arithmetic in the development of encryption algorithms

tends to provide functions which are not invertible. They are one-way func-

tions that can only be used to reproduce a specific (random) sequence of

numbers from the same initial condition.

The basic idea in cryptography is to convert a plaintext file to a ciphertext

file using a key that is used as a seed for the PRNG. A plaintext file is

converted to a stream of integer numbers using ASCII (American Standard

Code for Information Interchange) conversion. For example, suppose we wish

64

to encrypt a name Blackledge for which the ASCII' decimal integer stream

or vector is

f= (66,108,97,99,107,108,101,100,103,101).

Suppose we now use the linear congruential PRNG defined by

ni+l = any mod P

where a= 13, P= 131 and let the seed be 250659, i. e. no = 250659. The

output of this iteration is

n= (73,32,23,37,88,96,69,111,2,26).

If we now add the two vectors together, we can generate the cipher stream

c=f+n= (139,140,120,136,195,204,170,211,105,127).

Clearly, provided the recipient of this number stream has access to the same

algorithm (including the values of the parameters a and P) and crucially

to the same seed, the vector n can be regenerated and f obtained from c

by subtracting n from c. This process can of course be accomplished using

binary streams where the binary stream representation of the plaintext fb

and that of the random stream nb say are used to generate the cipher binary

stream Cb via the process
Cb = nb ® fb

where ® denotes the XOR operation. Restoration of the plaintext is then

accomplished via the operation

fb=ny®c6=n6ED nb®fb.

'Any code can be used.

65

Clearly, the process above is just an example of digital signal processing in

which the information contained in a signal f (i. e. the plaintext) is 'scram-

bled' by introducing additive noise. Here, the seed plays the part of a key

that is utilised for the process of encryption and decryption; a form of en-

cryption that is commonly known as symmetric encryption in which the key

is a private key known only to the sender and recipient of the encrypted

message. Given that the algorithm used to generate the random number

stream is publically available (together with the parameters it uses which

are typically `hard-wired' in order to provide a random field pattern with a

long cycle length), the problem is how to securely exchange the key to the

recipient of the encrypted message so that decryption can take place. If the

key is particular to a specific communication and is used once and once only

for this communication (other communications being encrypted using other

keys), then the processes is known as a one-time pad, because the key is

only used once. Simple though it is, this process is not open to attack. In

other words, no form of cryptanalysis will provide a way of deciphering the

encrypted message. The problem is how to exchange the keys in a way that

is secure and thus, solutions to the key exchange problem are paramount in

symmetric encryption. A well known historical example of this problem in-

volved the distribution of the keys used to initialize the Enigma cipher used

by the German forces during the Second World War. The Enigma machine

(which was named after Sir Edward Elgar's composition, the `Enigma Varia-

tions') was essentially an electromechanical PRNG in which the the seed was

specified using a plug board and a set of three (and later four) rotors whose

initial positions could be changed. These settings were effectively equivalent

to a password or a private key as used today. For a period of time and Us-

ing a very simplistic and rather exaggerated explanation, the German land

66

forces sometimes communicated the password used on a particular day (and

at a set time) by radio transmission using standard Morse code. This trans-

mission was sometimes repeated in order to give the recipient(s) multiple

opportunity to receive the key(s) accurately. Worse still, in some rare but

important cases, the passwords were composed of simple names (of some of

the politicians at the time for example) or phrases. Thus, in many cases, a

simple password consisting of a well known name or phrase was transmitted

a number of times sequentially leading to near perfect temporal correlation

of the initial transmission. This was a phenomenally irresponsible way of

using the Enigma system. In today's environment, it is like choosing a pass-

word for your personal computer which is a simple and possibly well known

name (of the your boss or chief executive for example) or phrase that is eas-

ily remembered, shouting it out a number of times to your colleagues in a

open plan office and then wondering why everyone seems to know something

about your private life! In this sense, the ability for the British war time

intelligence services to decipher the German land forces communications is

self-evident. The use of Enigma by the German naval forces (in particular,

the U-boat fleet) was far more secure in that the password used from one day

to the next was based on a code book provided to the users prior to depar-

ture from base. Thus, no transmission of the daily passwords was required

and, if not for a lucky break, in which one of these code books was recov-

ered in tact by a British destroyer (HMS Bulldog) from a damaged U-boat,

breaking the Enigma naval transmissions under their time variant code-book

protocol would have been effectively impossible. Although the Enigma story

has many facets to those discussed here, a careful study of this historically

intriguing technology reveals that the breaking of Enigma had as much to

do with German incompetency and some bad luck as it did with British in-

67

telligence coupled with some good luck. Thus is the reality of how random

events (or lucky breaks to some) of the past can effect the outcome of the

future!

The discussion above has been used by way of an example to highlight the

problem of exchanging keys when applying a symmetric encryption scheme.

It also provides an example of how, in addition to developing the technology

for encryption, it is imperative to develop appropriate protocols and pro-

cedures for using it effectively with the aim of reducing inevitable human

error, one of the underlying principles being, the elimination of any form of

temporal correlation. Another fundamental principle which has been demon-

strated time and again throughout the history of cryptology is that although

improvements in methods and technology are to be welcomed, information

security is ultimately to do with cultivating the `right state of mind' and that

part of this state should include a healthy respect for the enemy.

3.4.2 Gaussian Random Number Generation

The generation of Gaussian random numbers which are taken to conform to

the distribution
(2\

P(y) -
27ro2

exp - 2v2

where o is the standard deviation, is important in the analysis of real signals

because many signals are characterized by additive noise that is Gaussian

or normally distributed. In cryptography, this result has applications in

modeling transmission noise for example.

The method is based on the Box-Muller transform which, in effect transforms

uniformly distributed deviates into Gaussian distributed deviates. The basic

68

idea is to first create two uniform deviates xl and x2 say on (0,1). Now,

assume that we wish to create two values yl and y2 which conform to the

Gaussian probability distribution function

P(y) -1 27r eXP
y

\2/

which has a zero mean and a standard deviation of 1. We can then consider

a relationship between x1, x2, yl and y2 of the form

yl = -21n xl cos(2rx2) and y2 = -21n xl cos(21rx2)

or equivalently

x1 = exp I-21 (yi +y2)J and X2 =
2ýtan_iya

Yi

Further, suppose we let

sin(27rx2) =R
11

and cos(2irx2) =R

Then R2 = vi + v2 and if we set xl = R2, then we obtain the result that

Ill = vi
1n r

and y2 = v2
VE21nr

rr

where r= R2. Here, vl and v2 are uniform deviates on (0,1) such that r<1.

Note, that if we compute the joint probability distribution of yl and y2, then

p(yi, y2)dyidy2 = P(x1, x2)
I a(xi, x2)

a(dyidY2 yi, y2

where the Jacobian determinant is given by

ä(Xig xs) ää
__

1
exp

(-Ml ll f
exp

y2)ý
3(yi, yz

I-[

2ir \2 /J L 72=7r 2 C
which shows that yl and y2 are independent and that the method creates two
Gaussian deviates from two uniformly random deviates as required. Thus,

an algorithm for implementing this method is as follows:

69

repeat

v1=RAND(

v2=RAND()

r=vi+v2

until r<1

21n r
Yi = V1 r

Výln

Y2 = V2 r

where the function RAND() is taken to output a uniform random deviate

using the linear congruential method discussed earlier.

The following C code provides a function GNOISE that outputs a Gaussian

random field using the method discussed above. The process generates two

arrays of uniform deviates (with different seeds) using the function UNOISE

and feeds these deviates as pairs into the Box-Muller transform.

#include<math. h>

void UNOISE(float s[], int n, long int seed);

void GNOISE(float s[1, int n, long int seed)

/* FUNCTION: Generates an n size array s of Gaussian distributed */

/* noise with zero mean and a standard deviation of 1. */

70

{
int i, k, nn;

float r, f ac, vi, v2, *xl, *x2;

/*Allocate internal work space. */

xi = (float *) calloc(n+1, sizeof(float));

x2 = (float *) calloc(n+1, sizeof(float));

nn=n/2;

UNOISE(xl, nn, seed); /*Generate uniform deviates. */

seed=seed+3565365; /*Add randomly chosen integer to seed. */

UNOISE(x2, nn, seed); /*Generate new set of uniform deviates. */

k=0;

for(i=1; i<=nn; i++)

{

vl = 2.0 * x1 [i] - 1.0; /* -1 < v1 <1 */

v2 = 2.0 * x2[i] - 1.0; /* -1 < v2 <1 */

r= pow(vi, 2+ pow(v2,2);

r= r/2; /* r<=1 */

/* Apply the Box-Muller transform */

fac=sqrt((double) -2.0 * log(r)/r);

/*Write to output array. */

71

s [k] =vl*fac;

s [k+1] =v2*fac;

k=k+2;

}

}

3.5 Blum-Blum Shub

Blum-Blum Shub (BBS) [10] generator is one of the cryptographically strongest

pseudo random number generator available. The generator works as follows:

First we choose two large prime numbers, p and q, that both have a remain-

der of 3 when divided by 4. That is: p-q- 3(mod 4). This is equivalent

to
(p mod 4) = (q mod 4) =3

We then apply th following iteration

x; +l = x? mod (P4)

The BBS is referred to as a cyptographically secure pseudorandom bit gener-

ator. A pseudorandom bit generator is said to pass the next-bit test if there

is not a polynomial-time algorithm that, on input of the first k bits of an

output sequence, can predict the (k + 1)st bit with a probability significantly

greater than 1/2. In other words, given the first k bits of the sequence, there

is not a practical algorithm that can even allow us to state that the next

bit will be 1 (or 0) with a probability greater than 1/2. The output of the

BBS is unpredictable. The security of the BBS is based on the difficulty of

72

factoring n which can be made public, however, unless the cryptanalyst can

factor n, it is effectively impossible for him/her to predict the output of the

generator. This generator is unpredictable to the left and unpredictable to

the right. This means that for a given sequence generated by the generator,

a cryptanalyst cannot predict the next or previous bit in the sequence.

Randomness and Fairness - The concept of fairness is significant when

it comes to generating random numbers. By flipping a coin for example, we

would expect the number of times it lands on head to be equal to that of

tails. This is the essence of a fair coin.

Blum Blum Shub generator produces cryptographically secure random num-

bers. By running the generator at a certain execution cycle, it can be shown

that the distribution is normal, even though some of the numbers may be

repeated, but the pattern of repetition is the same.

Figure 3.1 shows the distribution of random numbers run over an interval of

1000. The actual random numbers selected is 10000. The histogram displays

what may be termed as uniform distribution. From the graph we can see

that the numbers bewteen 4000 and 5000 have the highest distribution and

that between 9000 and 10000 have the lowest. This is to be expected because

the numbers are generated randomly and are therefore subject to deviation.

If the generator is run over a long period, the average result of the random

numbers will represent normal distribution. The model does generate random

numbers fairly.

73

140

120

100

80

60

40

20

Figure 3.1: Blum Blum Shub generator displaying normal distribution of

random numbers

74

0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

3.6 HotBits using Radioactive Decay

HotBits [93) random numbers are generated using quantum mechanical laws

of nature. The numbers are generated by timing successive pairs of radioac-

tive decays detected my Geiger-Muller tube interfaced to a computer. The

Hotbits radiation source is Krypton-85. It works by utilising the material's

physical properties which results radioactive emissions. Details of the pro-

cess is beyond the scope of this research but the method is based on the

beta decay process II85Kr- > II85ab + Q- + -y. In order to be able to utilise

the output, a user needs to contact the server, where upon the output is

transmitted directly to his/her PC using the web. These numbers might be

truly random, as they are produced by nature; however, they are not secure

enough to be used for cryptography, since a third party is involved.

3.7 RSA (Rivest Shamir and Adleman)

RSA gets its name after the three inventors, Rivest, Shamir and Adleman who

developed the generator in the mid 1970s. 2 It has since withstood years of

extensive cryptanalysis. However, because to date, cryptanalysis has neither

proved nor disproved RSA's security, it does suggest a high confidence level

in the algorithm.

RSA [38] gets its security from the difficulty of factoring large numbers [70].

2There are some claims that the method was first developed at GCIIQ in England

and then re-invented (or otherwise) by Rivest, Shamir and Adleman; the idea was not

published openly by GCHQ, only as an internal report that, to date, has not been opened

to public scrutiny.

75

The public and private keys are functions of a pair of large (100 to 200 digits

or even larger) prime numbers. Recovering the plaintext from the public key

and the cipher text is conjectured to be equivalent to factoring the product

of the two primes. According to Koblitz (1987, p88), `The success of the

so-called RSA cryptosystem, which is one of the oldest and most popular

public key cryptosystems, is based on tremendous difficulty of factoring'.

The essence of the RSA method is outlined below.

Algorithm for key generation

1. Generate two large random (and distinct) primes p and q, each of roughly

the same size.

2. Compute n= pq and q_ (p - 1)(q - 1).

3. Select random integer e, 1<e<0, such that gcd(e, c) = 1.

4. Use the extended Eucledian algorithm to compute the unique integer

d, 1<d<0, such that ed - 1(modq5).

5. For use A, the public key is (n, e) and the private key is d where e is the

encryption component, d is the decryption component and n is the modulus.

Encryption

User B encrypts a message for A, which A decrypts. This is based on the

following:

1. Obtain A's authentic public key (n, e).

2. Represent the message as an integer m in the interval [0, n- 1]

3. Compute c= me mod n

76

4. Send the ciphertext c to A.

Decryption

To recover plaintext m from c. A should:

Use the private key d to recover m= cd mod n.

Security of RSA

With the current computing power, factoring n to calculate m from c and

e is not within reach. By using more powerful computers for factorization,

the same computers are also used to compute large values of primes. It

turns out that the increase in computing power may not necessarily pave

way to breaking the RSA. It is conceivable that an entirely different way to

cryptanalyse RSA might be discovered. However, if this new way allows the

cryptanalyst to deduce d, it could also be a new way to factor large numbers.

It is possible to attack RSA by guessing the value of (p - 1)(p - 1). This

attack is no easier than factoring n. Factoring n is the most obvious means

of attack [81]. Any adversary will have the public key, e, and the modulus n.

To find the decryption key, d, the attacker has to factor n. It is possible for

a cryptanalyst to try every possible d but this brute force approach is less

efficient than trying to factor n.

There have been a number of attacks on RSA, in conclusion to his analysis

on RSA attacks, Boneh [11] concludes that: `The attacks discovered so far

mainly illustrate the pitfalls to be avoided when implementing RSA. ' So

77

basically, even though RSA can be attacked, it can can still be considered

secure, when used properly. In order to ensure the strength of the cipher,

RSA runs factoring challenges [80] on its websites. The challenge is hard to

pass, because of the high rewards (around £100,000) and also hard to take

on.

3.8 DES

The Data Encryption Standard (DES), known as the Data Encryption Algo-

rithm (DEA) by ANSI and the DEA-1 by the ISO, has been the world wide

standard for over 20 years. It is a symmetric (private key) system that has

held up remarkably well against years of cryptanalysis.

In order for it to be acceptable as the standard encryption algorithm, DES

algorithm had to meet the following:

" provide a high level of security;

" must be completely specified and easy to understand;

" the security of the algorithm must reside in the key (the security should

not depend on the secrecy of the algorithm);

" the algorithm must be available to all users;

" the algorithm must be acceptable for use in diverse applications;

" it must be economically implementable in electronic devices;

" it must be efficient to use;

" it must be able to be validated;

78

" it must be exportable.

3.8.1 Outline of DES

DES is a block cipher using 64-bit blocks. The key length is 56-bit. It is

usually expressed as a 64-bit number, but every 8th-bit is used for parity

checking and is ignored. All security of DES rests within the keys.

DES operates on a 64-bit block of plaintext. After the initial permutation,

the block is split into two halves, each 32-bits long. Then there are 16 rounds

of identical operations, called function f, in which the data are combined

with the key. After the 16th-round, the two halves are joined, and a final

permutation (the inverse of the initial permutation) completes the algorithm.

In each round the key bits are shifted, and then 48-bits are selected from the

56-bits of the key. The right half of the data is expanded to 48-bits via an

expansion permutation, combined with 48-bits of the shifted and permuted

key via an XOR, sent through 8 `S-boxes' producing 32 new bits, and per-

muted again. These four operations make up function f. The output of

function f is then combined with the left half via another XOR. The result

of these operations becomes the new right half; the old right half becomes

the new left half. These operations are repeated 16 times, making 16 rounds

of DES. In effect, DES is based on randomization of the data via the process

of shuffling.

If Bi is the result of the iteration, Li and R; are left and right halves of

Bi, Ki is the 48-bit key for round i, and f is the function that does all the

substituting and permuting and XORing with the key, then a round is as

follows:

79

Li = R;
-1

= Ls-i (R-i, Ki)

3.8.2 DES Algorithm

DES is a Feistel cipher which processes plaintext blocks of n= 64 bits,

producing 64-bit ciphertext blocks. The effective size of the secret key K is

k= 56 bits; more precisely, the input key K is specified as a 64-bit key, 8

bits of which (bits 8,16, ... 64) may be used as parity bits. The 256 keys

implemented (at most) 256 of 264 possible bijections on 64-bit blocks.

Encryption proceeds in 16 stages of rounds. From the input key K, sixteen

48-bit subkeys Ki are generated, one for each round. Within each round,

eight fixed carefully selected 6-to-4 bit substitution mappings (S-boxes) Si,

collectively denote S, are used. The 64-bit plaintext is divided into 32-bit

halves Lo and Ro. Each round is functionally equivalent, taking 32-bit input

Li-1 and Ri_1 from a previous round and producing 32-bits output. Hence

E is a fixed expression permutation, mapping Ri -1 from 32 to 48-bits (all

bits are used once, some are used twice). P is another permutation on 32-

bits. An initial permutation (IP) precedes the first round; following the

last round, the left and right halves are exchanged and, finally, the resulting

string is bit permuted by the inverse of IP. Decryption involves the same

key and algorithm, but with subkeys applied to the internal rounds in the

reverse order. A simplified view is that the right lialf of each round (after

expanding a 32-bit input of 8 characters of 6-bits each) carries out key-

dependent substitutions on each of the 8 characters, then uses a fixed bit

80

transposition to redistribute the bits of the resulting characters to produce

a 32-bit output.

The DES algorithm, on a step by step basis is given below.

Input: plaintext ml... m64i 64-bit key K= kl... k64 (includes 8 parity bits)

Output: 64-bit ciphertext block C= cl... C64

1. (key schedule) Compute sixteen 48-bit round keys K; from K. (using

DES key schedule algorithm - see below)

2. (Lo, Ro) '0-- IP(mlm2... m64)

3. (16 rounds) for i from 1 to 16, compute Li and R, computing f (R2_1, KK) _

P(S(E(A-_li)) as follows:

(a) Expand R;
_1 = rlr2... r32 from 32 to 48 bits

T «- E(Ri. _1).
(Thus T= r32rlr2... r32r1.) (b) Tis. Represent Ti as eight

6-bit character strings: (B1,
..., B8) = Ti.

(c) Tii (Sl (B1), S2(B2), ..., S, (B3)). Here S, (B1) maps B; = blb2... b6

(d) Tiii «- P(Tii)

4. blb2... b64 +-- (R16, L16). (Exchange final blocks L16, R16).

81

5. C +-- IP-1(blb2... b64).

DES Key Schedule Algorithm

Input: 64-bit key K= ki... k64 (including 8 odd-parity bits).

Output: sixteen 48-bit keys Ki, 1 <i< 16.

1. Define v=, 1 <i< 16 as follows: vi =1 for iE1,2,9,16; vs =2 otherwise.

(These are left-shift values for 28-bit circular rotations below.)

2. T f-- PCI(K); represent T as 28-bit halves (Co, Do).

3. For i from 1 to 16 compute K; as follows: Ci +-- (Ci_1 +- vi), Di

(Di-i F- vi), Ki '- PC2(Cs, Di)

3.8.3 Security of DES

Since its invention in the 1970s, the security of DES has been studied inten-

sively. Special techniques such as differential and linear cyptanalysis have

been used to attack DES, but the most successful attack has been an ex-

haustive search of the key space. With special hardware of large networks

and workstations, it is now possible to decrypt DES ciphertexts in a few

days or even hours. In addition, the Electronic Frontier Foundation (EFF)

82

have sponsored the development of a crypto chip named Deep Crack that

can process 88 billion DES keys per second and has successfully cracked 56-

bit DES in less that 3 days (J Buchmann 2001). In the paper Six Ways to

Break DES [48], Junod outlines various methods that can be used to break

the encryption.

Today, DES can only be considered secure if triple encryption is used. In

this context, it is important to know that DES is not a group. This means

that for the two DES keys kl and k2 there is, in general, not a third DES k3

such that DES(kl)oDES(k2) = DES(k3). If DES were a group, then multiple

encryption would not lead to increased security. In fact, the subgroup that

the DES encryption permutations generate in the permutation group 5641 is

at least of order the order of 102499. Hence, triple encryption DES or DES3

has become the preferred standard for symmetric encryption systems world

wide since the 2001.

3.9 Rijndael

Rijndael is an iterated block cipher with a variable block length and a vari-

able key length. The block length and key length can be independently

specified at 128,192, and 256 bits. The Rijndael Block Cipher was selected

by the National Institute of Science and Technology (NIST), mainly because

DES was an aging standard and no longer addresses today's needs for strong

encryption.

The designers of the Rijndael Cipher had the following criteria taken into

account:

83

9 resistance against all known attacks;

. speed and code of compactness on a wide range of platforms;

" design simplicity.

In most ciphers, the round transformation has the Feistel Structure. In this

structure, typically, part of the bits of the intermediate state are simply

transposed unchanged to another position. The round transformation of Ri-

jindael does not have the Feistel structure. Instead, the round transformation

is composed of three distinct invertible uniform transformations called layers.

By uniform, we mean that every bit of the state is treated in a similar way.

The specific choices for the different layers are for a large part based on

the application of a Wide Trail Strategy, a design method used to provide

resistance against linear and differential cryptanalysis. In the Wide Trail

Strategy, every layer has its own function:

The linear mixing layer: guarantees high diffusion of multiple rounds.

The non-linear layer: parallel application of S-boxes that have optimum

worst-case non-linearity properties.

The key additional layer: a simple XOR of the round key to the interme-

diate State.

3.9.1 The State and the Cipher

The State can be pictured as a rectangular array of bytes. This array has

four rows, the number of columns is denoted by Nb and is equal to the block

84

length divided by 32. The Cipher key is similarly pictured as a rectangular

array with four rows. The number of columns of the Cipher Key is denoted

by Nk and is equal to the key length divided by 32.

Encryption takes place using four different stages:

1. Substitute bytes: Uses S-box to perform byte by byte substitution of the

block.

2. Shift rows: A simple permutation.

3. Mix Columns: Substitution over GF(28).

4. Add round key: Bitwise XOR of current block and portion of the expanded

key.

3.9.2 Hardware Implementation

The Rijndael cipher is suited for effective implementation on a wide range

of processors with dedicated hardware. Below are some examples of 8- and

32-bit processors.

8-Bit Processors

On an 8-bit processor, Rijndael can be programmed by simply implement-

ing the different component transformations. This is straight forward for

RowShift and for the Round Key addition. The implementation of a Byte-

Sub requires a table of 256 bytes. The Round Key addition, ByteSub and
RowShift can be effectively combined and executed serially per State byte.

85

Indexing overhead is minimised by explicitly coding the operation for every

State byte.

32-Bit Processors

The different steps of the round transformation can be combined in a single

set of lookup tables, allowing for very fast implementations on processors

with word lengths of 32 or above.

Hardware Suitability

The cipher is suited to be implemented in dedicated hardware. There are

several trade-offs between area and speed that are possible. Because the

implementation in software on general purpose processors is already very

fast, the need for hardware implementations is usually limited to two specific

cases:

(i) Extremely high speed chips with no area restrictions: the T tables can be

hardwired and the EXORs can be conducted in parallel.

(ii) Compact co-processors on a Smart Card to speed up Rijindael execution:

for this platform, typically, the S-box (or the complete MixColumn) operation

can be hardwired.

86

3.9.3 The Inverse Cipher

In the table look-up implementation, it is essential that the only non-linear

step (ByteSub) is the first transformation in a round that the rows are shifted

before MixColumn is applied. In the Inverse of a round, the order of the

transformations in the round is reversed and, consequently, the non-linear

setup will end up being the last step of the Inverse round and the rows are

shifted after the application of (the inverse of) MixColumn.

3.9.4 Strength of AES

This system is expected to perform strongly for all key lengths and block

lengths defined. The most efficient key recovery attack for AES is exhaustive

key search. This is the most efficient way of obtaining information from a

given plaintext-ciphertext pairs. The expected effort of exhaustive key search

depends on the length of the Cipher Key:

For a 16-byte key, 2127 applications of Rijndael;

For a 24-byte key, 2191 applications of Rijndael;

For a 32-byte key, 2 255 applications of Rijndael.

The rationale for this is that a considerable safety margin is taken with re-

spect to all known attacks. It is, however, impossible to make non-speculative

statements on unknown matters.

87

3.9.5 Advantages and Limitations

Advantages

The cipher does not base its security or part of it on obscure and poorly

understood interactions between arithmetic operations. The variable block

lengths of 192 and 256 bits allow the construction of a collision-resistant

iterated hash function using Rijndael as a compression function. The block

length of 128 bits is not considered sufficient for this purpose nowadays.

Although the number of rounds is fixed in the specifications, it can be mod-

ified as a parameter to enhance security.

Limitations

In software, the cipher and its inverse make use of different codes and/or

tables. In hardware, the inverse cipher can only partially re-use the circuitry

that implements the cipher. Encryption is performed at the Add Round Key

stage; this is the only stage in which the key is used. Thus, ciphering always

begins with this round. The other three stages provide confusion, diffusion

and non-linearity. Since the key is not used in these stages, no security is

provided. The ciphering process can be viewed as alternating operations of

XOR encryption (Add Round Key) of a block followed by scrambling of the

block (the other three stages) followed by XOR encryption. This provides

for efficiency and strong encryption.

88

3.10 Lucifer

Lucifer is generally considered to be the first civilian block cipher, developed

in the 1970s based on work done by Horst Feistel [14]. A revised version

of the algorithm was adapted as a FIPS (Federal Information Processing

Standard) standard, the Data Encryption Standard (DES). It was chosen

by the US National Bureau of Standards (NBS) after public invitation for

submissions and some internal changes by NBS. DES was publicly released in

1976 and has been widely used ever since. Lucifer's S-boxes have 4-bit inputs

and 4-bit outputs; the input of the S-boxes is the bit permuted output of the

S-boxes of the previous round; the input of the S-boxes of the first round is

the plaintext.

Using differential cryptanalysis against the initial version of Lucifer, Biham

and Shamir showed that Lucifer, with 32-bit blocks and 8 rounds, can be

broken with 40 chosen plaintexts and 229 steps; the same attack can break

Lucifer with 128-bit blocks and 8 rounds with 60 chosen plaintexts and 253

steps. Lucifer has been around for a long time. It has now been succeeded

by DES and AES and all of Lucifer's US patents have now expired.

3.11 FEAL

FEAL was designed in Japan by Shimizu and Miyaguchi from NTT, Japan

[13] as a replacement to DES. It was originally built as a four-round cryp-

tosystem with a 64-bit block size and a 64-bit key size. This was done in

order to give high performance in software. However, soon a number of at-

tacks against FEAL-4 were announced including one attack that required

89

only 20 chosen plaintexts. This led the designers to introduce a revised ver-

sion, i. e. FEAL-N, where N denotes a number of rounds.

FEAL was designed for speed and simplicity, especially for software on 8-

bit microprocessors (e. g. chipcards). It uses byte oriented operations (8-bit

addition mod 256,2-bit left rotation and XOR), avoids bit-permutations and

table look-ups and offers small code size.

Basic Algorithm

Input: 64-bit plaintext M= ml... m64; 64-bit key K= kl... k64

Output: 64-bit ciphertext block C,,: -- cl... c64

1. (key schedule) Compute sixteen 16-bit subkeys K; from K

2. Define ML = ml... m32, MR = m33... m64.

3. (Lo, R0) E-- (ML, MR) ® ((K8, K9), (Klo, K11)). (XOR initial subkeys).

4. Ro+- Ro®Lo

5. For i is 1 to 8 do: Li E- Rti_1, Rs «- Li_1® f (Ri_1, K1_1). [61]

6. L8 F- L8 ® R8.

7. (R� L8) +- (R8, L,) ® ((K12, K13), (K14, K15)). (XOR final subkeys.)

8. C E- (R� L8). (Note the order of the final blocks is exchanged.)

90

The same algorithm can be used for decryption, but with the key schedule

reversed. Cryptanalysis is repoted in [7].

3.12 IDEA

IDEA works on 64-bit blocks. Developed in Zurich, Switzerland by Xuejia

Lai and James Massey, it is generally regarded to be one of the best and most

secure block algorithms available to the public today. It utilizes a 128-bit

key and is designed to be resistant to differential cryptanalysis [83), [59].

While IDEA is not a Feistel cipher, decryption is carried out in the same

manner as encryption once the decryption subkeys have been calculated from

the encryption subkeys. The designers have taken great care in making a

structure that is easily implemented in both software and hardware. The

security of IDEA relies on the use of three incompatible types of arithmetic

operations on 16-bit words: XOR, addition modulo 216, and multiplication

modulo 216 + 1. Its speed in software can be compared to that of DES.

One of the principles during the design of IDEA was to facilitate analysis

of its strength against differential cryptanalysis; IDEA is considered to be

immune from differential cryptanalysis. In addition, no linear cryptanalytic

attacks on IDEA have been reported and there is no known algebraic weak-

ness in IDEA. The most significant cryptanalytic result is due to Daemen.

He discovered a large class of 251 weak keys for which the use of such a key

during encryption could be detected and the key recovered. However, since

there are 2128 possible keys, this result has no impact on the practical secu-

rity of the cipher for encryption. IDEA is generally considered secure and

both the cipher development and its theoretical basis have been openly and

91

widely discussed.

3.13 Skip jack

Skipjack is the encryption algorithm contained in the Clipper chip [83], [12],

and it was designed by the NSA. It uses an 80-bit key to encrypt 64-bit

blocks of data. Skipjack can be more secure than DES, since it uses 80-bit

keys with 32 rounds. By contrast, DES uses 56-bit keys with only 16 rounds.

Since its release in 1987, the Skipjack algorithm has remained secret and

a number of cryptographers were suspicious of the fact. Some thought it

might be insecure, others were not contented with the fact that NSA had

inserted a trapdoor. The government, aware of such criticism, decided to

invite a small group of independent cryptographers to examine the Skipjack

algorithm. The cryptographers issued a report which stated that, although

their study was too limited to reach a definitive conclusion, they nevertheless

believed that Skipjack was secure. The following report was issued by the

independent committee:

`Under the assumption that the cost of processsing power is halved every 18 months, it will

be 36 years before the difficulty of breaking Skipjack by exhaustive search will be equal to

the difficulty of breaking DES today. Thus, there is no significant risk that Skipjack will

be broken by exhaustive search in the next 30-40 years.

There is no significant risk that Skipjack can be broken through a shortcut method of attack,

including differential cryptanalysis. There are no weak keys; there is no complementation

property. The experts, not having time to evaluate the algorithm to any great extent,

instead evaluated NSA's own design and evaluation process.

92

The strength of Skipjack against cryptanalytic attack does not depend on the secrecy of the

algorithm. '

In 1998 the US government decided to de-classify Skipjack.

3.14 GOST

GOST is a symmetric block cipher designed by the former government of

Soviet Union [53], [21]. It is a 64-bit block cipher with a 256-bit key. The

iteration for the GOST algorithm is 32 rounds. To encrypt, a block is divided

into two halves, left, L, and right, R. The sub-key for round i is Ki. A typical

GOST round i is:

Li = R,
-,

= L"-I (D .f
(-i, Kt)

The right half and the ith subkey are added to modulo 232. The output is

then divided into 8 4-bit data blocks. Each block becomes the input to a

different S-box. There is a total of eight S-boxes and thus, each four bits

go to one S-box. Each S-box is a permutation of the numbers 0 to 15. For

example, an S-box might look like:

8,11,3,5,0,10,1,4,15,7,13,6,14,2,9,12.

The outputs of all eight S-boxes are combined into a 32-bit word. The word

is then circular shifted 11 bits to the left. The result is XORed to the left

half to become the new right half, and the right half becomes the new left

half. This process is repeated 32 times.

The are some major differences between GOST and DES: [83]

93

9 DES has a complicated procedure for generating subkeys from the keys.

GOST has a very simple procedure.

" DES has a 56-bit key; GOST has a 256-bit key. If you add in the

secret S-box permutations, GOST has a total of about 610 bits of secret

information.

. The S-boxes in DES have 6-bit inputs and 4-bit outputs, the S-boxes

in COST have 4-bit inputs and outputs. Both algorithms have eight

S-boxes, but an S-box in COST is one-fourth the size of an S-box in

DES.

" DES has an irregular permutation, called a P-box; GOST uses an 11-bit

left circular shift.

. DES has 16 rounds; GOST has 32 rounds.

GOST's designers tried to achieve the balance between efficiency and security.

They modified DES's basic design to create an algorithm which will work

better for software implementation. Basically, the security of COST has

been increased by making the key very large, keeping the S-boxes secret, and

doubling the number of iterations.

3.15 Blowfish

Blowfish is a 64-bit block cipher with a variable key length [86]. It was

designed to meet the following criteria: speed, compactness, simplicity, and

above all, security. It is optimized for applications where the key is mainly

static, like communication lines, or automatic file encryption.

94

Blowfish is a Feistel network consisting of 16 rounds. The input is a 64-bit

data element, x. The basic algorithm is given below. Full description of the

algorithm can be found in [84].

Algorithm

x is divided into (XL, XR)

For i=1to16:

XL =XL®pi

xR = F(XL) ® ZR

Swap xl and XR (undo the last swap)

XR=xR®ß'i7

XL =XL ®P18

Recombine XL and XR.

Decryption is the same as encryption except that P1... P18 are in reverse order.

3.16 Cryptography using Chaos

The use of deterministic chaos for encrypting data was based on the work

of Blackledge and Ptitsyn [8] [9] [69]. It follows the same basic approach

as that discussed earlier with regard to the application of modular based

95

pseudo random number generation. Pseudo chaotic numbers are in princi-

ple, ideal for cryptography because they produce number streams that are

ultra-sensitive to the initial value (the key). However, instead of using it-

erative based maps using modular arithmetic with integer operations, here,

we require the application of principally nonlinear maps using floating point

arithmetic. Thus, the first drawback concerning the application of determin-

istic chaos for encryption concerns the processing speed, i. e. pseudo random

number generators (PRNGs) generate integer streams using integer arith-

metic where as pseudo chaotic number generators (PCNGs) produce floating

point streams using floating point arithmetic. Another drawback of chaos

based cryptography is that the cycle length (i. e. the period over which the

number stream repeats itself) is relatively short when compared to the cy-

cle length available using conventional PRNGs (e. g. additive generators).

Thus, compared with conventional approaches, the application of determin-

istic chaos has (at least) two distinct disadvantages. However, providing the

application of chaos in this field has some valuable advantages, the compu-

tational overheads can be enhanced through the use of appropriate real time

DSP units (essentially, high performance floating point accelerators). More-

over, the lower cycle lengths can be overcome by designing block ciphers

which is where an iterator produces a cipher stream only over a block of data

whose length is significantly less than that of the cycle length of the iterator,

each block being encrypted using a different key and/or algorithm. So are

there any advantages to using deterministic chaos? One advantage is com-

pounded in Figure 3.7 which qualitatively illustrates complexity as a function

of information showing regions associated with ordered, random and chaotic

fields. Imagine that an algorithm can output a number stream which can be

ordered, chaotic or random. In the case of an ordered number stream (those

96

generated from a discretized piecewise continuous functions for example), the

complexity of the field is clearly low. Moreover, the information and specif-
ically the information Entropy (the lack of information we have about the

exact state of the number stream) is low as is the information content that

can be conveyed by such a number stream. A random number stream (taken

to have a uniform distribution for example) will provide a sequence from

which, under ideal circumstances, it is not possible to predict any number in

the sequence from the previous values. All we can say is that the probability

of any number occurring between a specified range is equally likely. In this

case, the information entropy is high. However, the complexity of the field, in

terms its erratic transitions from one type of localized behaviour to another,

is low.

Thus, in comparison to a random field, a chaotic field is high in complexity

but its information entropy, while naturally higher than an ordered field, is

lower than that of a random field, e. g. chaotic fields which exhibit uniform

number distributions are rare.

From the discussion above, the application of deterministic chaos to encryp-

tion has a number of disadvantages relative to the application of PRNGs.

However, the increased level of complexity can be used to provide complex-
ity driven block ciphers. One method of approach is to use well known maps

and modify them to extend the region of chaos. For example, the Matthews

97

Complexity

Information

Figure 3.2: Qualitative comparison of ordered, random and chaotic fields in

terms of their complexity and information content.

cipher is a modification of the logistic map to

1r
xn+l = (1 + r)

(1
+- xn(1 - xn)' ,rE

(0,4].

The effect of this generalization is seen in Figure 3.8 which shows the Feigen-

baum diagram for values of r between 1 and 4. Compared to the conven-

tional logistic map xn+l = rx, a(1 - x�), rE (0,4] which yields full chaos at

r=4, the chaotic behaviour of the Matthews map is clearly more extensive

providing full chaos for the majority (but not all) of values of r between

approximately 0.5 and 4. In the conventional case, the key is the value of xo

(the initial condition). In addition, because there is a wide range chaotic be-

haviour for the Matthews map, the value of r itself can be used as a primary

or secondary key.

98

The approach to using deterministic chaos for encryption has to date, been

based on using conventional and other well known chaotic models of the type

discussed above with modifications such as the Matthew map as required.

However, in cryptography, the physical model from which a chaotic map

has been derived is not important; only the fact that the map provides a

cipher that is `good' at scrambling the plaintext. This point leads to an

approach which exploits two basic features of chaotic maps: (i) they increase

the complexity of the cipher; (ii) there are an unlimited number of maps of

the form x,, +l =f (x,,) that can be literally `invented' and then tested for

chaoticity to produce a database of algorithms.

3.16.1 Block Ciphers using Deterministic Chaos

The low cycle lengths that are inherent in chaotic maps leads naturally to

consider their application to block ciphers. However, instead of using a single

algorithm to encrypted data over a series of blocks using different (block)

keys, here we can use different algorithms, i. e. chaotic maps. Two maps can

be used to generate the length of each block and the maps that are used to

encrypt the plaintext over each block. Thus, suppose we have designed a

database consisting of 100 chaotic maps say consisting of iterative functions

fl, fi, fa, ...,
fwoo, each of which generates a floating point number stream

99

0.9

0.8-,

0.7 {

0.6-

0.5-

0,4-

0.2-

0.1-

0
0

Figure 3.3: Feigenhauiii male of the 11altliew-s cipher

-, 1
_,

100

1.1.
_ý.. i "I

f

through the operation

xn+1 = fm (In, P1, P2) """)

where the parameters p1i p2i ... are pre-set or `hard-wired' to produce chaos

for any initial value xo E (0,1) say. An `algorithm selection key' is then

introduced in which two algorithms (or the same algorithm) are chosen to

`drive' the block cipher - f50 and f29 say, the session key in this case being

(50,29). Here, we shall consider the case where map f50 determines the

algorithm selection and map f29 determines the block size. Map f50 is then

initiated with the key 0.26735625 say and map f29 with the key 0.65376301

say. The output from these maps (floating point number streams) are then

normalized, multiplied by 100 and 1000 respectively for example and then

rounded to produce integer streams with values ranging from 0 to 100 and

0 to 1000 respectively. Let us suppose that the first few values of these

integer streams are 28,58,3,61 and 202,38,785,426. The block encryption

starts by using map 28 to encrypt 202 elements of the plaintext using the key

0.78654876 say. The second block of 38 elements is then encrypted using map

58 (the initial value being the last floating point value produced by algorithm

28) and the third block of 785 elements is encrypted using algorithm 3 (the

initial value being the last floating point value produced by algorithm 58)

and so on. The process continues until the plaintext has been fully encrypted

with the `session key' (50,29,0.26735625,0.65376301,0.78654876).

3.16.2 Encrypting Processes

The encryption can be undertaken using a binary representation of the plain-

text and applying an XOR operation using a binary representation of the ci-

pher stream. This can be constructed using a variety of ways. For example,

101

one could extract the last significant bits from the floating point format of

x, a for example. Another approach, is to divide the floating point range of

the cipher into two compact regions and apply a suitable threshold. For ex-

ample, suppose that the output x, a from a map operating over a given block

consists of floating point value between 0 and 1, then, with the application

of a threshold of 0.5, we can consider generating the bit stream

b(xn) =
1, xn E (0.5,1];

0, x, E [0,0.5).

However, in applying such a scheme, we are assuming that the distribution

of x,, is uniform and this is rarely the case with chaotic maps. Figure 3.9

shows the PDF for the logistic map x,, +l = 4x,, (1- x�) which reveals a non-

uniform distribution with a bias for floating point number approach 0 and 1.

However, the mid range (i. e. for x, a E [0.3,0.7]) is relatively flat indicating

that the probability for the occurrence of different numbers generated by the

logistic map in the mid range is the same. In order to apply the threshold

partitioning method discussed above in a way that provides an output that

is uniformly distributed for a any chaotic map, it is necessary to introduce

appropriate conditions and modify the above to the form

1, xn E [T, T+ /+);

b(xn)= 0, xn E [T-0_, T);

-1, otherwise.

where T is the threshold and 0+ and 0_ are those values which characterize

(to a good approximation) a uniform distribution. For example, in the case

of the logistic map T=0.5 and 0+ = 0_ = 0.2. This aspect of the

application of deterministic chaos to cryptography, together with the search

102

for a parameter or set of parameters that provides full chaos for an `invented'

map determines the overall suitability of the function that has been ̀ invented'

for this application. The `filtering' of a chaotic field to generate a uniformly

distributed output is equivalent to maximizing the entropy of the cipher

stream (i. e. generating a cipher stream with a uniform PDF) which is an

essential condition in cryptography.

700

Goo

500

400

300

200

1 00

Figure 3.4: Probability density function (with 100 bins) of the output from

the logistic map for 10000 iterations.

In terms of cryptanalysis and attack, the multi-algorithmic approach to de-

signing a block cipher discussed here introduces a new `dimension' to the

attack problem. The conventional problem associated with an attack on a

symmetric cipher is to search for the private key(s) given knowledge of the

algorithm. Here, the problem is to search not only for the session key(s),

but the algorithms they `drive'. One over-riding issue concerning cryptol-

103

00 20 40 60 60 100 120

ogy in general, is that algorithm secrecy is weak. In other words, a cryp-

tographic system should not rely of the secrecy of its algorithms and all

such algorithms should be openly published. '. The system described here

is multi-algorithmic, relying on many different chaotic maps to scramble the

data. Here, publication of the algorithms can be done in the knowledge that

many more maps can be invented as required (subject to appropriate condi-

tions in terms of generating a fully chaotic field with a uniform PDF) by a

programmer, or possibly with appropriate `training' of a digital computer.

The idea of using chaotic encryption has been implemented using crypstic.

(See Appendix B).

3.16.3 Key Exchange and Authentication

The process of `scrambling' data using PCNGs or PRNGs is just one aspect of

cryptography. The other major aspects are (i) key exchange; (ii) authentica-

tion. Without developing secure ways of transferring the keys from sender to

receiver, there is little virtue in developing sophisticated methods of 'scram-

bling'. Further, the ability for a receiver to decrypt a transmission can lead

to a false sense of confidence with regard to its content and authentication of

a; decrypted message is often necessary, particularly when a system is being

attacked through the promotion of disinformation for example by searching

for a crib, i. e. forcing an encrypted communication whose plaintext in known

to have certain key words, phases or quotations for example.

With regard to chaotic block ciphers, one can apply the RSA algorithm dis-

3Except for some algorithms developed by certain federal government agencies. Perhaps

they have something to hide!

104

cussed earlier, not to encrypt the plaintext, but to encrypt the sessions keys

and the algorithm database. With regard to authentication of a message, one

approach is to use a key that is plaintext dependent for which the chirp coding

approach discussed previously can be used (with appropriate modifications).

Further, application of chirp coding can be used to transfer a plaintext key

in the cipher text, a key that is one of those used to encrypt/decrypt the

data, but in contributing to the decryption, provides an authentication of

the original plaintext. In effect, provided that appropriate protocols and

procedures have been introduced, this approach, not only provides a method

of authentication but does so, using a one time pad technique.

The history and development of encryption is a subject that has and con-

tinues to use a range of methods and approaches. However, there are some

basic concepts that are easy to grasp and sometimes tend to get lost in the

detail. The first of these is that the recipient of any encrypted message must

have some form of a priori knowledge on the method (the algorithm for ex-

ample) and the operational conditions (the public and/or private keys) used

to encrypt a message. Otherwise, the recipient is in no better a `state of

preparation' than the potential attacker. The idea is to keep this a priori in-

formation to the bare minimum but in such a way that it is super critical to

the decryption process. Another important reality is that in an attack, if the

information transmitted is not deciphered in good time, then it is typically

redundant. Coupled with the fact, that an attack usually has to focus on a

particular approach (a specific algorithm for example), one way to enhance

the security of a communications channel is to continually change the encryp-

tion algorithm and/or process offered by the technology currently available.

This is the basis for a new commercial system called Cryptic, details of which

are provided in Appendix B which includes the system development software.

105

3.17 Stream Ciphers

3.17.1 SEAL

SEAL is a software efficient stream cipher designed by Rogaway and Copper-

smith [741. SEAL is a pseudorandom function family (PRF): under a control

of a key, first preprocessed into a set of tables. SEAL stretches a 32-bit 'po-

sition index' into a keystream of essential arbitrary length. It then encrypts

by XORing this keystream with the plaintext, in the manner of a Vernam

cipher. As with any Vernam cipher, it is imperative that the keystream only

be used once. On a modern 32-bit processor, SEAL can encrypt messages at

a rate of about 5 instructions per byte. In comparison, the DES algorithm

is some 10-30 times as expensive.

SEAL is a length increasing PRF: under control of a 160-bit key a, SEAL

maps a 32-bit string n to an L-bit string SEAL(a, n, L). The number L can

be made as large or as small as is needed for a target application, but output

lengths ranging from a few bytes to a few thousand bytes are anticipated.

A PRF can be used to make a good stream cipher. In a stream cipher the

encryption of a message depends not only on the key a and the message x but

also on the message's ̀position' n in the data stream. This position is often a

counter (sequence number) which indicates which message is being ciphered.

The encryption of string x at position n is given by (n, x® SEAL(a, n, L)),

where L=W. In other applications n may indicate the address of a piece

of data on disk.

SEAL has been designed with the following features which enhance its strength:

[83]

106

1. Use of a large, secret, key-derived S-box.

2. Alternate arithmetic operations which do not commute (addition and

XOR).

3. Use of an internal state maintained by the cipher which is not directly

manifest in the data stream.

4. Varying the round function according to the round number, and varying

the iteration function according to the iteration number.

One way to assess performance in a table-based cipher like SEAL is to simply

count the number of S-box look-ups per byte generated output. SEAL uses

0.5 look-ups per byte of output. Merkle's 16-round Khufu uses 2 table look-

ups per byte, while the S/P permutations of a software DES require 16 or

32 look-ups per byte. These comparisons ignore the rest of the work which

each cipher does, and this work is in fact greater in SEAL than in Khufu or

DES.

Even though SEAL provides a fast strong encryption, it does not, by itself,

provide data authenticity. If there is a need, SEAL-encrypted message, can

be accompanied by message authentication code (MAC).

3.17.2 RC4

RC4 is a variable key size stream cipher developed by Rivest in 1987 [58]. The

keystream is independent of the plaintext. It has an 8-bit S-box: So, S1,
... S25s.

The entries are used as numbers 0 through 255 and permutated. The per-

mutation itself is a function of the variable length key. The two counters i

107

and j are both initialised to zero.

The following function generates a random byte:

i= (i + 1) mod 256

j= (j + Si) mod 256

swap Si and Sj

t=(Si +SS)mod256

K=Si

Encryption takes place by XORing the byte K with the plaintext and de-

cryption is the reverse. Encryption is 10 times faster than DES. RC4 is quite

a strong encryption, even though its algorithm looks so simple that most

experienced programmers can code it from memory.

3.17.3 FSAngo

FSAngo [82] is a Japanese high speed stream cipher which works on symmet-

ric key systems. Developed in conjunction with Fujisoft ABC Inc. and Tokyo

Denki University, the random key is generated using the FSRansu random

number generator. Designers of FSRansu claim that the sequence provided

by the PRNG do not provide enough information to identify the keys. The

key space is over 10600. The random numbers have been tested for frequency

linear complexity and statistical distribution; the result could not determine

any helpful pattern.

The program works at high speed and is compatible with all processors. It

can also be easily implemented in hardware with minor modifications.

108

The table below compares different types of ciphers with the key strength

and speed [5]

Cipher Patented Max Key Size Block Size Speed

RC6 Yes 2048 bits 128 bits 1.66 mb/s

Twofish No 256 bits 128 bits 2.12 mb/s

Mars Yes 1248 bits 128 bits 1.38 mb/s

Rijndael No 256 bits 128 bits 2.12 mb/s

Blowfish No 448 bits 64 bits 2.46 mb/s

Idea Yes 128 bits 64 bits 0.75 mb/s

Gost No 256 bits 64 bits 1.63 mb/s

Cast256 Yes 256 bits 64 bits 1.68 mb/s

Cast128 No 128 bits 64 bits 2.60 mb/s

Mistyl Yes 128 bits 64 bits 1.01 mb/s

Table 3.3: Comparison on different algorithms on key sizes and speeds.

109

Chapter 4

Digital Watermarking

4.1 Background to Watermarking

In this thesis, digital watermarking techniques are used to hide encryption

keys within the ciphertext data that is transmitted. This overcomes the need

to implement key exchange algorithms prior to the use of a symmetric en-

cryption system. It also means that the key can be changed dynamically

every time a ciphertext is transmitted and thus, provides a solution to im-

plementing a one-time pad in practice, provided the algorithm is kept secure.

Watermarking is defined as the practice of hiding a message in an image,

audio clip, video clip, or media within that work itself. The practice of

using watermarks has existed for long time. Watermarking was first used by

Italians around 1282. The marks were made by adding thin wire patterns to

the paper moulds. Their use was picked up in the eighteenth century when

the Europeans and Americans started using them as trademarks to indicate

the date and the size of paper being manufactured. It was also about this

110

time that watermarks began to be used as anticounterfeiting measures on

money and other documents. Many people started utilising watermarks for

different applications. One of the problems banks were facing at the time was

counterfeiting; it was easy to duplicate pound notes or dollar bills, as there

was no sophistication in creating those notes. To overcome this problem,

William Congreve invented a technique for making colour watermarks by

inserting dyed material in the middle of the paper during the paper making

process. The resulting marks must have been extremely difficult to forge,

because the Bank of England itself declined to use them on the grounds that

they were too difficult to make. In 1848, a more practical technology was

invented by William Henry Smith [43], also from England. This replaced

the fine wire patterns used to make earlier marks with a sort of shallow

relief sculpture, pressed into the paper mould. The resulting variation on the

surface of the mould produced beautiful watermarks with varying shades of

gray. This is the basic technique used today for the face of Queen Elizabeth

in the UK currency (5,10,20 and 50 notes).

Watermarks have been used on various occasions, depending on the situation.

For example, in 1981, Margaret Thatcher arranged to distribute uniquely

identifiable copies of sensitive documents to her ministers. Each copy had a

different word spacing that was used to encode the identity of the recipient.

When the confidential documents leaked to the press, it easily enabled the

former British prime minister to identify the culprit. This example shows

that one can be creative in using the technology in its simplest form.

Digital Watermarking techniques surfaced around 1995. Before that, the

first who appear to have used the term digital watermaking were Komatsu

and Tominaga. Watermarking, like cryptography, also uses secret keys to

111

map information to its owners, although the way this mapping is actually

performed differs considerably from what is done in cryptography, mainly

because the watermarked object should keep its intelligibility. In practice, a

watermarked object may be altered either on purpose or accidentally, so the

watermarking system should still be able to detect and extract the water-

mark. In cryptography, an object is protected for transmission and archiving,

once decrypted protection is gone. Watermarking, on the other hand should

protect the object beyond this. A number of attacks can be used against a

watermarked object such as:

Filtering. Low-pass filtering does not introduce considerable degradation

in watermarked objects, but can dramatically affect the performance, since

spread-spectrum-like watermarks have a non negligible high-frequency spec-

tral contents.

Cropping. In this attack the attacker is interested in only a small portion of

the watermarked object, such as parts of a certain picture or text. Therefore,

it is essential, when inserting a watermark, to spread the watermark over the

dimensions of the data where this attack takes place.

Compression. This is an unintentional attack which appears very often in

multimedia applications. Normally images that can be downloaded from the

Internet have been compressed. If the watermark is required to resist differ-

ent levels of compression, it is usually advisable to perform the watermark

insertion task in the same domain where the compression takes place. For

instance, DCT-domain image watermarking is more robust to JPEG com-

pression than spatial-domain watermarking.

Multiple Watermarking. An attacker may take the object that has been

watermarked, watermark it, and then claims his/her watermark was there

112

first. One way to prevent such attack is to timestamp the hidden information

by a certification authority.

4.2 Applications of Watermarking

The popularity of watermarking is increasing rapidly since it gained recog-

nition about a decade ago. Many are recognizing its usefulness and this has

spun out a number of applications. We mention here a few obvious appli-

cations including some that have made impact to our own lives. In working

with watermarking, one has to consider a balance between robustness and

transparency; both are fundamentally opposed requirements, a tradeoff be-

tween the two must then be made.

Video Watermarking. Watermarks can be created either in spatial or in

the DCT (Discrete Cosine Transform) domains'. If created in the DCT do-

main the results can be directly extrapolated to MPEG-2 sequences, although

different actions must be taken for different frames.

Audio Watermarking. Here, the inability of a human ear to listen to

certain frequencies are used to conceal the watermark and make it inaudible.

In the context of standard audio processing and broadcast systems, the audio

content may undergo various band-limiting stages. An audio watermark is

expected to persist through such manipulations and therefore, it is imperative

for the watermarking technology not to rely solely on portions of the audio

spectrum that are perceptually less relevant. Of course, this should be done

in a way that does not degrade the value of the content and the process of
'The reason for the DCT domain is that standard still and video compression schemes

such as JPEG and MPEG are based on algorithms that utilise the properties of the DCT.

113

embedding a watermark should leave no perceivable audio artifacts.

Text Watermarking. Text documents can be watermarked by patterning

the inter-word spaces. The words are classified using some features. Sev-

eral adjacent words are grouped into a segment, and the segments are also

classified using the word class information. The same amount of information

is inserted into each of the segment classes. The information is encoded by

modifying some statistics of inter-word spaces of the segments belonging to

the same class.

Fingerprinting. This application allows devices such as a video cameras to

insert information about itself, e. g. ID number and/or creation date. This

can be done conventionally by using digital signature techniques or by using

watermarking techniques. In the latter case, it is more secure, hence altering

or removing the signature is a difficult task.

Broadcast Monitoring. In broadcasting, watermarks are usually inserted

to programs that are widely broadcast. In this way, advertisers can be assured

that they are getting the air time they paid for, and musicians can feel

protected by not having their music being pirated and re-broadcasted.

4.3 The Matched Filter

The method of watermarking research for this thesis is based on application

of a specific function - the chirp - coupled with a well defined processes - the

matched filter. We now discuss the background to the technique, providing

theoretical and algorithmic details on the approach taken.

The matched filter is a result of finding a solution to the following problem:

114

Given that

Si = pi-7fi + ni,

find an estimate for the Impulse Response Function (IRF) given by

fi = 9'j s: -. i

where IEQiPI2
r EIN, I2IQiI2

i
is a maximum. The ratio defining r is a measure of the signal-to-noise ratio.

In this sense, the matched filter maximizes the signal-to-noise ratio of the

output. Assuming that the noise ni has a `white' or uniform power spectrum,

the filter Qi which maximizes the SNR defined by r is given by

Q; =pi

and the required solution is therefore

fi = IDFT(Pi`Si).

Using the correlation theorem, we then have

ft = pi-; sj.

The matched filter is therefore based on correlating the signal s; with the

IRF pi. This filter is frequently used in systems that employ linear frequency

modulated (FM) pulses - `chirped pulses' - which will be discussed later.

115

4.3.1 Derivation of the Matched Filter

With the problem specified as above, the matched filter is essentially a 'by-

product' of the `Schwarz inequality', i. e.

z

Q; P <EIQ, I2EIPtiI2

The principal `trick' is to write

QiP: =INjIQ; x
Pi

INi 1
so that the above inequality becomes

=rINiI Qi
P.

<EI Ni I21Qi IZ E R12
QiPi

22

ii
INiI

ii
INNI2'

From this result, using the definition of r given above, we see that

r<z
IPuI2

INi12
i

Now, if r is to be a maximum, then we want

=i INi12 r
IPil2

or 2
I2

Ni 1
`w'iI

Ni
-ý

I Ni I2I Qi l2
I

Ni 12.
itt

But this is only true if

jNjjQi=
INi

and hence, r is a maximum when

Qc=
pi*

IN. NS2

116

4.3.2 White Noise Condition

If the noise nz is white noise, then its power spectrum Ni I2 is uniformly
distributed. In particular, under the condition

I N; I2= 1 Vi=0,1,..., N-1

then
Qi = Pi*.

4.3.3 FFT Algorithm for the Matched Filter

Using pseudo code, the algorithm for the matched filter is

for i=1,2, ..., n; do:

sr(i)=signal(i)

si(i)=0.

pr(i)=IRF(i)

pi(i)=0.

forward_fft(sr, si)

forward_fft (pr, pi)

for i=1,2, ..., n; do:

fr(i)=pr(i)*sr(i)+pi(i)*si(i)

fi(i)=pr(i)*si(i)-pi(i)*sr(i)

inverse_fft(fr, fi)

117

for i=1,2, ..., n; do:

hatf (i)=fr(i)

4.3.4 Deconvolution of Frequency Modulated Signals

The matched filter is frequently used in systems that utilize linear frequency

modulated (FM) pulses. IRF's of this type are known as chirped pulses.

Examples of where this particular type of pulse is used include real and syn-

thetic aperture radar, active sonar and some forms of seismic prospecting

for example. Interestingly, some mammals (dolphins, whales and bats for

example) use frequency modulation for communication and detection. The

reason for this is the unique properties that FM IRFs provide in terms of the

quality of extracting information from signals with very low signal-to-noise

ratios and the simplicity of the process that is required to do this (i. e. cor-

relation). The invention and use of FM IRFs for man made communications

and imaging systems dates back to the early 1960s (the application of FM

to radar for example); mother nature appears to have `discovered' the idea

some time ago.

Linear FM Pulses

The linear FM pulse is given (in complex form) by

p(t) = exp(-iat2), It (< T/2

where a is a constant and T is the length of the pulse. The phase of this

pulse is at2 and the instantaneous frequency is given by

dt
(at2) = 2at

118

which varies linearly with t. Hence, the frequency modulations are linear

which is why the pulse is referred to as a linear FM pulse. In this case, the

signal that is recorded is given by (neglecting additive noise)

s(t) = exp(-iat2) 0f (t).

Matched filtering, we have

f (t) = exp(iat2) O exp(-iat2) ®f (t).

Evaluating the correlation integral,

T/2

exp(iat2) O exp(-iat2) =J exp[ia(t + T)2] exp(-iaT2)dr
-T/2

T/2

= exp(iat2) J exp(2iarrt)dT
-T/2

and computing the integral over T, we have

exp(iat2) O exp(-iat2) =T exp(iate) sinc(aTt)

and hence
j (t) =T exp(iate) sinc(aTt) ®f (t).

In some systems, the length of the linear FM pulse is relatively long. In such

cases,
cos(at2) sinc(aTt) = sinc(aTt)

and
sin(at2) sinc(aTt) =0

and so
i (t) -T sinc(aTt) 0f (t).

119

Now, in Fourier space, this last equation can be written as

F(w) .
U(w), Iw j< aT;

0, otherwise.

The estimate f is therefore a band limited estimate of f whose bandwidth

is determined by the product of the chirping parameter a with the length of

the pulse T. An example of the matched filter in action is given in Figure

4.1 obtained using the MATLAB code given below. Here, two spikes have

been convolved with a linear FM chirp whose width or pulse length T is

significantly greater than that of the input signal. The output signal has

been generated using an SNR of 1 and it is remarkable that such an excellent

restoration of the input is recovered using a relatively simple operation for

processing data that has been so badly distorted by additive noise. The

remarkable ability for the matched filter to accurately recover information

from linear FM type signals with very low SNRs leads naturally to consider its

use for covert information embedding. This is the subject of the section that

follows which investigates the use of chirp coding for covertly watermarking

digital signals for the purpose of signal authentication.

function MATCH(T, snr)

%Input:

T- width of chirp IRF

"/ snr - signa-to-noise ratio of signal

n=512; %Set size of array (arbitrary)

nn=1+n/2; %Set mid point of array

120

%Compute input function (two spikes of width m centered

%at the mid point of the array.

m=10; '/. Set width of the spikes (arbitrary)

for i=1: n

f(i)=0.0; %Initialize input

p(i)=0.0; %Initialize IRF

end

f(nn-m)=1.0;

f(nn+m)=1.0;

%Plot result

figure(1);

subplot(2,2,1), plot(f);

%Compute the (real) IRF, i. e. the linear FM chirp using a

%sine function. (N. B. Could also use a cosine function.)

m=T/2;

k=1;

for i=1: m

p(nn-m+i)=sin(2*pi*(k-1)*(k-1)/n);

k=k+1;

end

%Plot result

subplot(2,2,2), plot(p);

121

V. Convolve f with p using the convolution theorem and normalize to unity.
f=fft(f); p=fft(p);

f=p. *f;

f=ifft (f) ; f=fftshift (f) ; f=real(f) ;

f=f. /max(f); %N. B. No check on case when f=0.

%Compute random Gaussian noise field and normalize to unity.

noise=randn(1, n);

noise=noise. /max(noise);

%Compute signal with signal-to-noise ratio defined by snr.

s=f+noise. /snr;

%Plot result

subplot(2,2,3), plot(s);

%Restore signal using Matched filter.

%Transform to Fourier space.

s=fft(s);

'Compute Matched filter.

rest=conj(p). *s;

rest=ifft(rest); rest=fftshift(rest); rest=real(rest);

%Plot result

subplot(2,2,4), plot(rest);

122

3.8

D6

'. a

LUV Quv

1.5"

0.5

0

-l

-1.5 0

COD

1

0.5

0

-0,5

0

40

30

20

10

0

-10

200 400 600

i; i

0 200 400 600

Figure 4.1: Example of a matched filter in action (bottom right) by recovering

information from a noisy signal (bottom left) generated by the convolution of

an input consisting of two spikes (top left) with a linear FM chirp IRF (top

right). The simulation and restoration of the signal given in this example is

accomplished using the MATLAB function MATCIi(256,1).

123

200 400 600

4.4 Watermarking using Chirp Coding

In this section, we discusses a new approach to `watermarking' digital signals

using linear frequency modulated `chirp coding'. The principle underlying

this approach is based on the use of a matched filter to provide a reconstruc-

tion of a chirped code that is uniquely robust, i. e. in the case of very low

signal-to-noise ratios.

Chirp coding for authenticating data is generic in the sense that it can be

used for a range of data types and applications (the authentication of speech

and audio signals for example). The theoretical and computational aspects of

the matched filter and the properties of a chirp are briefly revisited to provide

the essential background to the method. Signal code generating schemes are

then addressed and details of the coding and decoding techniques considered.

4.4.1 Basic concepts

Methods of watermarking digital data have applications in a wide range of

areas. Digital watermarking of images has been researched for many years

in order to achieve methods which provide both anti-counterfeiting and au-

thentication facilities. One of the principle equations that underpins this

technology is based on the `fundamental model' for a signal which is given
by

s=Pf+n

124

where f is the information content for the signal (the watermark), P is some
linear operator, n is the noise and s is the output signal. This equation is

usually taken to describe a stationary process in which the noise n is char-

acterized by stationary statistics (i. e. the probability density or distribution

function of n is invariant of time). In the field of cryptology, the operation

Pf is referred to as the processes of `diffusion' and the process of adding

noise (i. e. Pf + n) is referred to as the process of `confusion'. In cryptogra-

phy and steganography (the process of hiding secret information in images)

the principal `art' is to develop methods in which the processes of diffusion

and confusion are maximized, an important criterion being that the output

s should be dominated by the noise n which in turn should be characterized
by a maximum2 (i. e. a uniform statistical distribution).

Digital watermarking and steganography can be considered to form part of

the same field of study, namely, cryptology. Being able to recover f from

s provides a way of authenticating the signal. If, in addition, it is possible
to determine that a copy of s has been made leading to some form of data

degradation and/or corruption that can be conveyed through an appropriate

analysis of f, then a scheme can be developed that provides a check on: (i)

the authenticity of the data s; (ii) its fidelity.

Formally, the recovery of f from s is based on the inverse process

f =P-1 s- n)

where P-1 is the inverse operator. Clearly, this requires the field n to be

known a priori. If this field has been generated by a pseudo random number

generator for example, then the seed used to generate this field must be

known a priori in order to recover the data f. In this case, the seed represents
2A measure of the lack of information on the exact state of a system

125

the private key required to recover f. However, in principle, n can be any field

that is considered appropriate for confusing the information Pf including a

pre-selected signal. Further, if the process of confusion is undertaken in which

the signal-to-noise ratio is set to be very low (i. e. IInil » IIPfII), then the

watermark f can be hidden covertly in the data n provided the inverse process
P-1 is well defined and computationally stable. In this case, it is clear that

the host signal n must be known in order to recover the watermark f leading

to a private watermarking scheme in which the field n represents a key. This

field can of course be (lossless) compressed and encrypted as required. In

addition, the operator P (and its inverse P-1) can be key dependent. The

value of this operator key dependency relies on the nature and properties of

the operator that is used and whether it is compounded in an algorithm that

is required to be in the public domain for example.

Another approach is to consider the case in which the field n is unknown and

to consider the problem of extracting the watermark f in the absence of this

field. In this case, the reconstruction is based on the result

f=P'ls+m

where
m= -P-ln.

Now, if a process P is available in which Ili sIl » I1mil, then an approx-

imate (noisy) reconstruction of f can be obtained in which the noise m is

determined by the original signal-to-noise ratio of the data s and hence, the

level of covertness of the diffused watermark Pf. In this case, it may be pos-

sible to post-process the reconstruction (de-noising for example) and recover

a relatively high-fidelity version of the watermark, i. e.

f, P-ls.

126

This approach (if available) does not rely on a private key (assuming P is

not key dependent). The ability to recover the watermark only requires

knowledge of the operator P (and its inverse) and post-processing options as

required. The problem here is to find an operator that is able to recover the

watermark effectively in the presence of the field n. Ideally, we require an

operator P with properties such that P-In -> 0.

In this application, the operator is based on a chirp function, specifically, a

linear Frequency Modulated (FM) chirp of the (complex) type exp(-iat2)

where a is the chirp parameter and t is the independent variable. This

function is then convolved with f. The inverse process is undertaken by cor-

relating with the (complex) conjugate of the chirp exp(iat2). This provides

a reconstruction for f in the presence of the field n that is accurate and ro-

bust with very low signal-to-noise ratios. Further, we consider a watermark

based on a coding scheme in which the field n is the input. The water-

mark f is therefore n-dependent. This allows an authentication scheme to

be developed in which the watermark is generated from the field in which

it is to be hidden. Authentication of the watermarked data is then based

on comparing the code generated from s= Pf +n and that reconstructed

by processing s when JJPf 11 » IJnhl. This is an example of a self-generated

coding scheme which avoids the use, distribution and application of reference

codes. Here, the coding scheme is based on the application of Daubechies

wavelets. There are numerous applications of this technique in areas such as

telecommunications and speech recognition where authentication is manda-

tory. For example, the method can readily be applied to audio data with no

detectable differences in the audio quality of the data. The watermark code

is able to be recovered accurately and changes relatively significantly if the

data is distorted through cropping, filtering, noise or a compression system

127

for example. Thus, it provides a way making a signal tamper proof.

4.4.2 Matched Filter Reconstruction

Given that

s(t) = exp(-iat2) 0f (t) + n(t),

after matched filtering, we obtain the estimate

f (t) ^, - T sinc(aTt) ®f (t) + exp (iat2) O n(t).

The correlation function produced by the correlation of exp(iat) with n(t)

will in general be relatively low in amplitude since n(t) will not normally

have features that match those of a chirp. Thus, it is reasonable to assume

that
IlT sinc(aTt) of (t) II » 11 exp(iat2) 0 n(t)

and that in practice, f is a band-limited reconstruction of f with high SNR.

Thus, the process of using chirp signals with matched filtering for the pur-

pose of reconstructing the input in the presence of additive noise provides

a relatively simple and computationally reliable method of `diffusing' and

reconstructing information encoded in the input function f. This is the un-

derlying principle behind the method of watermarking described here.

4.4.3 The Fresnel Transform

Ignoring scaling, we can define the Fresnel transform as

s(x, y) = exp[-ia(x2 + y2)] 0 of (x, y).

128

This result is just a 2D version of the `chirp transform' discussed earlier.
The reconstruction of f from s follows the same principles and can be ac-

complished using a correlation of s with the function exp[ia(x2 + y2)]. This

result leads directly to a method of digital image watermarking using the

Fresnel transform to `diffuse' the watermark f. In particular, reverting to

the operator notation used previously, our Fresnel transform based water-

marking model becomes

s(x, y) = Pf (x, y) + n(x, y)

where the operator 15 is given by

P= exp[-ia(x2 + y2)] (9 o

and the inverse operator is given by

P-1 = exp[ia(x2 + y2)] OO.

Note, that ®® denotes 2D convolution and 00 denotes 2D correlation. Also,

in practice, only values >0 can be used for application to digital images so

that we must consider a function of the normalized form (1 + exp[ic (x2 +

y2)])/2 for example.

A covert watermarking procedure involves the addition of a (diffused) water-

mark to a host image with a very low watermark-to-signal ratio, i. e.

IIFf(x)y)II «IIn(x, y)II

Recovery of the watermark is then based on the result

f (X, y) = P-' [s(x, y) - nix, y)J

129

4.4.4 Chirp Coding, Decoding and Watermarking

We now return to the issue of watermarking using chirp functions. The basic

model for the watermarked signal (which is real) is

s(t) = chirp(t) 0f (t) + n(t)

where

chirp(t) = sin(at2).

We consider the field n(t) to be some pre-defined signal to which a watermark

is to be `added' to generate s(t). In principle, any watermark described

by the function f (t) can be used. On the other hand, for the purpose of

authentication we require two criterion: (i) f (t) should represent a code

which can be reconstructed accurately and robustly; (ii) the watermark code

should be sensitive (and ideally ultra-sensitive) to any degradation in the field

n(t) due to lossy compression, cropping or highpass and lowpass filtering for

example. To satisfy condition (i), it is reasonable to consider f (t) to represent

a bit stream, i. e. to consider the discretized version of f (t) - the vector fj

- to be composed of a set of elements with values 0 or 1 and only 0 or 1.

This binary code can of course be based on a key or set of keys which, when

reconstructed, is compared to the key(s) for the purpose of authenticating

the data. However, this requires the distribution of such keys (public and/or

private). Instead, we consider the case where a binary sequence is generated

from the field n(t). There are a number of approaches that can be considered

based on the spectral characteristics of n(t) for example. These are discussed

later on, in which binary sequences are produced from the application of

wavelet decomposition.

130

Chirp Coding

Given that a binary sequence has been generated from n(t), we now consider

the method of chirp coding. The purpose of chirp coding is to `diffuse'

each bit over a range of compact support T. However, it is necessary to

differentiate between 0 and 1 in the sequences. The simplest way to achieve

this is to change the polarity of the chirp. Thus, for 1 we apply the chirp

sin(at2), tET and for 0 we apply the chirp -sin(at2), tET where T is

the chirp length. The chirps are then concatenated to produce a contiguous

stream of data, i. e. a signal composed of ±chirps. Thus, the binary sequence

010 for example is transformed to the signal

-chirp(t), tE [0, T);

s(t) _ +chirp(t), tE [T, 2T);

-chirp(t), tE [2T, 3T).

The period over which the chirp is applied depends on the length of the

signal to which the watermark is to be applied and the length of the binary

sequence. In the example given above, the length of the signal is taken to be

3T. In practice, care must be taken over the chirping parameter a that is

applied for a period T in order to avoid aliasing and in some cases it is of value

to apply a logarithmic sweep instead of a linear sweep. The instantaneous

frequency of a logarithmic chirp is given by

, O(t) = 7po + 10-t

where
1

a=7, logio(V)1 - psio)

ßb0 is the initial frequency and eil is the final frequency at time T. In this

case, the final frequency should be greater than the initial frequency.

131

Decoding

Decoding or reconstruction of the binary sequence requires the application

of a correlator using the function chirp(t), tE [0, T). This produces a

correlation function that is either -1 or +1 depending upon whether -chirp(t)

or +chirp(t) has been applied respectively. For example, after correlating the

chirp coded sequence 010 given above, the correlation function c(t)becomes

-1, tE [0, T);

c(t) = +1, tE [T, 2T);

-1, tE [2T, 3T).

from which the original sequence 010 is easily inferred, the change in sign of

the correlation function identifying a bit change (from 0 to 1 or from 1 to 0).

Note, that in practice the correlation function may not be exactly 1 or -1 when

reconstruction is undertaken and the binary sequence is effectively recovered

by searching the correlation function for changes in sign. The chirp used to

recover the watermark must of course have the same parameters (inclusive

of its length) as those used to generate the chirp coded sequence. These

parameters can be used to define part of a private key.

Watermarking

The watermarking process is based on adding the chirp coded data to the

signal n(t). Let the chirp coded signal be given by the function h(t), then

the watermarking process is described by the equation

_
bh(t) n(t) l

s(t) -a II h(t)11 ý+ lln(t)ll,. J
and the coefficients a>0 and 0<b<1 determine the amplitude and the

132

SNR of s where

a= IIn(t) ll...

The coefficient a is required to provide a watermarked signal whose ampli-

tude is compatible with the original signal n. The value of b is adjusted to

provide an output that is acceptable in the application to be considered and

to provide a robust reconstruction of the binary sequence by correlating s(t)

with chirp(t), tE [0, T). To improve the robustness of the reconstruction,

the value of b can be increased, but this has to be off-set with regard to the

perceptual quality of the output, i. e. the perturbation of n by h should be

as small as possible.

4.4.5 Code Generation

In the previous section, the method of chirp coding a binary sequence and

watermarking the signal n(t) has been discussed where it is assumed that the

sequence is generated from this same signal. In this section, the details of this

method are presented. The problem is to convert the salient characteristics

of the signal n(t) into a sequence of bits that is relatively short and conveys

information on the signal that is unique to its overall properties. In principle,

there are a number of ways of undertaking this. For example, in practice the

digital signal nti, which will normally be composed of an array of floating

point numbers, could be expressed in binary form and each element concate-

nated to form a contiguous bit stream. However, the length of the code (i. e.

the total number of bits in the stream) will tend to be large leading to high

computational costs in terms of the application of chirp coding/decoding.

What is required, is a process that yields a relatively short binary sequence

(when compared with the original signal) that reflects the important prop-

133

erties of the signal in its entirety. Two approaches are considered here: (i)

power spectral density decomposition and (ii) wavelet decomposition.

Power Spectral Density Decomposition

Let N(w) be the Fourier transform n(t) and define the Power Spectrum P(w)

as

P(w) =1 N(w) 12 .
An important property of the binary sequence is that it should describe the

spectral characteristics of the signal in its entirety. Thus, if for example, the

binary sequence is based on just the low frequency components of the signal,

then any distortion of the high frequencies components will not affect the

watermark and the signal will be authenticated. Hence, we consider the case

where the power spectrum is decomposed into N components, i. e.

P1(w) = P(w), wE [0,521);

P2(W) = P(W), wE [21,2);

PN(W) -
P(W)i WE [ulN-1,1N)"

Note, that it is assumed that the signal n(t) is band-limited with a bandwidth

Of SIN.

The set of the functions P1i P2,..., PN now reflect the complete spectral char-

acteristics of the signal n(t). Since each of these functions represents a unique

part of the spectrum, we can consider a single measure as an identifier or tag.

A natural measure to consider is the energy which is given by the integral

of the functions over their frequency range. In particular, we consider the

134

energy values in terms of their contribution to the spectrum as a percentage,

i. e.

El =
lE JP1(w)dw,

0
02

E2 =
lE f

P2(w) i
n1

ON

EN = PN (w)dw, f
1

where N nJP(w)dw.

E=
lE

0
Code generation is then based on the following steps:

(i) Rounding to the nearest integer the (floating point) values of Es to decimal

integer form:

ei = round(E2), Vi.

(ii) Decimal integer to binary string conversion: conversion

b; = binary(e1).

(iii) Concatenation of the binary string array bi to a binary sequence:

fj = cat(bi).

The watermark fj is then chirp coded as discussed previously.

Wavelet Decomposition

135

The wavelet transform is defined by

W [f (t)] = FL (t) =ff
(T) wL(t, -r) d7-

where
WL(t, T) =

1L
w

(t

LT)

The wavelet transformation is essentially a convolution transform in which

w(t) is the convolution kernel but with a factor L introduced. The intro-

duction of this factor provides dilation and translation properties into the

convolution integral (which is now a function of L) that gives it the ability

to analyse signals in a multi-resolution role.

The code generating method is based on computing the energies of the

wavelet transformation over N levels. Thus, the signal f (t) is decomposed

into wavelet space to yield the following set of functions:

FLI (7), FL2 (T), FLN (r).

The (percentage) energies of these functions are then computed, i. e.

Ei =
lE 11

E2 =
lE 0f 11'iß (T) I2 dr,

EN =
lE fI

FLN (r) 12 Jr,

where N
E=ýE;.

The method of computing the binary sequence for chirp coding from these

energy values follows that described in the method of power spectral de-

composition. Clearly, whether applying the power spectral decomposition

136

method or wavelet decomposition, the computations are undertaken in digi-

tal form using a DFT and a DWT (Discrete Wavelet Transform) respectively.

4.4.6 MATLAB Application Programs

Two prototype MATLAB programs have been developed to implement the

watermarking method discussed. The coding process reads in a named file,

applies the watermark to the data using wavelet decomposition and writes

out a new file using the same file format. The Decoding process reads a named

file (assumed to contain the watermark or otherwise), recovers the code from

the watermarked data and then recovers the (same or otherwise) code from

the watermark. The coding program displays the decimal integer and bi-

nary codes for analysis. The decoding program displays the decimal integer

streams generated by the wavelet analysis of the input signal and the stream

obtained by processing the signal to extract the watermark code or otherwise.

This process also provides an error measure based on the result
r, i- yi

1: i +viI
i

where xi and ya are the decimal integer arrays obtained from the input signal

and the watermark (or otherwise). In the application considered here, the

watermarking method has been applied to audio (. wav) files in order to test

the method on data which requires that the watermark does not affect the

fidelity of the output (i. e. audio quality). Only a specified segment of the

data is extracted for watermarking which is equivalent to applying and off-

set to the data. The segment can be user defined and if required, form

the basis for a (private) key system. In this application, the watermarked

segment has been `hard-wired' and represents a public key. The wavelets

137

used are Daubechies wavelets computed using the MATLAB wavelet toolbox.

However, in principle, any wavelets can be used for this process and the

actual wavelet used yields another feature that can form part of the private

key required to extract the watermark.

Coding Process

The coding process is compounded in the following basic steps:

Step 1: Read a wav file.

Step 2: Extract a section of a single vector of the data (note that a wav

contains stereo data, i. e. two vectors).

Step 3: Apply wavelet decomposition using Daubechies wavelets with 7

levels. Note, that in addition to wavelet decomposition, the approximation

coefficients for the input signal are computed to provide a measure on the

global effect of introducing the watermark into the signal. Thus, 8 decom-

position vectors in total are generated.

Step 4: Compute the (percentage) `energy values'.

Step 5: Round to the nearest integer and convert to binary form.

Step 6: Concatenate both the decimal and binary integer arrays.

Step 7: Chirp code the binary sequence.

Step 8: Scale the output and add to the original input signal.

138

Step 9: Re-scale the watermarked signal.

Step 10: Write to a file.

The above procedure has been implemented where the parameters for seg-

menting and processing data of a specific size have been `hard wired'. The

Matlab code (encode. m) has been included in the accompanying CD.

Decoding process

The decoding process is as follows:

Step 1: Steps 1-6 in the coding processes are repeated.

Step 2: Correlate the data with a chirp identical to that used for chirp

coding.

Step 3: Extract the binary sequence.

Step 4: Convert from binary to decimal.

Step 5: Display the original and reconstructed decimal sequence.

Step 6: Display the error.

A complete Matlab code showing decoding process (decode. m) has been in-

cluded in the accompanying CD.

139

4.4.7 Discussion

In a practical application of this method for authenticating audio files for

example, a threshold can be applied to the error value. If and only if the

error lies below this threshold is the data taken to be authentic.

The prototype MATLAB programs provided have been developed to explore

the applications of the method for different signals and systems of interest

to the user. Note that in the decoding program, the correlation process

is carried out using a spatial cross-correlation scheme (using the MATLAB

function xcorr), i. e. the watermark is recovered using the process chirp(t) O

s(t) instead of the Fourier equivalent CHIRP*(w)S(w) where CHIRP and

S are the Fourier transforms of chirp and s respectively (in digital form of

course). This is due to the fact that the `length' of the chirp function is

significantly less than that of the signal. Application of a spatial correlator

therefore provides greater computational efficiency.

The method of digital watermarking discussed here makes specific use of

the chirp function. This function is unique in terms of its properties for

reconstructing information (via application of the Matched Filter) that has

been `diffused' through the convolution process, i. e. the watermark extracted

is, in theory, an exact band-limited version of the original watermark as

defined in the presence of significant additive noise, in this case, the signal

into which the watermark is `embedded'. The method has a close relationship

with the Fresnel transform and can be used for digital image watermarking

in an entirely equivalent way. The approach considered here allows a code

to be generated directly from the input signal and that same code used to

watermark the signal. The code used to watermark the signal is therefore

self-generating. Reconstruction of the code only requires a correlation process

140

with the watermarked signal to be undertaken. This means that the signal

can be authenticated without access to an external reference code. In other

words, the method can be seen as a way of authenticating data by extracting

a code (the watermark) within a code (the signal).

Audio data watermarking schemes rely on the imperfections of the human

audio system. They exploit the fact that the human auditory system is insen-

sitive to small amplitude changes, either in the time or frequency domains,

as well as insertion of low amplitude time domain echo's. Spread spectrum

techniques augment a low amplitude spreading sequence which can be de-

tected via correlation techniques. Usually, embedding is performed in high

amplitude portions of the signal, either in the time or frequency domains. A

common pitfall for both types of watermarking systems is their intolerance to

detector de-synchronization and deficiency of adequate methods to address

this problem during the decoding process. Although other applications are

possible, chirp coding provides a new and novel technique for fragile audio

watermarking. In this case, the watermarked signal does not change the per-

ceptual quality of the signal. In order to make the watermark inaudible, the

chirp generated is of very low frequency and amplitude. Using audio files with

sampling frequencies of over 1000Hz, a logarithmic chirp can be generated

in the frequency band of 1-100Hz. Since the human car has low sensitivity

in this band, the embedded watermark will not be perceptible. Depending

upon the band and amplitude of the chirp, the signal-to-watermark ratio can

be in excess of 40dB. Various forms of attacks can be applied which change

the distribution of the percentage sub-band energies originally present in the

signal including filtering (both low pass and high pass), cropping and lossy

compression (MP3 compression) with both constant and variable bit rates.

In each case, the signal and/or the watermark is distorted enough to reg-

141

ister the fact that the data has been tampered with. Further, chirp based

watermarks are difficult to remove from the signal since the initial and the

final frequency is at the discretion of the user and its position in the data

stream can be varied through application of an offset, all such parameters

being combined to form a private key.

4.5 Echelon

When working with encryption, one has to realise that once the data is

encrypted, ultimate protection has been practiced. The rest is to assess the

strength and techniques used. The strength may come from the encryption

itself, it could have strong algorithm and therefore cannot easily be broken,

for example. On the other hand, the adversary may not be an average

hacker. In order to have encryption `muscle', powerful computers are needed.

Moreover, the best of cryptographers are needed to be disposed. This can

only happen in government organisations.

Some of the best cryptographers in the world can be found working for the

government. Most of the military secrets have to be closely guarded since

this information has to be shared and sent to the military allies across the

globe. Also military communication secrets are well guarded. There is no

room for compromise when it comes to transmitting or gathering military

intelligence.

Even though they may not openly admit to it, most government organisa-

tions work hard at eavesdropping all communications around their borders

and beyond. In the USA, the National Security Agency (NSA) performs
highly specialized activities to protect US information systems and produce

142

foreign intelligence information. The NSA is also responsible for creating the

encryption algorithms for messages used for secret communications. These

algorithms are kept secret and are never published. The agency has created

under its wings a global spy system codenamed ECHELON, which captures

and analyzes virtually every phone call, fax, email and telex message sent

anywhere in the world. ECHELON is controlled by the NSA and is oper-

ated in conjunction with the Government Communications Head Quarters

(GCHQ) of England, the Communications Security Establishment (CSE) of
Canada, the Australian Defense Security Directorate (DSD), and the General

Communications Security Bureau (GCSB) of New Zealand. These organi-

sations are bound together under a secret 1948 agreement, UK-USA, whose

terms and text remain under wraps even today. The NSA was established

in 1952 by president Harry Truman. After it was setup, the facilities were

kept secret and the government did not openly admit to its existence until

1957. The ECHELON centre is Headquartered at Fort George Meade, lo-

cated between Washington D. C. and Baltimore, Maryland. To date, NSA is

the largest employer of mathematicians and cryptographers.

The ECHELON system deploys the largest spy station in the world, with

over twenty-five satellite receiving stations and 1,400 American NSA person-

nel working with 350 UK Ministry of Defense staff on site. The Power of

ECHELON resides in its ability to decrypt, filter, examine and codify these

messages into selective categories for further analysis by intelligence agents

from the various UKUSA agencies. Once the data gets sifted, it is given to

the cryptographers for breaking and cracking the codes. The work involves

intercepting and decoding messages in over 100 languages.

The ECHELON system does not only cover text and images. It also inter-

143

cepts voice communication through satellite links. In the UK, as the elec-

tronic signals are brought into the station, they are fed through the massive

computer systems, such as Menwith Hills SILKWORTH, where voice recog-

nition, optical character recognition (OCR) and data information engines get

to work on the messages. By using powerful voice recognition systems, voice

patterns of interest are stored and picked up whenever they appear in the

conversation. This allows the tracking of certain known individuals. Each

station maintains a list of key words (The Dictionary). The managers at each

station are free to add and delete the keywords according to their needs.

Politicians are known to have manipulated the system to their advantage.

Margaret Thatcher used Echelon to spy on her two cabinet members she

suspected were disloyal to her. In order to avoid any legal implications, the

request was undertaken by the Canadian CSE.

ECHELON has been used beyond political motivation; governments have

used the system for commercial interests. In 1990, the German magazine, Der

Speigel, revealed that the NSA had intercepted messages about an impending

$200 million deal between Indonesia and the Japanese satellite manufacturer

NEC Corp. After President Bush intervened in the negotiations on behalf of
American manufacturers, the contract was split between NEC and AT&T.

The ECHELON system has placed its listening devices all across the globe.

This enables them to intercept all the communications between all satellite

systems. There has been great concern from the watch groups that ECHE-

LON does not serve the purpose it was originally intended for. According

the echelon watch website [30]:

'Echelon is perhaps the most powerful intelligence gathering organization in the world.

144

Several credible reports suggest that this global electronic communications surveillance sys-

tem presents an extreme threat to the privacy of people all over the world. According to

these reports, ECHELON attempts to capture staggering volumes of satellite, microwave,

cellular and fiber-optic traffic, including communications to and from North America. This

vast quantity of voice and data communications are then processed through sophisticated

filtering technologies.

This massive surveillance system apparently operates with little oversight. Moreover, the

agencies that purportedly run ECHELON have provided few details as to the legal guidelines

for the project. Because of this, there is no way of knowing if ECHELON is being used

illegally to spy on private citizens.

This site is designed to encourage public discussion of this potential threat to civil liberties,

and to urge the governments of the world to protect our rights.

ECHELON has huge listening facilities and its network is directed at Intelsat

and Inmarsat satellites. These two satellites are responsible for the vast ma-

jority of phone and fax communications traffic within and between countries

and continents.

Most of the work done in these projects is a closely guarded secret. Therefore

it is hard to determine what methods these governments employ when it

comes to intercepting and trying to crack the supposedly malicious message.

One of the methods used on encrypted messages is to scan all packets going

through the channel. Once an encrypted message is encountered, it is then

sifted for further scrutiny. Normally when a file is processed, be it a text

file or a binary file, the processing object will leave a mark in the file. This

mark should enable the processing object, or program, to recognize the file

if it is encountered again. For example, if we open a new Microsoft Word

145

TMdocument, the output when viewed in binary format will show that the

document indeed was created in MS Word. There will be a file signature

which will list all properties of the document.

Most encryption software creates a signature on the data that is output. Of

course for stronger encryption, the signature may not be obvious. But to

hackers or experienced cryptographers, these can be easily rooted out. Some

may visually appear on the binary files, while others may appear in forms of

patterns which are unique to a certain algorithm. The NSA is one of the most

experienced organisations when it comes to cryptography and cryptanalysis.

It has been around for a long time, and this has enabled it to gather as much

data as possible on ALL types on cryptographic data that pass through the

Internet. Also, that fact that NSA works with other organisations across

the globe allows it to have access to different types of encrypted data and in

different languages.

The filtering system first goes through each packet to determine the type

of data. If it is plaintext for example, it will be classified and go through

its assigned process. The same goes for still images, video and audio clips.

Once the filtering system has determined that the data is encrypted, the first

thing it will look for is a signature. The signature will determine the type

of encrypted data. As mentioned earlier, the signature may not be obvious

and therefore the difficulty in deciphering the signature depends on part the

complexity of the encryption algorithm. Once it has been ascertained, the

output will be moved to the next bin for further analysis.

Different methods of cryptanalysis will be used to crack the code. Once

broken, the output text will be compared to each of the over 100 language

dictionaries available. This will go on until matching pattern is found. the

146

next section explains how DBX can be implemented to avoid detection when

data is transmitted on open channel.

4.6 Embedding Ciphertext into an Image

Most of the encryption algorithms discussed above lead to ciphertext output.

However, there are other messages that will not lead to text output, those

messages are video, audio clips, and still images. If the message leads to

a still image, then it is obvious that this message is just an image and not

a text. Therefore there will not be much interest in the image. The basic

principle is illustrated in Figure 4.2.

One of the proposals for this thesis is that after encrypting the message,

using Dynamic Block Encryption (DBX) for example - which will be covered

in detail in the next chapter - the next step is to take the output, watermark

an image with the output and then encrypt the image. This makes the

encrypted image appear as a normal photograph (if a positive decrypt is

achieved) while encrypted data is actually embedded within.

The method can be used for not only encrypting files to an image, but also

to other types of output, for example, the output can be a music file. Once

in a music file, it is obvious to a listener that this is just a piece of music

and nothing else has been added to it. This illustrates the one advantage

that watermarking has over encryption, namely, that encrypted information

flags the fact that important information is being communicated. Commu-

nicating information (encrypted or otherwise) by watermarking an entirely

147

Plainteg

Figure 4.2: Block diagram showing basic function of encryp-

tion/watermarking system.

148

independent file (which is then encrypted or otherwise) provides a level of

covertness that encrypted data cannot achieve.

In the following chapter, we consider the use of the watermarking technique

discussed in this chapter for covertly exchanging keys by watermarking the

ciphertext with the key used to generate the ciphertext.

149

Chapter 5

Dynamic Block Encryption

Algorithm (DBX)

5.1 Introduction

This chapter details with the first of two encryption engines developed for

this thesis. It considers each model in details, covering important aspects

and properties. The algorithm takes data on a block by block basis and

xor's it with random numbers obtained from running a Blum Blum Shub

Pseudo Random Number Generator. The key for encryption is generated

from the text itself and hence changes for each message and is communicated

by watermarking the ciphertext using the approach developed in the previous

chapter. This leads to the design of a unique and novel algorithm that forms

the central kernel to the research reported in this.

The algorithm has been divided into five modules:

150

9 The key generation module: This module generates a key from the

input text; hence, the key generated is text dependent.

" The encryption module: This module encrypts text (or images or any

other data in any format) using random sized text blocks.

" The key exchange module: After encryption the text (or image) is

watermarked and the key is hidden within the text for transmission.

9 The key extraction module: When this module is run, it removes the

watermark and recovers decryption key.

. The decryption module: Decrypts the contents after removal of the

watermark.

5.2 Two Modes of Operation

This software is designed to operate in two modes. In the first mode, we

use one time parameter exchange, after the initial software setup, there is no

exchange of parameters between the sender and the recipient. Apart from

the encrypted file with the embedded key.

In the second mode, the parameters are passed using secure channel every-

time a new file is transmitted.

In this chapter, we cover the main functionality of the DBX, which is in-

dependent on the mode of operation. The next chapter will cover in more

details.

151

5.3 Key Generation Module

This module takes in the text, video or image file and generates a key which

is used for encryption. For simplicity, all examples used here refer to text

files; however, the program has been tested with still images and other data

types. It has, also been tested with video. There are a number of ways to

generate keys from the text. Four methods of increasing complexity have

been considered.

5.3.1 Data Summation Method

After reading the file, a random noise is generated and padded at the begin-

ning of the file. Then, all its characters are summed in ASCII mode. Thus,

if a text file, for example, contained text microsoft, each character is first

converted to its ASCII equivalent and then added up, i. e. m+i+c+r+

0 +s+0 +f+t yields 109+105+99+114+111+115+111+102+

116 = 982. Now each digit is again converted to its ASCII equivalent. So 9

+8+2 becomes 57 + 56 + 50, which is 163. Finally 163 is converted into

binary and forms 10100011. This binary string forms the key that is used to

encrypt the text microsoft.

In the technique used here, it is difficult for the attacker to figure out the key

on an unsecure communication channels. The key here is changed everytime

the message changes. Hence, if an attacker manages to crack one message

to get the key, once the next message comes a long, the key will be rendered

useless. If the same message is used more than once, the key will be different,

this is due to the introduction of random numbers used to pad the file.

152

Even though this method is simple, extracting the key from the text is a

complicated idea in itself. Significant effort goes into securing the keys, while
in this case the key is used only once, and the chances of guessing it are zero
(in a reasonable amount of time).

5.3.2 Hash Algorithm Method

A hash function is a one way function. By using one way functions, the

output of the function cannot be converted back to its original input form.

i. e. the function is non-invertible. The analogy to a one way function is

mixing of paints. If we have paints of two different colours, for example

yellow and red, by pouring half of each content into a container, we end up

with an orange colour. So orange was obtained as a result of mixing two

different colours. Now, if we want to go back from orange to yellow and

red, it is effectively impossible. This principle is concerned with the physical

effect of diffusion which is a one-way process.

A number of applications make use of hash algorithms. For example, Unix

passwords are stored in a file in hashed form. This makes it difficult even
for Unix system managers to guess what the passwords are. Once a user

wants to log in, he/she types his/her password which then gets `hashed', and

compared with the stored hashed password in the system. If the two hashes

match, then permission to the user is granted. This method is not the most

secure way of protecting passwords. If someone manages to get hold of the

Unix password file, then he/she needs to try and guess different passwords,

hash them, and see if the output can match any of the passwords. Once a

match is found the hashed password will match the guessed password leaving

the system open to an attack.

153

Hash algorithms are also used to authenticate downloaded files, and also if

they have not been tampered with. Some Internet sites provide hash values
for each file they post. If you download a file from any of those sites, you

may compare the hash value of the downloaded file to the value you get

after downloading and hashing. If they both match, then the download has

worked correctly and there is no file corruption. On the other hand, if the

download has partially failed, the hash value obtained after download will be

different to the one of the web site. This is also helpful to avoid downloading

files which have been replaced. For example, if, for some reason, someone
has changed the file to be downloaded and replaced it with another file, of
the same size, the hash value will still change indicating inconsistency.

Network managers have found `perfection' in the use of hash function. In

order to detect any changes to the critical system files, companies like trip-

wire. com have managed to utilise the hash functions features and design

products to help network managers deal with any malicious attempts of
breaking into the network. The manager has first to identify files which

need to be changed and which remain static. Also he/she then identifies

authorised and un-authorised changes. All tagged files have an associated

hash value. If there is any changes on any of the files, the hash value will

change. Any critical changes will alert the network manager. This is quite a

useful tool, as it helps identify any critical file that has changed in case of a

network attack [95] [94].

The method of hash functions to generate keys is used here to create a plain-

text dependent key. There are a number of algorithms available for hash

function. Some of the more common function are: SHA-0, SIHA-256, SIiA-

512, MD4, MD5, HAVAL-128, and RIPEMD [63] [24]. The so called SIHA

154

family, acronym for Secure Hash Algorithm, are created by the National Se-

curity Agency (NSA). The original algorithm SHA-0 was first published in

1993. It has since developed into SHA-1 (produces a 160 bit output for mes-

sages of any length less than 264 bits), SHA-224 (produces 224-bits), SHA-256

(produces 256 bits), SHA-384 (produces 384 bits), and SHA-512 (produces

512 bits), sometimes called SHA-2. The last three variants were published by

NIST in 2001. Message Digest, MD2, MD4, and MD5, have been developed

by Ronald Rivest, co-founder of RSA Security. It takes plaintext input of

arbitrary size and outputs a 128-bit message digest.

A MATLAB m-code function key_gen_hashxx. m is used to generate key using

a hash function. The program can read the file of any format and any size.

The m-function is used to run the hash function with a few changes to the

output according to that needed by the DBX input. Once the file has been

read, the first step is to make a system call to a hash program rehash. exe.

The hash program reads the file and outputs a hash value of 256 bits. The

hash value is stored in a variable name hashv. The value is stored as follows:

File: <testfile. txt>

SHA-256 : 1511A24E FC375C25 C44F5880 79D2C0A6 5B1ACEAD 18F390AF

OAF2803D 20A1FD16

The output data is arranged in the above manner. It contains the file name,

the type of SHA used, in this case SHA-256, a colon, and finally the hash

value is arranged in groups of eight characters. In order to manipulate the

above data, we need to strip all unwanted characters; this includes the file

name, SHA type, colon, all spaces, carriage returns and line breaks. Once

this is done we end up with pure hexadecimal numbers in the following form:

155

1511A24EFC375C25C44F5880.... 7B8A928E53164B7337B5FO7AAA4243CA

Once the data is in this format, it is easier to manipulate, including the

total length for the hash value is obtained. This is necessary to ensure that

there has been no data corruption during the hashing procedure or stripping

the unwanted data. By using SHA-256 we get 64 hexadecimal digits. Each

hexadecimal digit represents 4 binary bits; we therefore have a total of 256

bits. This is a uniquely developed value only for this file. Of course since

the number of files that can be used to generate hash values can be quite

large, there is a possibility that more than one file can yield the same hash

value. This is termed as collision. Even though it is possible to obtain similar

values by hashing different type of files, the chances of this happening are

quite minimal. To date, there is no known collision for this algorithm.

5.3.3 Wavelet Decomposition Method

The next method of key generation developed for this thesis is based on

the wavelet decomposition method. Wavelets are correlation integrals that

include a scaling parameter and were originally developed for the analysis of

seismic data in the 1980s. Since then, they have found application in many

areas of data analysis and have been discussed in Chapter 4. Based on the

material presented in Chapter 4, the code for wavelet decomposition starts

by reading a file and applying a wavelet with 7 levels. The approximation

coefficients for the input signal are computed and the energy values computed

and converted into a binary stream. The result is then used as a key for the

encryption module. In particular, we apply wavelet decomposition using

Daubechies wavelets with 7 levels using the m-code

156

[ca cl] = wavedec(au2(:, 1), 7, 'db4')

that produces ca and cl which are the approximation and detailed coeffi-

cients. We then extract the detail coefficients at each of the 7 levels and

add them, thus obtaining the energy coefficients. The energy coefficients are

then added and rounded up to obtain the total energy coefficients. We again

round up to the nearest integer the percentage energy of each set. Concate-

nating, we obtain a 150-bit binary string. This is finally converted to decimal

in 50-bit segments:

keya = bin2dec(b_string(1: 50));

keyb = bin2dec(b_string(51: 100));

keyc = bin2dec(b_string(101: 150));

By implementing the following functions,

keya = mod(keya, 100000);

keyb = mod(keyb, 100000);

keyc = mod(keyc, 100000);

a final output is obtained that is a 15 digit decimal integer and is used in the

encryption module as a key.

5.3.4 Convolution Method

The fourth and final method used for key generation is by applying the

convolution integral. This is done by reading the file, and then generate a

157

seed. Once the seed is obtained, convolution is applied between the data and

the seed. The output is then taken and modulated with a 15 digit decimal

number.

5.4 Encryption Module

This module is based on encrypting data using a variable block size. All the

encryption algorithms used to date employ either stream or block ciphers.

With the stream cipher, the characters are taken one at a time and XORed

with a data stream from a random number generator. With the block cipher

a block of characters is ciphered depending on the block size.

The Dynamic Block Encryption (DBX) software developed for this thesis

takes blocks of data and then separately encrypts them - see Figure 5.1.

Unlike block cipher algorithms, where the block sizes are static, thus, giving

the cryptanalyst a point of attack, DBX does not have a fixed block size.

The block size is dynamic and can be adjusted to any length, which cannot

be pre-determined. Currently, the block size is fixed to a range between 5

and 50 bytes. The range selected is quite small compared to block ciphers

which use 128,256, or even 512 bits blocks. One reason for this is that the

algorithm uses random number generators to generate numbers used in the

XOR operation. The algorithm uses Blum Blum Shub (BBS) which is one

of the secured random number generator. After every block, the generator is

re-initialised and re-started. This enhances security since it makes it difficult

to try and attack the random sequence that is generated.

158

Total file length

Block-1 Block-2 Block-n

Figure 5.1: Illustration of dynamic blocking

159

Even though this block size modulation scheme is difficult to break, most

of the random number generators are actually pseudo random number gen-

erators, i. e. they are deterministic. Note that all such generators have a

pattern, which after a certain period is repeated - the characteristic cycle

length. Secure generators will have a lower frequency pattern, while less

secure generators have a higher frequency. [47]

The algorithm developed here works in the following way. After reading

the file to be encrypted; either a text file, an image file, an audio file, or a

movie clip, the program reads in a key as well. The key has already been

generated in the previous module, which is text (or image, sound, video clip)

dependent. The program calculates the length of the file in bytes which is

needed for processing random numbers and deriving encryption blocks. A

database of 10,000 prime numbers (which can be increased to over a million

and manipulated using disk I/O and memory) is loaded into memory; again,

loading it into memory causes the execution to be much faster. Once the

initial values have been set-up the actual program execution follows.

Once the key is obtained, it will be broken down into a number of parts, for

example, an 80 bit key can be broken down into 10 parts 8 bit each. Each

of this part will be used as a seed for random number generator each time it

is initialised. Once the key is exhausted, the seed will be obtained from the

last block size. This process will continue until the whole file is encrypted.

The first random number generator used, a Linear Congruential Generator

(LCG) of the form

xn+l = x�75 mod P

160

where P is a prime number. This generator is used to randomly select two

prime numbers from the 10,000 prime data base. We first feed in the parame-
ters in order to run the above model. Here, xo is the initial value of xn. which
is taken to be the key obtained after modulus 10,000. This number is used

as an index to the prime database, and is used to pick a prime number from

the database. For example, if the number obtained is 879, it picks a prime

number corresponding to that prime in the database which is them used to

set used P. The LCG is run twice to produce two random numbers. This

same number, 879 is also used to randomly create the first block size. Since

the maximum block size is 50, the number is modulated by 50. The two

random numbers are again used as index to the prime number database to

select two corresponding prime numbers needed to execute the Blum-Blum

Shub (BBS) random number generator, i. e.

xn+l = x2 mod n

where
n=pq

Here, p and q are the prime numbers obtained above. The initial value of

xn is the same as the value used in LGC. This value is only used once,
during initialisation; the seed changes for every new block. In essence, the

encryption method is based on the application of a LCG to `prime number

seed' the BBS.

Having obtained the block size, the program then runs BBS to generate

random numbers, depending on the size of a block, e. g. if the block size

was 29, then we generate 29 random numbers. These numbers are then

modulated by 255 to limit them to 8-bit ASCII characters. Once the first

block of numbers has been generated, the algorithm fetches the same number

161

of characters from the plaintext file. These characters are XORed with the

modulated random numbers to provide an encrypted text. As soon as the

first block is encrypted, the seed for BBS is intialised, by taking the last value

of the block length and using it to initialise the BBS generator. A different

seed is used to initialize the BBS for each block of characters to be encrypted.

This process continues over the whole length of the file. An example of the

encrypted data generated by his process is given in Figure 5.3 which shows

the 8-bit ASCII integer streams derived from that given in Figure 5.2.

5.5 Key Exchange Module

This module is based on the chirp coding method discussed in the previous

chapter. A chirp is generated and used to hide information in a data. At

the receiving end, the same chirp is re-constructed, data extraction being

undertaken by negation. This concept is used to hide the key in the text.

Depending on the text size, and the size of the key (password), a number of

chirps are generated. For example, if the text size is 100 bytes, and the key

length is 20 bytes, we use 5 chirps to cover the whole text.

Having encrypted the data, we are required to transmit it together with the

encryption key. Under normal circumstances the key will be transmitted

separately, but in this case the key is embedded within the encrypted data.

This feature is the single most important contribution to the field as reported

in this thesis. The key exchange module reads in the encrypted data and

162

140

120

100

ß 60

40

20

01 0

Figure 5.2: Plaintext 8-bit ASCII integer stream.

163

5u 1wi hu u: i 250 300 350 400 450 500
characters ->

0

i
:x U m 0

200

ýffýI l I{II} ýf l'ý
Iýý ý ýI lllýlf

150

100

0 50 100 150 200 250 300 3EG 400 450 SIC
cnxeaen -).

Figure 5.3: Encrypted data - 8-bit ASCII integer stream.

164

the key that was generated using key-generation module. This key is first

displayed as a binary stream. The objective of the exercise is to multiply

each binary bit with a chirp code. (We introduce the purpose and use of

chirp code later on in the chapter.) For illustrative purposes, consider a

key in the form of a binary stream 1101110001011010. The first step is

to transform this binary stream into a series of one's and minus one's (as

discussed in Chapter 4). Hence the above stream is transformed into 11 -1
11 -1 -1 1 -1 1-1 11 -11 -1. We then compute the chirp function. The first

function is in the form of sin(axi). By varying the values of a and the length

of the chirp, we obtain different forms of the chirp function. This feature is

quite useful since it makes it hard for the attacker to guess the parameters

used or the type of chirp implemented. The main affect of the chirp function

is to modulate the frequency. Each chirp can be of a fixed pre-determined

length. For example, Figure 5.4 shows a single positive chirp.

Clearly, if we multiply the above chirp by -1 we obtain a negative chirp as

used to encode -1.

Since chirps are periodic and of a fixed pre-determined length, we can use a

series of positive and negative chirps to represent a certain combination of
binary strings. In this case we can represent the key binary stream so that

the first few chirps of the binary stream

11 -1 11 -1 -1 1 -1 1 -1 11 -1 1 -1

will be as appears as illustrated in Figure 5.5.

165

a

a

a

u ui

0008
i.............. /\\\

...

...

/

....

.......

1

....

0
M4

0006 ------------ ---------------

...............

-001_ 19 lu 12 14 16

Figure 5.4: Example of a single positive chirp

166

00

000

oro

0.00

o. ro

. 0. a

-0 a

. oa

. co(

sr

1 tl { ý ý ý

1
II

l li ý
ý j ý

ý
. LI Iý

ý
II ý l

I
{

ý
1ý

ý

VIIý!,
I

I+

4.
.

- 10 1u ,uww ou iu

Figure 5.5: Example of a chirp stream consisting of four chirps

167

What we observe is the representation of a binary stream in terms of a `chirp

stream'. By multiplying each positive binary bit by a chirp we get a positive

chirp; each negative binary bit results in a negative chirp. If we combine

all the bits together we end up with a series of positive and negative chirps.

In a sense, we have managed to transform the binary key into a sequence

of positive and negative chirps -a series of continuous frequency modulated

waveforms.

In order to perfectly embed the key in a file, we need to calculate the chirp
length. Noting that the file length and key length have already been obtained

from the modules discussed earlier, we can calculate the chirp length as

chirp length = (file length)/(key length).

If, for example, the file length is 200 bytes and the key length is 10 bytes,

the chirp length will be 20 bytes long. This means that each chirp will have

a length of 20 bytes and will vary depending on whether it is a positive or

negative chirp.

The final output will be the same length as the file itself. The encrypted

data, which has been read earlier, is normalised to limit the range of the

data stream to 1, and thus makes it more accurate when it comes to using

the xcorr function. For data above 1, the results are unpredictable. An

example of the chirp stream in its entirety is given in Figure 5.6.

Finally, the data is added to the output of chirp functions - the chirp stream,

168

Figure 5.6: Complete chirp stream used for key exchange.

169

and can be prepared for transmission. This data contains the encrypted

data and chirp coded key and is shown in Figure 5.7. Observe, that the chirp

stream is, in effect, hidden in the ciphertext stream; the chirp stream is a

small perturbation of the ciphertext.

5.6 Key Extraction Module

This module is run by the recipient. Once recipient receives an encrypted

data with a hidden key, he/she then needs other parameters so that the key

can be extracted from the ciphertext. The parameters needed here are the

noise length and chirp length. Once obtained, the correct chirp length is then

computed.

The encrypted data is normally received electronically through email. In

this case, it is data with the hidden key. If an attacker manages to intercept

this data, he/she will only have access to the data with a partial key. W'Vith-

out knowledge of the chirp length an attacker cannot extract the key. The

recipient receives chirp parameters through specially customised hardware:

Crypstic (see Appendix B). The Crypstic is a USB flash disk with a hid-

den memory. Each user is equipped with a crypstic that is tailored to their

particular needs and applications. This type of encryption is not for general

users and is normally used by company executives. Unlike other types of

one-to-many encryption systems where everybody has access to the encryp-

tion engine, this type of encryption is accessible only to a few people in the

organisations, where this software will be used.

170

of

oý 0

l º
... _

50 , 00 150 Z1 ZC 300 350 CO CO 4n

Figure 5.7: Ciphertext stream with embedded chirp stream.

171

Once both the file length and the key length have been received, the first

step is to re-construct chirp length, which is given as

chirp length = (file length) / (key length)

Once the chirp length is obtained, the appropriate chirp can be constructed;

a chirp that is exactly the same as the chirp created initially. All bits can

be recovered with no loss of data. The data is then correlated with the

newly created chirp which allows all original chirps to be identified within

the signal. The correlation process identifies the positive and negative chirps

of the chirp stream which in turn yields a positive or negative binary bit,

respectively. The negative binary bits are converted to zero and the positive

bits convert to ones. The final output is the key to be used for decryption.

5.7 Decryption Module

This module receives a key from the previous module. The encrypted file

contains the file itself with the embedded key. When the key is extracted, we

are left with encrypted data which can be then be decrypted. The decryption

program is similar to the encryption module in functionality.

5.8 Discussion

The use of chirp coding can be applied quite generally in a way that is, in

principle, independent of the encryption engine. In this chapter, the encryp-

tion engine uses a LCG to `drive' BBS by modulating the prime numbers

172

that BBS relies upon on a dynamic block basis. Thus, the entire approach

is based on modulation, i. e. prime number modulation, dynamic block size

modulation and frequency modulation (chirp coding). However, in addition

to the modulation method considered, another approach can be developed

that is based on modulating the encryption algorithms themselves rather

than modulating the parameters that drive' them as considered in this chap-

ter. In order to design such an encryption engine, it is not possible to use

prime number based random number generators because of the inherent limi-

tation placed on the form of the generators through the use of prime numbers

and their properties. Instead, we resort to the application of deterministic

chaos [69]. Deterministic chaos has three fundamental advantages:

(i) it dispenses with prime numbers altogether and therefore eradicates any

prime number based attacks;

(ii) it provides a wealth of iteration function sequences that can be literally

`invented' for applications in cryptography;

(iii) because of (ii) above, it provides the ability to design encryption engines

that are multi-algorithmic, i. e. multi-dynamic algorithm selection.

The basis for this approach to encryption engine design is discussed in the

following chapter.

173

Chapter 6

M-Code Development and Test

Results

6.1 Introduction

In previous chapters we have considered the overall methodology developed

for this research thesis. This chapter covers in greater detail each of the

modules involved. All modules are interrelated through data I/O and are

therefore weakly coupled. The functions and modules have been prototyped

in MATLAB and the m-code is discussed in Appendix A which relates the

m-code to that given in the CD at the back of this thesis. In this chapter,

we highlight the structural operation of the system referring to the lines of

the m-code that are sourced in its entirety on the CD.

The software can be operated on two modes. In the first mode, there is

a one time agreement of parameters to be exchanged between the sender

and the recipient. These parameters are fixed and once exchange of files

174

takes place there is nothing passed except the file itself. Of course the key,

which changes for every transmission, is also embedded within the encrypted

text. This allows for greater security because the method for extracting the

key from the text is so complex. Further, in order to extract the key using

brute force attack it requires a significant amount of computer power and

time. Even though there is a one time agreement of parameters, there is an

option for sender to change these parameters. Parameters can be changed at

different intervals depending on the required security level, some usage may

require changes to take place every 90 days. For more secure environment,

parameters may be changed every day.

The encryption and decryption process takes place in the following sequence:

Sender

" Selects parameters for encryption process, or accepts current parame-

ters.

" Runs key generation module. There are four options to key generation.

" Runs encryption module.

" Runs key exchange module.

Recipient

. Runs key extraction module

. Runs decryption module

175

6.2 Fixed Length Parameters

In this chapter, we start with the details on key generation of the first mode of

operation. In both modes, as stated earlier, four approaches in key generation

are discussed. Even though the methods of key generation are different, the

output is similar. Each of the four modules has been configured to produce

80 bit key length.

6.2.1 Parameter Selection

The program comes with pre-configured parameters. These parameters are

used for padding length, and chirp initialisation.

The chirp function in matlab needs four parameters to run

y= chirp(t, j0, t1, J1)

. The value of t determines the length (period) of the chirp itself. This is

automatically calculated as the ratio of file length to the key length, will

therefore change for different file lengths. The functions of j0, t1, and fl

will be explained later in the chapter in details.

In parameter selection, the following process takes place:

1. Read in the existing parameters.

fid a fopen('parameters. txt'. 'r');

a- fread(fid, 'int64');

fclose(fid);

176

2. Prompt the user to accept or change any parameter. This goes for all

other parameters.

disp(['current f0: ' num2str(a(2))]);

answer2 = input('Would you like to change to (y/n): ', 's');

if answer2 == 'y'

new-f0 = input('Enter new f0: ', 's');

a(2) = str2num(new_f0);

end

3. Save new values to a file.

fid = fopen('parameters. txt', 'w');

fwrite(fid, a, 'int64');

6.2.2 Summation Method

This program takes the value of noise length, generates noise, and pads the

noise at the beginning of the file. It finally generates a key by summing up

all characters in a file and manipulates them.

1. Accept a file to be encrypted.

filename=input('Enter a plaintext file (any format): ', 's');

fid = fopen(filename, 'rb');

data = fread(fid);

fclose(fid);

177

2. Generate noise based on previous value of noise length. The minimum

value is 10,145 is the maximum size a random number can be gener-

ated. Both chosen arbitrarily, and after some random testing.

noise = 10+round(145*rand(1, noise_length));

3. Pad the noise value in front of the data (concatenation).

new-file = [noise, data');

4. Add up all characters in a file.

data = new-file;

key-sum = sum(data);

5. Break them up into small sizes and add up again, this is done to make
the output more random and unpredictable.

key-sum sum(data);

key_sum2 = sum(data(1: 5000));

key_sum3 = sum(data(5000: 10000));

key_sum4 = sum(data(10000: 15000));

6. Convert to string

key-sum num2str(key-sum);

key_sum2 = num2str(key_sum2);

key_sum3 = num2str(key_sum3);

key_sum4 - num2str(key_sum4);

178

7. Get the length of the key in decimal,

e. g. if key-sum = 3451, key-length =4

key-length length(key-sum);

key_length2 = length(key_sum2);

key_length3 = length(key_sum3);

key_length4 = length(key_sum4);

8. Get ASCII value for each of the decimal number.

key_ascii = abs(key_sum);

key_ascii2 = abs(key_sum2);

key_ascii3 = abs(key_sum3);

key_ascii4 = abs(key_sum4);

9. Add them up

tot_key_ascii = [key_ascii, key_ascii2, key_ascii3, key_asci14];

tot-key-length = key-length + key_length2 + key_length3 + key_length4;

10. Convert to binary.

total-key-bin = [];

for i=1: tot_key_length

key-bin = dec2bin(tot key_ascii(i));

total-key-bin - cat(2, total_key_bin, key_bin);

end

11. The final output is an 80 bit binary key.

179

6.2.3 Convolution Integral method

The key generated by this module is done by creating a small set of random
data, then convoluting it with the sum of the total data. The main difference

lies in the method used, otherwise everything else remains the same.

1. Add up all characters in a file, after padding with noise.

key-sum = sum(new_file);

2. Get the decimal length

s= length(num2str(key_sum));

3. Generate a random number based on the length.

x= rand(1, s);

x= abs(x(1));

4. Do a convolution taking the value of new file and x.

5. The rest of the program is manipulating the output value (xx) and
finally converting to 80 bit binary stream.

xx = convn(new_file, x, 'valid');

6.2.4 Wavelet Decomposition Method

In this module Daubechies wavelets are used to decompose the plaintext
into two coefficients: approximation coefficient and detailed coefficient. The

values of the detailed coefficient are extracted and used to generate the keys

(see chapter 5). The output is set to be 80 binary bit stream.

180

6.2.5 Hash Function Method

In this method, a hash algorithm is used to create keys. The algorithm used
here is the secure hash algorithm with 256 bits, SIHA-256, mentioned earlier

in this thesis (see Chapter 3). A hash function H is a transformation that

takes an input m and returns a fixed-size string, which is called the hash

value h (that is, h= II (m)).

In this module, we use a readily available hash function algorithm. It is then

incorporated into a MATLAB routine. The input parameters are formatted

in such a way as be suitable for inputting in the module. The output given

is also modified in such a way as to make it compatible with the rest of the

module.

1. Read in a file, concatenate with the noise.

2. Run hash function giving the above file. The output hash value will be

stored in variable hashv and the status in variable stat.

[stat, hashv] = system(['rehash -none -sha-256 ' filename]);

3. The output will be in this format.

File: <hashtest2. m>

SHA-256 : 1511A24E FC375C25 C44F5880 79D2C0A6 5B1ACEAD 18F390AF

OAF2803D 20A1FD16

4. Compute the actual hash length.

hash-length - length(hashv);

181

hash = hashv(26+(file_length): hash_length)';

new-hash-length = length(hash);

5. Strip the header, spaces (ASCII value 32), line feeds (ASCII value 10)

and carriage returns (ASCII value 13).

tot-hash-value = Q;

for i=l: new_hash_length

if (hash(i) -= 32 && hash(i) -= 10 && hash(i) -- 13)

hash value = hash(i);

tot-hash-value = [tot hash_value; hash_value];

end

end

6. Make sure the length is correct.

tot-hash-value = tot hash_value(1: 64);

7. Convert to binary.

hash-bin = dec2bin(hex2dec(tot_hash_value(1: 64)));

8. Set the output to 80 bits

watermark-binary = hash_bin(1: 80);

182

6.3 Encryption Module

The background to the design of this module has been explained in detail in

Chapter 5. Here, we present the m-code for the encryption module. Since this

is a symmetric encryption algorithm, the encryption and decryption modules

are both the same.

By this stage, the file will have been read in. The key already generated and

ready for encrypting the file.

1. Take the key length, which is 80 and divide it into equal number of

parts. This can be achieved by using modulus arithmetic. In this case,
the seed length is 13, any suitable number can be used.

seed_length = 13;

rem = mod(length(watermark_binary), seed_length);

2. Discard the remainder, obtain exact multiples of the key.

for bin-key-counter = 1: seed_length: length(watermark_binary)

bin_key_counter;

counter = counter + 1;

yy = watermark_binary(bin_key_counter: bin_key_counter+seed_length-1);

y= bin2dec(watermark_binary(bin_key_counter: bin_key_counter+...

seed-length-1))

y_tot = [y_tot; y];

end

3. Get the first seed to be used for Linear Congruential Generator

183

seed = y_tot(1);

4. Load the prime number database. The database currently hold the

first 10,000 prime numbers. These can be increased and partly read as

I/O. Once prime numbers are loaded, let the variable seed be an index

to the first prime. For example, if seed was 234, it should pick 1481

from the prime number database which is 234th prime.

prms = load('primes3. m');

prm = prms(seed);

5. Set the initial value to be used in Linear Congruential Generator

xn = seed;

6. Generate two random numbers using the linear congruential generator.

fors=1: 2

xn =1+ mod(xn*7"5, prm);

xn =1+ mod(xn, 9999);

tot_xn=Etot_xn; xn];

count = count + 1;

end

7. Compute two blum primes. By using blum primes, the strength of the

random numbers sequence produced is enhanced. Blum primes, p and

q are chosen so that p mod 4=3, and q mod 4=3. A prime number

is read and tested; if it is found to be a blum prime, it is stored in a

variable, if not, the next number is read. The process continues until

two blum primes are obtained.

184

tot_blum = 0;

blum_count = 0;

for i=1: length(prms)

a= tot_xn(1);

if i == 1

prml = prms(a);

else

if (a + 1) > length(prms) - 1;

prml = prms(round(length(prms)/2));

else

prml = prms(a+i);

end

end

if mod(prml, 4) == 3

blum_prime = prml;

blum_count = blum_count + 1;

tot_blum = [tot_blum; blum_prime];

if blum_count == 2

break

end

end

if blum_count == 2

break

end

end

tot_blum;

185

p= tot_blum(1);

q= tot_blum(2);

8. Compute block length. The size has been set from 5 to 50 characters.

block-length =5+ mod(xnb, 46);

9. Counter stores the number of values that the key has been split into.

For example, if the key length is 80 bits, and the key has been split

into 8 different values of 10 bits each, the counter has a value of 8. The

first value is allocated to the a variable xnb and so on.

if main_i <= counter

xnb = y_tot(main_i);

10. Move the value to be used by Blum-Blum Shub

xnb2 = xnb;

11. Run BBS to generate random numbers. The set of random numbers

generated is the same as the block length. Since the numbers can be

huge, they are normalised to 8-bit ASCII so that they do not exceed
255.

for i=1: block_length

xnb2 = mod(xnb2"2, p*q);

xornum = xnb2;

xornum =6+ mod(xnb2,250);

tot_xornum = (tot_xornum; xornum];

end

186

12. Continue reading the data as long as the remaining text is larger than

the assigned block length.

flag = 1;

if text-length > block-length

block-data = data(offset: offset+block_length-1);

offset = offset + block_length;

13. Once the length of the remaining text becomes less than the assigned

block length, a new block length is created that is the same as the

remaining text length. The flag is set to zero.

else

block-length = text-length;

new-block-length = block-length;

block-data = data(offset: original_text_length);

new_tot_xornum = (tot_xornum(1: length(block_data)));

tot_xornum = new-tot xornum;

flag = 0;

end

14. Compare the text length to the block length and if they are the same,

end file.

new-text-length = text-length - block-length;

if new-text-length -- 0

new-text-length - text-length;

end

187

15. Do a bit exclusive-or for each block between the random numbers

(tot_xornum) and plaintext (block-data). Check the flag cverytimc;

once it is set to zero, the break statement `breaks' out of the loop. The

resultant output is an encrypted data.

crypted_text = bitxor(tot_xornum, block-data);

total_crypted_text = [total_crypted_text; crypted_text];

if flag==0

break

end

6.4 Key Exchange Module

A major challenge for cryptographers is key exchange. In this research a

principal concentration has been the mechanism for key exchange through

application of chirp coding as discussed in Chapter 4. Once data has been

encrypted, the key is sent to the recipient embedded in the encrypted text

itself. The recipient, upon receiving the ciphertext, extracts the key from

the data by correlating it with a replica of the chirp function. The m-code

for embedding the key this way is outlined below.

The module starts by reading the input file and undertaking the necessary

initialisations. The principal components of the m-code are then as follows:

1. The variables file-length and length_watermark (key length) are com-

puted in previous modules. Isere, they are used to compute chirp length.

chirp-length = floor(file_length/length_watermark)

188

2. In order to multiply each binary bit by a chirp, we cannot introduce

zeros. Hence this script is designed to transpose all zeros to -1.

for j=1: length_watermark

if str2num(watermark binary(j)) _= 0

x(j)

else

x(j) = 1;

end;

end;

3. Initialise the chirp function. Here, we use a log chirp instead of a linear

chirp in order to reduce aliasing, i. e. under sampling.

t=0: 1/chirp_length: l;

y=chirp(t, 0,1,40, 'log');

4. Multiply each binary bit by a chirp, so +1 will yield a positive chirp

and -1 will yield a negative chirp as discussed in Chapter 4.

znew = 0;

for j=1: length_watermark

z=x(j)*y;

znew=cat(2, znew, z);

end

5. Divide the data by 255 so that the maximum value of 1; equivalent to

applying uniform normalisation.

data - data. /255;

189

6. Adds the two signals together; new-data is the same size as the original

signal. This variable is written into the output file to be used for trans-

mission. In effect, the recipient receives and encrypted data together

with a series of positive and negative chirps.

new-data = (znew'+data);

6.4.1 Key Extraction Module

In this module, the embedded key is extracted and then passed on to the

decryption module. In order to extract the key, the user must have exact

parameters used by the recipient, to reconstruct the chirp. Once the chirp is

reconstructed, it is then correlated with the encrypted text for key extraction.

1. Open a file and read in parameters needed to construct a chirp.

fid = fopen('parameters. txt', 'r');

a= fread(fid, 'int64');

fclose(fid);

2. Assign read in values to the chirp function

fO = a(2) ;

tl = a(3) ;

fI= a(4) ;

3. Compute chirp-length.

chirp-length = floor(file_length/length_watermark);

190

4. Compute t.

t=0: 1/chirp_length: l;

5. Initialise chirp function.

y=chirp(t, fO, tl, fl, 'log');

6. Correlate to recover the key from ciphertext. The key is recovered
in terms of a set of positive and negative integers. The interest does

not lie in the integers themselves, but in their sign; positive values are

denoted by 1 and negative numbers by -1.

k=1;

for i=l: length_watermark

yzcorr=xcorr(new_data(k: k+chirp_length-1), y, 0)

k=k+chirp_length;

r(i)=sign(yzcorr);

end

7. Recover bit stream. Assign 1 to a positive number and -1 to a negative

number.

for i=l: length_watermark

if r(i)==-l

recov(i)=0;

else

recov(i)=1;

end

end

191

8. Compute znew. znew is reconstructed by multiplying the chirp signal

with each value of the key, in this case, with each +1 and -1 stored in

r, which was obtained from the correlation of the two signals.

znew = 0;

for j=1: length_watermark

z=r(j)*y;

znew=cat(2, znew, z);

end;

znew = znew(2: length(znew));

9. Separate the data, leaving encrypted data without key or chirp signal.

data = new-data - znew

10. Multiply by 255 to bring back the original value, for decryption by the

next module.

data = round(data. *255);

6.4.2 Decryption Module

This module is the reverse of the encryption module, since we are working

with a symmetric cipher. The only difference is that after decryption, noise

is subtracted from the file and the result is the actual decrypted file.

6.4.3 Input Parameters

The following tables show parameters needed for input to the program. These

parameters have been thoroughly tested. When the program is first launched,

192

the user is given an option to change or keep the existing parameters.

f0 t1 fl f0 t1 fl f0 ti fl

0 1 40 1 104 65 4 1018 65

0 1 50 1 105 65 4 1018 70

0 1 60 1 106 65 4 1018 80

0 1 65 1 107 65 4 1018 100

0 2 65 1 108 65 4 1018 1,000

0 5 65 1 109 65 4 1018 104

0 10 65 1 1012 65 4 1018 106

0 20 65 1 1018 65 4 1018 109

0 50 65 2 1018 65 4 1018 1012

0 100 65 3 1018 65 4 1018 1018

0 1,000 65

Table 6.1: Chirp parameters tested for successful key exchange.

6.5 Changing Parameters Mode

As we have mentioned at the beginning of this chapter, DBX can be run in

two different modes, the first mode is a one time parameter exchange mode

where once the parameters are set, there is no need to change them. The

same set of parameters are used by sender and recipient. The key, of course

is different for every message transmitted.

All functionality for both modes is the same. However, due to the way they

are used, there are slight differences in some modules which we will describe

below. To start with, program runs in the following sequence.

193

Sender

9 Runs key generation module. There are four options to key generation.

" Runs encryption module.

" Runs key exchange module.

" Runs save parameters module.

Recipient

. Runs load parameters module.

. Runs key extraction module.

" Runs decryption module.

6.6 Key Generation Module

In key generation modules, the padding size varies. So the first thing is

to generate the actual padding size, 10,000 bytes, and then generate 10,000

random numbers. For each run, the size will be randomly generated and
hence different.

Generate random numbers, minimum 99983 characters. This number has

been arbitrarily chosen. The aim is to start with a padding size of around

100,000 characters. Since 100,000 is a good number, it is always better to

avoid. We have therefore chosen 99983 + 10000 which gives us 109983 char-

acters. Unlike the previous mode, in this mode user cannot change these

values, hence they are randomly selected.

194

y=99983+round(10000*rand);

noise = 10+round(145*rand(1, y));

This is the same for all the four modules used in key generation. The rest of

the program is more or less the similar.

6.6.1 Encryption Module

There are no changes on this modules in both the modes.

6.6.2 Inserting Watermark

The main difference here is that the chirp parameters are fixed. They can

only be changed if the need for enhancing security of the software arises,

which is quite rare.

Initialise chirp.

t=0: 1/chirp_length: l;

y= chirp(t, 0,1,40, 'log');

6.6.3 Parameters

Chirp length and padding length are saved by the sender and loaded by the

recipient on the other end.

195

6.6.4 Key Extraction Module

In this module, the chirp parameters remain the same except for chirp length.

Therefore no major changes.

6.6.5 Decryption Module

The main difference in the decryption module is that the noise subtracted

from the total file received is dynamic, so the value will change depending

on the random number generated to create padding noise in the first place.

6.7 Analysis

The following tables show the time/speed relationship for a range of test

cases. In both cases experimental tests were carried out. The data was

obtained after running tests on a 2Gh Pentium 4 Laptop with 1 GB RAM.

Table 6.4 shows a test on key generation, key embedding and key extraction.

Table 6.5 shows a test for encryption, the decrypt is bit for bit perfect.

The average speed for the 18 items in table 6.4 is:

3050 = 18 = 169 kbytes/s

169 x8= 1352 kbits/s

= 1.35 mb/s

196

File type Size (bytes) CPU Time kbytes/s

Text 31,007 0.32 s 97

Text 111,659 0.60 s 186

Text 209,608 1.02 s 205

Jpeg 71,189 0.46 s 155

Jpeg 121,943 0.66 s 185

Jpeg 435,765 2.04 s 214

MS Word 25,600 0.33 s 78

MS Word 35,328 0.34 s 104

MS Word 321,536 1.07 s 301

Pdf 95,018 0.50 s 190

Pdf 1,443,863 6.40 s 226

Pdf 4,353,974 32.74 s 133

Exe 69,120 0.49s 141

Exe 2,608,128 16.03 163

Exe 8,466,464 61.72 s 137

Avi 1,598,284 6.81 s 235

Avi 3,633,932 31.36 s 116

Avi 5,479,452 29.84 s 184

Table 6.2: Test for generating, embedding and extracting the key.

197

The encryption module includes added noise. For example if the file size is

60k and the noise is 100 k, then the new size will be 160k.

File type Size (bytes) CPU Time kbytes/s

Text 111,659 79.73 s 1.40

Text 209,608 90.36 s 2.32

Jpeg 71,189 30.20 s 2.36

Jpeg 121,943 80.23 s 1.52

Jpeg 435,765 248.36 s 1.75

MS Word 25,600 60.47 s 0.42

MS Word 35,328 60.08 s 0.59

MS Word 321,536 177.92 s 1.81
Pdf 95,018 71.73 s 1.32

Pdf 1,443,863 28.28 s 51.06
Exe 69,120 64.39s 1.07

Exe 2,608,128 63.13s 41.31

Avi 1,598,284 25-83s 61.88

Avi 3,633,932 31.36s 115.88

Avi 5,479,452 29.84s 183.63

Table 6.3: Test for encryption/decryption.

Average speed for encryption/decryption:

468.32 =15 = 31 kbytes/s

31 x8= 248 kbits/s

198

6.8 Running DBX with Crypstic

The use of deterministic chaos for designing multi-algorithmic encryption

engines has been discussed in Chapter 3. For the DBX system developed

here, it can be used as a parameter file exchange system based on application

of a user specific USB memory stick - Crypstic. By utilising the Crypstic,

DBX functionality can also work with any type of algorithm, hence the main

theme is the key exchange mechanism.

6.9 Security of DBX

DBX can be considered to be relatively secure and, coupled with the appli-

cation of the Crypstic for parameter exchange, highly secure. Many factors

a play role in enhancing DBX security.

Attack on DBX - One way DBX can be attacked is by brute force. The

system is currently configured for 140 bits key space, but it can be increased.

Conventional attacks strategies which exploit the fact that the algorithm is

publish can not be applied in the same procedural way. This is because the

approach considered in this thesis exploits the principle of multi-dynamicism

where the encryption process is designed with a view to the constantly mod-

ifying the algorithms/parameters/keys etc.

Key Exchange. The method used for key exchange significantly enhances

the security of the system. The key is passed to the recipient embedded in

the encrypted data itself. It is very difficult to detect that two signals have

been superimposed during the transmission. Even if the attacker is equipped

with knowledge of the existence of the key within the signal, extraction of

199

the key is relatively complex and will not be easily accomplished.

Chirp Function. Once the key is generated and converted to binary, a

chirp is initialised. Each binary bit is multiplied by a chirp. A1 will produce

a positive chirp and a0 will produce negative chirps These chirps are then

concatinated together to produce a signal the same length as the file itself.

The chirp function in matlab generates a swept-frequency cosine (chirp) sig-

nal. The chirp block outputs a swept-frequency cosine (chirp) signal with

unity amplitude and continuous phase. To specify the desired output chirp

signal, its instantaneous frequency function must be defined, also known as

the output frequency sweep. The frequency sweep can be linear, quadratic,

or logarithmic, and repeats once every sweep time by default.

By using chirp functions, we can obtain a variety of chirps which can be

implemented differently. The main use of a chirp in DBX is to hide the key.

Thus, given a chirp function with certain parameters, the recipient needs to

construct the same parameters in order for him/her to recover the key. The

sender has a wide range of values to use for parameters which the recipient

has to have available.

The MATLAB chirp function used here has the general form

y= chirp(t, fo, tl, fl)

and generates samples of a linear swept-frequency cosine signal at the time

instances defined in array t where t is time instance (secs), jo is the instanta-

neous frequency at time t=0 (Hz) and fi is the instantaneous frequency at

time tl (Hz). The chirp function can be set to run in three different modes

- linear, quadratic and logarithmic as follows:

200

Linear: fi(t) = fo +Q (instantaneous frequency sweep) where 3= (f -1-
fo)/tl which ensures that the desired frequency breakpoint fl at time tl is

maintained.

Quadratic: f1(t) = fo +, 3t2 where ,ß=
(fl - fo)/ti. If fo > fl, the output

waveform is a downsweep, with a default shape that is convex. If fo < fl,

the output waveform is an upsweep, with a default shape that is concave.

Logarithmic: fi(t) = fo + 1001 where ,ß=
(f) °

In the DBX system developed for this thesis, the chirp is set to run in log-

arithmic mode using four parameters where each parameter can takes on a

large value. It is therefore difficult to re-create the exact chirp. This is mainly

because the chirp parameters vary over a wide range, giving, in effect, a large

key space. It is interesting to note, that this result has been developed in

nature. For example, dolphins send a series of chirps, or clicks through water
[62]. When the sound waves interact with an object, they bounce back and

the echoed sound enables the dolphin to have a mental picture of an object

by comparing the echo with the sound it already knows. As with the human

visual system, there are a huge range of that the brain of a dolphin can gener-

ate. The template space in this application being equivalent to the key space

available in the current application! Some scientists believe that dolphins

may actually see acoustic images with their brains. This method is termed

as echolocation. It has recently been discovered that the chirp has many

practical uses in technology. For example, in a paper at the (2004) Next

Generation Communications Network Conference, Mohsen Kavehrad stated

that [49] `... multirate laser pulses with wave forms shaped like dolphin-chirp

sound pulses offer a new way of helping free-space optical signals penetrate

201

clouds, fog, and other adverse weather conditions that sometimes hamper the

success of this method. ' One of the principal contributions of this research

thesis is that chirps can be used effectively to solve the key exchange problem

and authentication issues in cryptography.

Dynamic Blocks. Unlike other block ciphers, where the block length is

fixed, DBX employs dynamic blocks, where the blocks to be encrypted change

at every cycle. This makes it harder to attack because if the block length

is known, an attacker will typically work on a particular block length and if

he/she manages a successful attack, he/she will have, by default, recognised

the pattern. There is no pattern in DBX.

Dynamic Key. The encryption key always changes. Even if the same

plaintext is used, the key will be different. Thus, a brute force attack will

only help in decrypting one message. Further, a priori knowledge of the key

will not help because of its dynamic nature. A number of cryptanalysis

methods dealing with plaintext attack will fail for the same reason.

Huge Keyspace. The security of DBX does not only lie in the key. It

is a combination of other elements from which the key is composed, thus

creating a huge keyspace. The key consists of noise length, key space and

total chirp length and it is the combination of these three components that

provides the huge key space, making the task of breaking it using brute force

effectively impossible. The current keyspace has been set with the following

parameters.

Noise length varies from 100,000 to 150,000 bytes, so the difference is 50,000

bytes. The four chirp parameters mentioned in the previous section, t, f0,

ti, and fl take on different range of values.

202

noise length: this is varied between 100 KB and 150 KB, yielding a difference

of 50 KB.

t: this is calculated as the ratio of total file length to key length. By taking

the commonly used file lengths which vary between 100 KB and 10 MB (after

padding with a 100 KB random noise), the difference becomes: 99 * 104.

f0: the value of fO goes to a maximum of 4.

t1: t1 has been tested to a maximum of 1018.

fl: this value also has been tested to a maximum of 1018.

Finally, as mentioned above, there are three methods the chirp function can

be used.

Maximum key space obtained from the above is:

(50*103)*(4)*1018*1018*(3)=6*1041

2140 = 1.4 * 1042

Therefore the key space can be considered as 140 bit key space. Of course,

this is by no means the maximum keyspace for DBX, the above values may

be increased by changing the current settings of the program thus increasing

the key space, taking into account the matlab and memory space constraints.

Blum-Blum Shub. BBS is a well known cryptographically secure random

number generator. To make it more secure, the method used here calls for

reinitialising the generator after every few rounds, obtaining a new seed each

time. This makes it more difficult, to try and predict the already complex

pattern of a BBS output stream.

203

Chapter 7

Conclusion and Future

Directions

The principal focus of this research thesis has been three fold:

" To investigate the use of prime number modulation for enhancing the

effectiveness of conventional encryption engines.

9 To design a key exchange method by covertly watermarking the cipher

text with the key that has been used to generate it.

. To combine the current key exchange mechanism with encryption using

deterministic chaos.

DBX can be applied to work with deterministic chaos using a multi-algorithmic

approach (Chapter 3) coupled with the key exchange method discussed in

Chapter 5. When coupled together, it forms the basis for a new product called

CrysticTM which has been developed through a joint venture between Lough-

borough University (Department of Computer Science and the Department

204

of Electronic and Electrical Engineering) and Lexicon Data Limited and is

marketed by Cryptic Limited. Details of this product including a technical

report, business plan, system application and documentation are given in

Appendix B.

7.1 Authentication

One of the principal themes of current research into encryption involves the

facility to authenticate a decrypted message. The ability for a receiver to

decrypt a message can provide a false sense of confidence that the plain text

obtained is authentic. This provides any potential attacker with the means

of disseminating miss-information. The authentication method developed for

this thesis is based on the use of chirp coding bit streams. The bit streams

are generated from the plain text by application of a transformation. In this

thesis, the transformations research have been based on: (i) a simple addi-

tive transform; (ii) convolution of the input with a random noise field; (iii)

application of a hash function transformation; (iv) application of a wavelet

transform. The fourth method is very general as, in addition to using stan-

dard wavelets, for this application, any wavelet function can be constructed.

The reason for this is that in conventional wavelet based signal analysis,

wavelets are designed to be strictly orthogonal in order for data, having been

processed in `wavelet space', to be inverted back into real space. However,

in the present application this is not only unnecessary but, is strictly, not

desired as the whole point of encryption processes is to ensure that the trans-

formations used are non-invertible, i. e. based on the employment of one-way

functions.

205

The watermarking method developed for this thesis is unique in that it pro-

vides a method for self-authentication. All current watermarking techniques

require access to the original (non-watermarked) data in order to clarify the

existence (or otherwise) of the watermark and the information it conveys.

The use of chirp coding eliminates the need to have access to the original file

and in so doing, eradicates the requirement of generating and managing a

data base for verification and associated protocols. No other function except

for a chirp provides the facility for self-authentication. The reason for this

lies in the properties of the correlation of a chirp with itself, namely, that,

for chirping parameter a,

00

f exp(-iat2) exp[ia(t + T)Z]dt = S(T)

00

This property is the reason for chirp coding being used in a range of man

made (e. g. real and synthetic aperture radar, telecommunications, synthetic

aperture radio wave imaging etc.) and natural communications system (e. g.

active and passive communications by whales, dolphins and bats). This thesis

provides the first example of its use for watermarking which can, in principle,

be applied to any data including, audio and video.

7.2 Key Exchange

The specific use of chirp coding for watermarking digital signals depends

upon the application. For audio and video signals the perturbation of the

input data by the watermark is so insignificant that any distortion caused

by its presence is not noticeable. Hence the watermark can remain covertly

embedded in the data providing a digital seal or signature that can be read as

206

appropriate. However, for data that must remain bit perfect, application of a

chirp coded watermark requires that the watermark is deleted from the data

once it has been recovered. This is the basis for the key exchange method

proposed in this thesis. In this case, a plain text dependent key (bit stream)

is used to generate the ciphertext via application of a given encryption en-

gine. The same bit stream is then transformed to the corresponding chirp

stream which is then used to watermark the cipher stream. Upon reception,

the bit stream is recovered and used to remove the watermark by regenerat-

ing the chirp stream. The same bit stream is then used to decrypt the cipher

stream. Since the key is plaintext dependent, the process represents a prac-

tical solution to the problem of implementing a one-time pad, even though

what is represented here is not a one-time pad, but this is the direction. Note

that in order to `cover' for the case when the same plaintext is used twice,

the data is automatically padded with random bits to ensure that a different

key is generated each time the system is executed.

7.3 Encryption using Deterministic Chaos

The large majority of conventional encryption engines are partially or entirely

dependent on the use of prime numbers. Symmetric encryption algorithms

depend on prime numbers that are used as input parameters together with

a (non-prime) key to initiate the algorithm; typically a large integer whose

size defines the length of the key (e. g. 64-bit and 128-bit keys). Key ex-

change algorithms are then required to exchange the key between sender and

recipient prior to execution of the encryption engine. However, asymmetric

encryption systems, which are based almost exclusively in the RSA algo-

rithm, depend entirely on prime numbers (see section 3.7). Attempting to

207

break the system entails factoring huge numbers, even though this is theoret-

ically possible, there is always a time constraint (a number of years in some

cases). A shortcut method to bypass factoring may be out there, which will

definitely change the whole outlook on prime numbers in cryptography.

A well known and computationally efficient method of testing for a prime is

the Miller test, i. e.

If the extended Reimann hypothesis is true,

then if p is a SPRP (Strong Probable Prime Base)

for all integers n with 1<n< 2(logp)2, then p is prime.

Miller test has been known for some time and employed in a number of RSA

attacks. Until relatively recently, Miller's test has been used in the knowl-

edge that is it, in effect, a `formula without a proof' and therefore doubt has

remained as to its routine application. However, in October 2004, a proof

of the extended Reimann hypothesis was published by Louis de Branges de

Bourcia [27], a prominent Professor of Mathematics at Purdue University

who has made finding the proof of the Reimann hypothesis his life's work.

This has very serious potential implications for conventional RSA encryp-

tion and prime number based encryption systems in general. If this proof is

confirmed and turns out to be correct, it will provide a short-cut to identi-

fying primes without large lookup tables and thus significantly increase the

vulnerability of prime number based encryption systems and the algorithms

upon which they are based.

Although encryption using deterministic chaos has been investigated for some

years, no commercial system has to date been implemented other than that

being marketed by Crypstic Limited (see Appendix B). The reason for this

208

is that conventional prime number based pseudo random number generators

have been considered secure enough for most applications and that a serious

threat must exist in order to change the procedures and protocol associated

with an entire secure communications network. Proof of the extended Rie-

mann hypothesis means that Miller's test for evaluating whether a number is

prime or otherwise can now be used routinely and thus, seriously undermines

the basis for the majority of encryptions systems in use today.

Chaos based encryption does not make use of primes which is a principal

characteristics. Moreover, unlike conventional pseudo random number gener-

ators, pseudo chaotic number generators have an unlimited number of forms,

i. e. there are an unlimited number of iteration function sequences that can be

designed (see section 3.17). Although the iterated function sequences must

be tailored to provide a statistically uniform output, the fact that there are

so many that can be used, means that a specific encryption engine can be

designed that is unique to a given sender/receiver. The current platform

for implementing this approach is based on utilizing a pair of USB memory

sticks as discussed in Appendix B.

7.4 Discussion

There are three golden rules of Cryptology:

" no cryptographic system is invulnerable to attack;

9 no cryptographic system is invulnerable to attack;

" no cryptographic system is invulnerable to attack.

209

Cryptology is a field of study that, like any other, has a legacy of attempts to

derive the ultimate (theoretical) solution which has failed in practice. One

of the principal mistakes that is made is to believe that a single solution is

possible, e. g. application of a specific algorithm, which can be applied over

a relative long period of time without any significant changes. This is the

principal of mono-staticism and is one of the main reasons for the continued

failure of information security. The failure of the Enigma cipher systems

used in Germany from the late 1930s to the end of the second world war

remains one of the best examples of mono-staticism. Nearly 10,000 of these

encryption machines were manufactured between 1938 and 1945, all with the

same specification and operating procedures (although a fourth rotor was

introduced for use by the U-boat fleet in 1943, which caused a `black' period

for the allied side until a four rotor machine was captured together with the

code books without the knowledge of U-boat high command!).

A new underlying philosophy is now beginning to emerge that is based on

the principal of developing multiple solutions which constantly changed -
the principal of multi-dynamicism. This approach involves developing algo-

rithms, systems and applications together with the procedures and protocol

used in practice which change continuously. This includes the principal of

dynamic algorithm management in which encryption engines are constructed

based on multi-algorithmicity or `paracryption' like the one presented in Sec-

tion 3.17. This thesis has also investigated a method of key exchange that

is also dynamic and dependent on the plain text together with a transfor-

mation that can in principle, be chosen from an unlimited list, especially

through application of (non-orthogonal) wavelet functions. Also, the use of

self-authentication via chirp coding, negates the need for a database (dy-

namic or otherwise). In this sense, the entire approach for this thesis is

210

based on a multi-dynamic paradigm.

The watermarking method developed for this thesis has a range of applica-

tions in addition to key exchange for which it was originally conceived. It

should be appreciated that watermarking information has some advantages

over encrypting it. First and foremost is the fact that any encrypted data

will immediately alert an interceptor to the fact that there may be valuable

information worth intercepted and attacking. On the other hand, a covert

watermark is interceptor illusive because the data appears to be of an original

plain text form. This issue points to an approach in which the watermark

is the cipher text which is then transmitted within the body of data that is

unaffected by the presence of the watermark, e. g. audiovisual data (e. g. wav

and/or avi files).

7.5 Future Directions

There are a number of directions that are possible to undertake based on

the work herein. However, many of these will inevitably be `driven' by the

demands and constraints associated with a given system and its specific ap-

plication. One such applications specific product is Crypstic - see Appendix

B. In this case, a unique multi-algorithmic encryption engine (unique to two

sticks and only two sticks) is provided in a private area of the USB memory

stick that is password protected.

211

7.5.1 Covert Access

The fact that access to the Crypstic system is based on a pop up GUI which

requires a user defined password means that the system (not the algorithm)

potentially vulnerable to (password) attack. In order to overcome this prob-

lem it should be possible to design an approach in which the hidden area

remains entirely covert. Access to this area of memory can then be achieved

by modification of one of a number of different files stored in the public

area. Modification can, for example, be undertaken by renaming a specific

file (from a field of size N to a field of size M where M< N) with use of just

the mouse and the delete key in order to overcome any potential attack based

on the use of key loggers (which to date, do not record mouse movements).

7.5.2 Copy Protection

Assuming that an attack has been successful in terms of obtaining access to

the encryption engine on a Crypstic, the executable file can then be copied
from the Crypstic to another platform. In order to prevent use of the engine

on another platform, a small component of the process can be reserved for

the CPU (with a unique serial number) on the USB memory stick itself.

This prevents execution of the engine on any other platform should any

unauthorised user gain access to the executable file.

7.5.3 Dynamic Key Exchange

The current Crypstic is based on a set of keys that are `hardwired' into

the final encryption engine, that, along with the algorithms themselves, are

212

unique to one pair of sticks and only one pair. The overall key becomes the

physical USB memory stick itself and is typically held by the user on a key

ring along with the rest of his/her keys. If the USB memory stick is lost

by either the sender or receiver (or both), then both sender and receiver are

required to obtain a new set of sticks. The protocol is, in effect, the same as

if a user loses a conventional key for which there is no replica. However, in

the case of Crypstic, both a new lock and and a new key must be acquired.

Here, the key is a based on issuing a new Crystic and the lock is analogous to

the generation of a new and unique encryption engine that, in turn, is based

on a unique sequence of pseudo chaotic number generators.

In this thesis, the key exchange method has been researched using conven-

tional ciphers (e. g. the Blum Blum Shub algorithm) modified to incorpo-

rate multi-dynamicism using prime number modulation. The key exchange

method is independent of the encryption engine that is used and can, thus,

be used effective with any symmetric cipher including those based on the

application of single- and/or multi-algorithmic ciphers that use deterministic

chaos.

7.5.4 Plain Text Image Based Encryption

Watermarking is usually considered to be a method in which the watermark

is embedded into a host image in an unobtrusive way. Another approach

is to consider the host image to be a data field that, when processed with

another data field, generates new information.

Consider two images il and i2. Suppose we construct the following function

n
P2

\) I1

11

12
12/

213

where Il = FZ[il], I2 = F2[i2] and P2 denotes the two-dimensional Fourier

transform operator. If we now correlate n with il, then from the correlation

theorem

. I2I2=i2 i1
j1

®Gne=Ill
i

In other words, we can recover i2 from il with a knowledge of n. Because

this process is based on convolution and correlation alone, it is compatible

and robust to printing and scanning, i. e. incoherent optical imaging [56]. An

example of this is given in Figure 8.1. In this scheme, the noise field n is the

private key required to reconstruct the watermark and the host image can

be considered to be a public key.

Now, one of the principal components associated with the development of

methods and algorithms to `break' cipher text is the analysis of the output

generated by an attempted decrypt and its evaluation in terms of an expected

type. The output type is normally assumed to be plain text, i. e. the output

is assumed to be in the form of characters, words and phrases associated with

a natural language such as English or German, for example. If a plain text

document is converted into an image file then the method described above

can be used to diffuse the plain text image i2 using any other image il to

produce the field n. If both il and n are then encrypted, any attack on these

data will not be able to make use of an `analysis cycle' which is based on the

assumption that the decrypted output is plain text. This approach provides

the user with a relatively simple method of `confusing' the cryptanalyst and

invalidates attack strategies that have been designed and developed on the

assumption that the encrypted data have been derived from plain text alone.

214

4,
fi'ý fj

;}

f ..

'r sr. tiYY: _

Figure 7.1: Exaiiiple of a covert image watermarking scheme. il (top-left)

is convolved (witli pre-processing) with i2 (tole-middle) to Prod""' the "Oise

field (top-right). i2 is then printed and scanned at 300 dpi and then re-

sampled lack to its original size (bottom-left). Correlating this image with

the noise field generates the reconstruction (hottoni-centre). '1'1ie recoIl-

struction cleIpends on just the host, image and noise field. If the noise field

and/or the host irrvage are different or corrupted. then a rec)I ist ruction is not,

achieved (bot torn-right).

215

Appendix A

MATLAB Prototyping

This appendix provides details of the MATLAB functions developed for this

thesis. MathWorks Inc MATLAB is an ideal platform for numerical work

and is routinely used for rapid prototyping, i. e. the rapid development of

MATLAB code for testing new algorithms. This includes use of the large

library of based intrinsic functions offered by MATLAB and the increasingly

wide range of specialist toolboxes offered by the system.

The MATLAB functions (full MATLAB code) are given in the accompanying

CD and the back of this thesis.

A. 1 Fixed Version Mode

This version is called a fixed version mode. The parameters to be transmitted

are one time. The chirp length is recalculated by the recipient modules

according to the file length and the key length. The key length is fixed at

80-bits. The length of the noise is also fixed at 99983 bytes. The noise length

216

and chirp parameters t, f0, and fl can be varied by the sender at any time.

The sender's program is launched by running 'dbxfix_encrypt. m'. The re-

ceiver mode is'dbxfix_decrypt. m'.

The following programs are then executed sequentially or depending on the

selection:

dbxfix_encrypt. m

Main program which calls all other functions necessary for encryption.

dbxfix_encrypt. m

Main program used by the recipient which calls all functions needed for

decryption.

readparams_ver5. m

This program prompts the sender to either use existing parameters or enter

new ones. Four parameters can be changed. Padding length, plus three chirp

parameters: f0, tl, and fl. Details of these parameters can be found in the

documentation. Once the user enters new parameters, the program displays

a list of the old and new parameters.

key_gen_fixedvera. m

Reads in a file, introduces noise, and generates a key. The noise is used as

a file header, it is initially fixed at 99983 bytes. This value may be changed

by the user before key generation starts. The key is generated by adding up

all characters in a file to be encrypted after padding has taken place. The

padded file is randomly created.

217

key_gen_conv-fixedver4. m

This module uses convolution integral to generate a key. It works on the same

principle as the previous module, the main difference is that after generating

noise and padding to a file, another set of random noise is generated and

convoluted to the new file. Part of the resultant output is taken as the key.

key_gen_fixedwavelet6. m

This module uses Deaubechies wavelet to create a key. Takes in a file, gen-

erates noise and pads it in front of the file. Wavelet decomposition with

Deaubechies wavelets is then applied. Approximation and detailed coeffi-

cients are then extracted. Various methods are used to generate an output

binary stream used as a key.

key_gen-hash-ixedvera. m

This module uses SHA-256 to generate a key. It reads in a file, creates

random noise and pads to the original file. It then gives a hash value of the

total file.

encrypt_vera. m

This file will take any type of file, and encrypt it using the key generated
from the previous module. It takes the binary key , divides into a number

of parts, and uses each part as a seed for BBS generator each time it is

initialised. The block length changes for each new cycle, it is currently set

to a minimum of 5 and maximum of 50 characters.

wmark; nsert_ver4. m

This module takes in the key and the encrypted file. It then converts the

binary key into a stream of is and -1s. It calculates the chirp length which is

218

a ratio of the file length to the key length. Each binary stream is multiplied

to a chirp, concatenated and finally added to the encrypted data.

wmark_remove_fixedver8. m

This file extracts the key from the encrypted text. It first recreates the chirp.

Then applies correlation function, correlates the chirp with the total signal.

This extracts the key from the encrypted data. Finally the key is subtracted

leaving only encrypted data.

decrypt_fixedver9. m

Since this is a symmetric cipher, this file will decrypt a file into plaintext, by

reversing the encryption process. The noise finally gets separated from the

actual file.

parameters. txt

Data file for storing chirp and noise parameters. This file is used by read_paramsver5. m

The following three files have been successfully tested with the program.

sunset. jpg

test100k. txt

taiwan. txt

A. 2 Variable Parameters Mode

In this version, noise length changes with each file to be encrypted, hence the

total file length changes. After encryption the encrypted file is sent through

219

open channel while parameters are sent through secure channels. Parameters

need to be transmitted for each encrypted file. This mode is quite similar to

the above, the main difference is the parameters to be exchanged.

All of these programs appear on the previous section, so there will be no

need for repeat description here.

dbx_encrypt. m

Main encryption program.

dbx_encrypt. m

main decryption program.

key_gen_verc. m

Key generation using summation method.

key_gen_conv_ver3. m

Key generation using convolution integral.

key_gen_wavelet4. m

Key generation using Daubechies wavelets.

key_gen_hash_ver9. m

Key generation using hash function SHA-256.

encrypt_vera. m

Encryption module.

wmark_insert_ver5

220

Watermark exchange module.

saveparamsa. m

This code is used to save parameters: chirp length and noise length.

loadparams7. m

Loads parameters before decryption process starts.

wmark-remove_ver9. m

Extracts watermark.

decrypt_vera. m

Decrypts.

221

Appendix B

Crypstic

Crystic is marketed by Crypstic Limited, Mayfair House, 14-18 Heddon

Street, Mayfair, London W1B 4DA. It is based on the use of multi-algorithmic

deterministic chaos coupled with key exchange using chirp coding to design

an encryption engine that unique to a pair of Crystics (i. e. USB memory

sticks).

Deatils on the Crypstic system are given on the CD that accompanies this

thesis. This includes:

"A full technical report entitled Digital Cryptography using Deterministic Chaos

that gives a background to the technical specifications of the system

including an information theoretic approach to the use of deterministic

chaos for encryption.

"A comprehensive business plan that has been used to generate invest-

ment for the development of the product and the establishment of Crys-

tic Limited.

222

9 Documentation concerning the system including a user guide and an

example applications program - `Crypstic'.

" Example publications.

223

Bibliography

[11 Peter Alfred. Eratosthenes of cyrene. 1998.

http: //www. math. utah. edu/ alfeld/Eratosthenes. html.

[2] Ross Anderson. Why Cryptosystems Fail. In A CM, 1st Conference in

Computer and Communication Security, Virginia, USA, 1993.

http: //www. cl. cam. ac. uk/users/rjal4/wcf. html.

[3] S. Ares and M. Castro. Hidden structure in the randomness of the

prime number sequence? Physica A: Statistical Mechanics and its Ap-

plications, 2005.

http: //www. sciencedirect. com... sdasrticle. pdf.

[4] Articsoft Technologies. Introduction to encryption. 2005.

http: //www. articsoft. com/wp_explaining_encryption. htm.

[5] David Barton. Encryption. 2004.

http: //www. filetopia. org/encryption. htm.

[6] Hal Berghel. Protecting ownership through digital watermarking. 1996.

http: //portal. acm. org/citation. cfm? id=620504.

[7] Eli Biham and Adi Shamir. Differential Cryptanalysis of Feal and N-

Hash. In Lecture Notes in Computer Science 547, Advances in Cryptol-

224

ogy - EUROCRYPT'91. Springer-Verlag, 1991.

http: //members. aol. com/jpeschel/algoritak. htm.

[8] J. Blackledge, A. Evans, and M. Turner, editors. Mathematical Meth-

ods, Algorithms and Applications, volume 189 - 222. Howard Publishing

Series, 2002.

[9] Jonathan M. Blackledge. Digital Signal Processing. Horwood, 2003.

[10] L. Blum, M. Blum, and S. Shub. A Simple Unpredictable Random

Number Generator. SIAM Journal of Computing, 15,1986.

http: //locus. siam. org/SICOMP/volume-15/artO215025. html.

[11ý Dan Boneh. Twenty Years of Attacks on the RSA Cryptosystem. Amer-

ican Mathematical Society, 46(2): 203 - 213,1999.

http: //crypto. stanford. edu/ dabo/papers/RSA-survey. pdf.

[12] Ernest Brickell, Dorothy E. Denning, Stephen T. Kent, David P.

Maher, and Walter Tuchman. SKIPjack Review, Interim Report, The

SKIPjack Algorithm. 1993.

http: //www. epic. org/crypto/clipper/skipjack_interim_review. html.

[13] Lawrie Brown. Block Ciphers - Modern Private Key Ciphers (Part 2).

1996.

http: //williamstallings. com/Extras/Security-

Notes/lectures/blockB. html.

[14] Lawrie Brown. Block Ciphers - Modern Private Key Ciphers (Part I).

1996.

http: //williamstallings. com/Extras/Security-
Notes/lectures/blo ckA. html.

225

[15] James Buchmann. Introduction to Cryptography. Springer, 2001.

[16] Chris Caldwell. The Largest Known Prime by Year. 2005.

http: //www. utm. edu/research/primes/notes/by_year. html.

[17] Chris Caldwell. The Prime Glossary, Wieferich Prime. 2005.

http: //primes. utm. edu/primes/search. php? Comment=SophieNumber=100.

[18] Chris Caldwell. The Prime Glossary, Wieferich Prime. 2005.
http: //primes. utm. edu/glossary/page. php? sort=WieferichPrime.

[19] California Intitute of Technology. The Geiger Counter and counting
Statistics. 1997.

http: //www. kronjaeger. com/hv-old/radio/geiger/caltech/exp2. htm.

[20] Keith Calkins. Biographies of Mathematicians - Goldbach. 1999.

http: //www. andrews. edu/ calkins/math/biograph/biogoldb. htm.

[21] C. Charnes, L. O'Connor, J. Pieprzyk, R. Safavi-Naini, and Y. Zheng.

Further Comments on the Soviet Encyption Algorithm. 1994.

http: //kremlinencrypt. com/algorithms. htm#GOST.

[22] Clements Library. Spy Letters of the American Revolution, Secret Meth-

ods and Techniques - Invisible Ink. 1999.

http: //www. si. umich. edu/spies/methods-ink. html.

[23] Counterpane Internet Security. Security Alert: Microsoft RPC DCOM

Worm. 2003.

littp: //www. counterpane. com/alert-v20030811-001. html.

[24] DI Management Services. Cryptography Code. 2005.

http: //www. di-mgt. com. au/crypto. htmITopOfPage.

226

[25] Joan Daemen. Cipher and Hash Function Design, Strategies based on
linear and differential cryptanalysis, 1995.

[26] H. Davenport. The Higher Arithmetic. Cambridge University Press,

2002.

[27] Louis de Branges. Apology for the Proof of the Riemman Hypothesis.

2005.

http: //www. math. purdue. edu/ branges/apology. pdf.

[28] Department of the Army. Basic Cryptanalysis. 1990.

http: //www. umich. edu/-umich/fm-34-40-2/#ps>Postscript</.

[29] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptogra-

phy. IEEE Transaqctions on Inofrmation Theory, 1976.

http: //crypto. csail. mit. edu/classes/6.857/papers/diffie-hellman. pdf.

[30] Echelon Watch Organisation. Echelon. 2000.

http: //www. echelonwatch. org

http: //www. a861. com/info/echelon-watch. html.

[31] Carl Ellison and Bruce Shneier. Ten Risks of PKI: What Youre not Be-

ing Told about Public Key Infrastructure. Computer Security Journal,

XVI(1), 2000.

http: //www. schneier. com/paper-pki. pdL

[32] Euclid. Euclid's Elements. 300 BC. Compiled (1998) by D. E. Joyce,

Department of mathematics and Computer Science, Clark University,

USA.

http: //alephO. clarku. edu/ djoyce/Java/elements/booklX/booklX. html.

227

[331 European Space Agency. Beagle 2 lander. 2003.

http: //www. esa. int/SPECIALS/Mars-Express/SEMPM75V9ED_O. html.

[34] Elizabeth Ferrill and Matthew Moyer. A Survey of Digital Watermark-

ing. 1999.

http: //elizabeth. ferrill. com/papers/watermarking. pdf.

[35] Paul Garrett. Making, Breaking Codes. Prentice Hall, 2001.

[36] Oded Goldreich. Foundations of Cryptography. Cambridge University

Press, 2001.

[37] Timothy Cowers. Mathematics, A Very Short Introduction. Oxford

University Press, 2002.

[38] Niel Hahnfield. Cryptography Tutorial: RSA. 2001.

http: //www. antilles. kl2. vi. us/math/cryptotut/rsal. htm.

[391 Feng Hao, Ross Anderson, and John Daugman. Combining cryptogra-

phy with biometrics effectively. 2005.

http: //www. cl. cam. ac. uk/TechReports/UCAM-CL-TR-640. pdf.

[401 Harvey Heinz. Patterns in Primes. 2000.

http: //www. geocities. com/ harveyh/primes. htm.

[411 John Hershey. Cryptography Demystified. McGraw-Hill, 2003.

[42] Paul Hoffman. The Man who Loved only Numbers. Fourth Estate, 1998.

[43] Institute of Paper Science and Technology at Georgia Tech. Water-

marks. 2004.

http: //www. ipst. gatech. edu/amp/education/watermark/waterm arks. htm.

228

[44] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern

Number Theory. Springer-Verlag, 1993.

[45] Y. Saouter J-M. Deshouillers, H. J. J. to Riele. New Experimental Re-

suits Concerning the Goldbach Conjecture. Centrum voor Wiskunde en

Informatica, MAS-R9804,1998. ISSN 1386-3703

http: //ftp. cwi. nl/CWlreports/MAS/MAS-R9804. pdf.

[46] Neil Johnson. Steganography. 2000.

http: //www. jjtc-com/stegdoc/bks3l5. html.

[47] Pascal Junod. Cryptographic Secure Pseudo-Random Bits Generation :

The Blum-Blum-Shub Generator. 1999.

http: //crypto. junod. info/bbs. pdf.

[48] Pascal Junod. Six ways to break DES. 1999.

http: //Iasecwww. epfl. ch/memo_des. shtml.

[49] Mohsen Kavehrad. Conference review: Optics east features nanotech-

nology and itcom. 2004.

http: //cictr. ee. psu. edu.

[50] Gary Kessler. Overview of cryptography. 1998.

http: //www. garykessler. net/library/crypto. htmlhash.

[51] Erica Klarreich. Take a Chance: Scientists put Ramdomness to work.

Science News, 166(23): 362,2004.

http: //www. sciencenews. org/articles/20041204/bob9. asp.

[52] Evangelos Kranakis. Primality and cryptography. Wiley, 1986.

[53] kremlinencrypt. com. Kremlin Cryptographic Algorithms. 2005.

http: //kremlinencrypt. com/algorithms. htm#GOST.

229

[54] Jeordan Legon. Teenager arrested in 'Blaster' Internet attack. 2003.

http: //www. cnn. com/2003/TECII/internet/08/29/worm. arrest/index. html.

[55] Scott Lewis and Todd Steigerwalt. Biometric Encryption.

http: //www. emory. edu/BUSINESS/et/biometric/Index. htm.

[56] Khaled Mahmoud. Digital Watermarking for Low Resolution Print Se-

curity. PhD thesis, Loughborough University, 2005.

[57] Walt Mankowski. The Great Internet Mersenne Prime Search. 2005.

http: //www. mersenne. org/prime. htm.

[58] Itsik Mantin. Analysis of the Stream Cipher RC4. Master's thesis, The

Weizmann Institute of Science, 2001.

[59] Media Crypt. Swiss Encryption Technology. 2005.

http: //www. mediacrypt. com/.

[60] Julie Meloni. Encryption Tutorial.

http: //webmonkey. wired. com/webmonkey/programming/php/tutorials/tutoriall. html.

[61] Alfred Menezes, Paul Oorschot, and Scott Vanstone. Handbook of Ap-

plied Cryptography. CRC Press, 2001.

[62] Barbara S. Moses. Dolphins - the ride. 2001.

http: //www. detroitzoo. org/was/dolphins_resource. pdf.

[63] National Institute of Standards Technology. NIST Brief Comments on

Recent Cryptanalytic Attacks on Secure Hashing Functions and the

Continued Security Provided by SHA-1.2004.

http: //csrc. nist. gov/hash.. standards_comments. pdf.

[64] Yves Nievergelt. Wavelets Made Easy. Birkhauser, 2001.

230

[65] J. O'Connor and E. Robertson. Prime Numbers - Some Unsolved

Problems. 2005.

http: //www-groups. dcs. st-and. ac. uk/-history/HistTopics/Primenumbers. html.

[66] Ivars Peterson. Prime pursuit: Constructing an effecient prime number

detector. Science News Online, 162,2002.
http: //www. sciencenews. org/articles/20021026/bob9. asp.

[67] Ivars Peterson. Closing the Gap on Twin Primes. Science News, 168(3),

2005.

http: //www. sciencenews. org/articles/20050716/mathtrek. asp.

[68] Ivars Peterson. Goldbach's Prime Pairs. 2005.

http: //mathforum. org/library/view/17035. html.

[69] Nikolai Ptitsyn. Encryption using Deterministic Chaos. PhD thesis, De

Montfort University, 2002.

[70] Brian Raiter. Prime number hide-and-seek: How the rsa cipher works.
2003.

http: //www. muppetlabs. com/ breadbox/txt/rsa. html.

[71] Arnold G. Reinhold. Diceware Passphrase. 1995.

http: //world. std. com/ reinhold/diceware. html.

[72] Paul Reynolds. Breaking codes: An impossible task? 2004.

http: //news. bbc. co. uk/l/hi/technology/3804895. stm.

[73] M. J. Robshaw. Stream Ciphers. 1995.

ftp: //ftp. rsasecurity. com/pub/pdfs/tr701. pdf.

[74] Phillip Rogaway and Dan Coppersmith. A Software-Optimized En-

cryption Algorithm. Journal of Cryptology, 11(4): 273 - 287,1998.

231

http: //www. springerlink. com/media/G3QMUNWGUTLB85K3JMFK/...

Contributions/2/Y/D/Q/2YDQL7VUJ2E48WP8. pdf.

[751 Kenneth Rosen. Elementary Number Theory. Addison Wesley, 2000.

[76) RSA Laboratories. RSA Laboratories' Frequently Asked Questions

About Today's Cryptography. 2000.

http: //www. rsasecurity. com/rsalabs/node. asp? id=2170.

[77) RSA Laboratories. RSA Laboratories' Frequently Asked Questions

About Today's Cryptography. 2000.

http: //www. rsasecurity. com/rsalabs/node. asp? id=2171.

[78] RSA Laboratories. RSA Laboratories' Frequently Asked Questions

About Today's Cryptography. 2000.

http: //www. rsasecurity. com/rsalabs/node. asp? id=2172.

[79] RSA Laboratories. RSA Laboratories' Frequently Asked Questions

About Today's Cryptography. 2000.

http: //www. rsasecurity. com/rsalabs/node. asp? id=2173.

[80] RSA Security. 200 000 reward for factoring offered by RSA. Computer

Fraud and Security, 2001(8): 4,2001.

[81] Arto Salomaa. Public-Key Cryptography. Springer, 1996.

[82] Security Section, Research and Development Center. Fsango. 2000.

http: //www. fsi. co. jp/Cipher-HP_e/Overview.

[83] Bruce Shneier. Applied Cryptography. Wiley, 1996.

[84] Bruce Shneier. Applied Cryptography. Wiley, 1996.

232

[85] Bruce Shneier. Self-Study Course in Block Cipher Cryptanalysis. 2000.

http: //www. schneier. com/paper-self-study. html.

[86] Bruce Shneier. Blowfish. 2005.

http: //www. schneier-com/blowfish. html.

[87] Simon Singh. The Code Book. Anchor Books/Doubleday, 2000.

[88] SSH Security Communications. Random Number Generators. 2005.

http: //www. ssh. com/support/cryptography/algorithms/random. html.

[89] William Stallings. Cryptography and Network Security. Prentice Hall,

2003.

[90] Tripwire Inc. Change Auditing Solutions. 2005.
http: //www. tripwire. com.

[91] Eric Uner. Generating Random Numbers. 2004.

http: //www. embedded-com/showArticle. jhtml? articleID=20900500.

[92] Cheryl Vroom and Rossouw Solms. A Practical Approach to Informa-

tion Security Awareness in the Organisation. In M. Ghonaimy, editor,

Security in the Information Society. Kluwer Academic Publishers, 2002.

[93] John Walker. HotBits: Genuine random numbers, generated by radioac-

tive decay. 1998.

http: //www. fourmilab. ch/hotbits/.

[94] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions

for Hash Functions MD4, MD5, NAVAL-128 and RIPEMD. 2004.

http: //eprint. iacr. org/2004/199. pdf.

233

[95] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision

Search Attacks on SHA-0.2004.

http: //www. infosec. sdu. edu. cn/paper/shaO-crypto-author-new. pdf.

[96] Peter Wayner. Disappearing Cryptography. Morgan Kaufmann, 1996.

[97] Eric W. Weisstein. Hash function. 2005.

http: //mathworld. wolfram. com/HashF'unction. html.

[98] Eric W. Weisstein. Prime Numbers. 2005.
http: //mathworld. wolfram. com/topics/PrimeNumbers. html.

234

r

THESIS
CONTAINS CD
ROM

2

e c- -

ýýL

