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Abstract 

ABSTRACT 

Developing computational models of the human spine has been a hot topic in 

biornechanical research for a couple of decades in order to have an 

understanding of the behaviour of the whole spine and the individual spinal 

parts under various loading conditions. The objectives of this thesis are to 

develop a biofidefic multi-body model of the whole human spine especially for 

dynamic analysis of impact situations, such as frontal impact in a car crash, and 

to generate finite element (FE) models of the specific spinal parts to investigate 

causes of injury of the spinal components. As a proposed approach, the 

predictions of the multi-body model under dynamic impact loading conditions, 

such as reaction forces at lumbar motion segments, were utilised not only to 

have a better understanding of the gross kinetics and kinematics of the human 

spine, but also to constitute the boundary conditions for the finite element 

models of the selected spinal components. This novel approach provides a 

versatile, cost effective and powerful tool to analyse the behaviour of the spine 

under various loading conditions which in turn helps to develop a better 

understanding of injury mechanisms. 
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CHAPTER 1 

Introduction 

Iniroduction 

The human spine is a mechanical structure, consisting of vertebrae, facets and 
discs, ligaments and muscles. As a mechanical system, the vertebrae can be 

regarded as levers while facets and discs behave like pivots. In this system, 
ligaments and muscles can be considered as passive restraints and actuators, 

respectively. 

Biomechanics of the human spine and the problems related to it are a hot topic 

amongst researchers all over the world. Computational techniques are widely 

used to model, simulate and analyse the behaviour of the spinal segments in the 
human spine, which are by no means possible with in vitro and in vivo 

experimental studies. Computational models are highly important in 

reconstructing impact situations such as car crashes, where only a small range 

of experiments can be conducted with human volunteers. Clinical investigations 

also demand a higher level of support from computational modelling in order 
to aid in many applications such as fixture and fixation implementations, and 
corrections of scoliosis, and kyphosis. 

This thesis focuses on the development of a platform of computational models 
to investigate the kinetics and the kinematics of the whole human spine and its 

components and the response of selected soft tissues under complex dynamic 
loading histories, such as car crashes. 

1.1 Research Issues and Computational Models 

Testing on human volunteers is limited to non-traumatic situations and 
therefore only low acceleration impacts can be investigated. Cadaver and 
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dummy testing, where realistic impact conditions can be simulated, does not 

reflect the true human response due to the lack of live anatomical structure, 

whereas computational modelling offers a cost effective and practical 

alternative to experimental methods by having the potential to provide 

information on simulated situations that could not otherwise be obtained. 

Therefore, the estimate of injury risk in a wide variety of tasks is only possible 

through biomechanical modelling. 

Various models were developed to investigate the aforementioned situations 

such as automobile impacts, recreational activity, industrial work, and clinical 

applications. The group of analytical, geometric, 2 pivot, and continuum 

models, which are often referred to as mathematical models, possess significant 
differences from biomechanical models such as multi-body (MB) or finite 

element (FE) models. When compared to biomechanical models, mathematical 

models seem to arouse less interest, mainly due to a belief that they cannot 

provide a relevant and satisfactory description of the spine because of their 

simplicity. These models are usually used, for the evaluation of static loadings 

and ergonomics of work situations and are generally incapable of handling 

complex dynamic loading scenarios. 

Multi-body/ discrete parameter and FE models have the ability to simulate the 

global and local kinematics and kinetics of the human spine. A multi-body 

system is a collection of rigid bodies connected through kinematic joints as well 

as elements applying forces, whereas an FE system is capable of producing 
highly detailed models of bodies and systems by dividing the entities into a 

number of smaller elements, connecting those via nodes, and producing the 

realistic material behaviour by employing governing FE equations. The quality 

of FE models depends on many factors such as the number and type of 

elements, the structure of the mesh, geometric and contact properties, material 

property description, initial and boundary conditions, and various theoretical 
FE analysis options. Multi-body dynamics models have advantages such as less 

complexity, less demand on computational power, and relatively simpler 

validation requirements when compared to FE models. MB and FE models, and 

a combination of these two, hybrid MB-FE models are highly suitable for the 

simulation and analysis of dynamic situations such as automobile impacts. 
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Hybrid MB-FE models have the potential to offer an even better solution to 

dynamic problems, utilising the strengths of both techniques. Many MB, FE and 
hybrid MB+FE studies conducted regarding dynamic loading conditions are 

presented in Computational Models of the Human Spine Chapter in detail. 

As an automobile impact injury, Whiplash or Whiplash Associated Disorders 

(WAD) is a very common problem of the cervical spine, occurring usually as a 

result of low speed, rear-end car crashes, in which the sudden differential 

movement between the head and torso results in abnormal motions in the neck 

causing damage to its soft tissue components. The injury mechanism of 

whiplash is insufficiently understood. Recent research has focused on the 

possibility of internal nerve damage to the spinal canal due to the rapid 

acceleration of the body with respect to the head, while intersegmental 

hyperextensiorý tearing of ligaments and muscles, lesions to discs, and facet 

joint injuries are also considered to be possible reasons for whiplash. 

Whiplash not only leaves some patients with severe residual disability that may 
interfere with their ability to do their job and quality of life, but also burdens the 

economy with a huge cost. It has been estimated that 80% of personal injury 

claims made against British Insurers are related to whiplash, costing well over 
El billion every year and steadily rising (THATCHAM, 2001). In US, neck 
injuries cost at least $7 billion in U. S. insurance claims per year (IMS, 2004). 

Similarly in Japan, neck injury accounted for an annual loss of 192.8 MYen in 

2001 g-lasegawa and Shiomt 2003). The costs in the early nineties have been 

estimated to be 700.? %Euro in Germany, 210 MEuro in Sweden and 300 Wuro 
in Netherlands (van der Horst, 2002). These data do not include the lost 

working days due to injuries and their socioeconomic costs. In this thesis, 

whiplash injury is also investigated as a case study through the developed 
biomechanical models. 

Biomechanical research is an ongoing process in the field of impact analysis in 

order to attempt and determine the mechanisms of injury and ultimately to 
improve vehicle safety. The main focus of this thesis is to provide a contribution 
to knowledge in this area by developing advanced MB and FE models, 
combining and utilising them in the form of a novel versatile platform and 
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investigating the effects of the dynamic impact loading conditions on the 

human spine as in whiplash injury. The developed MB model of the whole 
human spine offers a highly detailed anatomical structure combined with an 

advanced muscle model, possessing both passive and active behaviour, and 
highly -realistic material properties such as non-finear viscoelasticity, whereas 

other existing models cannot. 

1.2 Aim of the Thesis 

The aim of this research is to develop a powerful, cost-effective and versatile 

platform to investigate the kinetics and the kinematics of the whole human 

spine and its components and the response of the intervertebral discs under 

complex dynamic loading histories occurring during impact situations. The 

platform combines a multi-body model of the whole human spine and FE 

models of the discs via a proposed novel approach. The rationale that motivated 
this research is that a fully validated detailed computational model of the whole 
human spine and the FE models of the spinal segments can help investigate and 

explain the injury mechanisms under impact conditions such as automobile 

crashes. A well-known example to be investigated is 'whiplash' injury in rear- 

end impacts. The combined platform is aimed to constitute a powerful tool in 

order to increase our understanding of the impact injuries by delving into the 

loads and deformations of the soft-tissue components as well as the critical 
loadings on the bony parts. The main novelty of the thesis and its contribution 
to knowledge are intended to be the multi-body model of the whole human 

spine itself. 

1.3 Objectives of the Thesis 

One of the main objectives of this thesis is to develop and validate a biofidelic 

multi-body model of the whole human spine. BioJidelity can be defined as the 

measure of how well a model simulates a human being. A biofidelic model is 

expected to respond like a human to a certain extent in terms of mechanical 
responses to ensure that the predictions obtained are truly representative of 
what would happen to a human being under similar conditions. The proposed 
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model is aimed to be one of the most sophisticated MB models in the literature, 

especially with its highly advanced material property definitions such as 

viscoelastic behaviour, active-passive muscles, and geometric nonlinearities. 
The multi-body model must be able to simulate the kinetics and the kinematics 

of the whole human spine as well as to predict the loads and deformations of 

the surrounding soft tissues. 

Objectives also include the construction of several finite element models of the 

spinal segments, and the implementation of a proposed approach to establish a 

versatile platform in order to have a better understanding of injury mechanisms 

under impact loading conditions. This approach is thought to be another 

novelty for spinal biomechanics, where the predictions of the MB model as a 

result of these simulations such as intervertebral disc loadings will be used as 
loading boundary conditions for the FE models of the individual elements of the 

human cervical spine, such as the intervertebral discs. As it is practically almost 

impossible to determine what these loadings on the discs in a real life dynamic 

impact situation are, the validated MB model will act as a realistic source for 

determining these loadings on each and every one of the spinal elements, such 

as intervertebral discs, ligaments, or muscles. 

This approach should help not only to visualise the global and local kinematics 

and kinetics of the human spine via the MB model, but also to avoid modelling, 

validation and computational power complications of a possible complicated FE 

model of the whole human spine. 

Validation, which verifies the biofidelity of the developed models, is an 
important part of the objectives of this research, involving comparisons of the 

mode& predictions against available experimental data. Multi-body model is 

aimed to be validated utilising motion segment responses in the cervical spine, 

model responses in the cervical spine for frontal and lateral impacts, vertical 
loading for cervical spine, and model responses of thoracic and lumbar regions 
in rear-end impact. Similarly, FE models are aimed to be checked against 

various experimental results. 
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1.4 ScoPe of the Thesis 

Introduction 

The scope of the thesis is to construct and validate a biofidelic multi-body model 

of the whole human spine as well as finite element models of the spinal 

segments in order to investigate impact situations via a novel approach, which 

utihses the predictions of the MB model as loading boundary conditions for the 

FE models. The MB model development includes the preliminary MB model of 
the lumbar spine and the final whole human spine model. The FE modelling 

contains various models of the lumbar and cervical discs, disc segments, and 
functional spine units. 

1.5 Outline of the Thesis 

In Chapter 2, biomechanics of the human spine is explained in detail in order to 

reflect the background of all the modelling studies conducted. This chapter 

covers an introduction to the biomechanically essential parts of the human 

spine, namely; intervertebral disc, ligaments, muscles, and vertebrae. Following 

the subsections regarding the components, biomechanics of the segments of the 

human spine are presented in order to establish a background on the kinetics 

and kinematics of the human spine regions. 

Chapter 3 discusses and attempts to comprehend the classifications of the 

computational human spine models and the reasoning behind the need for 

those. The assessment of all types of models constituted the initial steps of this 

study and not only leads to developing hybrid approaches for the previously 

addressed dynamic loading conditions the human spine is subjected to, but also 
forms the basis for the methodologies employed in developing the models. 
Hence, this chapter includes a comprehensive review of the classifications of 
human spine models as well as a broad literature survey on numerous 
prominent models developed. The final classification approach used in this 
thesis serves for understanding the mainstream of spinal modelling and helps to 
demonstrate the rapid developments and improvements within each 
methodology. 
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In Chapter 4, multi-body model development is described in detail. Two multi- 
body models are explained: first one is a preliminary multi-body model of the 

lumbar spine, which aimed to establish the principles to extend the model to a 

whole human spine MB model; second one is the final whole human spine MB 

model. 

In Chapter 5, validation studies regarding the multi-body model of the whole 
human spine are presented. The validation is carried out against the results of 

several experimental studies, static, quasi-static or dynamic, and particularly for 

the cervical spine region. Validation attempts for the thoracic and lumbar 

regions are also included. 

In Chapter 6, the MB model is used to simulate a ligamentous cervical spine 

undergoing whiplash trauma. Chapter 7 covers the use of finite element 

method in order to investigate intervertebral discs under various loading 

conditions. Several FE models are developed from simpler ones to more 

advanced models, incorporating different modelling parameters and techniques 

each time. Also, the proposed approach was explained and utilised in this 

chapter. 

Conclusions are given in Chapter 8 and suggestions for further work are 

presented in Chapter 9. 

7 



Chapter 2 Biomechanics of the Human Spine 

CHAPTER 2 

Biomechanics of the Human Spine 

2.1 Introduction: The Human Spine 

The human spine is a mechanical structure, consisting of vertebrae, facets and 

discs, ligaments and muscles. As a mechanical system, the vertebrae can be 

regarded as levers while facets and discs behave like pivots. In this system, 

ligaments and muscles can be considered as passive restraints and activators, 

respectively. The mechanical stability of the spine is mostly provided by the 

highly developed, dynamic neuromuscular system. The ligaments are the other 

elements to contribute the spinal stability. The spine structure protects the 

spinal cord, which resides at the centre of the system (White and Panjabt 1990). 

Spatial positions of several parts of the human body can be described referring 

to a Cartesian coordinate system that is located at the centre of gravity of the 

human body in the standing configuration (Fig. 2.1). The directions of the 

coordinate axes constitute the three primary planes of a standing person. These 

planes are also ascribed to spinal motions. Axes xi and x3 form the transverse 

plane. It passes through the hip bone and lies at a right angle to the long axis of 

the body, separating it into superior and inferior parts. Any imaginary 

sectioning of the human body that is parallel to the (xi, x3) plane is called a 
transverse section or cross section. Theftontal plane comprises the xi and x2 axes 

of the coordinate system (Fig. 2.1). It is also called the coronal plane. Vwftontal 

plane divides the body into anterior and posterior sections. The sagittal plane is 

the plane made by the x2 and x3 axes (Fig. 2.1). The sagittal plane separates the 
body into left and right sections. It is the only plane of symmetry in the human 

body (Tozeren, 2000). 
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Figure 2.1 The three primary planes of a standing person (rozeren, 2000) 

The spine consists of four main segments, the cervical spine, the thoracic spine, 
the lumbar spine and the sacroiliac region, which embody seven cervical 

vertebrae, twelve thoracic vertebrae, five lumbar vertebrae, five fused sacral 

vertebrae, and three or four fused coccygeal segments (Fig. 2.2). As the spine is 

viewed in the frontal plane, it generally appears straight and symmetrical. In 

some individuals there may be a slight right thoracic curve, which may be due 

to either the position of the aorta or the increased use of the right hand. In the 
lateral or sagittal plane there are four normal curves, which are convex 

anteriorly in the cervical and lumbar regions and convex posteriorly in the 
thoracic and sacral regions. There is a mechanical basis for these normal 

anatomic curves; they provide the spinal column increased flexibility and 
augmented, shock-absorbing capacity, while at the same time, sustaining 
adequate stiffness and stability at the intervertebral joint level (White and 
Panjabi, 1990). 
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Figure 2.2 Spinal column and the regions of the spine (Tozeren, 2000) 

The fundamental functions of the spine can be summarized as follows: 

> The human spine transfers the weights and the resulting bending 

moments of the head, trunk and any weights being lifted to the pelvis. 

It allows sufficient physiologic motions between head, trunk, and pelvis. 

> The most important of all, it preserves the fragile spinal cord from 

potentially damaging forces and motions, which are originating from 

both physiologic movements and trauma. 

These functions are achieved through the highly specialized mechanical 

properties of the normal spinal anatomy (White and Panjabi, 1990). 

2.2 Spine Components 

In this section, the most essential parts of the human spinal column in terms of 
biomechanical modelling are introduced as intervertebral. disc, ligaments, 

vertebrae, and the muscles, which all will constitute the fundamental elements 

considered in the developed multi-body model. 
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2.2.1 The Intervertebral Disc 

Having many other functions, the intervertebral disc carries all of the 

compressive loadin& to which the trunk is subjected. The intervertebral discs 

are mainly responsible for supporting various forces and moments acting on the 

spine. When a person is standing erect, the disc is subjected to much greater 
forces than the weight of the portion of the body above it. 

The loads acting on the disc can be classified into two main categories according 
to the duration of application as short and long duration loads. Short duration 

loads are high amplitude loads such as jerk lifting while long duration loads are 
lower in magnitude due to more normal physical activities. This division is 

crucial as disc possesses time-dependent properties such as viscoelasticity. 

Short-duration, high-level loads cause irreparable structural damage on the 

intervertebral disc when a stress value at a given point is higher than the 

ultimate failure stress. The mechanism of failure during long-duration, low- 

level, repetitive loading of relatively low magnitude is completely different and 
is due to fatigue failure. A tear develops at a point where the nominal stress is 

relatively high (but much less than the ultimate or even yield stress), and it 

eventually enlarges and results in complete disc failure (White and Panjabi, 

1990). 

The intervertebral disc is composed of three discrete parts: the nucleus pulposus, 
the annulusfibrosus, and the cartilaginous end-plates. 

Tlx nucleus pulposus is a centrally located area composed of a very loose and 
translucent network of fine fibrous strands that lie in a mucoprotein gel 

containing various mucopolysaccharides. The water content ranges from 

70-90%. It is highest at birth and tends to decrease with age. The lumbar 

nucleus comprises 30-50% of the total disc area in cross-section. In the low back, 

the nucleus is usually more posterior than central and lies at about the juncture 

of the middle and posterior thirds of the sagittal, diameter. The size of the 

nucleus and its capacity to sweH are greater in the cervical and lumbar regions. 
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The aititulusfibrosus is a portion of the intervertebral. disc that gradually becomes 

differentiated from the periphery of the nucleus and constitutes the outer 

boundary of the disc. This structure is composed of fibrous tissue in concentric 
laminated bands (Fig. 23A, B). The fibers are arranged in a helicoid manner. 

They are located in about the same direction in a given band but in opposite 

directions in any two adjacent bands. They are oriented at 300 to the disc plane 

and therefore at 12(Y to each other in the adjacent bands (Fig. 2.313, C). The 

annulus fibers are attached to the cartilaginous end-plates in the inner zone, 

while in the more peripheral zone they attach directly into the osseous tissue of 

the vertebral body and are called as Sliarpey's fibers. This attachment to the 

vertebra is a much stronger than the other more central attachments, which is a 

useful characteristic in the clinical evaluation of spine trauma, clinical stability, 

and surgical constructs. 

The cartilaginous end-plate is composed of hyaline cartilage that separates the 

other two components of the disc from the vertebral body (White and Panjabi, 

1990). 

NUCLEUS 

ANNULAR FIBERS 

ANNULUS 
LAMINATES 

( 

Figure 2.3 The intervertebral disc (A) A photo showing the annular fibers and 
their orientation (B) The nucleus pulposus and the annulus laminates (C) The 

orientation of aimular fibers (White and Panjabi, '1990) 
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Chapter 2 Biomechanics of the Human Spine 

As the intervertebral disc is a viscoelastic structure, the mechanical tests should 
be carried out at relatively slow loading rates in order to minimize the 

viscoelastic effects. The compression test has been the most popular mechanical 

test for the study of the disc, probably as the disc is the major compression- 

carrying component of the spine. Many experiments have been done to 

determine the compressive properties of the disc. To compare the relative 

strength of the disc with that of the vertebral body in supporting compressive 
loads, static tests were conducted by Brown and colleagues on functional spinal 

units (FSUs), which are defined as pairs of adjacent vertebrae and the 

connecting disc and ligaments, but devoid of musculature, without posterior 

elements, of the lumbar region. It was found that the first component to fail in 

such a construct was the vertebra, because of fracture of the end-plates. No 

failure of the disc ever took place. The mode of failure was exclusively 
dependent on the condition of the vertebral body. 

The intervertebral disc is hardly ever sulýected to tensile loads under normal 

physiologic activities. Even under the application of traction to the spine, the 

discs are under compression load due to muscle activities. However, the disc 

annulus is sulýect to tensile stresses in various physiologic conditions. In 

flexion, the instantaneous axes of rotation lie in the frontal and transverse 

planes and pass through the middle of the disc. Therefore, in flexion, the 

posterior part of the disc is sulýected to tensile stresses. The opposite is true in 

extension (Le., the anterior part of the disc experiences tensile stresses). In lateral 

bending, the tensile stresses are produced on the convex side of the bend while 
in axial rotation; the tensile stresses develop at about 45' to the disc plane. 

Finally, compressive loading also produces tensile stresses. Consequently, it can 
be concluded that the disc is sulýected to tensile stresses in all different 

directions under various loading situations. 

Strength of disc material was investigated by cutting the vertebra-disc-vertebra 

construct into multiple, axially oriented, rectangular sections (Fig. 2.4A). The 

specimens were stretched to failure in a tensile testing machine, and the load- 

displacement graphs were recorded. Failure load values were collected from 

various samples and combined as axial tensile strength maps of the disc. The 
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anterior and posterior regions of the disc are stronger than the lateral region, 

and the central region, consisting of the nucleus pulposus, is the weakest (Fig. 

2AB). This distribution may be "nature's attempt" to provide strength where 

most of the failures and herniations tend to occur (White and Panjabi, 1990). 

UI 
A 

/ 

VERTEBRA 

DISC 

VERTEBRA 

ANTERIOR 

". 3 MPm (OA00 psi) 

0.3-0.7 We (100-300 psi) 

0.7-1.4 MPS (300-700 psi) 

Figure 2.4 Tensile strength of the intervertebral disc (A) Disc specimens (B) The 
results of the tension tests in the form of contour maps (White and Panjabi, 

1990) 

Galante performed extensive biomechanical tests of the disc material. He cut the 

disc annulus into thin samples (lx2 mm) along different orientations and 

subjected these samples to tensile loads. His results for stiffnesses of the disc are 

summarized in Figure 25A. The stiffness was found to vary to a great extent 

with the orientation of the samples; the axial samples were the most flexible, 

while the samples taken at 150 to the horizontal plane were the stiffest. The 

strength results of the samples yield that the tensile strength in the fiber 

direction appears to be about three times stronger than the tensile strength 

along the horizontal direction (Figure 2.5B). 
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Chapter 2 Biotnechanics of the Human Spine 

The stiffness and strength tests evidently show that the disc structure is 

anisotropic. It is able to support certain types of loads effectively while it can 

not resist the rest of the loadings in an equally efficient manner. 

Figure 2.5 Disc anisotropy (A) Tensile stiffness (B) Tensile strength (White and 
Panjabi, 1990) 

As experimental findings imply that pure compression loads do not damage the 

disc, bending and torsional loads attract particular interest. The lumbar disc did 

not seem to fail with a bending of 6-80 in the sagittal, frontal, and other vertical 

planes. However, after the posterior elements are removed, failure takes place 

with a bending of 150 (anterior flexion). Disc stresses in bending are illustrated 

in Figure 2.6. According to the studies of Farfan et al (In: White and Panjabi, 

1990), the average angle at torsional failure for nondegenerated and 
degenerated discs was 16' and 14.5'. respectively. Generally, a large disc 

possessed large torsional strength. A round disc was found to be stronger than 

an oval disc. 

15 

A STIFFNESS 

13 STRENGTH 



Otapter 2 

TENSION 

A 

Bionicchanics of the Human Spitic 

COMPRESSION 

INSTANTANEOUS AXIS OF ROTATION 

TENSILEt 
, STRESS 

, 
ICOMPRESSIVE 

44 
STRESS ýTTxrTA*--v 

a 'INSTANTANEOUS AXIS OF ROTATION 

Figure 2.6 Disc stresses in bending (A) During flexion, extension and lateral 
bending one side is in compression while the opposite side is in tension (B) The 
distribution of the tensile and compressive stresses (White and Panjabi, 1990) 

Although the disc is subjected to shear stresses during torsional loading, the 

stresses are not uniformly distributed. They are high along the periphery and 

low in the centre. Therefore, the torsional experiments do not provide precise 

information about the horizontal shear characteristics of the disc. Experiments 

had been conducted to investigate the lumbar disc in direct shear. The shear 

stiffness in the transverse plane (anteroposterior and lateral directions) was 
found to be around 260 N/mm. This is a high value and is clinically 

meaningful, showing that a large force is required to cause an abnormal 
horizontal displacement of a normal vertebral disc unit. This means that it is 

relatively rare for the annulus to fail clinically because of pure shear loading. 

Most likely, clinical evidence of annular disruption indicates that the disc has 

failed because of some combination of bending, torsion, and tension (White and 
Panjabi, 1990). Some numerical values for stiffness properties of the disc are 

given in Table 2.1. 

16 



Chapter 2 Biontechanics of the Human Spine 

Table 2.1 Stifftiess coefficients and maximum load of the intervertebral disc 
(White and PanjabL 1990) 

Authors Stiffness Coefficients Maximum Load Spine Region 
Compression (-Fy) 

Virgin, 1951 2.5 MN/m 45WN Lumbar 
Hirsch & Nachemson, 1954 0.7 MN/m 1000 N Lumbar 
Brown et al, 1957 2.3 MN/m 5300 N Lumbar 
Markolf, 1970 1.8 MN/m 1800 N Thoracic & Lumbar 
Moroney et al, 1988 0.5 MN/m 74 N Cervical 

Tension (+F-y) 
Markolf, 1970 1.0 MN/m 1800 N TItoracic & Lumbar 

Shear (Fý, F, ) 
Markolf, 1970 0.26 MN/m 150 N Thoracic & Lumbar 
Moroney et al, 1988 0.06 MN/m 20 N Cervical 

Axial Rotation (My) 
Fairfan et al, 1970 2.0 Nm/deg 31 Nm Lumbar 
Moroney et al, 1988 0.42 Nmjdeg 1.8 Nm Cervical 

Due to its viscoelastic characteristics, the intervertebral disc exhibits hysteresis, 

and creep and relaxation. Hysteresis involves loss of energy when a body is 

subjected to repetitive load and unload cycles. Hysteresis appears to vary with 

the load applied, the age of the disc and its level. The larger the load the greater 
the hysteresis. The intervertebral disc also shows creep and relaxation. The 

higher loads produced result in greater deformation and faster rates of creep. 

There are very few precise studies on the behavior of the spine components in 

vivo. Most of the work is done on cadaver materials. Although these studies 
have provided large amounts of precious information, the magnitude of the 

loads applied to the disc cannot be determined in vitro. Nachemson and Morris 

On: White and Panjabi, 1990) determined for the first time the actual loads to 

which a disc is subjected in vivo. They employed the concept of nucleus 

pulposus as a load transducer. By means of in vitro experiments on vertebra- 
disc-vertebra preparations, they found that the fluid pressure within the 

nucleus is directly related to the axial compression applied to the disc (Fig. 

27A). Nachemson et al (In: White and PanjabL 1990) have measured the in vivo 
loads to which the lumbar discs are subjected when a person is resting in 
different body postures or performing a certain task. A sample of the results of 
their work is provided in Figure 2.7B. 
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Figure 2.7 Intradiscal loads on the disc (A) The needle pressure transducer in 
the nucleus pulposus (B) Load on the disc (White and Panjabi, 1990) 

The mechanical responses of intervertebral discs under different loading 

conditions have been investigated by several authors. Various models have 

been reported in order to analyze the disc behaviour and properties. 

One of the most common techaiiques employed is finite element (FE) method. 
Spilker et al. (1984) proposed a simplified finite element model to explore the 

mechanical response of the disc under complex loading. Their model is 

axisymmetric about the longitudinal axis and the model motion segment is 

assumed to be symmetric with respect to its mid-transverse plane. The effects of 

gross disc geometry and soft tissue properties on mechanical behaviour had 

been studied for loading in compression, torsion, shear and moment, while 
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maintaining the computational efficiencies of a two-dimensional analysis. 

However, the model lacked the possibility of accommodating non-axisymmetric 

external loading. They concluded that strength-of-materials models can provide 

reasonable predictions for end-plate rotation in torsion, and end-plate tilting in 

shear and bending but give generally poor predictions of other quantities. 

Dozzird et al. (1999) presented a 3-D poroelastic anisotropic finite element 

model of the human lumbar intervertebral disc, which also incorporates 

nonlinearity due to permeability, large deformations and material constitutive 

behaviour. The model appears to be capable of simulating compression, flexion, 

and torsion both under creep and relaxation conditions. In another study, Lee et 

al. (2000) developed a 3-D nonlinear finite-element model of the L3-T-A spinal 

motion segment, previously created using computed tomography (CT) 

transverse sections, which was modified to include poroelastic properties in the 

disc and thus simulate the response of spinal motion segment under impact 

loading conditions. The authors infer the use of the finite-element technique to 

address the role of impact duration, At, in producing trauma to the spinal 

motion segment. Within the limitations of the reported model, the results 

suggest that fractures are likely to occur under shorter At conditions. Baer et al. 

(2001) developed an anisotropic, biphasic finite element model (FENý of - disc 

cell-matrix interactions in the intervertebral disc capable of describing the 

anisotropy in the extra cellular matrix and the large strains which may occur in 

and around the cell. The outcomes of this study imply that zonal differences in 

cell micromechanical environment may play a role in known differences in the 

biosynthetic response of disc cells to mechanical loading. 

Wagner et al. (1999) developed a constitutive formulation in order to specify a 

strain energy function which simultaneously predicts the mean response of the 

annulus to seven different experimental protocols - confined compression (two 

directions), uniaxial tension (two directions) and shear (three directions) and 
determined the material coefficients of the strain energy formulation which 

predicts within one standard deviation the mean response of the annulus 
fibrosus, both with and without invoking the traction free boundary conditions. 
Klisch and Lotz (2000) presented an intrinsically incompressible special mixture 
theory and have determined the material constants for healthy human annulus 
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fibrosus using new confined compression experimental data and in comparison 

to the aftermath of previous studies, they stated a higher initial water content, a 
lower aggregate modulus, and a higher initial permeability constant. Riches et 

al. (2002) investigated the mechanics of the intervertebral, disc under cyclic 
loading by developing a one dimensional poroelastic model and conducting the 

experiment. 

Some studies have been carried out on human and sheep intervertebral discs. 

Sheep lumbar discs have been used to investigate the effects of removing and 

replacing the nucleus. Reid et al. (2002) mainly investigated 
, 
the water and 

collagen contents and fibre angles of sheep discs experimentally and concluded 
that a sheep disc can be used as a model of a human disc. Likewise, Costi et al. 
(2002) studied the hydration-over-time behaviour of ovine intervertebral discs 

and intact joints in a saline bath at body temperature and the effect on their 

stiffness compared to air at ambient temperature and demonstrated the 

similarities between human and sheep intervertebral discs. 

2.2.2 The Spinal Ligaments 

Ligaments are uniaxial structures mostly efficient in carrying loads along the 

fibres' direction. In this respect, they are much like rubber bands. They readily 

resist tensile forces but buckle when subjected to compression. Nature has I 

designed the spine in such a way that when the functional spirtal unit is 

subjected to different complex force and torque vectors, the individual 

ligaments resist tensile forces by developing tension. 

The ligaments have many distinct functions. These can be summarized as 
follows: 

> The ligaments must allow adequate physiologic motion and fixed 

postural attitudes between vertebrae, with a minimum expenditure of 

musde energy. 

> They must protect the spinal cord by restricting the motions wid-dn well- 
defined limits. 

20 



Chapter 2 Biomechanics of the Human Spine 

> They share with the muscles the role of providing stability to the spine 

within its physiologic ranges of motion. 

> They must protect the spinal cord in traumatic situations in which high 

loads are applied at fast speeds. In these highly dynamic situations, not 

only is the displacement to be restricted wid-dn safe limits, but large 

amounts of energy that are suddenly applied to the spine must also be 

absorbed (White and Panjabi, 1990). 

There are totally seven ligaments on the spine (Fig. 2.8), which are: 

7he ante? ior longitudinal ligament (AAL) is a fibrous tissue structure that 

arises from the anterior aspect of the basioccipital and is attached to the 

atlas and the anterior surfaces of all vertebrae, down to and including a 

part of the sacrum. It fastens firmly to the edges of the vertebral bodies 

but is not so firmly attached to the annular fibers of the intervertebral 

disc. 

> The posteiior longitudinal ligament (PLL) starts from the posterior aspect of 

the basioccipital, covers the dens and the transverse ligament (where it is 

called the membrana tectoria), and overruns the posterior surfaces of aR 
the vertebral bodies down to the coccyx. It has an interwoven connection 

with the intervertebral disc. 

> The intertransverse ligaments pass between the transverse processes in the 

thoracic region and are identified as rounded cords intimately connected 

with the deep muscles of the back. 

> The capsular liganients (CL) are connected just beyond the margins of the 

adjacent articular processes. The fibers are generally oriented in a 
direction perpendicular to the plane of the facet joints. 

The liganwnta flava (U) begin from the anteroinferior border of the 
laminae above to the posterosuperior border of the laminae below. They 

attach the borders of adjacent laminae from the second cervical vertebra 
to the first sacral vertebra. These ligaments are also referred to as yellow 
ligaments. 
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ýo Die interspinous ligaments (ISL) combine adjacent spines, and their 

attachments start from the root to the apex of each process. 

)o Die supraspbious ligameiit (SSL) arises in the ligamentum nuchae and 

goes along the tips of the spinous processes as a round, slender strand 

down to the sacrum. 

INTERTRANSVERSE 
LIGAMENT 
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LONGITUDINAL 
LIGAMENT 

ANTERIOR 
LONGITUDINAL 
LIGAMENT 

LIGAMENTUM FLAVUM 

FACET 
CAPSULAR 
LIGAMENT 

INTERSPINOUS 
LIGAMENT 

SUPRASPINOUS 
LIGAMENT 

Fig-Ure 2.8 Ligaments of the spine (White and Panjabi, 1990) 

Proper description of the quantitative anatomy of the ligaments, including 

ligament length, cross-sectional area and 3-D coordinates, is hardly ever 

available in the literature. A representative chart is provided in Table 2.2. 

Table 2.2 Representative anatomic properties for ligaments (Length in mm) 
(White and Panjabi, 1990) 

Region Level Ligament Cross-sectional Area (mmý) Length 
Cervical Cl-C2 Transverse 18 20 

Alar 22 11 

Lumbar ALL 53 13 
PLL 16 11 
LF 67 19 
CL 

- - 
ISL 26 - 
SSL 23 11 
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The biomechanical. functions of the spine explained before are accomplished in 

part by the mechanical design of the individual ligaments and their locations 

and orientations with respect to the vertebrae to which they are connected. 

Besides the strength of a ligament, which is important during spinal trauma 

(and only then), there are some other important characteristics that help obtain 
the physiologic functions. One such characteristic is the nonlinearity of the load- 

displacement curve. A typical load- displacement curve of a ligament is 

provided in Figure 2.9. To quantify this behaviour, the load- displacement curve 
is divided into three regions: (1) the neutral zone (NZ)-the displacement beyond 

the neutral position due to application of a small force; (2) the elastic zone (EZ)- 

the displacement beyond the neutral zone and up to the physiologic limit; and 
(3) the plastic zone (PZ)-beyond the elastic zone and until failure occurs (White 

and Pairlabi, 1990). 

Load or 
stress 

Physiologic range 

NZ 

0 

I Failuro 
I 

EZ 

Tra matic 
range PZ 

Deformation or strain 

Figure 2-9 A typical load-displacement curve of a ligament (White and Panjabi, 
1990) 

The failure strengths of spinal ligaments are given in Table A. 1 in Appendix A. 

The appearance of the load-displacement curve of each of the ligaments is quite 
similar (Fig. 2.10). The nonlinearity of each of the curves in Figure 2.10A should 
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be noted (Le, an initial phase in which a small force produces large deformation 

and a latter phase in which considerably larger force is required to produce the 

same deformation), where PLL = posterior longitudinal ligament; ALL = 

anterior longitudinal ligament; ISL = interspinous ligament, LF = ligamentum 

flavum, CL = capsular ligament; S SL - supraspinous ligament. In Figure 2.10B, 

the two ligaments, A and B, are attached at point P to the moving vertebrae and 
having the same mechanical properties but oriented differently. As the spine 
flexes, the resistance provided by the two ligaments is proportional to the 
ligament force and the lever arm. Assuming that the moving vertebra is rotating 

around the instantaneous axis of rotation OAR) as shown in the figure, then the 

resistance provided by ligament A will be (FA x LA). Similarly, the resistance 
offered by ligament B will be (FE; x LB). If the ligaments applied equal forces, the 

resistance due to ligament A would be greater because LA>LB. In reality, the 
force FAwiH be bigger than the force FBbecause of the greater deformation of 
ligament A, again because LA>LB (White and PanjabL 1990). Each ligament is 
identified by its peerless combination of stiffness (the slope), maximum 
deformation, and failure load. These variations reflect the specific functional 

role of eadi of the ligaments. 

FORCE (N) 

ALL 

500 ÄSL FWxion 

300' V's I I. TC4 

jT 200- 

100, 
FA A 

Fs *% -Zýý 
- .v 

I %ý IAR 
LA 

1% 
It-P. 

L. 

13 

DEFORMATM(mm) -81 

Figure 2.10 The load-displacement curve of the ligaments (A) Force-deformation 
curves of spinal ligaments of the lumbar region (B) Stabilizing function of a 

spinal ligament (WIdte and PanjabL 1990) 
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A typical stress-strain curve for the ligamenturn flavurn is provided in Figure 

2.11. 
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Figure 2.11 Functional biornechanics of ligamenturn flavurn (A) In 
flexion/ extension (B) The stress-strain curve (White and Panjabi, 1990) 
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Dvorak et al. (1988) studied the biomechanics of the alar and transverse 

ligaments in the craniocervical region, using cadaveric spines and presented the 

in vitro strength of the alar ligaments as 200 N and the in vitro strength of the 

transverse ligaments as 350 N. The quantitative anatomy of the cervical spine 
ligaments had been reported by Panjabi et al. (1991) based on cadaveric 

specimens, including the orientations and origins of the ligaments. Similarlv, 

Panjabi et al. (1998) carried out an in vitro study to determine the mechanical 

properties of human alar and transverse ligaments of the upper cervical spine at 

slow and fast extension rates, concluding that the strain and energy absorbed 
decreased to less than one tenth, while the stiffness increased to greater than ten 

times as the extension rate increased, for both the alar and transverse ligaments 

within the physiological limits and when failed at the faster rate, the alar 
ligament, although weaker of the two, absorbed greater energy to failure 

because of its higher failure strain. Also Yoganandan et al (2000) presented 

some geometric and mechanical properties of the human cervical spine 
ligaments of C2-T1 levels, including stiffness, stress, strain, energy, and Young's 

modulus. 
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Kumaresan et al (1999) developed a nonlinear finite element model of vertebral 
bodyý-disc-vertebral body with the anterior and posterior longitudinal 

ligaments, emphasizing the incorporation of the pretension behaviour of the 

ligaments into the models in order to obtain more realistic output. 

2.2.3 The Vertebra and the Facet joints 

A vertebra involves an anterior block of bone, the vertebral body, and a 

posterior bony ring, which is known as the neural arch, containing articular, 
transverse, and spinous processes (Fig. 2.13). The vertebral body is a roughly 

cylindrical mass of cancellous bone contained in a thin shell of cortical bone. Its 

superior and inferior surfaces are the vertebral end-plates, which are slightly 

concave. The neural arch consists of two pedides and two laminae, from which 

seven processes originate. 

Although the basic design of the vertebrae in the various regions of the spine 
from C3 to L5 is almost the same, the size and mass of the vertebrae increase 

from the first cervical to the last lumbar vertebra. This is a mechanical 

adaptation resulting from progressively increasing compression loads to which 
the vertebrae are subjected. There are also other differences. In the cervical 

region of the spine, there are foramina for the vertebral arteries. The thoracic 

vertebrae have articular facets for the ribs, and the lumbar spine has mammary 

processes. And lastly, the sacral spine is a unique structure among all. (White 

and PaijaK 1990). 

Although standard anatomic texts provide visual descriptions of vertebral 

anatomy, they rarely present any quantitative dimension. The latter type of 
information is necessary in the more widespread biomechanics research and the 

more precise clinical practice. The nomenclature is presented in Figure 2.12 

while the data are provided in Table A. 2 in Appendix A. It is crucial to 

remember that the shape, size, and physical properties of the vertebrae change 
with age. 
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Figure 2.12 Quantitative anatomy of a vertebra (TP = transverse process; UE - 
upper end-plate; LE - lower end-plate; PD = pedide; SP = spinous process; SC 

spinal canal; - PI = pars interarticularis; VB = vertebral body; W= width; A= 
area, D= depth; H= height, I= inclination. Suffixes are: t= transverse plane; p= 

posterior. ) (White and Panjabt 1990) 

Among some other factors, the pattern of movements of the spine is dependent 

upon the shape and position of the articulating processes of the diarthrodial 

joints. It is the orientation of these joints in space that sets their mechanical 
importance. Figure 2.14 helps to demonstrate the changing pattern of the facet 

orientations, beginning from the inferior facets of C2 to L5. Two cards are 
initially located in the horizontal plane. A sequence of rotations of the cards 

about the various axes of the coordinate system shows the orientation of the 
facet joints they represent. 

In the cervical spine, the inclination of the facet joint plane is demonstrated by 

first placing the two cards in the horizontal plane and subsequently rotating 
them through an angle of - 45" around the x-axis (Fig. 2.13A). In this position 
they show the inclination of the right as well as the left facet joints, C2-C3 to C7- 

T1. 
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Orientation of the thoracic facet joints, T1-T2 to T11-T12, is depicted in Figure 

2.13B. Starting with the horizontal plane, a rotation of -60" about the x-axis is 

followed by a 20' rotation about the y-axis. The latter rotation should be 

positive for the right facet joint and negative for the left facet joint. 

The facets of the lumbar region are not planar, but have considerably curved 

mating surfaces; the inferior facets are convex, while the superior facets are 

concave. Average planes of inclination of the facet joints, T12-Ll to U-S1, are 

represented in Figure 2.13C The horizontal cards are first given a negative 

rotation of about 90' around the x-axis, which is followed by a 45" rotation 

about the y-axis. This last rotation is positive for the left and negative for the 

right facet joint. 

Figure 2.13 Orientation of the facet joints (A) Cervical spine (B) Thoracic spine 
(C) Lumbar spine (White and Panjabi, 1990) 
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Anatomy of the pedides has gathered consequential clinical imPortance because 

of the accelerated use of pedide fixation devices in the thoracic, lumbar, and 
lumbosacral regions. It is not enough to use the illustrations given in the 

standard anatomic text books. What is needed is a quantitative description of 
three-dimensional anatomy of the pedicles so that the pedicle screws may be 

securely and safely fixed into the vertebra. Four parameters appear to be 

necessary. They are pedide cross-section height (PDH), pedicle cross-section 
width (PDW), pedide axis inclination to the sagittal plane (PDIs), and pedide 

a)ds inclination to the transverse plane (PDIt). The four parameters are 

graphically identified in Figure 2.12 (White and Panjabt 1990). 

Determination of compression strength of the human vertebrae has been the 

subject of research from the early days of biomechanics. One of motivations 
behind the research has been the problem of pilot ejection. Basically, it involves 

ejecting the pilot from the high-speed aircraft with the help of a rocket attached 
to the seat. To minimize the injury to the spine at the time of ejection, it is 

necessary to use a safe ejection acceleration. This requires a knowledge of the 

strength thresholds of the vertebrae. The results of some studies, in the form of 

strength vs. vertebral level, are summarized in Figure 2.14. 

Lemosse et al. (1998) introduced a new method to determine the quantitative 

parameters which identify the mechanical behaviour of the costo-vertebral joint 

in order to help in developing numerical models of the thoracic spine, taking 
into account the thoracic cage. Although the whole joint mechanical behaviour, 

especially including the co-rotations, and the non-negligible difference in 
behaviour from one level to another, can not be explained, yet, the authors 
provided quantitative information, non-existent so far, about the mechanical 
behaviour of the costo-vertebral joint such as ranges of motion, flexibilities in 
different loading directions and influence of the section of different ligaments 

on these parameters. Winkelstein et al. (1999) conducted a mechanical 
investigation to determine the role of the cervical facet capsule in whiplash 
injury and presented the complete strain field across the surface of the cervical 
facet capsule for both bending motions of flexion and extension and at failure. 
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Figure 2.14 Vertebral compression strength at slow loading rate (White and 
Panjabi, 1990) 

Kumaresan et al. (1998) modelled the facet joint capsule by employing four 

nonlinear finite element approaches; slideline, contact surface, hyperelastic, and 
fluid models. The authors presented force-displacement response, the load 

transmitted and maximum compressive stresses at the facet joint capsule. 

Wu et al. (2002) introduced the International Society of Biomechanics, (ISB) 

recommendations on definitions of the joint coordinate system OCS) for the 
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spine. The authors explained the vertebral coordinate system and JCS as 

follows: 

Vertebral coordinate system - XYZ (pmximal) and xyz (distal) (Fig. 2.15): 

0(0): The origin is the intersection of the axes Y and y in the reference, neutral 

position (Fig. 2.16A). The neutral position must he specified, and must be in a 

position where the vertebral axes Y and y are coplanar. If Y and y are parallel 
(do not intersect at the common origin 0) the Y- and y-axis are constrained to be 

colinear, and the origin 0 is the mid-point between adjacent endplates (see Fig. 

2.16B) 

Y(y): The line passing through the centers of the vertebra's upper and lower 

endplates, and pointing cephalad. 

Z(z): The line parallel to a line joh-ting similar landmarks on the bases of the 

right and left pedicles, and pointing to the right. 

X(x): The line perpendicular to the Y- and Z-axis, and pointing anteriorly. 

ICS and motion for the spine (Fig. 2.15): 

ei: The axis fixed to the proximal vertebra and coincident with the Z-axis of 

the proximal vertebra coordinate system. 

Rotation (a): flexion or extension. 

Displacement (qi): mediolateral translation. 

e2: The axis fixed to the distal vertebra and coincident with the y-axis of the 
distal vertebra coordinate system. 

Rotation (r): axial rotation. 

Displacement (q3): proximo-distal translation. 

e3: The floating axis, the common axis perpendicular to ei and e3- 

Rotation (6): lateral bending. 

Displacement (q2): antero-posterior translation. 
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Figure 2.15 Illustration of vertebral coordinate systems and JCS (Wu et al., 2002) 
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Figure 2.16 Location of the common origin of axes (A) The general case (B) The 
specific case of Y and y being parallel (Wu et al., 2002) 

Throughout this thesis, a different coordinate axis system was used due to 

various conveniences within the computational multi-body and finite element 

software, as based on van Lopik (2004) studies (Fig. 2.17). 

Figure 2.17 The x, y, and z directions shown locally on the upper plate of a 
vertebra as used throughout the thesis 
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2.2A The Spinal Muscles 

Biomechanics of the Human Spine 

The spine is a completely unstable structure with its ligaments intact but devoid 

of muscles. The muscles and the complex neuromuscular controls are needed: 

to provide stability of the trunk in a given posture, and 

to produce movements during physiologic activity. 

The muscles may also play a role in protecting the spine during trauma in 

which there is time for voluntary control, and possibly in the postinjury phase. 

The muscles that directly control the movements of the vertebral column can be 

classified according to their position as postvertebral and prevertebral. The 

postvertebral, muscles can be further divided into three categories: deep, 

intermediate, and superficial. The deep muscles consist of short muscles that 

connect adjacent spinous processes, musculi interspinales; adjacent transverse 

processes, musculi intertransversarii; transverse processes below the laminae 

above, musculi rotatores; and in the thoracic region, transverse processes to the 

ribs, musculi levatores, costarum. The intermediate muscles are more diffused, 

however certain components can be described. These muscles originate from the 

transverse processes of each vertebra and fasten to the spinous process of the 

vertebra above. According to the regions, they are the multifidus Oumbosacral), 

emispinalis thoracis, sen-dspinalis cervicis, and semispinalis capitis. The 

superficial postvertebral muscles, collectively called as the erector spinae, are 
the illocostalis (most laterally placed), the longissimus, and the spinalis (most 

medially placed). 

The prevertebral muscles are the four abdominal muscles. Three of the muscles 
surround the abdominal region. They are the external oblique, internal oblique, 
and transversus abdominis. The fourth muscle is the rectus abdominis, located 

anteriorly at the midline. The four muscles are disposed in diversely different 
directions. A schematic representation of the muscles encircling the spine in the 
lumbar region is shown in Figure 2.18. 

The spinal muscles have various biomechartical functions. Through their 

activity they generate body movements by inducing bending moments and 
torques. By the same mechanism, they also perform tasks and resist external 
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loads. Most important of all, they supply dynamic stability to the spine where 

very little exists. Two mechanical characteristics, which are essential to provide 

these physiologic functions, are; first, generating force isometrically as well as 

with changing length, and second, increasing the stiffness of the spinal system 

(ligamentous column and the surrounding musculature), thus increasing 

stabilitv (White and Panjabi, 1990). 
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Figure 2.18 A horizontal cross-section through the lumbar spine showing 
muscles (White and Panjabi, 1990) 
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The passive/ active force-length and stiffness-operating force curves are given in 

Figure 2.19. 
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Figure 2.19 Physical properties of a muscle (A) The force developed (B) Stiffness 
(White and PanjabL 1990) 

The inactivated muscle has physical properties that are similar to those of other 

noncontractile soft tissues. The mechanical output of an active muscle depends 

on the external load and the muscle length. The passive muscle resists, and the 

active muscle generates force that seems to be related to the cross-sectional area 

of the muscle. A representation of the active muscle function by a mathematical 

model was proposed in 1939 by Hill (1970). A modified Hill's model that also 
includes the passive behaviour of the muscle is illustrated in Figure 2.20. 
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Figure 2.20 Functional model of muscle (White and PanjabL 1990) 
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Chapter 2 Biontechanics of the Human Spine 

The model includes three elements - two springlike elastic elements (parallel 

and series) and one contractile element under the control of a neuromuscular 

signal. The passive behaviour of the muscle is entirely represented by the 

parallel element, because the contractile element remains inactive, and thus, no 

force is conducted by way of the series element. When a muscle is voluntarily 

contracted, it can remain in a fixed position with no change of muscle length 

(isometric contraction), or it may contract and shorten (isotonic contraction) to 

provide work against an external load. In both situations, the element shares the 

load together with the parallel element. This efficiently increases the muscle 

stiffness. It should be emphasized that the mathematical model presented in 

Figure 2.20 is not a physical representation of a muscle, but it is a simple and 

precise way to describe the actual mechanical behavior of the muscle. Such 

models have been used to investigate the protective role of the back muscles of 

the spine in front-end auto collisions (White and Panjabi, 1990). 

Muscle activities during the four phvsiologic motions are illustrated in Figure 

2.21. 

c 

Figure 2.21 Muscle activity during the four physiological motions (A, B) In 
flexion and extension, gluteus and erector spinae muscles are active (C) Lateral 
bending is gathered by an imbalance of muscle forces on both sides of the back 

(D) During axial rotation, erector spinae muscles on the ipsilateral side, the 
rotators and multifidi on the contralateral side, and the gluteals on both the 

sides were found to be active (White and Panjabi, 1990) 
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Several studies have been carried out on spinal musculature. Seng (2001) 

developed an attachment device for measuring isometric neck muscle strength 

and submitted neck torque mean values in extension and lateral bending 

motions. In their study, Kettler et al. (2002) presented that mechanically 

simulated cervical spine muscles strongly stabilized intact and injured cervical 

spine specimens. The authors concluded that as a first step application of 

constant muscle forces and additional loading with pure moments appears to be 

a reasonable compromise for integration of muscles in in vitro experiments. 

De Oliveira et al. (2001) investigated lumbar back muscle activity of helicopter 

pilots and the whole body vibration experimentally and concluded that the 

vibration produced by the helicopter does not seem to have an important 

influence on erector spine muscle activity and low back pain. Also Cholewicki 

and Van Vliet IV (2002) presented in their study that a single muscle can not be 

identified as the most important for the stability of the lumbar spine. They 

claimed that spine stability depends on the relative activation of all trunk 

muscles and other loading variables. 

2.2.5 Other Components 

Other than the mechanically relevant components, the human spine has some 

other components such as spinal cord and nerve roots. These components are 

not examined as they are irrelevant to the mechanical modelling concept. 

2.3 Biomechanics of the Regions of the Human Spine 

In this section, biomechanical properties of the human spine segments are 
introduced, which constitute the fundamentals and the limits for developing the 
computational models. 

2.3.1 The Cervical Spine 

Because of kinematic, kinetic, and clinical reasons, the cervical spine is classified 
into three subgroups; the upper cervical spine, namely, the occipital-atlanto- 
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axial complex (CO-Cl-C2), the middle cervical spine (C2-C5), and the lower 

cervical spine (C5-TI). 

The Occipital-Atlanto-Axial Complex (CO-Cl-C2) 

The occipital-atlanto-axial joints are anatomically and kinematically the most 

complex joints of the axial skeleton. Although there have been some thorough 

investigations of this region, there is significant controversy about some of the 

basic biomechartical characteristics. The representative values for the ranges of 

motion of the units of the occipital-atlanto-axial complex are given in Table 2.3. 

Table 2.3 Representative values for ranges of rotation for the occipital-atlanto- 
axial complex (White and Panjabi, 1990) 

Unit of Complex Type of Motion Representative 
Angles (deg) 

Occipital-aflantal joint (CO-CI) Combined flexion/ extension (±Ox) 25 
One side lateral bending (Oz) 5 
One side axial rotation (0y) 5 

Atlanto-axial joint (Cl-C2) Combined flexion/extension (±Ox) 20 
One side lateral bending (()z) 5 
One side dXidi rotation (Ov) 40 

Both joints of the complex participate about equally during flexion/ extension in 

total motion in the sagittal plane. Depending on radiographic study Weme (In: 

White and Panjabi, 1990) showed that sagittal plane movement is definitely 

present. An example from his studies is illustrated in Figure 2.22, with an angle 

of rotation indicated. It was found that the curvature of the dens in the sagittal 

plane may also allow some additional rotary displacement in that plane. 

I-- -. 

A 8 

Figure 2.22 (A) Sagittal plane motion of C1 on C2 with the approximate 
instantaneous axis of rotation (IAR) in combined flexion/ extension of 29'(B) 

The anterior curvature of the dens can allow some degree of additional sagittal 
plane motion in both rotation and translation (White and Panjabi, 1990) 
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Previously there was thought to be very little or no axial rotation between CO 

and C1. However, various investigators have independently examined one side 

axial rotation in the range of 3-8*. Clark et al obtained an average of 4.8- Worth, 

as well as Depreaux and Mestdagh, who presented an average of 3.2; and 
Dvorak et al, employing computerized axial tomography in vivo, noted an 

average one side axial rotation of 4.3' (all in: White and Panjabi, 1990). Parqabi 

et al (1990) acquired 8" of one side axial rotation between CO and C1 using a 
three-dimensional analysis. 

However, it should be noted that the major axial rotation in the region is 

between C1 and C2. The anatomic structure of CO-Cl is somewhat cuplike in its 

design in both the frontal and the sagittal planes. Therefore, there is relatively 
little axial (y-axis) rotation. This is true even though there is little ligamentous 

restraint applied by the posterior atlantooccipital membrane. 

On the contrary, however, both articular surfaces of the C1-C2 lateral masses 

possess a convex orientation in the sagittal plane. This geometric design 

allocates consequential mobility. The motion capacity is further intensified by 

the absence of any taut yellow ligament, which connects the posterior elements. 
Instead, and contrary to some anatomic diagrams, there is the loose, readily 

mobile atlanto-axial membrane connecting the posterior elements. The motion 
here was submitted by Werne as 47' to one side. Investigators have recently 

made similar observations on this issue. Dvorak and associates gathered 

unilateral C1-C2 axial rotation of 34* in an in vitro study and 41.5* in in vivo 

analysis (In: White and PanjabL 1990). Panjabi et al (1990), employing a three- 
dimensional in vitro methodology, measured 38.9". Approximately 60% of the 

axial rotation of the entire cervical spine and occiput is found to be in the upper 

region (CO-0-a), and 40% exists in the lower region (i. e., below the CO-Cl-C2 

region). 

The rotary dianges give rise to a shift in the projection of the lateral masses of 
C1 in relation to the dens. Weme has described this concept and demonstrated 

well by Shapiro et al (In: White and Panjabi, 1990). The rotary displacement 

pattern and the radiographic projection are shown diagrammatically in Figure 
2.23. Although Hohl interpreted this aspect of Cl-CM Idnematics differently, he 
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also made the point that apparent lateral displacement of up to 4 mm, between 

the dens and the lateral masses as an isolated radiographic finding is not 
indicative of subluxation or dislocation. This is nicely confirmed by the lateral 

(x-axis) translation of point A as provided in Figure 2.24, which is obtained 

experimentally (White and Parjabt 1990). 

FROM ABOVE 

Figure 2.23 Rotation of Cl (White and Panjabt 1990) 

y 

Figure 2.24 Translatory movements of the anterior aspect of Cl with respect to 
C2 (White and Panjabt 1990) 
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The Middle and Lower Cervical Spine (C2-T1) 

Most of the motion in flexion/extension occurs in the central region. The C5-C6 

interspace is usually pondered to have the largest range. For lateral bending and 

axial rotation there exists a tendency for a smaller range of motion in the more 

caudal segments. The relationship between disc degeneration and motion had 

been investigated by Lysell (In: White and Panjabt 1990). The intervertebral, disc 

for each motion segment was cut and graded for degeneration. There seemed to 
be no change in range of motion as a function of disc degeneration. Other 

investigators have seen that a compensatory increase in motion occurs in 

cervical spine segments adjacent to interspaces with reduced motion due to 

either degeneration or post-traumatic changes (White and PanjabL 1990). 

Rotation ranges for the middle and lower cervical spine are given in Table A. 3 

in Appendix A. 

The pattern of motion of a vertebra within its ranges of motion is determined by 

a combination of the geometric anatomy of the structures and their physical 

properties. The positions of a vertebra from full extension to full flexion, for 

example, have certain similarities throughout the spine, and yet there are some 

characteristic local differences and even gradations of differences within 

regions. Lysell explained dearly that the routes were the same for any given 

vertebra whether it was moving from flexion to extension or vice versa. The 

movement is a combination of translation and rotation. He used what he called 
the "top angle" to indicate the steepness of the arch that was described by the 

vertebra while going from full extension to full flexion. The arches were flat at 
C2. The steepest was at C6, which is followed by C7. Those in between exhibit 
the same characteristics. 

The route of motion in the sagittal plane is shown schematically in Figure 2.25. 
The acuity of the arc seemed to decrease in association with disc degeneration 

and this overall pattern was demonstrated to be a statistically significant 
variation. The route of motion in the sagittal. plane consists of a strong coupling 
element. 
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Figure 2.25 A schematic approximation of the relative regional cephalocaudal 
variations in radii of curvature of the arches defined by the cervical vertebrae as 

they rotate and translate in the sagittal plane (White and Panjabi, 1990) 

Kinematics of the cervical spine has been studied by several authors. Goel et al. 

(1984) utilized a 3-D sonic digitizer to investigate the motion in flexion, 

extension, and right axial rotation as well as the effects of a number of injuries 

and stabilization. In another study, Goel et al. (1988) identified the effect of 

multiple-level laminectomies followed by stabilization on the load-deformation 

behaviour of the cervical spine. The authors found the facet wiring technique to 

be effective in stabilizing injured cervical spines. Moroney et al. (1988) 

conducted several compression, shear, flexion, extension, lateral bending and 

axial torsion tests and presented the principal and couple motions and 

stiffnesses. In a similar study, Yoganandan et al. (1996) performed axial tension 

tests to obtain the stiffness and energy absorbing characteristics of the cervical 

spine. The authors developed a "part-to-whole" approach, which assists in 
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obtaining the failure (and subfailure) responses independent of the otherwise 

connective envirorunent, i. e. the effects of adjacent tissues and joints. The 

distraction biomechardcal data gathered from this study is tabulated in Table 

2.4. 

Table 2.4 The distraction biomedianical data from isolated cervical 
intervertebral disc units as a function of spinal level (Yoganandan et al, 1996) 

SpinalLevel Sample Size Force (N) Distraction Stiffness 
(NIrrun) Energy 

C2-0 5 636 IIA 63.5 3.7 
O-C4 5 590 12.1 69.8 4A 
C4-C5 3 571 9.3 66.8 5.5 
C5-C6 1 391 12.7 22.0 2.6 
C6-C7 2 505 9.9 69.0 3.3 
C7-TI 4 510 11.3 82.2 3.3 

Chang et al. (1999) conducted experiments using thirty canine specimens in 

order to investigate the biomechanics and kinematics of vertebrae with 
fixations. The authors concluded that when C4-C5 level was fixed, there was no 

compensation at C3-C4 and C5-C6 levels. DeFrate et al. (1999) reported a 

magnetic tracking/ virtual reality based system for comprehensive kinematic 

assessment of the cervical spine. The overall rotational movements of the 

cervical spine vs. time during voluntary lateral bending by one subýect with and 

without the aid of visual feedback are provided in Figure 2.26. 

Yoganandan et al. (1999) presented geometrical and biomechanical properties of 

the human cervical spine ligaments, which are of value to develop 

computational models such as multi-body models and finite element models. 
Some essential data and curves are presented in Figures 2.27-36, where ALL: 

anterior longitudinal ligament, PLL: Posterior longitudinal ligament, JC: Joint 

capsules, LF: Ligamentum flavum, and ISL: Interspinous ligament. 
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Figure 2.26 The overall rotational movements of the cervical spine vs. time 
(DeFrate et A, 1999) 
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Figure 2.27 Cross-sectional areas of the ligaments (Yoganandan et al., 1999) 
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Figure 2.28 Lengths of the ligaments (Yoganandan et al., 1999) 
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Figure 2.29 Stiffness of the ligaments (Yoganandan et al., 1999) 
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Figure 2.30 Failure energy of the ligaments (Yoganandan et al., 1999) 
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Figure 2.31 Failure stress of the ligaments (Yoganandan et al., 1999) 

so 

60 

I 
PLL (Mid CervicaQ 

0I234 
o. (rv4 

Figure Z32 Force-deformation properties of the PLL (Yoganandan et al., 1999) 
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Figure 2.33 Failure strain of the ligaments (Yoganandan et al, 1999) 
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Cusick and Yoganandan (2002) investigated biomechanics of the cervical spine 
by means of major injuries, where the authors discussed several external and 
human-related variables including force vectors responsible for injury 

causation, as well as potential influences of loading rate, gender, age and type of 
injury. Nightingale et al. (2002) concluded in their study that the upper cervical 

spine was significantly stronger than the lower cervical spine in extension. 
Frobin et al. (2002a, 2002b) investigated the kinematics of the cervical spine 
developing a new protocol which determines rotational and translational 

motion for all segments of the cervical spine imaged on the radiographic views. 

2.3.2 The Thoracic Spine 

The range of sagittal plane rotation (flexion/ extension) for the thoracic spine is 

provided in Table 2.5. The median figure is V of motion in the upper portion of 

the thoracic spine and 6* of motion in the middle segments. In the lower portion 
(T11-12 and T12-1,1), there are 12* of motion at each segment. In the frontal 

plane (lateral bending) there are 6* of motion in the upper thoracic spine, with 
8" or 9' in the two lower segments. In the horizontal plane (axial rotation) there 

are 8-9' of motion in the upper half of the thoracic spine and 2' for each 
interspace of the three lower segments. Here, the values for axial rotation 

correspond somewhat with the in vivo findings of Gregersen and Lucas (Irv 

White and Panjabt 1990), who investigated axial rotation in some thoracic 

spines by inserting Steinmann pins into the spinous processes. They observed 

an average of 6* of rotation at each level, and when their subjects were walking 
the maximum amount of rotation was noticed at the middle portion of the 

thoracic spine. Figures for each interspace are given in Table 2.5. 

The route of motion in the sagittal plane for the thoracic spine is somewhat 

analogous to that in the cervical spine. In identifying the patterns of cervical 
spine motion, the T angle, or "top angle, " was employed to indicate the acuity of 
the arch formed by a given point as a vertebra moved in a plane. To calculate 
thoracic spine motion in the sagittal and frontal planes, the average curvature 
(the reciprocal of the radius of the arch) is utilized. In sagittal plane motion 
(flexion/extension), the average curvature is quite small, resulting in a rather 
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flat arch (Fig. 2.37A). There is no pattern of cephalocaudal variation. The 

average curvature in the frontal plane is also flat, but nevertheless greater, or 

steeper, than the arches of the sagittal plane (Fig. 2.37B). 

Table 2.5 Rotation ranges for the thoracic spine (White and Panjabi, 1990) 

Combined FlexiorVExtension 
(: tx-axis rotation) 

One Side Lateral Bending 
(z-axis rotation) 

One Side Axial Rotation 
(y-axis rotation) 

Level Li rru ts of Ranges Representative Lunits of Ranges Representative Limits of Representative 
(deg) Angle (deg) (deg) Angle (deg) Ranges (deg) Angle (deg) 

TI-T'2 3-5 4 55 14 9 
T2-T3 3-5 4 5-7 6 4-12 8 
T3-T4 2-5 4 -V7 5 5-11 8 
T4-T5 2-5 4 5-6 6 5-11 8 
T5-T6 3-5 4 5-6 6 5-11 8 
T6-77 2-7 5 66 4-11 7 
17-T8 3-8 6 3-8 6 4-11 7 
T'8-T'9 3-8 6 4-7 6 5-7 6 
T9-Tj 0 3-8 6 4-7 6 3-5 4 
TIO-Til 4-14 9 3-10 7 2-3 2 
T11-T12 6-20 12 4-13 9 2-3 2 
TI2-LI 6-20 12 5-10 8 2-3 2 

There are a number of different coupling methods. Of most interest at present in 

both the cervical and thoracic spines is coupling between lateral bending and 

axial rotation. Significant interest in the thoracic spine is due to the normal 

coupling and abnormal coupling in scoliotic deformities (White and Panjabi, 

1990). 

77C 

A 

Figure 2.37 A schematic representation of the relative variations in the radii of 
curvature of the arches of the thoracic vertebrae (A) Flexion/ extension (B) 

Lateral bending (White and Panjabi, 1990) 
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There has been relatively more interest in the coupling of axial rotation and 

lateral bending, which is mainly due to its relevance in the etiology, evaluation, 

and treatment of scohosis. This coupling is also crucial in the mechanisms of 

injury in the cervical spine. Abnormal coupling patterns have been examined 

and analyzed to search for possible evidence of instability. Changes in coupling 

patterns have also been related to spinal fusions. Figure 2.38 demonstrates the 

coupling of lateral bending and axial rotation, describing the new 
biomechanical subdivisions of the spine. 

The approximate locations of instantaneous axis of rotation centers for the 

thoracic spine are represented diagrammatically in Figure 2.39. 
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Figure 2.38 Coupling of lateral bending and axial rotation (White and Panjabi, 
1990) 
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Figure 2.39 The approximate locations for IAR in the thoracic spine (White and 
Panjabi, 1990) 

Kopperdahl and Keaveny (1999) and Yeni et al. (2001) investigated the vertebral 

bodies in the thoracic and lumbar regions by means of strength and stiffness. 

Gavin et al. (1999) developed a geometric model of a scohotic spine to reveal the 

geometric relationship between post-correction thoracic and lumbar curve 

magnitudes and their effect on post-correction decompensation in idiopathic 

scohosis. Bereznick et al. (2002) investigated the frictional properties at the 

thoracic skin-facia interface to determine the reaction forces from the thoracic 

vertebra to the overlying skin. The authors observed negligible friction, which 

results in relatively reasonable reaction forces. 

2.3.3 The Lumbar Spine 

The representative rotations in flexion/ extension, lateral bending, and axial 

rotation are presented in Table 2.6 and Figure 2.40. In flexion/ extension there is 

generally a cephalocaudal increase in the range of motion in the lumbar spine. 
The lumbosacral joint allows more sagittal plane motion than do the other 
lumbar joints. For lateral bending, each level is almost the same, with the 

exception of the lumbosacral joint, which exhibit a relatively small amount of 

motion. The situation is similar for axial rotation. It is sensible to claim that the 

high incidence of clinically evident disc disease at L4-L-5 and L5-S1 may be 

related to mechanics. These two areas bear the highest loads and tend to sustain 
the most motion in the sagittal plane. 
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An important component of lumbar spine kinematics is sagittal plane 

translation. Measurement of this parameter is frequently employed to 

determine whether or not there exists instability. There is substantial variation 
in measuring techniques. The work of Pearcy depends on sound methodology 

and suggests that 2mm of anterior sagittal plane translation is normal for 

lumbar spine (In: White and Panjabi, 1990). The in vitro work of Posner and 

colleagues, who used preloads to simulate physiologic conditions, suggested 2.8 

mm of anterior placement as the upper limits of normal (In: White and PanjabL 

1990). 

Table 2.6 Rotation ranges for the lumbar sPine (White and Panjabt 1990) 

Combined FlexiorVTxtension 
(±x-axis rotation) 

One Side Lateral Bending 
(z-axis rotation) 

One Side Axial Rotation 
(y-axis rotation) 

Level Lirnits of Ranges Representative Urnits of Ranges Representative Lin-tits of Representative 
(deg) Angle (deg) (deg) Angle (deg) Rangeg(deg) Angle (deyj 

5-16 12 3-8 6 1-3 2 
U-1.3 8-18 14 3-10 6 1-3 2 
13-1A 6-17 15 4-12 8 1-3 2 
1,443 9-21 16 3-9 6 1-3 2 
1-5-Si 10-24 17 2-6 3 0-2 1 

COfnbg*d One side On& side 
tevion exlersion lateral borcring Sual rotat" 
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Figure 2.40 Values for rotational ranges of motion for different ranges of the 
spine (White and Panjabt 1990) 
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Traditionally, coupling of axial rotation and lateral bending are regarded as 

reciprocal- In other words, if the spine is bent laterally and the associated axial 

rotation is measured, then the ratio between axial rotation and lateral bending 

would be the same as if the spine is rotated and the lateral bending is measured. 
Recent experiments have revealed that this assumption is not true, at least in the 

lumbar spine. 

Tan et al. (2001) investigated the quantitative three-dimensional anatomy of 
lumbar vertebrae Ll-15 from Asian (Singaporean) subjects based on 60 lumbar 

vertebrae from 12 cadavers. The purpose of the study was to measure the 
dimensions of the various aspects of the lumbar vertebrae and then to compare 
the data with a study performed on Caucasianspecimens, provided by Panjabi 

et al. (1982). Measurements had been carried out with the aid of a three- 

dimensional digitiser. Several parameters of the lumbar spine are provided in 

Figures 2.41-46. 
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Figure 2.41 Linear dimensions of vertebral body as functions of vertebral levels 
M-L5. The linear dimensions are the upper (u) and lower (0 end-plates width 
(EPM and depth (EPD), anterior (a) and posterior (p) vertebral body height 

(VBII) (ran et al., 2001) 
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Figure 2.42 Linear dhnensions of spinal canal, spinous process and transverse 
process as functions of vertebral levels M-1,5. The linear dhnensions are the 

spinal canal width (SCM and depth (SCD), spinous process length (SPL) and 
transverse process width (TPM (Tan et al., 2001) 
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Figure 2.43 Linear dimensions of pedicles as functions of vertebral levels M-L5. 
The linear dimensions are the left (0 and right (r) pedide height (PDII) and 

width (PDM (Tan et al., 2001) 
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Figure 2.44 Areas of end-plates, spinal canal and pedides as functions of 
vertebral levels M-L5. The areas are the upper (u) and lower (0 end-plates 

(EPA), spinal canal (SCA), left (0 and right (r) pedicle (PDA) (Tan et al., 2001) 
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Figure 2.45 Angular dimensions of end-plates and pedicles as functions of 
vertebral levels M-LS. The angles are the upper (u) and lower (1) end-plates, 
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Figure 2.46 Comparison of selected linear dimensions of present study with that 
of Panjabi (1982). The results from the latter are represented by C. The linear 

dimensions are the spinal canal width (SCW) and depth (SCD) and left (1) and 
right (r) pedicle width (PDW) (ran et al, 2001) 

There are several studies on several aspects of the lumbar spine in the literature. 

Patwardhan et al. (1999) investigated the possibility of a compressive follower 

load applied to the lumbar spine to minimize bending moments and shear 
forces and allow it to bear large compressive loads without damage or 
instability. The authors concluded that a 1200 N compressive preload increased 

the stiffness of the spine and caused the load-displacement behaviour to 

approach a more linear pattern in the flexion and extension segments. 

Overaker et A (1999) developed a 3-D physiologically realistic model of a 
lumbar vertebral body which includes a nonlinear foam model for the 
trabecular bone component. The authors demonstrated the effects of localized 

yield under compressive loads on the whole bone mechanical response. 
Similarly, Xinghua et al. (2002) proposed a high-order nonlinear equation of 
bone remodelling to incorporate with FEM by introducing two nonlinearities; 
remodeling coefficient, and the order of nonlinear remodeling equation. 

Goh et al. (1999) investigated the extent to which cylindrical cages of 
progressively larger sizes can provide stability to the lumbar spine with its 
facets entirely removed for bilateral posterior lumbar interbody fusion. 
Doehring et al. (1999) presented a testing system that uses a hybrid control 
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algorithm for delineating the load-displacement characteristics 0 
osteoligamentous lumbar spine specimens. 

Schibye et al. (2001) presented the mechanical load on the low back and 

shoulders during pushing and pulling a two wheeled container with the load 

during lifting and carrying the same amount of waste. The authors submitted 
the compression force at T-A-1-5 during pushing and pulling as 605-1445 N and 

claimed that no relation exists between the size of the external force and the 

torque at the low back and the shoulder. Similarly, some other studies had been 

carried out by Vogt et al. (2002), Essendrop et al. (2002), and Sakamoto et al. 
(1999) on kinematics and treatment of lumbar spine. 

2.3.4 The Sacroiliac Region 

Relatively little is known about the kinematics of this important set of 

articulations. This is the link through which the weight of the trunk is 

transmitted to the legs and a region in which the patient will often complain of 
localized back pain. 

The sacroiliac joint is partly synovial and partly syndesmotic. It may be 

completely ankylosed in as much as 76% of subjects over 50 years of age. This 

fact makes the kinematic study of the joint a moot issue for a significant portion 

of the population. However, for many others these are rather stiff joints whose 

overall motion and stability depend largely upon the coarseness of the 
interdigitating articular surfaces (White and Panjabt 1990). 

Miller and colleagues investigated the kinematics of the sacroiliac region in 

eight fresh cadaver specimens aged 59-74. The joints were loaded, and 
displacements of the sacrum were measured in relation to one or both ilia. The 
key kinematics findings are illustrated in Figure 2A7. Lateral (x-axis) translation 

was measured at 0.76 mm (standard deviation [SD] 1.41), and anterior (+z-axis) 

translation was observed to average 2.74 nun (SD 1.07). Lateral rotation to one 
side (z-axis) averaged 1.40* (SD 0.71), and axial rotation Cy-axis) in one direction 

was 6.21" (SD 3.29). These specimens may show relatively less motion as they 

were in older age group (White and Panjabt 1990). 
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Swartz et al. (1991) investigated physical and mechanical properties of calf 

lumbosacral trabecular bone and concluded that calf spine is a good model of 

the young non-osteoporotic human spine. 

3 

3 mm mn, 

y 

7x 

A 

Tj 

Figure 2.47 Representative kinematics of the sacrum (A) 3mm. anterior 
translation (B) Representative z-axis rotation of a total 3' (C) Representative y- 

axis rotation of 12', totally (White and Panjabi, 1990) 

2.4 Discussion 

This section covered an introduction to the biomechanically essential parts of 
the human spine, namely; intervertebral. disc, ligaments, muscles, and vertebrae. 
Following the subsections regarding the components, biomechanics of the 

segments of the human spine were presented in order to establish a background 

on the kinetics and kinematics of the human spine regions. 

The intervertebral disc carries all of the compressive loading the trunk is 

subjected to. Therefore, the intervertebral discs are the main responsible 
element for supporting the forces and moments acting on the spine. As they 

possess viscoelastic and anisotropic behaviour, the mechanical tests should be 
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carried out at relatively slow loading rates in order to minimize the viscoelastic 

effects. As a result of the compression test, it was found that the first component 
to fail was the vertebra, because of fracture of the end-plates. No failure of the 
disc ever took place. The mode of failure was exclusively dependent on the 

condition of the vertebral body. Similarly, the shear stiffness in the transverse 

plane (anteroposterior and lateral directions) was found to be around 260 

N/mm, which showed that a large force is required to cause an abnormal 
horizontal displacement of a normal vertebral disc unit. This means that it is 

relatively rare for the annulus to fail clinically because of pure shear loading. On 

the other hand, after the posterior elements are removed, failure takes place 
with a bending of 151 (anterior flexion). According to the studies of Farfan et al 
(In: White and PanjabL 1990), the average angles at torsional failure for non- 
degenerated and degenerated discs were 16" and 14.5, respectively. Generally, 

a round disc was found to be stronger than an oval disc. As intervertebral. discs 

are materials with composite structure; annulus fibers, annulus matrix and 

nucleus must be modelled accordingly especially in finite element modelling. 

Ligaments resist tensile forces but buckle when subjected to compression. 
Having several functions, ligaments allow adequate physiologic motion and 
fixed postural attitudes between vertebrae, with a minimum expenditure of 
muscle energy, while protecting the spinal cord by restricting the motions 

within well-defined limits. They also contribute to the mechanical stability of 
the spine. In highly dynamic situations such as impacts, large amounts of 
energy suddenly applied to the spine are absorbed partially via ligaments. In 

vitro experiments showed that under slow and fast extension rates, the 
ligaments possessed rate dependent behaviour, and thus, viscoelasticity. 

Although there are different joint coordinate system suggestions in the 
literature, a different coordinate axis system was used throughout this thesis 
due to various conveniences within the computational software, as based on 
van Lopik (2004) studies (Fig. 2.18). 

Without muscles, spine is a completely unstable structure with its ligaments 
intact. The muscles not only provide stability to the trunk in a given posture, 
but also produce movements during physiologic activity, while protecting the 
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spine during trauma, in which there is time for voluntary control, and possibly 
in the postirýury phase. The modified Hill's model is the most common 

approach to model a muscle group, which includes the passive behaviour of the 

muscle as well as the active one via a contractile series element. Recent research 

revealed that spine stability depends on the relative activation of an trunk 

muscles and other loading variables. Therefore, incorporating muscles into 

computational models with passive and active properties is of fundamental 

importance. 

This chapter also reviewed the types and ranges of motion of spinal segments. 
All spinal elements as discs, ligaments, muscles and vertebrae contribute to the 

spinal stability and determine the limits of motion. Cusick and Yoganandan 

(2002) investigated biomechanics of the cervical spine by means of major 
injuries, where several external and human-related variables such as force 

vectors responsible for injury causation, loading rate, gender, age and type of 
injury were found to be related. 

There are various biomechanical aspects of the human spine as described in this 

chapter that are significant and essential for the computational modelling. One 

of them is the geometrical differences between vertebrae, which affect the 

overall kinematics of the cervical spine. Therefore, utmost attention was given 
to reflect the critical dimensions of the vertebrae, while developing the solid 
bodies of the models. Important coupling characteristics of the spine segments 
were discussed highlighting the importance of the facet joints. The facet joints 

can be assumed to be very stiff in compression and resistance to load of the facet 

capsule in other directions than compression is provided by the surrounding 
capsular ligaments. The in-vivo kinematic range of motion in all rotational 
directions for all motion segments of the spine are of fundamental importance, 

which can be utilised for validation purposes. Also, static properties of the spine 
ligaments and discs are provided with load-deformation characteristics defined. 
Generally, there is a lack of dynamic data for the response of the soft tissues and 
motion segments in the literature. 
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CHAPTER 3 

Computational Models of the Human 
Spine 

3.1 Introduction 

This chapter reviews and attempts to comprehend the classifications of the 

computational human spine models and the reasoning behind the need for 

them. The assessment of all types of models constituted the initial steps of the 

present study and not only led to developing hybrid approaches for the 

previously addressed dynamic loading conditions the human spine is subjected 
to, but also formed the basis for the methodologies employed in developing the 

models. Hence, this chapter includes a comprehensive review of the 

classifications of human spine models as well as a broad literature survey on 

numerous prominent models developed. The final classification approach used 
in this thesis serves for understanding the mainstream of spinal modelling and 
helps to demonstrate the rapid developments and improvements within each 

methodology. 

Maquet's review, Iatrophysics to Biomechanics (1992), reports that 
biomechanical modelling of the human spine and investigating the effects of 

spinal loadings date back to the 17th century. One of the first biomechar-dsts, 

Borelli (1989), predicted the forces required by muscles to carry a load via an 
early model of the spine by employing a mechanical theory (Fig. 3.1). Various 

early investigators contributed to these efforts such as Weber and Weber (1992), 

who analysed kinematics of the movement, and Braune and Fisher (1983,1988), 

who investigated the effects of centre of mass and radii of inertia via developing 

methods in order to observe the kinetics of movement. Early attempts as such 

61 



Chapter 3 Computational Models of the Huntan Spine 

established the basis for contemporary biomechanical studies of the human 

body, and consequently, the human spine. 

Q 

s I-S-S 

Figure 3.1 Spine model of Borelli (1989) 

3.2 Computational Human Spine Model Classifications 

Reeves and Cholewicki (2003) highlighted the fact that the single most 

important mechanical function of the spine is to support loads that arise from 

the interaction between external loads and muscular forces. Due to this 

function, trunk muscles with their relatively small moment arms in relation to 

external forces contribute significantly to loading across intervertebral joints, 

while challenging both tissue and structural tolerance of the spine. Therefore, 

they concluded that knowledge of loads sustained by the spine and its stability 

during physical activity is necessary for a more rational design of spine injury 

prevention strategies and rehabilitation programs, and consequently, the 

estimate of injury risk in a wide variety of tasks is only possible through 

biomechanical modelling. In their extensive review, they introduced a detailed 

classification of computational human spine modelling. 

Reeves and Cholewicki (2003) classified spine models according to levels of 

analysis into two: equilibHum-based niodels and stability-based niodels. 
Consequently, the two main groups of equilibriurn-based niodels and stability-based 

niodels were categorised into several subgroups. 
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Equilibrium-based models are: 

link-segment models 

o Static link-segment models 

Computational Models of the Human Spine 

o Dynamic link-segment models 

Single muscle equivalent models 

o Two-dimensional (2D) single muscle equivalent models 

o Three- and four-dimensional (2D) single muscle equivalent 

models 

> Multi muscle models 

o Optin-dsation models 

o EMG-assisted models 

a EMG-assisted optimisation (EMGAO) 

0 EMG normalisation 

o Neural Network and Stochastic Models 

> Finite Element (FE) Models 

Stability-based models can basically be grouped as follows: 

> Simple inverted pendulum models 

> Multi-segment models 

> Motor control and spinal stability based models 

Equilibrium-based models employ the principles of mechanical equilibrium in 

order to estimate spinal loads, and therefore provide insight into the degree of 
loading sustained by various spinal tissues. Reeves and Cholewicki (2003) 

defined this process with a two-step approach, first one being the moment 

calculations using link-segment models (T-SN4), and secondly the estimation of 
joint reaction forces by using anatomical models of the spine. They defined 

mechanical equilibrium as a system in a state of balance between opposing 
forces and moments. The basic principles governing equilibrium-based models 

are based on Newtonian laws. 
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Stability-based models have been developed following the studies of several 
researchers such as Lucas and Bresler (1961), and Granata. and Orishimo (2001), 

who have taken the buckling thresholds of the human spine into consideration, 
failure under which cannot be predicted with an equilibrium-based model 

under various circumstances. 

A comparison to assess the advantages and disadvantages of Reeves and 
CholewiclXs (2003) classification of spine models is provided in Table 3.1. 

Table 3.1 Advantages and disadvantages in spine model classification of Reeves 
and Cholewicki (2003) 

Equilibrium-based models Stability-based models 

Estimation of spinal loading and 
Injury from subfailure load, 

Advantages risk of injury from overload can which compromises structural 
tolerance as opposed to tissue be evaluated tolerance, can be predicted 

Injury from subfailure load Current models are limited to 
Disadvantages cannot be predicted, which can static conditions and conservative 

compromise spinal stability systems 

In this thesis, computational human spine models are categorised into four 

groups according to the modelling technique used. These groups are: 

> Analytical, Geometric, 2 Pivot, and Continuum Models 

> Multi-body (MB)/ Discrete Parameter Models 

> Finite Element (FE) Models 

> Hybrid Multi-body/Finite Element Models 

In the following sections, all. of these groups were investigated thoroughly, 

reflecting the developments and advances in each category. 

3.3 Analytical, Geometric, 2 Pivot, and Continuum Models 

Although analytical, geometric, 2 pivot, and continuum models differ from each 
other with respect to their modelling principles, they are often referred to as 
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mathematical models and possess significant differences from biomechanical 

models such as multi-body or finite element models. 

When compared to discrete parameter models, continuum models seem to 

arouse less interest. This is mainly due to a belief that they can not provide a 

relevant and satisfactory description of the spine because of their simplicity. 
However, several studies have revealed that a simple continuum model can 

give a reasonably correct description of the spine under various conditions. 

Schultz and Galante (1970) constructed a mathematical model of the human 

vertebral column, which was idealised as a three-dimensional collection of rigid 
bodies interconnected by deformable or fixed length elements. The results 

revealed that this model demonstrated the geometry of three-dimensional 

motions of the spine in flexion, extension, lateral bendin& and axial rotation as 

compared against in vivo studies in the literature. - 

Lindbeck (1987) employed a static continuum beam model of the human spine, 

proposed by Hjaimars (In: Lindbeck, 1987), and earlier used by him as a tool for 

the analysis of mild functional scoliosis, for the study of a spine, asymmetrically 
loaded in the frontal plane. In Us study a mildly scoliotic spine, as observed 
from X-ray pictures, was investigated by means of a simple anisotropic beam 

model. In this model the lower part of the vertebral column, including the 

vertebrae L5-T8, is assumed to be an anisotropic elastic beam built-in at the 

pelvis. The part of the spine above T8 and segments connected to it are 

considered as a rigid body. The beam model was assumed an anisotropic 

constraint providing the beam, like the spine itself, a large resistance against 
longitudinal compression and a low flexural rigidity. This approach allowed a 

mathematical treatment without complications from changes in the beam 

length, when longitudinal forces are applied. A model of the vertebral column, 

supporting the upper part of the hunk and fixed at the pelvis, as an elastic beam 

AB supporting a rigid body in B and built-in in a fixed body at A is illustrated in 
Figure 3.2. 

63 



Chapter 3 Computational Models of the Human Spine 

A 

Figure 3.2 Continuum beam model of the spine (Lindbeck, 1987) 

Lindbeck concluded that the suggested, very simple, beam model can fairly well 

predict and reproduce, at least qualitatively, the spinal lateral deflections and 

curvatures that occur in the frontal plane under muscle relaxation and various 

external loading conditions. 

Aspden (1988) developed a new model, which regards that the spine functions 

in a similar way to an arch. This model had shown that spinal stresses are not as 

great as previously calculated using the traditional mathematical models such 

as cantilever ones and that, even without carrying any external loads; the stress 
is strongly dependent on posture of the spine. The arch model emphasized that 

the intra-abdominal pressure acts together with the lumbar lordosis, to 

strengthen the spine. 

In their study, Noone et al. (1991) modelled the human scoliotic spine 

mathematically by using the classical nonlinear curved beam-column theory. 
The authors incorporated a realistically representative muscle force system. 
Contraction of a muscle had been simulated by the application of equal and 
opposite forces to every node pair along the muscle line of action. The beam- 

column was assumed to be rigidly built in at its inferior end, but free to move 

without restraint at its superior end. The static model is illustrated in Figure 3.3. 
The authors concluded that the non-linear continuous beam-column model had 

its part to play in the study of gross spinal mechanics and with more work it 
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should be possible to construct a continuous spinal formulation incorporating a 

variable Young's modulus E and allowing curvature in the sagittal plane as well 

as axial rotations. 

In another study by Monheit and Badler (1991), a kinematic model of the human 

spine and torso was developed from medical data and heuristics related to 
human kinesiology in order to establish realistic motions for a human motion 

model. This human spine model was a collection of vertebrae, connected by 

ligaments, small muscles, vertebral joints, and intervertebral discs. The model 

was designed as a black box with an initial state, input parameters, and an 

output state; using several input parameters such as initiator joint, resistor joint, 

and spine target position. 

N 
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�I 

Figure 3.3 Simple cantilever beam model of spine (Noone et al., 1991) 

Crisco III and Paniabi (1992) modeled the human ligamentous lumbar spine in 
the frontal plane as an Euler column for the purpose of rigorously studying its 

mechanical stability. Their objective was to study not only the buckling load, 
but also the postbuckling behaviour. Their model of the spine was assumed to 
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be static and restrained to the frontal plane (Figure 3.4). The vertebral bodies 

were assumed to be rigid and connected by simple pin joints. A single torsional 

spring simulated the behaviour of all intersegmental elastic elements in lateral 

bending. Two versions of the model were formulated. The linear model 
incorporated constant stiffness torsional springs, while the exponential model 
incorporated torsional springs with stiffnesses that were linearly proportional to 
load. After performing the necessary experiments, the authors concluded that, 
demonstrated to behave as an Euler colunut, the ligamentous lumbar spine is 

unstable in lateral bending under loads less than bodyweight. 
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Figure 3.4 Schematic representation of the planar spinal model (Crisco III and 
PanjabL 1992) 

Case et al. (1999) developed an arch model, which allows for the establishment 

of a criterion for the failure of the spine with the assumptions that (a) loads are 
transmitted by compressive forces along the spine, (b) normal compressive 
forces are lower than the crushing strength of vertebrae and discs and (c) sliding 
failure cannot occur. The model included the optimization of the thrust line and 
was validated in comparison to the previous studies in the literature. The 
loading system of their model is illustrated in Figure 3.5. 
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Figure 3.5 Loading system of the spine model (Case et al., 1999) 

Patwardhan et al. (2001) used a two-dimensional, beam-column model to study 

the overall motion response of the whole lumbar spine in the frontal plane 

under the influence of gravitational and active muscle loads. The lumbar spine 
had been modelled as an isotropic flexible column. The authors verified that 

trunk muscles may coactivate to generate a follower load path to support 

physiologic compressive loads. 

Li et al. (1991) developed a quasi-static analytical sagittal plane model of the 

cervical spine in extension and compression. Based upon the sensitivity of the 

test results, this model seems to be useful in determining the postural 

adjustment in reducing the axial loading on the cervical spine to more tolerable 
levels. 

Granata and Wilson (2001) implemented an inverted double pendulum model 

of the spine, which is controlled by 12 muscle equivalents of the trunk to 
determine spinal load and stability. The authors concluded that spinal stability 
is influenced by posture and muscle recruitment patterns are more accurately 

explained by stability rather than by equilibrium alone. 
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Keller et al. (2002) constructed a mathematical model capable of describing the 

static and dynamic motion response of the lumbar spine to posteroanterior 
forces, which predicts lumbar segmental and inter-segmental motion responses 

to manipulative forces. 

Similarly, Adler et al. (2002) developed a geometric model of the spine to 

resolve a certain optimization problem. Since the orientation of vertebrae can be 

specified by a frame of three orthogonal vectors in Euclidean three-space, the 

authors tried to find a constrained minimum, or at least a local minimum, of a 

real-valued function of special orthogonal groups. The function in question 

would turn out to be quadratic. Adler et al. claims that comparisons between 

the computed and measured spines had shown the pertinence of this approach. 
Lateral and anteroposterior views of a normal spine are provided in Figure 3.6. 
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Figure 3.6 Lateral and anteroposterior views of a normal spine (Adler et al., 
2002) 
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Acar and Grilli (2002) constructed a mathematical model of the human spine by 

using the modelling software, ADANS (Fig. 3.7). Anatomic features regarding 

vertebral configuration and the applied body weights were incorporated into 

the model parametrically by using variables. They investigated a distributed 

loading pattern for the whole spine for different postures. 
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is 

Figure 3.7 A flexed posture of the mathematical model (Acar and Griffi, 2002) 

3.4 Multi-Body/ Discrete Parameter Models 

Multi-body/ discrete parameter models have the ability to simulate the global 

and local kinematics and kinetics of the human spine. A multi-body system is a 

collection of rigid bodies connected through kinematic joints as well as elements 

applying forces. Multi-body dynamics models have advantages such as less 

complexity, less demand on computational power, and relatively simpler 

validation requirements when compared to FE models. 

3.4.1 Multi-Body/ Discrete Parameter Models of the Cervical 
Spine 

Williams and Belytschko (1983) developed a three-dimensional human cervical 
spine model for impact simulation. A novel feature of this model had been the 
inclusion of a special facet element which allows the model to simulate both 
lateral and frontal plane motions, which appeared impossible with models of 
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the facet constraints composed of springs. In the cervical spine, the facets play a 

very important role in stabilizing the spine because of the very low stiffnesses of 
the intervertebral disks, and unless the facets are modelled adequately, 

unrealistically large shearing displacements occur between adjacent vertebrae. 
In addition a model for muscular contraction is included, which is shown to 

significantly affect the response of the neck. This study has been the first three- 

dimensional head and neck model to be validated for both frontal and lateral 

impact acceleration. 

In modelling the head-neck region, vertebrae T1 through C1, and the head have 

been treated as rigid bodies interconnected by deformable elements. The 

geometry of the vertebrae had been compared with the rigid bodies in the 

model in Figure 3.8. Deformable elements (Figure 3.9) had been used to 

represent the soft tissue structures of the neck, including most of the major 
ligaments and -muscle groups, the intervertebral discs and the joints formed by 

the articular facets. The model consisted of the following deformable elements: 

(a) spring elements, which have stiffness along the axis joining the two nodes 

which they connect; 

(b) beam elements, which are elements with axial, bending and torsional 

stiffness; 

(c) muscle elements, whicli are similar to spring elements except that the axial 
force may be activated independently of the elongation to mimic contraction of 
the muscle. 

Figure 3.8 Cervical spine with rigid body representation (Williams and 
Belytschko, 1983) 
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Figure 3.9 Muscle and ligament elements in the model (Williams and 
Belytschko, 1983) 

The simplified thoracolumbar model and its connection to the cervical model is 

provided in Figure 3.10. 
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Figure 3.10 The simplified thoracolumbar model and its connection to the 
cervical model (Williams and Belytschko, 1983) 
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The results of this investigation had shown that the head-neck model was 

validated for both frontal and lateral impact situations by comparison with 

experimental results. Lateral impact appeared to be a severe validation test 

because of the three-dimensional motion involved. Williams and Belytschko 

claimed that they obtained good agreement with the tests. 

Responses of the head-neck model in frontal and lateral impact conditions are 
illustrated in Figures 3.11 and 3.1Z respectively. 
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Figure 3.11 Responses of the head-neck model in frontal impact (-G. impact 
acceleration) (a) with passive muscles, (b) with stretch reflex response (Williams 

and Belytschko, 1983) 
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Figure 3.12 Responses of the head-neck model in lateral impact (+Gy impact 
acceleration) (a) with passive muscles, (b) with stretch reflex response (Williams 

and Belytschko, 1983) 
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Merril et al. (1984) developed a three dimensional lumped parameter model 

improving the 2D model developed by Reber and Goldsmith (1979), which is 

illustrated in Figure 3.13. Deng and Goldsmith (1987) improved the model 

further, which was comprised of head, neck and upper torso with fifteen pairs 

of passive neck muscles. A single intervertebral joint defined the mechanical 

behaviour of each individual spinal unit possessing a linear stfffness matrix, 

which identified the segmental response. 

Y 
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z 

Figure 3.13 Multi-body model of Merrill, Goldsmith and Deng (1987) 

De Jager (1996) developed a sophisticated model of the head and cervical spine 
by employing the multi-body software package Madymo. The model involved 

the head, the neck (cervical vertebrae, Cl-C7) and the first thoracic vertebrae 
(rl). Intervertebral discs, facets joints, and various cervical ligaments were 
incorporated into the model as well as 14 pairs of the cervical spine's most 

significant muscle groups possessing both passive and active muscle behaviour. 

The model is illustrated in Figure 3.14. 

75 



Chapter 3 Computational Models of the Human Spine 

Figure 3.14 Multi-body model of de Jager (1996) 

Van der Horst (1997,2002) further improved the de Jager model by increasing 

the geometric details of the vertebrae, and updating the material properties of 

the soft tissues and the neck muscles in greater detail. She improved the 

material properties of the intervertebral discs for flexion, extension and 

compression, possessing nonlinear characteristics. Facet joints were modelled as 

three-dimensional non-linear compressive springs, and additionally, contact 

between spinous processes were included. Ligaments were represented by 

using 2D non-linear viscoelastic spring-damper elements and 68 muscle 

elements were implemented with improved geometry and allowing for curving 

around the cervical column. The Hill type muscle model in Madymo was 

employed to describe active and passive muscle behaviour. The model is 

provided in Figure 3.15. 

Figure 3.15 Multi-body model of van der Horst (1997,2002) 
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Winkelstein and Myers (2002) presented a study, which tries to quantify 

flexibility relationships for the cervical spine segments and investigate the 

nonlinear components of the flexibility matrix that forms the basis of multi- 

body dynamics models. 

Van Lopik and Acar (2002) developed and validated a three dimensional multi- 

body model of the human head and neck using the dynamic simulation package 

visualNastran 4D (Fig. 3.16). A detailed model of the head-neck complex 

comprised rigid bodies representing the head and 7 vertebrae of the neck 

interconnected by linear viscoelastic disc elements, nonlinear viscoelastic 
ligaments, firictionless facet joints and contractile muscle elements describing 

both passive and active muscle behavior. 

Figure 3.16 Isometric view of the cervical spine with all neck musculature (Van 
Lopik and Acar, 2002) 

Van Lopik and Acar (2004) improved the previous model comprising 19 muscle 

groups of the head and neck (Fig. 3.17). Muscles were subdivided into a number 

of individual muscle elements yielding 138 individual muscle segments. Each 

muscle element was represented by a series of connected actuators allowing for 

curving during neck bending. Muscle mechanics were governed by the external 

software Virtual Muscle 3.1.5 that runs within Matlab and Simulink providing 
both passive and active muscle behaviour. The effect of passive and fully active 

muscle behaviour had been investigated and validated against experimental 
data, yielding good agreement for both impact directions. 
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Figure 3.17 Multi-body model of the head and neck (van Lopik and Acar, 2004) 

Van Lopik and Acar (2004) further validated the head-neck model by checking 

the accuracy of the individual components, motion segments and the model as a 

whole under different loading conditions. While the response of the motions 

segments to small and large static loading had been found to be in good 

agreement with experimental results in all directions, the completed model had 

also been validated against experimental results, including individual motion 

segment responses as well as the dynamic response of the whole model to 

frontal, lateral and rear end impacts. They showed that coupling characteristics 

of the cervical spine had been accurately imitated and the moment generating 

capacity of the muscle elements had been found to be realistic. The model had 

also been run to simulate bench-top trauma experiments using cadaveric 
isolated cervical spine specimens, which are devoid of musculature. They 

claimed that model had successfully reproduced the characteristic 'whiplash' 

motion and resulting head and vertebral rotations and displacements seen in 

the experimental results for rear impact accelerations. Model responses to 15g 

frontal impact and 7g lateral impact situations with 100% active musculature are 
illustrated in Figures 3.18 and 3.19, respectively. 
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Figure 3.18 Model response to 15g frontal impact for 200 ms with 100% active 
musculature (van Lopik and Acar, 2004) 
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Figure 3.19 Model response to 7g lateral impact for 200 ms with 100% active 
musculature (van Lopik and Acar, 2004) 

3.4.2 Multi-Body/ Discrete Parameter Models of the Lumbar 
Spine 

Jaeger and Luttmann (1989) presented a dynamic biomechanical human model 

which allows the quantification of mechanical parameters such as torque, 

compressive and shear forces, and pressure at the lumbar intervertebral. discs. 

The human model includes a total of 19 body segments (Figure 3.20). Various 

trunk flexions can be analysed due to the provision of 5 joints at the level of the 

5 lumbar intervertebral discs. The influence of intraabdominal pressure on 
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spinal load is considered. The inclusion of the influences of gravity and inertia 

permits the analysis of both static body postures and dynamic body 

movements. Since the model is 3-dimensional, the lumbar stress can be 

evaluated during both symmetrical tasks in the median sagittal plane as well as 
during non-symmetrical ones. 

Jaeger and Luttmann (1989) examined the validity of the model by comparing 
the model calculations with the intradiscal pressure measurements taken from 

the literature. Strength tests on lumbar intervertebral discs and vertebrae had 

been gathered from the literature in order to assess the lumbar stress during 

load lifting. The lumbar ultimate compression strength seems to vary within a 

wide range. The mean value for a total of 307 lumbar segments amounts to 
4AN, the standard deviation to 1.9kN. The authors concluded that lumbar 

compressive force values during lifting fall within the same range as the 

strength values for the human lumbar spine. 

Monheit and Badler (1991) developed a kinematic model of the human spine 

and torso, which was based on the anatomy of the physical vertebrae and discs, 

range of movement of each vertebra, and effect of the surrounding ligaments 

and muscles. Vertebral movement is limited by the relative size of the discs, the 

attached ligaments, and the shape and the slant of the processes and facet joints. 

The model had been utilized for realistic animation purposes. 

Broman et al. (1996) developed a model of the lumbar spine, pelvis and 
buttocks, based on linear horizontal and vertical systems along with a rotational 

subsystem. The model was aimed to simulate different experimental 
observations of transmission of vibrations from the seat to 13 in the sitting 

posture. The components of the model derived are illustrated in Figure 3.21. 
They concluded that the model had lacked detailed sophistication but on the 

other hand, had appeared to be qualitatively explanatory for the biomechanics; 

of the seated vibrations. 
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Figure 3.20 Human model with 19 body segments, 5 of which are lumbar 
vertebrae and discs Gager and Luttmann, 1989) 
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Figure 3.21 Modeling components (Broman et al., 1996) 

Cholewicki et al. (1999) constructed a simplified physical model to illustrate a 
possible intra-abdominal pressure mechanism for stabilizing the spine (Figure 
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3.22). The model comprises an inverted pendulum with linear springs 

representing abdominal and erector spinae muscle groups. 
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Figure 3.22 Anatomical diagram (A) of the lumbar spine and torso, and (B) the 
physical model (Cholewicki et al, 1999) 

Stokes et al. (2002) introduced a method to measure the stiffness matrix of the 

six-degrees-of-freedom elastic behaviour of spinal motion. 

3.4.3 Multi-Body/ Discrete Parameter Models of the Whole Spine 

Schultz and Galante (1970) constructed a multi-body model for studying the 

mechanical function of the human vertebral column (Figure 3.23). The column 
had been modelled as a collection of rigid bodies and equilibrium or 

geometrical configurations of the collection had been sought to satisfy 

constraints imposed in order to simulate the action of a real spine. In this model, 

adjacent vertebral bodies and spinous processes were connected each at one 

point, while articular facets and transverse processes were attached on both 

sides. They claimed that model had provided a reasonable understanding of the 

geometry of the vertebral column for lateral bending, extension, and flexion 

situations. 
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Figure 3.23 The spine model, where; X represents vertebral body, V represents 
articular facet, Oo- represents transverse process, and -4 represents spinous 

process locations (Schultz and Galante, 1970). 

Belytschko et al. (1973) developed a computational model of the human spine 

and the rib cage, incorporating 39 rigid bodies interconnected by 236 spring and 
59 beam deformable elements to represent the soft tissues of the motion 

segments, costal cartilages, and other ligamentous tissues of the trunk (Fig. 

3.24). In this model, each spring element possessed one axial stiffness, while 

each beam element was characterised by six stiffnesses; one each for axial 
deformation, torsion, lateral bending, lateral shear, anteroposterior bending, 

and anteroposterior shear. The geometry and the material properties were 

reported to be found from literature. 78 muscle slips were incorporated into the 

model, applying significant forces to the trunk. Wynarsky and Schultz (1991) 

used the same model to develop a scheme for optimising configurations in 

models of skeletal structures in order to have an insight on scoliosis correction 
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biomechanics. They demonstrated the determination of the locations and 

magnitudes of the passive brace and active muscle forces for the correction of a 

right thoracic scohosis. The results of this study suggested that, from a 
biomechanical viewpoint, both brace and muscle forces are capable of 

substantial correction of a model thoracic scohosis. However, comparison of 

model results with long-term clinical results yields that even under optimal 

conditions it is unlikely that scohosis can be fully corrected by passive brace 

forces or active muscle contractions. Nussbaum and Chaffin (1996) modified the 

same human spine model, including thoracic and lumbar motion segments, 

muscles, ribs, sternum, sacrum and pelvis. The modifications allowed for 

scaling to represent subject-specific anthropometry, deformation to mimic an 

arbitrary thoracolumbar posture, incorporation of new data regarding muscle 

geometry, estimation of passive reactive moments generated by muscles and 
lumbar motion segments, and generation of parameters required in subsequent 

muscle force algorithms. The predicted passive spinal moments were found to 

be comparable to those required to support body weight in different extreme 

postures. 

Figure 3.24 Geometric model of the human torso (Belytschko et al., 1973) 
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De Zee et al. (2003) developed a multi-body human spine model partially by 

using the AnyBody Modelling System, written in so-called AnyScript, which is 

a declarative, object-oriented language for development of multi-body 
dynamics models, and particularly for models of the musculoskeletal system 
(Fig. 3.25). Only the lumbar spine part was constructed, which consisted of 

seven rigid segments as pelvis, the five lumbar vertebrae and a thoracic part, 

where the joints between each vertebra set of two was modelled as a three 
degrees-of-freedom (dof) spherical joint. Four types of ligaments and several 
lumbar muscle groups including multifidi and psoas major were incorporated 

into the model. The model was incomplete in terms of including all lumbar 

muscle groups and it was solely constructed around the lumbar region. 

I 

Figure 3.25 Several views from de Zee et al. (2003) model 

Silva and Ambrosio (2004) constructed a biomechanical model, which describes 

the kinematic and dynamic characteristics of the human body, in order to 

perform inverse dynamic analysis (Fig. 3.26). The multi-body model utilised 

natural coordinates to describe the position and orientation of each rigid body 

in a three-dimensional space excluding kinematic constraints associated with 

revolute or spherical joints as these were defined by specifying points and 

vectors that were shared by different rigid bodies. The model was used in a gait 

analysis and the sensitivity calculations of the system response due to 

perturbations introduced in the input data during stride period were 
demonstrated. 

) 
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Figure 3.26 Biomechanical multi-body model of Silva and Ambrosio (2004) 

Ishikawa. et al. (2005) developed a musculoskeletal dynamic multi-body spine 

model in order to perform Functional Electrical Stimulation (FES) effectively as 

well as to simulate spinal motion and analyse stress distribution within the 

vertebra. Muscle components were constructed having a contractile element 
including erector spinae (ihocostahs, longissimus and spinahs), semispinalis, 

multifidus, rotatores, interspinales, quadratus lumborum, rectus, abdominis, 

psoas major, and psoas minor. The muscles were joined to the skeletal model by 

using 3D analysis software Visual Nastran 4D (Fig. 3.27). 

Figure 3.27 Biomechanical spine model of Ishikawa et al. (2005) 

Intervertebral discs and ligaments were represented by spring-damper elements 
which were connected to two adjacent vertebral bodies to represent the disc so 
as to move the fimctional spinal unit multidirectionally (Fig. 3.28). The ligament 
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types; anterior and posterior longitudinal ligament, flavum, supraspinos 
ligament, interspinous ligament, intertransverse ligament, and also capsule 

were incorporated into this model. 

Figure 3.28 Discs and ligaments in the model (Ishikawa et al., 2005) 

3.5 Finite Element Models 

Generally, finite element (FE) modelling is capable of producing highly detailed 

models of bodies and systems by dividing the entities into a number of smaller 

elements, connecting those via nodes, and producing the realistic material 

behaviour by employing governing FE equations. As a result of being a hugely 

developed and detailed methodology, the quality and biofidehty of the 

biomechanical models depend on many factors such as the number and type of 

elements, the structure of the mesh, geometric and contact properties, material 

property description, initial and boundary conditions, and various theoretical 

FE analysis options. Wherever appropriate, sensitivity analysis based on 

material properties and/or FE modelling parameters such as number of 

elements needs to be conducted to check the reliability of the individual models. 

There are several finite element models and applications on various aspects of 

modelling the human spine. This type of modelling is extensively used amongst 

researchers and highly popular for being able to cover all types of analysis such 

as static, quasi-static and dynamic and also to provide detailed results. On the 

other hand, FE techniques may require high computational power, detailed and 

realistic description of material properties, and complex validation 
requirements depending on the nature of the problem. Dietrich et al. (1991) 
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summarises the advantages of finite element tedmique so that FE modelling 

allows for: 

> static analysis of forces occurring in the spinal system (muscles, 

vertebrae, ligaments, joints) and pressure in nuclei pulposi and in the 

abdominal cavity, 

> investigation of the influence of the shape and dhnensions of the spine 

as a whole, 

investigation of the influence of the system's initial tensions upon the 

distribution of forces, 

> analysis of the influence of the control system expressed with various 

optimization criteria-upon the distribution of loads in the spine system, 

investigation of the spinal system stability (loss of stability causes a rise 

of primary curvatures and rotations of the spine), 

> dynamic investigation of the spinal system at given Idnematic or force 

exdtations. 

Some of the FE models of the human spine in the literature possess highly 

advanced modelling parameters and features such as detailed and realistic 

geometries, occasionally gathered from computerised tomography (Cr) scans, 

and delineated material properties of the vertebral bodies, intervertebral discs, 

or ligaments. However, there are almost no FE models, which incorporate active 

muscle behaviour. Muscles are usually modelled as tissues with passive 

properties. 

3.5.1 FE Models of the Cervical Spine 

A vast amount of finite element studies have been conducted both on the 

segments and the whole cervical spine. Due to the type and purpose of the 

analysis, cervical spine FE models are carried out as whole head and neck 

models, partial cervical spine models, functional spine unit (two complete 

vertebra and a disc in between) models, disc segment (two vertebral bodies 

without processes and a disc in between) models or individual cervical 
vertebra/ disc models. 
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Mole Itead atid mck FE models include the head on top of the cervical spine to 

obtain a better representation of the head-neck complex. Liu (1986) developed a 

finite element model of the head and the cervical spine. The 3-D finite element 

model of a fluid filled skull had been used to simulate the spinal cord cavity. 

Kleinberger (1993) constructed a 3-D ftont Itead to TI FE model of the cervical 

spine for linear static and dynamic analysis of automobile crashes in order to 

investigate whiplash injury (Fig. 3.29). The model had an assumed-simplified 

geometry of the complex, including vertebrae, discs and ligaments. The model 

possessed several simplifications such as facet angles, which were kept at 45' 

for all levels of the cervical spine, linear elastic material properties for the 

intervertebral discs, facet joints and ligaments and no muscular structure. 

Ligamentous attachments between the cervical spine and the skull were also 

neglected. The model had been validated against experimental data. 

Figure 3.29 FE cervical spine model of Kleinberger (1993) 

Dauvilhers et al. (1994) developed a head-T1 FE model for linear dynamic 

analysis. Vertebrae, discs, and ligaments were incorporated into the model, 

Cadaver x-rays were used where appropriate to determine the major geometric 

aspects of the components. All major ligaments of the lower neck were 

modelled as spring-damper elements, while intervertebral discs were 

represented by solid elements and disc fibres were incorporated as spring- 

dampers. Although, initialIv, material properties used were insufficient, they 

were calibrated to mimic a response similar to the volunteer test data for frontal 
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and lateral impact. Dauvilliers et al. claimed that the model yielded satisfactory 

results in most aspects of the lateral and frontal impact situations, while failing 

to produce satisfactory predictions at some points such as acceleration spikes, 

which didn't fall between response corridors of the validation data. They 

commented that the reason for this was likely to be due to insufficient damping 

of the model segments. This model is illustrated in Figure 3.30. 

- 

____ 

Figure 3.30 FE cervical spine model of Dauvithers et al. (1994) 

Camacho et al. (1997) built up a head-neck model to investigate a dynamic head 

impact situation. The geometry was constructed by using Cr scans of the head 

and cervical spine. Model parameters were defined via flexion-extension 

flexibility measurements taken on human head and neck. The mechanical 

properties of the soft tissues were incorporated into a single intervertebral joint 

between each pair of adjacent vertebrae. It was presented that the FE spine 

model simulated the buckling behaviour of the spine specimens precisely in 

terms of resultant head and neck forces and resultant head acceleration. Van Ee 

et al. (2000) extended Camacho's model by including neck musculature and 

updated tensile properties of the intervertebral discs. Muscles were modelled as 

non-linear spring elements, some of which were divided into sub-segments each 

represented by a non-linear spring. Muscle force was calculated from the 

physiologic cross-sectional area of the muscle, initial muscle length and change 
in muscle length, where activation dynamics were not incorporated. This model 
is illustrated in Figure 3.31. 
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Figure 3.31 FE cervical spine model of Camacho et al. (1997) and Van Ee et al. 
(2000) 

Yang et al. (1998) developed a detailed FE model of the cervical spine from MRI 

scans of a 5OLh percentile male volunteer (Fig. 3.32). The model was employed to 

study the mechanics of the head and neck when subjected to acceleration 

impacts. The vertebrae were modelled as 8-node brick elements with linear 

elastic-plastic material properties, while the intervertebral discs were modelled 

as linear viscoelastic. materials by using solid elements. The ligaments were 

incorporated by using non-linear tension-only membrane and bar elements. 

Cervical muscles were included bv integrating sixty tension-only spring 

elements, for which only the passive properties of the muscles were taken into 

consideration in the model simulations. Yang et al. claimed that the model was 

validated with reasonable success against the head and neck drop tests as well 

as cadaveric sled tests. The head and neck model was combined with a 

previously developed model of the upper torso and employed to simulate head 

and neck interaction with a pre-deployed air bag in order to predict head and 

neck kinematics, load histories and ligament forces. 

Halidin et al. (2000) constructed a detailed finite element model of the head and 

neck in order to investigate the effect of axial impacts (Fig. 3.33). The model 
included facet joint contact and contact between spinous processes to conform 

to the nature of the specific loading, while muscles were not included in the 

model. Linear springs were employed to represent the ligaments of the neck. A 
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detailed FE model of the head was incorporated into the model to simulate load 

transfer accurately during near vertex head impact simulation. Validation was 

carried out for compression, shear and rotational loading on the C4-C5 segment 

against experimental data. The model was used in designing automobile roofs 

for injury prevention purposes. 

Figure 3.32 FE cervical spine model of Yang et al. (1998) 

Figure 3.33 FE cervical spine model of Halidin et al. (2000) 

There are numerous partial cemical spim FE modellitig studies conducted in the 
literature. Saito et al. (1991) developed a 2-D linear static FE model of the 

occiput-T2 complex. The model included discs, endplates, facets, ligaments, 

cortex and cancellous bone and the geometry of the model was simplified. The 
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effects of axial loading under 150 N force were investigated, however, no 

validation was carried out. Clausen et al. (1996) constructed a non-linear static 

model of the C-5-C6 functional spine unit, where vertebrae, posterior elements, 
discs, endplates and all ligaments were incorporated. The geometries were 

obtained from axial CT scans and therefore modelled realistically. The model 

was run under 74 N compression, 1.8 Nm flexion, extension, lateral bending and 

axial torsion loadings and validated against experimental data. Nitsche et al. 
(1996) built an FE model of the human spine (O-U), comprising deformable 

vertebrae, intervertebral discs, facets, and ligaments, where geometric features 

were assumed and simplified from the literature. The model was linear elastic, 

while the intervertebral discs were isotropic, and the cartilages and ligaments 

were modeled as anisotropic. The model was validated against NBDL (Naval 

Biodynamics Laboratory) data for frontal and lateral impacts as utilised by De 

Jager (1996). No cervical muscles were included in the original model but later 

on Wittek et al. (2000) improved Nitsche's model by adding cervical muscles to 

study their effect in low speed rear-end impacts. The muscles were modelled as 
Hill Type muscle elements, and their geometry and attachment points were 

gathered from the literature. The model was further modified by modelling the 

intervertebral discs as visco-elastic elements by improving the anatomical 

representation of the articular facets and their orientation. Contact was sought 
between facet surfaces as well as spinous processes and the force-disPlacement 

properties of the longitudinal and flava ligaments were remodelled as non- 
linear. Kumaresan et al. (1997) developed a three-dimensional, anatomically 

accurate, geometrically and materially nonlinear FE model of the C4-C6 

segment of the cervical spine (Figure 3.34). The geometrical features were 

obtained from 1.0 mm Cr scan images (coronal and sagittal) and cryomicrotome 

anatomical sections of a human cadaver specimen. They used a subsequent 
imaging procedure so that natural lordosis of the cervical spine was 
incorporated. This model included all essential components of the cervical spine 

as vertebrae, intervertebral. discs, synovial fluid in relevant joints, and 
ligaments. The model was vigorously validated by comparing computed force- 

displacement and moment-rotation responses and localised strain data against 
experimental results. Then, this model was utilised by Kumaresan et al. (1998, 
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1999a, 1999b, 2000,2001) in various studies to have a better understanding of 

various problems associated with the cervical spine, such as modelling the 

ligaments and facet joint capsule in detail, biomechanical responses of pediatric 

cervical spine, and contribution of disc generation to osteophyte formation. 

Figure 3.34 C4-C6 cervical spine FE model of Kumaresan et al. (1997) 

Teo and Ng (2001) constructed another 3D FE model of the spinal motion 

segment C4-C6 (Fig. 3.35). The model was based on a 68-year-old cadaveric 

cervical spine, and assumed to be symmetrical about the mid-sagittal plane. 

Each vertebra was developed using 1632 eight-noded isoparametric solid 

elements for the cortical shell, the cancellous core, and the posterior arch. The 

material properties of the tissues between adjacent vertebrae were taken from 

literature. The model was validated against published experimental data and 

compared with existing analytical results under the same boundary conditions. 

Later on, Ng et al. (2004) used the same model to establish a systematic 

approach to analyse the influence of six spinal components (cortical shell, 

vertebral body, posterior elements, endplate, disc annulus, and disc nucleus) on 

the internal stresses and other biomechanical. responses under compression, 

anterior, and posterior shear. They claimed that results indicated the influence 

of the material properties variation of the disc annulus significantly on the 

internal stresses in the disc. They also claimed that the study revealed for the 

first time the variation in the cortical shell modulus, which had a high influence 

on the mechanical responses under anterior and posterior shear. 
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Figure 3.35 C4-C6 cervical spine FE model of Teo and Ng (2001) 

FE models of the cervical vertebrae have also been investigated in various studies. 

Bozic et al. (1994) constructed a 3-D linear static FE model of the C4 vertebra. 
The model included the cortical shell and the cancellous bone, and the actual 

geometry was gathered via an automatic algorithm from CT scans. The model 

was ran to simulate 4 mm axial compression, but no validation was carried out. 

In a similar study by Teo et al. (1994) C2 vertebra was modelled in 3-D. Actual 

geometry was implemented by using a coordinate measuring machine and a 

semi-automatic geometry generation. A load of 1000 N over 50 MM2 was 

applied in different directions. The model was validated against experimental 
data. 
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3.5.2 FE Models of the Lumbar Spine 

Low back pain disorders are one of the most prevalent problems associated with 

recreational activity and industrial work, involving physically heavy tasks, sudden 
liffing, bending, and twisting motions. These disorders are mainly associated with the 
lumbar spine, which is the lower part of the human spine positioned at the low 

back of human torso, below the thoracic spine and just above the sacral 

segment, supporting and transferring the largest portion of forces and moments 

acting on the human spine. Lumbar spine is a complex system, consisting of five 

vertebrae interconnected by intervertebral discs, spinal ligaments, and muscles, 

providing stability and producing physiologic movements as well as protecting 
the spinal cord. Therefore, investigation of the lumbar spine has been a very 

popular topic of biomechanical and epidemiologic studies for several years. 

Computational techniques have been frequently used to model human lumbar 

spine and simulate various static and dynamic loading situations in accordance 

with experimental in vitro and in vivo studies, providing a platform to overcome 
the technical difficulties, high cost, and ethical concems associated with such 

experimental investigations. Dynamic tests conducted on human volunteers can 

provide insight only to limited situations, including low acceleration 

experiments. Likewise, static tests are also limited to non-traumatic 
investigations. Under these circumstances, computational methods are 
frequently used to develop a better understanding of injury mechanisms 

regarding the lumbar spine, to aid the therapists in selecting the type of 
treatment for musculoskeletal disorders, and to develop guidelines for 

indushial safety. 

Shirazi-Adl and Pamianpour (1996) performed a nordinear finite element study 
of the ligamentous thoracolumbar spine to investigate the stabilizing role of two 

plausible mechanisms of combined moments and pelvic rotation on the human 

spine in axial compression. The passive system, by itself, was able to carry only 

a negligible fraction physiological compression loads without exhibiting large 

motions. Following this study, they (2000) developed a nonlinear finite element 
formulation of wrapping elements sliding over solid body edges in order to 
investigate biomechanics of the human spine under a novel compression 
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loading that follows the curvature of the spine. They concluded that the 

idealized wrapping loading stiffens the spine, allowing it to carry very large 

compression loads without hypermobility. 

Zander et al. (2002) employed a three-dimensional nonlinear finite element 

model of the lumbar spine with internal spinal fixators and bone grafts in order 

to study mechanical behaviour after mono- and bisegmental fixation with and 

without stabilization of the bridged vertebra. Finite element analvses were 

performed to determine the influence of four different graft positions, five 

loading conditions, and six different pretensions in the longitudinal fixator rod. 
The following parameters were considered: the maximum contact pressure at 

the interface between the bone graft and vertebral body, the force transmitted 

by the bone graft, and the size of the contact area between the graft and the 

vertebral body. The finite element model of the lumbar spine is provided in 

Figure 3.36. 

Figure 3.36 Cut through the element mesh of the finite element model of the 
lumbar spine (Zander et al., 2002) 
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They created a three-dimensional, nonlinear finite element model of the human 

osteoligamentous lumbar spine. The model consists of about 8000 volume 

elements and has more than 30,000 degrees of freedom. The nucleus pulposus 
had been simulated by an incompressible fluid-filled cavity and the anulus 

fibrosus by volume elements with superimposed spring elements representing 

the fibres. The spatial orientation of the facet joints had been modelled 

according to measurements taken by Panjabi. The facet joints could only 

transmit compressive forces. The capsule of the facet joints and the six ligaments 

of the lumbar spine were included. The authors concluded that their model 

showed no clear differences between mono- and bisegmental fixation. 

Additional stabilization of the bridged vertebra exerted a partly adverse 
influence on the parameters studied. Pretension in the bridged region had a 

strong effect on the mechanical behaviour (Zander et al., 2002). 

In their study, Cooper et al. (2001) developed a three-dimensional visualisation 

tool of the human lumbar spine (Fig. 3.37). Motion data are acquired from 

fluoroscopic image sequences and the kinematics of the lumbar spine was 

visualised via the software interface. 

Figure 3.37 Four frames from an animation sequence of the lumbar spine 
(Cooper et al., 2001) 

Lumbar vertebral bodies were also modelled by utilising FE techniques. Overaker 

et al. (1999) developed a 3-D physiologically realistic model of a lumbar 

vertebral body which includes a nonlinear foam model for the trabecular bone 

component. The authors demonstrated the effects of localized yield under 

compressive loads on the whole bone mechanical response (Figure 3.38). 

Nabhani and Wake (2002) used I-DEAS software to reconstruct the lumbar 

vertebrae by transferring data points, which yielded a very realistic model of the 
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vertebra (Figure 3.39). And then, finite element analysis had been carried out to 

simulate several loading conditions. 
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Figure 3.38 Yield contours of the lumbar vertebra under compressive load at 
two successive points on the load-deformation curve, where red colour shows 

the localized yield (Overaker et al., 1999) 

Figure 3.39 Applied pressure to L5 (Nabhani and Wake, 2002) 

Xinghua et al. [20021 proposed a high-order nonlinear equation of bone 

remodelling to incorporate with FEM by introducing two nonlinearities; 

remodeling coefficient, and the order of nonlinear remodeling equation. 
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There are some other studies, which attempt to investigate the similarities 
between human and animal lumbar spinal segments. Lim et al. (1994) employed 
finite element method to obtain canine intact and stabilized motion segments. 
The outcomes of the study yields that a canine is a suitable model for the 

biomechanical studies of the lumbar spine. 

3.5.3 FE Models of the Whole Human Spine 

There are a few whole human spine or human body FE models conducted in the 
literature. En an early model, Vanderby et al. (1986) proposed a numerical 

algorithm in order to estimate the in vivo segmental stiffness properties of 
individual spine segments based upon existing load-displacement data. A static 

nonlinear finite element model stimulates a pathological spine and corrective 
instrumentation system. 

Dietrich et al. (1991) presented a finite element model of the whole human 

spinal system (Fig. 3.40). The most important original concepts for this study 

are: 

> Design of a three-dimensional finite element specially adjusted to model 
the skeletomuscular system with 20 nodes optionally located and 

connected by a broken line. Therefore the element can adopt different 

shapes and dimensions, and thus is suitable for modeRing the complex 

shapes of anatomic elements of the spinal system. Internally the element 
is divided into 48 simple tetrahedral subelements. Geometry of the 

element is described in a local curvilinear system of coordinates in which 
the direction of one of the axes is identified (the so-called active 
direction). In the case of modelling of muscles, this direction nms along 

muscle fibres whicli can generate force by contraction. 

> Description within one FEM modeL of both rigid and deformable bodies 

as weR as fluids. 

> Description of muscle force as a function of its elongation and 

stimulation by nerves. 
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Figure 3.40 Model of human spine (a) the orientation of the 22 vertebrae (b) 
modelled thoracic vertebra (c) modelled lumbar vertebra (Dietrich et al., 1991) 

Huang et al. (1994) developed an FE model of the human body in order to 

simulate the gross motion of cadavers in sled tests. To simplify the model and 
therefore to reduce the computational time, the FE mesh of the whole human 

spine was relatively coarse. The model was used to predict and interpret the 

injury responses for the chest in lateral impact sled tests. 

Lee et A (1995) generated a linear three dimensional finite element model in 

order to predict the vertebral displacements resulting from a posteroanterior 
force applied by a therapist. Consequently, intervertebral translations were 

predicted to be 1 mm or more at up to four intervertebral joints away from the 

point of load application. 

Lizee et al. (1998) constructed a relatively advanced FE model of the human 

body, which was validated through various impactor and sled tests. The model 
included a limited number of 10000 elements for the sake of simplicity. They 

claimed that the validation results showed the feasibility of a biofidelic FE 

model of the human body. 

Computational Models of the Human Spine 
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Jost and Nurick (2001) developed an FE model of the human body for 

simulating damage during vehicle side impacts (Fig. 3.41). The model consisted 

of skeleton modelled with shell elements and the surrounding soft tissue of 

muscles, ligaments, and internal organs modelled with solid, membrane, and 

spring-damper elements. The muscles possess passive behaviour as modelled 

with solid elements. They claimed that the model operated numerically stable 

and did not exceed processing times of 48 hours for a 100 ms impact simulation. 
The model predictions were claimed to show good agreement with the results 

of pendulum impactor tests. 
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Figure 3.41 FE model of the human spine of Jost and Nurick (2001) within the 
whole FE human body model 

3.5.4 FE Models of the Intervertebral Discs 

The mechanical responses of intervertebral discs under different loading 

conditions have been investigated by several authors. Various models have 
been reported in order to analyze the disc behaviour and properties. For these 
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purposes, one of the most common techniques employed is the finite element 

method. 

Spilker et al. (1984) proposed a simplified finite element model to explore the 

mechanical response of the disc under complex loading. Their model was 

axisymmetric about the longitudinal axis and the model motion segment is 

assumed to be symmetric with respect to its mid-transverse plane. The nucleus 

was assumed to be a hydrostatic incompressible fluid, while the annulus and 
the vertebral body/end-plates are assumed to be isotropic linear elastic 

materials. The effects of gross disc geometry and soft tissue properties on 

mechanical behavior were studied for loading in compression, torsion, shear 

and moment, while maintaining the computational efficiencies of a two- 
dimensional analysis. However, the model lacked the possibility of 

accommodating non-axisymmetric external loading. The actual and simplified 

representation of the vertebral body and intervertebral disc is given in Figure 

3.42. 
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Figure 3.42 The actual and simplified representation of the vertebral body and 
intervertebral disc (Spilker et al., 1984) 

103 



Cliapter 3 Comptational Models of the Human Spitte 

Spilker et al. concluded that strength-of-materials models can provide 

reasonable predictions for end-plate rotation in torsion, and end-plate tilting in 

shear and bending but give generaRy poor predictions of other quantities. 

Dozzird et al. (1999) presented a 3-D poroelastic anisotropic finite element 

model of the human lumbar intervertebral disc, which also incorporates 

nonlinearity due to permeability, large deformations and material constitutive 

behaviour. The model appears to be capable of simulating compression, flexion, 

and torsion both under creep and relaxation conditions. In another study, Lee et 

al. (2000) developed a 3-D nonlinear finite-element model of the L3-L4 spinal 

motion segment, previously created using computed tomography (C-T) 

transverse sections, which was modified to include poroelastic properties in the 

disc and thus simulate the response of spinal motion segment under impact 

loading conditions. They used half of the vertebral body and disc model in 

order to reduce the overall mesh size and emphasize the behaviour of the disc 

and vertebral body (Figure 3.43). 
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Figure 3.43 Vertebral disc FE model (Lee et al., 2000) 

They infer the use of the finite-element technique to address the role of impact 

duration, At, : in producing trauma to the spinal motion segment. Within the 

limitations of the reported model, the results suggest that fractures are likely to 

occur under shorter At conditions. They concluded that fractures can be 

initiated in the end-plate region or the posterior wall of the cortical shell 
depending on the strength of the region. Baer et al. (2001) developed an 
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anisotropic, biphasic finite element model (FENI) of disc cell-matrix interactions 

in the intervertebral disc capable of describing the anisotropy in the extra 

cellular matrix and the large strains which may occur in and around the cell. 

The outcomes of Us study imply that zonal differences in cell micromechanical 

environment may play a role in known differences in the biosynthetic response 

of disc cells to mechanical loading. 

Wagner et al. (1999) developed a constitutive formulation in order to specify a 

strain energy function which simultaneously predicts the mean response of the 

annulus to seven different experimental protocols - confined compression (two 

directions), uniaxial tension (two directions) and shear (three directions) and 
determined the material coefficients of the strain energy formulation which 

predicts within one standard deviation the mean response of the annulus 
fibrosus, both with and without invoking the traction free boundary conditions. 

Klisch and Lotz (2000) presented an intrinsically incompressible special mixture 

theory and hAve determined the material constants for healthy human annulus 
fibrosus using new confined compression experimental data and in comparison 

to the aftermath of previous studies, they stated a higher initial water content, a 
lower aggregate modulus, and a higher initial permeability constant. Riches et 

al. (2002) investigated the mechanics of the intervertebral disc under cyclic 
loading by developing a one dimensional poroelastic model and conducting the 

experiment. 

Some studies have also been carried out on human and sheep intervertebral 

discs to reveal the biomechanical similarities of both. Sheep lumbar discs have 

been used especially to delve into the effects of removing and replacing the 

nucleus. Reid et al. (2002) mainly investigated the water and collagen contents 

and fibre angles of sheep discs experimentally and concluded that a sheep disc 

can be used as a model of a human disc. Likewise, Costi et al. (2002) determined 

the hydration-over-time behaviour of ovine intervertebral, discs and intact joints 

in a saline bath at body temperature and the effect on their stiffness compared 
to air at ambient temperature and demonstrated the similarities between human 

and sheep intervertebral discs. 
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3.6 Hybrid Multi-Body/ Finite Element Models 

Multi-body dynamics constitute a powerful tool for investigating the gross 

motion of multi-body mechanical systems. Multi-body dynamics approach 

provides a platform for gathering kinematic and kinetic data for the motion 

analysis of systems such as vehicle occupant segments. Via this method, 

calculation of joint reaction forces is also possible as a kinetic output. On the 

other hand, determining internal loads and deformations of the structures is 

only possible through structural analysis as in FE method. In order to utilise 

these two methods to make the most of their advantages, hybrid multi- 
body/finite element models are used, where a multi-body system is constructed 

to have a set of interconnected rigid and deformable bodies (Fig. 3.44). 

Successful applications for this tedu-dque depend on individual codes or 

capabilities of relevant commercial software, which are not very common. 
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Figure 3.44 A flexible body connecting two rigid bodies (Ma and LankaranL 
1997) 

Ma and Lankarani (1997) employed a hybrid multi-body/finite element analysis 

approach for modelling of crash dynamic responses of ground vehicle or 

aircraft occupants. The formulation was solved at every time step to determine 

the corresponding reaction forces and moments at the boundaries and also the 

structural deformations. Based on this technique, a multi-body model of the 

occupant with a nonlinear finite element model of the lumbar spine was 
developed for a Hybrid II anthropomorphic crash test dummy. The two- 
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dimensional occupant model was represented by eleven rigid segments 
including head, upper and lower torso, pelvis, upper arms, forearms, thighs, 

and lower legs as shown in Figure 3.45. The rotor cup, elbow, pelvic, knee, and 
head-neck joints were hinge-type connections. Deformable elements with 

simple force-deflection data were used for the lumbar and cervical spine. 

Rotations at the joints are resisted by torsional spring-dampers. 

d X$ 

Figure 3.45 Occupant with FE spine model (Ma and LankaranL 1997) 

For the purpose of assessing the possibility of spine injury, the lumbar spine FE 

model for a Hybrid II test dummy was created. This model consisted of ten 

straight beam elements with rigid bodies at the top and bottom, which represent 
the pelvis and thorax. The beam elements included both axial and bending 

stiffness, which represented five vertebrae and discs, respectively. There were 

eleven nodes with thirty three degrees-of-freedom. The initially curved 

configuration of the finite element model was shown in Figure 3.46. The 

displacements (deformations) and corresponding forces were evaluated and 
transformed to global coordinates using the transformation matrices. 

Consequently, the comparison of the results was reported to show better 

correlation between the analyses and the experiments compared to earlier 

studies. 
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Figure 3.46 FE model of the lumbar spine (Ma and Lankarant 1997) 

In another study, Camacho, et al. (2001) utilized an experimentally validated 

computational head-neck model, consisting of a lumped parameter neck model 

and a finite element head model, in order to investigate the influence of surface 

padding properties on head and neck injury. The model can be seen in Figure 

3.47. 

Figure 3.47 Computational model of head and cervical spine (Camacho et al, 
2001) 
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3.7 Discussion 

This chapter discussed the classifications of the computational human spine 

models as well as the reasoning behind the need for those. A comprehensive 

review of the classifications of human spine models and a broad literature 

survey on numerous prominent models developed were presented. A final 

classification approach was proposed for understanding the mainstream of 

spinal modelling, which helped to demonstrate the rapid developments and 
improvements within each methodology. Therefore, the assessment of all types 

of models constituted the initial steps of this study, which not only led to 
developing hybrid approaches for the previously addressed dynamic loading 

conditions such as car crashes and impacts, but also formed the basis for the 

methodologies employed in developing the models. 

The first group of computational spine models introduced was analytical, 

geomettic, 2 pivot, and continuum models, which are often referred to as 

mathematical models and possess significant differences from biomechanical 

models such as multi-body or finite element models. When compared to 

discrete parameter models, continuum models seem to arouse less interest due 

to a belief that they cannot provide a relevant and satisfactory description of the 

spine because of their simplicity. However, several studies have revealed that a 

simple continuum model can give a reasonably correct description of the spine 

under various specific conditions. These models were usually employed for 

static or quasi-static analyses such as lifting activities or spinal postures under 

static loading. One advantage of these models is required computational power 

and time, which is quite low when compared to more complex models such as 

multi-body and FE ones. 

Multi-body models constituted the second group of computational human spine 

models discussed. As mentioned before, multi-body/ discrete parameter models 
have the ability to'simulate the global and local kinematics and kinetics of the 
human spine. A multi-body system is a collection of rigid bodies connected 
through kinematic joints as well as elements applying forces. These models 

provide a suitable platform to introduce active muscle properties as well as 
passive behaviour as in Van der Horst (1997,2002) and Van LoPik and Acar 
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(2004) models. As in active muscle modelling, the capability of combining multi- 

body software such as visualNastran with advanced mathematical packages 

such as Matlab and Simulink provides a sophisticated medium to create more 

biofidelic and realistic biomechanical models. Multi-body dynamics models 

have advantages such as less complexity, less demand on computational power, 

and relatively simpler validation requirements when compared to FE models. 

Due to the nature of multi-body modelling, it is not possible to conduct 

structural analysis directly in order to gain information on internal forces and 
deformations such as stresses and strains within the segments of the human 

spine. 

Author's multi-body model of the whole human spine as described in this thesis 

was started to be constructed in 2002. The two similar models of De Zee et al. 

(2003) and Ishikawa et al. (2005) were built in a manner close to the techniques 

employed in this study. However, De Zee model was an incomplete spine 

model in terms of only including all lumbar muscle groups and it was solely 

constructed around the lumbar region. Ishikawa. et al. musculoskeletal dynamic 

multi-body spine model was developed in order to perform Functional 

Electrical Stimulation (FES) but only a few details were disclosed about how the 

components of the spine were modelled, and in particular, how muscles were 
developed and governed to possess active behaviour. 

The other widely used group was the finite element models. Finite element (FE) 

modelling is capable of producing highly detailed models of bodies and systems 
by dividing the entities into a number of smaller elements, connecting those via 

nodes, and producing the realistic material behaviour by employing governing 
FE equations. As a result of being a hugely developed and detailed 

methodology, the quality and biofidelity of the biomechanical models depend 

on many factors such as the number and type of elements, the structure of the 

mesh, geometric and contact properties, material property description, initial 

and boundary conditions, and various theoretical FE analysis options. Wherever 

appropriate, sensitivity analysis based on material properties and/or FE 

modelling parameters such as number of elements needs to be conducted to 

check the reliability of the individual models. 
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FE modelling is highly popular for being able to cover all types of analysis such 

as static, quasi-static and dynamic and also to provide detailed structural results 

such as stress and strain distributions. Dietrich et al. (1991) summarised the 

advantages of finite element technique, which allows for; static analysis of 

forces occurring in the spinal system (muscles, vertebrae, ligaments, joints) and 

pressure in nuclei pulposi and in the abdominal cavity, investigation of the 

influence of the shape and dimensions of the spine as a whole, investigation of 

the influence of the system's initial tensions upon the distribution of forces, 

analysis of the influence of the control system expressed with various 

optimization criteria-upon the distribution of loads in the spine system, 
investigation of the spinal system stability (loss of stability causes a rise of 

primary curvatures and rotations of the spine), and finally dynamic 

investigation of the spinal system at given kinematic or force excitations. On the 

other hand, FE technique may require high computational power, detailed and 

realistic description of material properties, and complex validation 

requirements depending on the nature of the problem. Some of the FE models 

of the human spine in the literature possess highly advanced modelling 

parameters and features such as detailed and realistic geometries, occasionally 

gathered from computerised tomography (Cr) scans, and delineated material 

properties of the vertebral bodies, intervertebral discs, or ligaments. However, 

there are almost no FE models, which incorporate active muscle behaviour. 

Muscles are usually modelled as tissues with passive properties. 

The last group introduced was hybiid multi-bodylfinite element models. While 

multi-body dynamics models play an important role in investigating the gross 

motion of multi-body mechanical systems, it provides a platform for gathering 
kinematic and kinetic data for the motion analysis of systems such as vehicle 

occupant segments. On the other hand, determining internal loads and 
deformations of the structures is only possible through structural analysis as in 

FE method. Hybrid multi-body/finite element models were formulated to 

utilise these two methods to make the most of their advantages. Successful 

applications for this technique depend on individual codes or capabilities of 

relevant commercial software, which are not very common. 
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Having discussed all the relevant modelling approaches, this thesis includes a 

proposed hybrid approach (not a hybrid model), combining independent multi- 

body and FE models, which is explained in the forthcoming chapters in detail 

Roughly, the loading conditions as predicted from the analyses of the multi- 

body model were used as dynamic loading boundary conditions for the FE 

models. This proposed approach not only provides a detailed loading history of 

the impact on the spinal parts via the validated MB model but also provides 
information via the validated FE models on how the relevant spinal part is 

affected during the loading. 
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CHAPTER 4 

Multi-Body Model Development 

Multi-Body Model Development 

4.1 Introduction 

In this chapter, multi-body model development is described in detail. Two 

multi-body models are explained: the first one is a preliminary multi-body 

model of the lumbar spine, which aimed to establish the principles to extend the 

model to a whole human spine MB model; the second one is the final whole 
human spine MB model. 

4.2 A Preliminary Multi-Body Model of the Lumbar Spine 

A 3-D CAD (Computer Aided Design) model of the segments of the lumbar 

spine was established in order to employ in the multi-body analysis. In order to 

develop the solid models of the vertebrae, commercially available software 
Solid Edge v11 and I-DEAS have been utilized. 

4.2.1 Solid Model of the Lumbar Spine 

The lumbar vertebrae (Ll-L5) are the largest and strongest vertebrae. They are 

situated between thorax and the pelvis. The arrangement of the facets on the 

articular processes of each vertebra maxin-dzes forward and backward bending, 

however, lateral bending is limited while rotation is practically eliminated 
(Carola et al., 1992). 
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In order to develop the lumbar human spine, quantitative anatomy of the 
lumbar vertebrae in the literature (Panjabi et al. (1992), Dolan and Adams 

(2001), and Shirazi-Adl (1994)) was employed (Figure 4.1 and Tables A. 4-A. 7 in 

Appendix A). 

EPAw 

V 

SPL 

I 'e., :... ,.. 
fft%l 

PCIN 

x 

f-d 

Figure 4.1 Orthogonal views of a typical lumbar vertebra (Panjabi et al., 1992) 

The developed solid models of an individual typical vertebra and the whole 
lumbar spine are provided in Figures 4.2-4.7. The orientation of the lumbar 

vertebrae was established based on the studies of Shirazi-Adl and Parnianpour 
(1996) and (2000), and Adler et al. (2002) (Figure 4.8). 

114 

Poll 



Chapter 4 Multi-Body Model Development 
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Figure 4.2 A typical lumbar vertebra 
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Figure 4.3 Front view of a typical lumbar vertebra 

Figure 4.4 An oblique view of a typical lumbar vertebra 
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Figure 4.5 An isometric view of the lumbar spine 

Figure 4.6 Frontal view of the lumbar spine 
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Figure 4.7 An isometric rear view of the lumbar spine 

t 

Figure 4.8 The orientation of the lumbar vertebrae in sagittal plane 
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4.2.2 Multi-Body Modelling of the Lumbar Spine 

In constructing the multi-body model of the lumbar spine, four elements of the 

human spine were considered; the lumbar vertebrae, the muscles, the ligaments 

and the intervertebral discs. The vertebrae of the lumbar spine have already 

been modelled and presented in the previous section. The anatomical data and 

some essential specifications of the other elements are discussed and submitted 

in this chapter. The model has been built by using the commercially available 

dynamic simulation package visuaINastran 4D 2001. 

The constructed multi-body model has been handled as the cervical spine multi- 
body model of van Lopik and Acar (2002). The vertebrae are modelled as rigid 
bodies, interconnected by linear viscoelastic intervertebral disc elements, 

nonlinear viscoelastic ligaments and contractile muscle elements possessing 

both passive and active behaviour (Figure 4.9). 

Ný 

Figure 4.9 The multibody model of the lumbar spine 
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The Muscles 

Multi-Body Model Development 

In the model the lumbar back muscles were constructed incorporating fascicles 

of the lumbar erector spinae and multifidus. The attachment sites and sizes of 

fascicles were illustrated in Figure 4.10. Calculations revealed that the thoracic 

fibres of the lumbar erector spinae contribute 50% of the total extensor moment 

exerted on L4 and 1-5; multifidus contributes some 20%; and the remainder is 

exerted by the lumbar fibres of erector spinae (Bogduk et al., 1992). At upper 
lumbar levels, the thoracic fibres of the lumbar erector spinae contribute 
between 70% and 86% of the total extensor moment. In the upright posture, the 

lumbar back muscles exert a net posterior shear force on segments Ll to L4, but 

exert an anterior shear force on L5. Collectively, all the back muscles exert large 

compression forces on all segments. A force coefficient of K= 46 NcM-2 had been 

determined to apply for the back muscles (Bogduk et al., 1992). 
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Figure 4.10 Tracings of the posteroanterior and lateral radiographs showing the 
attachment sites of the lumbar muscles (Bogduk et al., 1992) 

Some geometric and morphologic features, and maximum moments generated 
and the moment arms are presented in Tables A. 8 - A. 10. 
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Chapter 4 Multi-Body Model Developmen t 

In the model, muscles were modelled as contractile muscle elements possessing 
both passive and active behaviour. In visuaINastrart, linear actuator constraint 

was employed, which have been governed by an external software, Virtual 

Muscle v. 3.1.5 of Alfred E. Mann Institute at the University of Southern 

California, that runs within Matlab/Simulink and communicates with 

visuaINastran where appropriate (Figure 4.11). The principles of Virtual Muscle 

are explained in detail in multi-body modelling of the whole human spine 

section of this chapter. The linear actuator constraint applies a controlled force 

between two bodies, or between the background and a body. The actuator can 
be specified to (1) apply a specified force, (2) maintain a specified acceleration, 
(3) maintain a specified velocity, or (4) maintain a specified length (MSC 

visuaINastran Theory Manual, 2001). 

Figure 4.11 Muscles in the model 
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Chapter 4 

The Ligaments 

Multi-Body Model Development 

The ligaments in the present model are chosen as nonlinear viscoelastic 
ligaments. All six types of lumbar ligaments were introduced to the model as 
ALL (anterior longitudinal ligament), PLL (posterior longitudinal ligament), LF 

(ligament flavum), JC Ooint capsules), ISL (interspinous ligament) and SSL 

(supraspinous ligament) (Figure 4.12). Some essential biomechanical properties 

of lumbar spine ligaments are presented in Tables 4.1 - 4.2, Table A. 11, and 
Figures 4.12 - 4.14. 

Bushir 

AL 

Figure 4.12 Ligaments and bushing constraint as intervertebral disc 

Table 4.1 Cross-sectional area and original length of lumbar ligaments (Pintar et 
al., 1992) 

Ligament n 

Cross-sectional area (nun2) 
RAnge Mean±S. D. 

Original length (nun) 
Range Mean±S. D 

ALL 25 10.6-52.5 32.4±10.9 30.0-48.5 37.1±5.0 
PLL 21 1.6-8.0 5.2±2.4 27.8-36.7 33.1±2.3 
jC 24 19.0-93.6 43.8±28.3 12.8-21.5 16.4±2.9 
LF 22 57.2-114.0 84.2±17.9 13.0-18.0 15.2±1.3 
ISL 18 13.8-60.0 35.1±15.0 6.7-20.0 16.0±3.2 
SSL 22 6.0-59.8 25.2±14.0 17.0-33.5 25.2±5.6 

Table 4.2 Overall mean values of stiffness 

Ligament Mvan±S. D. 
ALL 33. Ot 15.7 
PLL 20.4±11.9 
jc 33.9±10.7 
LF 27.2±9.2 
ISL 11.5±6.6 
SSL 23.7±10.9 
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Figure 4.13 Average biomechanical force-deformation curves for ALL, PLL and 
JC (Pintar et al., 1992) 
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Figure 4.14 Average biomechanical force-deformation curves for LF, ISL and 
SSL (Pintar et al., 1992) 

The Intervertebral Disc 

In the present model, intervertebral discs are modelled as bushing elements. 
The bushing constraint models "slop" in rigid, revolute, and spherical joints. A 

revolute type bushing restricts the motion of the attached body to rotation about 
its revolute axis, similar in spirit to a revolute joint. Unlike a revolute joint, 

however, a revolute bushing's axis can deviate from its initial configuration 
during the simulation according to the applied loads and the bushing 

parameters. 
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Chapter 4 Multi-Body Model Development 

All translational and rotational degrees of freedom are allowed in a bushing 

element, but they are restricted through spring-damper relationships. These 

relationships govern the deviation of the bushing configuration from its 

primary constraint goals: the deviation of a single goal is inversely proportional 

to the spring constant (of stiffness) prescribed for that goal; the settling time to 

the deviated configuration is governed by the damping constant (N4SC 

visualNastran Theory Manual, 2001). 

The translational damping coefficients of the discs were chosen as 1000 kg/s 

and rotational coefficients as 1.5 Nm/s as a preliminary estimation based on 
those used by de Jager as no actual disc damping coefficients have been 

reported in the literature. Also, the motion segment stiffness matrix results of 
the study of Gardner-Morse and Stokes (2004) have been utilized in the 

modelling (rable 4.3). 

Table 43 Stiffness of intact motion segments (Gardner-Morse and Stokes, 2004) 

Level Ai A2 A3 A4 As A6 
Axial compressive preload at 0N (Mean of L2-13 and L4-1.5) 
F1 438±92 -1370±519 
F2 251W 6510±969 
F3 332±64 11000±2000 -6960±1100 
F4 564000±89000 -235000±38200 
FS (Syw-ehic) 174000±2M 
F6 241000±33100 

Axial compressive preload at 250 N 
F1 L2-13 1700±67 

L4-LS 
F2 L2-13 346±63 

L4-L5 389±76 
F3 1.2-1.3 447±68 

IA-L5 
F4 L2,10 

L4-L5 
Fs 1.2-13 (synunetric) 

L4-LS 
Fr, 1.2-13 

L4-L5 

-42BOM30 

8340±1240 
10200±1790 

12100±1740 -9360±971 

661X)00±144000 -25000±34200 
744000±137000 

211000±17900 
301000±29900 

266000±33000 
467000±80500 

AxW compre881ve preload at 500 N 
Fi 1.2-1.3 2420±158 -5180±1940 

L4-1.5 
F2 L2-L3 397±68 9000±1330 

L4-LS 473±78 11100±2160 
F3 1.2-13 523±73 13400: t1890 -10400±1760 

L4-L5 -11600±1250 
F4 L2-L3 734OOO: k17OOOO -272OOOi335M 

L4-L5 832000±129000 
Fs L2-L3 (synurketric) 236000±12900 

L4-L5 377000±44800 
F6 12-13 287000±27000 

U-IS 575000±1370M 
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Chapter 4 Multi-Body Model Development 

4.2.3 Analysis of the Multi-Body Model of the Lumbar Spine 

First, a motion segment containing 2 vertebrae was run in visualNastran (Figure 

4.15). Following the successful results of the motion segment in flexion and 

compression, the rest of the model has been constructed (Figure 4.16). The 

details of the multi-body model were discussed in the previous section. 
Throughout the analysis process, some minor modifications have been made on 

the geometry of the solid model in order to tune and validate the multi-body 

model. 

Center of Mass 

N 

Figure 4.15 Lumbar motion segment L4-L5 containing 2 vertebrae 
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P-4 

Multi-Body Model Development 

Figure 4.16 The modified version of the lumbar spine multi-body model 

The multi-body model was validated by comparing the flexion moment results, 

as rotations, and the intradiscal pressure occurred within the disc after the 

loadings with a previously validated model in the literature (Shirazi-adl, 1994). 

The multi-body model was loaded with a 10 Nm flexion moment at Ll level 

(Fig. 4.17). The resultant global rotations at each vertebral level (Fig. 4.18) and 

the intersegmental rotations at each vertebra pair (Fig. 4.19) were tabulated and 

a good agreement was achieved with the results in the literature. Similarly, the 

evaluated intradiscal pressures from the outcomes of the reaction forces at each 

intervertebral disc were compared with the results in the literature and another 

good agreement was achieved (Fig. 4.20). 
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Chapter 4 Multi-Body Model Development 

Figure 4.17 The posture of the lumbar spine under 10 Nm flexion moment 
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Figure 4.18 The resultant global rotations at each vertebral level 
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Figure 4.19 The intersegmental rotations at each vertebra pair 
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Figure 4.20 Intradiscal pressures under 10 Nm flexion moment 

4.3 Multi-Body Model of the Whole Human Spine 

In this section, the final multi-body model of the whole human spine is 

explained in detail. The model was developed as based on the experience 

acquired from the previous multi-body model of the lumbar spine and 

constructed in a similar manner with that although several improvements were 

made in different aspects of the model. 

The model was developed in the commercially available dynamic simulation 

package visuaINastran 4D 2001 from MSC Software Company. VisualNastran 

uses numerical methods to solve the motion of mechanical systems, which are 

governed by differential equations arising from mechanics principles. The 
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Chapter 4 Multi-Body Model Developmen t 

Kutta-Merson integration method with variable time-step is employed to 

calculate bodies' positions and velocities. VisualNastran also provides an 

extensive analytical toolset for easy evaluation of designs and models as well as 

an integrated finite element module. 

4.3.1 Solid Bodies: Vertebrae and Others 

Unlike the previous multi-body model of the lumbar spine, the vertebrae and 

the other bony parts of the human spine were taken as solid models of the CT 

scans of human skeletal segments from a study called Multimod, carried out by 

a consortium of institutions around Europe. The geometrical surfaces, which 

possess realistic anatomical dimensions of the spinal parts, have been entirely 

constructed from Cr scans by Van Sint Jan et al. (2004) and Van Sint Jan (2005) 

at the University of Brussels, Belgium, and stored into the software, Data 

Manager. These solid bodies not only accommodate the essential parts of the 

vertebrae; as the vertebral body, pedicles, superior and inferior articular 

processes, namely facet joints, transverse and spinous processes, but also 

involve the other selected skeletal parts such as the head, the ribs, the clavicles, 

the scapulas, and the iliacs (Fig. 4.21). 

head 

ceivical spine 

rib cage 

-Z- *IN*' - oor 

7- t-4b; - lumbar 
spme 

thoracic spine 

Figure 4.21 Segments of the human skeleton, which were joined to form the 
solid model 
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The details of the Cr scanning and digitising process are illustrated and 

explained in Figure 4.22. In the figure: 

(A) A specimen (male, 59 years old) of average size (172 cm) and weight (69 kg) 

was selected from the Body Donation program of LJLB. No visible problem 

related to the musculoskeletal system was apparent. Large balls filled with an 

oily solution were set at different locations on the skin surface. These balls were 

visible in both CT scan and magnetic resonance imaging (MRI). 

(B) In each major bone (here a left clavicle), four aluminium balls (diameter: 4 

mm. ) were inserted and glued. These balls were visible in the CT scan and 

remained in place during further dissection. 

(C) Both full-body MRI and CT scan imaging were performed the same day. A 

special jig ensured that the body position was similar in both medical imaging 

datasets. 

(D) Slices obtained from MRI allowed extracting information related to muscle 

volume and location of the oily balls using so-called segmentation operations. 
On this image, segmentation of the gluteusmajor muscle is highlighted (see 

arrow). Each segmented structure was then reconstructed three dimensionally. 

Segmentation of the CT data (not shown) enabled the attainment of 3-D models 

of the entire skeleton. Spatial location of all visible bans (oily balls and 

aluminium balls) was also processed. 

(E) During dissection of the specimen, each dissected muscle (here a left deltoid 

muscle) was carefully cleaned, and needles were inserted into the muscle 
following selected muscle fibre paths, including the tendon and the 

musculotendinous junction (if any). 

(F) The spatial position of each needle inserted into the muscle was digitized 

using a 3-D digitizer (arrow). The location of the bones-of-interest was also 

processed by digitizing the aluminum balls glued into those bones. After muscle 
fibre digitizing, the muscle was removed and its bone origins and insertions 

were digitized, as well. Weight and volume of each muscle were also obtained. 

(G) Registration of the digitized muscle fibre coordinates with the C71 skeleton 
looks anatomically correct [here the left deltoid muscle shown in (E)I. 
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(H) Registration of the digitized muscle origins and insertions toward the 3-D 

skeleton lead to anatomical cartography (view of the posterior aspect of the 

femoral bone). 

(1) MRI volume models registered with the CT skeleton were also performed 
(displayed muscles: sartorius, rectus femoris, and gracilis). 

(J) Further processing allows combining MRI volume data with the digitized 

fibre path and CT skeleton (displayed muscle: vastus lateralis and vastus 

mediahs) (Van Sint Jan, 2005). 

Figure 4.22 Digitization of a full musculoskeletal system (from left to right and 
from top to bottom) (Van Sint Jan, 2005). 

All the bodies were included into the multi-body model in addition to the spinal 

parts to be able to simulate the model more realistically (Fig. 4.23). 
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(a) (b) (c) (d) 

Figure 4.23 The solid model of the human spine used in the developed multi- 
body model: (a) the entire spinal column, (b) with the head, (c) with the head 

and the ribs, and (d) with the head, the ribs, the clavicles, the scapulas, and the 
Aiacs. 

The original configuration of the vertebrae and the other elements as well as the 

upright posture of the spine was preserved as an initial condition in multi-body 

simulations. 

Each body has a local right-handed coordinate system located at the centre of 

the vertebral body. The global coordinate system was arranged as mentioned 

before so that x, y, z-axes pointing in forward, to the left and upwards 

directions, respectively. 

The inertial properties of the human body were lumped into the rigid bodies, 

which represent the inertial characteristics of a slice through the body at each 

vertebral level containing all surrounding soft tissues. The properties used are 

those derived by de Jager (1996), who calculated the moment of inertia at each 

cervical level by assuming the straightened neck as a cylinder made up of 7 

segments, each with a height equal to the distance between adjacent vertebral 
body origins. An average density of 1170kg/m3 was used for all levels as 

reported by Walker et al. (1973) and used to determine the moments of inertia at 

each vertebral level. 
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As a very crucial part of the vertebrae, facet joints resist compressive forces in 

the cervical spine. The amount of compressive force supported by the facet joint 

pair at any level depends on their orientation and on the eccentricity of the 

external load applied (Nowitzke et al., 1994). Also, the articular facets are 

covered with a thin layer of cartilage and lubricated with synovial fluid 

allowing for almost frictionless sliding motion between adjacent facet surfaces 

(White and Panjabi, 1990). In the solid model, the articular facet surfaces are 

actual ones from the Cr scanned model. 

4.3.2 Intervertebral Discs 

The constructed multi-body model was handled in the same manner as the 

cervical spine multi-body model of van Lopik and Acar (2002). The vertebrae 

were modelled as rigid bodies, interconnected by linear viscoelastic 

intervertebral. disc elements, nonlinear viscoelastic ligaments and contractile 

muscle elements possessing both passive and active behaviour. 

In the present model, intervertebral discs were modelled as bushing elements 
(Fig. 4.24). All translational and rotational degrees of freedom are allowed in a 
bushing constraint, but they are restricted through spring-damper relationships. 
These relationships govern the deviation of the bushing configuration from its 

primary constraint goals: the deviation of a single goal is inversely proportional 

to the spring constant (of stiffness) prescribed for that goal; the settling time to 

the deviated configuration is governed by the damping constant. 

Figure 4.24 The intervertebral disc in the multi-body model 
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Chapter 4 Multi-Body Model Development 

The intervertebral. discs were located at the centre of the space between the 

upper and lower end plates of adjacent vertebrae at a fixed distance relative to 

the centre of the upper vertebrae. There were no discs between the axis, atlas 

and occiput. 

In visuaINastran, the direction and magnitude of a spring force is determined 

by the distance between its two end points for a translational spring or by the 

relative angle between its two end points for a rotational spring. Similarly, the 
direction and magnitude of a damper force is determined by the relative 

velocity between its two end points for a translational damper or by the relative 

angular velocity between its two end points for a rotational damper. Hence, the 
loads exerted by the bushing constraint on the vertebrae can be formulated as: 

+b Ill 

M, =ka -01 +ba -mi (i = X, Y, Z) 

where F, and M, are the components of the forces and moment relative to the i- 

axis of the lower vertebrae, t, and 0, are the relative translations and rotations 

between the vertebrae measured from the geometric centre of the disc and 

v, and co, are the relative translational and rotational velocities of the disc 

centre. The stiffnesses k, and the damping coefficients b, govern the 

intervertebral disc behaviour. 

In visualNastran collisions are detected geometrically by finding intersections 

between bodies. All body-to-body collisions are reduced to one or more point- 
to-point contacts, where a vertex of a body collides with a face of another body, 

the contact point can be identified on the face with a simple geometric 

calculation. When bodies collide, visualNastran computes the forces and/or 
impulses necessary in order to prevent interpenetration and applies these 

responses at the contact points. 
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Material properties of the intervertebral discs are required for all directions of 
loading as flexion, extension, tension, compression, anterior and posterior shear, 
lateral shear, axial rotation and lateral bending. Due to the mid-sagittal 

symmetry of the cervical spine, disc response can be regarded the same for left 

and right lateral bending, lateral shear and axial rotation. Vertebral disc 

responses are obtained by subjecting a motion segment (vertebra-disc-vertebra) 

or a disc segment (body-disc-body) to external loading. Disc stiffnesses reported 
by Moroney et al. (1988) and Yoganandan et al. (2001) were used for the cervical 

spine. As no other data on cervical disc stiffnesses can be found Moroney's 

values have been used for axial rotation, lateral bending and all shear stiffness 

coefficients. Camacho et al. (1997) presented non-linear load-displacement 

curves at various levels. The translational damping coefficients of the discs are 

set to 1000kg/s and rotational coefficients to 1.5Nm/s as based on those used by 

de Jager as no actual disc damping coefficients have been reported in the 

literature. These damping coefficients were shown not to account for the 
dynamic stiffening of the disc but instead were employed to attenuate vibration 

accelerations of the head (de Jager, 1996). In the model, the dynamic stiffness of 
the disc is assumed to be twice the static stiffness. For lumbar spine, the motion 

segment stiffness matrix results of the study of Gardner-Morse and Stokes 

(2004) was utilized in the modelling (Table 4.3). For thoracic spine, the stiffness 

values in Table 2.1 were employed in the modelling. Material properties for 

cervical spine discs are tabulated in Table 4.4. 

Table 4A Stiffness and damping data for cervical intervertebral discs. 

- 
Stiffness k[ N/nun] Damping b Leading Direction 

C2-C3 C3-C4 C4-C5 C5-C6 C6-C7 C7-T1 C2-TI [Nslml 
Anterior Shear 62 62 62 62 62 62 1000 
Posterior Shear 50 50 50 50 so 50 1000 
Lateral Shear 73 73 73 73 73 73 1000 
Tension 63.5 69.8 66.8 68.0 69.0 82.2 1000 
Compression 6373 7653 784.6 800.2 829.7 973.6 1000 

[Nm/rad] [Nms/rad] 
Flexion Load Curve from Camacho et &1, (1997) /2 1.5 
Extension Load Curve from Camacho et al , (1997) /2 1.5 
Lateral Bending 033 0.33 0.33 0.33 0.33 0.33 1.5 
Axial Rotation 0.42 0.42 0.42 0.42 0.42 0.42 1.5 
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4.3.3 Ligaments 

Multi-Body Model Development 

Ligaments of the neck not only provide stability to the motion segments 

allowing motion within physiological limits but also dissipate energy during 

trauma. Ligaments are uniaxial structures that resist only tensile forces as they 

become slack in compression. 

The ligaments in the present model were chosen as nonlinear viscoelastic 

ligaments. All six common types of ligaments were introduced to the model, 

which are ALL (anterior longitudinal ligament), PLL (posterior longitudinal 

ligament), LF (ligament flavum), JC Ooint capsules), ISL (interspinous ligament) 

and SSL (supraspinous ligament) (Fig. 4.25). 

Bushing Constraint: 
PLL The Intervertebral Disc 

ALL/ 

ISL 

Figure 4.25 Ligaments and the disc in the multi-body model 

The necessary non-linear biomechanical. properties of human spine ligaments 

were taken from the literature (Pintar et al., 1992, Teo and Ng, 2001, 

Yoganandan et al., 1999) (Figures 2.28-2.37 for cervical ligaments, and Figures 

4.13-4.14 for lumbar ligaments). 

The curves were implemented as look-up tables in visualNastran with the 

elements defined as being active for positive values of deflection only i. e. the 
ligament elements produce force in tension only. The ligaments' rest lengths 

were input as the element lengths in the initial body position. 
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No force-deflection curves were characterized for the ligaments of the upper 

cervical spine as well as thoracic spine although Yoganandan et al. (2001) have 

presented failure force and deformation for each. Chazal et al (1985) identified 

the non-linear force-strain behaviour of ligaments from the thoracic and lumbar 

spine. The average dimensionless force-strain curve, normalized relative to the 

failure force F. and failure strain E., for all ligaments reported by Chazal et 

al. is shown in Figure 4.26. This curve shows that spinal ligaments exhibit 

almost identical behaviour in dimensionless form, and so the curve can be used 
together with measured failure force and deformation to characterise the non- 
linear response of any specific spinal ligament. The curve was employed 
together with the force and deformation at failure, presented as a table in 

Myklebust et al. (2001), to define the non-linear force-deflection curves for each 

of the ligaments of the upper cervical spine and the whole thoracic spine. The 

table can be found in Appendix B. 

A constant damping coefficient of 300 kg/s was used as reported by de Jager 

(1996). 

1 

9 0.8 
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0.4 
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Relative Strain F/Emax 

Figure 4.26 Average dimensior-dess force-strain curve used to determine the 
force-deflection curves for the missing ligament properties 

4.3.4 Muscles 

In the model the muscles were constructed incorporating all the muscle groups, 
including fascicles of the erector spinae and multifidus. Necessary geometric 
and morphologic features such as the origins, insertions and dimensions are 
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taken from various studies in the literature (Bogduk et al., 1992, Winters and 
Woo, 1990, Johnson et al., 1994, Cheng et. al., 2000). Muscles were modelled as 

contractile muscle elements possessing both passive and active behaviour. In 

visuaINastran, linear actuator constraint was employed to model the muscles, 

which have been governed by an external software, Virtual Muscle v. 3.1.5 of 
Alfred E. Mann Institute at the University of Southern Califon-da, that runs 

within Maflab/Simulink and communicates with visuaINastran where 

appropriate. The linear actuator constraint applies a controlled force between 

two bodies, or between the background and a body. The actuator can be 

specified to (1) apply a specified force, (2) maintain a specified acceleration, (3) 

maintain a specified velocity, or (4) maintain a specified length. In the model, 
these selections are all handled by the external software. 

19 muscle groups of the head and neck and 9 main muscle groups of the trunk 

were included in the model. As many of these muscles cross two or more 

vertebral pairs distributed between multiple sites of attachment, muscles with 
broad areas of attachment are subdivided into a number of individual muscle 

elements resulting in 280 individual muscle segments. Muscle attachment sites 

were chosen depending on other researchers' decisions and on published 

anatomic descriptions in the literature. 

Curving of the musculature is an important aspect for a more realistic 

representation of the change in muscle length during head-neck motion. 
However, due to the complexity of the model and simplification purposes, 
muscle curving was compromised as almost all muscles segments were 
modelled as one piece of actuator. The following section describes the muscle 
model used, and the muscle groups included in the model. 

40.4.1 External Software to Control Muscles: Virtual Muscle 

Muscle mechanics is governed by external application called Virtual Muscle v. 
3.1.5, developed at the Alfred E. Mann Institute at the University of Southern 

California that runs within Matlab and Simulink. Virtual Muscle has been 

created to be used in the context of a hierarchical model of motor control with 
itself being the intermediate layer (Figure 4.27). Realistic muscle properties 
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provided by Virtual Muscle manage the skeletal dynamics that are in turn 

governed by visualNastran being the lowest level of the system. At the top- 

level, muscle activation is controlled. 

Sengotimotor 
cor&ol(activatim 
lavet 

VIRTUAL MUSCLE MODEL 

Muscle 
morphomeby. Fiber 
type and min cle 
functions: 
(vi&MATLAB 

Muscle mechatics: 
VirtualMuscle 
SIMULINK blocks. 

Skeletal Dpiamics 
(vLquaINastran 
modeD 

Figure 4.27 The order of muscle control (Cheng et al., 2001) 

The basic form of the, muscle model is generally similar to those of Hill (1970) 

and Zajac (1990), which is Mustrated schematically in Figure 4.28. The model 

consists of an active contractile element (CE) describing active force FcE with 

activation, length and velocity dependencies in parallel with a viscoelastic 

element (PE) describing the passive properties of fascicles FPE. The total 

fascicular force is applied in series to the inertial mass of the muscle and a series 

elastic element (SE) for tendon and aponeurosis. The mass and a small amount 

of viscosity in the passive muscle establish realistic damping that prevents 

computational instability (Brown and Loeb, 2000). 

Formulations for the models' fascicular force are stated in Equations 3-5. 

F= FcE + FpE 

FCE = Af - FL - FV 

F 
": F PE " PEI + Af *FPE2 

[31 

[4] 

[51 
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A schematic description of these main elements of the model along with their 

associated sub-elements is illustrated in Figure 429 with a description of the 

contribution of each constituent physiological component (see Appendix C for 

model equations). In Equation 3, F is the total force produced by the muscle 
fascicles while FcE and FPE are the forces produced by the CE and PE, 

respectively. In Equation 4, Af is defined as the activation-frequency 

relationship and is a unitless quantity (0 :: ý Af :51, A/---1 for tetanic stimulation). 
FL is defined as the tetanic force-length relationship and has units of Fa 

(maximal potentiated isometric force), and FL is primarily dependent upon 
fascicle length. FV is defined as the tetanic force-velocitY relationship and is 

unitless (FV=l for isometric condition); FV is based primarily upon fascicle 

velocity, which is identified as positive for lengthening velocities. In Equation 5, 

Fpu and FPE2 are spring-like components with units of Fo and are non-linear 
functions of length (Brown et al., 1999). 

Fascicles Tendon & 
Aponeurosis 

CE SE 

. 
A^ V/IV- 

J* 
PE1 

AAArl 
PE2 

Figure 4.28 Schematic of basic muscle model elements. The muscle fascicles are 
represented by the contractile element (CE) in parallel with the passive elastic 
element (PE). The series elastic element (SE) represents the combined tendon 

and aponeurosis. The inertial mass of the muscle is also applied in series to the 
fascicles. PE1 is a non-linear spring that resists stretch in the passive muscle, 

while PE2 is non-linear spring resisting compression during active contraction 
at short lengths. (Cheng et al., 2001) 
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Series elastic 

element --Total muscle force 

Total contractile element force 

Figure 4.29 Schematic representation of Virtual Muscle's equations and terms. 
Complete descriptions of all elements shown can be found in Brown and Loeb 
(2000) and Brown et al. (1999). FTt, 17 total force produced by muscle fascicles. 

Fn- total passive force produced by parallel elastic element PE. FcE- total active 
force produced by contractile element CE. FpE1- passive visco-elastic properties 

of stretching a muscle. FPE2- passive resistance to compression of the thick 
filaments at short muscle lengths. FI, tetanic Force-Length relationship. FV- 

tetanic Force-Velocity relationship. Af- isometric, activation-frequency 
relationship. Fdf- time lag between changes in firing frequency and internal 

activation (i. e. rise and fall times). Le& time lag between changes in length and 
the effect of length on the Af relationship. S represents the effects of 'sag' on the 

activation during a constant stimulas frequency. Y represents the effects of 
yielding (on activation) following movement during sub-maximal activation. 

4.3.4.2 Muscle Fibre Types. 

Zajac (1989) showed that the behaviour of the contractile element of muscle 

varies from the sarcomere level up to the whole muscle fibre and again up to the 
level of an entire recruitment group of motor units. By introducing the 

properties of each fibre type that will be used throughout the muscle model in a 

single database, permits the muscle model to use these properties when fibre 

types are joined in varying percentages to form a typical mixed-fibre-type 
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muscle. In this study, the genefic fast twitch and 40cal slow twitch fibre types 

derived for human muscles as presented in Cheng et al. (2000) are utilised (see 

Appendix C for fibre type best-fit constants and associated equations). The 

parameters used to identify these fibre types are tabulated in Table 4.5. The 

optimal sarcomere length of 2.7 pn was gathered from Herzog et al. (1992), 

which shows close agreement with the value 2.8 Wn reported in another study 
by Rack and Westbury (1969). This value is employed to scale the active and 

passive force-length properties. The recruitment rank identifies which fibre type 

is recruited first in a muscle composed of more than one fibre type. Vo. 5 is the 

shortening velocity required to produce half the maximum tetanic force (0.5 Fo) 

at 1.0 4 (fascicle length at which Fo is elicited). fo. 5, the frequency at which half 

of maximal tetanic force is obtained (isometric at 1.0 Lo), scales the rise and fall 

times. Details of how Vo. 5 and fo., 5 were obtained are explained by Cheng et al. 
(2000). 

The specific tension is defined as the maximal isometric force produced at the 

optimal length per unit cross-sectional area. The default value of 31.8N/cm2 has 

been used based on Scott et al. (1996) and Brown el al. (1998). On the other 
hand, the value was estimated to be anywhere between 20 and 100 N/cm. 2 by 

Winters and Stark (1988) and it is claimed that a higher value than 31.8 may be 

required to truly represent the maximum muscular forces that can be exerted by 

a human subject and that the value of specific tension is likely to vary between 

subjects due to gender differences and different levels of muscular 
development. 

Table 4.5 Muscle model fibre type parameters (Van Lopilý, 2004). 

Fibre Type Parameter 'typical' slow-twitch fibre type generic fast-twitch fibre type 

Optimal Sarcomere Length (pm) 2.7 2.7 

Recruitment Rank 12 

V0.5 (Lo/s) 

fos (Pps) 

-1 -1.67 

12 20 

Specific Tension (N/cm2) 31.8 31.8 
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4.3.4.3 Muscle Morphometry 

Multi-Body Model Development 

The parameters needed for the muscle model that are independent of fibre type 

and are specific to individual muscles are Fo, Lo, 4Tand L.. To is the muscle 
fibre length at peak isometric active muscle force (Fo), where T4 and Fo are 

specific to the muscle fascicles). 4Tis the length of muscle tendon at maximal 
tetanic isometric force, which is different from the more commonly used tendon 

slack length (1.6T) Zajac (1989). TsTis less well defined than 47ý Also, TSTtends; to 
be around 5% shorter (Cheng et al., 2000). L.. is the length of the muscle 
fascicles at the maximal anatomical length of the muscle. 

The morphometric values required for the model are musclee mass, optinialfascide 
length, optinzal tendon length and the maximl anatomical musculotendon path Length. 

These measures are then utilised either directly or to calculate the required 

parameters of the models equations. Optimal fascicle length and optimal tendon 
length correspond to Io and LoT. By using muscle mass and fascicle length, the 

physiological cross-sectional area (PCSA) of the muscle is obtained, which is 

proportional to Fo. L. is calculated from the difference of the maximum whole- 

muscle length and the tendon 14T, scaled by muscle fascicle length Io (Van 

Lopik, 2004). 

Mass and optimal fascicle length of most cervical spine muscles have been 

provided by Kamibayashi and Richmond (1998). Optimal tendon length was 

approximated by using 105% of tendon slack length (Cheng, 2001). Tendon 

slack length was calculated as the difference between the musculotendon length 

at the neutral head position of the model and the muscle fascicle length. 
Kamibayashi and Richmond claim that the measured muscle fascicle length in 

the neutral posture are within 15% of their optimal length. Values of maximal 
musculotendon path length were selected based on the path length of the 

muscle elements in the head-neck model at extreme positions of the head so as 
to give values of L. between 1.1 and 1A2 (Chen& 2001). In the virtual muscle 
model, the muscle fascicle lengths reported were employed for each of the sub- 
elements of a given muscle. Muscle mass was either divided equally between 

the sub-volumes or proportionally in order to give the required PCSA of the 
individual elements and the overall muscle. 
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Once the specific morphometry of an individual muscle is established, the 

muscle must be assigned to the relevant muscle fibre types. Table 4.6 tabulates 

the fibre type distribution for the neck muscles included in the model along 

with the source of reference. Some of the required muscle morphometry data to 

be used in the model can be found in Appendix D. 

Finally, the number of motor units to be used to simulate each fibre type in the 

muscle is specified. Normally a muscle comprises about 100 or more motor 

units. In order to simplify the model to gain from computation time, a small 

number of motor units were chosen, where each unit represents a group of 'real' 

motor units. For example the Splenius Capitis consists of 37% slow- and 63% 
fast-twitch muscle fibres, with three motor units allocated to the slow-twitch 

portion and 5 motor units to the fast-twitch portion of the muscle. 

Table 4.6 Histochemical composition of muscle fibre types in the muscles of the 
head-neck model (Van Lopik, 2004). 

Muscle Name 
Fibre Type Distribution/ Number 
of Motor Units 
Slow-twitch Fast-twitch 

Reference 

Suboccipital 
Rectus capitis post. Major 60%/4 40%/3 a 
Rectus capitis posL Minor 60%/4 40%/3 a 
Obliquus capitis superior 50%/3 50%/3 a 
Obliquus capitis inferior 30%/2 70%/4 a 
Longissimus capitis 33%/2 67%/4 b 
Longissimus cervicis 45%/3 55%/3 b 
Splenius capitis 37%/2 63%/4 b 
Splenius cervicis 50%/3 50%/3 a 
Sen-dspinahs capitis 35%/2 35%/4 b 
Sen-dspinalis cervicis 35%/2 35%/4 b 
Scalenus 
Scalenus anterior 29%/2 71%/4 b 
Scalenus medius 29%/2 71%/4 b 
Scalenus posterior 29%/2 71%/4 b 
Sternocleidornastoid 
Sternomastoid 23%/2 77%/4 b 
Cleidornastoid 23%/2 77%/4 b 
Cleido-occipital 28%/2 72%/4 b 
Trapezius 26%/2 74%/4 b 
LA)n8US COM 54%/3 46%/3 C 
Longus capitis 40%3 60%/4 d 
Levator scapulae 26%/2 74%/4 d 
Multifidus 77%/4 23%/2 C 

a. Winters and Woo (1990) 

b. Richmond et A (2001) - 
c. Boyd-Clark et A (2001) 

d. Estimated. Not present in the literature. 
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4.3.4.4 Musculotendon Blocks 

Multi-Body Model Developmen t 

Once fibre types were determined and the morphometry of the individual 

muscle volumes and sub-volumes were defined, the stand-alone Simulink 

muscle blocks were created (Fig. 4.30). Each musculotendon block requires 

inputs for activation and for musculotendon path length. The output from the 

musculotendon element is force in Newtons. A schematic general view of the 

Simulink model is depicted in Figure 4.31. 

It is assumed here that the activation input of a muscle is determined by a single 

neural input where the level of activation hes between 0 and 1,0 for passive 

muscle and 1 for maximally activated muscle. For muscle activation it is 

assumed that the level of activation changes instantaneously from 0 to 1 after a 

certain onset/reflex delay. Reflex time is defined as the activation time of a 

muscle in reaction to an external disturbance, which in the case of a motor 

vehicle collision may be a visual signal, a loud noise, or impact induced motion 
(Van Lopik, 2004). Reported reflex times for neck muscles range from 25 to 90 

ms (Snyder et al., 1975, Reid et al., 1981, Ono et al., 1997, Brault et al., 2000). 

The length of the actuators representing the individual muscle elements is read 
from visualNastran at each time step of simulation and passed to Simulink as 

the input for musculotendon path length. This along with level of activation is 

used to calculate the muscle force which in turn is passed back to the MB model 
in visualNastran. 
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Ct. 47 r- r- F -, F- r- 
Ci. 0) 1 r- r- i r- 1, r r- 
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cme4F-1 ý --1 1 -ii 
-67r-r-r-r-r-r =r -, r-i 
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Figure 4.30 Virtual Muscle "BuildMuscles" interface (Cheng et al., 2001) 
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Figure 4.31 Simulink model for scaleitus medius muscle group. The switch is used 
to change the level of activation following a specified onset delay. 

4.3.4.5 Muscle Descriptions and Attachment Locations 

This section covers the most important and essential muscle groups 
implemented into the model, which preserves the spinal stability. Although 

muscles are attached all around the vertebrae, three main areas of muscle 
attachment can be grouped as the tip of the spinous process, the tip of the 
transverse process and the anterior tubercle of the transverse process. The skull 
and the neck are connected to each other via many groups of muscles, which 
allow for the important role of controlling the movement of the head-neck 

complex. 

The essential muscle groups, their descriptions, and attachment locations are 
explained and illustrated in this section, while providing details such as origins, 
insertions, and functions. Morphometric data are not presented in detail, as 
relevant information can be found in Appendix C. 
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Longus Capitis 

Multi-Body Model Development 

The longus capitis is a long fleshy muscle inserted on the inferior surface of 

basilar part of the occipital bone (Gurumoorthy and Twomey, 2000), which is 

thought to help in flexing and rotating the cervical vertebrae and head (Fig. 

4.32). In the MB model, the Longus Capitis muscle is split into four segments on 

each side of the neck, where mid-sagittal symmetry is assumed (Fig. 4.33). 

Morphometric parameters for the Longus Capitis have been reported by 

Kamibayashi and Richmond (1998). The overall mass of the muscle is divided 

amongst the individual elements with regards to individual average fascicle 

lengths of each segment. 

ORIGIN : Anterior tubercles of transverse processes of 3rd, 4th, 5th, 6th 

cervical vertebrae 

INSERTION : Inferior surface of basilar part of occipital bone 

FUNCTION : Flexes and assists in rotating cervical vertebrae and head 

NERVE : Muscular branches of Ist, 2nd, 3rd, 4th cervical 

ARTERY : Ascending cervical of inferior thyroid; prevertebral of ascending 

pharyngeal; muscular of vertebral (Warfel, 1985) 
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Figure 4.32 The longus capitis (Warfel, 1985) 
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Figure 4.33 The longus capitis, colli, and scalenus muscles in the MB model 

Longus Colli 

The longus colli is a long, flat muscle being the deepest muscle found in the pre- 

vertebral region of the cervical spine, situated on the anterior surface between 

the atlas and T3 vertebrae. The longus colli is thought to be a flexor of the 

cervical spine (Gurumoorthy and Twomey, 2000; Warfel, 1985) and illustrated 

in Figures 4.33-34. 

ORIGIN : a. Vertical portion from bodies of 1st 3 thoracic and last 3 

cervical vertebrae; b. inferioroblique portion from bodies of 1st 3 thoracic 

vertebrae; c. superior oblique portion from anterior tubercles of transverse 

processes of 3d, 4th and 5th cervical vertebrae 

INSERTION : a. Vertical portion into bodies of 2d, 3d and 4th cervical 

vertebrae; b. inferior oblique portion on anterior tubercles of transverse 

processes of 5th and 6th cervical vertebrae; c. superior oblique portion on 

anterior tubercle of atlas 

FUNCTION : Flexes and assists in rotating cervical vertebrae and head, acting 

singly flexes colunui laterally 

NERVE : Branches of anterior primary rami of 2d to 8th cervical 
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ARTERY : Prevertebral branches of ascending pharyngeal; muscular 

branches of ascending cervical and vertebra (Warfel, 1985). 

itery 

muscular brancht 
cervical nerves 

pharyngeal artery 

calollcl allery 

g cc-rvl,: ai alery 

Figure 4.34 The longus colli (Warfel, 1985) 

Scalenus: Anterior, Medius, and Posterior 

The three Scalenus muscles are attached on either side of the anterior aspect of 

the cervical spine connecting the transverse processes of the middle and lower 

vertebrae to the first and second ribs (Fig. 4.35). 

The Scalenus Atiterior has its origin on the scalene tubercle of the first rib and 
inserts onto the transverse processes of C3 through C6. The Scalenus Medius 

starts from the posterior aspect of the first rib behind the subclavian artery 
inserting onto the transverse processes of C2 through C7. The Scaleizus Posterior 

takes its origin from the superior border and lateral aspect of the second rib, 

while inserting via three tendinous slips onto the transverse processes of C4-C6. 

In the MB model, each Scalenus muscle is represented by a single muscle 

element on each side of the neck (Fig. 4.33), having the origins on the ribs as 

based on the above descriptions from the anatomical drawings (Warfel, 1985; 

Gray, 1980) and decisions made by other researchers (de Jager, 1996). 
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Figure 4.35 The scalenus (a) anterior, (b) medius, and (c) posterior (Warfel, 1985) 

Stemocleidomastoid 

The sternocleidomastoid, being the strongest muscle in the pre-vertebral region 

of the neck, includes four distinct bands with varying attachment points; which 

are the Sternomastoid, Sterno-occipital, Cleidomastoid and Cleido-occipital (Fig. 

4.36). Sternocleidomastoid produces flexion in the cervical spine via contraction 

on both sides of the neck, and also they can be used to flex the atlanto-occipital 

joints without flexion of the neck. 

ORIGIN : Sternal head, anterior surface of manubrium; clavicular head., 

upper surface of medial 3d of clavicle. 

INSERTION : Lateral surface of mastoid process; lateral half of superior 

nuchal line of occipital bone 

FUNCHON : Draws head toward shoulder and rotates it pointing chin 

cranially and to opposite side; together, flex head; raise thorax when head is 

fixed 

NERVE : 2d cervical and spinal portion of accessory 

ARTERY : Sternocleidomastoid branch of superior thyroid and occipital 

muscular of suprascapular, occipital of posterior auricular (Warfel, 1985). 

In the MB model, the Sternocleidomastoid is represented by three muscle 
elements on each side of the neck as illustrated in Figure 4.37. 
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Figure 4.36 The stemocleidomastoid (Warfel, 1985) 
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Figure 4.37 The stemocleidomastoid and other cervical muscles in the MB 
model 
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Levator Scapulae 

Multi-Body Model Developmen t 

Levator Scapulae is situated at the back and side of the neck originating from 

the transverse processes of the upper four cervical vertebrae, Cl-C4 in the form 

of four thin tendinous slips (Fig. 4.38). This strap-like muscle passes downward 

and outward to insert onto the superior border of the medial scapula. 
Symmetrical contraction of the Levator Scapulae can assist the cervical spine in 

extensionas well as controlling the movements of the scapula. Kamibayashi and 
Richmond (1998) presented the total mass of the Levator Scapulae along with 

the average optimal fascicle length for the muscle. The total mass was 
distributed equally between the four muscle elements with the same average 
fascicle length. Levator Scapulae in the MB model can be seen in Figure 4.37. 

stemocedcrnavoil 

SWaSM3IL's 

ldraspralus 

\ 
Figure 4.38 Levator Scapulae along with some other neck muscles (Gray, 1980) 

Longissimus Capitis 

As illustrated in the MB model in Figure 4.37, the Longissimus Capitis is 

between the Longissimus Cervicis and the Semispinalis Capitis. It originates 
from the transverse processes of the upper 4 or 5 thoracic and from the articular 

processes of the lower 3 or 4 cervical vertebrae to the posterior margin of the 

mastoid processes on the skull (Warfel, 1985) (Fig. 4.39). Along with the 
Longissimus Cervicis, the Longissimus Capitis has a role in producing 

extension, lateral flexion and rotation of the cervical spine. An optimal fascicle 

length of 6cm was selected based on the initial length of the muscle elements 

and on the fascicle length reported by Vasavada et al. (1998). 

ORIGIN : L. capitis, transverse processes upper 4 or 5 thoracic, articular 

processes lower 3 or 4 cervical vertebrae 
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INSERTION : L. capitis, posterior margin mastoid process 

FUNCTION : Extension, lateral flexion and rotation of colunm 

NERVE : Posterior primary rami of spinal nerves 

ARTERY : Muscular branches of occipital, deep cervical branch of 

costocervical. trunk (Warfel, 1985) 

Costocervical trur 

Inteicostat 
arteries 

Ii- 

isterjor rami 
sprial nerves 

Figure 4.39 Longissimus Capitis, Cervicis, Thoracis (Warfel, 1985) 

Longissimus Cervicis 

The Longissimus Cervicis arises from the upper 4 or 5 thoracic vertebrae with 
insertions on the transverse processes of C2 to C6 (Warfel, 1985). Along with the 

Longissimus, Capitis, the Longissimus Cervicis produces extension, lateral 

flexion and rotation of the cervical column (Fig. 4.39). In the MB model, the 

Longissimus Cervicis is integrated by five muscle elements on each side of the 

neck originating from a point connected to T1 at the approximate position of the 
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transverse process of T2 (Fig. 4.37). An optimal fascicle length of 4.4cm was 

used based on the initial length of the muscle elements. 

ORIGIN L. cervicis; transverse processes upper 4 or 5 thoracic vertebrae 

INSERTION L. cervicis; transverse processes 2d to 6th cervical vertebrae 

FUNCHON Extension, lateral flexion and rotation of colunu-t (Warfel, 1985) 

Multifidus 

The Multifidus muscles are the deepest placed muscles in the post-vertebral 

region of the spine, along the entire length of the spine from the axis to the 

sacrum (Fig. 4.40). In the cervical and thoracic region muscle fasciculi of varying 

length starts from the articular and transverse processes of the vertebrae, 

ascending obliquely upward to insert into the spinous process of the second, 

third and forth vertebrae above, while connecting two adjacent vertebrae (Gray, 

1970). Multifidus plays its role in aiding extension, lateral flexion and rotation of 

the spinal column. Gurumoorthy and Twomey (2000) claim that the Multifidus 

also helps control translatory movements of the facet joints. 

ORIGIN : Back of sacrum, posterior sacroiliac ligament, mammillary 

processes of lumbar, transverse processes of thoracic, articular processes of 
lower 4 cervical vertebrae 

INSERTION Spine of vertebrae above vertebra of origin 

FUNCTION Aid in extension, lateral flexion, and rotation of column, 

extension and lateral movement of pelvis 

NERVE Posterior primary rami of all spinal nerves 

ARTERY Medial muscular branches of posterior intercostals and lumbars; 

deep cervical branch of costocervical trunk (Warfel, 1985) 

In the MB model, all Multifidus muscles were included (Fig. 4.41). 
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Figure 4.40 Multifidus (Warfel, 1985) 
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Figure 4.41 Multifidus and semispinalis muscles in the MB model 
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Semispinalis Capitis 

Multi-Body Model Development 

The semispinalis capitis is a complex muscle with a broad insertion onto the 

occipital bone between the superior and inferior nuchal lines, the size and 
length of which make it one of the strongest among the post-vertebral muscles 
(Fig. 4.42). The semispinalis capitis muscles produces extension in the atlanto- 

occipital joints while acting together and individual contraction extends the 

head to an extent, as well. 

ORIGIN : Ss. capitis, transverse processes upper 6 thorade, 7th cervical, 

articular processes of 4th to 6th cervical 

INSERTION : Ss. capitis, occipital bone, medial impression between superior 

and inferior nucliallines 

FUNCIION : Extension and lateral flexion of column; extension of head, ribs 

and pelvis (Warfel, 1985) 

In the MB model, the Semispinalis Capitis is described by 5 muscle elements on 

each side of the neck (Fig. 4.41). Kamibayashi and Rid-tmond (1998) report the 

total mass of the muscle as 38.5g with the average fascicle length as 6.8cm. The 

mass was evenly distributed between the 5 muscle elements, each having the 

same optimum fascicle length. 

S. s. CAPITIS 

Posterior rarro of cervica 

Posterior farre thoraGic 
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CERVICIS 

S. s. THORACIS 

Figure 4.42 Sendspinalis Capitis, Cervicis, Thoracis (WarfeL 1985) 
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Semispinalis Cervicis 

Multi-Body Model Development 

The semispinalis cervids, originates from the transverse processes of the upper 5 

thoracic vertebrae and ends on the spinous processes of C2 through C6 (Fig. 

4.42). 

ORIGIN : Ss. cervicis, transverse processes upper 6 thoracic, articular 

processes lower 4 cervical vertebrae 

INSERTION : Ss. cervicis, spines of 2d to 5th cervical vertebrae 

FUNCTION : Extension and lateral flexion of column; extension of head, ribs 

and pelvis 

NERVE : Ss. cervicis, posterior rami of lower 3 cervical 

ARTERY : Muscular branches of posterior intercostals; descending branch 

of ocdpitaL- deep cervical branch of costocervical trunk (Warfel, 1985) 

Kamibayashi and Richmond (1998) failed to include the semispinalis cervicis in 

their study of neck muscle morphometry so the values used in the model were 
based on other researchers decisions (van der Horst, 1997). The same optimal 
fascicle length as that of the semispinalis capitis was used and the mass of the 

individual elements was determined to give PCSXs similar to those used by 

van der Horst (2002) (Fig. 4.41). 

Splenius: Capitis and Cervicis 

The Splenius muscle is situated at the back of the neck and upper part of the 

thoracic region, having its origin as a single muscle arising from the last cervical 

vertebrae C7 and the upper six thoracic vertebrae (T1-T6) (Fig. 4A3). From this 

origin, the muscle runs obliquely upward and outwards dividing into two 

sections, the Splenius capitis and the Splenius cervicis. The muscle is believed to 

work in conjunction with the semispinalis capitis as an extensor of the head and 

with part of the sternocleidomastoid for rotating the head (Gurumoorthy and 
Twomey, 2000). 

ORIGIN : Sp. capitis from lower half of ligamentum nuchae and spine of 
7th cervical and upper 3 or 4 thoracic vertebrae; Sp. cervicis from spines of 3rd 

to 6th thoradc vertebrae 
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INSERTION : Sp. capitis into mastoid process of temporal bone and lateral 

part of superior nuchal line; Sp. cervicis, into posterior tubercles of transverse 

processes of upper 3 or 4 cervical vertebrae 

FUNCTION : Together they extend, laterally flex head and neck and rotate 

head slightly 

NERVE Lateral branches of posterior primary rami of middle and lower 

cervical 

ARTERY : Muscular and descending branches of occipital, superficial 

branch of transverse cervical (Warfel, 1985) 

Kamibayashi and Richmond (1998) provide a single weight of 42.9g for the 

entire Splenius muscle but give the optimal fascicle lengths for the Splertius and 

Cervicis, separately. Based on the study by Vasavada et al. (1998), the mass of 

the muscle was distributed as two-thirds to the Splenius capitis and one-third to 

the Splenius cervicis. The muscle is provided in Figure 4.44. 
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Figure 4.43 Splenius muscle (Warfel, 1985) 
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mills 

splellius 
and ceiv 

Figure 4.44 Splenius and trapezius muscles in the MB model 

Suboccipital Muscles 

The suboccipital muscles of the cervical spine are composed of the rectus capitis 

posterior major and minor, and the obhquus capitis superior and inferior, which 
have an important role in fine-tuning the head movements. 

; 0- The Rectus Capitis Postefior Major originates from the spinous process of 

the axis and inserts onto the lateral part of the inferior nuchal line of the 

occipital bone. Contraction of both muscles creates extension of the 

atlanto-occipital joint, with unilateral contraction yielding ipsilateral 

rotation of the head. 

)ý- The Rectus Capitis Posterior Minor is smaller than the major located closer 

to the midline, of the spine and attaching to the medial third of the 

inferior nuchal line between the rectus Capitis posterior major muscles. 

ý- The Obliquus Capitis Inferior joinss the spinous process of the axis to the 

transverse process of the atlas. When acting together, these muscles help 

stabilise the atlas by bringing together the atlanto-axial joints in order to 

allow movements in the atlanto-occipital joints (Gunimoorthy and 
Twomey, 2000). 
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)ý- The Obliquus Capitis Supefior originates from the superior aspect of the 

transverse process of the atlas running superiorly and posteriorly to 

attach to the lateral third of the inferior nuchal line. Contraction of these 

muscles is believed to produce extension of the atlanto-occipital joints. 

In the MB model, each of the suboccipital muscles is implemented by a single 
individual muscle element due to their short lengths and close proxin-tity to the 

spinal bones (Fig. 4.37). 

Trapezius 

The trapezius muscle is a large muscle in the cervical, thoracic and shoulder 

regions, arising from the inner third of the superior curved line of the occipital 
bone (superior nuchal line), from the spinous processes of all the cervical 

vertebrae and those of all the dorsal vertebrae (Gray, 1980). All portions of the 

muscle were included in the model. The upper section of the trapezius also 

known as the clavotrapezius, with origins above the level of C7, extends onto 

the clavicle (Fig. 4.38). The individual muscle fascicles attach systematically 

along the posterior border of the distal third of the clavicle bone, such that the 

fascicle from the superior nuchal line assumes the most anterior and medial 

attachment, followed in sequence by the fascicle from the spinous processes of 

the descending vertebrae, with the fibres from C6 inserting into the distal comer 

of the clavicle as far as the acromioclavicular joint (Johnson et al., 1994). 

In the MB model, the trapezius muscle was divided into 8 separate muscle 

elements (Fig. 4.44). Positions of insertions onto the clavicle and scapula are 
based on anatomical drawings and descriptions in the literature. Johnson et al. 
(1994) reported fascicle length, PCSA and maximum force of each section of the 

muscle. 

Rotatores 

Rotatores thoracis involves eleven pairs of small roughly quadrilateral muscles, 

each of which joins the upper and posterior part of the transverse process of one 

vertebra to the lower border and the lateral surface of the lamina of the vertebra 
immediately above (Fig. 4.45). Rotatores cervicis and lumborum are represented 
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only by irregular and variable muscle bundles, whose attachments are similar to 

those of rotators thoracis (Gray, 1980). 

ORIGIN : Lying deep to the muffifidus they form 11 pairs of small 

muscles; each arises from the transverse process of one thoracic vertebra 

INSERTION Into lamina of vertebra directly above vertebra of origin 

FUNCTION Assist in rotating vertebral column 

NERVE Posterior primary rami of spinal nerves 

ARTERY Muscular branches of posterior intercostals (Warfel, 1985) 

The rotatores in the MB model are illustrated in Figure 4.46. 

Posterior rami of spinal nervE 

Muscular bianches 
of intercosial arteries 

i 

Figure 4.45 Rotatores (Warfel, 1985) 

Longissimus Thoracis 

As another part of the longissimus muscles, longissimus thoracis aids for 

extension, lateral flexion and rotation of the spinal column (Fig. 4.39). 

ORIGIN : L. thoracis, transverse processes lumbar vertebrae, lumbodorsal 
fascia 
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INSERTION : L. thoracis, transverse processes thoracic vertebrae, lower 9 or 

10 ribs proximal to angles 

FUNCTION : Extension, lateral flexion and rotation of colurnri; lateral 

movement of pelvis 

NERVE Posterior primary rami of spinal nerves 

ARTERY Posterior rami of intercostals and lumbars; muscular branches 

of occipital: deep cervical branch of costocervical trunk (Warfel, 1985). 

The longissimus; thoracis in the MB model are illustrated in Figure 4.46. 
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Figure 4.46 Back muscles in the MB model 

Iliocostalis Lumborum, Thoracis, Cervicis 

The erector spinae muscle complex hes on either side of the vertebral column. 
Varying in size and composition at different levels, it forms a large 

musculotendinous mass. In the upper lumbar region, it expands to form a thick 
fleshy mass. Being a part of erector spinae, iliocostalis lumborum is attached to 
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the inferior borders of the angles of the lower six or seven ribs (Fig. 4.47). 1. 

thoracis attaches below to the upper borders of the angles of the lower six ribs, 

while 1. cervicis attaches to the angles of the third to the sixth ribs (Gray, 1980). 

Iliocostalis, muscles in the MB model are illustrated in Figure 4.46. 

ORIGIN : a. I. lumborum, body of sacrospinalis in lumbar region; b. I. 

thoracis, angles of lower 6 ribs medial to insertion of 1. lumborum; c. 1. cervicis, 

angles of 3rd to 6th ribs 

INSERTION : a. 1. lumborum, lower borders of angles of lower 6 or 7 ribs; b. 1. 

thoracis, upper borders of angles of upper 6 ribs; c. 1. cervicis, transverse 

processes of 4th to 6th cervical vertebrae 

FUNCTION : Extension, lateral flexion and rotation of column; lateral 

movement of pelvis 

NERVE Posterior primary rami of spinal nerves 

ARTERY Posterior rami of intercostals and lumbars (Warfel, 1985) 

Df rami of spinal neNes 

hiwcosial artefoes 

Figure 4.47 Iliocostalis muscles (Warfel, 1985) 

Semispinalis Thoracis 

Being similar in ftmction to semispinalis cervicis, semispinalis thoracis aid the 

spine in extension and lateral bending as well as in extension of head, ribs and 

pelvis (Fig. 4.42). 
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ORIGIN Ss. thoracis, transverse processes lower 6 thoracic vertebrae; 

INSERTION Ss. thoracis, spines of first 4 thoracic, last 2 cervical (Warfel, 

1985) 

Semispinalis thoracis muscles in the MB model are provided in Figure 4.46. 

Spinalis Thoracis 

Spinalis thoracis originates from the upper points of the lumbar spine and 

lowest points of thoracic spine, and inserts in the upper portions of the thoracic 

region (Fig. 4.48). 

ORIGIN S. thoracis, spines 1 st, 2d lumbar, 11 th, 12th thoracic vertebrae 

INSERTION S. thoracis, spines upper 4 to 8 thoracic vertebrae 

FUNCHON Extension, lateral flexion and rotation of column; lateral 

movement of pelvis 

NERVE Posterior primary rami of spinal nerves 

ARTERY Posterior rami of intercostals; deep cervical branch of 

costocervical hunk (Warfel, 1985) 

ý CAPITIS 

CERVICIS 

Posterior ram, 
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S THORACIS 

Figure 4.48 Spinalis Thoracis (Warfel, 1985) 

The spinalis thoracis, muscles in the MB model are illustrated in Figure 4.46. 
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Abdominal Muscles 

Multi-Body Model Development 

In order to implement a simplified, yet effective group of abdominal muscles 

into the MB model; obhquus externus abdominis, obhquus intemus abdominis, 

and rectus abdominis muscles were incorporated (Fig. 4.49). A total of 6 linear 

actuators were modelled to act as abdominal muscles to preserve the spinal 

stability. 

* obliquus extemus 
abdoutinis 
* obliquus intemus 
abdonurus 
* rectus abdoumms 

Figure 4.49 Abdominal muscles in the MB model 

All these abdominal muscles have several functions such as compressing the 

abdomen, supporting viscera, being active in forced expiration, flexing pelvis 

and vertebral colunm. Morphological data is provided in Appendix C. 

4.3.5 Final Multi-Body Model 

All the elements explained so far were brought together to form the MB model 

of the whole human spine. All relevant material properties were introduced into 

the model within visualNastran and Virtual Muscle. 

As the human spine is a very complex and detailed biomechanical structure, 

various simplifications and assumptions were made in order to keep the model 

within reasonable computational limits and requirements. Some other relatively 
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insignificant spinal muscles were neglected, and some muscle attachments and 
insertions especially to and from clavicles, ihacs, and scapulae were 

compromised. To maintain the integrity and biofidehty of the model, necessary 

structural elements such as clavicles or sternum were kept in position via 

spring-damper elements with very high stiffnesses and damping coefficients, 

which help to counteract for all the muscles and ligaments they normally should 
have, but neglected due to modelling requirements. The model can be seen in 

Figures 4.50-4.51. 

Figure 4.50 The developed MB model of the whole human spine 
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Figure 4.51 Three views of the MB model 

4.4 Discussion 

In this chapter, developments of the two multi-body models were explained in 

detail. Both models were built by using the commercially available dynamic 

simulation package visuaINastran 4D 2001 as well as employing an external 

package for controlling muscle dynamics. 

The first multi-body model of the lumbar spine was modelled as a preliminary 

model, aiming to establish the principles to extend the model to a whole human 

spine MB model. In constructing the MB model, four elements of the human 

spine were considered; the lumbar vertebrae, the muscles, the ligaments and the 

intervertebral discs. This model included an assumed simplified geometry of 

the lumbar spine vertebrae, constructed by using the quantitative anatomy of 

the spinal parts. The anatomical data and some essential specifications of the 

other elements were discussed and submitted. The constructed multi-body 

model was handled as the cervical spine multi-body model of van Lopik and 

Acar (2002). The vertebrae were modelled as rigid bodies, interconnected by 

linear viscoelastic intervertebral disc elements, nonlinear viscoelastic ligaments 
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and contractile muscle elements possessing both passive and active behaviour. 

The model included advanced features such as material property and geometric 

nonlinearities and viscoelastic material properties. One of its strengths was the 

implementation of Virtual Muscle as an external software to control muscles 

actively and passively. Due to the paucity of experimental results in the 

literature regarding lumbar spine dynamics, validation was carried out with 

small amount of data and good agreements were achieved. This model 

constituted the basis for developing the more advanced, detailed, and biofidelic 

MB model of the whole human spine. 

The second model built was the MB model of the whole human spine. As a very 
important improvement to the previous model, the solid bodies comprising the 

spinal and other skeletal bony elements were no more modelled by using 

quantitative anatomical data but imported from a CI7 scanned cadaver human 

spine study. Due to the technique used, it was highly realistic, and helped 

define more realistic contact surfaces within the MB model. These solid bodies 

not only accommodated the essential parts of the vertebrae; as the vertebral 
body, pedides, superior and inferior articular processes, namely facet joints, 

transverse and spinous processes, but also included the other selected skeletal 

parts such as the head, the ribs, the clavicles, the scapulae, and the iliacs, which 
is of essential importance in order to build a biofidelic model with realistic 

element and joint locations. 

The intervertebral discs and ligaments were modelled with highly realistic 

material properties, incorporating nonlinearities and viscoelasticity. All spinal 
intervertebral discs and all ligaments associated with the spinal column were 
introduced. The other skeletal parts such as the ribs, clavicles, and scapulae 

played a very important role especially in attaching the ligaments and muscles 
into their realistic locations. 

Another strength of the model lies in the modelling and deffi-dng the muscles. 
The external software Virtual Muscle was employed to develop very detailed 

and realistic muscle behaviour, both active and passive. The morphological and 

mechanical properties of all muscle groups were incorporated by using the data 

available in the literature. 

168 



Chapter 4 Multi-Body Model Development 

The developed MB model of the whole human spine reflects one of the novelties 

of this thesis, being one of the highly detailed, biofidelic models developed so 
far. Considering the size and the detail of the model, there had to be several 

assumptions and simplifications as in most of the engineering and 

computational models, especially due to lack of material property data such as 
damping characteristics of the intervertebral discs. The validation and sample 

simulations are presented in the following chapters. 
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CHAPTER 5 

Multi-Body Model Validation 

In this chapter, validation studies regarding the multi-body model of the whole 
human spine are presented. The validation was carried out against the results of 
several experimental studies; static, quasi-static or dynamic, and particularly for 

the cervical spine region. There is a paucity of tests in the literature regarding 
the kinetic and kinematic behaviour of the thoracic and lumbar regions, when 

compared to cervical spine investigations. Nevertheless, validation attempts for 

the thoracic and lumbar regions were also included in this thesis. 

The validation process is the domain of the researcher who ensures that the real 

system is properly idealised, the proper algorithms are selected for various sub- 

mechanisms, and the database of parameters are appropriate (Kaleps, 1998). In 

the light of this information, validation preparations in this thesis started right 
from the beginning of the modeUing attempts by choosing powerful 

computational media, which have the capacity to model the human spine in 

great detail. The human spine was modelled by employing the most recent data 

such as advanced material properties and model parameters, incorporating 

nonlinearities, wherever possible. 

The validation process requires comparison of the predicted and real system 
variables and judgement of validity is based on differences between the model 
predictions and the real system responses (Kaleps, 1998). The main principle 
followed in validation in this thesis is that the reference (biofidelity) tests for 

validation should not be the same tests as used for determination of model 
input data (Wismans et al., 2005). Therefore, any data used in constructing the 

model was not used for validation. 
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This chapter covers validation sections as motion segment responses in the 

cervical spine, MB model responses in the cervical spine for frontal and lateral 

impacts, vertical loading for cervical spine, MB model responses of thoracic and 
lumbar regions in rear-end impact, and a discussion on thoracic response to 

lateral finpact. 

5.1 Motion Segment Responses in the Cervical Spine 

In this section, model responses to various loads and moment generating 

capacity of the neck muscles are presented. 

5.1.1 Motion Segment Responses to Various Loads 

The model of the upper cervical spine (atlas, axis and occiput) was validated 

against the experimental studies by Panjabi et al. (1988), who applied static 

moments of 1.5Nm on the upper cervical spine specimens and evaluated the 

main and coupled rotations. In their experiments, C2 was fixed while moments 

were applied to the occiput and the corresponding rotations were measured at 

the centres of C1 and CO. Validation could not be conducted on the translational 

loading response of the upper cervical spine motion segments as experimental 
data is not available in the literature. For all simulations an acceleration field of 
9.81m/S2 in the z-axis was assumed to incorporate the effect of gravity. 

Motion segment responses of the lower cervical spine were compared against 
the experimental results reported by Moroney et al. (1988). In their experiment, 
Moroney et al. tested intact segments, which are anatomically complete segments 

comprising the two adjacent vertebrae, disc, facet joints and ligaments, and disc 

segments, where only the vertebral bodies and intervertebral disc were 

considered. 

For load-displacement testing, the superior vertebra was free to move in 

response to the applied loads, while the inferior vertebra was rigidly fixed. The 

motion segments were applied small static loads of 2ON and 1.8 Nm in all. 
loading directions; the resulting three-dimensional displacements were 
measured at the geometric centre of the upper vertebra. 
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For simulating the segment tests, the model motion segments were set up 

similarly, where the lower of the two vertebrae being fixed while leaving the 

upper vertebra free to move in all directions. Loads are exerted on the model as 

an external torque or force applied at the centre of the vertebra. In the 

experimental tests, the load was applied again at the centre of the intervertebral 

disc. The resulting displacements were measured at the centre of the local body 

coordinate system of the upper vertebra and compared against the reported 
displacements. The dynamic stiffening factor for the disc and ligaments was set 

to 1 for all static tests (van Lopik, 2004). 

Figure 5.1 and 5.2 illustrate the main and coupled displacements of CO-Cl and 
C1-C2, respectively, in response to rotational loading. The model results were 

plotted against the experimental results of Panjabi et al (1988) including average 

standard deviations. In both figures, the response to each rotational loading 

direction, flexion, extension, lateral bending and 
' 
axial rotation, are shown 

separately. The responses in an directions are shown along the horizontal axis, 

the labels representing the positive direction of the response, left lateral shear 

(LLS), anterior shear (AS), tension (rNS), right lateral bending (RLB), flexion 

(FU) and left axial rotation (LAR), while negative values represent the opposite 

direction of loading, i. e. RLS, PS, CMIP, EXT and RAR. The magnitudes of the 

translation (left side) or rotation (right side) were plotted on the vertical axis. 

As can be seen from Figure 5.1, almost all displacements of CO-Cl are all within 

one SD of the reported experimental values. In extension loading case, the 

model shows almost no lateral bending, while in axial rotation case, the model 

produces a very small lateral bending, which is within the SD limits. This is 

thought to be because of the construction of the atlanto-occipital joints and their 

orientation within the model. Cl-C2 segment displacements are also in good 

agreement with experimental data for all kinds of loading, except flexion and 

extension cases, where displacements in tension/ compression and flexion 

directions are a bit away from the average, but still within the limits. 
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Figure 5.1 Displacements of model motion segments CO-Cl in response to 
applied rotational loads of 1.5Nm against the experimental results (average ±1 

SD) of Panjabi et al. (1988). Resulting displacements are shown along the 
vertical axis; translations on the left, rotations on the right. Anterior shear (+AS), 
posterior shear (-AS), left lateral shear (+US), right lateral shear (-LLS), tension 
(+TNS), compression (-TNS), right lateral bending (+RLB), left lateral bending (- 
RLB), flexion (+FLX), extension (-FLX), left axial rotation (+LAR) and right axial 

rotation (-LAR). 
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Figure 5.2 Displacements of model motion segments C1-C2 in response to 
applied rotational loads of 1.5Nm against the experimental results (average: E 1 

SD) of Panjabi et al. (1988). Resulting displacements are shown along the 
vertical axis; translations on the left, rotations on the right. Anterior shear (+AS), 
posterior shear (-AS), left lateral shear (+US), right lateral shear (-LLS), tension 
(+TNS), compression (-TNS), right lateral bending (+RLB), left lateral bending (- 
RLB), flexion (+FLX), extension (-FLX), left axial rotation (+LAR) and right axial 

rotation (-LAR). 

For lower cervical spine motion segment model investigations, motion segment 

models C3-C4 and C5-C6 were selected The facet orientations of these two 

spinal units possess different configurations; the facets of C3-C4 point 
backwards and inwards, while the facets of C5-C6 are located backwards and 

outwards. It is expected that responses of these two motion segments should 

slightly vary due to different ligament stiffness' and different disc properties. 

The displacements of C3-C4 and C5-C6 in response to 1.8 Nm for fle)don, 

extension, right lateral bending and CCW axial rotation loadings are depicted in 

Figures 5.3 and 5.4, respectively. Figure 5.5 shows the segments response to 
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translational loading of 20N for anterior shear, posterior shear, right lateral 

shear and compression for both segments. 

In Figures 5.3-5.5, almost all main displacements and rotations are within 1 SID 

of the mean reported value except for axial rotation and flexion cases, where the 

model segments appear to be slightly too flexible. Generally the results are in 

good agreement with Moroney's data. In flexion loading, little anterior shear is 

present for both cases in comparison to the reported mean, which is thought to 
be because of the facet positioning and orientation. 
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Figure 5.3 Displacements of model motion segments C3-C4 in response to 
applied rotational load of 1.8 Nm shown against the experimental results of 
Moroney et al. (1988). Resulting displacements are shown along the vertical 

axis, translations on the left, rotations on the right. Anterior shear (+AS), 
posterior shear (-AS), left lateral shear (+LI S), right lateral shear (-LI S), tension 
(+TNS), compression (-TNS), ýight lateral bending (+RLB), left lateral bending (- 
RLB), flexion (+FLX), extension (-FLX), left axial rotation (+LAR) and right axial 

rotation (-LAR). 
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Figure 5.4 Displacements of model motion segments C5-C6 in response to 
applied rotational load of 1.8 Nm shown against the experimental results of 
Moroney et al. (1988). Resulting displacements are shown along the vertical 

axis, translations on the left, rotations on the right. Anterior shear (+AS), 
posterior shear (-AS), left lateral shear (+LLS), right lateral shear (-LIS), tension 
(+TNS), compression (-TNS), right lateral bending (+RLB), left lateral bending (- 
RLB), flexion (+FLX), extension (-FLX), left axial rotation (+LAR) and right axial 

rotation (-LAR). 
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Figure 5.5 Displacements of model motion segments C3-C4 (o) and CS-C6 (o) in 
response to applied translational loads of 20 N shown against the experimental 
results of Moroney et al. (1988). Anterior shear (+AS), posterior shear (-AS), left 
lateral shear (+LLS), right lateral shear (-LT-S), tension (+TNS), compression (- 
TNS), right lateral bending (+RLB), left lateral bending (-RLB), flexion (+FLX), 

extension (-FIX), left axial rotation (+LAR) and right axial rotation (-LAR). 

5.1.2 Moment Generating Capacity of Neck Muscles 

The total moment generating capacity of the neck muscle elements were 

validated via comparing them against experimental human volunteer data. In 

Vasavada et al. (2001) study, 11 men and 5 women volunteers with mean age of 
31 years were asked to produce maximum head force in extension, flexion, 

lateral bending and axial rotation in an upright sitting position with shoulders 

and torso restrained. The measured forces in each direction were used to 

calculate the moments about the base of the neck for each of the loading 

directions. The isometric strength of the neck muscles was simulated by 

activating each muscle group maximally while fixing the rigid bodies of the 
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model in their initial position. Moments were calculated about the T1 

anatomical coordinate system to calculate the moment generating capacity of 

each muscle element about the three axes of revolution. The moments generated 

were in flexion and extension (force generated by muscles on both sides of the 

neck), axial rotation and lateral bending (force generated on one side only). The 

results of this study were used to validate the muscles in the MB model as 

compared to some other prominent studies. The results were tabulated in Table 

5.1. 

Table 5.1 Validation of the neck muscles in the MB model 

Study 
No. & 

Gender of 
Subjects 

Extension 

Moment (Nm) 

Flexion 

Moment (Nm) 

Axial Rotation 

Moment (Nm) 

LAteral 

Bending 

Moment (Nm) 
Harms-Ringdahl & 1OF 29 

Schuldt (1988) 

Jordan et al. (1999) 50M 55(14) 21(8) 

5OF 48(15) 19(4) 

Mayoux-Benhamou et 5M, 1OF 53(12) 

al. (1993) 

Queisser et al. (1994) 12M 60(9) 

Vasavada et al. (2001) 11M 52(11) 30(5) 15(4) 36(8) 

5F 21(12) 15(4) 6(3) 16(8) 
Van Lopik Model (2004) 47 17 19 39 
Current MB Model 37 25 17 29 
Note. Mean (and standard deviation (SD) where available). M-males, F-females. 

The results seemed to be in good agreement with Vasavada et al. (2001) study. 
When compared to van Lopik head-neck model, all moments generated except 
flexion case appeared to be lower. With all muscles maximally activated, the 

model yielded a total extension moment of 37 Nm with the Sendspinalis Capitis 

and Cervicis (35%), Multifidus (21%) and Levator Scapulae (17%), having the 

most significant contribution. The remaining 27% of the total extension moment 
was generated by the remaining muscles. The Sternocleidomastoid produced 
most of the flexion moment about T1 (62%). The total axial rotation moment was 
predicted to be 17 Nm with the Trapezius muscle having the most significant 
contribution (47%). In lateral bending, the total moment-generating capacity 
appeared to be 29 Nm with the Trapezius (25%) and Scalenus (29%) muscles 
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providing over half the moment. The value of specific tension used in the model 

simulations was 50 N/cm2, which is considered to represent an average male 

with reasonably developed musculature. Obviously, the choice of specific 

tension value affects the total-moment generating capacity predicted by the 

model but on the other hand does not affect the relative contributions of the 

muscles. 

5.2 MB Model Responses in the Cervical Spine for Frontal 

and Lateral Impacts 

In this section, the MB model responses to frontal and lateral impacts were 

validated against human volunteer response data. Response corridors based on 

sled acceleration tests with human volunteers were used to evaluate the model 

and investigate the effect of muscle activation on the head-neck motion. The 

response corridors used in this study were also used by other researchers for 

validation purposes (De Jager, 1996; van der Horst, 1997,2002, and Thunnissen 

et al., 1995). The response corridors define the response boundaries that a valid 
human spine model should meet. The impacts were run with active muscle 
behaviour. The local loads in the soft-tissue elements were analysed. The effects 

of muscle specific tension, reflex time and level of activation on the kinematic 

response of the model were discussed. 

The dynamic experimental data used is gathered from sled acceleration tests 

with human volunteers performed at the Naval Biodynamics Laboratory 

(NBDL). NBDL data contain male human volunteers as seated in an upright 

position on a sled driven HYGE accelerator and exposed to short duration 

accelerations simulating 15g frontal and 7g lateral impacts. The resulting three- 
dimensional motions of the cervical spine were monitored by anatomically 

mounted accelerometers and photographic targets. In the frontal impact tests 

the test subjects were constrained with shoulder straps, a lap belt and a pelvic 

strap to prevent movement of the torso during testing. Arm and wrist restraints 

were also utilised to prevent flailing. An additional chest strap was used in the 
lateral impacts to minimise loading of the right shoulder and a lightly padded 
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wooden board was placed against the right shoulder to limit torso motion 

fin-ther (Wismans et al., 1986). 

Wismans et al. (1986) presented results of the NBDL tests for frontal and lateral 

impacts while a new analysis of the most severe frontal impacts was conducted 

later by Thunnissen et al. (1995). The original data were used to validate the 

models response to lateral impact while the response corridors presented by 

Thunnissen et al. (1995) were used to validate the models response to frontal 

impact. Also, van Lopik (2004) used the same data to validate his head-neck 

model. Thunnissen et al. (1995) analysed frontal tests that had a peak sled 

acceleration of 14.5g or higher, which yielded in 9 tests with 5 volunteers (all but 

one were tested twice). The average volunteer height was 169.1 cm and the 

average weight was 67.9kg. The neck link was flexible in the axial direction. It 

was found that the peak acceleration of T1 was twice as high as the applied sled 

acceleration due to deformation of the thorax/ restraint system. 

5.2.1 Frontal Impact 

In simulating the frontal impact, the acceleration time history of T1 has been 

used as input to the head and neck model to have a highly similar 

computational environment with the original tests. Vertical acceleration during 

the sled tests was small enough to be ignored. The average acceleration and 

rotation time histories of T1 for the 15g frontal impacts are provided in Figure 

5.6. 

TI Acceleration TI Rotation 

400 - 

200 

o 

-200 

400 
5D 100 150 200 

Time (ms) 

30 

20 

0 50 100 im 200 

Time (ms) 

Figure 5.6 Average T1 acceleration and rotation used as input to the MB model 
to simulate frontal impact. (Acceleration in x-axis, rotation about y-axis) 
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In both impact simulations, motion of the T1 vertebrae was limited to the 

direction of impact while the rest of the model was left free to move in all 

directions. In frontal impact simulation, T1 was accelerated in the x-axis and 

rotated about the y-axis. For all other directions motion was found to be 

negligible in the analysis of the volunteer results (Wismans et al., 1986 and 

Thunnissen et al., 1995). An initial reflex response time of 75 ms has been used 

in the frontal and lateral impact simulations. All muscles are activated together 

100 % after the 75ms reflex time. 

All simulations were conducted on a standard desktop PC with Pentium@ 4 

CPU XP 2.00 GHz, and 1GB PC2700 DDR RAM, 200 ms of simulation taking 

around 12,300 cpu seconds. Snapshot images from the simulation are illustrated 

in Figures 5.7-5.8. 

4 

90 ms 120 ms 

40 
Al I 

180 ms 200 ms 

Figure 5.7 Frontal impact simulation (all constraints, elements, and some parts 
of the model are hidden for better visualization) 

Figure 5.8 Head and neck images for 0,100,170, and 200 ms, with all elements 
visible 
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The results of the simulations are provided in Figures 5.9-5.15 below, where the 

black curves represent the response corridors of the NBDL tests, and red ones 

the simulation results. 
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Figure 5.9 Head centre of gravity resultant linear acceleration vs. time 
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Figure 5.10 Head centre of gravity angular acceleration vs. time 
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OC and CG Trajectory 
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Figure 5.11 Head occiput and head centre of gravity trajectories in the 
horizontal (X) and vertical (Z) planes (OC lower, CG upper graph) 
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Figure 5.12 Head rotation vs. time 
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Figure 5.13 Neck rotation vs. time 
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Figure 5.14 Neck link length vs. time 

184 



Chapter 5 Multi-Body Model Validation 

Head Lag 
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Figure 5.15 Head Lag vs. time 

As can be seen from the simulation results, most of the curves lie within the 

response corridors of the experiments. The tendencies of the output curves 

appear to be highly correct when compared to test results. On the other hand, 

there are small variations, where curves appear to be out of the response 

corridors, usually for small intervals. In Figure 5.9, the head centre of gravity 

resultant hnear acceleration drops below the corridor boundary between 110- 

130 ms. Similarly, head centre of gravity trajectory in Figure 5.11 wraps around 

the boundaries, being slightly out of the corridor Iftnits. Neck rotation appears 

to be slightly higher than the experiment results between 100-150 ms, while 

neck length stays within the limits completely. A careful examination of the 

results showed that the outputs are generally in good agreement with the test 

results. Head lag was also clearly demonstrated by the model with a small 

difference. 

5.2.2 Lateral Impact 

In lateral impact simulation, TI was accelerated along the y-axis and rotated 

about the x-axis. A similar set of response corridors were produced from lateral 
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impact sled tests on human volunteers at the NBDL. These tests were analysed 

by Wismans et al. (1986) and the corridors derived using a two-pivot model as 

used for the frontal impact corridors. The lateral impacts performed with a peak 

acceleration of 7g. 9 volunteers were tested with a mean height of 177cm and 

weight 76kg. The measured acceleration and rotation at T1 were used as the 

model input in the y-direction to simulate the impact with prescribed rotation of 

T1 about the x-axis (Figure 5.16). 
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Figure 5.16 Model inputs for lateral impact 

The response of the model with active musculature over the first 200ms of the 

7g lateral impact is provided in Figure 5.17. During the first 110ms of the impact 

the head translates laterally along the y-axis with only a small amount of 

rotation, after which significant rotation of the head develops about the x-axis 

starting from about 130ms, where the head also begins to twist about the z-axis. 

Contrary to the opinion that the muscles of the neck are unable to respond fast 

enough when exposed to high speed trauma recent research shows that the role 

of the muscles in limiting head-neck motion during impact may be significant. 
Siegmund and Brault (2000) stated that the cervical muscles can be activated 

early enough and are capable of altering the head and neck kinematics during 

impact trauma. There are a number of possible ways that the muscles may be 

triggered; during an impact there is a rapid sequence of events that may lead to 

the muscle reflex such as a loud noise on impact, vehicle motion and vibration 

and induced whole-body motion (Van Lopik, 2004). As in frontal impact, an 
initial reflex response time of 75 ms was used in the lateral impact simulations. 

186 



Chapter 5 Multi-Body Model Validation 

0 ms 130 rns 140 ms 

? 110 

;0 

150 ms 160 ms 170 ms 

,I 

L- 

I 
1ý 1--aftj 

180 M- 190 MS 200 ms 

Figure 5.17 Lateral impact simulation 

The predictions of the MB model in lateral impact case are illustrated in Figures 

5.18-5.25. 
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Figure 5.18 x linear acceleration of head centre of gravity vs. time 
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Figure 5.19 y linear acceleration of head centre of gravity vs. time 
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Figure 5.20 z linear acceleration of head centre of gravity vs. time 
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Figure 5.21 x angular acceleration of head centre of gravity vs. time 
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Figure 5.22 z angular acceleration of head centre of gravity vs. time 
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Figure 5.23 Head rotation about x axis 
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Figure 5.24 Head rotation about z axis 

190 



Chapter 5 

OC and CG Trajectory 

0.2 

-i, 

0.1 

0 4- 

-0.2 

Multi-Body Model Validation 

-0.1 0.1 

Y Displacement (m) 

Figure 5.25 Head occiput and head centre of gravity trajectories in the 
horizontal (Y) and vertical (Z) planes (OC lower, CG upper graph) 

As can be seen from the figures above, there is a fairly good agreement between 

test results and model predictions. x- and z-hnear accelerations show good 

agreement with response corridors, however y-linear acceleration exceeds the 

boundaries for small periods of time, but still fairly parallel to the boundaries. x- 

and z-angular accelerations appear to be going out of the corridors for some 

small periods but show a similar tendency with volunteer responses. Head 

occiput and head centre of gravity trajectories in the horizontal (Y) and vertical 
(Z) planes show a very good agreement with the experimental data, lying 

completely within the corridors. 

5.3 Vertical Loading for the Cervical Spine 

In order to have a vigorously validated model, the MB model was also validated 

against vertical loading. Measured acceleration data from human volunteer tests 

on the Vertical Deceleration Tower (VDT) at Armstrong Laboratory, Wright- 

Patterson Air Force Base, Ohio, USA (Ziejewski et al., 1998) were used for 

comparison with MB model results. A peak acceleration of 10g was applied to 
the model for a duration of 250 ms in vertical direction. As the volunteers in the 
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experiments wore helmets, the mass of the head was increased by 1.5 kg to 

include the effect of the additional mass. 

Ziejewski et al (1998) developed a model based on a two-pivot linkage 

mechanism representing the head and neck (Fig. 5.26), called ATB model. The 

approximate locations of the reference coordinate system at Tl, the occipital 

condylar point and the approximate head centre of gravity of their model were 

also given in Figure 5.26. 

0)ß > 0) y 

Co 

x 
Figure 5.26 Two-pivot linkage model (Ziejewski et al., 1998) 

The MB model was simulated under the same loading conditions and resulting 
linear and angular acceleration results were provided in Figures 5.27-5.29. The 

red curves represent the response of author's MB model, while the other two 

curves are experimental and Ziejewski et al. model results. 
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Figure 5.27 Linear head acceleration at mouthpiece in z direction 
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Figure 5.28 Linear head acceleration at mouthpiece in x direction 
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Figure 5.29 Angular head acceleration about y axis 

The results show that current MB model can yield reasonable results for this 

type of loading. Linear x and z accelerations were read from the mouth region 

of the model as these acceleration readings in the experiment were conducted at 

the mouthpiece location. 

5.4 MB Model Responses of Thoracolumbar Region in Rear- 

End Impact 

There is a paucity of tests in the literature regarding the kinetic and kinematic 

behaviour of the thoracic and lumbar regions, when compared to cervical spine 

investigations. In order to attempt to validate the MB model for the rest of the 

spine, namely, for the thoracolumbar region, an experimental study conducted 

at the Japan Automotive Research Institute was used (Ono et al., 1999). 

The sled apparatus used is provided in Figure 5.30. A cineradiographic system 

was applied for the analysis of the cervical spine, while the deformations in the 

thoracic, lumbar and sacral spines were measured via a so-called spinal 
deformation measurement system. This system works with a tape sensor 
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consisting of a 0.3 mm thick stainless sheet with 33 pairs of strain gages 

adhered. 

4,230 

Figure 5.30 The JARI sled test (Ono et al., 1999) 

The test was conducted at an impact velocity of 8 km/ hr. The comparison of test 

and model instants together with spinal deformations was given in Figure 5.31. 

The comparison of the rotational angles of the MB model prediction with the 

experimental values is provided in Figures 5.32-5.37. 

ro 

Cull- 

or"a, 
Figure 5.31 Test and model instants for JARI sled test 
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Figure 5.32 Rotational angles of the MB model prediction (in red) compared 
with the experimental values for T1-T3. 
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Figure 5.33 Rotational angles of the MB model prediction (in red) compared 
with the experimental values for T4-T6. 
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Figure 5.34 Rotational angles of the MB model prediction (in red) compared 
with the experimental values for T7-T9. 
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Figure 5.35 Rotational angles of the MB model prediction (in red) compared 
with the experimental values for T10-T12. 
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Figure 5.36 Rotational angles of the MB model prediction (in red) compared 
with the experimental values for L1-L3. 
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Figure 5.37 Rotational angles of the MB model prediction (in red) compared 
with the experimental values for L4-S1. 

198 



Chapter 5 Multi-Body Model Validation 

The graphs show that the model predicted the experimental values from 

reasonable to good agreement. Especially in upper thoracic region there are 

slight differences in angles between model predictions and experimental results, 

which are thought to be due to the assumptions and simplifications in the test 

reconstruction in the computational environment, such as neglecting the soft 

tissues of the human body which are in contact with the seat back. 

5.5 Discussion 

In this chapter, validation of motion segment responses in the cervical spine, 

MB model responses in the cervical spine for frontal and lateral impacts, vertical 
loading for cervical spine, and MB model responses of thoracic and lumbar 

regions in rear-end impact are presented. 

As there are several experimental studies regarding the impact behaviour of the 

cervical spine, most of the validation attempts were conducted on the responses 

of the cervical spine. 

The static loading results of the cervical spine seemed to be in good agreement 

with the experimental studies such as Moroney's data. In flexion loading, little 

anterior shear is present for both cases in comparison to the reported mean, 

which is thought to be because of the facet positioning and orientation. When 

compared to van Lopik head-neck model, all moments generated by cervical 

muscles except flexion case appeared to be lower. 

In dynamic validation attempts against NBDL data, most of the curves he 

within the response corridors of the experiments. The tendencies of the output 

curves appear to be highly correct when compared to test results. On the other 
hand, there are small variations, where curves appear to be out of the response 

corridors, usually for small intervals. For frontal impact case, In Figure 5.9, the 

head centre of gravity resultant linear acceleration drops below the corridor 
boundary between 110-130 ms. For lateral impact case, x- and z-hnear 

accelerations show good agreement with response corridors, however y-hnear 

acceleration exceeds the boundaries for small periods of time, but still fairly 

parallel to the boundaries. 
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The model was also validated against vertical loading. The model and 

simulation parameters were fairly simple as few data was present in the 

literature. However, relatively good agreements were achieved in terms of head 

accelerations. 

For validating the thoracolumbar region, the graphs show that the model 

predicted the experimental values from reasonable to good agreement. 
Especially in upper thoracic region there are slight differences in angles between 

model predictions and experimental results, which are thought to be due to the 

assumptions and simplifications in the test reconstruction in the computational 

environment, such as neglecting the soft tissues of the human body which are in 

contact with the seat back. 

There are some other studies using the thorax reaction force based results for 

validation such as Jost and Nurick's study (2001). This type of analysis has the 

potential to yield good results especially for FE models, where soft tissues and 

their material properties were incorporated. As multi-body dynamics technique 

is based on rigid bodies, this type of validation wasnýt carried out for the 

current multi-body model, which is incapable of visualising structural 

deformations. 
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CHAPTER 6 

A MB Model Application: Simulating 

Whiplash 

Whiplash or Whiplash Associated Disorders (WAD) is a very common injury of 

the cervical spine, occurring usually as a result of low speed, rear-end car 

crashes, in which the sudden differential movement between the head and torso 

results in abnormal motions in the neck causing damage to its soft tissue 

components. In the resulting head-neck motion a characteristic S-shaped 

curvature of the neck with lower level hyperextension and upper level flexion is 

normally observed, which is followed by subsequent C-shaped curvature with 

extension at all levels of the entire cervical spine (Fig. 6.1). 

. :iýI ýJL I 

Figure 6.1 Schematic views of S-shaped whiplash injury mechanism in a rear- 
end impact (S-shaped cervical spine in the middle figure) (Yoganandan et al., 

2000) 

Whiplash manifests itself in symptoms such as surgical, neurological, 

audiological, otorhinolaryngological (ear-nose-throat related), sense of balance 

and teeth occlusion (Hasegawa and Shiomi, 2003). In most cases the injuries are 

relatively minor and the causes of the disabilities are usually not known 
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(Galasko, 1998). The injury mechanism of whiplash is insufficiently understood. 

Recent research has focused on the possibility of internal nerve damage to the 

Tinal. canal due ItO the rap. d acceleration ow '"he body with to . he head, 

while intersegmental hyperextension, tearing of ligaments and muscles, lesions 

to discs, and facet joint injuries are also considered to be possible reasons for 

whiplash. 

Whiplash not only leaves some patients with severe residual disability that may 

il Lter 4-4- '-k-; -. ob an-, '. q-aah-- o" life, but also burdens fere witl-L theft- ability L%J "%J "M" J LY AL %A the 

economy with a huge cost. It has been estimated that 80% of personal injury 

claims made against British Insurers are related to whiplash, costing well over 
El billion every year and steadily rising (THATCHAM, 2001). In US, neck 
injuries cost at least $7 billion in U. S. insurance claims per year (IIHS, 2004). 

Similarlv in Japan, neck injury accounted for an annual loss of 192.8 MYen in 

2001 (Hasegawa and Shiomi, 2003). The costs in the early nineties have been 

estimated to be 700 MEuro in Germany, 210 MEuro in Sweden and 300 MEuro 

in Netherland's k'vdn der Horst, 2002). 'Inese data do not include the lost 

working days due to injuries and their socioeconomic costs. 

In this chapter, it is aimed to validate the ligamentous cervical spine model with 
Panjabi and colleagues' experiments conducted using a bench-top trauma sled 

and isolated cervical spine specimens. These studies used cadaveric cervical 

spine specimens stripped of all non-ligamentous soft tissues mounted to a 
bench top sled device where an acceleration pulse is applied to the base of the 

specimen to reproduce whiplash trauma. These tests constitute an alternative to 

experiments using volunteers, whole body cadavers or anthropometrical crash 
dummies and have been shown to effectively simulate whiplash trauma and 
havP T)rovidpd valiiahip indphts into tht- romplt-x im-nts and intprartions, that 1: CP 
cause injuries to the cervical spine (van Lopik, 2004). In the resulting head-neck 

motion a characteristic S-shaped curvature of the neck with lower level 

hyperextension and upper level flexion was observed followed by subsequent 
C-shaped curvature with extension at all levels of the entire cervical spine. 

T-h-i- chanter nresents simulation--. of these rear-end impact sled tests using the rK 
ligamentous cervical spine model. The model is firstly used devoid of 
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musculature with an acceleration pulse applied to T1. Varying levels of impact 

severity were investigated. Finally, the muscles were activated in the model to 

L"ýY , on lwmd mck motim. 
thd- c"^-t - 

6.1 Experimental and Simulation Set-ups 

Panjabi and co-workers (1997,1998a, 1998b) utilised a bench-top trauma sled to 

simulate whiplash trauma on ligamentous human cadaveric cervical spine 

specimens (Figure 6.2) The spine specimens tested were without an muscle 

tissue and mounted to the sled at T1. The trauma sled moved on horizontal 

liftear bva_rU-Igs arm was accelefaied by a pneufftaLic pibiort, powef spfwgs and 

an electromagnet release. A steel head surrogate representing a 501h percentile 

human head was connected to the occiput of the cervical spine with the centre 

of gravity positioned analogous to that of a real head. The weight of the 

surrogate head was fully balanced by a pneumatic suspension system 

effectively negating gravitational pull, however, the inertial components of the 

head were still effective. Trauma acceleration was exerted onto the specimen by 

an impactor mounted on the linear bearings. Head motion was monitored with 

two translational and one rotational potentiometers. -1 he whiplash trauma input 

was input as the profile of the sled acceleration-time curve to the base of the 

specimen represented. The acceleration input was a triangular pulse with 

duration of 105ms and peak accelerations of 2.5g, 4.5g. 6.5g and 8.5g (1g = 

9.8m/S2) (Grauer et al., 1997). The resulting rotation, vertical and horizontal 

tran-. 1ation nf thphpad wi time for the 8.5a traturia- were presented. 

HEAD SUSPENSION 

HEAD 

HEAD 

v 
HEAD STOP MOTION 

SI 

F- VISUAL MARKERS 

SPRINGS IMPACTOR 

PIS40N MAGNET TRAUMA SLED L ; 

4SBRAKE 

Figure 6.2 Experimental set-up (Grauer et al., 1997) 
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As simulation set-ups, all muscles were deactivated in the head-neck model. 

Physically, the muscles were kept on the model but their active and passive 

propertfies were deactwatedd. Irlwc motion of '11". was constrained so only 

translation along the x-axis was allowed. No gravitational effects were taken 

into consideration at this stage. The acceleration profiles are triangular with the 

same 105ms duration and corresponding peak accelerations (Figure 6.3). The 

resulting head rotations and translations are compared against the results for 

the 8.5g trauma class. 

T1 Acceleration Pulses 

10- 

8.5 
7.5- 

5 

2.5- 2.5 

0 00ý A 
0 50 100 150 200 

Time (ms) 

Figure 6.3 T1 acceleration profiles used as input to the cervical spine model 

6.2 MB Model Simulation Results 

The response of the ligamentous spine model to the 8.5g trauma acceleration is 

provided schematically in Figure 6.4. 

.v- 

Figure 6.4 Response of the model to 8.5g whiplash acceleration for 0,60,120 ms 
(respectively, from left to right). Muscles were deactivated completely. . r- 0-- j 
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The head rotation and head vertical and horizontal translation for the 8.5g case 

compared to the experimental results of Grauer et al. (1997) is provided in 

V; - 6.5. '1-- --del -I- c, 4 re-ponse to the cadav--* -gur , -ý -W ý OLLOW ýa MW SpMe 

specimen, where head rotation follows a similar pattern but with a higher peak 

value. Following the maximum rotation and maximum posterior translation of 

the head, the model rebounds slightly slower than is seen with the spine 

specimen. The vertical displacement of the head with respect to the torso is in 

good agreement with the experimental results reaching a peak of around 6cm 

below the initial height. 

5g Trauma 
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-80 e 
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0.25 

Figure 6.5 Model head translations and rotations for 8.5 g case compared to 
experimental values (which are shaded with similar colour) 

During the acceleration portion of the whiplash the head translates posteriorly 

and inferiorly with respect to 'n and the spine extends. Around 60 ms time 

period, the development of the characteristic S-shaped curvature of the cervical 

spine was observed. The vertebral rotation graphs in Figure 6.6 depicts that 

during this time period the upper levels of the spine (CO-C3) are flexed while 
the lower levels (C5-Tl) are extended as observed from the experimental results. 
In. the 75-100ms time period, the upper vertebrae of the model change from V0 

IN c 
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flexion to extension as the whole model becomes more and more extended into 

a C-shaped curvature as also observed in the experiments. Maximum extension 

of the head wnd neck was reached at approximately 130ms, slightly later 1-han 

the experimental results. In the later stages of trauma the head returns towards 

its initial starting configuration. 

10 

5 

0 

-5 

-10 

-15 

-20 1 -- -- -- - -- -. --- -- - 
0 0.05 0.1 

Time (s) 

co-cl 
Cl -C2 
C2-C3 
C3-C4 

C4-C5 
C5-C6 
C6-C7 
C7-Tl 

0.15 0.2 

Figure 6.6 Intervertebral rotations at 8.5g impact 

Model predictions for head translations and rotations are provided in Figures 

6.7-6.9. From the graphs it was observed that the more severe the impact, the 

more the rotations and translations were. Figures 6.10-6.17 compare the 

maximum intervertebral rotations of the model for the four cases simulated 

with those reported for the spine specimens. For the upper three levels of the 

cervical spine, the graphs Ck 1g. 6. *1 U- -6.12-' ) show that although the upper levels 

are initially forced into flexion in the model, the levels of flexion experienced are 

slightly smaller than the experimental values, which may be an indication of the 

model to be slightly stiff in flexion in these areas. The levels of extension 

experienced in the later stages of impact show better agreement with the 

experimental data. Figures 6.13-6.17 show the maximum intervertebral 
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extension rotations experienced by the lower five levels of the spine model. 

From the results, it appears that generally level C6-C7 appears to be too stiff 

when compared 4LO experimentMI results. 
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Figure 6.7 Model head translations and rotations for 6.5 g case 
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Figure 6.8 Model head translations and rotations for 4.5 g case 
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Figure 6.9 Model head translations and rotations for 2.5 g case 
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Figure 6.10 Maximum intervertebral angles achieved for CO-Cl 
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Figure 6.11 Maximum intervertebral angles achieved for Cl-C2 
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Figure 6.12 Maximum intervertebral angles achieved for C2-C3 
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Figure 6.13 Maximum intervertebral angles achieved for C3-C4 
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Figure 6.14 Maximum intervertebral. angles achieved for C4-C5 
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Figure 6.15 Maximum intervertebral angles achieved for C5-C6 
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Figure 6.16 Maximum intervertebral angles achieved for C6-C7 
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Figure 6.17 Maximum intervertebral angles achieved for C7-T1 

6.3 Ligament Forces 

The forces developed in some of the ligaments of the cervical spine are provided ---0 jr 
in Figures 6.18-6.20 as examples. 

Alar 

1000 

750 

500 

250 

0 
0 50 100 150 200 

Time (ms) 

Figure 6.18 Alar ligament forces for 8.3 g impact 
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Apical 
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Figure 6.19 Apical ligament forces for 8.5 g impact 

fransverse Ligament 
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Figure 6.20 Transverse ligament forces for 8.5 g impact 

The anterior longitudinal ligaments at all levels experience rapid loading as the 

lower vertebrae are in extension. The posterior ligaments (PLL, FL and ISL) at 

all levels below C4 remained unloaded for the duration of the 200ms simulation. 
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The apical. ligaments became loaded as the two joints approach maximum 
flexion then unloaded as they move from flexion to extension. As the degree of 

cxtI-nSion the upperr joint-0 -JnCrC--OCd sign ant forces were devel'Oped 

in all the upper cervical spine ligaments except for the posterior membranes, 

which became totally unloaded. A peak in force was observed at around 150ms 

with the ALAR ligaments while large forces were also seen in the apical 

ligament. 

6.4 Intervertebral Disc Forces 

T, '- -I- - . - 

IL Ib dX*jU PUSSible to gau-ter dynairtic irtieveAebtall dibc l'u-i-CeS 11-orn the PVIB 

model. Figure 6.21 illustrates an example for the forces and moments 

experienced by the intervertebral discs during 2OOms impact. As was the case 

with the frontal impact, no forces were developed in lateral shear and moments 

were seen about the y-axis only. 
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Figure 6.21 Intervertebral disc forces for 8.5 g impact at C5-C6 level 
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6.5 Discussion 

This chapter shows that the MB model can also be used to simulate a 
ligamentous cervical spine undergoing whiplash trauma. The MB model devoid 

of muscles was reasonably validated against test results, while most of the 

simulation results and model predictions showed good agreement with 

experiments. The model successfully reproduced the characteristic motion of 

the head and neck when subjected to rear-end impact. The differential 

movement between the head and T1 caused initial flexion in the upper joints as 

the head translated backward, without rotation, relative to Tl. The formation of 
this 'Sý shaped curvature of the neck with flexion of the upper and extension of 
the lower joints is typical of 'whiplash' motion, which does not occur under 

normal physiological movements of the head. Following the development of the 

'S' curve, the neck then goes into extension at all levels as the head rotates 

rearward to a point of maximum extension. 
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CHAPTER 7 

Finite Element Models of the 

Intervertebral Discs 

This chapter covers the use of finite element method in order to investigate 

intervertebral discs under various loading conditions. Several FE models were 

gradually developed from simpler ones to more advanced models, 
incorporating different modelling parameters and techniques each time. Each 

model has the potential to serve a different purpose, yielding several 

advantages in its particular case, but often compromising several other 

parameters for the sake of simplicity and computational requirements. 

Also, this chapter presents a proposed approach utilizing multi-body and FE 

models in conjunction with each other and is thought to be highly novel as an 

application of it was not seen in spinal biomechanics in the literature. 

7.1 The Proposed Approach 

In order to make the most of separate MB and FE models, a hybrid approach is 

proposed to combine two modelling techniques. The approach is basically a 
one-way method, where firstly a rigorously validated highly detailed multi- 
body (MB) model of the spine is used to simulate a particular dynamic loading 

condition. The predictions of the MB model as a result of these simulations such 
as intervertebral disc loadings will be used as loading boundary conditions for 

the FE models of the individual elements of the human cervical spine, such as 
the intervertebral discs. As it is practically almost impossible to determine what 
these loadings on the discs in a dynamic impact situation are, the validated MB 
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model will act as a realistic and biofidelic source for determining these loadings 

on each and every one of the spinal elements, such as intervertebral discs, 

ligaments, or muscles. 

This approach not only helps to visualise the global and local kinematics and 

kinetics of the human spine via the MB model, but also avoids the modelling, 

validation and computational power complications of a possible complicated FE 

model of the whole human spine. 

7.2 First Model: A Disc Segment Investigation 

In order to investigate a disc segment, and the effects of various loading 

conditions over the intervertebral disc and the elements of the vertebra, a finite 

element model is developed by using the commercially available software, 
Marc/ Mentat 2000. The model is one quarter of a functional spine unit, namely 

two vertebrae and an intervertebral disc, having lateral and sagittal symmetry 

planes. 

The nonlinear model is a three-dimensional finite element model of the L3-L4 

spinal segment. All parts of the FSU model were modelled as 8 node brick 

elements. Only the cortical shell was modelled as 4 node shell elements. The 

intervertebral. disc mainly has two parts; nucleus and annulus fibrosus. In the 

model all annulus fibrosus are modelled as composite materials with a fibre 

orientation of 30' with respect to the horizontal axis. 

Material properties were taken from a similar study carried out by Lee et al. 
(2000) (Table 7.1). The loading is assumed to be an impulsive point load of 3000 

N. (Figure 7.1). 

Table 7.1 Material properties of the disc (Lee et al., 2000) 

Material Young's 
Modulus (MPa) Density (kg/mm3) Poissons 

Ratio Vold ratio Permeability 

Cortical Bone 10000 1.8313-06 0.25 - 
Cancellous Bone 100 1.0013-06 0.25 4 I. OE-10 
Endplate 10000 1.83E-06 0.25 4 1.011-14 
Annulus Matrix 0.8 1.2013-06 0.35 3 1.011-15 
Annulus Fibres 175 2.0013-06 - - - 
Nucleus 0.5 1.3613-06 0.35 6 I. OF, 13 
Fluid in spinal 

- 1. OOE-06 - - 
segment 
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3coo 

2000 

z 

L. 

Time 

Finite Element Models of the Intervertebral Discs 

Figure 7.1 The shape of the impulsive force (Lee et al., 2000) 

The FE model and the boundary conditions applied are presented in Figures 7.2 

-7.3. 
msc', 

Figure 7.2 The FE model 
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mse 

P*2 

Figure 7.3 The boundary conditions 

In order to have a global insight over the results of the FE analyses and to be 

able to load the FE model under various combined loading conditions, rather 

than working with this over simplified model, although satisfactory in some 

cases, there appeared a need for the whole simplistic model of the disc segment. 

The next step in FE modelling is the whole simplified model of the disc segment 

motion segment. 

7.3 Second Model: An FE Investigation on the Whole Disc 

Segment 

The first model has been extended to develop the whole simplffied model and 

then loaded with the impact loading mentioned in the previous section (Figure 

7.4). All the modelling parameters, such as material and geometric properties, 
have been kept constant except the symmetry boundary conditions illustrated in 

Figure 7.3, as the new model is a whole disc segment. The equivalent von Mises 

stress distributions of the disc under a compressive impact load of 3000 N for a 
duration of t=5 ms have been given in Figure 7.5. 
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k, 
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Iyx 

Figure 7.4 The whole FE model of the FSU 

::: 

t=O ms 

t=3 ms 

t=l ms 

t=4 ms 

t=2 ms 

t=5 ms 

Figure 7.5 The equivalent von Mises stress distributions of the disc under a 
compressive impact load of 3000 N for a duration of t=5 ms 
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7.4 Third Model: An Improved FE Model of the Whole Disc 

Segment 

This improved model (Figure 7.6) is based on the 2. d model; however, the 

foRowing important changes were carried out. 

ýo The geometry of the model and the necessary dimensions are more 

realistic when compared to the 2nd whole FE model. 

)ý, The viscoelastic depiction of the intervertebral disc (Figure 7.7) has been 

improved with new detailed information in the literature (Wang et al., 

2000) to achieve better representation of the disc. 

)0, The ligaments have been modelled as links (Figure 7.8) and integrated to 

the model by connecting the links between specific nodes, representing 

the actual insertion points for the ligaments. 

-1 

Figure 7.6 The improved model of L2-L3 disc segment 
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Figure 7.7 The disc, composed of nucleus and annulus 

Figure 7.8 The ligaments as links 

The nonlinear model is a three-dimensional finite element model of the L2-L3 

spinal segment. All parts of the disc segment, which are cancellous core, end 

plate, annulus fibrosus, and nucleus pulposus were modelled as 8 node brick 

elements, except the cortical shell surrounding the cancellous core, which was 

modelled as 4 node shell elements, as in the previous models. The material 

properties of the parts of the disc segment except the disc were taken from the 

literature (Wang et al., 2000) (Table 7.2). In the FE model, all annulus fibrosus 

were modelled with a fibre orientation of 300 with respect to the horizontal axis. 
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The viscoelastic material properties of the disc (Table 7.3) were taken from the 

literature (Wang et al., 2000). Also, the ligaments as ALL and PLL were 

integrated into the FE model as links with viscoelastic properties (Pintar et al., 

1992). 

Table 7.2 The material properties of the parts of the FSU 

Component Young's Modulus, E (MPa) Poisson's Ratio, v 

Cortical Shell 12000 0.30 

Canceflous Core 100 0.20 

Inferior Process 3500 0.25 

Superior Process 7000 0.25 

Endplate 24 0.40 

Table 7.3 Material Constants of Annulus and Nucleus (Wang et al., 2000) 

Relaxation of Shear Relaxation 
Modulus 

Bulk Relaxation 
Modulus 

Relaxation Time 
Constant (sec) 

Annulus Matrix, gi = 0.399 ki = 0.399 x, - 3.45 
E=8.0 MPa, o=0.45 g, -= 

0.000 k2= 0.300 T 2= 100 

g3 = 0.108 k3 = 0.149 T3 = 1000 

g4 = 0.108 k4 = 0.150 T4 = 5000 

Nucleus Pulposus, g, = 0.638 ki = 0.0 -[1 - 0.141 
E=2.0 MPa, o=0.49 g2= 0.156 k2= 0.0 T 2= 2.21 

p=0.120 k3 = 0.0 13 = 39.9 
g4 0.0383 k4 = 0.0 T4= 266 
g5 0.000 k5 = 0.0 -15 = 500 

The finite element model was validated by comparing the results of the model 

with the results of a L2-L3 segment study in the literature (Shirazi-Adl, A., and 
Drouin, G., 1988). The intradiscal pressure results of the model in this study 

appeared to be 0.82 and 1.10 MPa for 5 and 10 Nm flexion moments under a 
1000 N compression preload, respectively, while the model in the literature 

yielded approximately 0.88 and 1.05 MPa, respectively. The results indicate a 

good agreement for flexion and compression loadings. 

The novel approach was utilised for two different loading cases: 10 Nm flexion 

moment and 2000 N compressive force, both applied at Ll level for a duration 

of 0.010 s. The vertical forces of the multi-body model at L2-13 level were 
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computed from the initial MB model of the lumbar spine (Fig. 7.9) and used as 

boundary conditions for the FE model of the FSU. 
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Figure 7.9 The force boundary conditions for the FE model 

The maximum equivalent von Mises stress and intradiscal pressure results of 

the FE model are presented in Figures 7.10 and 7.11, respectively. Also, the 

maximum equivalent von Mises stress distributions at t=0.010 s have been 

given in Figure 7.12. The results show that the stresses created in the annulus 

and the nucleus under the compressive load of 2000 N are higher than the 

stresses created by the axial force component resulting from 10 Nm flexion 

moment. 
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3 

Figure 7.11 Maximum intradiscal pressure 

(a) (b) 

(c) 

Figure 7.12 (a) Disc before loading, (b) the maximum equivalent von Mises 
stress distribution at t=0.010 s under 10 Nm moment, and (c) the maximum 

equivalent von Mises stress distribution at t=0.010 s under 2000 N compressive 
force. 
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7.5 Fourth Model: FE Model of L2-L3 Level FSU 

A detailed biofidehc 3-D FE model of the lumbar motion segment L2-L3 is 

developed, reflecting the most characteristic anatomical dimensions of the 

whole vertebral bodies and the disc in between, which helps to analyse the 

effect of geometrical features on the behaviour of the motion segment under 

several loading conditions (Figure 7.13). A further strength of the developed 

model hes in incorporating the non-linear viscoelastic properties of the 

intervertebral disc and the ligaments, involving the related time-dependant 

characteristics, which gives the model the flexibility to more realistically 

simulate not only static but also dynamic and complex loading conditions. 
Moreover, vertebral bodies and the endplates are modelled as deformable 

entities, rather than being simplified as rigid bodies, thus, possessing the related 

deformations on the structure. Commercial FE software, Marc'lMentat, is used to 

model and analyse the functional spine unit (FSU), comprising two vertebrae 

interconnected, by an intervertebral disc, and the related ligaments. 

-a- 

Iiguii 

bric 

, enebral 
d vý, 

--l 

Figure 7.13 The FE model of L2-L3 motion segment 

The intervertebral disc mainly has two parts: nucleus and annulus fibrosus. In 

the model, all annulus fibrosus are modelled as composite materials 

representing the amorphous matrix and the collagenous fibres, having 30' fibre 

angle. The fibres are directed in the same direction (30') in a given band of 
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annulus but in opposite directions in two adjacent bands. The viscoelastic 

properties of the disc employed in the modelling are presented in Table 7.4. 

Table 7.4 Material constants of annulus and nucleus using Prony series (source: 
Lee et al., 2000, and Wang et al., 2000) 

Shear Relaxation Bulk Relaxation Relaxation Time Constant 
Relaxation of 

Modulus Modulus (s) 

Annulus Matrix g, = 0.399 ki = 0.399 'r, = 3.45 

E=8.0 MPa 92 = 0-000 k2 = 0,300 T2 = 100 

v=0.35 93 = 0.361 k3 ý 0.149 T3 = 1000 

94 = 0.108 k4 = 0.150 T4 = 5000 

Nucleus Pulposus g, = 0.638 k, = 0.0 Tj = 0.141 

E=0.5 MPa g2 = 0.156 k2 = 0-0 T2 = 2.21 

v=0.49 g3 = 0.120 k3 = 0-0 T3 = 39.9 

g4 = 0.0383 k4 ý 0-0 T4 = 266 

g5 =0 k5 = 0.0 TS = 500 

All parts of the FSU model are modelled as 8 node brick elements. Only the 

cortical shell is modelled as 4 node shell elements. The material properties of the 

remaining parts such as the endplates and cortical shell are adapted from the 

study of Wang et al., 2000. Also, ligament groups were integrated into the FE 

model as links with viscoelastic properties, which are obtained from the study 

of Pintar et al, 1992. 

The proposed 3-D FE model is validated by comparing the results of the model 

with the results of the L2-L3 segment study by Shirazi-Adl and Drouin (1988). 

The maximum intradiscal pressure results of the model in this study appeared 

to be 0.79 and 0.98 MPa for 5 and 10 Nm flexion moments under a 1000 N 

compression loading, respectively, while the model in the literature yielded 

approximately 0.88 and 1.05 MPa, respectively. The results indicate a good 

agreement for flexion and compression loadings. 

The model is then loaded with two different loadings; a compressive load of 
2000 N, and a combined loading of 15 Nm flexion moment and 1000 N 

compressive force. The average equivalent von Mises stress values in the 

annulus appear to be around 25 MPa under the compressive load of 2000 N, 

while the stress values are around 35 MPa under the combined loading of 15 

Nm flexion moment and 1000 N compressive force. As a result, the average 
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equivalent von Nfises stress values in the range of 20-35 MPa for both loading 

conditions, which show good agreement with the stress values ranging between 

0-35 M[Pa in the study of Wang et al. (2000). The equivalent von Mises stress 
distributions within the intervertebral disc in both loading scenarios are 

presented in Figure 7.14. 

This particular model provides more detailed and realistic results about the 

exact distribution of stresses and strains within the segments of the lumbar 

spine, when compared to the simplified models in the literature. Therefore, the 

proposed model more realistically simulates the behaviour of a FSU, 

incorporating nonlinearity due to viscoelasticity. 

(a) 

(b) 

Figure 7.14 The equivalent von Mises stress distributions within the disc under 
(a) the compressive load of 2000 N, and (b) the the combined loading of 15 Nm 

flexion moment and 1000 N compressive force. 
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7.6 Fifth Model: Viscoelastic FE Model of Whole Cervical 

Spine Discs 

In order to investigate the effects of the dynamic impact loading on the discs, a 
3-D biofidelic FE model of the 6 discs (C23, C34, C45, C56, C67, and CM) in the 

cervical spine has been developed by using commercial software, 
MSC. Marc/Mentat (Figure 7.15). The dimensions, positions and the orientations 

of the discs were taken from the quantitative anatomy of the cervical spine in 

the literature (Panjabi et al., 1992, Nissan and Gilad, 1984) Intervertebral discs 

were modelled as 8 node brick elements, the material properties of which were 

adapted from literature (Yang et al., 1998, Yoganandan et al., 2001, and Teo and 
Ng, 2001) (Table 7.5). Each disc model comprises 1815 elements and 938 nodes. 
The intervertebral disc is mainly composed of two parts; nucleus and annulus 
fibrosus. In the FE model, all annulus fibrosus bands were modelled with a fibre 

orientation of 30' with respect to the lateral plane. The fibres are in opposite 

alternating directions in two adjacent bands. 

I 

Figure 7.15 The FE model of the discs 
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Table 7.5 Material Properties of the discs 

Component Young's Modulus, E (MPa) Poisson's Ratio, v 
Cortical Shell 12000 0.30 

Cancellous Core 100 0.20 

Nucleus Pulposus 3.4 0.49 

Annulus Matrix 4.2 0.45 

Annulus Fibres 450 0.30 

Endplate 600 0.30 

The FE model was validated against published experimental measurements. 

Firstly, C4-C6 model was built in order to comply with the experimental setup. 

Therefore, for this purpose only, vertebral bodies were built with the endplates, 

which surround the discs C45 and C56. Table 7.5 illustrates the material 

properties of these elements. Then, the model was subjected to two different 

loadings; (a) 1 nun axial compression and (b) 1600 Nmm flexion and extension 

together with a 73.6 N axial compressive preload. The results from the 1 mm 

axial compression loading are given in Figure 7.16. For the second loading case, 

the FE model yielded 6.230 for flexion and 6.600 for extension moments, while 

the experimental results are 7. OT and 4.80' with 2.23' and 1.41' standard 

deviations, respectively. As can be seen from the results, a good agreement has 

been achieved with experimental data. 

1200 

1000 

w Experimental Values (Shea et al, 1991) 
800 

A Authors' FE Model 

!a 600 - 11 
01 
IL 

400 

200 

0 a- 
0 0.2 0.4 0.6 0.8 

Comprossion (mm) 

Figure 7.16 Validation of the FE disc 
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The complete multi-body head and neck model was used to simulate 15g frontal 

and 8.5g rear-end impacts with the resulting motion compared against response 

corridors derived from sled acceleration tests using human volunteers (van 

Lopik, 2004). The intervertebral. disc loads from the 15g frontal and 8.5g rear- 

end impact simulations for the first 200 ms period (Figure 7.17) are used as force 

boundary conditions for the FE model of the discs. The disc forces F,, and F. are 

shown on the left axis and moment My on the right axis. The predicted results of 

maximum von Mises stresses in the annulus and the intradiscal pressure in the 

nucleus of each disc of the FE model are depicted in Figure 7.18. The intradiscal 

pressures occurring in the nuclei of the discs have almost the same pattern with 
the von Mises stress distributions with respect to time increments as in Figure 5, 

but possessing less magnitudes; a max of 0.5 MPa for the frontal and a max of 
0.1 MPa for the rear-end case. 

C2-0 

C4. cs 

CA-cr 

- I.. ] 

C3-C4 

ccs 

- 1-1 
CUTI 

C2 C3 

C4 C6 

co-cy 

C3 C4 

C6. cg 

T-J-) 

CT-Ti 

Figure 7.17 Intervertebral disc loadings: (a) frontal impact, and (b) rear-end 
impact (van Lopik, 2004) 
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Figure 7.18 FE results: (a) Max. von Mises stresses in the annulus for frontal 
impact with multi-body head and neck response illustration, and (b) max. von 

Mises stresses in the annulus for rear-end impact with multi-body head and 
neck response illustration 
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The von Nfises stress distribution in the C56 intervertebral disc for the last stage 

of frontal impact at 200 ms can be seen in Figure 7.19. 

Figure 7.19 Von Mises stress distribution of C56 disc at 200 ms for frontal impact 

The results from the FE models show that the responses of the annulus and the 

nucleus are similar but different in magnitude due to different material 

properties. The annulus possesses much higher stresses when compared to the 

nucleus in both loading cases. In frontal impact case, the stresses reach a peak 

between 80 ms and 120 ms and the highest peak at about 180 ms. This is due to 

the high concentration of the loads, especially axial force and the moment, at 

these intervals. In rear impact case, the peaks occur about 120-140 ms, where the 

head and neck almost reach their most extended posture. 

7.7 Discussion 

As can be seen from all models, FE technique is a very powerful option to 

visualise structural deformations and internal loadings. Each model explained 

possesses different properties and can be employed in a particular analysis as 
long as the model satisfies the conditions reasonably. 

This chapter also shows that the proposed novel approach that combines the 

multi-body and FE models have the potential to provide a powerful, cost- 

effective and versatile platform to investigate the kinetics and the kinematics of 
the whole cervical spine and its components and the response of the 

intervertebral discs under complex dynamic loading histories. 
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Conclusions 

In this thesis, a biofidelic multi-body model of the whole human spine with 
highly advanced material property definitions such as viscoelastic behaviour, 

active-passive muscles, and geometric nonlinearities, and finite element models 

of the intervertebral discs were developed and validated in order to have a 
better understanding of injury mechanisms under impact loading conditions. 
Both models were combined via a novel approach, where the predictions of the 

MB model as a result of these simulations such as intervertebral disc loadings 

were used as loading boundary conditions for the FE models of the 
intervertebral discs. 

The proposed novel hybrid approach, which combined the multi-body and FE 

models, showed the potential to provide a powerful, cost-effective and versatile 

platform to investigate the kinetics and the kinematics of the whole spine and its 

components and the response of the intervertebral discs under complex 
dynamic loading histories. This method not only provided a detailed loading 

history of the impact on the spinal parts via the validated MB model but also 
supplied information via the validated FE models on how the intervertebral. 
discs were affected during the loading. 

8.1 Assessment of the Work 

One of the novelties and advanced features of the MB models was the 
implementation of the active-passive muscles. The capability of combining 

multi-body software visualNastran with advanced mathematical package of 
Matlab/Simulink provided a sophisticated medium to create more biofidehc 
biomechanical models with advanced muscle properties. 
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The multi-body model of the lumbar spine included advanced features such as 

material property and geometric nonfinearities and viscoelastic material 

properties. One of its strengths was the implementation of Virtual Muscle as an 

external software to control muscles actively and passively. However, the main 

shortcoming of the model was the solid body definitions. The vertebrae were 

modelled by using quantitative anatomy data and therefore reflected average 

values of some essential dimensions. This led to a relatively poor definition of 

contact surfaces as well as facet joints. Also, an assumed approximate definition 

of intervertebral disc damping coefficient appeared to be another shortcoming, 

which had a significant effect on the kinematic outputs. As another weakness, 

the muscle fascicles were modelled as one actuator each for the sake of 

simplicity, which prevented the model from a more realistic description of 

muscle curving. Due to the paucity of experimental results in the literature 

regarding lumbar spine dynamics, validation was carried out with small 

amount of data and good agreements were achieved. The model was validated 
by comparing the flexion moment results, as rotations, and the intradiscal 

pressure occurred within the disc after the loadings with a previously validated 

model in the literature. This model constituted the basis for developing the 

more advanced, detailed, and biofidelic MB model of the whole human spine. 

In the MB model of the whole human spine, as a very important improvement to 

the previous model, the solid bodies comprising the spinal and other skeletal 
bony elements were no more modelled by using quantitative anatomy data but 

imported from a Cr scanned cadaver human spine study. Due to the technique 

used, it was highly realistic, and helped define more realistic contact surfaces 

within the MB model. The intervertebral discs and ligaments were modelled 

with highly realistic material properties, incorporating nonlinearities and 

viscoelasticity. All spinal intervertebral discs and all ligaments associated with 
the spinal column were introduced. The other skeletal parts such as the ribs, 

clavicles, and scapulae played a very important role especially in attaching the 
ligaments and muscles into their realistic locations. 

Another strength of the model lay in the modelling and defh-dng the muscles. 
The external software Virtual Muscle was employed again to develop very 
detailed and realistic muscle behaviour, both active and passive. The 
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morphological and mechanical properties of all muscle groups were 
incorporated by using the data available in the literature. 

Validation attempts as motion segment responses in the cervical spine, MB 

model responses in the cervical spine for frontal and lateral impacts, vertical 
loading for cervical spine, and MB model responses of thoracic and lumbar 

regions in rear-end impact were carried out in order to validate the wholee human 

spine MB model onu-d-directionally. As there are several experimental studies 

regarding the impact behaviour of the cervical spine, most of the validation 

attempts were conducted on the responses of the cervical spine. The static 
loading results of the cervical spine seemed to be in good agreement with the 

experimental studies such as Moroney's data. In dynamic validation attempts 
against NBDL data, most of the curves lie within the response corridors of the 

experiments. The tendencies of the output curves appear to be highly correct 

when compared to test results. The model was also validated against vertical 
loading. The model and simulation parameters were fairly simple as few data 

was present in the literature. However, relatively good agreements were 

achieved in terms of head accelerations. Also, for validating the thoracolumbar 

region, the graphs show that the model predicted the experimental values from 

reasonable to good agreement. 

Similar to the previous lumbar spine MB model, one shortcoming rose from the 

paucity of data regarding intervertebral disc damping coefficients. Information 

regarding the other material properties of the intervertebral discs was found to 
be lacldng in the literature; therefore linear stiffness characteristics derived from 

static testing of isolated disc segments were used to define the response of the 
discs in most directions while non-linear load curves derived from experiments 
on intact motion segments were employed to define the response for flexion and 
extension. 

The developed MB model of the whole human spine offered more advanced 
and realistic features such as active-passive muscle modelling and non-linear 

viscoelastic material properties when compared to other existing whole spine 
models. The two similar whole human spine MB models of De Zee et al. (2003) 

and Ishikawa et al. (2005) were built in a manner close to the techniques 
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employed in this study. However, De Zee model was an incomplete spine 

model in terms of only including all lumbar muscle groups and it was solely 

constructed around lumbar region. Ishikawa et al. musculoskeletal dynamic 

multi-body spine model was developed in order to perform Functional 

Electrical Stimulation (FES) but only few details were disclosed about how the 

components of the spine were modelled, and in particular, how muscles were 
developed and governed to possess active behaviour. 

As the second part of the proposed approach, several FE models were 
developed from simpler ones to more advanced models, incorporating different 

modeling parameters and techniques each time. Each model demonstrated a 

potential to serve for a different purpose, yielding several advantages in its 

particular case, but often compromising several other parameters for the sake of 

simplicity and computational requirements. Being the main responsible element 
for supporting the forces and moments acting on the spine, intervertebral discs 

were chosen as elements for individual FE models. 

Different material properties were introduced into the FE models to obtain 

accurate results. One of the strengths of the 4th FE model was in incorporating 

the non-linear viscoelastic properties of the intervertebral disc and the 

ligaments, involving the related time-dependant characteristics, which gave the 

model the flexibility to more realistically simulate not only static but also 
dynamic and complex loading conditions. Moreover, vertebral bodies and the 

endplates were modelled as deformable entities, rather than being simplified as 

rigid bodies, thus, possessing the related deformations on the structure. This 

particular model provided more detailed and realistic results about the exact 
distribution of stresses and strains within the segments of the lumbar spine, 

when compared to the simplified models in the literature. 

The 5th FE model of the cervical spine discs demonstrated the very first 

application of the proposed novel approach, where dynamic loading history 

predictions from the MB model were used to create realistic loading boundary 

conditions for the FE model. The results from the FE models showed that the 

responses of the annulus and the nucleus are similar but different in magnitude 
due to different material properties. The annulus possessed much higher 
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stresses when compared to the nucleus in both loading cases. In frontal impact 

case, the stresses reached a peak between 80 ms and 120 ms and the highest 

peak at about 180 ms. This was probably due to the high concentration of the 

loads, especially axial force and the moment, at these intervals. In rear impact 

case, the peaks occured about 120-140 ms, where the head and neck almost 

reached their most extended posture. 

The FE models were validated by using different set of data. The 3rd and the 4th 

finite element models were validated by comparing the results of the model 

with the results of a L2-L3 segment study in the literature (Shirazi-Adl, A, and 

Drouin, G., 1988). The results indicated a good agreement for flexion and 

compression loadings. The 51h FE model was also validated against published 

experimental measurements. Firstly, C4-C6 model was built in order to comply 

with the experimental setup. Therefore, for this purpose or-dy, vertebral bodies 

were built with the endplates, which surround the discs C45 and C56. Then, the 

model was subjected to two different loadings; (a) 1 mm axial compression and 

(b) 1600 Nmm flexion and extension together with a 73.6 N axial compressive 

preload. Similarly, good agreements were achieved with experimental data. 

8.2 Final Conclusions 

The main novelty of the thesis and its contribution to knowledge was the multi- 
body model of the whole human spine itself. This model was built to be one of 

the most sophisticated MB models in the literature, especially with its highly 

advanced material property definitions such as viscoelastic behaviour, active- 

passive muscles, and geometric nonlinearities. On the other hand, considering 

the size and the detail of the model, there had to be several assumptions and 

simplifications as in most of the engineering and computational models, 

especially due to the lack of material property data such as damping 

characteristics of the intervertebral discs. 

The analysis of frontal and lateral impacts revealed that the inclusion of active 

muscle behaviour is essential in predicting the head-neck response to impact. In 

both impacts the developed muscle forces limit the movement between the 

joints of the upper cervical spine by significantly reducing the degree of rotation 
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of the head in the plane of impact. In lateral impact, the muscle tensioning also 

showed a strong influence on the rotation of the lower two joints of the cervical 

spine. With passive properties the response of the head-neck model is similar to 

the response of cadaveric specimens where the influence of active musculature 
is missing. The results from the rear-end simulations demonstrated the role of 

active musculature to have little affect on the resulting head and neck 
kinematics on contrary to the findings for frontal and lateral impacts. 

In whiplash simulation chapter, the MB model was used to simulate a 
ligamentous cervical spine undergoing whiplash trauma. The MB model devoid 

of muscles was reasonably validated against test results, while most of the 

simulation results and model predictions showed good agreement with 

experiments. The model successfully reproduced the characteristic motion of 
the head and neck when subjected to rear-end impact. 

The proposed novel approach, which combined the multi-body and FE models, 

exhibited the potential to provide a powerful, cost-effective and versatile 

platform to investigate the kinetics and the kinematics of the whole spine and its 

components and the response of the intervertebral discs under complex 
dynamic loading histories. 
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Suggestions for Further Work 

The current multi-body model of the whole human spine incorporates many 

advanced features, however there is a huge amount of possibflities in order to 

develop it further. 

In terms of muscle modelling, the muscles in the visual Nastran medium, 

namely the linear actuator elements can be divided into series of elements in 

order to visualise muscle bending/curving better. An improved muscle 
definition will add additional strength to the model towards biofidelity, as the 

muscle forces can be transferred to the solid bodies in more correct and realistic 
directions. 

Muscle wrapping is another important phenomenon, where all the muscle 

groups are wrapping around each other as physical entities. In the MB model, 
due to the software limitations and preferences, the linear actuators are not 

physical entities. Therefore, muscle wrapping may be considered to probably 
have a more biofidelic model. 

Further measurements of cervical spine muscle morphometry should be 

conducted to be able to accurately define the properties of all neck muscles. 
Also the level of activation and onset times of all muscle groups in response to 
impacts need to be investigated for more realistic simulation purposes. 

The mass of the soft tissues such as organs were incorporated into the model in 

a simple way by increasing the density of the current solid bodies. Although it 
is thought that the additional effects for a better mass distribution may be 

minimal, this may be considered for a more realistic multi-body model. 
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Further experimental work is needed to determine the intervertebral. disc 

properties in response to static and dynamic conditions in all directions of 
loading for each level of the cervical spine. The dynamic behaviour of all 

cervical spine ligaments should also be investigated. 

Another important issue is validation. More experimental data will not only 
help improve the model parameters, but also provide confidence through an 

omni-directional model to be employed in a wide variety of tasks. 

The models ability to predict the forces developed in the soft-tissue 

components makes it suitable for investigating injury mechanisms and together 

with experimental research suitable for establishing injury thresholds. Once 

further experimental work is established to determine the tolerance limits of all 
the soft-tissues, these can be employed to investigate the possibility of injury 

occurring in simulated crash scenarios. 

Finally, this MB model may well be a step towards a human body modelling, 
the spine of which may be constituted with this model. 
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Appendix A: Modelling/Material Property Data for Spinal 

Elements 

Table A. 1 The failure strength of spinal ligaments (White and Panjabi, 1990) 

Load (NJ Deformation famm) Stress (SEP&I Strain (%) 

Average Range Average Range Average Range Average RanKe 

VPPef Cervical 
CO-CI 

Ant, atlantaucelp. memb. 233 18.9 
Isast. at lantrimcip. memb. 83 18.1 

CI-C2 
ALL 281 112-3 
Allanto-&xial membrane 113 8.7 
(3. 157 11.4 
Transvwse figarnent 354 170-700 

CD-C2 
Apledt 214 It's 
Alar 285 215-33,141.11 
%lort. C"Iclato 436 25.2 
Toictorial membrane 78 11.2 

Lower Cervical 
ALL 111.5 47-176 3.05 4.2-13.7 
PLL 74.5 47-102 8.4 3.4-9.4 
LF IMS 36-221 6.3 3.7-12.9 
CL 204 144-254 8.4 6.6-10 
ISL 3S. 3 26-45 7.35 5.3-9.2 
M 

Tharack 
ALL 293.3 123-468 I0.2s 6.3-14.2 
PLL 106 74-138 5.25 3.2-7.3 
LF 200 135-ZGS 8.65 6.3-11 
CL 168 63-273 6.75 3.9-9.6 
ISL 75. S 31-120 3.2s 3.8-6.7 
SSL 3194 1101438 114.11 7.2-21 

Lumbar 
ALL 450 390-310 15.2 7-20 11.6 2.4-21 36.5 15-57, 
PLL 324 264-384 5.1 41-7.0 11.3 2.9-20 26.0 8-44 
LF 285 230-340 1V 12.0-14.5 6.7 2.4-15 26.0 10-46 
CL 222 160-284 11.3 g. a-12.6 7A 7.6 12.0 IZ. 0 
ISL 12S 120-130 13.0 7.4-17.8 3.2 1.5-4.6 13.0 13.0 
S. S L ISO 100-200 z$-9 2.1.1-28.1 5.4 2.0-8.7 32.3 26-39 

ALL- antafkw Innuitudinal lipment CL - capsular lipment 
PLL a pnewriar lonshodind lipauml 151. - laterspluous figammi 

LF - ligunentuat falvura SSL - suprespineus hpa"t 

tfMt4 hOMONAWd. GL 41.; " DMIOL. at &U" Coat at Mvilebust. at al.. '" K&cbemsen said Ev&ns. "4 Ps*bi. of J.. '" sad TI. KauLs") 
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Table A. 2 Quantitative anatomy of vertebrae from T1 to T12 (White and Panjabi, 
1990) 

71 TZ T3 T4 T5-- T6 T7 Te To TIO T11 T32 

V-11V (Mraj 24.5 24.9 24.6 245 24.2 26.2 27.8 29.3 306 31.9 34.2 : 0.4 
L7ED (MM) 16.5 19.6 22.7 23-S 24.3 26.0 27.4 21.9 29.3 303 31.9 U-8 
L-r%v (mm) 27.8 211.4 25.9 26.0 27.0 . 16.2 29.1 30. S 33.0 33.4 39.1 42.1 
LED (wil 19.7 2116 23.3 24.3 25.8 26.9 28-S 29.4 3 111 31.1. 31.8 33.4 
VSHP (min) 14.1 1$. 6 15.7 1612 Irs-2 17.4 18.2 t87 11.3 20.2 211: 1 22.7 

MA (mm! 3w. 333. 373. 381. 476. 483. $47. 1.03. b7$. 7Z7. 842. 954. 
Lr-, % Imml 31-6. 398. 412. 444. 40S. 352. "3. b". 7SS. 034. 943. 11124. 
UMI (dWeesj 0.8 1.7 2.4 i's 2.1 2.1 1.6 0.1 0.3 2.7 2.2 
LEIt (drove"I 3.0 in 21 2,0 1.8 2.0 2.3 1.2 1.2 22 1.8 2.0 

Say lMlTtl 21.8 14.3 M3 1-,. 0 37.1 17.3 17.3 17.7 1 "A 15.2 19.4 22.2 
XD (mm) 16.4 1.5.3 ISM 1612 Ifi, 3 16.5 16.1 13.9 15.7 15.5 16.0 IS-I 
SCA 213. 200. ISO. 192. 20t. 206. to4j. M. 2M 202. 220. 280. 

My 5.2 8.4 7.0 3.3 6.2 6.0 6.3 6.7 7.6 8.3 8.6 8.8 
poli (Mm) 9.3 11.3 11.8 11.0 11.2 1 2. U 13.5 12.5 13.9 14.7 16.9 16's 
MA I. -UMI 52.2 UN3 38.1 32.5 31.6 3.5 36.8 43.9 S21.3 64.8 $8.4 90.2 
MIS (des-1 . 18.1 U. 9 22.3 21.5 1.0.2 19.4 23.4 22.3 19.3 14.4 12.0 8.0 
? Bit (dagrees) 4-b 16.3 XA 6.4 6.6 7.0 10.9 12.1, 11.3 6.8 V. 9 4.8 

SPL (min) 50.1 5.1.1 31.7 111.1 U. 1 518 54.5 $2.9 $1.3 49.3 4SA 47.4 

T? %V tin-) 73-3 69.4 60.8 36V 61.1 61.3 60.4 $9.9 51.3 SNA 524 46.41 
&n-. Tho I. rA two k-tiers lodur-Als allatawk p 4"; Ow thad Imov Wow% d&meastoa. Figute I-I it dqAt is it. # anatomy vI a "nsobra, in &ijal 
VE , -uplwqrad-plolo W 16idth 
U. - losve cnlýplste A aft-% 
IV- pe-dide V-depils 
"P - pluous plq"ý If height 
Q., - *p, RA emuil I intlinal loll 
Tr Imnwraw Vim "a I walloverw ple"o 
1`1 Pat, Interullcularil p post*ner 

%11 wrtArid body 

ýSýi upon 441& Isom Hemy. at at. #' Ccalersit. #I 4.4'and PAOIAL c4 al "'I 

Table A. 3 Rotation ranges for the middle and lower cervical spine (White and 
Panjabi, 1990) 

rAIIIIIiIII(Id FICXICIVEXIC0400 One Side Lateral Doodisil not Midu Axial Rotation 
I tt-oxk rolatifift) WWI faillationl (Y-exis rotation) 

limit's 0 H. 411viii Kepwountolivu Umits rif Rangn WýPfuwnlallvft WMIIX lot Railpos KL'Pfnvntdt. %. 
hitermince jilo-CM41 Angle Idpwriml ld-V. LVI) Anrje Idwimral Idi-greml Anulot (drqrt-- 

Aliddip 
C2-3 S-16 141 11-20 to 
C3-4 7-26 is 9-ts It 3-10 
C4-. % IA-29 "Q 1-12 7 

lowur 

Ci-h 13-20 2n a-lK 2-12 7 
(If, - 11 6-20 1,, 0-17 2-10 6 

r,, -Tt 4-7 9 0-17 4 m-7 2 
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Table AA Nomenclature for a typical lumbar vertebra (Panjabi et al., 1992) 

Mnemonics Dimension Referen ce 
EPWu End-Plate Width, Upper 
EPWI End-Plate Width, Lower 
TPW Transverse Process Width 
SCW Spinal Canal Width Panjabi et al. (1992) 

SCD Spinal Canal Depth 
PA Pedicle Angle 
PW Pedicle Width 
PH Pedicle Height 
IFWu Interfacet Width, Upper 
IFWl Interfacet Width, Lower Panjabi et al. (1993) 
FW Facet Width 
FH Facet Height 

Table A. 5 Lumbar vertebral body dimensions (Panjabi et al., 1992) 

L07W Vdflablal LeVC4 

L4 ES 
Lq*af 

EPI)u 
EFYiu 34.1 1134 34 6 1.10 152 m 1.10 3s 5 1.0 es 34 7 11.11 
Epol 412 *I ol 4ze * 0.74 44.1 t0 83 46 fit (0) 1120 41.3t (LI) 2: 1.20 
EPVil 35 3±1.27 349 tO74 34 8± 124 33.9 t 0.81 332 t: 0 92 
Vella 43.3 ;t0.7a 4S. S :t1 10 49,0: t 1.24 49 St ILI) 1 138 490 (LII tI JI 
EP'Olu. lEP[X 

23 8 :t 103 24.3 :k0 95 2361 I. IC 24 1 -± 1 10 2291-095 
j E; "-%q/EPOI 1.21 1 125 131 136 

*Oacq Afeaj 
1.23 In 138 1.46 149 

E; 'Au 
EPA, 105? i 63 78 1 lu t 61.84 IIA :t bb 19 1230 tW 41 1231 * te 48 

1117 ± 44 00 1197 * ! 1.41 129D 64 35 1273 ± 5172 1213 t 59 43 
Cra 14) Eft, 

Diu 2.7 t: 0 77 3.5 ± 1.5 17 043 47: t 11 22 ± 054 
4.0 t0 S4 2.1 ±04 2.7 tII Z?: ta6o Ie :t OA2 

Table A. 6 Lumbar spinal canal dimensions (Panjabi et al., 1992) 

V L2 

Lumbai Veffewa) Le,, t4 

0 Li 

Lrioar donensiGns (rrwn) 
MY 237 1012* Z38± 0 ?1 24 3=C, 04 254 ± 049 2f 1 oaa 
SCD 12 At0 61 18.2 t 0.53 1?, S t0 63 184 *0 71 19 " f. t) 4q sCVj/= 1.15 ISI 130 1 1.7 t. 38 

class-soclional areal (nim) 
. SCA 3201 MIC 28111538 280 t 14 64 290 * is 17 IUJ 

-Wý 
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Table A. 7 Lumbar pedide dimesions (Panjabi et al., 1992) 

Ll 14 Li 

L rear-' mu-ltfs f. r. r. 1 
PD-I , SCIC9151 780 57 1021-067 13 410 -L2) =0 7ý4 I? :' (LI L. t, 
F L) 9T 11.9 0 31 ISO :z OS3 14.2+064 15 1= 051 196- C-74 
PVO. l 92 "M el 711.78 W. 1 0.5,1 1171M _3j±O-S pcoofl 15 8 O. TZ 149 1 osl W60 ri 152 ;tC 46 113.5 t (LI -L4) v^ 
PDHr. lPDVl, 'r 2 DO 191 35 1 17 1 .0 PDHViV. 1i 172 1 11 - 103 1.011 

CIOSS-Sectknal areas (rr. m?,, 
PDAr ZE4 t it .2 813 1 AR ým S291171 1 Z2 8t6b 14-19140-0: LSf- 
PDAI ia s 1174 836 tae; 553 t 917 1? 23 7 53 15a ? 'Ml-Ll. I- IIA'. 

iS 02 375 199 t- 231 18 41 cla I 
MIT 22 OV OP 2 I. Ce 4V tI CC, 5; iI 
PDIý! 124 tIV 26.2 17 1 E6 1- 7 12 16 232* (Ll-'-2 =2 51 
ppill 29 t 07- :12 0A.. 24 = 0J. ' 30t11.1 57r 11; 

Table AS Geometric and morphologic features of the lumbar muscles (Bogduk 
et al., 1992) 

Ar4o 
PGA 
Idegreesl 

Be 
Imml 

PO 
Imm) 

PC. SA 
Jim) so 

F, " INI 

MIS -7 111 40 14 39 SK 
iti -8 6 145 42 17 41.6K 
iT1 -2 22.2 171 36 9 35.7K 

MIC 14 27.7 190 60 41 59,4K 
a 20.6 go -19 13 1.119 

mW -1 2 2- 124 39 oi 311.41C 
mZL2-3 22 304 154 99 30 97.19 
mu 1 22-2 so 54 is 510K 
cal-3 n 31.3 119 Is? 51 Istelf 
mis. m4t. 3 8 120.3 73 Iss 33 179 7K 
Jr5$-4r5I. 3 -11 7.6 Al so 34 as 5K 
11 21. 9.2 224 1U 20 107 4K 
i2 21 7.5 152 154 37 153 5K 
J 213 4.4 102 112 62 131.81C 
it is 3.2 54 Iss so IUEK 
11 21 17.3 1.44 79 32 78 SK 
12 27 15.1 191 91 22 90.7K 
13 28 11.1 140 NO 44 IGZ7K 
14 29 146 19 Ila 39 108 dK 
15 41 3.3 44 116 51 115 A 

F, 
(NI 

F. 
(NI 

392x -4 SK 
41. IX -5SK 
35 GK -1.1x 
57.6K 14 « 
38. ZK §OK 
39.. IK -OSK 
90. IK 21 SK 
51. SK IAK 

1.19.7K !lX 
176 X 24.2x 
al-lk 17.1 K 

lWAK 4OCK 
1d32K U4K 
171X flIK 
162. SK 44.5K 
73 CK 28.4 K 
Bl. ' X 41. OK 
90. EY. ZSAK 
ISIK MAK 
SICK 75.4K 
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Table A. 9 Moment arms of lumbar muscles (Bogduk et al., 1992) 

Mament Arms Imm) by Segment 

Fascicle LI-2 U-3 L14 L5-Sl 

MIS 44.1 413 341.6 
M11.1 9-6 51.3 413 79.3 
mIL2 C. 4 8 55.5 51.5 40.1 24.6 
mlt3 52.5 603,6 G9 8 53,2 iol 
M25 - . 5,5 41.6 303 - 
m2tt - i6a 51.7 400 24.5 
n2t2-3 - 53.4 Gl%3 654 60.1 
m3s - - 4 5.1 39.1 27.7 
frl3,,. l-3 - - 52,3 595 58.6 
m4sým4t. 3 - - 46.7 47.9 
m5s-mEtl 42.0 
11 34.3 4! 1 52.0 E6.9 H9 
12 - -: 5 4 46.0 AU 42.4 
j3 35.2 4U 393 
A 21.9 :5a 
11 32.6 47 3 58.3 110 H-3 
1, 6 - 35.5 so ! 45 521 
13 - 35.3 459 47.3 
14 - 33.3 41.8 
15 - - - - 232 
ITS 53 57 62 57 63 
IT6 53 57 62 57 57 
IT7 U 57 62 57 45 
ITE 53 57 61 46 36 
IT9 53 57 r 2 is 25 
lTlC 53 13 V 46 26 
ITI 1 31 52 46 25 
IT12 31 43 -5 2i 
LTI 
LTZP 
LT3 53 -'7 - 
LN D 57 62 
LTS 53 57 62 - 
LT6 53 57 62 57 
LT7 53 5.1 62 57 -S 
LTS 53 57 62 57 45 
L13 53 57 62 57 45 
LTIO 46 V 62 57 45 
LTII Za 43 S2 57 45 
LT12 31 4a S2 57 45 
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Table A. 10 Maximum moments generated by lumbar muscles (Bogduk et al., 
1992) 

Maur= Fo(ce VNII and Moments (NmI by Segment 

Fascicle Foice LI-2 12-3 L34 0-5 

mls 39AX 1.7K 1.7K IAK 
mlt. 1 41.6K 2-3K 2.1 K I. SK 1.2K 
MIL2 35.7K 2 ̂ K 22.0K I SX I. 4K ISK 
mli. 3 53.4K 3.1 K ISK 4 2K 4.1 K ISK 
m2s 331K 1.7K 1.15K I 2K 
M'120 33.4K 21K 2-UK I. SK 
m2t-2-3 37.1 K 12K i. 2K U4 
m3s SICK M IAK 
J1131.1-3 7,9K 9A 14K 
m4s-m4t3 1179.2K VK Iu 
m5s-m5l. 3 88.5K Ilt II 107,4K 3 3K 5 SK 61K 6.7 K W i2 1539. - 5 SK 7.1 K 7-3K 
0 181 QK - 64K 7.4. ( 
R 188 7K 6. OK 
11 78AX 21K ') 8K 4.6K 4.3K 44K 
12 90.7K 3.2X 4.4K 4.9K JIM 
13 102.7x 3.6K 4.7K 4-IK 
14 108.6; ( 3EK ISK 
Is 1157K 
Total 

one side ler. 37K SA IR NX 

Bilateral 31K 73K 124K 162K IM 

Table A. 11 Biomechanical parameters of human lumbar ligaments (Pintar et al., 
1992) 

Parametcr Ligament T12-1.1 LI-L. 2 1.243 1.344 L4-LS LS-Sl 

slight" ALL 32.9!. v9 32.4 
_4 13.0 MS1140 30-: 52: 20.3 4O. 5: tI4. j Ill: tIo. 2 

jN nim-1) PLL lao: ts. s I7. I: L9.6 36.6: t 15.2 10 6: t 1.5 15.8 21.8116.0 
)c 31.7. t 7.9 42.5: to. s 33.9: t 19-1 3: ji 33 30.6: t I'S 29.9 t 210 
LF 24-2: t3.6 23.0: tts 25.1 10 9 34. $ 1 &2 271 jI L2 20,2: t 94 
ISL 12.1±2.6 10015.0 9.6 4S Is. I: tI5. q &%6 5 16-3: t ISO 
SSL 1111: 6.9 . 11.0:: 17-1 24 S: t 14 5 343111.7 11.0169 17.813.8 

Energy to ALL 3.30 =2 01 3.98, t, -34 5.3 1 :t1.91 S-35±434 8.63: t 7.99 OL82JO. 54 
future (j) PLL 42.1; tols 01 0-33 z 0.11 0.11 ý 0,041 O. O7: tO. QS ": tO. 27 

Ic I. SS±0.55 4.13; t2.15 3-10!: 1.61 -13j; tI-3s 2.05: to" 2j4: t 1.31 
LF 2.111: tLS9 1.53 ±OL93 0-86: to. 46 -'63±249 3.311: 1.20 2.47go. 60 
ISL 1172: to. 47 2.65: toz . 1.06=0. ") olq: to-19 1.13jo9l 0.71: to. 56 
SSL 3.75 = -q" 11 4 09: t -'00 '021 = 5.77 11.64 = 5.39 3.40: t'-39 3.19 t: 1.94 

Site" at ALL 9.1: to. 6 13.4 !: 3.9 16.116.2, Ml!: 7.0 15.1 t 13 L. % 23 
tuturcumpal PLL "=4.1 11.5110-0 28 4± 113 1 -2, t 1.9 . 106=73 19.7Z7.1 

ic 10.3!: 2.9 14.4± IA 7.7± 14 3.3: t 1-1 S, 6: t 2.3 
LF 4.0: t 1.2 ls: tol 1.3104 2.9 -1 V q-o: t 1.4 4.11-0.5 
ISL 4.1&02 3.9: t 1.11 1.81OLI 1.11: 0.3 2.921.4 5.3: to. l 
SSL 3.913.2 114±5.1 so!: S. s 1.16+-17 12.7=7.1 14.0 = 1.7 

smus at ALL 31.9 = 20 4A 0± 23.7 49.0: t 11.7 32.11: t! ls 44.7j. 17.4 : 8.1113.3 
kuluts (%I PLL 16-1: tg. j Is. %7.41 t 13 _- 

1.7 12. %6.3 1S JDt U 
ic 7&2. t 24 3 90 4: t 17.7 70.0 = 27. S S 1-7 Z 7-1 47.9: t 5.4 $3.3; t. 18.1 
LF 6I-S: tII. 9 78.6=6.7 Ms 2: Q V-6= 116 lo-'O= lit $3.1 t 19.3 
ISL PA: t 36.1 110.7214.7 5 1.5 j 1-4 96 S= 35.8 S7A: t 6.7 519t 1.3.2 
SSL 75.0=7.1 8141.214 X6: t4S, O 109 4 !: 2.3 lOb3:: 4.7 115.1; t49.1 
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Appendix B: Mean and Standard Deviation Values for Force 

and Deflection at Failure for Human Spinal Ligaments 
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Appendix C: Equations and Coefficients for 'Virtual Muscle' 

Muscle Model 

Extrapolated parameters for human skeletal muscle fiber types and associated model equations 
(Cheng et al., 2000) 

CURVE Typical slow-twitch fibers Fast-twitch fibers 

Tendon Elasticity 

p, (L'r) . CTkT 41 
jZT-LT, ) 

+11 
14 

k" 
E-- 

Parallel Elastic Element 

F, pj&. (L)-cjk, ln xpr(L/L--41)1 +IV 
I. 

L7 -klj+ll 

Thick Filament Compression 

F, gj(L)-cj(exp[k2(L-Z, A-l), Prz2-0 

Force4, ength 

F14L) - exK-aj-; 
M 

Force-Velocity 

FV(V. L) - 
f(Y. -V)j(V_J(c, $+c,, L)n VSO 

Y>O 

Effective Activation 

CY kTL, CT kT LT, 
27.9 0.0047 0.964 (Ume as slow twitch) 

C, k, L., ,q et k3 Z" 
23.0 0.046 1.17 0.001 (unic as Wow twitch) 

ci ka 4 
-0.020 -21.0 0.70 

Ca k2 43 
(utne as slow twitch) 

w0p 
1.12 2.30 1.62 

V. - C. 0 C. 1 
-7.88 5.88 0 

0p0 
0.75 1.55 112 

V. C. 0 9ý1 
-9.15 -5.70 9.18 

a4 '43 AV2 b, 94 0.1 44 
-4.70 9.41 -5.34 035 -1.53 00 

am rsf., ar nM n at an Af(f. m Lw" Y. S) -I ex r-Mm+Rn 6. 
8 

-)I 
Gwr ) 

0.56 2.1 5 0.5 2.1 3.3 

Activation Delay 

4.4t)- jL(t)-4n(1)j3 TL(ms) TL(Ins) 
TL(I -Af) 0.088 (same " slow twitch) 

Sag 

ff) - 
a. -SQ) jas,. fn(I)<0.1 so. f I 

a. 1 0.2 rs(ms) a., 0.2 TS(MO 
. La., f.. (02tO. l T. 1.0 1.0 1.76 OM 43 

Yield 
I -cy(I -exp(-absIV11VV)I- Y(I) Cy VY TV(-) Cy vy 7ý(Ms) 

Ty 0.3s 0.1 200 0 

Rise and Fall Time 

ljjt. fý L) -4-2) -fw'(I) 
FnLI+rmf_(t), 1.41)ýtO TI rn(ms) Trj(ms) Tn(nm) rx(ms) Tn(ms) T, (nls) 7'n(ms) 

,. 
j 

fjf. fjý L) 
JN-2) f-41) (T, 3+Tf. Af)/(L). fn(t)<O 

I 
24.2 16 33.2 17.8 20.6 13.6 22.2 

T, 
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Appendix D: A Survey of Human Musculotendon Actuator 

Parameters (Yamaguchi et al., 1990) 
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i-a 04 - 41A 
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UPPER EXIrREMrrY MUSCULATURE 
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