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`The First World War was the chemists' war, because the mustard gas and chlorine were 

employed for the first time. The Second World War was the physicists' war, because the 

atom bomb was detonated. The Third World War will be the mathematicians war, because 

mathematicians will have control over the next great weapon of war - "information"' 

Simon Singh 



Abstract 

One of the greatest challenges facing cryptographers is the mechanism used 

for key exchange. When secret data is transmitted, the chances are that there 

may be an attacker who will try to intercept and decrypt the message. Having 

done so, he/she might just gain advantage over the information obtained, or 

attempt to tamper with the message, and thus, misguiding the recipient. 

Both cases are equally fatal and may cause great harm as a consequence. 

In cryptography, there are two commonly used methods of exchanging secret 

keys between parties. In the first method, symmetric cryptography, the key is 

sent in advance, over some secure channel, which only the intended recipient 

can read. The second method of key sharing is by using a public key exchange 

method, where each party has a private and public key, a public key is shared 

and a private key is kept locally. In both cases, keys are exchanged between 

two parties. 

In this thesis, we propose a method whereby the risk of exchanging keys 

is minimised. The key is embedded in the encrypted text using a process 

that we call `chirp coding', and recovered by the recipient using a process 

that is based on correlation. The `chirp coding parameters' are exchanged 

between users by employing a USB flash memory retained by each user. If the 

keys are compromised they are still not usable because an attacker can only 

have access to part of the key. Alternatively, the software can be configured 

to operate in a one time parameter mode, in this mode, the parameters 

are agreed upon in advance. There is no parameter exchange during file 

transmission, except, of course, the key embedded in ciphertext. 

The thesis also introduces a method of encryption which utilises dynamic 
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blocks, where the block size is different for each block. Prime numbers are 

used to drive two random number generators: a Linear Congruential Genera- 

tor (LCG) which takes in the seed and initialises the system and a Blum-Blum 

Shum (BBS) generator which is used to generate random streams to encrypt 

messages, images or video clips for example. In each case, the key created is 

text dependent and therefore will change as each message is sent. 

The scheme presented in this research is composed of five basic modules. The 

first module is the key generation module, where the key to be generated is 

message dependent. The second module, encryption module, performs data 

encryption. The third module, key exchange module, embeds the key into 

the encrypted text. Once this is done, the message is transmitted and the 

recipient uses the key extraction module to retrieve the key and finally the 

decryption module is executed to decrypt the message and authenticate it. 

In addition, the message may be compressed before encryption and decom- 

pressed by the recipient after decryption using standard compression tools. 
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Glossary of Terms 

ANSI American National Standards Institute 

BBS Blum Blum Shub. 

CBC Cipher Block Chaining Mode 

CFB Cipher Feedback Block Mode 

DBX Dynamic Block Encryption 

ECB Electronic Code Book Mode 

FEAL Fast Data Encipherment Algorithm 

GIMPS Great Internet Mersenne Prime Search. 

GOST Russian cryptographic algorithm similar to DES in many ways 

GPS Global Positioning System 

IDEA International Data Encryption Algorithm 

IFS Iteration Function System 

ISO International Organisation for Standardization 

IV Initialisation vector 

LCG Linear Congruential Generator 

MD5 Message Digest 

NSA National Security Agency 

OFB Output Feedback Block Mode 

OTP One Time Pad 

PKI Public Key Infrastructure 

PRNG Pseudo Random Number Generator 

SEAL Software-Optimised Encryption Algorithm 

SHA Secure Hash Algorithm 
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Glossary (continued) 

Asymmetric Encryption 

A form of cryptosystem in which encryption and decryption are performed 

using two different keys, one of which is referred to as the public key. Also 

known as public key encryption. 

Authentication 

A process used to verify the integrity of transmitted data, especially a mes- 

sage. 

Block Cipher 

A symmetric encryption algorithm in which a large block of plaintext bits 

(typically 64) is transformed as a whole into a ciphertext block of the same 
length. 

Cipher 

An algorithm for encryption and decryption. A cipher replaces a piece of 
information (an element in plaintext) with another object, with the intent to 

conceal the meaning. Typically, the replacement rule is governed by a secret 

key. 

Ciphertext 

The output of an encryption algorithm; the encrypted form of a message 

data. 

Code 

An unvarying rule for replacing a piece of information (e. g., letter, word, 

phrase) with another object, not necessarily of the same sort. Generally, 

there is no intent to conceal meaning. Examples include the ASCII charac- 

ter code (each character is represented by 7 bits) and frequency-shift keying 

(each binary value is represented by a particular frequency). 
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Confusion 

A cryptographic technique that seeks to make the relationship between the 

statistics of the ciphertext and the value of the encryption key as complex 

as possible. This is achieved by the use of a complex scrambling algorithm 

that depends on the key and the input. 

Cryptanalysis 

The branch of cryptology dealing with the breaking of a cipher to recover 

information, or forging encrypted information that will be accepted as au- 

thentic. 

Cryptography 

The branch of cryptology dealing with the design of algorithms for encryption 

and decryption, intended to ensure the secrecy and authenticity of messages. 

Cryptology 

The study of secure communications, which encompasses both cryptography 

and cryptanalysis. 

Decryption 

The translation of encrypted text or data (called ciphertext) into original 

text or data (called plaintext). Also called deciphering. 

Differential Cryptanalysis 

A technique in which chosen plaintexts with particular XOR, difference pat- 

terns are encrypted. The difference patterns of the resulting ciphertext pro- 

vide information that can be used to determine the encryption key. 

Diffusion 

A cryptographic technique that seeks to obscure the statistical structure of 

the plaintext by spreading out the influence of each individual plaintext digit 

over many ciphertext digits. 
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Digital Signature 

An authentication mechanism that enables the creator of a message to attach 

a code which acts as a signature. The signature guarantees the source and 

integrity of the message. 

Encryption 

The conversion of plaintext or data into unintelligible form by means of a 

reversible translation, based on a translation table or algorithm. Also called 

enciphering. 

Hash Function 

A function that maps a variable length data block or message into a fixed 

length value called a hash code. The function is designed in such a way that, 

when protected, it provides an authenticator to the data or message. Also 

referred to as a message digest. 

Initialisation Vector 

A random block of data that is used to begin the encryption of multiple 

blocks of plaintext, when a block-chaining encryption technique is used. The 

IV serves to foil known-plaintext attacks. 

Message Digest 

Hash function. 

One-Way Function 

A function that is easily computed, but the calculation of its inverse is infea- 

sible. 

Plaintext 

The input to an encryption function or the output to a decryption function. 

Private Key 

One of the two keys used in an asymmetric encryption system. For secure 
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communication, the private key should only be known to its creator. 

Pseudorandom Number Generator 

A function that deterministically produces a sequence of numbers that are 

apparently statistically random. 

Public Key 

One of the two keys used in an asymmetric encryption system. The public 

key is made public, to be used in conjunction with a corresponding private 

key. 

Secret Key 

The key is used in a symmetric encryption system. Both participants must 

share the same key, this key must remain secret to protect the communica- 

tion. 

Skip jack 

Secure encryption algorithm designed by NASA 

Stream Cipher 

A symmetric encryption algorithm in which ciphertext output is produced 
bit-by-bit or byte-by-byte from a stream of plaintext input. 

Symmetric Encryption 

A form of cryptosystem in which encryption and decryption are performed 

using the same key. Also known as conventional encryption. 
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Chapter 1 

Introduction 

The electronic age has managed to bring a number of changes in the way 
individuals conduct their daily routines. One of the most significant of these 

changes is the impact it has had upon basic human activities such as decision 

making, information processing and communication. Business communities 

and government organisations rely heavily on exchange, sharing, and process- 
ing of information to assist them in making everyday and strategic decisions. 

Security infrastructures have been put in place to help protect and preserve 
integrity of the information flowing across different channels. It is therefore 

necessary to provide continuous improvements to the security infrastructure 

in order to keep up with the fast pace of technology growth in areas of digital 

communication and software development. 

As the world becomes more dependent on digital information exchange, this, 

in turn, threatens the security of the information itself. Information is the 

key factor in decision making for most organisations today and so has become 

the one of the most important assets that the company owns [92]. Most of 
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the data transported between different locations and recipients is in danger 

of being viewed and/or altered by any capable and interested eavesdropper. 

For example, the use of digital devices has touched every aspect of our lives. 

By using a personal digital assistant (PDA), for example, an individual can 

log on and check his/her bank account, make funds transfer, pay bills, or 

undertake other transactions such as trading on stock markets. Scientists 

rely heavily on computers to get results from different sources around the 

world; in 2003 astronomers were busy trying to track down signals from 

Beagle 2 on Mars. [33] 

Since the introduction of the global positioning system (GPS), an increasing 

number of private motorists are relying on the use of GPS, and navigation in 

general, as part of their guide to operating in unknown regions. Previously, 

GPS was enjoyed by the civil and military services, but now it is at the 

disposal of most civilians. In the event of a major terrorist incident, or other 

planned `breakins', there is the potential for a major disaster affecting us all 

through a breach of information interchange. 

In August 11,2003, Jeffrey Parson, an 18 year old high school student was 

suspected of unleashing a deadly internet'worm'1. know as the `MS Blaster'. 

The alleged worm operated on the weakness of Microsoft Windows operating 

system, and is said to have infected over 500,000 personal computers across 

the globe [54], [23]. 

This example is not an isolated incident, as there has been similar, although 

lA worm is a hidden file that is typically imported into a computer when accessing 

information over the internet. It is a program that makes copies of itself (e. g. from one 

disk drive to another, or by copying itself using e-mail or another transport mechanism) 

and can provide a number of facilities for accessing the computer remotely 
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uncoordinated attacks, against PCs though the internet. However, this ex- 

ample illustrates the extent of damage that can be caused if one were to 

penetrate the security built against control centers for space research, global 

positioning satellites, or communication channels between financial institu- 

tions, as well as those with clients. Thus, it is becoming more and more 

important to secure the infrastructure of an increasingly, information depen- 

dent society. 

Cryptography has been playing an important role in the IT world for secur- 

ing and protecting data. Along with cryptography, digital watermarking is 

starting to be used in many applications to authenticate objects. There is an 

argument that watermarking has taken over what cryptography is missing 
[34]. This is because an encrypted file gives away the fact that there is in- 

formation that is important and is thus a `red rag to a bull' for the potential 

interceptor. Watermarking can provide a way of transmitting information in 

data that is seemingly insignificant because it does appear in an encrypted 

form. In this thesis, it is shown that both cryptography and digital water- 

marking can be used to protect data in a way that is mutually inclusive. 

Cryptography and watermarking used separately cannot guarantee security 

(some examples of the reasons on Why Cryptography Fails are demonstrated 

by Ross Anderson [2]) but, used together, they can enhance the security of 

a communications infrastructure. 

1.1 Background 

Cryptography is the science of writing messages that no one, except the 

intended recipient, is able to read. Cryptanalysis [28] deals with the way of 
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trying to break the messages and read them. `Crypto' is from the Greek word 
`Krypte' meaning hidden or vault and `Graphy' is also from the Greek `Grafik' 

which means to write [601. William F. Friedman defines a cipher message as 

one produced by applying a method of cryptography to the individual letters 

of the plain text taken as either single entities or in groups of constant length. 

Practically, every cipher message is the result of the joint application of a 

`general system' (or algorithm) or method of treatment, which is invariable 

and a specific key which is variable, at the will of the correspondents, and 

controls the exact steps followed under the `general system'. It is assumed 

that the general system is known by the correspondents and the cryptanalyst. 

Different cryptographic techniques have been developed and employed to 

protect information. Most of them make use of algorithms employing public 
key exchange protocol which may been broken either by exploiting the weak- 
ness in the key exchange mechanisms or through the algorithm itself. There 

are a number of ways for checking the cryptographic security of an object 
(e. g. data stream). Analysing the algorithm, or looking at the mathematical 

model, can assist in revealing the strength or weakness of an object. One 

can also try known attacks to determine its strength. However, by applying 

various known attacks, without success, does not mean that the object is 

secure. This is because most attacks are relatively comparable to 'labora- 

tory' experiments', and hence they differ form real world attacks. However, 

this can, in theory, be considered as a first step towards stronger resistance 

to attack. According to Daemen [25] `... cryptographic security of a cipher 

can best be defined as security in the worst possible circumstances. Clearly, 

a cipher that is claimed to be cryptographically secure by this definition is 

claimed to be secure in all applications' 
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Steganography is another form of cryptography. This goes back thousands 

of years. For example, during the war, in order to conceal the messages, 
Histaiaues shaved the head of his messenger, wrote the message on his scalp, 

then waited for the hair to regrow, once the hair has grown, he would send 

the messenger, whom himself was not aware of the message he carried across 

the enemy lines. (War then was a little slower than now! ) Steganography is 

the practice of embedding secret messages in other messages in a way that 

prevents an observer from learning that anything unusual is taking place. 

Encryption, by contrast, relies on ciphers or codes to scramble a message. 

The practice of steganography has a distinguished history. The Greek histo- 

rian Herodotus also used steganography and describes how one of his cunning 

countrymen sent a secret message warning of an invasion by scrawling it on 
the wood underneath a wax tablet. To casual observers, the tablet appeared 
blank. Both Axis and Allied spies during World War II used such measures as 
invisible inks [22]; for example, using milk, fruit juice or urine which darken 

when heated, or tiny punctures above key characters in a document that 

form a message when combined. 

Modern steganographers have far-more-powerful tools. Software like White 

Noise Storm (46] and S-Tools allow a user to embed messages in digitized 

information; typically, audio, video or still image files, that are sent to a 

recipient. The software usually works by storing information in the least 

significant bits of a digitized file; those bits can be changed in ways that 

are not dramatic enough for a human eye or ear to detect. It is relatively 

simple, for example, to insert a message in the least significant bits of an 

image JPEG file that, when viewed, have no substantial differences to the 

original JPEG images. Steghide embeds messages in bmp, wav and au files 
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via least significant bits and MP3Stego does the same for MP3 files. One 

program, called snow, hides a message by adding extra whitespace at the end 

of each line of a text file or e-mail message. Perhaps the strangest example 

of steganography is a program called Spam Mimic, based on a set of rules, 

called a mimic engine, and designed by Wayner [96]. It encodes a message 
into what looks just like a typical, quickly deleted spam message. 

Other methods of securing objects are by watermarking. Although encrypt- 
ing an object offers security, a culprit can buy a legal copy of an object, 

say music or a movie, and then start distributing the copies illegally. The 

method of tracking down the original buyer can be quite strenuous. By ap- 
plying watermarking to an object, whenever an illegal copy is found, it can 
then be verified against the original. 

The idea of watermarking can be dated back to the late Middle Ages. The 

earliest use has been to record the manufacture's trademark on the product so 
that authenticity can be easily established. Governments use it for currencies, 

postage stamps, revenue stamps, etc. [6]. Now, due to the information and 

computer age, digital watermarking is being rapidly expanded to cover a 

wide range of applications. 

Digital watermarking is a process of embedding unobtrusive marks or labels 

into digital content. These embedded marks are typically invisible and can 
later be detected or extracted. The concept of digital watermarking is closely 

association with steganography. Watermarks added to digital content serve 

a variety of purposes: 

" Ownership Assertion - to establish ownership of the content (i. e. im- 

age). 
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9 Fingerprinting - to avoid unauthorized duplication and distribution of 
publicly available multimedia content. 

" Authentication and integrity verification - the authenticator is insep- 

arably bound to the content whereby the author has a unique key 

associated with the content and can verify integrity of that content by 

extracting the watermark. 

" Content labeling - bits embedded into the data that give further infor- 

mation about the content such as a graphic image with time and place 
information. 

" Usage control - added to limit the number of copies created where the 

watermarks are modified by the hardware and at some point do not 
allow further copies to be made (e. g. a DVD). 

" Content protection - content stamped with a visible watermark that 
is very difficult to remove so that it can be publically and freely dis- 

tributed. 

Unfortunately, there is no universal watermarking technique to satisfy all of 

the above purposes. The content in the environment that is used determines 

the watermarking technique. 

1.2 Prime Numbers and Cryptography 

In the general field of Cryptology and, in particular, cryptography, prime 
numbers have emerged to play a central role, especially since the develop- 

ment of the programmable computer in Bletchley Park, England, in 1944. 
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Prime numbers and their properties were first studied deeply by ancient 
Greek mathematicians. The mathematicians of the Pythagorian school (500 

BC to 300 BC) were interested in prime numbers for their mystical and 

numerological properties. They understood the idea of primality and were 

interested in perfect and amicable numbers. Even though they have been 

studied for many years, the full potential of prime numbers, has only rela- 

tively recently been realised. Prime numbers have become important when 

used within one way functions in encryption algorithms, in particular the 

design of one-way functions that exploit modular arithmetic. Proper stud- 

ies and analysis of prime numbers can result in implementation of stronger 

encryption software. In general, one-way functions are based on exploiting 
the joint properties of prime numbers and modular arithmetic and the large 

majority of encryption algorithms have come to be based on exploiting the 

interplay between these two `elements'. 

One of most extensive studies in the field of number theory is knowledge 

of exactly how many prime numbers are there. Are prime numbers finite 

or infinite? [44] [67] Ever since the study of prime numbers began, a large 

number of mathematicians have developed different theories in finding the 

primes. Euclid's Elements appeared around 300 BC and by this time several 

important results about primes had been proved. In Book IX [32] of the 

Elements, Euclid proves that there are infinitely many prime numbers. This 

is one of the first proofs known which uses the method of contradiction to 

establish a result. Euclid also gives a proof of the Fundamental Theorem 

of Arithmetic: Every integer can be written as a product of primes in an 

essentially unique way. Euclid also showed that if the number 2n -1 is 

prime then the number (2n - 1)(2n - 1) is a perfect number. In 1747, Euler 

was able to show that all even perfect numbers are of this form. It is not 
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known to this day whether there are any odd perfect numbers 

In about 200 BC, the Eratosthenes devised an algorithm for calculating 

primes called the Sieve of Eratosthenes. The next important developments 

were made by Fermat at the beginning of the 17th Century. He proved a 

speculation of Albert Girard that every prime number of the form 4n +1 

can be written in a unique way as the sum of two squares and was able to 

show how any number could be written as a sum of four squares. He proved 

what has come to be known as Fermat's Little Theorem (to distinguish it 

from his so-called Last Theorem). This states that if p is prime then for any 
integer a we have ap =a mod p. Fermat's little theorem is actually the fun- 

damental basis for asymmetric encryption, e. g. encryption systems that use 
public and private keys. Originally derived by GCHQ, Cheltenham, England 
in the early 1970s, it was first marketed in the USA in the late 1970s as 
the RSA algorithm. Today, the RSA algorithm, which is itself, essentially a 
by-product of Fermat's little theorem, now forms the kernel of a wide rage 
of encryption systems application, e. g. all PKI (Public Key Infrastructure) 

systems. The range of applications is also widespread and apart from being 

used in encryption in general, is used in biometrics such as in finger-print 

[55] and iris [39] recognition in which access to databases is acquired through 

PKI. 

The importance of prime numbers in encryption has meant that one of the 

principal applications for research into prime numbers and number theory in 

general is cryptology. This includes the design of new algorithms that are 

applied, in conjunction with powerful computing technology, in the compu- 

tation of new prime numbers. 
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1.3 Research Focus 

Almost all block cipher algorithms use fixed length blocks. If an adversary 

successfully manages to break one block, the chances are that the rest of the 

blocks can be cracked by following a pattern. Hence information is compro- 

mised. 

One way to improve the security of the cipher is to use variable size block 

encryption with some form of parameter modulation. Dynamic Block En- 

cryption (DBX) uses variable size blocks. This makes it hard to crack because 

the block size is randomly selected, hence there is no way of knowing which 
block the data belongs to. Further each block is driven by what is in effect 
a variation on the theme of the same algorithm or alternative a uniquely 
different algorithm (multi-algorithmicity). 

The other contribution to this thesis is the key exchange mechanism. In 

symmetric ciphers when encrypted data is transmitted, the key has to be 

sent separately. One way to send the key is by using a secure channel shared 
between the sender and the recipient. This key is then used repeatedly until 

users decide to change it. This poses an increased risk because the same 
key is used for long periods. Once compromised, the data transmitted is no 
longer secure. 

The asymmetric cipher uses public key exchange where the user publishes 

his/her key on the Internet and the sender encrypts the file using the recipi- 

ent's public key. The recipient decrypts using his own private key. One risk 

involves exposing the key. Hence a cryptanalyst already acquires a starting 

point. 

DBX key exchange mechanism is designed to overcome both issues. The key 
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is chirp coded and then embedded in the ciphertext before transmission. This 

overcomes the problem of transmitting the key. The key changes every time 

the file is transmitted so that, if a key is compromised, it is rendered useless 

because the next key is entirely different. The key is transmitted within the 

ciphertext so that there is no problem in transmitting and exchanging keys. 

1.4 Original Contribution 

The original contributions of this thesis can be summerised as follows: 

" Dynamic blocks cipher with prime number modulation: The 

implementation of dynamic blocks in which each block output is the re- 

sult of utilizing a randomly selected prime number from a pre-determined 
database to drive a BBS cipher generator. (Section 5.4 and 6.3) 

" Key exchange mechanism: A secure method of exchanging keys 

between two or more parties that is based on the use of chirp coding 

to embed the key used into the cipher text that it (the key) generates 

using the block cipher technique above. This method can be applied 

either by using fixed parameters or using a `crypstic'. (Section 5.3 and 

6.2) 

Publications 

The following papers have been published based on the above contributions: 

" Al-Ismaily, N., Salagean, A., Blackledge, J. and Datta, S., ̀ Digital Wa- 

termarking Encryption and Authentication' 
, Proc. of EPSRC PREP 

11 



2004 , EPSRC, Fourth Conference on Postgraduate Research in Elec- 

tronics Photonics Communications and Software (PREP 2004), April 

2004,189-190, ISBN 1 899371 33 8. 

" Al-Ismaily, N., Salagean, A., Blackledge, J. M. and Datta, S., 'Encryp- 

tion using Varying Block Length with Embedded Key Exchange Mech- 

anism', Proceeedings of EPSRC PREP 2005, University of Lancaster, 

April 2005, pp 75-76 

Both papers have been included in the accompanying CD. 

1.5 About this Thesis 

We derive an algorithm that utilizes dynamic length block cipher in which the 
block length changes randomly using a database of over one million primes. 
The initial seed is generated from a key which has been derived from the 

plaintext. The seed is then used to `drive' a linear congruential generator 

which selects two primes. These primes are then used to `drive' the Blum- 

Blum Shub (BBS) [10] generator to compute variable block lengths which 

vary from 5 to 50 characters in length. The block diagram given in Figures 

1.1 and 1.2 outline the process. 

Once a block length is selected, each character in a block is then XOR'ed with 
a random number picked from the second run of BBS generator. The key for 
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Figure 1.1: Encryption process with key embedding techniques 
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encryption is derived from the plaintext using one of four transforms includ- 

ing wavelet decompostion [64]. This provides a unique (plain text dependent) 

bit stream which is applied as a binary key. Chapter 2 and Chapter 3 pro- 

vide essential background material (including a literature search - Chapter 

2) upon which this research has been based. 

In Chapter 4, we consider a method of watermarking the ciphertext with 

the binary key obtained. The method is based on application of the chirp 

function to produce a chirp stream, i. e. applying a linear frequency mod- 

ulated waveform (of finite length) to represent a0 or 1 (phase reversed). 

This method is then combined with the encryption engine (the prime num- 
ber modulation and dynamic block cipher) that is the subject of Chapter 5. 

Test results based on m-code developed for this thesis are discussed in Chap- 

ter 6 which details those features of the computational procedures that are 
fundamental to this work and presents the principal functions and objects 

used to design and construct the encryption system developed. Figure 1.2 

shows a basic encryption process. 

All software development work undertaken for this research is provided in 

Appendix A. All prototyping work was undertaken using MathWorks Inc 

MATLAB Version 6, in particular, in implementing the prime number mod- 

ulation and dynamic block cipher encryption engine with auto-authenticating 

key exchange. The m-code is given in Appendix A. In Appendix B we have 

included background on crypstic and its application on commercial world. 
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plaintext plaintext 

Figure 1.3: Schematic of the basic processes associated with a symmetric 

encryption system. 
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Chapter 2 

Basic Cryptographic Methods 

2.1 History of Cryptography 

Cryptography is derived from a Greek word, crypots, meaning hidden. It is 

a study of the mathematical techniques related to aspects of information 

security such as confidentiality, data integrity, entity authentication, and 
data origin authentication. Cryptography is not the only means of providing 
information security, but rather, one of a class of techniques. One of the 

best examples of early cryptography is the Caesar cipher, named after Julius 

Caesar because he is thought to have used it even if there is no strong evidence 

that he actually invented it [4]. 

The Caesar cipher is a substitution cipher. Encryption is achieved by trans- 

forming each letter of the plaintext message into a different letter to produce 

the ciphertext. For example, if the shift factor is 3 (see Figure 2.1), then: A 

becomes K, E becomes M, L becomes J, and Q becomes S. Of course, the 

shift is dependent on the language used, whether it is English, Russian, or 
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Greek [75]. This cipher can be described using modular arithmetic. Let P 

be the numerical equivalent of a letter in the plaintext and C the numerical 

equivalent of the corresponding ciphertext letter. Then 

P: ABCDEFGHIJKLMN0PQRST 

P: 0123456789 10 11 12 13 14 15 16 17 18 19 

P: UVWXYZ 

P: 20 21 22 23 24 25 

C: 10 17 24 5 12 19 07 14 21 29 16 23 4 11 18 25 6 13 

C: KRYFMTAH0VCJQXELSZGN 

C: 20 18 15 22 3 

C: UBIPWD 

Figure 2.1: The correspondence of letters for the cipher with C- 7P + 10 mod (26) 

P: plaintext C: ciphertext 

This correspondence is obtained in the following way. Letter L is assigned 

numerical 11. Since C= 7P + 10 mod 26.7 x 11 + 10 = 87 -9 mod 26. As 

we can see from the above table 9 is the numerical equivalent of J. 

The example below illustrates enciphering of a message using Ceaser's Ci- 

pher. The message is: 

PLEASE SEND MONEY. 
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Broken into a group (blocks) of 5 letters, the message now reads. 

PLEAS ESEND MONEY. 

It does not have to be 5 letters, in fact it can be any number. The reason 
for keeping it uniform is not to reveal the actual word size. For example, if 

a message contains a lot of 3 letter words, it is easy to guess the word is the. 

Skipping details, the ciphertext obtained is 

LJMKG MGMXF QEXMW. 

Deciphering is, of course, the inverse of the above process. 

Since Roman times and, in particular, since the development of programmable 

computes, a wide class of ciphers have evolved together with the terminology 

associated with Crytography in general. This Section discusses the back- 

ground to different ciphers and associated terminology with an emphasis on 

that which is used throughout this thesis. Basic encryption systems fall into 

two primary categories, transposition and substitution cipher (or both). 

2.1.1 Transposition Ciphers 

In a transposition cipher the plaintext remains the same, but the order of 

characters is shuffled around within a block .A simple transposition cipher 

preserves the number of characters of a given type within a block, making it 

an easy task for cryptanalysts. 
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2.1.2 Substitution Ciphers 

Substitution ciphers are block ciphers which replace symbols by other sym- 
bols. Simple substitution ciphers over small block sizes provide inadequate 

security even when the key space is extremely large. For example, letter E 

occurs more frequently than any other letter in the English text. 

2.2 Block Ciphers 

Block ciphers are a logical and natural extension to implementing an en- 

cryption algorithm and the use of block ciphers is fundamental to the work 

undertaken and the encryption system developed for this thesis. A block 

cipher is a type of symmetric-key encryption algorithm that transforms a 
fixed-length block of plaintext data into a block of ciphertext data of the 

same length. This transformation takes place under the action of a user- 

provided secret key. 

Since different plaintext blocks are mapped to different ciphertext blocks (to 

allow unique decryption), a block cipher effectively provides a permutation 
(one to one reversible correspondence) of sets of all possible messages. The 

permutation affected during any particular encryption is of course secret, 

since it is a function of the secret key. When we use a block cipher to 

encrypt a message of arbitrary length, we use techniques known as modes 

of operation for the block cipher. To be useful, a mode must be at least as 

secure and as efficient as the underlying cipher. Modes may have properties 

in addition to those inherent in the basic cipher. The standard modes are: 
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2.2.1 Electronic Codebook Mode (ECB) 

In ECB [76], each identical block of plaintext gives an identical block of 

ciphertext. The plaintext can be easily manipulated by removing, repeat- 

ing, or interchanging blocks. ECB allows easy parallelization to yield higher 

performance. 

Since ciphertext blocks are independent, malicious substitution of ECB blocks 

(e. g. insertion of frequency occurring blocks) does not affect the decryption of 

adjacent blocks. Furthermore, block ciphers do not hide patterns - identical 

ciphertext blocks imply identical plaintext blocks. For this reason, the ECB 

mode is not recommended for messages longer than one block, or, if keys 

are reused, for more than a single block message. Security may be improved 

somewhat by inclusion of random padding bits in each block. 

The problem with ECB mode is that if a cryptanalyst has the plaintext and 

ciphertext for several messages, he/she can start to compile the codebook 

without knowing the key - see Figure 2.1. In most real world situations, 

fragments of messages tend to repeat and different messages may have bit 

sequences in common. Computer generated messages, like electronic mail, 

tend to have regular structures. Further, messages can be highly redundant 

or may have long strings of zeros or spaces. 

2.2.2 Cipher Block Chaining Mode (CBC) 

In CBC [77] mode, each plaintext block is XORed with the previous cipher- 

text block and then encrypted. An initialization vector is used as a `seed' 
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Figure 2.1: Electronic codebook mode. 
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for the process. The chaining mechanism causes a ciphertext to depend on 

all preceding plaintext blocks (the entire dependency on preceding blocks is, 

however, contained in the value of previous ciphertext block). Consequently, 

rearranging the order of ciphertext blocks affects decryption. Proper de- 

cryption of a correct ciphertext block requires a correct preceding ciphertext 

block as illustrated in Figure 2.2. 

CBC mode forces identical plaintext blocks to encrypt to different ciphertext 

blocks only when some previous plaintext block is different. Two identical 

messages will still encrypt to the same cipher text. Worst still, two messages 

which begin the same, will encrypt in the same way to the first difference. 

Some messages have a common header: a letterhead or a `from' line. While 

block replay is still impossible, this identical beginning can give a crypt- 

analyst some useful information. A simple solution to this problem is to 

encrypt random data over the first block. The block of random data is called 

the Initialisation Vector (IV), initialisation variable, or initial chaining value. 

The IV has no meaning, it is there just to make each message unique. A 

timestamp, or addition of some random bits make a good IV. 

With the addition of IVs, identical plaintext messages encrypt to different 

ciphertext messages. Thus, it is impossible for an eavesdropper to attempt a 

block replay, and more difficult for him/her to build a codebook. While the 

IV should be unique for each message and encrypted with the same key, it is 

not an absolute requirement. 
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2.2.3 Cipher Feedback Block Mode (CFB) 

In CFB [78] mode, the previous ciphertext block is encrypted and the output 

produced is combined with the plaintext block using XOR to produce the 

current ciphertext block. It is possible to define CFB mode so it uses feedback 

that is less than one full data block. An initialization vector is used as a'seed' 
for the process - see Figure 2.3. 

In CFB, the plaintext patterns are concealed in the ciphertext by the use of 
the XOR operation. Plaintext cannot be manipulated directly except by the 

removal of blocks from the beginning or the end of the ciphertext. With CFB 

mode and full feedback, when two ciphertext blocks are identical, the outputs 
from the block cipher operation at the next step are also identical. This allows 
information about plaintext blocks to leak. The security considerations for 

the initialization vector are the same as in CBC mode. 

2.2.4 Output Feedback Block Mode (OFB) 

OFB [79] mode is similar to CFB mode except that the data that is XORed 

with each plaintext block is generated independently of both the plaintext 

and ciphertext. An initialization vector is used as a `seed' for a sequence of 

data blocks si, say, and each data block s; is derived from the encryption of 

the previous data block si - 1. The encryption of a plaintext block is derived 

by XORing the plaintext block with the relevant data block (see Figure 2.4) 
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Figure 2.4: Output feedback chaining mode. 
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OFB mode has an advantage over CFB mode in that any bit errors that 

might occur during transmission are not propagated to affect the decryption 

of subsequent blocks. The security considerations for the initialization vector 

are the same as in CFB mode. A problem with OFB mode is that the 

plaintext is easily manipulated. Namely, an attacker who knows a plaintext 

block mi may replace it with a false plaintext block x by XORing mti with 

the corresponding ciphertext block c; 

2.3 Stream Cipher 

Stream ciphers [61] [73] form an important class of symmetric key encryption 

schemes. What makes them useful is the fact that the encryption transforma- 

tion can change for each symbol of plaintext being encrypted. In situations 

where transmission errors are highly probable, stream ciphers are advanta- 

geous because they have no error propagation problems. They can also be 

used when the data must be processed one symbol at a time (e. g. typical 

usage in low memory devices such as mobile phone communication). The 

security of the stream cipher depends entirely on the keystream generator. 

If the generator generates true random bits, the security can be considered 

as perfect. If the generator gives out a stream of zeros for example, then the 

ciphertext will be the same as the plaintext! 

Stream ciphers can be designed to be exceptionally fast, much faster than 

any block cipher. While block ciphers operate on large blocks of data, stream 

ciphers typically operate on smaller units of plaintext, usually on a bit by 

bit basis. The encryption of any particular plaintext with a block cipher will 

result in the same ciphertext when the same key is used. With a stream ci- 
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pher, the transformation of these smaller plaintext units will vary, depending 

on when they are encountered during the encryption process. 

A stream cipher generates a keystream. Encryption is accomplished by com- 
bining the keystream with the plaintext, usually with the bitwise XOR oper- 

ation. The generation of the keystream can be independent of the plaintext 

and ciphertext, yielding what is termed as synchronous stream cipher. It 

can also depend on the data and its encryption, in which case, the stream 

cipher is said to be self-synchronizing. Most stream cipher designs are for 

synchronous stream ciphers. 

Current interest in stream ciphers is most commonly attributed to the ap- 

pealing theoretical properties of the one-time pad, but there have been, as of 

yet, no attempts to standardize any particular stream cipher proposal as has 

been the case with block ciphers. Interestingly, certain modes of operation 

of a block cipher effectively transform it into a keystream generator and, in 

this way, any block cipher can be used as a stream cipher. However, stream 

ciphers with a dedicated design are likely to be much faster. A number of 

shift registers are implemented and used in stream cipher techniques. 

2.4 Symmetric Ciphers 

In a symmetric cipher, both parties must agree on the encryption key (and 

encryption algorithm) in advance. The key used in symmetric cipher is the 

same for both the sender and recipient. Symmetric systems keys are also 

termed as shared secret systems or private key systems. Symmetric ciphers 

are significantly faster than asymmetric ciphers, but the requirements for key 

exchange make them difficult to use. DES (Digital Encryption Standard) an 
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DES3 (essentially the Digital Encryption Standard with triple encryption) 

and AES/R. ijndael (Advanced Encryption Standard by Joan Daemen and 

Vincent Rijmen) are examples of symmetric ciphers which are used in many 
banking systems for example and in some military applications. 

2.5 Asymmetric Ciphers 

In an asymmetric cipher, the key is negotiated between the parties during 

communication. In this system, each person has two keys. The first key, the 

public key, is shared publicly. The second key is private, and is kept secret. 
When working with asymmetric cryptography, the message is encrypted using 

the recipients' public key. The recipient then decrypts the message using 
his/her private key. That is what makes the system asymmetric. 

Because asymmetric ciphers tend to be significantly more computationally 
intensive, they are usually used in combination with symmetric ciphers to im- 

plement public key cryptography. The asymmetric cipher is used to encrypt 

a session key and the encrypted session key is then used to encrypt the actual 

message. This gives the key-exchange benefits of asymmetric ciphers with 

the speed of symmetric ciphers. RSA and Diffie-Hellman are asymmetric 

ciphers. [61] [41]. Asymmetric ciphers are also know as public key cryptog- 

raphy. This concept was first invented by Diffie and Hellman in 1976 [29] 

[83]. The public key is made freely available to the public. This may serve as 

a convenience, because one does not have to worry about how to exchange 

keys. But on the other hand, it is a good starting point for cryptanalysts. 

Given that C= Ek(P) where P is the plaintext, C is the ciphertext and E 

is the key (k) dependent encryption algorithm, the analyst can guess P and 
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check the answer. This may cause problems if the number of possible text 

messages is small enough to allow for an exhaustive search. However, most 

of the public key algorithms are designed to resist chosen-plaintext attack. 
It is therefore not easy to deduce the secret key from the public key and the 

plaintext cannot be easily recovered from the ciphertext. 

Even though the public key system with a secure algorithm can be considered 

secure, a lot of issues have been raised about the mechanism of key exchange, 

and who is involved in the process. In the article, Ten Risks of PKI: What you 

are not being told about Public Key Infrastructure, Carl Ellison and Bruce 
Shneier [31] highlight some important facts to be considered when using 

public key infrastructure. In essence, a detailed analysis of public key and 

asymmetric systems in general, reveals that the level of security is not as 
significant as that which can achieved using a well designed symmetric system 

which is the basis for encryption engines developed in this thesis. 

The table below compares the difference on key length when using symmetric 

or asymmetric cipher. [83]: 

Symmetric Public 

Key length Key Length 

56 bits 384 bits 

64 bits 512 bits 

80 bits 768 bits 

112 bits 1792 bits 

128 bits 2304 bits 
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Table 2.1: Symmetric and public-key lengths with similar resistance and 
brute-force attacks. 

2.6 Hash Functions 

A hash function is a one way function which takes an input and returns a 

fixed-size output string [97] [50]. Hash functions have a variety of general 

computational usages; they provide one of the best ways for checking the 

authenticity of stored files. For example, if a file has been modified, when 

its hash function is recalculated, there will be a change in the output value 
(hash values). Hash functions are quite useful for network administrators as 

they can use them for files that are quite important in running the system, 

and do not change at all, or maybe do not change often. Tripwire Inc. [90], 

provides software which periodically calculates hash function that a network 

administrator could monitor. If there are any changes, the administrator 

will be notified which helps to identify a potential attack to the network. 
Cryptographic algorithms such as RC5 and SHA1 [89] use hash functions. 

When employed in cryptography, the hash functions are usually chosen to 

have some additional properties such as: 

the input can be of any length; 

the output has a fixed length; 

H(x) is relatively easy and fast to compute for any given x; 

H(x) is one-way; 

H(x) is collision-free. 
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where H(x) is the hash function. 

2.7 One Time Pads 

The One Time Pad (OTP), invented in 1917 [35], is a theoretically unbreak- 

able method of encryption where the plaintext is combined with a random 

number stream of the same length. Co-invented by Gilbert Vernam, who also 

invented stream cipher, OTP is also known as Vernarr cipher. This cipher is 

often described as perfectly secure and unbreakable. The method has been 

mathematically proven unbreakable. Even though the method is secure, it 

is not popular, mainly because of its drawbacks in the key exchange, i. e. 

the key cannot be used more than once. The research undertaken within 

this thesis, is in a broad sense, an attempt to produce a user friendly OTP 

by generating one time key from the plaintext which is: (i) used to encrypt 

the plaintext; (ii) transmitted with the ciphertext as a covert watermark. 

Even though this is an attempt, the cipher produced in this thesis cannot be 

strictly termed as OTP mainly because the random numbers generated by 

the BBS are not truly random. 

2.8 Cryptanalysis 

Any good crypto system must be able to withstand cryptanalysis. While 

there are several good books on cryptography, there are not many books on 

cryptanalysis. One reason is because this is a fast-moving field, and things 

are changing all the time. Thus, any book written on the subject can be ob- 

solete before it gets printed (e. g. a self-study course in cryptanalysis [85] and 
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the Hackers Black Book). Cryptanalysts work on `attacks' to try and break 

the system. In many cases, the cyptanalysts are aware of the algorithm used, 

and will try to break the algorithm in order to compromise the keys or gain 

access to the actual plaintext. It is worth noting that even though a number 

of algorithms are freely published, this does not in any way mean that they 

are the most secure. Major government institutions do not reveal what type 

of algorithm they use for their communication. The rationale for this is that, 

if we find it difficult to break a code with knowledge of the algorithm then 

how difficult it is then to break a code if the algorithm is unknown? On the 

other hand, within the academic community, security in terms of algorithm 

secrecy is not considered to be of high merit and publication of the algo- 

rithm(s) is always recommended. It remains to be understood whether this 

is a misconception within the academic world (due in part to the innocence 

associated with academic culture) or a covertly induced government policy. 
In 2003, it was reported that the US had broke ciphers used by the Iranian 

intelligent services [72], which goes to show that the encryption experts and 

the cryptanalists are in a leap frog race. What was not mentioned, is the fact 

that the Iranian ciphers were based on systems purchased indirectly from the 

US and, thus, based on US designed algorithms! 

There are several methods by which a system can be attacked. In all the 

methods it is assumed that the cryptanalyst has full knowledge of the algo- 

rithms used! These are discussed below. 

2.8.1 Ciphertext-only Attack 

In this type of attack, the cryptanalyst has a ciphertext of several messages 

at his disposal. All of these messages have been encrypted using the same 
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algorithm. The challenge for the cryptanalyst is to try and recover the plain- 

text of these messages. At the same time, he/she will be in a better position 

if he/she can recover the actual keys used for encryption. 

2.8.2 Known-plaintext Attack 

The cryptanalyst task is simpler in this case because he/she has access to 

both the plaintext and the corresponding ciphertext. He/she needs to deduce 

the key used for encrypting those messages, or come up with an algorithm 

to decrypt any new messages encrypted with the same key. 

2.8.3 Chosen-plaintext Attack 

In this case the cryptanalyst possesses both the plaintext and the ciphertext. 

In addition to this he/she also has the ability to encrypt plaintext and recover 

the ciphertext produced. This gives him/her a more powerful tool which 

should enable him/her to deduce the keys. 

2.8.4 Adaptive-chosen-plaintext Attack 

This is an improved version of the chosen-plaintext attack. In this version, 

the cryptanalyst has the ability to modify the results based on the previous 

encryption. This version allows the cryptanalyst to choose a smaller block 

for encryption. 
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2.8.5 Chosen-ciphertext Attack 

Here the cryptanalyst has access to several decrypted texts. In addition, the 

cryptanalyst is able to use the text and pass it through a `black box' for an 

attempted decrypt. The cryptanalyst has to guess the keys in order to use 

this method which is performed on iterated basis (for different keys), until a 

decrypt is obtained. 

2.8.6 Chosen-key attack 

This method is based on some knowledge on the relationship between differ- 

ent keys and not a very practical attack strategy except in special circum- 

stances. 

2.8.7 Rubber-hose Cryptanalysis 

This is based on the use of human factors such as blackmail, physical threat, 

or torture. It is often a very powerful attack and sometimes very effective. 

2.8.8 Differential Cryptanalysis 

Discovered by Eli Biham and Adi Shamir in the late 1980s, this is a more 

general form of cryptanalysis. It is the study of how differences in an input 

can affect the resultant difference in the output. Biham and Shamir pub- 

lished a number of attacks against various block ciphers and hash functions, 

including a theoretical weakness in the Data Encryption Standard (DES). 

This method of attack is usually on a chosen plaintext attack, meaning that 
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the attacker must be able to obtain encrypted ciphertexts for some set of 

plaintexts of his own choosing. 

2.8.9 Linear Cryptanalysis 

This is a known plaintext attack which uses linear relations between inputs 

and outputs of an encryption algorithm that holds with a certain probability. 

This approximation can be used to assign probabilities to the possible keys 

and locate the most probable one. 

2.9 Discussion 

All the attack strategies discussed above are based on a priori knowledge 

of the exact algorithm that is being used (published or otherwise). Since 

conventional encryption systems are based on a single algorithm that operates 

in the same way under different conditions and in a way that is independent 

of the input plaintext, it is an example of mono-static data processing. 

One obvious way of increasing the security of an encryption system is to con- 

sider new algorithms whose functional form is kept secure. But this approach 

falls short of the principle of algorithm accessibility insisted upon primarily 

by the academic community. However, there is another approach that can 

be considered which is based on the modulation of. 

(i) the algorithms themselves; 

(ii) the parameters that `drive' them. 
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This involves application of a `multi-dynamic' paradigm. In this thesis we 

consider both cases. In case (i) above, we review the use of deterministic 

chaos [69] for designing a multiplicity of algorithms which can be published 

in the knowledge that a multiplicity of new algorithms can be generated rel- 

atively easily which is, at least in principle, inexhaustive. This facility exists 

because of the infinite variety of non-linear (chaotic) iteration functions that 

can be invented for this purpose; a facility that is not available to the same 

extent with conventional approaches to algorithm design, i. e. through the 

use of pseudo random number generators. This is discussed in section 3.17. 

With regard to case (ii) above, with conventional encryption algorithms, the 

parameters that `drive' them are invariably prime numbers. Thus, in order 

to exercise the principal of multi-dynamicism using conventional encryption 

algorithms, we can introduce a design strategy that is based on prime number 

modulation which is the subject of Chapter 5. This is based on the theory of 

encryption discussed in Chapter 3 which includes a review of the properties 

of prime numbers and how these properties can be used to compute prime 

numbers efficiently in order to implement prime number modulation in prac- 

tice. In addition to applying a multi-dynamic paradigm to the design of an 

encryption engine, we also investigate how this approach can be applied to 

the generation and exchange of keys which forms the subject of Chapter 5. 

38 



Chapter 3 

Encryption Techniques and 

Systems 

This chapter begins with an introduction to prime numbers, demonstrating 

the importance in their study when it comes to cryptography. It includes 

a review that highlights why, in cryptographic applications, prime numbers 

are so essential. We then discuss different types of (prime number based) 

pseudo random number generators (PRNGs) together with their strengths 

and weaknesses and explain how these generators can be implemented in 

order to design Dynamic Block Encryption (DBX) systems. Finally we pro- 

vide a brief introduction to different types of cryptographic techniques and 

discuss the operational characteristics of the more secure ciphers such RSA 

and DES. 
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3.1 Prime Numbers 

There is huge literature concerning prime numbers and their relationship to 

number theory in general. In this section, we shall discuss those properties 

of prime numbers that are of specific importance to encryption in terms of 

their computation and, in particular, the characteristics that are necessary 

to implement a prime number modulation scheme. 

A prime number is an integer greater than 1 that is divisible by no other 

integer except by 1 and itself [98]. The study of prime numbers has fasci- 

nated mathematicians for hundreds of years because of their mystical and 

numerological properties, finding the properties of prime numbers very ap- 

pealing. However, for years there has never been any real use for them. All 

that changed as the need to design encryption systems using programmable 

computers grew. This is because prime numbers are building blocks of all 

integers. Every integer is either itself a prime or the product of primes. In 

this sense, there is a similarity between prime numbers and atoms. Prime 

numbers are as important to number theorists and atoms are to materials 

scientists. 

If P is the set of all prime numbers, then any positive integer a can be written 

uniquely in the following form: 

a= 
Hpap 

pEP 

where each ap >0 

For example, 

3600 = 24 x 32 x 52 

The value of any positive integer can be specified by simply listing all the 
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nonzero exponents in the foregoing formulation. Integer 12 is represented by 

a2 = 2, a3 =1 and integer 18 is represented by a2 = 1, a3 =2 for example. 

Multiplication of two numbers is equivalent to adding the corresponding ex- 

ponents: 

k= mit -º kp = mp + np for all pcP 

k= 72 x 60 = 4320 

72 = 23 x 32 

60 = 22x31x51 

k2=3+2=5 

k3=2+1=3 

k5=1=1 

4320 = 25 x 33 x 51 

Primes are also quite useful when it comes to determining the greatest com- 

mon divisor (gcd) of two integers: 

Again we have: 

72 = 23 x 32 

60=22x3' x51 
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gcd(60,72) = 22 x 31 x 50 

and in general, 

k= gcd(a, b) --> kp = min (ar, bb) for all p 

3.1.1 Fermat's Little Theorem 

Fermat's Little Theorem states the following: If p is prime and a is a positive 
integer not divisible by p, then 

ap-1 =1 (mod p) 

For example, given a=7, p = 17 

716 =1 (mod 3) 

The same formula can also be written as aP -a (mod p). 

3.1.2 The Search for Prime Numbers 

To date, there is no known rule that tells us what the nth largest prime 

is. However, by analysing the pattern of primes we reveal some interesting 
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features. For example, if we compute the differences between successive 

primes, we obtain the following list: 1,2,2,4,2,4,6,2,6,6,4,6,6,2,6, 

4,2,6,4,6,8,4,2,4,2,4,14,4,6,2,10. (That is, 1=3-2,2 =5-3, 
2=7-5,4 = 11 - 7, and so on). The list is somewhat disorderly, but the 

numbers in it start to get gradually larger. Of course, they do not increase 

steadily, but the numbers as much as 10 and 14 do not appear until quite 

late on, while the first few are all 4 or under [37]. 

If we write out the first ten thousand primes, then the gaps between successive 

numbers get larger. This is to be expected because as an integer n becomes 

larger, there is a greater likelihood for smaller integers m<n to exist such 

that n/m =k where k is an integer. In other words, as an integer increases 

in size, the probability of finding successive primes gets smaller. 

Numerous scholars have developed different theories on prime numbers. For 

example, in 1742 Christian Goldbach [20] wrote to Leonhard Euler and stated 

that every even integer greater than 4 is a sum of 2 odd primes and every 
integer greater than 5 is a sum of 3 primes. This is the famous Goldbach 

conjecture. Because it is a conjecture rather than a proof, there has been 

a number of attempts to disprove this statement by using computers with 

large word lengths and extremely large numbers. Mathematicians and other 

researchers have tested the conjecture against larger and larger even numbers 

and `there are strong grounds for believing that Goldbach's conjecture is true, 

and it feels like just a matter of time before someone figures out how to prove 

it' [68] says Joe Buhler of the Mathematical Sciences Research Institute in 

Berkeley, California. `The real justification is algorithmic. In figuring out 

how to carry out the computations that far, one has to extend and polish 

algorithmic programming techniques, and the nature of the scientific advance 
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in this case is much more in algorithmics than in number theory'. 

Like other aspects of mathematics, mathematicians try to identify patterns 

which can then be quantified in terms of a probable theorem. The striking 

feature about prime numbers is that they appear to have patterns and cor- 

relation (in terms of different indirect computational properties), but that 

these properties are not universal, i. e. they are not invariant of the scale 

in magnitude of the prime numbers that are considered. Thus, prime num- 

bers are, in a sense, very elusive entities. Just as one property appears to 

be correct, they `play another trick'. To date, there is still controversy as to 

whether prime numbers have some deterministic pattern yet to be discovered 

or are actually random. Given their apparent random nature, prime num- 

bers continue to fascinate modern mathematicians [3]. For example, Ivan 

Vinogradov, in 1937, tried to prove the work of Goldbach. He was able to 

combine his bilinear form technique and his mean value theorem to reduce 

the Goldbach Ternary Problem to checking a finite number of cases. 

A number of methods are available to detect primes, most of these are ef- 

fective only for smaller primes, but when dealing with large numbers, it 

becomes difficult to determine whether a particular number is prime or not. 

Even though there are an infinite number of primes, [66] of the first 25 billion 

whole numbers, only 1,091,987,405 or about 4 percent are primes, and the 

proportion of primes decreases as the numbers get bigger. Since the numbers 

get so large, the need for efficient ways of identifying primes is a subject of 

continuing research. One method for identifying a number as a prime is by 

dividing it by primes; we first test if it is an even number and then find if 

it divisible by 3,5,7 and so on. This method is fine for small numbers, but 

once the numbers get large it becomes slow and difficult to compute. 
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Since 1945, and the development of programmable computers, cryptogra- 

phers have taken a keen interest in prime numbers, and this has increased 

the need for analysing them. In cryptography, the need is necessary be- 

cause it is trivial to multiply 2 primes together but very difficult to compute 

the two primes given the product. For example, given the primes 7317631 

and 234239, multiplying them yields 1714074567809. The problem is then 

to obtain 7317631 and 234239 from 1714074567801. Clearly, factoring huge 

numbers is not an easy task. 

Goldbach's conjecture remains just a conjecture. Thus, work continues to be 

undertaken to prove Goldbach's conjecture prime pairs. 

In 1998, Herman to Riele [45] used a Cray C916 supercomputer to check that 

all even numbers up to 1014 satisfy the Goldbach conjecture. His work was 

based on: (i) the assumption that under the Generalized Riemann hypothesis, 

every odd number >7 can be written as a sum of three prime numbers; 
(ii) under the assumption of the Riemann hypothesis, every even positive 
integer can be written as a sum of at most four prime numbers. Goldbach's 

conjecture has then been verified for all even numbers in the intervals [105i; 

105i + 108], for i=3,4,..., 20 and [1010i; 1010i + 109], for i= 20,21,..., 30. 

The search for Goldbach's twin primes continues. With the increase in com- 

puter power, we obtain results faster. In 2000 Richstein managed to verify up 

to 4x 1014 primes. He also investigated a number of different ways in which 

a number can be expressed as the sum of two primes. He proved that, as the 

even integers get larger, the number of such prime-pairs increases. Richstein 

found the number of such sums for all even integers up to 500 million. 

Table 3.1 shows how the number of pairs used to express a number increases 

as the even number gets larger. 
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Integer No. of Goldbach Partitions 

10 2 

100 6 

1,000 28 

10,000 127 

100,000 810 

1,000,000 5,402 

10,000,000 38,807 

100,000,000 291,400 

Table 3.1: A table showing Goldbach's twin primes 

The search for Goldbach's twin primes began some time ago, but picked up 

speed with the introduction of computers. Initially, it was taking time for 

mathematicians to push the limit for Goldbach's pairs, the table below shows 

the nature of the progress over time, i. e. over the last 200 years. 

Other mathematicians have taken interest in calculating and detecting prime 

numbers. The French mathematician, Mersenne, came up with the theory 

that 2' -1 is prime if n is prime. However, it was later proved that not all 

numbers under this equation are primes. For example: even though 11 is 

prime, 211 -1 is 2047 which is not prime. Since the Mersenne conjecture, a 

long search was initiated to find what are known today as Mersenne's Primes. 

The Greatest Internet Mersenne Prime Search (GIMPS) [57) project involved 

members connecting their PCs to a central computer which tested and ver- 

ified Mersenne primes. In May 2004, the 41st Mersenne prime was found. 

The number itself contains 7,235,733 decimal digits, with n= 224,036,583. 

The search for the largest Mersenne prime still continues and the `race' will 
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Bound Reference 

1x 10, Desboves 1885 

1x 105 Pipping 1938 

1x 108 Stein and Stein 1965ab 

2x 1010 Granville et al. 1989 

4x 1011 Sinisalo 1993 

1x 1014 Deshouillers et al. 1998 

4x 1019 Richstein 2001 

2x 1016 Oliveira e Silva March 2003 

6x 1016 Oliveira e Silva Oct 2003 

Table 3.2: The progress in validating Goldbach's twin primes. 

no doubt continue for some time to come. 

3.1.3 Prime Types 

Ferrier's Prime 

According to Hardy and Wright (1979), the 44-digit Ferrier's prime F 

'7 (2148+1) = 20988936657440586486151264256610222593863921, determined 

to be a prime using only a mechanical calculator [16], is the largest prime 

found before the days of electronic computers. Mathematica can ver- 

ify primality of this number in a (small) fraction of a second, showing how 

far the art of numerical computation has advanced in the intervening years. 
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Sophie Germain Prime 

A prime p is said to be a Sophie Germain prime if both p and (2p + 1) are 

prime. The first few Sophie Germain primes are 2,3,5,11,23,29,41,53, 

83,89,113,131, ... 

The largest known Sophie Germain prime is 7068555 * 21213°2-1, which has 

36523 digits [17]. It is not known if there are an infinite number of Sophie 

Germain primes [42]. 

Wieferich Prime 

A Wieferich prime [18] is a prime p which is a solution to the congruence 

equation 2P-1 - 1(mod p2) 

Note the similarity of this expression to the special case of Fermat's little 

theorem 2P-1 =1 (mod p) which holds for all odd primes. The first few 

Wieferich primes are 1093,3511, ... with none other less than 4x 1012. 

Interestingly, one less than these numbers have suggestive periodic binary 

representations: 1092 = 100010001002,3510 = 1101101101102. 

3.1.4 Prime Patterns 

The fascination with prime numbers still continues and there are a number 

of (non-universal) )patterns which, when studied, can help us find a way 

to succeed in learning more about the prime numbers. With the help of 

computers, prime numbers dispay some interesting patterns as seen in [40]. 
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Relative Primes 

For n+1 integers less than or equal to 2n, there are always two of them which 

are relatively prime. For example, if n is 5, then take any 6 integer from the 

set: 1,2,3,4,5,6,7,8,9,10. Out of these, there are two which are relatively 

prime [42]. 

3.2 Generating Prime Numbers 

A number of methods are available for generating primes. The most widely 

used is the sieve of Eratosthenes. This method works fine for primes less 

than 100,000,000. For larger values, we need to apply different methods. 

3.2.1 Primality Test 

When working with large numbers, we often need to test them for primality 

before we can use them. Stallings [89] has formalised a routine TEST which 

takes a number n and tests for primality. Even though the condition can be 

met, it does not mean that the number is prime, but is a highly probable 

prime number. Given n is the number to be tested. 

1. Find integers k, q, with k>0, q odd so that (n -1= 2kq); 

2. Select a random integer a, 1<a<n-1; 

3. if aq mod n=1 then return('inconclusive'); 

4. for j=0 to k-1 do 

5. if a2iq mod n=n-1 then return('inconclusive'); 

6. Return(` composite'); 
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The interest in primality testing has grown rapidly since cryptographers in- 

troduced the public key exchange mechanism in the 1990s. The security 

involved primarily relies in factoring very large numbers. Integer factoriza- 

tion poses many problems, a key problem being the testing of numbers for 

primality. A reliable and fast test for primality would bring us a step closer 

to decoding data containing secret information. Therefore, cryptanalyst re- 

search communities have began to address the problem of primality testing 

with increased vigor. A primality test is a simple function that determines 

if a given integer is prime or composite. Some methods used for primality 

testing are addressed below. 

Sieve of Eratosthenes 

This method exemplifies both the simplicity of testing for primality and the 

restraints on the efficiency of such tests. The algorithm itself is a fairly 

straightforward process and easy to implement, based almost completely on 

the definition of primes [1]. However, even though it is easy to implement, it 

is by no means efficient. In cryptography, most primality testing is concerned 

with large numbers, usually in excess of 100 digits. If we were to use the Sieve 

of Eratosthenes to determine the primality of a number with just 20 digits, 

we would need first to find at least all the primes up to 1010. There are 

around 450 million primes less than 1010. At the rate of finding one prime 

per second (including `crossing off' all the multiples), we would be working 

for a little over 14 years to find 450 million primes, which would then have 

to be divided into our original 20-digit number. Clearly, the amount of time 
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needed to determine just one number is quite impractical for cryptographic 

purpose. Of course, we can use faster and more efficient computers to run this 

algorithm. We can also find better methods of storing the primes numbers. 

They could be stored in a database for quick retrieval for example. However, 

in general, this method is still inefficient. 

Trial Division Method 

If n is a composite positive integer, then n has a prime divisor p which is less 

than or equal to /. The algorithm used for testing first checks for all prime 

numbers p that are less than or equal to and whether they divide n. The 

prime numbers p: 5 Vfn- can either be generated by the sieve of Eratosthenes 

or obtained from a database of prime numbers. 

Fermat Test 

From Fermat's theorem [15]: If n is prime, then an-1 -1 mod n for all 

aEZ with with gcd(a, n) = 1. It can be used to determine that a positive 

integer is composite. For example, let n= 341 = 11 * 31, then we have 

2340 =1 mod 341, even though n is composite. If we use the Fermat test 

with n= 341 and a=3, then n is proven composite. The Fermat test proves 

that n is composite, but does not find a divisor of n. It only shows that 

n lacks a property that all prime numbers have. Therefore the Fermat test 

cannot be used as a factoring algorithm. 

Euclid's Theorem 
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Theorem: There are infinitely many prime numbers. 

Proof [26]: Suppose there exist only a finite number of primes, pl, p2, p3, ... pn. 
Now, consider the integer N= plp2... pn + 1. None of the existing primes 

divides N, since the division N/pi will always give the remainder 1. Thus 

either N is a (new) prime number, or N contains a (new) prime factor, which 

is different from all of those given. This theory therefore proves that there is 

an infinite number of primes. 

The following example starts with the prime 2 and yields at least one new 

prime in each step: 

N2=2+1=3 

N3=2x3+1=7 

N4=2x3x7+1=43 

N5=2x3x7x43+1=1807=13x 139 

N6=2x3x7x43x 139+1 =251085=5x50207 

N7 =2x3x7x 43 x 139 x 50207+ 1 

= 12603664039 = 23 x 1607 x 340999 

N8 =2x3x7x 43 x 139 x 50207 x 340999 +1 

= 429836833293963 

= 23 x 79 x 2365347734339 

Ng =2x3x7x 43 x 139 x 50207 x 340999 x 2365347734339 +1 

= 10165878616190575459068761119 

= 17 x 127770091783 x 46802225641471129 

There are a number of open questions relating to prime numbers that are the 

concern of all cryptologists. Solutions may not necessarily solve and provide 
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a drastic change in cryptographci world, but will help clear some issues which 

are currently not properly unserstood. This questions can be found here [65]: 

3.3 Random Number Generation 

The concept of randomness is part of our daily lives in a range of things 

we do, whether it is buying a lottery ticket, checking weather pattern, or 

simply running after a ball [51]. The security of a number of cryptographic 

algorithms depends on the generation of unpredictable random numbers. It is 

quite essential for use with any sequence that is needed to be generated [91], 

even though it is difficult to design a true random number generator purely 

using software. There are a lot of hardware tools available to create random 

numbers. These are true random numbers and the sequence is impossible to 

guess. For example, a logic can be constructed in such a way that numbers 

are generated by the movement of the mouse. This gives random numbers, 

because no one else will be able to produce exactly the same movement. We 

can also obtain random numbers by tapping the noise made by a CPU in a 

motherboard. 

Good random number generators enhance the strength of cryptography and 

many different methods of generating random numbers have been developed. 

One of the interesting yet simple methods is called the diceware passphrase 

[71]. In this method a list of words is generated and each word numbered. 

The numbers are generated from ordinary dice, which acts as a random 

number generator. The numbers that come up in the rolls are assembled as 

a five digit number, e. g. 43146. That number is then used to look up a word 

in a word list. A major advantage of the Diceware approach is that the level 
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of unpredictability in the passphrase can be easily calculated. Each Diceware 

word adds 12.9 bits of entropy to the passphrase. (That is, log2(65) bits). 

Five words (slightly over 64 bits) are considered a minimum length. 

The best random numbers are created by harnessing natural physical pro- 

cesses, such as radioactivity, which is known to exhibit truly random be- 

haviour. A piece of radioactive material used the emissions detected with 

a Geiger counter [19]. The emissions sometimes can be detected in rapid 

succession, and at other times there is a long delay between emissions; these 

delays are unpredictable and random [87]. A display is connected to the 

Geiger counter which rapidly cycles through the alphabet at a fixed rate, 
but stops momentarily as soon as an emission is detected. The letter on the 

display is then used for a random number. The display restarts and once 

again cycles through the alphabet until it is stopped at random by the next 

emission, and again, the letter on the display is added to the key, and so on. 
This process generates truly random numbers but it is impractical to use for 

cryptographic purpose. 

The term `random' must be used loosely because software based random 

number generators as used in cryptography are basically pseudo-random, i. e. 

simulations of random processes at best. A pseudo-random generator is a 
deterministic algorithm that expands short random seeds into much longer 

bit sequences that appear to be random. In other words, although the output 

of a pseudo-random generator is not really random, there is no easy method of 

telling the difference [36]. The better the pseudo-random number generator, 

the better the design of an encryption engine. [88] In turn, most generators 

used for encryption exploit the properties of prime numbers and hence are 

prime number dependent, hence the importance of prime numbers in applied 
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cryptography. 

Random number generators are not random because they do not have to be. 

Most simple applications, such as computer games for example, need very few 

random numbers. Nevertheless, use of a poor random number generator can 

lead to strange correlations and unpredictable results which are compounded 

in terms of spurious correlations. These must be avoided at all costs. 

The problem is that a random number generator does not produce a random 

sequence. In general, random number generators do not necessarily produce 

anything that looks even remotely like the random sequences produced in 

nature. However, with some careful tuning, they can be made to approxi- 

mate such sequences. Of course, it is impossible to produce something truly 

random on a computer. As John von Neumann states, `Anyone who consid- 

ers arithmetical methods of producing random digits is, of course, in a state 

of sin'. Computers are deterministic, stuff goes in at one end, completely 

predictable operations occur inside, and different stuff comes out the other 

end, a principle that includes a notion that is fundamental to Digital Sig- 

nal Processing (DSP) and computing in general, namely, `rubbish in given 

rubbish out'. Put the same data into two identical computers, and the same 

data comes out of both of them (most of the time! ). 

A computer can only be in a finite number of states (a large finite number, 

but a finite number nonetheless), and the data that comes out will always be 

a deterministic function of the data that went in and the computer's current 

state. This means that any random number generator on a computer (at 

least, on a finite-state machine) is, by definition, periodic. Anything that is 

periodic is, by definition, predictable and can not therefore be random. A 

true random number generator requires some random input; a computer can 
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not provide this. 

3.3.1 Pseudo Random Sequences 

The best a computer can produce is a pseudo random sequence generator. 

Many attempts have been made to define a pseudo random sequence formally 

and in this section, a general overview is given of these attempts. A pseudo 

random sequence is one that looks random. The sequence's period should 

be long enough so that a finite sequence of reasonable length - that is, one 

that is actually used - is not periodic. If for example, a billion random bits 

are required, then a random sequence generator should not be chosen that 

repeats after only sixteen thousand bits. These relatively short non-periodic 

sequences should be as indistinguishable as possible from random sequences. 

For example, they should have about the same number of ones and zeros, 

about half the runs (sequences of the same bit) should be of length one, one 

quarter of length two, one eighth of length three, and so on. In addition, 

they should not be compressible. The distribution of run lengths for zeros 

and ones should be the same. These properties can be empirically measured 

and then compared with statistical expectations. 

A sequence generator is pseudo random if it has the following properties: 

It looks random, which means that it passes all the statistical tests of ran- 

domness that we can find. Considerable effort has gone into producing good 

pseudo random sequences on a computer. Discussions of generators abound 

in the literature, along with various tests of randomness. All of these gener- 

ators are periodic (there is no exception); but with potential periods of 2256 

bits and higher, they can be used for the largest applications. The problem 

with all pseudo random sequences is the correlations that result from their 
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inevitable periodicity. Every pseudo random sequence generator will produce 

them if they are used extensively. A non periodic pseudo random sequence 

must have the property that it is unpredictable. It must be computationally 

non-feasible to predict what the next random bit will be, given complete 

knowledge of the algorithm or hardware generating the sequence and all of 

the previous bits in the stream. 

3.3.2 Real Random Sequences 

Is there such a thing as randomness? What is a random sequence? How 

do you know if a sequence is random? Is for example `101110100' more 

random than '101010101'? Quantum mechanics tells us that there is honest- 

to-goodness randomness in the real world but can we preserve that random- 

ness in the deterministic world of computer chips and finite-state machines? 

Philosophy aside, a sequence generator is really random if it has the follow- 

ing additional property: It cannot be reliably reproduced. If the sequence 

generator is run twice with the exact same input (at least as exact as compu- 

tationally possible), then the sequences are completely unrelated; their cross 

correlation function is effectively zero. This property is not usually possible 

to produce on a finite state machine and for some applications of random 

number sequences, is not desirable, as in cryptography for example. Thus, 

we refer to those processes that produce number streams which look random 

(and passes appropriate statistical tests) and are unpredictable as Pseudo 

Random Number Generators (PRNG). 
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3.3.3 Pseudo Random Number Generators 

The performance of many DSP algorithms depends on the degree of noise 

present in the signal and because many types of DSP algorithms are sensi- 

tive to noise, it is important to test their behaviour in the presence of noise. 

This is usually done by synthesizing noise signals which is accomplished us- 

ing pseudo random number generators. Random numbers are not numbers 

generated by a random process but are numbers generated by a completely 

deterministic arithmetic process. The resulting set of numbers may have 

various statistical properties which together are called randomness. A typ- 

ical mechanism for generating random numbers is via the iterative process 

defined by 

xn+l = (ax� + b) mod P, n>0 

which produces an integer number stream in the range [0, P] and is known as 

the Linear Congruential Generator (LCG) [52]. Here, the modular function 

mod operates in such a way as to output the remainder from the division of 

ax,, +b by P, e. g. 

23mod7=2 and 6mod8=6. 

By convention a mod 0=a and a mod b has the same sign as b. The reason 

for using modular arithmetic is because modular based functions tend to 

behave more erratically than conventional functions. For example consider 

the function y= 2' and the function y= 2x mod 13 for example. The table 

below illustrates the difference between the output of these two function. 
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x 1 2 3 4 5 6 7 8 

2' 2 4 8 16 32 64 128 256 

21 mod 13 2 4 8 3 6 12 11 9 

This approach to creating random sequences was first introduced by DH 

Lehmer in 1949. The values of the parameters are constrained as follows: 0< 

a<P, 0<b<P and 0< xo < P. The essential point to understand when 

employing this method, is that not all values of the four parameters (a, b, xo 

and P) produce sequences that pass all the tests for randomness. Further, 

all such generators eventually repeat themselves cyclically, the length of this 

cycle (the period) being at most P. When b=0, the algorithm, is faster and 

referred to as the multiplicity congruential method and many authors refer 

to mixed congruential methods when b 0. 

An initial value or seed xo is repeatedly multiplied by a and added to b, each 

product being reduced by modulo P. The element xo is commonly referred 

to as the seed. For example, suppose we let a= 13, b=0, p= 100 and 

xo = 1; we will then generate the following sequence of two digit numbers 

1,13,69,97,61,93,09,17,21,73,49,37,81,53,89,57,41, ,,. 

For certain choices of a and P, the resulting sequence XO, x1, x2, ... is fairly 

evenly distributed over (0, P) and contains the expected number of upward 

and downward double runs (e. g. 13,69,97) and triple runs (e. g. 9,17,21,73) 

and agrees with other predictions of probability theory. The values of a and 

P can vary and good choices are required to obtain runs that are statistically 

acceptable and have long cycle lengths, i. e. produce a long stream of numbers 

before the stream is repeated. For example, suppose we choose a=7, b 
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12, P= 30 and xo = 0, then the following sequence is generated 

0,12,16,4,10,22,16,4,10,22,16,4, ... 

Here, after the first three digits, the sequence repeats the digits 4,10,22,16; 

the `cycle length' of the number generator is very short. To improve the cycle 

length, the value of P should be a prime number whose `size' is close to that 

of the word length of the computer. The reason for using a prime number 

is that it is divisible by only 1 or itself. Hence, the modulo operation will 

always produce an output which is distinct from one element to the next. 

Many prime numbers are of the form 2n -1 where n is an integer (Mersenne 

prime numbers and not for any value of n). A typical example of a Mersenne 

prime number is given by 231 -1= 2147483648. Values of the multiplier a 

vary considerably from one application to the next and include values such 

as 75 or 77 for example. 

For long periods, P must be large. The other factor to be considered in 

choosing P is the speed of the algorithm. Computing the next number in the 

sequence requires division by P and hence a convenient choice is the word 

size of the computer. Perhaps the most subtle reasoning involves the choice 

of the multiplier a such that a cycle of period of maximum length is obtained. 

However, a long period is not the sole criterion that must be satisfied. For 

example, a=b=1, gives a sequence which has a maximum period P but is 

anything but random. It is always possible to obtain the maximum period 

but a satisfactory sequence is not always attained. When P is the product of 

distinct primes only a=1 will produce a full period, but when P is divisible 

by a high power of some prime, there is considerable latitude in the choice 

of a. 

There are a few other important rules for optimising the performance of a 
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random number generator using the linear congruential method in terms of 

developing sensible choices for a, b and P, these include: 

9b is relatively prime to P. 

.a-1 is a multiple of every prime dividing P. 

"a -1 is a multiple of 4 if P is a multiple of 4. 

These conditions allow a linear sequence to have a period of length P. 

Random number generators are often designed to produce a floating point 

number stream in the range [0,1]. This can be achieved by normalising the 

integer stream after the random integer stream has been computed. A typical 

example of a random number generator is given below using pseudo code: 

initialise seed 

compute random integers 

compute maximum output value 

divide by maximum value to normalise 

Here, the first loop computes the random integer stream using the LCG, the 

second loop computes the maximum value of the array and the third loop 

nomalizes it so that on output, the random number stream consists of floating 

point numbers (to single or double precision) between 0 and 1 inclusively. The 

seed is typically a relatively long integer which is determined by the user. 

The exact value of the seed should not change the statistics of the output, 

but it will change the numerical values of the output array. These values can 

only be reproduced using the same seed, i. e. such pseudo random number 
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generators do not satisfy the property that their outputs cannot be reliably 

reproduced. 

The output of such a generator is good enough for many simulation type 

applications. There are a few simple guidelines to follow when using such 

random number generators: 

(i) Make sure that the program calls the generator's initialization routine 

before it calls the generator. 

(ii) Use initial values that are `somewhat random', i. e. have a good mixture 

of bits. For example 2731774 and 10293082 are `safer' than 1 or 4096 (or 

some other power of two). 

(iii) Note that two similar seeds (e. g. 23612 and 23613) may produce se- 

quences that are correlated. Thus, for example, avoid initialising generators 

on different processors or different runs by just using the processor number 

or the run numbers as the seed. 

A typical C function for computing uniform random noise in the range 0 to 

1 is included in the accompanying CD. 

In addition to the standard linear congruential generator discussed so far, a 

number of `variations on a theme' can be considered such as the iteration 

xi = (aixi-1 + a2xi-1 + a3) mod P 

or 

xi = (aix3_1 + a2x? _1 + a3xi_1 + a4) mod P 

and so on where an are predefined (integer) numbers and P is a prime. 
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3.3.4 Shuffling 

A relatively simple method that further randomizes the output of a PRNG 

is to shuffle the values with a temporary storage. We first initialize an array 

xi, i=1,2,..., N with random numbers from the random number generator 

given above for example. The last integer random number computed XN is 

then set to M say. To create the next random sequence yz, we apply the 

following process: 

for i=1 to N, do: 

j=l+int(N*M) 

y(i)=x(j) 

M=x (i) 

3.4 Additive Generators 

An alternative solution to random number generation which creates very 

long cycles of values is based on additive generators. A typical algorithm 

commences by initialising an array xi with random numbers (not all of which 

are even) so that we can consider the initial state of the generator to be 

Xl, X2i X3, .... 
We then apply 

Xi = (Xi-a + Xi-b + """ + Xi-m) mod 2" 

where a, b,..., m and n are assigned integers. An example of this PRNG is 

the `Fish generator' given by 

Xi = (Xi-55 + x{_24) mod 232. 
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This approach to pseudo random number generation is fast as no multiplica- 

tion operations (e. g. ax; ) are required. The period of the sequence of random 

numbers is also very large and of the order of 2f (255 - 1) where 0<f<n. 

A further example is the linear feedback shift register given by 

In = (Cixn-1 + C2Xn-2 + Cnxn-m) mod 2k 

which, for specific values of cl, C2i ... c, n. has a cycle length of 2ý. 

3.4.1 PRNG and Cryptography 

In cryptography, pseudo random number generation plays a central role as 

does modular arithmetic in general. One of the principal goals in cryptog- 

raphy is to design random number generators that provide outputs (random 

number streams) where no element can be predicted from the preceding el- 

ements given complete knowledge of the algorithm. Another important fea- 

ture is to produce generators that have long cycle lengths. A further useful 

feature, is to ensure that the Entropy of the random number sequence is a 

maximum, i. e. that the histogram of the number stream is uniform. Finally, 

the use of modular arithmetic in the development of encryption algorithms 

tends to provide functions which are not invertible. They are one-way func- 

tions that can only be used to reproduce a specific (random) sequence of 

numbers from the same initial condition. 

The basic idea in cryptography is to convert a plaintext file to a ciphertext 

file using a key that is used as a seed for the PRNG. A plaintext file is 

converted to a stream of integer numbers using ASCII (American Standard 

Code for Information Interchange) conversion. For example, suppose we wish 
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to encrypt a name Blackledge for which the ASCII' decimal integer stream 

or vector is 

f= (66,108,97,99,107,108,101,100,103,101). 

Suppose we now use the linear congruential PRNG defined by 

ni+l = any mod P 

where a= 13, P= 131 and let the seed be 250659, i. e. no = 250659. The 

output of this iteration is 

n= (73,32,23,37,88,96,69,111,2,26). 

If we now add the two vectors together, we can generate the cipher stream 

c=f+n= (139,140,120,136,195,204,170,211,105,127). 

Clearly, provided the recipient of this number stream has access to the same 

algorithm (including the values of the parameters a and P) and crucially 

to the same seed, the vector n can be regenerated and f obtained from c 

by subtracting n from c. This process can of course be accomplished using 

binary streams where the binary stream representation of the plaintext fb 

and that of the random stream nb say are used to generate the cipher binary 

stream Cb via the process 
Cb = nb ® fb 

where ® denotes the XOR operation. Restoration of the plaintext is then 

accomplished via the operation 

fb=ny®c6=n6ED nb®fb. 

'Any code can be used. 
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Clearly, the process above is just an example of digital signal processing in 

which the information contained in a signal f (i. e. the plaintext) is 'scram- 

bled' by introducing additive noise. Here, the seed plays the part of a key 

that is utilised for the process of encryption and decryption; a form of en- 

cryption that is commonly known as symmetric encryption in which the key 

is a private key known only to the sender and recipient of the encrypted 

message. Given that the algorithm used to generate the random number 

stream is publically available (together with the parameters it uses which 

are typically `hard-wired' in order to provide a random field pattern with a 

long cycle length), the problem is how to securely exchange the key to the 

recipient of the encrypted message so that decryption can take place. If the 

key is particular to a specific communication and is used once and once only 

for this communication (other communications being encrypted using other 

keys), then the processes is known as a one-time pad, because the key is 

only used once. Simple though it is, this process is not open to attack. In 

other words, no form of cryptanalysis will provide a way of deciphering the 

encrypted message. The problem is how to exchange the keys in a way that 

is secure and thus, solutions to the key exchange problem are paramount in 

symmetric encryption. A well known historical example of this problem in- 

volved the distribution of the keys used to initialize the Enigma cipher used 

by the German forces during the Second World War. The Enigma machine 

(which was named after Sir Edward Elgar's composition, the `Enigma Varia- 

tions') was essentially an electromechanical PRNG in which the the seed was 

specified using a plug board and a set of three (and later four) rotors whose 

initial positions could be changed. These settings were effectively equivalent 

to a password or a private key as used today. For a period of time and Us- 

ing a very simplistic and rather exaggerated explanation, the German land 
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forces sometimes communicated the password used on a particular day (and 

at a set time) by radio transmission using standard Morse code. This trans- 

mission was sometimes repeated in order to give the recipient(s) multiple 

opportunity to receive the key(s) accurately. Worse still, in some rare but 

important cases, the passwords were composed of simple names (of some of 

the politicians at the time for example) or phrases. Thus, in many cases, a 

simple password consisting of a well known name or phrase was transmitted 

a number of times sequentially leading to near perfect temporal correlation 

of the initial transmission. This was a phenomenally irresponsible way of 

using the Enigma system. In today's environment, it is like choosing a pass- 

word for your personal computer which is a simple and possibly well known 

name (of the your boss or chief executive for example) or phrase that is eas- 

ily remembered, shouting it out a number of times to your colleagues in a 

open plan office and then wondering why everyone seems to know something 

about your private life! In this sense, the ability for the British war time 

intelligence services to decipher the German land forces communications is 

self-evident. The use of Enigma by the German naval forces (in particular, 

the U-boat fleet) was far more secure in that the password used from one day 

to the next was based on a code book provided to the users prior to depar- 

ture from base. Thus, no transmission of the daily passwords was required 

and, if not for a lucky break, in which one of these code books was recov- 

ered in tact by a British destroyer (HMS Bulldog) from a damaged U-boat, 

breaking the Enigma naval transmissions under their time variant code-book 

protocol would have been effectively impossible. Although the Enigma story 

has many facets to those discussed here, a careful study of this historically 

intriguing technology reveals that the breaking of Enigma had as much to 

do with German incompetency and some bad luck as it did with British in- 
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telligence coupled with some good luck. Thus is the reality of how random 

events (or lucky breaks to some) of the past can effect the outcome of the 

future! 

The discussion above has been used by way of an example to highlight the 

problem of exchanging keys when applying a symmetric encryption scheme. 

It also provides an example of how, in addition to developing the technology 

for encryption, it is imperative to develop appropriate protocols and pro- 

cedures for using it effectively with the aim of reducing inevitable human 

error, one of the underlying principles being, the elimination of any form of 

temporal correlation. Another fundamental principle which has been demon- 

strated time and again throughout the history of cryptology is that although 

improvements in methods and technology are to be welcomed, information 

security is ultimately to do with cultivating the `right state of mind' and that 

part of this state should include a healthy respect for the enemy. 

3.4.2 Gaussian Random Number Generation 

The generation of Gaussian random numbers which are taken to conform to 

the distribution 
(2\ 

P(y) - 
27ro2 

exp - 2v2 

where o is the standard deviation, is important in the analysis of real signals 

because many signals are characterized by additive noise that is Gaussian 

or normally distributed. In cryptography, this result has applications in 

modeling transmission noise for example. 

The method is based on the Box-Muller transform which, in effect transforms 

uniformly distributed deviates into Gaussian distributed deviates. The basic 
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idea is to first create two uniform deviates xl and x2 say on (0,1). Now, 

assume that we wish to create two values yl and y2 which conform to the 

Gaussian probability distribution function 

P(y) -1 27r eXP 
y 

\2/ 

which has a zero mean and a standard deviation of 1. We can then consider 

a relationship between x1, x2, yl and y2 of the form 

yl = -21n xl cos(2rx2) and y2 = -21n xl cos(21rx2) 

or equivalently 

x1 = exp I-21 (yi +y2)J and X2 = 
2ýtan_iya 

Yi 

Further, suppose we let 

sin(27rx2) =R 
11 

and cos(2irx2) =R 

Then R2 = vi + v2 and if we set xl = R2, then we obtain the result that 

Ill = vi 
1n r 

and y2 = v2 
VE21nr 

rr 

where r= R2. Here, vl and v2 are uniform deviates on (0,1) such that r<1. 

Note, that if we compute the joint probability distribution of yl and y2, then 

p(yi, y2)dyidy2 = P(x1, x2) 
I a(xi, x2) 

a(dyidY2 yi, y2 

where the Jacobian determinant is given by 

ä(Xig xs) ää 
__ 

1 
exp 

(-Ml ll f 
exp 

y2)ý 
3(yi, yz 

I-[ 

2ir \2 /J L 72=7r 2 C 
which shows that yl and y2 are independent and that the method creates two 
Gaussian deviates from two uniformly random deviates as required. Thus, 

an algorithm for implementing this method is as follows: 
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repeat 

v1=RAND( 

v2=RAND() 

r=vi+v2 

until r<1 

21n r 
Yi = V1 r 

Výln 

Y2 = V2 r 

where the function RAND() is taken to output a uniform random deviate 

using the linear congruential method discussed earlier. 

The following C code provides a function GNOISE that outputs a Gaussian 

random field using the method discussed above. The process generates two 

arrays of uniform deviates (with different seeds) using the function UNOISE 

and feeds these deviates as pairs into the Box-Muller transform. 

#include<math. h> 

void UNOISE( float s[], int n, long int seed ); 

void GNOISE( float s[1, int n, long int seed ) 

/* FUNCTION: Generates an n size array s of Gaussian distributed */ 

/* noise with zero mean and a standard deviation of 1. */ 
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{ 
int i, k, nn; 

float r, f ac, vi, v2, *xl, *x2; 

/*Allocate internal work space. */ 

xi = (float *) calloc( n+1, sizeof( float ) ); 

x2 = (float *) calloc( n+1, sizeof( float ) ); 

nn=n/2; 

UNOISE(xl, nn, seed); /*Generate uniform deviates. */ 

seed=seed+3565365; /*Add randomly chosen integer to seed. */ 

UNOISE(x2, nn, seed); /*Generate new set of uniform deviates. */ 

k=0; 

for(i=1; i<=nn; i++) 

{ 

vl = 2.0 * x1 [i] - 1.0; /* -1 < v1 <1 */ 

v2 = 2.0 * x2[i] - 1.0; /* -1 < v2 <1 */ 

r= pow( vi, 2+ pow( v2,2 ); 

r= r/2; /* r<=1 */ 

/* Apply the Box-Muller transform */ 

fac=sqrt( (double) -2.0 * log(r)/r); 

/*Write to output array. */ 

71 



s [k] =vl*fac; 

s [k+1] =v2*fac; 

k=k+2; 

} 

} 

3.5 Blum-Blum Shub 

Blum-Blum Shub (BBS) [10] generator is one of the cryptographically strongest 

pseudo random number generator available. The generator works as follows: 

First we choose two large prime numbers, p and q, that both have a remain- 

der of 3 when divided by 4. That is: p-q- 3(mod 4). This is equivalent 

to 
(p mod 4) = (q mod 4) =3 

We then apply th following iteration 

x; +l = x? mod (P4) 

The BBS is referred to as a cyptographically secure pseudorandom bit gener- 

ator. A pseudorandom bit generator is said to pass the next-bit test if there 

is not a polynomial-time algorithm that, on input of the first k bits of an 

output sequence, can predict the (k + 1)st bit with a probability significantly 

greater than 1/2. In other words, given the first k bits of the sequence, there 

is not a practical algorithm that can even allow us to state that the next 

bit will be 1 (or 0) with a probability greater than 1/2. The output of the 

BBS is unpredictable. The security of the BBS is based on the difficulty of 
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factoring n which can be made public, however, unless the cryptanalyst can 

factor n, it is effectively impossible for him/her to predict the output of the 

generator. This generator is unpredictable to the left and unpredictable to 

the right. This means that for a given sequence generated by the generator, 

a cryptanalyst cannot predict the next or previous bit in the sequence. 

Randomness and Fairness - The concept of fairness is significant when 

it comes to generating random numbers. By flipping a coin for example, we 

would expect the number of times it lands on head to be equal to that of 

tails. This is the essence of a fair coin. 

Blum Blum Shub generator produces cryptographically secure random num- 

bers. By running the generator at a certain execution cycle, it can be shown 

that the distribution is normal, even though some of the numbers may be 

repeated, but the pattern of repetition is the same. 

Figure 3.1 shows the distribution of random numbers run over an interval of 

1000. The actual random numbers selected is 10000. The histogram displays 

what may be termed as uniform distribution. From the graph we can see 

that the numbers bewteen 4000 and 5000 have the highest distribution and 

that between 9000 and 10000 have the lowest. This is to be expected because 

the numbers are generated randomly and are therefore subject to deviation. 

If the generator is run over a long period, the average result of the random 

numbers will represent normal distribution. The model does generate random 

numbers fairly. 
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Figure 3.1: Blum Blum Shub generator displaying normal distribution of 

random numbers 
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3.6 HotBits using Radioactive Decay 

HotBits [93) random numbers are generated using quantum mechanical laws 

of nature. The numbers are generated by timing successive pairs of radioac- 

tive decays detected my Geiger-Muller tube interfaced to a computer. The 

Hotbits radiation source is Krypton-85. It works by utilising the material's 

physical properties which results radioactive emissions. Details of the pro- 

cess is beyond the scope of this research but the method is based on the 

beta decay process II85Kr- > II85ab + Q- + -y. In order to be able to utilise 

the output, a user needs to contact the server, where upon the output is 

transmitted directly to his/her PC using the web. These numbers might be 

truly random, as they are produced by nature; however, they are not secure 

enough to be used for cryptography, since a third party is involved. 

3.7 RSA (Rivest Shamir and Adleman) 

RSA gets its name after the three inventors, Rivest, Shamir and Adleman who 

developed the generator in the mid 1970s. 2 It has since withstood years of 

extensive cryptanalysis. However, because to date, cryptanalysis has neither 

proved nor disproved RSA's security, it does suggest a high confidence level 

in the algorithm. 

RSA [38] gets its security from the difficulty of factoring large numbers [70]. 

2There are some claims that the method was first developed at GCIIQ in England 

and then re-invented (or otherwise) by Rivest, Shamir and Adleman; the idea was not 

published openly by GCHQ, only as an internal report that, to date, has not been opened 

to public scrutiny. 
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The public and private keys are functions of a pair of large (100 to 200 digits 

or even larger) prime numbers. Recovering the plaintext from the public key 

and the cipher text is conjectured to be equivalent to factoring the product 

of the two primes. According to Koblitz (1987, p88), `The success of the 

so-called RSA cryptosystem, which is one of the oldest and most popular 

public key cryptosystems, is based on tremendous difficulty of factoring'. 

The essence of the RSA method is outlined below. 

Algorithm for key generation 

1. Generate two large random (and distinct) primes p and q, each of roughly 

the same size. 

2. Compute n= pq and q_ (p - 1)(q - 1). 

3. Select random integer e, 1<e<0, such that gcd(e, c) = 1. 

4. Use the extended Eucledian algorithm to compute the unique integer 

d, 1<d<0, such that ed - 1(modq5). 

5. For use A, the public key is (n, e) and the private key is d where e is the 

encryption component, d is the decryption component and n is the modulus. 

Encryption 

User B encrypts a message for A, which A decrypts. This is based on the 

following: 

1. Obtain A's authentic public key (n, e). 

2. Represent the message as an integer m in the interval [0, n- 1] 

3. Compute c= me mod n 
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4. Send the ciphertext c to A. 

Decryption 

To recover plaintext m from c. A should: 

Use the private key d to recover m= cd mod n. 

Security of RSA 

With the current computing power, factoring n to calculate m from c and 

e is not within reach. By using more powerful computers for factorization, 

the same computers are also used to compute large values of primes. It 

turns out that the increase in computing power may not necessarily pave 

way to breaking the RSA. It is conceivable that an entirely different way to 

cryptanalyse RSA might be discovered. However, if this new way allows the 

cryptanalyst to deduce d, it could also be a new way to factor large numbers. 

It is possible to attack RSA by guessing the value of (p - 1)(p - 1). This 

attack is no easier than factoring n. Factoring n is the most obvious means 

of attack [81]. Any adversary will have the public key, e, and the modulus n. 

To find the decryption key, d, the attacker has to factor n. It is possible for 

a cryptanalyst to try every possible d but this brute force approach is less 

efficient than trying to factor n. 

There have been a number of attacks on RSA, in conclusion to his analysis 

on RSA attacks, Boneh [11] concludes that: `The attacks discovered so far 

mainly illustrate the pitfalls to be avoided when implementing RSA. ' So 
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basically, even though RSA can be attacked, it can can still be considered 

secure, when used properly. In order to ensure the strength of the cipher, 

RSA runs factoring challenges [80] on its websites. The challenge is hard to 

pass, because of the high rewards (around £100,000) and also hard to take 

on. 

3.8 DES 

The Data Encryption Standard (DES), known as the Data Encryption Algo- 

rithm (DEA) by ANSI and the DEA-1 by the ISO, has been the world wide 

standard for over 20 years. It is a symmetric (private key) system that has 

held up remarkably well against years of cryptanalysis. 

In order for it to be acceptable as the standard encryption algorithm, DES 

algorithm had to meet the following: 

" provide a high level of security; 

" must be completely specified and easy to understand; 

" the security of the algorithm must reside in the key (the security should 

not depend on the secrecy of the algorithm); 

" the algorithm must be available to all users; 

" the algorithm must be acceptable for use in diverse applications; 

" it must be economically implementable in electronic devices; 

" it must be efficient to use; 

" it must be able to be validated; 
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" it must be exportable. 

3.8.1 Outline of DES 

DES is a block cipher using 64-bit blocks. The key length is 56-bit. It is 

usually expressed as a 64-bit number, but every 8th-bit is used for parity 

checking and is ignored. All security of DES rests within the keys. 

DES operates on a 64-bit block of plaintext. After the initial permutation, 

the block is split into two halves, each 32-bits long. Then there are 16 rounds 

of identical operations, called function f, in which the data are combined 

with the key. After the 16th-round, the two halves are joined, and a final 

permutation (the inverse of the initial permutation) completes the algorithm. 

In each round the key bits are shifted, and then 48-bits are selected from the 

56-bits of the key. The right half of the data is expanded to 48-bits via an 

expansion permutation, combined with 48-bits of the shifted and permuted 

key via an XOR, sent through 8 `S-boxes' producing 32 new bits, and per- 

muted again. These four operations make up function f. The output of 

function f is then combined with the left half via another XOR. The result 

of these operations becomes the new right half; the old right half becomes 

the new left half. These operations are repeated 16 times, making 16 rounds 

of DES. In effect, DES is based on randomization of the data via the process 

of shuffling. 

If Bi is the result of the iteration, Li and R; are left and right halves of 

Bi, Ki is the 48-bit key for round i, and f is the function that does all the 

substituting and permuting and XORing with the key, then a round is as 

follows: 
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Li = R; 
-1 

= Ls-i (R-i, Ki) 

3.8.2 DES Algorithm 

DES is a Feistel cipher which processes plaintext blocks of n= 64 bits, 

producing 64-bit ciphertext blocks. The effective size of the secret key K is 

k= 56 bits; more precisely, the input key K is specified as a 64-bit key, 8 

bits of which (bits 8,16, ... 64) may be used as parity bits. The 256 keys 

implemented (at most) 256 of 264 possible bijections on 64-bit blocks. 

Encryption proceeds in 16 stages of rounds. From the input key K, sixteen 

48-bit subkeys Ki are generated, one for each round. Within each round, 

eight fixed carefully selected 6-to-4 bit substitution mappings (S-boxes) Si, 

collectively denote S, are used. The 64-bit plaintext is divided into 32-bit 

halves Lo and Ro. Each round is functionally equivalent, taking 32-bit input 

Li-1 and Ri_1 from a previous round and producing 32-bits output. Hence 

E is a fixed expression permutation, mapping Ri -1 from 32 to 48-bits (all 

bits are used once, some are used twice). P is another permutation on 32- 

bits. An initial permutation (IP) precedes the first round; following the 

last round, the left and right halves are exchanged and, finally, the resulting 

string is bit permuted by the inverse of IP. Decryption involves the same 

key and algorithm, but with subkeys applied to the internal rounds in the 

reverse order. A simplified view is that the right lialf of each round (after 

expanding a 32-bit input of 8 characters of 6-bits each) carries out key- 

dependent substitutions on each of the 8 characters, then uses a fixed bit 
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transposition to redistribute the bits of the resulting characters to produce 

a 32-bit output. 

The DES algorithm, on a step by step basis is given below. 

Input: plaintext ml... m64i 64-bit key K= kl... k64 (includes 8 parity bits) 

Output: 64-bit ciphertext block C= cl... C64 

1. (key schedule) Compute sixteen 48-bit round keys K; from K. (using 

DES key schedule algorithm - see below) 

2. (Lo, Ro) '0-- IP(mlm2... m64) 

3. (16 rounds) for i from 1 to 16, compute Li and R, computing f (R2_1, KK) _ 

P(S(E(A-_li)) as follows: 

(a) Expand R; 
_1 = rlr2... r32 from 32 to 48 bits 

T «- E(Ri. _1). 
(Thus T= r32rlr2... r32r1. ) (b) Tis. Represent Ti as eight 

6-bit character strings: (B1, 
..., B8) = Ti. 

(c) Tii (Sl (B1), S2(B2), ..., S, (B3)). Here S, (B1) maps B; = blb2... b6 

(d) Tiii «- P(Tii) 

4. blb2... b64 +-- (R16, L16). (Exchange final blocks L16, R16). 
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5. C +-- IP-1(blb2... b64). 

DES Key Schedule Algorithm 

Input: 64-bit key K= ki... k64 (including 8 odd-parity bits). 

Output: sixteen 48-bit keys Ki, 1 <i< 16. 

1. Define v=, 1 <i< 16 as follows: vi =1 for iE1,2,9,16; vs =2 otherwise. 

(These are left-shift values for 28-bit circular rotations below. ) 

2. T f-- PCI(K); represent T as 28-bit halves (Co, Do). 

3. For i from 1 to 16 compute K; as follows: Ci +-- (Ci_1 +- vi), Di 

(Di-i F- vi), Ki '- PC2(Cs, Di) 

3.8.3 Security of DES 

Since its invention in the 1970s, the security of DES has been studied inten- 

sively. Special techniques such as differential and linear cyptanalysis have 

been used to attack DES, but the most successful attack has been an ex- 

haustive search of the key space. With special hardware of large networks 

and workstations, it is now possible to decrypt DES ciphertexts in a few 

days or even hours. In addition, the Electronic Frontier Foundation (EFF) 
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have sponsored the development of a crypto chip named Deep Crack that 

can process 88 billion DES keys per second and has successfully cracked 56- 

bit DES in less that 3 days (J Buchmann 2001). In the paper Six Ways to 

Break DES [48], Junod outlines various methods that can be used to break 

the encryption. 

Today, DES can only be considered secure if triple encryption is used. In 

this context, it is important to know that DES is not a group. This means 

that for the two DES keys kl and k2 there is, in general, not a third DES k3 

such that DES(kl)oDES(k2) = DES(k3). If DES were a group, then multiple 

encryption would not lead to increased security. In fact, the subgroup that 

the DES encryption permutations generate in the permutation group 5641 is 

at least of order the order of 102499. Hence, triple encryption DES or DES3 

has become the preferred standard for symmetric encryption systems world 

wide since the 2001. 

3.9 Rijndael 

Rijndael is an iterated block cipher with a variable block length and a vari- 

able key length. The block length and key length can be independently 

specified at 128,192, and 256 bits. The Rijndael Block Cipher was selected 

by the National Institute of Science and Technology (NIST), mainly because 

DES was an aging standard and no longer addresses today's needs for strong 

encryption. 

The designers of the Rijndael Cipher had the following criteria taken into 

account: 
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9 resistance against all known attacks; 

. speed and code of compactness on a wide range of platforms; 

" design simplicity. 

In most ciphers, the round transformation has the Feistel Structure. In this 

structure, typically, part of the bits of the intermediate state are simply 

transposed unchanged to another position. The round transformation of Ri- 

jindael does not have the Feistel structure. Instead, the round transformation 

is composed of three distinct invertible uniform transformations called layers. 

By uniform, we mean that every bit of the state is treated in a similar way. 

The specific choices for the different layers are for a large part based on 

the application of a Wide Trail Strategy, a design method used to provide 

resistance against linear and differential cryptanalysis. In the Wide Trail 

Strategy, every layer has its own function: 

The linear mixing layer: guarantees high diffusion of multiple rounds. 

The non-linear layer: parallel application of S-boxes that have optimum 

worst-case non-linearity properties. 

The key additional layer: a simple XOR of the round key to the interme- 

diate State. 

3.9.1 The State and the Cipher 

The State can be pictured as a rectangular array of bytes. This array has 

four rows, the number of columns is denoted by Nb and is equal to the block 
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length divided by 32. The Cipher key is similarly pictured as a rectangular 

array with four rows. The number of columns of the Cipher Key is denoted 

by Nk and is equal to the key length divided by 32. 

Encryption takes place using four different stages: 

1. Substitute bytes: Uses S-box to perform byte by byte substitution of the 

block. 

2. Shift rows: A simple permutation. 

3. Mix Columns: Substitution over GF(28). 

4. Add round key: Bitwise XOR of current block and portion of the expanded 

key. 

3.9.2 Hardware Implementation 

The Rijndael cipher is suited for effective implementation on a wide range 

of processors with dedicated hardware. Below are some examples of 8- and 

32-bit processors. 

8-Bit Processors 

On an 8-bit processor, Rijndael can be programmed by simply implement- 

ing the different component transformations. This is straight forward for 

RowShift and for the Round Key addition. The implementation of a Byte- 

Sub requires a table of 256 bytes. The Round Key addition, ByteSub and 
RowShift can be effectively combined and executed serially per State byte. 
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Indexing overhead is minimised by explicitly coding the operation for every 

State byte. 

32-Bit Processors 

The different steps of the round transformation can be combined in a single 

set of lookup tables, allowing for very fast implementations on processors 

with word lengths of 32 or above. 

Hardware Suitability 

The cipher is suited to be implemented in dedicated hardware. There are 

several trade-offs between area and speed that are possible. Because the 

implementation in software on general purpose processors is already very 

fast, the need for hardware implementations is usually limited to two specific 

cases: 

(i) Extremely high speed chips with no area restrictions: the T tables can be 

hardwired and the EXORs can be conducted in parallel. 

(ii) Compact co-processors on a Smart Card to speed up Rijindael execution: 

for this platform, typically, the S-box (or the complete MixColumn) operation 

can be hardwired. 
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3.9.3 The Inverse Cipher 

In the table look-up implementation, it is essential that the only non-linear 

step (ByteSub) is the first transformation in a round that the rows are shifted 

before MixColumn is applied. In the Inverse of a round, the order of the 

transformations in the round is reversed and, consequently, the non-linear 

setup will end up being the last step of the Inverse round and the rows are 

shifted after the application of (the inverse of) MixColumn. 

3.9.4 Strength of AES 

This system is expected to perform strongly for all key lengths and block 

lengths defined. The most efficient key recovery attack for AES is exhaustive 

key search. This is the most efficient way of obtaining information from a 

given plaintext-ciphertext pairs. The expected effort of exhaustive key search 

depends on the length of the Cipher Key: 

For a 16-byte key, 2127 applications of Rijndael; 

For a 24-byte key, 2191 applications of Rijndael; 

For a 32-byte key, 2 255 applications of Rijndael. 

The rationale for this is that a considerable safety margin is taken with re- 

spect to all known attacks. It is, however, impossible to make non-speculative 

statements on unknown matters. 
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3.9.5 Advantages and Limitations 

Advantages 

The cipher does not base its security or part of it on obscure and poorly 

understood interactions between arithmetic operations. The variable block 

lengths of 192 and 256 bits allow the construction of a collision-resistant 

iterated hash function using Rijndael as a compression function. The block 

length of 128 bits is not considered sufficient for this purpose nowadays. 

Although the number of rounds is fixed in the specifications, it can be mod- 

ified as a parameter to enhance security. 

Limitations 

In software, the cipher and its inverse make use of different codes and/or 

tables. In hardware, the inverse cipher can only partially re-use the circuitry 

that implements the cipher. Encryption is performed at the Add Round Key 

stage; this is the only stage in which the key is used. Thus, ciphering always 

begins with this round. The other three stages provide confusion, diffusion 

and non-linearity. Since the key is not used in these stages, no security is 

provided. The ciphering process can be viewed as alternating operations of 

XOR encryption (Add Round Key) of a block followed by scrambling of the 

block (the other three stages) followed by XOR encryption. This provides 

for efficiency and strong encryption. 
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3.10 Lucifer 

Lucifer is generally considered to be the first civilian block cipher, developed 

in the 1970s based on work done by Horst Feistel [14]. A revised version 

of the algorithm was adapted as a FIPS (Federal Information Processing 

Standard) standard, the Data Encryption Standard (DES). It was chosen 

by the US National Bureau of Standards (NBS) after public invitation for 

submissions and some internal changes by NBS. DES was publicly released in 

1976 and has been widely used ever since. Lucifer's S-boxes have 4-bit inputs 

and 4-bit outputs; the input of the S-boxes is the bit permuted output of the 

S-boxes of the previous round; the input of the S-boxes of the first round is 

the plaintext. 

Using differential cryptanalysis against the initial version of Lucifer, Biham 

and Shamir showed that Lucifer, with 32-bit blocks and 8 rounds, can be 

broken with 40 chosen plaintexts and 229 steps; the same attack can break 

Lucifer with 128-bit blocks and 8 rounds with 60 chosen plaintexts and 253 

steps. Lucifer has been around for a long time. It has now been succeeded 

by DES and AES and all of Lucifer's US patents have now expired. 

3.11 FEAL 

FEAL was designed in Japan by Shimizu and Miyaguchi from NTT, Japan 

[13] as a replacement to DES. It was originally built as a four-round cryp- 

tosystem with a 64-bit block size and a 64-bit key size. This was done in 

order to give high performance in software. However, soon a number of at- 

tacks against FEAL-4 were announced including one attack that required 

89 



only 20 chosen plaintexts. This led the designers to introduce a revised ver- 

sion, i. e. FEAL-N, where N denotes a number of rounds. 

FEAL was designed for speed and simplicity, especially for software on 8- 

bit microprocessors (e. g. chipcards). It uses byte oriented operations (8-bit 

addition mod 256,2-bit left rotation and XOR), avoids bit-permutations and 

table look-ups and offers small code size. 

Basic Algorithm 

Input: 64-bit plaintext M= ml... m64; 64-bit key K= kl... k64 

Output: 64-bit ciphertext block C,,: -- cl... c64 

1. (key schedule) Compute sixteen 16-bit subkeys K; from K 

2. Define ML = ml... m32, MR = m33... m64. 

3. (Lo, R0) E-- (ML, MR) ® ((K8, K9), (Klo, K11)). (XOR initial subkeys). 

4. Ro+- Ro®Lo 

5. For i is 1 to 8 do: Li E- Rti_1, Rs «- Li_1® f (Ri_1, K1_1). [61] 

6. L8 F- L8 ® R8. 

7. (R� L8) +- (R8, L, ) ® ((K12, K13), (K14, K15)). (XOR final subkeys. ) 

8. C E- (R� L8). (Note the order of the final blocks is exchanged. ) 
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The same algorithm can be used for decryption, but with the key schedule 

reversed. Cryptanalysis is repoted in [7]. 

3.12 IDEA 

IDEA works on 64-bit blocks. Developed in Zurich, Switzerland by Xuejia 

Lai and James Massey, it is generally regarded to be one of the best and most 

secure block algorithms available to the public today. It utilizes a 128-bit 

key and is designed to be resistant to differential cryptanalysis [83), [59]. 

While IDEA is not a Feistel cipher, decryption is carried out in the same 

manner as encryption once the decryption subkeys have been calculated from 

the encryption subkeys. The designers have taken great care in making a 

structure that is easily implemented in both software and hardware. The 

security of IDEA relies on the use of three incompatible types of arithmetic 

operations on 16-bit words: XOR, addition modulo 216, and multiplication 

modulo 216 + 1. Its speed in software can be compared to that of DES. 

One of the principles during the design of IDEA was to facilitate analysis 

of its strength against differential cryptanalysis; IDEA is considered to be 

immune from differential cryptanalysis. In addition, no linear cryptanalytic 

attacks on IDEA have been reported and there is no known algebraic weak- 

ness in IDEA. The most significant cryptanalytic result is due to Daemen. 

He discovered a large class of 251 weak keys for which the use of such a key 

during encryption could be detected and the key recovered. However, since 

there are 2128 possible keys, this result has no impact on the practical secu- 

rity of the cipher for encryption. IDEA is generally considered secure and 

both the cipher development and its theoretical basis have been openly and 
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widely discussed. 

3.13 Skip jack 

Skipjack is the encryption algorithm contained in the Clipper chip [83], [12], 

and it was designed by the NSA. It uses an 80-bit key to encrypt 64-bit 

blocks of data. Skipjack can be more secure than DES, since it uses 80-bit 

keys with 32 rounds. By contrast, DES uses 56-bit keys with only 16 rounds. 

Since its release in 1987, the Skipjack algorithm has remained secret and 

a number of cryptographers were suspicious of the fact. Some thought it 

might be insecure, others were not contented with the fact that NSA had 

inserted a trapdoor. The government, aware of such criticism, decided to 

invite a small group of independent cryptographers to examine the Skipjack 

algorithm. The cryptographers issued a report which stated that, although 

their study was too limited to reach a definitive conclusion, they nevertheless 

believed that Skipjack was secure. The following report was issued by the 

independent committee: 

`Under the assumption that the cost of processsing power is halved every 18 months, it will 

be 36 years before the difficulty of breaking Skipjack by exhaustive search will be equal to 

the difficulty of breaking DES today. Thus, there is no significant risk that Skipjack will 

be broken by exhaustive search in the next 30-40 years. 

There is no significant risk that Skipjack can be broken through a shortcut method of attack, 

including differential cryptanalysis. There are no weak keys; there is no complementation 

property. The experts, not having time to evaluate the algorithm to any great extent, 

instead evaluated NSA's own design and evaluation process. 

92 



The strength of Skipjack against cryptanalytic attack does not depend on the secrecy of the 

algorithm. ' 

In 1998 the US government decided to de-classify Skipjack. 

3.14 GOST 

GOST is a symmetric block cipher designed by the former government of 

Soviet Union [53], [21]. It is a 64-bit block cipher with a 256-bit key. The 

iteration for the GOST algorithm is 32 rounds. To encrypt, a block is divided 

into two halves, left, L, and right, R. The sub-key for round i is Ki. A typical 

GOST round i is: 

Li = R, 
-, 

= L"-I (D .f 
(-i, Kt) 

The right half and the ith subkey are added to modulo 232. The output is 

then divided into 8 4-bit data blocks. Each block becomes the input to a 

different S-box. There is a total of eight S-boxes and thus, each four bits 

go to one S-box. Each S-box is a permutation of the numbers 0 to 15. For 

example, an S-box might look like: 

8,11,3,5,0,10,1,4,15,7,13,6,14,2,9,12. 

The outputs of all eight S-boxes are combined into a 32-bit word. The word 

is then circular shifted 11 bits to the left. The result is XORed to the left 

half to become the new right half, and the right half becomes the new left 

half. This process is repeated 32 times. 

The are some major differences between GOST and DES: [83] 
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9 DES has a complicated procedure for generating subkeys from the keys. 

GOST has a very simple procedure. 

" DES has a 56-bit key; GOST has a 256-bit key. If you add in the 

secret S-box permutations, GOST has a total of about 610 bits of secret 

information. 

. The S-boxes in DES have 6-bit inputs and 4-bit outputs, the S-boxes 

in COST have 4-bit inputs and outputs. Both algorithms have eight 

S-boxes, but an S-box in COST is one-fourth the size of an S-box in 

DES. 

" DES has an irregular permutation, called a P-box; GOST uses an 11-bit 

left circular shift. 

. DES has 16 rounds; GOST has 32 rounds. 

GOST's designers tried to achieve the balance between efficiency and security. 

They modified DES's basic design to create an algorithm which will work 

better for software implementation. Basically, the security of COST has 

been increased by making the key very large, keeping the S-boxes secret, and 

doubling the number of iterations. 

3.15 Blowfish 

Blowfish is a 64-bit block cipher with a variable key length [86]. It was 

designed to meet the following criteria: speed, compactness, simplicity, and 

above all, security. It is optimized for applications where the key is mainly 

static, like communication lines, or automatic file encryption. 
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Blowfish is a Feistel network consisting of 16 rounds. The input is a 64-bit 

data element, x. The basic algorithm is given below. Full description of the 

algorithm can be found in [84]. 

Algorithm 

x is divided into (XL, XR) 

For i=1to16: 

XL =XL®pi 

xR = F(XL) ® ZR 

Swap xl and XR (undo the last swap) 

XR=xR®ß'i7 

XL =XL ®P18 

Recombine XL and XR. 

Decryption is the same as encryption except that P1... P18 are in reverse order. 

3.16 Cryptography using Chaos 

The use of deterministic chaos for encrypting data was based on the work 

of Blackledge and Ptitsyn [8] [9] [69]. It follows the same basic approach 

as that discussed earlier with regard to the application of modular based 
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pseudo random number generation. Pseudo chaotic numbers are in princi- 

ple, ideal for cryptography because they produce number streams that are 

ultra-sensitive to the initial value (the key). However, instead of using it- 

erative based maps using modular arithmetic with integer operations, here, 

we require the application of principally nonlinear maps using floating point 

arithmetic. Thus, the first drawback concerning the application of determin- 

istic chaos for encryption concerns the processing speed, i. e. pseudo random 

number generators (PRNGs) generate integer streams using integer arith- 

metic where as pseudo chaotic number generators (PCNGs) produce floating 

point streams using floating point arithmetic. Another drawback of chaos 

based cryptography is that the cycle length (i. e. the period over which the 

number stream repeats itself) is relatively short when compared to the cy- 

cle length available using conventional PRNGs (e. g. additive generators). 

Thus, compared with conventional approaches, the application of determin- 

istic chaos has (at least) two distinct disadvantages. However, providing the 

application of chaos in this field has some valuable advantages, the compu- 

tational overheads can be enhanced through the use of appropriate real time 

DSP units (essentially, high performance floating point accelerators). More- 

over, the lower cycle lengths can be overcome by designing block ciphers 

which is where an iterator produces a cipher stream only over a block of data 

whose length is significantly less than that of the cycle length of the iterator, 

each block being encrypted using a different key and/or algorithm. So are 

there any advantages to using deterministic chaos? One advantage is com- 

pounded in Figure 3.7 which qualitatively illustrates complexity as a function 

of information showing regions associated with ordered, random and chaotic 

fields. Imagine that an algorithm can output a number stream which can be 

ordered, chaotic or random. In the case of an ordered number stream (those 
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generated from a discretized piecewise continuous functions for example), the 

complexity of the field is clearly low. Moreover, the information and specif- 
ically the information Entropy (the lack of information we have about the 

exact state of the number stream) is low as is the information content that 

can be conveyed by such a number stream. A random number stream (taken 

to have a uniform distribution for example) will provide a sequence from 

which, under ideal circumstances, it is not possible to predict any number in 

the sequence from the previous values. All we can say is that the probability 

of any number occurring between a specified range is equally likely. In this 

case, the information entropy is high. However, the complexity of the field, in 

terms its erratic transitions from one type of localized behaviour to another, 

is low. 

Thus, in comparison to a random field, a chaotic field is high in complexity 

but its information entropy, while naturally higher than an ordered field, is 

lower than that of a random field, e. g. chaotic fields which exhibit uniform 

number distributions are rare. 

From the discussion above, the application of deterministic chaos to encryp- 

tion has a number of disadvantages relative to the application of PRNGs. 

However, the increased level of complexity can be used to provide complex- 
ity driven block ciphers. One method of approach is to use well known maps 

and modify them to extend the region of chaos. For example, the Matthews 
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Information 

Figure 3.2: Qualitative comparison of ordered, random and chaotic fields in 

terms of their complexity and information content. 

cipher is a modification of the logistic map to 

1r 
xn+l = (1 + r) 

(1 
+- xn(1 - xn)' ,rE 

(0,4]. 

The effect of this generalization is seen in Figure 3.8 which shows the Feigen- 

baum diagram for values of r between 1 and 4. Compared to the conven- 

tional logistic map xn+l = rx, a(1 - x�), rE (0,4] which yields full chaos at 

r=4, the chaotic behaviour of the Matthews map is clearly more extensive 

providing full chaos for the majority (but not all) of values of r between 

approximately 0.5 and 4. In the conventional case, the key is the value of xo 

(the initial condition). In addition, because there is a wide range chaotic be- 

haviour for the Matthews map, the value of r itself can be used as a primary 

or secondary key. 
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The approach to using deterministic chaos for encryption has to date, been 

based on using conventional and other well known chaotic models of the type 

discussed above with modifications such as the Matthew map as required. 

However, in cryptography, the physical model from which a chaotic map 

has been derived is not important; only the fact that the map provides a 

cipher that is `good' at scrambling the plaintext. This point leads to an 

approach which exploits two basic features of chaotic maps: (i) they increase 

the complexity of the cipher; (ii) there are an unlimited number of maps of 

the form x,, +l =f (x,, ) that can be literally `invented' and then tested for 

chaoticity to produce a database of algorithms. 

3.16.1 Block Ciphers using Deterministic Chaos 

The low cycle lengths that are inherent in chaotic maps leads naturally to 

consider their application to block ciphers. However, instead of using a single 

algorithm to encrypted data over a series of blocks using different (block) 

keys, here we can use different algorithms, i. e. chaotic maps. Two maps can 

be used to generate the length of each block and the maps that are used to 

encrypt the plaintext over each block. Thus, suppose we have designed a 

database consisting of 100 chaotic maps say consisting of iterative functions 

fl, fi, fa, ..., 
fwoo, each of which generates a floating point number stream 

99 



0.9 

0.8-, 

0.7 { 

0.6- 

0.5- 

0,4- 

0.2- 

0.1- 

0 
0 

Figure 3.3: Feigenhauiii male of the 11altliew-s cipher 

-, 1 
_, 

100 

1.1. 
_ý.. i ..... ... "I 

f 



through the operation 

xn+1 = fm (In, P1, P2) """) 

where the parameters p1i p2i ... are pre-set or `hard-wired' to produce chaos 

for any initial value xo E (0,1) say. An `algorithm selection key' is then 

introduced in which two algorithms (or the same algorithm) are chosen to 

`drive' the block cipher - f50 and f29 say, the session key in this case being 

(50,29). Here, we shall consider the case where map f50 determines the 

algorithm selection and map f29 determines the block size. Map f50 is then 

initiated with the key 0.26735625 say and map f29 with the key 0.65376301 

say. The output from these maps (floating point number streams) are then 

normalized, multiplied by 100 and 1000 respectively for example and then 

rounded to produce integer streams with values ranging from 0 to 100 and 

0 to 1000 respectively. Let us suppose that the first few values of these 

integer streams are 28,58,3,61 and 202,38,785,426. The block encryption 

starts by using map 28 to encrypt 202 elements of the plaintext using the key 

0.78654876 say. The second block of 38 elements is then encrypted using map 

58 (the initial value being the last floating point value produced by algorithm 

28) and the third block of 785 elements is encrypted using algorithm 3 (the 

initial value being the last floating point value produced by algorithm 58) 

and so on. The process continues until the plaintext has been fully encrypted 

with the `session key' (50,29,0.26735625,0.65376301,0.78654876). 

3.16.2 Encrypting Processes 

The encryption can be undertaken using a binary representation of the plain- 

text and applying an XOR operation using a binary representation of the ci- 

pher stream. This can be constructed using a variety of ways. For example, 
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one could extract the last significant bits from the floating point format of 

x, a for example. Another approach, is to divide the floating point range of 

the cipher into two compact regions and apply a suitable threshold. For ex- 

ample, suppose that the output x, a from a map operating over a given block 

consists of floating point value between 0 and 1, then, with the application 

of a threshold of 0.5, we can consider generating the bit stream 

b(xn) = 
1, xn E (0.5,1]; 

0, x, E [0,0.5). 

However, in applying such a scheme, we are assuming that the distribution 

of x,, is uniform and this is rarely the case with chaotic maps. Figure 3.9 

shows the PDF for the logistic map x,, +l = 4x,, (1- x�) which reveals a non- 

uniform distribution with a bias for floating point number approach 0 and 1. 

However, the mid range (i. e. for x, a E [0.3,0.7]) is relatively flat indicating 

that the probability for the occurrence of different numbers generated by the 

logistic map in the mid range is the same. In order to apply the threshold 

partitioning method discussed above in a way that provides an output that 

is uniformly distributed for a any chaotic map, it is necessary to introduce 

appropriate conditions and modify the above to the form 

1, xn E [T, T+ /+); 

b(xn)= 0, xn E [T-0_, T); 

-1, otherwise. 

where T is the threshold and 0+ and 0_ are those values which characterize 

(to a good approximation) a uniform distribution. For example, in the case 

of the logistic map T=0.5 and 0+ = 0_ = 0.2. This aspect of the 

application of deterministic chaos to cryptography, together with the search 
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for a parameter or set of parameters that provides full chaos for an `invented' 

map determines the overall suitability of the function that has been ̀ invented' 

for this application. The `filtering' of a chaotic field to generate a uniformly 

distributed output is equivalent to maximizing the entropy of the cipher 

stream (i. e. generating a cipher stream with a uniform PDF) which is an 

essential condition in cryptography. 
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Figure 3.4: Probability density function (with 100 bins) of the output from 

the logistic map for 10000 iterations. 

In terms of cryptanalysis and attack, the multi-algorithmic approach to de- 

signing a block cipher discussed here introduces a new `dimension' to the 

attack problem. The conventional problem associated with an attack on a 

symmetric cipher is to search for the private key(s) given knowledge of the 

algorithm. Here, the problem is to search not only for the session key(s), 

but the algorithms they `drive'. One over-riding issue concerning cryptol- 
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ogy in general, is that algorithm secrecy is weak. In other words, a cryp- 

tographic system should not rely of the secrecy of its algorithms and all 

such algorithms should be openly published. '. The system described here 

is multi-algorithmic, relying on many different chaotic maps to scramble the 

data. Here, publication of the algorithms can be done in the knowledge that 

many more maps can be invented as required (subject to appropriate condi- 

tions in terms of generating a fully chaotic field with a uniform PDF) by a 

programmer, or possibly with appropriate `training' of a digital computer. 

The idea of using chaotic encryption has been implemented using crypstic. 

(See Appendix B). 

3.16.3 Key Exchange and Authentication 

The process of `scrambling' data using PCNGs or PRNGs is just one aspect of 

cryptography. The other major aspects are (i) key exchange; (ii) authentica- 

tion. Without developing secure ways of transferring the keys from sender to 

receiver, there is little virtue in developing sophisticated methods of 'scram- 

bling'. Further, the ability for a receiver to decrypt a transmission can lead 

to a false sense of confidence with regard to its content and authentication of 

a; decrypted message is often necessary, particularly when a system is being 

attacked through the promotion of disinformation for example by searching 

for a crib, i. e. forcing an encrypted communication whose plaintext in known 

to have certain key words, phases or quotations for example. 

With regard to chaotic block ciphers, one can apply the RSA algorithm dis- 

3Except for some algorithms developed by certain federal government agencies. Perhaps 

they have something to hide! 
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cussed earlier, not to encrypt the plaintext, but to encrypt the sessions keys 

and the algorithm database. With regard to authentication of a message, one 

approach is to use a key that is plaintext dependent for which the chirp coding 

approach discussed previously can be used (with appropriate modifications). 

Further, application of chirp coding can be used to transfer a plaintext key 

in the cipher text, a key that is one of those used to encrypt/decrypt the 

data, but in contributing to the decryption, provides an authentication of 

the original plaintext. In effect, provided that appropriate protocols and 

procedures have been introduced, this approach, not only provides a method 

of authentication but does so, using a one time pad technique. 

The history and development of encryption is a subject that has and con- 

tinues to use a range of methods and approaches. However, there are some 

basic concepts that are easy to grasp and sometimes tend to get lost in the 

detail. The first of these is that the recipient of any encrypted message must 

have some form of a priori knowledge on the method (the algorithm for ex- 

ample) and the operational conditions (the public and/or private keys) used 

to encrypt a message. Otherwise, the recipient is in no better a `state of 

preparation' than the potential attacker. The idea is to keep this a priori in- 

formation to the bare minimum but in such a way that it is super critical to 

the decryption process. Another important reality is that in an attack, if the 

information transmitted is not deciphered in good time, then it is typically 

redundant. Coupled with the fact, that an attack usually has to focus on a 

particular approach (a specific algorithm for example), one way to enhance 

the security of a communications channel is to continually change the encryp- 

tion algorithm and/or process offered by the technology currently available. 

This is the basis for a new commercial system called Cryptic, details of which 

are provided in Appendix B which includes the system development software. 
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3.17 Stream Ciphers 

3.17.1 SEAL 

SEAL is a software efficient stream cipher designed by Rogaway and Copper- 

smith [741. SEAL is a pseudorandom function family (PRF): under a control 

of a key, first preprocessed into a set of tables. SEAL stretches a 32-bit 'po- 

sition index' into a keystream of essential arbitrary length. It then encrypts 

by XORing this keystream with the plaintext, in the manner of a Vernam 

cipher. As with any Vernam cipher, it is imperative that the keystream only 

be used once. On a modern 32-bit processor, SEAL can encrypt messages at 

a rate of about 5 instructions per byte. In comparison, the DES algorithm 

is some 10-30 times as expensive. 

SEAL is a length increasing PRF: under control of a 160-bit key a, SEAL 

maps a 32-bit string n to an L-bit string SEAL(a, n, L). The number L can 

be made as large or as small as is needed for a target application, but output 

lengths ranging from a few bytes to a few thousand bytes are anticipated. 

A PRF can be used to make a good stream cipher. In a stream cipher the 

encryption of a message depends not only on the key a and the message x but 

also on the message's ̀position' n in the data stream. This position is often a 

counter (sequence number) which indicates which message is being ciphered. 

The encryption of string x at position n is given by (n, x® SEAL(a, n, L)), 

where L=W. In other applications n may indicate the address of a piece 

of data on disk. 

SEAL has been designed with the following features which enhance its strength: 

[83] 
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1. Use of a large, secret, key-derived S-box. 

2. Alternate arithmetic operations which do not commute (addition and 

XOR). 

3. Use of an internal state maintained by the cipher which is not directly 

manifest in the data stream. 

4. Varying the round function according to the round number, and varying 

the iteration function according to the iteration number. 

One way to assess performance in a table-based cipher like SEAL is to simply 

count the number of S-box look-ups per byte generated output. SEAL uses 

0.5 look-ups per byte of output. Merkle's 16-round Khufu uses 2 table look- 

ups per byte, while the S/P permutations of a software DES require 16 or 

32 look-ups per byte. These comparisons ignore the rest of the work which 

each cipher does, and this work is in fact greater in SEAL than in Khufu or 

DES. 

Even though SEAL provides a fast strong encryption, it does not, by itself, 

provide data authenticity. If there is a need, SEAL-encrypted message, can 

be accompanied by message authentication code (MAC). 

3.17.2 RC4 

RC4 is a variable key size stream cipher developed by Rivest in 1987 [58]. The 

keystream is independent of the plaintext. It has an 8-bit S-box: So, S1, 
... S25s. 

The entries are used as numbers 0 through 255 and permutated. The per- 

mutation itself is a function of the variable length key. The two counters i 
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and j are both initialised to zero. 

The following function generates a random byte: 

i= (i + 1) mod 256 

j= (j + Si) mod 256 

swap Si and Sj 

t=(Si +SS)mod256 

K=Si 

Encryption takes place by XORing the byte K with the plaintext and de- 

cryption is the reverse. Encryption is 10 times faster than DES. RC4 is quite 

a strong encryption, even though its algorithm looks so simple that most 

experienced programmers can code it from memory. 

3.17.3 FSAngo 

FSAngo [82] is a Japanese high speed stream cipher which works on symmet- 

ric key systems. Developed in conjunction with Fujisoft ABC Inc. and Tokyo 

Denki University, the random key is generated using the FSRansu random 

number generator. Designers of FSRansu claim that the sequence provided 

by the PRNG do not provide enough information to identify the keys. The 

key space is over 10600. The random numbers have been tested for frequency 

linear complexity and statistical distribution; the result could not determine 

any helpful pattern. 

The program works at high speed and is compatible with all processors. It 

can also be easily implemented in hardware with minor modifications. 
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The table below compares different types of ciphers with the key strength 

and speed [5] 

Cipher Patented Max Key Size Block Size Speed 

RC6 Yes 2048 bits 128 bits 1.66 mb/s 

Twofish No 256 bits 128 bits 2.12 mb/s 

Mars Yes 1248 bits 128 bits 1.38 mb/s 

Rijndael No 256 bits 128 bits 2.12 mb/s 

Blowfish No 448 bits 64 bits 2.46 mb/s 

Idea Yes 128 bits 64 bits 0.75 mb/s 

Gost No 256 bits 64 bits 1.63 mb/s 

Cast256 Yes 256 bits 64 bits 1.68 mb/s 

Cast128 No 128 bits 64 bits 2.60 mb/s 

Mistyl Yes 128 bits 64 bits 1.01 mb/s 

Table 3.3: Comparison on different algorithms on key sizes and speeds. 
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Chapter 4 

Digital Watermarking 

4.1 Background to Watermarking 

In this thesis, digital watermarking techniques are used to hide encryption 

keys within the ciphertext data that is transmitted. This overcomes the need 

to implement key exchange algorithms prior to the use of a symmetric en- 

cryption system. It also means that the key can be changed dynamically 

every time a ciphertext is transmitted and thus, provides a solution to im- 

plementing a one-time pad in practice, provided the algorithm is kept secure. 

Watermarking is defined as the practice of hiding a message in an image, 

audio clip, video clip, or media within that work itself. The practice of 

using watermarks has existed for long time. Watermarking was first used by 

Italians around 1282. The marks were made by adding thin wire patterns to 

the paper moulds. Their use was picked up in the eighteenth century when 

the Europeans and Americans started using them as trademarks to indicate 

the date and the size of paper being manufactured. It was also about this 

110 



time that watermarks began to be used as anticounterfeiting measures on 

money and other documents. Many people started utilising watermarks for 

different applications. One of the problems banks were facing at the time was 

counterfeiting; it was easy to duplicate pound notes or dollar bills, as there 

was no sophistication in creating those notes. To overcome this problem, 

William Congreve invented a technique for making colour watermarks by 

inserting dyed material in the middle of the paper during the paper making 

process. The resulting marks must have been extremely difficult to forge, 

because the Bank of England itself declined to use them on the grounds that 

they were too difficult to make. In 1848, a more practical technology was 

invented by William Henry Smith [43], also from England. This replaced 

the fine wire patterns used to make earlier marks with a sort of shallow 

relief sculpture, pressed into the paper mould. The resulting variation on the 

surface of the mould produced beautiful watermarks with varying shades of 

gray. This is the basic technique used today for the face of Queen Elizabeth 

in the UK currency (5,10,20 and 50 notes). 

Watermarks have been used on various occasions, depending on the situation. 

For example, in 1981, Margaret Thatcher arranged to distribute uniquely 

identifiable copies of sensitive documents to her ministers. Each copy had a 

different word spacing that was used to encode the identity of the recipient. 

When the confidential documents leaked to the press, it easily enabled the 

former British prime minister to identify the culprit. This example shows 

that one can be creative in using the technology in its simplest form. 

Digital Watermarking techniques surfaced around 1995. Before that, the 

first who appear to have used the term digital watermaking were Komatsu 

and Tominaga. Watermarking, like cryptography, also uses secret keys to 
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map information to its owners, although the way this mapping is actually 

performed differs considerably from what is done in cryptography, mainly 

because the watermarked object should keep its intelligibility. In practice, a 

watermarked object may be altered either on purpose or accidentally, so the 

watermarking system should still be able to detect and extract the water- 

mark. In cryptography, an object is protected for transmission and archiving, 

once decrypted protection is gone. Watermarking, on the other hand should 

protect the object beyond this. A number of attacks can be used against a 

watermarked object such as: 

Filtering. Low-pass filtering does not introduce considerable degradation 

in watermarked objects, but can dramatically affect the performance, since 

spread-spectrum-like watermarks have a non negligible high-frequency spec- 

tral contents. 

Cropping. In this attack the attacker is interested in only a small portion of 

the watermarked object, such as parts of a certain picture or text. Therefore, 

it is essential, when inserting a watermark, to spread the watermark over the 

dimensions of the data where this attack takes place. 

Compression. This is an unintentional attack which appears very often in 

multimedia applications. Normally images that can be downloaded from the 

Internet have been compressed. If the watermark is required to resist differ- 

ent levels of compression, it is usually advisable to perform the watermark 

insertion task in the same domain where the compression takes place. For 

instance, DCT-domain image watermarking is more robust to JPEG com- 

pression than spatial-domain watermarking. 

Multiple Watermarking. An attacker may take the object that has been 

watermarked, watermark it, and then claims his/her watermark was there 
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first. One way to prevent such attack is to timestamp the hidden information 

by a certification authority. 

4.2 Applications of Watermarking 

The popularity of watermarking is increasing rapidly since it gained recog- 

nition about a decade ago. Many are recognizing its usefulness and this has 

spun out a number of applications. We mention here a few obvious appli- 

cations including some that have made impact to our own lives. In working 

with watermarking, one has to consider a balance between robustness and 

transparency; both are fundamentally opposed requirements, a tradeoff be- 

tween the two must then be made. 

Video Watermarking. Watermarks can be created either in spatial or in 

the DCT (Discrete Cosine Transform) domains'. If created in the DCT do- 

main the results can be directly extrapolated to MPEG-2 sequences, although 

different actions must be taken for different frames. 

Audio Watermarking. Here, the inability of a human ear to listen to 

certain frequencies are used to conceal the watermark and make it inaudible. 

In the context of standard audio processing and broadcast systems, the audio 

content may undergo various band-limiting stages. An audio watermark is 

expected to persist through such manipulations and therefore, it is imperative 

for the watermarking technology not to rely solely on portions of the audio 

spectrum that are perceptually less relevant. Of course, this should be done 

in a way that does not degrade the value of the content and the process of 
'The reason for the DCT domain is that standard still and video compression schemes 

such as JPEG and MPEG are based on algorithms that utilise the properties of the DCT. 
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embedding a watermark should leave no perceivable audio artifacts. 

Text Watermarking. Text documents can be watermarked by patterning 

the inter-word spaces. The words are classified using some features. Sev- 

eral adjacent words are grouped into a segment, and the segments are also 

classified using the word class information. The same amount of information 

is inserted into each of the segment classes. The information is encoded by 

modifying some statistics of inter-word spaces of the segments belonging to 

the same class. 

Fingerprinting. This application allows devices such as a video cameras to 

insert information about itself, e. g. ID number and/or creation date. This 

can be done conventionally by using digital signature techniques or by using 

watermarking techniques. In the latter case, it is more secure, hence altering 

or removing the signature is a difficult task. 

Broadcast Monitoring. In broadcasting, watermarks are usually inserted 

to programs that are widely broadcast. In this way, advertisers can be assured 

that they are getting the air time they paid for, and musicians can feel 

protected by not having their music being pirated and re-broadcasted. 

4.3 The Matched Filter 

The method of watermarking research for this thesis is based on application 

of a specific function - the chirp - coupled with a well defined processes - the 

matched filter. We now discuss the background to the technique, providing 

theoretical and algorithmic details on the approach taken. 

The matched filter is a result of finding a solution to the following problem: 
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Given that 

Si = pi-7fi + ni, 

find an estimate for the Impulse Response Function (IRF) given by 

fi = 9'j s: -. i 

where IEQiPI2 
r EIN, I2IQiI2 

i 
is a maximum. The ratio defining r is a measure of the signal-to-noise ratio. 

In this sense, the matched filter maximizes the signal-to-noise ratio of the 

output. Assuming that the noise ni has a `white' or uniform power spectrum, 

the filter Qi which maximizes the SNR defined by r is given by 

Q; =pi 

and the required solution is therefore 

fi = IDFT(Pi`Si). 

Using the correlation theorem, we then have 

ft = pi-; sj. 

The matched filter is therefore based on correlating the signal s; with the 

IRF pi. This filter is frequently used in systems that employ linear frequency 

modulated (FM) pulses - `chirped pulses' - which will be discussed later. 
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4.3.1 Derivation of the Matched Filter 

With the problem specified as above, the matched filter is essentially a 'by- 

product' of the `Schwarz inequality', i. e. 

z 

Q; P <EIQ, I2EIPtiI2 

The principal `trick' is to write 

QiP: =INjIQ; x 
Pi 

INi 1 
so that the above inequality becomes 

=rINiI Qi 
P. 

<EI Ni I21Qi IZ E R12 
QiPi 

22 

ii 
INiI 

ii 
INNI2' 

From this result, using the definition of r given above, we see that 

r<z 
IPuI2 

INi12 
i 

Now, if r is to be a maximum, then we want 

=i INi12 r 
IPil2 

or 2 
I2 

Ni 1 
`w'iI 

Ni 
-ý 

I Ni I2I Qi l2 
I 

Ni 12. 
itt 

But this is only true if 

jNjjQi= 
INi 

and hence, r is a maximum when 

Qc= 
pi* 

IN. NS2 
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4.3.2 White Noise Condition 

If the noise nz is white noise, then its power spectrum Ni I2 is uniformly 
distributed. In particular, under the condition 

I N; I2= 1 Vi=0,1,..., N-1 

then 
Qi = Pi*. 

4.3.3 FFT Algorithm for the Matched Filter 

Using pseudo code, the algorithm for the matched filter is 

for i=1,2, ..., n; do: 

sr(i)=signal(i) 

si(i)=0. 

pr(i)=IRF(i) 

pi(i)=0. 

forward_fft(sr, si) 

forward_fft (pr, pi) 

for i=1,2, ..., n; do: 

fr(i)=pr(i)*sr(i)+pi(i)*si(i) 

fi(i)=pr(i)*si(i)-pi(i)*sr(i) 

inverse_fft(fr, fi) 
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for i=1,2, ..., n; do: 

hatf (i)=fr(i) 

4.3.4 Deconvolution of Frequency Modulated Signals 

The matched filter is frequently used in systems that utilize linear frequency 

modulated (FM) pulses. IRF's of this type are known as chirped pulses. 

Examples of where this particular type of pulse is used include real and syn- 

thetic aperture radar, active sonar and some forms of seismic prospecting 

for example. Interestingly, some mammals (dolphins, whales and bats for 

example) use frequency modulation for communication and detection. The 

reason for this is the unique properties that FM IRFs provide in terms of the 

quality of extracting information from signals with very low signal-to-noise 

ratios and the simplicity of the process that is required to do this (i. e. cor- 

relation). The invention and use of FM IRFs for man made communications 

and imaging systems dates back to the early 1960s (the application of FM 

to radar for example); mother nature appears to have `discovered' the idea 

some time ago. 

Linear FM Pulses 

The linear FM pulse is given (in complex form) by 

p(t) = exp(-iat2), It (< T/2 

where a is a constant and T is the length of the pulse. The phase of this 

pulse is at2 and the instantaneous frequency is given by 

dt 
(at2) = 2at 
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which varies linearly with t. Hence, the frequency modulations are linear 

which is why the pulse is referred to as a linear FM pulse. In this case, the 

signal that is recorded is given by (neglecting additive noise) 

s(t) = exp(-iat2) 0f (t). 

Matched filtering, we have 

f (t) = exp(iat2) O exp(-iat2) ®f (t). 

Evaluating the correlation integral, 

T/2 

exp(iat2) O exp(-iat2) =J exp[ia(t + T)2] exp(-iaT2)dr 
-T/2 

T/2 

= exp(iat2) J exp(2iarrt)dT 
-T/2 

and computing the integral over T, we have 

exp(iat2) O exp(-iat2) =T exp(iate) sinc(aTt) 

and hence 
j (t) =T exp(iate) sinc(aTt) ®f (t). 

In some systems, the length of the linear FM pulse is relatively long. In such 

cases, 
cos(at2) sinc(aTt) = sinc(aTt) 

and 
sin(at2) sinc(aTt) =0 

and so 
i (t) -T sinc(aTt) 0f (t). 
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Now, in Fourier space, this last equation can be written as 

F(w) . 
U(w), Iw j< aT; 

0, otherwise. 

The estimate f is therefore a band limited estimate of f whose bandwidth 

is determined by the product of the chirping parameter a with the length of 

the pulse T. An example of the matched filter in action is given in Figure 

4.1 obtained using the MATLAB code given below. Here, two spikes have 

been convolved with a linear FM chirp whose width or pulse length T is 

significantly greater than that of the input signal. The output signal has 

been generated using an SNR of 1 and it is remarkable that such an excellent 

restoration of the input is recovered using a relatively simple operation for 

processing data that has been so badly distorted by additive noise. The 

remarkable ability for the matched filter to accurately recover information 

from linear FM type signals with very low SNRs leads naturally to consider its 

use for covert information embedding. This is the subject of the section that 

follows which investigates the use of chirp coding for covertly watermarking 

digital signals for the purpose of signal authentication. 

function MATCH(T, snr) 

%Input: 

T- width of chirp IRF 

"/ snr - signa-to-noise ratio of signal 

n=512; %Set size of array (arbitrary) 

nn=1+n/2; %Set mid point of array 
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%Compute input function (two spikes of width m centered 

%at the mid point of the array. 

m=10; '/. Set width of the spikes (arbitrary) 

for i=1: n 

f(i)=0.0; %Initialize input 

p(i)=0.0; %Initialize IRF 

end 

f(nn-m)=1.0; 

f(nn+m)=1.0; 

%Plot result 

figure(1); 

subplot(2,2,1), plot(f); 

%Compute the (real) IRF, i. e. the linear FM chirp using a 

%sine function. (N. B. Could also use a cosine function. ) 

m=T/2; 

k=1; 

for i=1: m 

p(nn-m+i)=sin(2*pi*(k-1)*(k-1)/n); 

k=k+1; 

end 

%Plot result 

subplot(2,2,2), plot(p); 
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V. Convolve f with p using the convolution theorem and normalize to unity. 
f=fft(f); p=fft(p); 

f=p. *f; 

f=ifft (f) ; f=fftshift (f) ; f=real(f) ; 

f=f. /max(f); %N. B. No check on case when f=0. 

%Compute random Gaussian noise field and normalize to unity. 

noise=randn(1, n); 

noise=noise. /max(noise); 

%Compute signal with signal-to-noise ratio defined by snr. 

s=f+noise. /snr; 

%Plot result 

subplot(2,2,3), plot(s); 

%Restore signal using Matched filter. 

%Transform to Fourier space. 

s=fft(s); 

'Compute Matched filter. 

rest=conj(p). *s; 

rest=ifft(rest); rest=fftshift(rest); rest=real(rest); 

%Plot result 

subplot(2,2,4), plot(rest); 
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Figure 4.1: Example of a matched filter in action (bottom right) by recovering 

information from a noisy signal (bottom left) generated by the convolution of 

an input consisting of two spikes (top left) with a linear FM chirp IRF (top 

right). The simulation and restoration of the signal given in this example is 

accomplished using the MATLAB function MATCIi(256,1). 

123 

200 400 600 



4.4 Watermarking using Chirp Coding 

In this section, we discusses a new approach to `watermarking' digital signals 

using linear frequency modulated `chirp coding'. The principle underlying 

this approach is based on the use of a matched filter to provide a reconstruc- 

tion of a chirped code that is uniquely robust, i. e. in the case of very low 

signal-to-noise ratios. 

Chirp coding for authenticating data is generic in the sense that it can be 

used for a range of data types and applications (the authentication of speech 

and audio signals for example). The theoretical and computational aspects of 

the matched filter and the properties of a chirp are briefly revisited to provide 

the essential background to the method. Signal code generating schemes are 

then addressed and details of the coding and decoding techniques considered. 

4.4.1 Basic concepts 

Methods of watermarking digital data have applications in a wide range of 

areas. Digital watermarking of images has been researched for many years 

in order to achieve methods which provide both anti-counterfeiting and au- 

thentication facilities. One of the principle equations that underpins this 

technology is based on the `fundamental model' for a signal which is given 
by 

s=Pf+n 
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where f is the information content for the signal (the watermark), P is some 
linear operator, n is the noise and s is the output signal. This equation is 

usually taken to describe a stationary process in which the noise n is char- 

acterized by stationary statistics (i. e. the probability density or distribution 

function of n is invariant of time). In the field of cryptology, the operation 

Pf is referred to as the processes of `diffusion' and the process of adding 

noise (i. e. Pf + n) is referred to as the process of `confusion'. In cryptogra- 

phy and steganography (the process of hiding secret information in images) 

the principal `art' is to develop methods in which the processes of diffusion 

and confusion are maximized, an important criterion being that the output 

s should be dominated by the noise n which in turn should be characterized 
by a maximum2 (i. e. a uniform statistical distribution). 

Digital watermarking and steganography can be considered to form part of 

the same field of study, namely, cryptology. Being able to recover f from 

s provides a way of authenticating the signal. If, in addition, it is possible 
to determine that a copy of s has been made leading to some form of data 

degradation and/or corruption that can be conveyed through an appropriate 

analysis of f, then a scheme can be developed that provides a check on: (i) 

the authenticity of the data s; (ii) its fidelity. 

Formally, the recovery of f from s is based on the inverse process 

f =P-1 s- n) 

where P-1 is the inverse operator. Clearly, this requires the field n to be 

known a priori. If this field has been generated by a pseudo random number 

generator for example, then the seed used to generate this field must be 

known a priori in order to recover the data f. In this case, the seed represents 
2A measure of the lack of information on the exact state of a system 

125 



the private key required to recover f. However, in principle, n can be any field 

that is considered appropriate for confusing the information Pf including a 

pre-selected signal. Further, if the process of confusion is undertaken in which 

the signal-to-noise ratio is set to be very low (i. e. IInil » IIPfII), then the 

watermark f can be hidden covertly in the data n provided the inverse process 
P-1 is well defined and computationally stable. In this case, it is clear that 

the host signal n must be known in order to recover the watermark f leading 

to a private watermarking scheme in which the field n represents a key. This 

field can of course be (lossless) compressed and encrypted as required. In 

addition, the operator P (and its inverse P-1) can be key dependent. The 

value of this operator key dependency relies on the nature and properties of 

the operator that is used and whether it is compounded in an algorithm that 

is required to be in the public domain for example. 

Another approach is to consider the case in which the field n is unknown and 

to consider the problem of extracting the watermark f in the absence of this 

field. In this case, the reconstruction is based on the result 

f=P'ls+m 

where 
m= -P-ln. 

Now, if a process P is available in which Ili sIl » I1mil, then an approx- 

imate (noisy) reconstruction of f can be obtained in which the noise m is 

determined by the original signal-to-noise ratio of the data s and hence, the 

level of covertness of the diffused watermark Pf. In this case, it may be pos- 

sible to post-process the reconstruction (de-noising for example) and recover 

a relatively high-fidelity version of the watermark, i. e. 

f, P-ls. 
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This approach (if available) does not rely on a private key (assuming P is 

not key dependent). The ability to recover the watermark only requires 

knowledge of the operator P (and its inverse) and post-processing options as 

required. The problem here is to find an operator that is able to recover the 

watermark effectively in the presence of the field n. Ideally, we require an 

operator P with properties such that P-In -> 0. 

In this application, the operator is based on a chirp function, specifically, a 

linear Frequency Modulated (FM) chirp of the (complex) type exp(-iat2) 

where a is the chirp parameter and t is the independent variable. This 

function is then convolved with f. The inverse process is undertaken by cor- 

relating with the (complex) conjugate of the chirp exp(iat2 ). This provides 

a reconstruction for f in the presence of the field n that is accurate and ro- 

bust with very low signal-to-noise ratios. Further, we consider a watermark 

based on a coding scheme in which the field n is the input. The water- 

mark f is therefore n-dependent. This allows an authentication scheme to 

be developed in which the watermark is generated from the field in which 

it is to be hidden. Authentication of the watermarked data is then based 

on comparing the code generated from s= Pf +n and that reconstructed 

by processing s when JJPf 11 » IJnhl. This is an example of a self-generated 

coding scheme which avoids the use, distribution and application of reference 

codes. Here, the coding scheme is based on the application of Daubechies 

wavelets. There are numerous applications of this technique in areas such as 

telecommunications and speech recognition where authentication is manda- 

tory. For example, the method can readily be applied to audio data with no 

detectable differences in the audio quality of the data. The watermark code 

is able to be recovered accurately and changes relatively significantly if the 

data is distorted through cropping, filtering, noise or a compression system 
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for example. Thus, it provides a way making a signal tamper proof. 

4.4.2 Matched Filter Reconstruction 

Given that 

s(t) = exp(-iat2) 0f (t) + n(t), 

after matched filtering, we obtain the estimate 

f (t) ^, - T sinc(aTt) ®f (t) + exp (iat2) O n(t). 

The correlation function produced by the correlation of exp(iat) with n(t) 

will in general be relatively low in amplitude since n(t) will not normally 

have features that match those of a chirp. Thus, it is reasonable to assume 

that 
IlT sinc(aTt) of (t) II » 11 exp(iat2) 0 n(t) 

and that in practice, f is a band-limited reconstruction of f with high SNR. 

Thus, the process of using chirp signals with matched filtering for the pur- 

pose of reconstructing the input in the presence of additive noise provides 

a relatively simple and computationally reliable method of `diffusing' and 

reconstructing information encoded in the input function f. This is the un- 

derlying principle behind the method of watermarking described here. 

4.4.3 The Fresnel Transform 

Ignoring scaling, we can define the Fresnel transform as 

s(x, y) = exp[-ia(x2 + y2)] 0 of (x, y). 
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This result is just a 2D version of the `chirp transform' discussed earlier. 
The reconstruction of f from s follows the same principles and can be ac- 

complished using a correlation of s with the function exp[ia(x2 + y2)]. This 

result leads directly to a method of digital image watermarking using the 

Fresnel transform to `diffuse' the watermark f. In particular, reverting to 

the operator notation used previously, our Fresnel transform based water- 

marking model becomes 

s(x, y) = Pf (x, y) + n(x, y) 

where the operator 15 is given by 

P= exp[-ia(x2 + y2)] (9 o 

and the inverse operator is given by 

P-1 = exp[ia(x2 + y2)] OO. 

Note, that ®® denotes 2D convolution and 00 denotes 2D correlation. Also, 

in practice, only values >0 can be used for application to digital images so 

that we must consider a function of the normalized form (1 + exp[ic (x2 + 

y2)])/2 for example. 

A covert watermarking procedure involves the addition of a (diffused) water- 

mark to a host image with a very low watermark-to-signal ratio, i. e. 

IIFf(x)y)II «IIn(x, y)II 

Recovery of the watermark is then based on the result 

f (X, y) = P-' [s(x, y) - nix, y)J 
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4.4.4 Chirp Coding, Decoding and Watermarking 

We now return to the issue of watermarking using chirp functions. The basic 

model for the watermarked signal (which is real) is 

s(t) = chirp(t) 0f (t) + n(t) 

where 

chirp(t) = sin(at2). 

We consider the field n(t) to be some pre-defined signal to which a watermark 

is to be `added' to generate s(t). In principle, any watermark described 

by the function f (t) can be used. On the other hand, for the purpose of 

authentication we require two criterion: (i) f (t) should represent a code 

which can be reconstructed accurately and robustly; (ii) the watermark code 

should be sensitive (and ideally ultra-sensitive) to any degradation in the field 

n(t) due to lossy compression, cropping or highpass and lowpass filtering for 

example. To satisfy condition (i), it is reasonable to consider f (t) to represent 

a bit stream, i. e. to consider the discretized version of f (t) - the vector fj 

- to be composed of a set of elements with values 0 or 1 and only 0 or 1. 

This binary code can of course be based on a key or set of keys which, when 

reconstructed, is compared to the key(s) for the purpose of authenticating 

the data. However, this requires the distribution of such keys (public and/or 

private). Instead, we consider the case where a binary sequence is generated 

from the field n(t). There are a number of approaches that can be considered 

based on the spectral characteristics of n(t) for example. These are discussed 

later on, in which binary sequences are produced from the application of 

wavelet decomposition. 
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Chirp Coding 

Given that a binary sequence has been generated from n(t), we now consider 

the method of chirp coding. The purpose of chirp coding is to `diffuse' 

each bit over a range of compact support T. However, it is necessary to 

differentiate between 0 and 1 in the sequences. The simplest way to achieve 

this is to change the polarity of the chirp. Thus, for 1 we apply the chirp 

sin(at2), tET and for 0 we apply the chirp -sin(at2), tET where T is 

the chirp length. The chirps are then concatenated to produce a contiguous 

stream of data, i. e. a signal composed of ±chirps. Thus, the binary sequence 

010 for example is transformed to the signal 

-chirp(t), tE [0, T); 

s(t) _ +chirp(t), tE [T, 2T); 

-chirp(t), tE [2T, 3T). 

The period over which the chirp is applied depends on the length of the 

signal to which the watermark is to be applied and the length of the binary 

sequence. In the example given above, the length of the signal is taken to be 

3T. In practice, care must be taken over the chirping parameter a that is 

applied for a period T in order to avoid aliasing and in some cases it is of value 

to apply a logarithmic sweep instead of a linear sweep. The instantaneous 

frequency of a logarithmic chirp is given by 

, O(t) = 7po + 10-t 

where 
1 

a=7, logio(V)1 - psio) 

ßb0 is the initial frequency and eil is the final frequency at time T. In this 

case, the final frequency should be greater than the initial frequency. 

131 



Decoding 

Decoding or reconstruction of the binary sequence requires the application 

of a correlator using the function chirp(t), tE [0, T). This produces a 

correlation function that is either -1 or +1 depending upon whether -chirp(t) 

or +chirp(t) has been applied respectively. For example, after correlating the 

chirp coded sequence 010 given above, the correlation function c(t)becomes 

-1, tE [0, T); 

c(t) = +1, tE [T, 2T); 

-1, tE [2T, 3T). 

from which the original sequence 010 is easily inferred, the change in sign of 

the correlation function identifying a bit change (from 0 to 1 or from 1 to 0). 

Note, that in practice the correlation function may not be exactly 1 or -1 when 

reconstruction is undertaken and the binary sequence is effectively recovered 

by searching the correlation function for changes in sign. The chirp used to 

recover the watermark must of course have the same parameters (inclusive 

of its length) as those used to generate the chirp coded sequence. These 

parameters can be used to define part of a private key. 

Watermarking 

The watermarking process is based on adding the chirp coded data to the 

signal n(t). Let the chirp coded signal be given by the function h(t), then 

the watermarking process is described by the equation 

_ 
bh(t) n(t) l 

s(t) -a II h(t)11 ý+ lln(t)ll,. J 
and the coefficients a>0 and 0<b<1 determine the amplitude and the 
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SNR of s where 

a= IIn(t) ll... 

The coefficient a is required to provide a watermarked signal whose ampli- 

tude is compatible with the original signal n. The value of b is adjusted to 

provide an output that is acceptable in the application to be considered and 

to provide a robust reconstruction of the binary sequence by correlating s(t) 

with chirp(t), tE [0, T). To improve the robustness of the reconstruction, 

the value of b can be increased, but this has to be off-set with regard to the 

perceptual quality of the output, i. e. the perturbation of n by h should be 

as small as possible. 

4.4.5 Code Generation 

In the previous section, the method of chirp coding a binary sequence and 

watermarking the signal n(t) has been discussed where it is assumed that the 

sequence is generated from this same signal. In this section, the details of this 

method are presented. The problem is to convert the salient characteristics 

of the signal n(t) into a sequence of bits that is relatively short and conveys 

information on the signal that is unique to its overall properties. In principle, 

there are a number of ways of undertaking this. For example, in practice the 

digital signal nti, which will normally be composed of an array of floating 

point numbers, could be expressed in binary form and each element concate- 

nated to form a contiguous bit stream. However, the length of the code (i. e. 

the total number of bits in the stream) will tend to be large leading to high 

computational costs in terms of the application of chirp coding/decoding. 

What is required, is a process that yields a relatively short binary sequence 

(when compared with the original signal) that reflects the important prop- 
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erties of the signal in its entirety. Two approaches are considered here: (i) 

power spectral density decomposition and (ii) wavelet decomposition. 

Power Spectral Density Decomposition 

Let N(w) be the Fourier transform n(t) and define the Power Spectrum P(w) 

as 

P(w) =1 N(w) 12 . 
An important property of the binary sequence is that it should describe the 

spectral characteristics of the signal in its entirety. Thus, if for example, the 

binary sequence is based on just the low frequency components of the signal, 

then any distortion of the high frequencies components will not affect the 

watermark and the signal will be authenticated. Hence, we consider the case 

where the power spectrum is decomposed into N components, i. e. 

P1(w) = P(w), wE [0,521); 

P2(W) = P(W), wE [21,2); 

PN(W) - 
P(W)i WE [ulN-1,1N)" 

Note, that it is assumed that the signal n(t) is band-limited with a bandwidth 

Of SIN. 

The set of the functions P1i P2,..., PN now reflect the complete spectral char- 

acteristics of the signal n(t). Since each of these functions represents a unique 

part of the spectrum, we can consider a single measure as an identifier or tag. 

A natural measure to consider is the energy which is given by the integral 

of the functions over their frequency range. In particular, we consider the 
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energy values in terms of their contribution to the spectrum as a percentage, 

i. e. 

El = 
lE JP1(w)dw, 

0 
02 

E2 = 
lE f 

P2(w) i 
n1 

ON 

EN = PN (w)dw, f 
1 

where N nJP(w)dw. 

E= 
lE 

0 
Code generation is then based on the following steps: 

(i) Rounding to the nearest integer the (floating point) values of Es to decimal 

integer form: 

ei = round(E2), Vi. 

(ii) Decimal integer to binary string conversion: conversion 

b; = binary(e1). 

(iii) Concatenation of the binary string array bi to a binary sequence: 

fj = cat(bi). 

The watermark fj is then chirp coded as discussed previously. 

Wavelet Decomposition 
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The wavelet transform is defined by 

W [f (t)] = FL (t) =ff 
(T) wL(t, -r) d7- 

where 
WL(t, T) = 

1L 
w 

(t 

LT) 

The wavelet transformation is essentially a convolution transform in which 

w(t) is the convolution kernel but with a factor L introduced. The intro- 

duction of this factor provides dilation and translation properties into the 

convolution integral (which is now a function of L) that gives it the ability 

to analyse signals in a multi-resolution role. 

The code generating method is based on computing the energies of the 

wavelet transformation over N levels. Thus, the signal f (t) is decomposed 

into wavelet space to yield the following set of functions: 

FLI (7), FL2 (T), FLN (r). 

The (percentage) energies of these functions are then computed, i. e. 

Ei = 
lE 11 

E2 = 
lE 0f 11'iß (T) I2 dr, 

EN = 
lE fI 

FLN (r) 12 Jr, 

where N 
E=ýE;. 

The method of computing the binary sequence for chirp coding from these 

energy values follows that described in the method of power spectral de- 

composition. Clearly, whether applying the power spectral decomposition 
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method or wavelet decomposition, the computations are undertaken in digi- 

tal form using a DFT and a DWT (Discrete Wavelet Transform) respectively. 

4.4.6 MATLAB Application Programs 

Two prototype MATLAB programs have been developed to implement the 

watermarking method discussed. The coding process reads in a named file, 

applies the watermark to the data using wavelet decomposition and writes 

out a new file using the same file format. The Decoding process reads a named 

file (assumed to contain the watermark or otherwise), recovers the code from 

the watermarked data and then recovers the (same or otherwise) code from 

the watermark. The coding program displays the decimal integer and bi- 

nary codes for analysis. The decoding program displays the decimal integer 

streams generated by the wavelet analysis of the input signal and the stream 

obtained by processing the signal to extract the watermark code or otherwise. 

This process also provides an error measure based on the result 
r, i- yi 

1: i +viI 
i 

where xi and ya are the decimal integer arrays obtained from the input signal 

and the watermark (or otherwise). In the application considered here, the 

watermarking method has been applied to audio (. wav) files in order to test 

the method on data which requires that the watermark does not affect the 

fidelity of the output (i. e. audio quality). Only a specified segment of the 

data is extracted for watermarking which is equivalent to applying and off- 

set to the data. The segment can be user defined and if required, form 

the basis for a (private) key system. In this application, the watermarked 

segment has been `hard-wired' and represents a public key. The wavelets 
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used are Daubechies wavelets computed using the MATLAB wavelet toolbox. 

However, in principle, any wavelets can be used for this process and the 

actual wavelet used yields another feature that can form part of the private 

key required to extract the watermark. 

Coding Process 

The coding process is compounded in the following basic steps: 

Step 1: Read a wav file. 

Step 2: Extract a section of a single vector of the data (note that a wav 

contains stereo data, i. e. two vectors). 

Step 3: Apply wavelet decomposition using Daubechies wavelets with 7 

levels. Note, that in addition to wavelet decomposition, the approximation 

coefficients for the input signal are computed to provide a measure on the 

global effect of introducing the watermark into the signal. Thus, 8 decom- 

position vectors in total are generated. 

Step 4: Compute the (percentage) `energy values'. 

Step 5: Round to the nearest integer and convert to binary form. 

Step 6: Concatenate both the decimal and binary integer arrays. 

Step 7: Chirp code the binary sequence. 

Step 8: Scale the output and add to the original input signal. 
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Step 9: Re-scale the watermarked signal. 

Step 10: Write to a file. 

The above procedure has been implemented where the parameters for seg- 

menting and processing data of a specific size have been `hard wired'. The 

Matlab code (encode. m) has been included in the accompanying CD. 

Decoding process 

The decoding process is as follows: 

Step 1: Steps 1-6 in the coding processes are repeated. 

Step 2: Correlate the data with a chirp identical to that used for chirp 

coding. 

Step 3: Extract the binary sequence. 

Step 4: Convert from binary to decimal. 

Step 5: Display the original and reconstructed decimal sequence. 

Step 6: Display the error. 

A complete Matlab code showing decoding process (decode. m) has been in- 

cluded in the accompanying CD. 
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4.4.7 Discussion 

In a practical application of this method for authenticating audio files for 

example, a threshold can be applied to the error value. If and only if the 

error lies below this threshold is the data taken to be authentic. 

The prototype MATLAB programs provided have been developed to explore 

the applications of the method for different signals and systems of interest 

to the user. Note that in the decoding program, the correlation process 

is carried out using a spatial cross-correlation scheme (using the MATLAB 

function xcorr), i. e. the watermark is recovered using the process chirp(t) O 

s(t) instead of the Fourier equivalent CHIRP*(w)S(w) where CHIRP and 

S are the Fourier transforms of chirp and s respectively (in digital form of 

course). This is due to the fact that the `length' of the chirp function is 

significantly less than that of the signal. Application of a spatial correlator 

therefore provides greater computational efficiency. 

The method of digital watermarking discussed here makes specific use of 

the chirp function. This function is unique in terms of its properties for 

reconstructing information (via application of the Matched Filter) that has 

been `diffused' through the convolution process, i. e. the watermark extracted 

is, in theory, an exact band-limited version of the original watermark as 

defined in the presence of significant additive noise, in this case, the signal 

into which the watermark is `embedded'. The method has a close relationship 

with the Fresnel transform and can be used for digital image watermarking 

in an entirely equivalent way. The approach considered here allows a code 

to be generated directly from the input signal and that same code used to 

watermark the signal. The code used to watermark the signal is therefore 

self-generating. Reconstruction of the code only requires a correlation process 
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with the watermarked signal to be undertaken. This means that the signal 

can be authenticated without access to an external reference code. In other 

words, the method can be seen as a way of authenticating data by extracting 

a code (the watermark) within a code (the signal). 

Audio data watermarking schemes rely on the imperfections of the human 

audio system. They exploit the fact that the human auditory system is insen- 

sitive to small amplitude changes, either in the time or frequency domains, 

as well as insertion of low amplitude time domain echo's. Spread spectrum 

techniques augment a low amplitude spreading sequence which can be de- 

tected via correlation techniques. Usually, embedding is performed in high 

amplitude portions of the signal, either in the time or frequency domains. A 

common pitfall for both types of watermarking systems is their intolerance to 

detector de-synchronization and deficiency of adequate methods to address 

this problem during the decoding process. Although other applications are 

possible, chirp coding provides a new and novel technique for fragile audio 

watermarking. In this case, the watermarked signal does not change the per- 

ceptual quality of the signal. In order to make the watermark inaudible, the 

chirp generated is of very low frequency and amplitude. Using audio files with 

sampling frequencies of over 1000Hz, a logarithmic chirp can be generated 

in the frequency band of 1-100Hz. Since the human car has low sensitivity 

in this band, the embedded watermark will not be perceptible. Depending 

upon the band and amplitude of the chirp, the signal-to-watermark ratio can 

be in excess of 40dB. Various forms of attacks can be applied which change 

the distribution of the percentage sub-band energies originally present in the 

signal including filtering (both low pass and high pass), cropping and lossy 

compression (MP3 compression) with both constant and variable bit rates. 

In each case, the signal and/or the watermark is distorted enough to reg- 
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ister the fact that the data has been tampered with. Further, chirp based 

watermarks are difficult to remove from the signal since the initial and the 

final frequency is at the discretion of the user and its position in the data 

stream can be varied through application of an offset, all such parameters 

being combined to form a private key. 

4.5 Echelon 

When working with encryption, one has to realise that once the data is 

encrypted, ultimate protection has been practiced. The rest is to assess the 

strength and techniques used. The strength may come from the encryption 

itself, it could have strong algorithm and therefore cannot easily be broken, 

for example. On the other hand, the adversary may not be an average 

hacker. In order to have encryption `muscle', powerful computers are needed. 

Moreover, the best of cryptographers are needed to be disposed. This can 

only happen in government organisations. 

Some of the best cryptographers in the world can be found working for the 

government. Most of the military secrets have to be closely guarded since 

this information has to be shared and sent to the military allies across the 

globe. Also military communication secrets are well guarded. There is no 

room for compromise when it comes to transmitting or gathering military 

intelligence. 

Even though they may not openly admit to it, most government organisa- 

tions work hard at eavesdropping all communications around their borders 

and beyond. In the USA, the National Security Agency (NSA) performs 
highly specialized activities to protect US information systems and produce 
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foreign intelligence information. The NSA is also responsible for creating the 

encryption algorithms for messages used for secret communications. These 

algorithms are kept secret and are never published. The agency has created 

under its wings a global spy system codenamed ECHELON, which captures 

and analyzes virtually every phone call, fax, email and telex message sent 

anywhere in the world. ECHELON is controlled by the NSA and is oper- 

ated in conjunction with the Government Communications Head Quarters 

(GCHQ) of England, the Communications Security Establishment (CSE) of 
Canada, the Australian Defense Security Directorate (DSD), and the General 

Communications Security Bureau (GCSB) of New Zealand. These organi- 

sations are bound together under a secret 1948 agreement, UK-USA, whose 

terms and text remain under wraps even today. The NSA was established 

in 1952 by president Harry Truman. After it was setup, the facilities were 

kept secret and the government did not openly admit to its existence until 

1957. The ECHELON centre is Headquartered at Fort George Meade, lo- 

cated between Washington D. C. and Baltimore, Maryland. To date, NSA is 

the largest employer of mathematicians and cryptographers. 

The ECHELON system deploys the largest spy station in the world, with 

over twenty-five satellite receiving stations and 1,400 American NSA person- 

nel working with 350 UK Ministry of Defense staff on site. The Power of 

ECHELON resides in its ability to decrypt, filter, examine and codify these 

messages into selective categories for further analysis by intelligence agents 

from the various UKUSA agencies. Once the data gets sifted, it is given to 

the cryptographers for breaking and cracking the codes. The work involves 

intercepting and decoding messages in over 100 languages. 

The ECHELON system does not only cover text and images. It also inter- 
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cepts voice communication through satellite links. In the UK, as the elec- 

tronic signals are brought into the station, they are fed through the massive 

computer systems, such as Menwith Hills SILKWORTH, where voice recog- 

nition, optical character recognition (OCR) and data information engines get 

to work on the messages. By using powerful voice recognition systems, voice 

patterns of interest are stored and picked up whenever they appear in the 

conversation. This allows the tracking of certain known individuals. Each 

station maintains a list of key words (The Dictionary). The managers at each 

station are free to add and delete the keywords according to their needs. 

Politicians are known to have manipulated the system to their advantage. 

Margaret Thatcher used Echelon to spy on her two cabinet members she 

suspected were disloyal to her. In order to avoid any legal implications, the 

request was undertaken by the Canadian CSE. 

ECHELON has been used beyond political motivation; governments have 

used the system for commercial interests. In 1990, the German magazine, Der 

Speigel, revealed that the NSA had intercepted messages about an impending 

$200 million deal between Indonesia and the Japanese satellite manufacturer 

NEC Corp. After President Bush intervened in the negotiations on behalf of 
American manufacturers, the contract was split between NEC and AT&T. 

The ECHELON system has placed its listening devices all across the globe. 

This enables them to intercept all the communications between all satellite 

systems. There has been great concern from the watch groups that ECHE- 

LON does not serve the purpose it was originally intended for. According 

the echelon watch website [30]: 

'Echelon is perhaps the most powerful intelligence gathering organization in the world. 

144 



Several credible reports suggest that this global electronic communications surveillance sys- 

tem presents an extreme threat to the privacy of people all over the world. According to 

these reports, ECHELON attempts to capture staggering volumes of satellite, microwave, 

cellular and fiber-optic traffic, including communications to and from North America. This 

vast quantity of voice and data communications are then processed through sophisticated 

filtering technologies. 

This massive surveillance system apparently operates with little oversight. Moreover, the 

agencies that purportedly run ECHELON have provided few details as to the legal guidelines 

for the project. Because of this, there is no way of knowing if ECHELON is being used 

illegally to spy on private citizens. 

This site is designed to encourage public discussion of this potential threat to civil liberties, 

and to urge the governments of the world to protect our rights. 

ECHELON has huge listening facilities and its network is directed at Intelsat 

and Inmarsat satellites. These two satellites are responsible for the vast ma- 

jority of phone and fax communications traffic within and between countries 

and continents. 

Most of the work done in these projects is a closely guarded secret. Therefore 

it is hard to determine what methods these governments employ when it 

comes to intercepting and trying to crack the supposedly malicious message. 

One of the methods used on encrypted messages is to scan all packets going 

through the channel. Once an encrypted message is encountered, it is then 

sifted for further scrutiny. Normally when a file is processed, be it a text 

file or a binary file, the processing object will leave a mark in the file. This 

mark should enable the processing object, or program, to recognize the file 

if it is encountered again. For example, if we open a new Microsoft Word 
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TMdocument, the output when viewed in binary format will show that the 

document indeed was created in MS Word. There will be a file signature 

which will list all properties of the document. 

Most encryption software creates a signature on the data that is output. Of 

course for stronger encryption, the signature may not be obvious. But to 

hackers or experienced cryptographers, these can be easily rooted out. Some 

may visually appear on the binary files, while others may appear in forms of 

patterns which are unique to a certain algorithm. The NSA is one of the most 

experienced organisations when it comes to cryptography and cryptanalysis. 

It has been around for a long time, and this has enabled it to gather as much 

data as possible on ALL types on cryptographic data that pass through the 

Internet. Also, that fact that NSA works with other organisations across 

the globe allows it to have access to different types of encrypted data and in 

different languages. 

The filtering system first goes through each packet to determine the type 

of data. If it is plaintext for example, it will be classified and go through 

its assigned process. The same goes for still images, video and audio clips. 

Once the filtering system has determined that the data is encrypted, the first 

thing it will look for is a signature. The signature will determine the type 

of encrypted data. As mentioned earlier, the signature may not be obvious 

and therefore the difficulty in deciphering the signature depends on part the 

complexity of the encryption algorithm. Once it has been ascertained, the 

output will be moved to the next bin for further analysis. 

Different methods of cryptanalysis will be used to crack the code. Once 

broken, the output text will be compared to each of the over 100 language 

dictionaries available. This will go on until matching pattern is found. the 
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next section explains how DBX can be implemented to avoid detection when 

data is transmitted on open channel. 

4.6 Embedding Ciphertext into an Image 

Most of the encryption algorithms discussed above lead to ciphertext output. 

However, there are other messages that will not lead to text output, those 

messages are video, audio clips, and still images. If the message leads to 

a still image, then it is obvious that this message is just an image and not 

a text. Therefore there will not be much interest in the image. The basic 

principle is illustrated in Figure 4.2. 

One of the proposals for this thesis is that after encrypting the message, 

using Dynamic Block Encryption (DBX) for example - which will be covered 

in detail in the next chapter - the next step is to take the output, watermark 

an image with the output and then encrypt the image. This makes the 

encrypted image appear as a normal photograph (if a positive decrypt is 

achieved) while encrypted data is actually embedded within. 

The method can be used for not only encrypting files to an image, but also 

to other types of output, for example, the output can be a music file. Once 

in a music file, it is obvious to a listener that this is just a piece of music 

and nothing else has been added to it. This illustrates the one advantage 

that watermarking has over encryption, namely, that encrypted information 

flags the fact that important information is being communicated. Commu- 

nicating information (encrypted or otherwise) by watermarking an entirely 
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Plainteg 

Figure 4.2: Block diagram showing basic function of encryp- 

tion/watermarking system. 
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independent file (which is then encrypted or otherwise) provides a level of 

covertness that encrypted data cannot achieve. 

In the following chapter, we consider the use of the watermarking technique 

discussed in this chapter for covertly exchanging keys by watermarking the 

ciphertext with the key used to generate the ciphertext. 
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Chapter 5 

Dynamic Block Encryption 

Algorithm (DBX) 

5.1 Introduction 

This chapter details with the first of two encryption engines developed for 

this thesis. It considers each model in details, covering important aspects 

and properties. The algorithm takes data on a block by block basis and 

xor's it with random numbers obtained from running a Blum Blum Shub 

Pseudo Random Number Generator. The key for encryption is generated 

from the text itself and hence changes for each message and is communicated 

by watermarking the ciphertext using the approach developed in the previous 

chapter. This leads to the design of a unique and novel algorithm that forms 

the central kernel to the research reported in this. 

The algorithm has been divided into five modules: 
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9 The key generation module: This module generates a key from the 

input text; hence, the key generated is text dependent. 

" The encryption module: This module encrypts text (or images or any 

other data in any format) using random sized text blocks. 

" The key exchange module: After encryption the text (or image) is 

watermarked and the key is hidden within the text for transmission. 

9 The key extraction module: When this module is run, it removes the 

watermark and recovers decryption key. 

. The decryption module: Decrypts the contents after removal of the 

watermark. 

5.2 Two Modes of Operation 

This software is designed to operate in two modes. In the first mode, we 

use one time parameter exchange, after the initial software setup, there is no 

exchange of parameters between the sender and the recipient. Apart from 

the encrypted file with the embedded key. 

In the second mode, the parameters are passed using secure channel every- 

time a new file is transmitted. 

In this chapter, we cover the main functionality of the DBX, which is in- 

dependent on the mode of operation. The next chapter will cover in more 

details. 
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5.3 Key Generation Module 

This module takes in the text, video or image file and generates a key which 

is used for encryption. For simplicity, all examples used here refer to text 

files; however, the program has been tested with still images and other data 

types. It has, also been tested with video. There are a number of ways to 

generate keys from the text. Four methods of increasing complexity have 

been considered. 

5.3.1 Data Summation Method 

After reading the file, a random noise is generated and padded at the begin- 

ning of the file. Then, all its characters are summed in ASCII mode. Thus, 

if a text file, for example, contained text microsoft, each character is first 

converted to its ASCII equivalent and then added up, i. e. m+i+c+r+ 

0 +s+0 +f+t yields 109+105+99+114+111+115+111+102+ 

116 = 982. Now each digit is again converted to its ASCII equivalent. So 9 

+8+2 becomes 57 + 56 + 50, which is 163. Finally 163 is converted into 

binary and forms 10100011. This binary string forms the key that is used to 

encrypt the text microsoft. 

In the technique used here, it is difficult for the attacker to figure out the key 

on an unsecure communication channels. The key here is changed everytime 

the message changes. Hence, if an attacker manages to crack one message 

to get the key, once the next message comes a long, the key will be rendered 

useless. If the same message is used more than once, the key will be different, 

this is due to the introduction of random numbers used to pad the file. 
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Even though this method is simple, extracting the key from the text is a 

complicated idea in itself. Significant effort goes into securing the keys, while 
in this case the key is used only once, and the chances of guessing it are zero 
(in a reasonable amount of time). 

5.3.2 Hash Algorithm Method 

A hash function is a one way function. By using one way functions, the 

output of the function cannot be converted back to its original input form. 

i. e. the function is non-invertible. The analogy to a one way function is 

mixing of paints. If we have paints of two different colours, for example 

yellow and red, by pouring half of each content into a container, we end up 

with an orange colour. So orange was obtained as a result of mixing two 

different colours. Now, if we want to go back from orange to yellow and 

red, it is effectively impossible. This principle is concerned with the physical 

effect of diffusion which is a one-way process. 

A number of applications make use of hash algorithms. For example, Unix 

passwords are stored in a file in hashed form. This makes it difficult even 
for Unix system managers to guess what the passwords are. Once a user 

wants to log in, he/she types his/her password which then gets `hashed', and 

compared with the stored hashed password in the system. If the two hashes 

match, then permission to the user is granted. This method is not the most 

secure way of protecting passwords. If someone manages to get hold of the 

Unix password file, then he/she needs to try and guess different passwords, 

hash them, and see if the output can match any of the passwords. Once a 

match is found the hashed password will match the guessed password leaving 

the system open to an attack. 
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Hash algorithms are also used to authenticate downloaded files, and also if 

they have not been tampered with. Some Internet sites provide hash values 
for each file they post. If you download a file from any of those sites, you 

may compare the hash value of the downloaded file to the value you get 

after downloading and hashing. If they both match, then the download has 

worked correctly and there is no file corruption. On the other hand, if the 

download has partially failed, the hash value obtained after download will be 

different to the one of the web site. This is also helpful to avoid downloading 

files which have been replaced. For example, if, for some reason, someone 
has changed the file to be downloaded and replaced it with another file, of 
the same size, the hash value will still change indicating inconsistency. 

Network managers have found `perfection' in the use of hash function. In 

order to detect any changes to the critical system files, companies like trip- 

wire. com have managed to utilise the hash functions features and design 

products to help network managers deal with any malicious attempts of 
breaking into the network. The manager has first to identify files which 

need to be changed and which remain static. Also he/she then identifies 

authorised and un-authorised changes. All tagged files have an associated 

hash value. If there is any changes on any of the files, the hash value will 

change. Any critical changes will alert the network manager. This is quite a 

useful tool, as it helps identify any critical file that has changed in case of a 

network attack [95] [94]. 

The method of hash functions to generate keys is used here to create a plain- 

text dependent key. There are a number of algorithms available for hash 

function. Some of the more common function are: SHA-0, SIHA-256, SIiA- 

512, MD4, MD5, HAVAL-128, and RIPEMD [63] [24]. The so called SIHA 
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family, acronym for Secure Hash Algorithm, are created by the National Se- 

curity Agency (NSA). The original algorithm SHA-0 was first published in 

1993. It has since developed into SHA-1 (produces a 160 bit output for mes- 

sages of any length less than 264 bits), SHA-224 (produces 224-bits), SHA-256 

(produces 256 bits), SHA-384 (produces 384 bits), and SHA-512 (produces 

512 bits), sometimes called SHA-2. The last three variants were published by 

NIST in 2001. Message Digest, MD2, MD4, and MD5, have been developed 

by Ronald Rivest, co-founder of RSA Security. It takes plaintext input of 

arbitrary size and outputs a 128-bit message digest. 

A MATLAB m-code function key_gen_hashxx. m is used to generate key using 

a hash function. The program can read the file of any format and any size. 

The m-function is used to run the hash function with a few changes to the 

output according to that needed by the DBX input. Once the file has been 

read, the first step is to make a system call to a hash program rehash. exe. 

The hash program reads the file and outputs a hash value of 256 bits. The 

hash value is stored in a variable name hashv. The value is stored as follows: 

File: <testfile. txt> 

SHA-256 : 1511A24E FC375C25 C44F5880 79D2C0A6 5B1ACEAD 18F390AF 

OAF2803D 20A1FD16 

The output data is arranged in the above manner. It contains the file name, 

the type of SHA used, in this case SHA-256, a colon, and finally the hash 

value is arranged in groups of eight characters. In order to manipulate the 

above data, we need to strip all unwanted characters; this includes the file 

name, SHA type, colon, all spaces, carriage returns and line breaks. Once 

this is done we end up with pure hexadecimal numbers in the following form: 

155 



1511A24EFC375C25C44F5880.... 7B8A928E53164B7337B5FO7AAA4243CA 

Once the data is in this format, it is easier to manipulate, including the 

total length for the hash value is obtained. This is necessary to ensure that 

there has been no data corruption during the hashing procedure or stripping 

the unwanted data. By using SHA-256 we get 64 hexadecimal digits. Each 

hexadecimal digit represents 4 binary bits; we therefore have a total of 256 

bits. This is a uniquely developed value only for this file. Of course since 

the number of files that can be used to generate hash values can be quite 

large, there is a possibility that more than one file can yield the same hash 

value. This is termed as collision. Even though it is possible to obtain similar 

values by hashing different type of files, the chances of this happening are 

quite minimal. To date, there is no known collision for this algorithm. 

5.3.3 Wavelet Decomposition Method 

The next method of key generation developed for this thesis is based on 

the wavelet decomposition method. Wavelets are correlation integrals that 

include a scaling parameter and were originally developed for the analysis of 

seismic data in the 1980s. Since then, they have found application in many 

areas of data analysis and have been discussed in Chapter 4. Based on the 

material presented in Chapter 4, the code for wavelet decomposition starts 

by reading a file and applying a wavelet with 7 levels. The approximation 

coefficients for the input signal are computed and the energy values computed 

and converted into a binary stream. The result is then used as a key for the 

encryption module. In particular, we apply wavelet decomposition using 

Daubechies wavelets with 7 levels using the m-code 
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[ca cl] = wavedec(au2(:, 1), 7, 'db4') 

that produces ca and cl which are the approximation and detailed coeffi- 

cients. We then extract the detail coefficients at each of the 7 levels and 

add them, thus obtaining the energy coefficients. The energy coefficients are 

then added and rounded up to obtain the total energy coefficients. We again 

round up to the nearest integer the percentage energy of each set. Concate- 

nating, we obtain a 150-bit binary string. This is finally converted to decimal 

in 50-bit segments: 

keya = bin2dec(b_string(1: 50)); 

keyb = bin2dec(b_string(51: 100)); 

keyc = bin2dec(b_string(101: 150)); 

By implementing the following functions, 

keya = mod(keya, 100000); 

keyb = mod(keyb, 100000); 

keyc = mod(keyc, 100000); 

a final output is obtained that is a 15 digit decimal integer and is used in the 

encryption module as a key. 

5.3.4 Convolution Method 

The fourth and final method used for key generation is by applying the 

convolution integral. This is done by reading the file, and then generate a 
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seed. Once the seed is obtained, convolution is applied between the data and 

the seed. The output is then taken and modulated with a 15 digit decimal 

number. 

5.4 Encryption Module 

This module is based on encrypting data using a variable block size. All the 

encryption algorithms used to date employ either stream or block ciphers. 

With the stream cipher, the characters are taken one at a time and XORed 

with a data stream from a random number generator. With the block cipher 

a block of characters is ciphered depending on the block size. 

The Dynamic Block Encryption (DBX) software developed for this thesis 

takes blocks of data and then separately encrypts them - see Figure 5.1. 

Unlike block cipher algorithms, where the block sizes are static, thus, giving 

the cryptanalyst a point of attack, DBX does not have a fixed block size. 

The block size is dynamic and can be adjusted to any length, which cannot 

be pre-determined. Currently, the block size is fixed to a range between 5 

and 50 bytes. The range selected is quite small compared to block ciphers 

which use 128,256, or even 512 bits blocks. One reason for this is that the 

algorithm uses random number generators to generate numbers used in the 

XOR operation. The algorithm uses Blum Blum Shub (BBS) which is one 

of the secured random number generator. After every block, the generator is 

re-initialised and re-started. This enhances security since it makes it difficult 

to try and attack the random sequence that is generated. 
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Figure 5.1: Illustration of dynamic blocking 
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Even though this block size modulation scheme is difficult to break, most 

of the random number generators are actually pseudo random number gen- 

erators, i. e. they are deterministic. Note that all such generators have a 

pattern, which after a certain period is repeated - the characteristic cycle 

length. Secure generators will have a lower frequency pattern, while less 

secure generators have a higher frequency. [47] 

The algorithm developed here works in the following way. After reading 

the file to be encrypted; either a text file, an image file, an audio file, or a 

movie clip, the program reads in a key as well. The key has already been 

generated in the previous module, which is text (or image, sound, video clip) 

dependent. The program calculates the length of the file in bytes which is 

needed for processing random numbers and deriving encryption blocks. A 

database of 10,000 prime numbers (which can be increased to over a million 

and manipulated using disk I/O and memory) is loaded into memory; again, 

loading it into memory causes the execution to be much faster. Once the 

initial values have been set-up the actual program execution follows. 

Once the key is obtained, it will be broken down into a number of parts, for 

example, an 80 bit key can be broken down into 10 parts 8 bit each. Each 

of this part will be used as a seed for random number generator each time it 

is initialised. Once the key is exhausted, the seed will be obtained from the 

last block size. This process will continue until the whole file is encrypted. 

The first random number generator used, a Linear Congruential Generator 

(LCG) of the form 

xn+l = x�75 mod P 
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where P is a prime number. This generator is used to randomly select two 

prime numbers from the 10,000 prime data base. We first feed in the parame- 
ters in order to run the above model. Here, xo is the initial value of xn. which 
is taken to be the key obtained after modulus 10,000. This number is used 

as an index to the prime database, and is used to pick a prime number from 

the database. For example, if the number obtained is 879, it picks a prime 

number corresponding to that prime in the database which is them used to 

set used P. The LCG is run twice to produce two random numbers. This 

same number, 879 is also used to randomly create the first block size. Since 

the maximum block size is 50, the number is modulated by 50. The two 

random numbers are again used as index to the prime number database to 

select two corresponding prime numbers needed to execute the Blum-Blum 

Shub (BBS) random number generator, i. e. 

xn+l = x2 mod n 

where 
n=pq 

Here, p and q are the prime numbers obtained above. The initial value of 

xn is the same as the value used in LGC. This value is only used once, 
during initialisation; the seed changes for every new block. In essence, the 

encryption method is based on the application of a LCG to `prime number 

seed' the BBS. 

Having obtained the block size, the program then runs BBS to generate 

random numbers, depending on the size of a block, e. g. if the block size 

was 29, then we generate 29 random numbers. These numbers are then 

modulated by 255 to limit them to 8-bit ASCII characters. Once the first 

block of numbers has been generated, the algorithm fetches the same number 
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of characters from the plaintext file. These characters are XORed with the 

modulated random numbers to provide an encrypted text. As soon as the 

first block is encrypted, the seed for BBS is intialised, by taking the last value 

of the block length and using it to initialise the BBS generator. A different 

seed is used to initialize the BBS for each block of characters to be encrypted. 

This process continues over the whole length of the file. An example of the 

encrypted data generated by his process is given in Figure 5.3 which shows 

the 8-bit ASCII integer streams derived from that given in Figure 5.2. 

5.5 Key Exchange Module 

This module is based on the chirp coding method discussed in the previous 

chapter. A chirp is generated and used to hide information in a data. At 

the receiving end, the same chirp is re-constructed, data extraction being 

undertaken by negation. This concept is used to hide the key in the text. 

Depending on the text size, and the size of the key (password), a number of 

chirps are generated. For example, if the text size is 100 bytes, and the key 

length is 20 bytes, we use 5 chirps to cover the whole text. 

Having encrypted the data, we are required to transmit it together with the 

encryption key. Under normal circumstances the key will be transmitted 

separately, but in this case the key is embedded within the encrypted data. 

This feature is the single most important contribution to the field as reported 

in this thesis. The key exchange module reads in the encrypted data and 
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Figure 5.2: Plaintext 8-bit ASCII integer stream. 
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Figure 5.3: Encrypted data - 8-bit ASCII integer stream. 
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the key that was generated using key-generation module. This key is first 

displayed as a binary stream. The objective of the exercise is to multiply 

each binary bit with a chirp code. (We introduce the purpose and use of 

chirp code later on in the chapter. ) For illustrative purposes, consider a 

key in the form of a binary stream 1101110001011010. The first step is 

to transform this binary stream into a series of one's and minus one's (as 

discussed in Chapter 4). Hence the above stream is transformed into 11 -1 
11 -1 -1 1 -1 1-1 11 -11 -1. We then compute the chirp function. The first 

function is in the form of sin(axi ). By varying the values of a and the length 

of the chirp, we obtain different forms of the chirp function. This feature is 

quite useful since it makes it hard for the attacker to guess the parameters 

used or the type of chirp implemented. The main affect of the chirp function 

is to modulate the frequency. Each chirp can be of a fixed pre-determined 

length. For example, Figure 5.4 shows a single positive chirp. 

Clearly, if we multiply the above chirp by -1 we obtain a negative chirp as 

used to encode -1. 

Since chirps are periodic and of a fixed pre-determined length, we can use a 

series of positive and negative chirps to represent a certain combination of 
binary strings. In this case we can represent the key binary stream so that 

the first few chirps of the binary stream 

11 -1 11 -1 -1 1 -1 1 -1 11 -1 1 -1 

will be as appears as illustrated in Figure 5.5. 
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Figure 5.5: Example of a chirp stream consisting of four chirps 
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What we observe is the representation of a binary stream in terms of a `chirp 

stream'. By multiplying each positive binary bit by a chirp we get a positive 

chirp; each negative binary bit results in a negative chirp. If we combine 

all the bits together we end up with a series of positive and negative chirps. 

In a sense, we have managed to transform the binary key into a sequence 

of positive and negative chirps -a series of continuous frequency modulated 

waveforms. 

In order to perfectly embed the key in a file, we need to calculate the chirp 
length. Noting that the file length and key length have already been obtained 

from the modules discussed earlier, we can calculate the chirp length as 

chirp length = (file length)/(key length). 

If, for example, the file length is 200 bytes and the key length is 10 bytes, 

the chirp length will be 20 bytes long. This means that each chirp will have 

a length of 20 bytes and will vary depending on whether it is a positive or 

negative chirp. 

The final output will be the same length as the file itself. The encrypted 

data, which has been read earlier, is normalised to limit the range of the 

data stream to 1, and thus makes it more accurate when it comes to using 

the xcorr function. For data above 1, the results are unpredictable. An 

example of the chirp stream in its entirety is given in Figure 5.6. 

Finally, the data is added to the output of chirp functions - the chirp stream, 
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Figure 5.6: Complete chirp stream used for key exchange. 
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and can be prepared for transmission. This data contains the encrypted 

data and chirp coded key and is shown in Figure 5.7. Observe, that the chirp 

stream is, in effect, hidden in the ciphertext stream; the chirp stream is a 

small perturbation of the ciphertext. 

5.6 Key Extraction Module 

This module is run by the recipient. Once recipient receives an encrypted 

data with a hidden key, he/she then needs other parameters so that the key 

can be extracted from the ciphertext. The parameters needed here are the 

noise length and chirp length. Once obtained, the correct chirp length is then 

computed. 

The encrypted data is normally received electronically through email. In 

this case, it is data with the hidden key. If an attacker manages to intercept 

this data, he/she will only have access to the data with a partial key. W'Vith- 

out knowledge of the chirp length an attacker cannot extract the key. The 

recipient receives chirp parameters through specially customised hardware: 

Crypstic (see Appendix B). The Crypstic is a USB flash disk with a hid- 

den memory. Each user is equipped with a crypstic that is tailored to their 

particular needs and applications. This type of encryption is not for general 

users and is normally used by company executives. Unlike other types of 

one-to-many encryption systems where everybody has access to the encryp- 

tion engine, this type of encryption is accessible only to a few people in the 

organisations, where this software will be used. 
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Figure 5.7: Ciphertext stream with embedded chirp stream. 
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Once both the file length and the key length have been received, the first 

step is to re-construct chirp length, which is given as 

chirp length = (file length) / (key length) 

Once the chirp length is obtained, the appropriate chirp can be constructed; 

a chirp that is exactly the same as the chirp created initially. All bits can 

be recovered with no loss of data. The data is then correlated with the 

newly created chirp which allows all original chirps to be identified within 

the signal. The correlation process identifies the positive and negative chirps 

of the chirp stream which in turn yields a positive or negative binary bit, 

respectively. The negative binary bits are converted to zero and the positive 

bits convert to ones. The final output is the key to be used for decryption. 

5.7 Decryption Module 

This module receives a key from the previous module. The encrypted file 

contains the file itself with the embedded key. When the key is extracted, we 

are left with encrypted data which can be then be decrypted. The decryption 

program is similar to the encryption module in functionality. 

5.8 Discussion 

The use of chirp coding can be applied quite generally in a way that is, in 

principle, independent of the encryption engine. In this chapter, the encryp- 

tion engine uses a LCG to `drive' BBS by modulating the prime numbers 
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that BBS relies upon on a dynamic block basis. Thus, the entire approach 

is based on modulation, i. e. prime number modulation, dynamic block size 

modulation and frequency modulation (chirp coding). However, in addition 

to the modulation method considered, another approach can be developed 

that is based on modulating the encryption algorithms themselves rather 

than modulating the parameters that drive' them as considered in this chap- 

ter. In order to design such an encryption engine, it is not possible to use 

prime number based random number generators because of the inherent limi- 

tation placed on the form of the generators through the use of prime numbers 

and their properties. Instead, we resort to the application of deterministic 

chaos [69]. Deterministic chaos has three fundamental advantages: 

(i) it dispenses with prime numbers altogether and therefore eradicates any 

prime number based attacks; 

(ii) it provides a wealth of iteration function sequences that can be literally 

`invented' for applications in cryptography; 

(iii) because of (ii) above, it provides the ability to design encryption engines 

that are multi-algorithmic, i. e. multi-dynamic algorithm selection. 

The basis for this approach to encryption engine design is discussed in the 

following chapter. 
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Chapter 6 

M-Code Development and Test 

Results 

6.1 Introduction 

In previous chapters we have considered the overall methodology developed 

for this research thesis. This chapter covers in greater detail each of the 

modules involved. All modules are interrelated through data I/O and are 

therefore weakly coupled. The functions and modules have been prototyped 

in MATLAB and the m-code is discussed in Appendix A which relates the 

m-code to that given in the CD at the back of this thesis. In this chapter, 

we highlight the structural operation of the system referring to the lines of 

the m-code that are sourced in its entirety on the CD. 

The software can be operated on two modes. In the first mode, there is 

a one time agreement of parameters to be exchanged between the sender 

and the recipient. These parameters are fixed and once exchange of files 
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takes place there is nothing passed except the file itself. Of course the key, 

which changes for every transmission, is also embedded within the encrypted 

text. This allows for greater security because the method for extracting the 

key from the text is so complex. Further, in order to extract the key using 

brute force attack it requires a significant amount of computer power and 

time. Even though there is a one time agreement of parameters, there is an 

option for sender to change these parameters. Parameters can be changed at 

different intervals depending on the required security level, some usage may 

require changes to take place every 90 days. For more secure environment, 

parameters may be changed every day. 

The encryption and decryption process takes place in the following sequence: 

Sender 

" Selects parameters for encryption process, or accepts current parame- 

ters. 

" Runs key generation module. There are four options to key generation. 

" Runs encryption module. 

" Runs key exchange module. 

Recipient 

. Runs key extraction module 

. Runs decryption module 
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6.2 Fixed Length Parameters 

In this chapter, we start with the details on key generation of the first mode of 

operation. In both modes, as stated earlier, four approaches in key generation 

are discussed. Even though the methods of key generation are different, the 

output is similar. Each of the four modules has been configured to produce 

80 bit key length. 

6.2.1 Parameter Selection 

The program comes with pre-configured parameters. These parameters are 

used for padding length, and chirp initialisation. 

The chirp function in matlab needs four parameters to run 

y= chirp(t, j0, t1, J1) 

. The value of t determines the length (period) of the chirp itself. This is 

automatically calculated as the ratio of file length to the key length, will 

therefore change for different file lengths. The functions of j0, t1, and fl 

will be explained later in the chapter in details. 

In parameter selection, the following process takes place: 

1. Read in the existing parameters. 

fid a fopen('parameters. txt'. 'r'); 

a- fread(fid, 'int64'); 

fclose(fid); 

176 



2. Prompt the user to accept or change any parameter. This goes for all 

other parameters. 

disp(['current f0: ' num2str(a(2))]); 

answer2 = input('Would you like to change to (y/n): ', 's'); 

if answer2 == 'y' 

new-f0 = input('Enter new f0: ', 's'); 

a(2) = str2num(new_f0); 

end 

3. Save new values to a file. 

fid = fopen('parameters. txt', 'w'); 

fwrite(fid, a, 'int64'); 

6.2.2 Summation Method 

This program takes the value of noise length, generates noise, and pads the 

noise at the beginning of the file. It finally generates a key by summing up 

all characters in a file and manipulates them. 

1. Accept a file to be encrypted. 

filename=input('Enter a plaintext file (any format): ', 's'); 

fid = fopen(filename, 'rb'); 

data = fread(fid); 

fclose(fid); 
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2. Generate noise based on previous value of noise length. The minimum 

value is 10,145 is the maximum size a random number can be gener- 

ated. Both chosen arbitrarily, and after some random testing. 

noise = 10+round(145*rand(1, noise_length)); 

3. Pad the noise value in front of the data (concatenation). 

new-file = [noise, data'); 

4. Add up all characters in a file. 

data = new-file; 

key-sum = sum(data); 

5. Break them up into small sizes and add up again, this is done to make 
the output more random and unpredictable. 

key-sum sum(data); 

key_sum2 = sum(data(1: 5000)); 

key_sum3 = sum(data(5000: 10000)); 

key_sum4 = sum(data(10000: 15000)); 

6. Convert to string 

key-sum num2str(key-sum); 

key_sum2 = num2str(key_sum2); 

key_sum3 = num2str(key_sum3); 

key_sum4 - num2str(key_sum4); 

178 



7. Get the length of the key in decimal, 

e. g. if key-sum = 3451, key-length =4 

key-length length(key-sum); 

key_length2 = length(key_sum2); 

key_length3 = length(key_sum3); 

key_length4 = length(key_sum4); 

8. Get ASCII value for each of the decimal number. 

key_ascii = abs(key_sum); 

key_ascii2 = abs(key_sum2); 

key_ascii3 = abs(key_sum3); 

key_ascii4 = abs(key_sum4); 

9. Add them up 

tot_key_ascii = [key_ascii, key_ascii2, key_ascii3, key_asci14]; 

tot-key-length = key-length + key_length2 + key_length3 + key_length4; 

10. Convert to binary. 

total-key-bin = []; 

for i=1: tot_key_length 

key-bin = dec2bin(tot key_ascii(i)); 

total-key-bin - cat(2, total_key_bin, key_bin); 

end 

11. The final output is an 80 bit binary key. 
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6.2.3 Convolution Integral method 

The key generated by this module is done by creating a small set of random 
data, then convoluting it with the sum of the total data. The main difference 

lies in the method used, otherwise everything else remains the same. 

1. Add up all characters in a file, after padding with noise. 

key-sum = sum(new_file); 

2. Get the decimal length 

s= length(num2str(key_sum)); 

3. Generate a random number based on the length. 

x= rand(1, s); 

x= abs(x(1)); 

4. Do a convolution taking the value of new file and x. 

5. The rest of the program is manipulating the output value (xx) and 
finally converting to 80 bit binary stream. 

xx = convn(new_file, x, 'valid'); 

6.2.4 Wavelet Decomposition Method 

In this module Daubechies wavelets are used to decompose the plaintext 
into two coefficients: approximation coefficient and detailed coefficient. The 

values of the detailed coefficient are extracted and used to generate the keys 

(see chapter 5). The output is set to be 80 binary bit stream. 
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6.2.5 Hash Function Method 

In this method, a hash algorithm is used to create keys. The algorithm used 
here is the secure hash algorithm with 256 bits, SIHA-256, mentioned earlier 

in this thesis (see Chapter 3). A hash function H is a transformation that 

takes an input m and returns a fixed-size string, which is called the hash 

value h (that is, h= II (m)). 

In this module, we use a readily available hash function algorithm. It is then 

incorporated into a MATLAB routine. The input parameters are formatted 

in such a way as be suitable for inputting in the module. The output given 

is also modified in such a way as to make it compatible with the rest of the 

module. 

1. Read in a file, concatenate with the noise. 

2. Run hash function giving the above file. The output hash value will be 

stored in variable hashv and the status in variable stat. 

[stat, hashv] = system(['rehash -none -sha-256 ' filename]); 

3. The output will be in this format. 

File: <hashtest2. m> 

SHA-256 : 1511A24E FC375C25 C44F5880 79D2C0A6 5B1ACEAD 18F390AF 

OAF2803D 20A1FD16 

4. Compute the actual hash length. 

hash-length - length(hashv); 
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hash = hashv(26+(file_length): hash_length)'; 

new-hash-length = length(hash); 

5. Strip the header, spaces (ASCII value 32), line feeds (ASCII value 10) 

and carriage returns (ASCII value 13). 

tot-hash-value = Q; 

for i=l: new_hash_length 

if (hash(i) -= 32 && hash(i) -= 10 && hash(i) -- 13) 

hash value = hash(i); 

tot-hash-value = [tot hash_value; hash_value]; 

end 

end 

6. Make sure the length is correct. 

tot-hash-value = tot hash_value(1: 64); 

7. Convert to binary. 

hash-bin = dec2bin(hex2dec(tot_hash_value(1: 64))); 

8. Set the output to 80 bits 

watermark-binary = hash_bin(1: 80); 
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6.3 Encryption Module 

The background to the design of this module has been explained in detail in 

Chapter 5. Here, we present the m-code for the encryption module. Since this 

is a symmetric encryption algorithm, the encryption and decryption modules 

are both the same. 

By this stage, the file will have been read in. The key already generated and 

ready for encrypting the file. 

1. Take the key length, which is 80 and divide it into equal number of 

parts. This can be achieved by using modulus arithmetic. In this case, 
the seed length is 13, any suitable number can be used. 

seed_length = 13; 

rem = mod(length(watermark_binary), seed_length); 

2. Discard the remainder, obtain exact multiples of the key. 

for bin-key-counter = 1: seed_length: length(watermark_binary) 

bin_key_counter; 

counter = counter + 1; 

yy = watermark_binary(bin_key_counter: bin_key_counter+seed_length-1); 

y= bin2dec(watermark_binary(bin_key_counter: bin_key_counter+... 

seed-length-1)) 

y_tot = [y_tot; y]; 

end 

3. Get the first seed to be used for Linear Congruential Generator 
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seed = y_tot(1); 

4. Load the prime number database. The database currently hold the 

first 10,000 prime numbers. These can be increased and partly read as 

I/O. Once prime numbers are loaded, let the variable seed be an index 

to the first prime. For example, if seed was 234, it should pick 1481 

from the prime number database which is 234th prime. 

prms = load('primes3. m'); 

prm = prms(seed); 

5. Set the initial value to be used in Linear Congruential Generator 

xn = seed; 

6. Generate two random numbers using the linear congruential generator. 

fors=1: 2 

xn =1+ mod(xn*7"5, prm); 

xn =1+ mod(xn, 9999); 

tot_xn=Etot_xn; xn]; 

count = count + 1; 

end 

7. Compute two blum primes. By using blum primes, the strength of the 

random numbers sequence produced is enhanced. Blum primes, p and 

q are chosen so that p mod 4=3, and q mod 4=3. A prime number 

is read and tested; if it is found to be a blum prime, it is stored in a 

variable, if not, the next number is read. The process continues until 

two blum primes are obtained. 
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tot_blum = 0; 

blum_count = 0; 

for i=1: length(prms) 

a= tot_xn(1); 

if i == 1 

prml = prms(a); 

else 

if (a + 1) > length(prms) - 1; 

prml = prms(round(length(prms)/2)); 

else 

prml = prms(a+i); 

end 

end 

if mod(prml, 4) == 3 

blum_prime = prml; 

blum_count = blum_count + 1; 

tot_blum = [tot_blum; blum_prime]; 

if blum_count == 2 

break 

end 

end 

if blum_count == 2 

break 

end 

end 

tot_blum; 
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p= tot_blum(1); 

q= tot_blum(2); 

8. Compute block length. The size has been set from 5 to 50 characters. 

block-length =5+ mod(xnb, 46); 

9. Counter stores the number of values that the key has been split into. 

For example, if the key length is 80 bits, and the key has been split 

into 8 different values of 10 bits each, the counter has a value of 8. The 

first value is allocated to the a variable xnb and so on. 

if main_i <= counter 

xnb = y_tot(main_i); 

10. Move the value to be used by Blum-Blum Shub 

xnb2 = xnb; 

11. Run BBS to generate random numbers. The set of random numbers 

generated is the same as the block length. Since the numbers can be 

huge, they are normalised to 8-bit ASCII so that they do not exceed 
255. 

for i=1: block_length 

xnb2 = mod(xnb2"2, p*q); 

xornum = xnb2; 

xornum =6+ mod(xnb2,250); 

tot_xornum = (tot_xornum; xornum]; 

end 
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12. Continue reading the data as long as the remaining text is larger than 

the assigned block length. 

flag = 1; 

if text-length > block-length 

block-data = data(offset: offset+block_length-1); 

offset = offset + block_length; 

13. Once the length of the remaining text becomes less than the assigned 

block length, a new block length is created that is the same as the 

remaining text length. The flag is set to zero. 

else 

block-length = text-length; 

new-block-length = block-length; 

block-data = data(offset: original_text_length); 

new_tot_xornum = (tot_xornum(1: length(block_data))); 

tot_xornum = new-tot xornum; 

flag = 0; 

end 

14. Compare the text length to the block length and if they are the same, 

end file. 

new-text-length = text-length - block-length; 

if new-text-length -- 0 

new-text-length - text-length; 

end 
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15. Do a bit exclusive-or for each block between the random numbers 

(tot_xornum) and plaintext (block-data). Check the flag cverytimc; 

once it is set to zero, the break statement `breaks' out of the loop. The 

resultant output is an encrypted data. 

crypted_text = bitxor(tot_xornum, block-data); 

total_crypted_text = [total_crypted_text; crypted_text]; 

if flag==0 

break 

end 

6.4 Key Exchange Module 

A major challenge for cryptographers is key exchange. In this research a 

principal concentration has been the mechanism for key exchange through 

application of chirp coding as discussed in Chapter 4. Once data has been 

encrypted, the key is sent to the recipient embedded in the encrypted text 

itself. The recipient, upon receiving the ciphertext, extracts the key from 

the data by correlating it with a replica of the chirp function. The m-code 

for embedding the key this way is outlined below. 

The module starts by reading the input file and undertaking the necessary 

initialisations. The principal components of the m-code are then as follows: 

1. The variables file-length and length_watermark (key length) are com- 

puted in previous modules. Isere, they are used to compute chirp length. 

chirp-length = floor(file_length/length_watermark) 

188 



2. In order to multiply each binary bit by a chirp, we cannot introduce 

zeros. Hence this script is designed to transpose all zeros to -1. 

for j=1: length_watermark 

if str2num(watermark binary(j)) _= 0 

x(j) 

else 

x(j) = 1; 

end; 

end; 

3. Initialise the chirp function. Here, we use a log chirp instead of a linear 

chirp in order to reduce aliasing, i. e. under sampling. 

t=0: 1/chirp_length: l; 

y=chirp(t, 0,1,40, 'log'); 

4. Multiply each binary bit by a chirp, so +1 will yield a positive chirp 

and -1 will yield a negative chirp as discussed in Chapter 4. 

znew = 0; 

for j=1: length_watermark 

z=x(j)*y; 

znew=cat(2, znew, z); 

end 

5. Divide the data by 255 so that the maximum value of 1; equivalent to 

applying uniform normalisation. 

data - data. /255; 
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6. Adds the two signals together; new-data is the same size as the original 

signal. This variable is written into the output file to be used for trans- 

mission. In effect, the recipient receives and encrypted data together 

with a series of positive and negative chirps. 

new-data = (znew'+data); 

6.4.1 Key Extraction Module 

In this module, the embedded key is extracted and then passed on to the 

decryption module. In order to extract the key, the user must have exact 

parameters used by the recipient, to reconstruct the chirp. Once the chirp is 

reconstructed, it is then correlated with the encrypted text for key extraction. 

1. Open a file and read in parameters needed to construct a chirp. 

fid = fopen('parameters. txt', 'r'); 

a= fread(fid, 'int64'); 

fclose(fid); 

2. Assign read in values to the chirp function 

fO = a(2) ; 

tl = a(3) ; 

fI= a(4) ; 

3. Compute chirp-length. 

chirp-length = floor(file_length/length_watermark); 
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4. Compute t. 

t=0: 1/chirp_length: l; 

5. Initialise chirp function. 

y=chirp(t, fO, tl, fl, 'log'); 

6. Correlate to recover the key from ciphertext. The key is recovered 
in terms of a set of positive and negative integers. The interest does 

not lie in the integers themselves, but in their sign; positive values are 

denoted by 1 and negative numbers by -1. 

k=1; 

for i=l: length_watermark 

yzcorr=xcorr(new_data(k: k+chirp_length-1), y, 0) 

k=k+chirp_length; 

r(i)=sign(yzcorr); 

end 

7. Recover bit stream. Assign 1 to a positive number and -1 to a negative 

number. 

for i=l: length_watermark 

if r(i)==-l 

recov(i)=0; 

else 

recov(i)=1; 

end 

end 
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8. Compute znew. znew is reconstructed by multiplying the chirp signal 

with each value of the key, in this case, with each +1 and -1 stored in 

r, which was obtained from the correlation of the two signals. 

znew = 0; 

for j=1: length_watermark 

z=r(j)*y; 

znew=cat(2, znew, z); 

end; 

znew = znew(2: length(znew)); 

9. Separate the data, leaving encrypted data without key or chirp signal. 

data = new-data - znew 

10. Multiply by 255 to bring back the original value, for decryption by the 

next module. 

data = round(data. *255); 

6.4.2 Decryption Module 

This module is the reverse of the encryption module, since we are working 

with a symmetric cipher. The only difference is that after decryption, noise 

is subtracted from the file and the result is the actual decrypted file. 

6.4.3 Input Parameters 

The following tables show parameters needed for input to the program. These 

parameters have been thoroughly tested. When the program is first launched, 
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the user is given an option to change or keep the existing parameters. 

f0 t1 fl f0 t1 fl f0 ti fl 

0 1 40 1 104 65 4 1018 65 

0 1 50 1 105 65 4 1018 70 

0 1 60 1 106 65 4 1018 80 

0 1 65 1 107 65 4 1018 100 

0 2 65 1 108 65 4 1018 1,000 

0 5 65 1 109 65 4 1018 104 

0 10 65 1 1012 65 4 1018 106 

0 20 65 1 1018 65 4 1018 109 

0 50 65 2 1018 65 4 1018 1012 

0 100 65 3 1018 65 4 1018 1018 

0 1,000 65 

Table 6.1: Chirp parameters tested for successful key exchange. 

6.5 Changing Parameters Mode 

As we have mentioned at the beginning of this chapter, DBX can be run in 

two different modes, the first mode is a one time parameter exchange mode 

where once the parameters are set, there is no need to change them. The 

same set of parameters are used by sender and recipient. The key, of course 

is different for every message transmitted. 

All functionality for both modes is the same. However, due to the way they 

are used, there are slight differences in some modules which we will describe 

below. To start with, program runs in the following sequence. 
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Sender 

9 Runs key generation module. There are four options to key generation. 

" Runs encryption module. 

" Runs key exchange module. 

" Runs save parameters module. 

Recipient 

. Runs load parameters module. 

. Runs key extraction module. 

" Runs decryption module. 

6.6 Key Generation Module 

In key generation modules, the padding size varies. So the first thing is 

to generate the actual padding size, 10,000 bytes, and then generate 10,000 

random numbers. For each run, the size will be randomly generated and 
hence different. 

Generate random numbers, minimum 99983 characters. This number has 

been arbitrarily chosen. The aim is to start with a padding size of around 

100,000 characters. Since 100,000 is a good number, it is always better to 

avoid. We have therefore chosen 99983 + 10000 which gives us 109983 char- 

acters. Unlike the previous mode, in this mode user cannot change these 

values, hence they are randomly selected. 
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y=99983+round(10000*rand); 

noise = 10+round(145*rand(1, y)); 

This is the same for all the four modules used in key generation. The rest of 

the program is more or less the similar. 

6.6.1 Encryption Module 

There are no changes on this modules in both the modes. 

6.6.2 Inserting Watermark 

The main difference here is that the chirp parameters are fixed. They can 

only be changed if the need for enhancing security of the software arises, 

which is quite rare. 

Initialise chirp. 

t=0: 1/chirp_length: l; 

y= chirp(t, 0,1,40, 'log'); 

6.6.3 Parameters 

Chirp length and padding length are saved by the sender and loaded by the 

recipient on the other end. 
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6.6.4 Key Extraction Module 

In this module, the chirp parameters remain the same except for chirp length. 

Therefore no major changes. 

6.6.5 Decryption Module 

The main difference in the decryption module is that the noise subtracted 

from the total file received is dynamic, so the value will change depending 

on the random number generated to create padding noise in the first place. 

6.7 Analysis 

The following tables show the time/speed relationship for a range of test 

cases. In both cases experimental tests were carried out. The data was 

obtained after running tests on a 2Gh Pentium 4 Laptop with 1 GB RAM. 

Table 6.4 shows a test on key generation, key embedding and key extraction. 

Table 6.5 shows a test for encryption, the decrypt is bit for bit perfect. 

The average speed for the 18 items in table 6.4 is: 

3050 = 18 = 169 kbytes/s 

169 x8= 1352 kbits/s 

= 1.35 mb/s 
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File type Size (bytes) CPU Time kbytes/s 

Text 31,007 0.32 s 97 

Text 111,659 0.60 s 186 

Text 209,608 1.02 s 205 

Jpeg 71,189 0.46 s 155 

Jpeg 121,943 0.66 s 185 

Jpeg 435,765 2.04 s 214 

MS Word 25,600 0.33 s 78 

MS Word 35,328 0.34 s 104 

MS Word 321,536 1.07 s 301 

Pdf 95,018 0.50 s 190 

Pdf 1,443,863 6.40 s 226 

Pdf 4,353,974 32.74 s 133 

Exe 69,120 0.49s 141 

Exe 2,608,128 16.03 163 

Exe 8,466,464 61.72 s 137 

Avi 1,598,284 6.81 s 235 

Avi 3,633,932 31.36 s 116 

Avi 5,479,452 29.84 s 184 

Table 6.2: Test for generating, embedding and extracting the key. 
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The encryption module includes added noise. For example if the file size is 

60k and the noise is 100 k, then the new size will be 160k. 

File type Size (bytes) CPU Time kbytes/s 

Text 111,659 79.73 s 1.40 

Text 209,608 90.36 s 2.32 

Jpeg 71,189 30.20 s 2.36 

Jpeg 121,943 80.23 s 1.52 

Jpeg 435,765 248.36 s 1.75 

MS Word 25,600 60.47 s 0.42 

MS Word 35,328 60.08 s 0.59 

MS Word 321,536 177.92 s 1.81 
Pdf 95,018 71.73 s 1.32 

Pdf 1,443,863 28.28 s 51.06 
Exe 69,120 64.39s 1.07 

Exe 2,608,128 63.13s 41.31 

Avi 1,598,284 25-83s 61.88 

Avi 3,633,932 31.36s 115.88 

Avi 5,479,452 29.84s 183.63 

Table 6.3: Test for encryption/decryption. 

Average speed for encryption/decryption: 

468.32 =15 = 31 kbytes/s 

31 x8= 248 kbits/s 
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6.8 Running DBX with Crypstic 

The use of deterministic chaos for designing multi-algorithmic encryption 

engines has been discussed in Chapter 3. For the DBX system developed 

here, it can be used as a parameter file exchange system based on application 

of a user specific USB memory stick - Crypstic. By utilising the Crypstic, 

DBX functionality can also work with any type of algorithm, hence the main 

theme is the key exchange mechanism. 

6.9 Security of DBX 

DBX can be considered to be relatively secure and, coupled with the appli- 

cation of the Crypstic for parameter exchange, highly secure. Many factors 

a play role in enhancing DBX security. 

Attack on DBX - One way DBX can be attacked is by brute force. The 

system is currently configured for 140 bits key space, but it can be increased. 

Conventional attacks strategies which exploit the fact that the algorithm is 

publish can not be applied in the same procedural way. This is because the 

approach considered in this thesis exploits the principle of multi-dynamicism 

where the encryption process is designed with a view to the constantly mod- 

ifying the algorithms/parameters/keys etc. 

Key Exchange. The method used for key exchange significantly enhances 

the security of the system. The key is passed to the recipient embedded in 

the encrypted data itself. It is very difficult to detect that two signals have 

been superimposed during the transmission. Even if the attacker is equipped 

with knowledge of the existence of the key within the signal, extraction of 
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the key is relatively complex and will not be easily accomplished. 

Chirp Function. Once the key is generated and converted to binary, a 

chirp is initialised. Each binary bit is multiplied by a chirp. A1 will produce 

a positive chirp and a0 will produce negative chirps These chirps are then 

concatinated together to produce a signal the same length as the file itself. 

The chirp function in matlab generates a swept-frequency cosine (chirp) sig- 

nal. The chirp block outputs a swept-frequency cosine (chirp) signal with 

unity amplitude and continuous phase. To specify the desired output chirp 

signal, its instantaneous frequency function must be defined, also known as 

the output frequency sweep. The frequency sweep can be linear, quadratic, 

or logarithmic, and repeats once every sweep time by default. 

By using chirp functions, we can obtain a variety of chirps which can be 

implemented differently. The main use of a chirp in DBX is to hide the key. 

Thus, given a chirp function with certain parameters, the recipient needs to 

construct the same parameters in order for him/her to recover the key. The 

sender has a wide range of values to use for parameters which the recipient 

has to have available. 

The MATLAB chirp function used here has the general form 

y= chirp(t, fo, tl, fl) 

and generates samples of a linear swept-frequency cosine signal at the time 

instances defined in array t where t is time instance (secs), jo is the instanta- 

neous frequency at time t=0 (Hz) and fi is the instantaneous frequency at 

time tl (Hz). The chirp function can be set to run in three different modes 

- linear, quadratic and logarithmic as follows: 
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Linear: fi(t) = fo +Q (instantaneous frequency sweep) where 3= (f -1- 
fo)/tl which ensures that the desired frequency breakpoint fl at time tl is 

maintained. 

Quadratic: f1(t) = fo +, 3t2 where ,ß= 
(fl - fo)/ti. If fo > fl, the output 

waveform is a downsweep, with a default shape that is convex. If fo < fl, 

the output waveform is an upsweep, with a default shape that is concave. 

Logarithmic: fi(t) = fo + 1001 where ,ß= 
(f) ° 

In the DBX system developed for this thesis, the chirp is set to run in log- 

arithmic mode using four parameters where each parameter can takes on a 

large value. It is therefore difficult to re-create the exact chirp. This is mainly 

because the chirp parameters vary over a wide range, giving, in effect, a large 

key space. It is interesting to note, that this result has been developed in 

nature. For example, dolphins send a series of chirps, or clicks through water 
[62]. When the sound waves interact with an object, they bounce back and 

the echoed sound enables the dolphin to have a mental picture of an object 

by comparing the echo with the sound it already knows. As with the human 

visual system, there are a huge range of that the brain of a dolphin can gener- 

ate. The template space in this application being equivalent to the key space 

available in the current application! Some scientists believe that dolphins 

may actually see acoustic images with their brains. This method is termed 

as echolocation. It has recently been discovered that the chirp has many 

practical uses in technology. For example, in a paper at the (2004) Next 

Generation Communications Network Conference, Mohsen Kavehrad stated 

that [49] `... multirate laser pulses with wave forms shaped like dolphin-chirp 

sound pulses offer a new way of helping free-space optical signals penetrate 
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clouds, fog, and other adverse weather conditions that sometimes hamper the 

success of this method. ' One of the principal contributions of this research 

thesis is that chirps can be used effectively to solve the key exchange problem 

and authentication issues in cryptography. 

Dynamic Blocks. Unlike other block ciphers, where the block length is 

fixed, DBX employs dynamic blocks, where the blocks to be encrypted change 

at every cycle. This makes it harder to attack because if the block length 

is known, an attacker will typically work on a particular block length and if 

he/she manages a successful attack, he/she will have, by default, recognised 

the pattern. There is no pattern in DBX. 

Dynamic Key. The encryption key always changes. Even if the same 

plaintext is used, the key will be different. Thus, a brute force attack will 

only help in decrypting one message. Further, a priori knowledge of the key 

will not help because of its dynamic nature. A number of cryptanalysis 

methods dealing with plaintext attack will fail for the same reason. 

Huge Keyspace. The security of DBX does not only lie in the key. It 

is a combination of other elements from which the key is composed, thus 

creating a huge keyspace. The key consists of noise length, key space and 

total chirp length and it is the combination of these three components that 

provides the huge key space, making the task of breaking it using brute force 

effectively impossible. The current keyspace has been set with the following 

parameters. 

Noise length varies from 100,000 to 150,000 bytes, so the difference is 50,000 

bytes. The four chirp parameters mentioned in the previous section, t, f0, 

ti, and fl take on different range of values. 
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noise length: this is varied between 100 KB and 150 KB, yielding a difference 

of 50 KB. 

t: this is calculated as the ratio of total file length to key length. By taking 

the commonly used file lengths which vary between 100 KB and 10 MB (after 

padding with a 100 KB random noise), the difference becomes: 99 * 104. 

f0: the value of fO goes to a maximum of 4. 

t1: t1 has been tested to a maximum of 1018. 

fl: this value also has been tested to a maximum of 1018. 

Finally, as mentioned above, there are three methods the chirp function can 

be used. 

Maximum key space obtained from the above is: 

(50*103)*(4)*1018*1018*(3)=6*1041 

2140 = 1.4 * 1042 

Therefore the key space can be considered as 140 bit key space. Of course, 

this is by no means the maximum keyspace for DBX, the above values may 

be increased by changing the current settings of the program thus increasing 

the key space, taking into account the matlab and memory space constraints. 

Blum-Blum Shub. BBS is a well known cryptographically secure random 

number generator. To make it more secure, the method used here calls for 

reinitialising the generator after every few rounds, obtaining a new seed each 

time. This makes it more difficult, to try and predict the already complex 

pattern of a BBS output stream. 
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Chapter 7 

Conclusion and Future 

Directions 

The principal focus of this research thesis has been three fold: 

" To investigate the use of prime number modulation for enhancing the 

effectiveness of conventional encryption engines. 

9 To design a key exchange method by covertly watermarking the cipher 

text with the key that has been used to generate it. 

. To combine the current key exchange mechanism with encryption using 

deterministic chaos. 

DBX can be applied to work with deterministic chaos using a multi-algorithmic 

approach (Chapter 3) coupled with the key exchange method discussed in 

Chapter 5. When coupled together, it forms the basis for a new product called 

CrysticTM which has been developed through a joint venture between Lough- 

borough University ( Department of Computer Science and the Department 
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of Electronic and Electrical Engineering) and Lexicon Data Limited and is 

marketed by Cryptic Limited. Details of this product including a technical 

report, business plan, system application and documentation are given in 

Appendix B. 

7.1 Authentication 

One of the principal themes of current research into encryption involves the 

facility to authenticate a decrypted message. The ability for a receiver to 

decrypt a message can provide a false sense of confidence that the plain text 

obtained is authentic. This provides any potential attacker with the means 

of disseminating miss-information. The authentication method developed for 

this thesis is based on the use of chirp coding bit streams. The bit streams 

are generated from the plain text by application of a transformation. In this 

thesis, the transformations research have been based on: (i) a simple addi- 

tive transform; (ii) convolution of the input with a random noise field; (iii) 

application of a hash function transformation; (iv) application of a wavelet 

transform. The fourth method is very general as, in addition to using stan- 

dard wavelets, for this application, any wavelet function can be constructed. 

The reason for this is that in conventional wavelet based signal analysis, 

wavelets are designed to be strictly orthogonal in order for data, having been 

processed in `wavelet space', to be inverted back into real space. However, 

in the present application this is not only unnecessary but, is strictly, not 

desired as the whole point of encryption processes is to ensure that the trans- 

formations used are non-invertible, i. e. based on the employment of one-way 

functions. 
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The watermarking method developed for this thesis is unique in that it pro- 

vides a method for self-authentication. All current watermarking techniques 

require access to the original (non-watermarked) data in order to clarify the 

existence (or otherwise) of the watermark and the information it conveys. 

The use of chirp coding eliminates the need to have access to the original file 

and in so doing, eradicates the requirement of generating and managing a 

data base for verification and associated protocols. No other function except 

for a chirp provides the facility for self-authentication. The reason for this 

lies in the properties of the correlation of a chirp with itself, namely, that, 

for chirping parameter a, 

00 

f exp(-iat2) exp[ia(t + T)Z]dt = S(T) 

00 

This property is the reason for chirp coding being used in a range of man 

made (e. g. real and synthetic aperture radar, telecommunications, synthetic 

aperture radio wave imaging etc. ) and natural communications system (e. g. 

active and passive communications by whales, dolphins and bats). This thesis 

provides the first example of its use for watermarking which can, in principle, 

be applied to any data including, audio and video. 

7.2 Key Exchange 

The specific use of chirp coding for watermarking digital signals depends 

upon the application. For audio and video signals the perturbation of the 

input data by the watermark is so insignificant that any distortion caused 

by its presence is not noticeable. Hence the watermark can remain covertly 

embedded in the data providing a digital seal or signature that can be read as 
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appropriate. However, for data that must remain bit perfect, application of a 

chirp coded watermark requires that the watermark is deleted from the data 

once it has been recovered. This is the basis for the key exchange method 

proposed in this thesis. In this case, a plain text dependent key (bit stream) 

is used to generate the ciphertext via application of a given encryption en- 

gine. The same bit stream is then transformed to the corresponding chirp 

stream which is then used to watermark the cipher stream. Upon reception, 

the bit stream is recovered and used to remove the watermark by regenerat- 

ing the chirp stream. The same bit stream is then used to decrypt the cipher 

stream. Since the key is plaintext dependent, the process represents a prac- 

tical solution to the problem of implementing a one-time pad, even though 

what is represented here is not a one-time pad, but this is the direction. Note 

that in order to `cover' for the case when the same plaintext is used twice, 

the data is automatically padded with random bits to ensure that a different 

key is generated each time the system is executed. 

7.3 Encryption using Deterministic Chaos 

The large majority of conventional encryption engines are partially or entirely 

dependent on the use of prime numbers. Symmetric encryption algorithms 

depend on prime numbers that are used as input parameters together with 

a (non-prime) key to initiate the algorithm; typically a large integer whose 

size defines the length of the key (e. g. 64-bit and 128-bit keys). Key ex- 

change algorithms are then required to exchange the key between sender and 

recipient prior to execution of the encryption engine. However, asymmetric 

encryption systems, which are based almost exclusively in the RSA algo- 

rithm, depend entirely on prime numbers (see section 3.7). Attempting to 
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break the system entails factoring huge numbers, even though this is theoret- 

ically possible, there is always a time constraint (a number of years in some 

cases). A shortcut method to bypass factoring may be out there, which will 

definitely change the whole outlook on prime numbers in cryptography. 

A well known and computationally efficient method of testing for a prime is 

the Miller test, i. e. 

If the extended Reimann hypothesis is true, 

then if p is a SPRP (Strong Probable Prime Base) 

for all integers n with 1<n< 2(logp)2, then p is prime. 

Miller test has been known for some time and employed in a number of RSA 

attacks. Until relatively recently, Miller's test has been used in the knowl- 

edge that is it, in effect, a `formula without a proof' and therefore doubt has 

remained as to its routine application. However, in October 2004, a proof 

of the extended Reimann hypothesis was published by Louis de Branges de 

Bourcia [27], a prominent Professor of Mathematics at Purdue University 

who has made finding the proof of the Reimann hypothesis his life's work. 

This has very serious potential implications for conventional RSA encryp- 

tion and prime number based encryption systems in general. If this proof is 

confirmed and turns out to be correct, it will provide a short-cut to identi- 

fying primes without large lookup tables and thus significantly increase the 

vulnerability of prime number based encryption systems and the algorithms 

upon which they are based. 

Although encryption using deterministic chaos has been investigated for some 

years, no commercial system has to date been implemented other than that 

being marketed by Crypstic Limited (see Appendix B). The reason for this 
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is that conventional prime number based pseudo random number generators 

have been considered secure enough for most applications and that a serious 

threat must exist in order to change the procedures and protocol associated 

with an entire secure communications network. Proof of the extended Rie- 

mann hypothesis means that Miller's test for evaluating whether a number is 

prime or otherwise can now be used routinely and thus, seriously undermines 

the basis for the majority of encryptions systems in use today. 

Chaos based encryption does not make use of primes which is a principal 

characteristics. Moreover, unlike conventional pseudo random number gener- 

ators, pseudo chaotic number generators have an unlimited number of forms, 

i. e. there are an unlimited number of iteration function sequences that can be 

designed (see section 3.17). Although the iterated function sequences must 

be tailored to provide a statistically uniform output, the fact that there are 

so many that can be used, means that a specific encryption engine can be 

designed that is unique to a given sender/receiver. The current platform 

for implementing this approach is based on utilizing a pair of USB memory 

sticks as discussed in Appendix B. 

7.4 Discussion 

There are three golden rules of Cryptology: 

" no cryptographic system is invulnerable to attack; 

9 no cryptographic system is invulnerable to attack; 

" no cryptographic system is invulnerable to attack. 
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Cryptology is a field of study that, like any other, has a legacy of attempts to 

derive the ultimate (theoretical) solution which has failed in practice. One 

of the principal mistakes that is made is to believe that a single solution is 

possible, e. g. application of a specific algorithm, which can be applied over 

a relative long period of time without any significant changes. This is the 

principal of mono-staticism and is one of the main reasons for the continued 

failure of information security. The failure of the Enigma cipher systems 

used in Germany from the late 1930s to the end of the second world war 

remains one of the best examples of mono-staticism. Nearly 10,000 of these 

encryption machines were manufactured between 1938 and 1945, all with the 

same specification and operating procedures (although a fourth rotor was 

introduced for use by the U-boat fleet in 1943, which caused a `black' period 

for the allied side until a four rotor machine was captured together with the 

code books without the knowledge of U-boat high command! ). 

A new underlying philosophy is now beginning to emerge that is based on 

the principal of developing multiple solutions which constantly changed - 
the principal of multi-dynamicism. This approach involves developing algo- 

rithms, systems and applications together with the procedures and protocol 

used in practice which change continuously. This includes the principal of 

dynamic algorithm management in which encryption engines are constructed 

based on multi-algorithmicity or `paracryption' like the one presented in Sec- 

tion 3.17. This thesis has also investigated a method of key exchange that 

is also dynamic and dependent on the plain text together with a transfor- 

mation that can in principle, be chosen from an unlimited list, especially 

through application of (non-orthogonal) wavelet functions. Also, the use of 

self-authentication via chirp coding, negates the need for a database (dy- 

namic or otherwise). In this sense, the entire approach for this thesis is 
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based on a multi-dynamic paradigm. 

The watermarking method developed for this thesis has a range of applica- 

tions in addition to key exchange for which it was originally conceived. It 

should be appreciated that watermarking information has some advantages 

over encrypting it. First and foremost is the fact that any encrypted data 

will immediately alert an interceptor to the fact that there may be valuable 

information worth intercepted and attacking. On the other hand, a covert 

watermark is interceptor illusive because the data appears to be of an original 

plain text form. This issue points to an approach in which the watermark 

is the cipher text which is then transmitted within the body of data that is 

unaffected by the presence of the watermark, e. g. audiovisual data (e. g. wav 

and/or avi files). 

7.5 Future Directions 

There are a number of directions that are possible to undertake based on 

the work herein. However, many of these will inevitably be `driven' by the 

demands and constraints associated with a given system and its specific ap- 

plication. One such applications specific product is Crypstic - see Appendix 

B. In this case, a unique multi-algorithmic encryption engine (unique to two 

sticks and only two sticks) is provided in a private area of the USB memory 

stick that is password protected. 
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7.5.1 Covert Access 

The fact that access to the Crypstic system is based on a pop up GUI which 

requires a user defined password means that the system (not the algorithm) 

potentially vulnerable to (password) attack. In order to overcome this prob- 

lem it should be possible to design an approach in which the hidden area 

remains entirely covert. Access to this area of memory can then be achieved 

by modification of one of a number of different files stored in the public 

area. Modification can, for example, be undertaken by renaming a specific 

file (from a field of size N to a field of size M where M< N) with use of just 

the mouse and the delete key in order to overcome any potential attack based 

on the use of key loggers (which to date, do not record mouse movements). 

7.5.2 Copy Protection 

Assuming that an attack has been successful in terms of obtaining access to 

the encryption engine on a Crypstic, the executable file can then be copied 
from the Crypstic to another platform. In order to prevent use of the engine 

on another platform, a small component of the process can be reserved for 

the CPU (with a unique serial number) on the USB memory stick itself. 

This prevents execution of the engine on any other platform should any 

unauthorised user gain access to the executable file. 

7.5.3 Dynamic Key Exchange 

The current Crypstic is based on a set of keys that are `hardwired' into 

the final encryption engine, that, along with the algorithms themselves, are 
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unique to one pair of sticks and only one pair. The overall key becomes the 

physical USB memory stick itself and is typically held by the user on a key 

ring along with the rest of his/her keys. If the USB memory stick is lost 

by either the sender or receiver (or both), then both sender and receiver are 

required to obtain a new set of sticks. The protocol is, in effect, the same as 

if a user loses a conventional key for which there is no replica. However, in 

the case of Crypstic, both a new lock and and a new key must be acquired. 

Here, the key is a based on issuing a new Crystic and the lock is analogous to 

the generation of a new and unique encryption engine that, in turn, is based 

on a unique sequence of pseudo chaotic number generators. 

In this thesis, the key exchange method has been researched using conven- 

tional ciphers (e. g. the Blum Blum Shub algorithm) modified to incorpo- 

rate multi-dynamicism using prime number modulation. The key exchange 

method is independent of the encryption engine that is used and can, thus, 

be used effective with any symmetric cipher including those based on the 

application of single- and/or multi-algorithmic ciphers that use deterministic 

chaos. 

7.5.4 Plain Text Image Based Encryption 

Watermarking is usually considered to be a method in which the watermark 

is embedded into a host image in an unobtrusive way. Another approach 

is to consider the host image to be a data field that, when processed with 

another data field, generates new information. 

Consider two images il and i2. Suppose we construct the following function 

n 
P2 

\) I1 

11 

12 
12/ 
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where Il = FZ[il], I2 = F2[i2] and P2 denotes the two-dimensional Fourier 

transform operator. If we now correlate n with il, then from the correlation 

theorem 

. I2I2=i2 i1 
j1 

®Gne=Ill 
i 

In other words, we can recover i2 from il with a knowledge of n. Because 

this process is based on convolution and correlation alone, it is compatible 

and robust to printing and scanning, i. e. incoherent optical imaging [56]. An 

example of this is given in Figure 8.1. In this scheme, the noise field n is the 

private key required to reconstruct the watermark and the host image can 

be considered to be a public key. 

Now, one of the principal components associated with the development of 

methods and algorithms to `break' cipher text is the analysis of the output 

generated by an attempted decrypt and its evaluation in terms of an expected 

type. The output type is normally assumed to be plain text, i. e. the output 

is assumed to be in the form of characters, words and phrases associated with 

a natural language such as English or German, for example. If a plain text 

document is converted into an image file then the method described above 

can be used to diffuse the plain text image i2 using any other image il to 

produce the field n. If both il and n are then encrypted, any attack on these 

data will not be able to make use of an `analysis cycle' which is based on the 

assumption that the decrypted output is plain text. This approach provides 

the user with a relatively simple method of `confusing' the cryptanalyst and 

invalidates attack strategies that have been designed and developed on the 

assumption that the encrypted data have been derived from plain text alone. 
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Figure 7.1: Exaiiiple of a covert image watermarking scheme. il (top-left) 

is convolved (witli pre-processing) with i2 (tole-middle) to Prod""' the "Oise 

field (top-right). i2 is then printed and scanned at 300 dpi and then re- 

sampled lack to its original size (bottom-left). Correlating this image with 

the noise field generates the reconstruction (hottoni-centre). '1'1ie recoIl- 

struction cleIpends on just the host, image and noise field. If the noise field 

and/or the host irrvage are different or corrupted. then a rec )I ist ruction is not, 

achieved (bot torn-right). 
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Appendix A 

MATLAB Prototyping 

This appendix provides details of the MATLAB functions developed for this 

thesis. MathWorks Inc MATLAB is an ideal platform for numerical work 

and is routinely used for rapid prototyping, i. e. the rapid development of 

MATLAB code for testing new algorithms. This includes use of the large 

library of based intrinsic functions offered by MATLAB and the increasingly 

wide range of specialist toolboxes offered by the system. 

The MATLAB functions (full MATLAB code) are given in the accompanying 

CD and the back of this thesis. 

A. 1 Fixed Version Mode 

This version is called a fixed version mode. The parameters to be transmitted 

are one time. The chirp length is recalculated by the recipient modules 

according to the file length and the key length. The key length is fixed at 

80-bits. The length of the noise is also fixed at 99983 bytes. The noise length 
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and chirp parameters t, f0, and fl can be varied by the sender at any time. 

The sender's program is launched by running 'dbxfix_encrypt. m'. The re- 

ceiver mode is'dbxfix_decrypt. m'. 

The following programs are then executed sequentially or depending on the 

selection: 

dbxfix_encrypt. m 

Main program which calls all other functions necessary for encryption. 

dbxfix_encrypt. m 

Main program used by the recipient which calls all functions needed for 

decryption. 

readparams_ver5. m 

This program prompts the sender to either use existing parameters or enter 

new ones. Four parameters can be changed. Padding length, plus three chirp 

parameters: f0, tl, and fl. Details of these parameters can be found in the 

documentation. Once the user enters new parameters, the program displays 

a list of the old and new parameters. 

key_gen_fixedvera. m 

Reads in a file, introduces noise, and generates a key. The noise is used as 

a file header, it is initially fixed at 99983 bytes. This value may be changed 

by the user before key generation starts. The key is generated by adding up 

all characters in a file to be encrypted after padding has taken place. The 

padded file is randomly created. 
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key_gen_conv-fixedver4. m 

This module uses convolution integral to generate a key. It works on the same 

principle as the previous module, the main difference is that after generating 

noise and padding to a file, another set of random noise is generated and 

convoluted to the new file. Part of the resultant output is taken as the key. 

key_gen_fixedwavelet6. m 

This module uses Deaubechies wavelet to create a key. Takes in a file, gen- 

erates noise and pads it in front of the file. Wavelet decomposition with 

Deaubechies wavelets is then applied. Approximation and detailed coeffi- 

cients are then extracted. Various methods are used to generate an output 

binary stream used as a key. 

key_gen-hash-ixedvera. m 

This module uses SHA-256 to generate a key. It reads in a file, creates 

random noise and pads to the original file. It then gives a hash value of the 

total file. 

encrypt_vera. m 

This file will take any type of file, and encrypt it using the key generated 
from the previous module. It takes the binary key , divides into a number 

of parts, and uses each part as a seed for BBS generator each time it is 

initialised. The block length changes for each new cycle, it is currently set 

to a minimum of 5 and maximum of 50 characters. 

wmark; nsert_ver4. m 

This module takes in the key and the encrypted file. It then converts the 

binary key into a stream of is and -1s. It calculates the chirp length which is 
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a ratio of the file length to the key length. Each binary stream is multiplied 

to a chirp, concatenated and finally added to the encrypted data. 

wmark_remove_fixedver8. m 

This file extracts the key from the encrypted text. It first recreates the chirp. 

Then applies correlation function, correlates the chirp with the total signal. 

This extracts the key from the encrypted data. Finally the key is subtracted 

leaving only encrypted data. 

decrypt_fixedver9. m 

Since this is a symmetric cipher, this file will decrypt a file into plaintext, by 

reversing the encryption process. The noise finally gets separated from the 

actual file. 

parameters. txt 

Data file for storing chirp and noise parameters. This file is used by read_paramsver5. m 

The following three files have been successfully tested with the program. 

sunset. jpg 

test100k. txt 

taiwan. txt 

A. 2 Variable Parameters Mode 

In this version, noise length changes with each file to be encrypted, hence the 

total file length changes. After encryption the encrypted file is sent through 
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open channel while parameters are sent through secure channels. Parameters 

need to be transmitted for each encrypted file. This mode is quite similar to 

the above, the main difference is the parameters to be exchanged. 

All of these programs appear on the previous section, so there will be no 

need for repeat description here. 

dbx_encrypt. m 

Main encryption program. 

dbx_encrypt. m 

main decryption program. 

key_gen_verc. m 

Key generation using summation method. 

key_gen_conv_ver3. m 

Key generation using convolution integral. 

key_gen_wavelet4. m 

Key generation using Daubechies wavelets. 

key_gen_hash_ver9. m 

Key generation using hash function SHA-256. 

encrypt_vera. m 

Encryption module. 

wmark_insert_ver5 
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Watermark exchange module. 

saveparamsa. m 

This code is used to save parameters: chirp length and noise length. 

loadparams7. m 

Loads parameters before decryption process starts. 

wmark-remove_ver9. m 

Extracts watermark. 

decrypt_vera. m 

Decrypts. 
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Appendix B 

Crypstic 

Crystic is marketed by Crypstic Limited, Mayfair House, 14-18 Heddon 

Street, Mayfair, London W1B 4DA. It is based on the use of multi-algorithmic 

deterministic chaos coupled with key exchange using chirp coding to design 

an encryption engine that unique to a pair of Crystics (i. e. USB memory 

sticks). 

Deatils on the Crypstic system are given on the CD that accompanies this 

thesis. This includes: 

"A full technical report entitled Digital Cryptography using Deterministic Chaos 

that gives a background to the technical specifications of the system 

including an information theoretic approach to the use of deterministic 

chaos for encryption. 

"A comprehensive business plan that has been used to generate invest- 

ment for the development of the product and the establishment of Crys- 

tic Limited. 
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9 Documentation concerning the system including a user guide and an 

example applications program - `Crypstic'. 

" Example publications. 
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