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SYNOPS IS

A new model‘af an Instantaneously adaptive delta modulator called here
a "CONSTANT FACTOR DELTA MODULATOR", (abbreviated C.F.D.M.) has been developed
and the selection of suitable constant factors (adaptation constants) with its
adaptation logic has been described.

The basic delta modulator has been adapted to give an improved performance
by introducing a small memory and prediction method in the feedback loop
thereby enabling the coder to adapt to the instantaneous variations in the
analogue input signal. This C.F.D.M. model of adaptive system adapts its step
size, at every sampling instant r, as a result of the detection of the four possible
‘binary groups formed from the last three binary values transmitted. The adaptation

constant which is the ratio of “the present step size m_., to the previous step

r
- slze m._p» can have, at any sampling instant, one of four values with a magnitude
of Al; AZ’ A3 and A4, cofresponding to the four ﬁifferenf possible groups formed.
The polarity of the present step size I; the same as the present binary value Lr'
The eftect of this C.F.D.M. system is that for a given decoded signal To.
nolse ratio, the necessary bandwidth of the transmission channel is reduced.

The C.F.D.M. descrited here gives an improved overall coding characteristic and

removes an objectionable hunting characteristic compared to the one-bit memory

(3 I+ offers wider dynamic range for the bandlimited

adaptive DM by JAYANT
Gaussian input. The results are compared with other similar schemes on adaptive
delta modulators and computer plotted graphé are presented whenever necessary.
From these results and responses, the C.F.D.M. seems to be promising for encoding
video-signals.

Several computer simulations have been made for the design of the Constant
Factor delta modulator, JAYANT's CODER, WINKLER's H.!.D.M. coder and linear
delta modulator. The performances of these coders have been compared. A

considerable number of computer simulation results are prescnted which relate

to digital low-pass filter and the estimation of power spectra.




'A NOTE ON PUBLICATION'

A mode! on an Instantaneously Adaptive Dalta-

Modulator, described In Chapferz, has been published in

Electronics Letters, vol. 9, No. 4, pp 96-97, 22nd Feb.,1973.




CHAPTER |

INTRODUCT |ON

o

The basic principles of delta modulator are well documented in

(1-3)

the |literature Therefore it will be described here, briefly, as

one of the simplest and cheapest ways of encoding analogue information
into a digital form. It is a closed=-loop sampled data system producing
a ""staircase" approximation to the analogue Input signal, at the error
point, if the integrator used on the feedback loop is an ideal
integrator. Delta modulator can also be regarded as a one-bit differ
ential P.C.M. because it sssentially transmits either of the two codes,
a positive pulse or a negative pulse, at every sampling instant,
corresponding to a positive or a negative step of fixed amplitude, the
sign of which is the sign of the pulse transmitted. A schematic diagram
of a linear delta modulator is shown in Figure (1).

Despite the attractive simplicity of a linear delta modulation
system, It has its drawbacks also. One ;f the major disadvantages of
linear delta modulator is its limited dynamic range. These limitations
are due to the two inherent types of distortion noise introduced by vhe
system. Small or insufficient values of step sizes Introduce "slope
overload noise", THaT occurs during the large signal slope when The
system cannot follow the input signal, by transmitting along a sequence
of 'ones' or 'zeros'. The finlite step size of the system introduces
another type of noise called "granular noise", when the system is
tracking the signal, during the small signal slope, by producing an
alternate pattern of one and zero, at the output. Hence linear delta
modulator has only one peak signal to noise ratio point, offering a
very narrow useful dynamic range. Although the dynamic range can be
improved by increasing the clock rate of the system, the limitation
on the channel band width in every communication system has limited The

“maximum clock frequency which consequently limits the dynamic range.
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Overload characteristic curves(IHB) for the linear delta

modulator have the matching cheracteristics as that of Thé speech signals.
Due to these drawbacks, and the overload characteristic of linear delta
modulator, It has been confined to coding speech only.

Therefore increasing the dynamic rahge, for a given bit rate,
becomes highly essential, so that the limitations imposed by the linear
delfa modulator have been removed and to open wider and useful application
of the system. To meet these requirements, and to operate delta
modulator at relatively low bit rate, several types of adaptive delta
modulaTors(4f“D have been proposed. Such adapTaTlon'cr "companding"
can be achieved either at a syllabic rate or instantaneous. The word
'companding' is the combined word for signal dyramic range 'compressing'
at the encoder and 'engnding' at the decoder.

Syllabic compandors are those which are characterized by
'continuous' adaptation of the step size, where the gain of the
adaptation circultry varies In accordance with the level of the Input
signal but is substantially constant over a number of cycles of the
input slgnal.izhg step sizehjsmgpntfoljéd“byfhe envélope of the analogue
- signél extracted from the output binary signal,’ "~ Such types of
syl labic compandors are reported 16 %he I{;erafure (4-7).

Instantaneously adaptive delta modulators incorporate discrete
adaptation of step size at every sampling instant. Most of the
adaptation algorithms are based on the principle of doubling, halving
or otherwise changing the step size when a string of consecutive
| 'pulseé' or 'no pulses' are detected in the binary output signals.

These types of adaptive coders are widely described in references (8-14).

Instantaneously adaptive coders are developed for coding video
signals. The reason isthat it is desirable to adapt the step sizec of

linear delta modulator according +o instantaneous signal value rather

than an average value, as far as coding television signals Is concernred.




Another interesting feature of instantaneously adaptive coders

(8,11,12)

is their resistance to mathematical analysis , which means that

they are intuitively conceived rather than designed. None of the

papers In the literature can achieve meaningful analysis except for those
concerned with most simple inpufsignalg?azMoreover the analysis is
further complicated by the variety of performance criteria. These
criteria depend upon the type of signals to be encoded,the properties

of the transmission channel, etc.

In this plece of work, the main aim is to overcome the l|imitations
of linear delta modulator and to design an insfanféneously adaptive
delta modulato:r, that would be able to encode television signals. As
a result we have presented here a new type of instantaneously adaptive
delta ﬁodulaTor called "Constant Factor Delta Modulator", which is
named after the behaviour of the system.

|+ differs from the other schemes on adaptive delta modulator
in that the adaptation of the new step size Is made when certain groups
of binary patterns are detected. Method of grouping of binary patterns
according to their characteristics enables us to indicate the possible
infermediate state of the system, rather than the overload and the
idling states.

The analyses have been made of the characteristics of C.F.D.M.,
dynamic range, compression law, quantization noise, and overall
transmission characteristics, etc.

The following chapters will describe in detail the development of

our C.F.D.M. system and the presentation of the results from the

computer simulations of the C.F.D.M.




2.

CHAPTER 2

'~ CONSTANT FACTOR DELTA MODULATOR

INTRODUCT | ON

Many types of instantaneously adaptive delta modulafors(8-14) have

been designed. In these systems, the step size is changed significantly
at every sampling instant in accordance with the present and the previous
binary levels in L(+) waveform. Most of hem try to adapt the new step
size when a consecutive 'ones' or 'zeros' are detected, or when a change
of the polarity of the binary level occurs, at every sampling instant.
Though all of these adaptive delta modulators offer some improvements to

a certain extent, over the linear delta modulator, they do not seem 1O
have used all the Information available in the L(T) waveform to be used as
a control function for the adaptation of new step size.

Therefore, one should realise that a better adaptive system is to
accommodate a sensing device which would be able to detect not only the
occurence of the string of consecutive 'ones' or 'zeros' for the Indication
of an overload, but alsoprovide a special care, such that the overloading
Is not encouraged or removed as quickly as possible if the overloading has
occurred. It should sense also the immediate state after the overload
condition by the detection of a sign reversal just after the sequence of
'ones' or 'zeros' has been detected and should adapt the step size when
the system is in an Idling condition, so that the step size converges 1o
a minimum allowable value.

In an attempt to achieve the above requirements and to overcome The
|imitations of the linear delta modulator which we have dlscuésed earlier,
we have developed a new Instantaneously adaptive delta modulator called

24 -

here by the author a "Constant Factor Delta Modulato The following

sections will precisely describe Its development and the principles of

C.F.D.M.
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2.2.

2.2

Prior to the description of the development of C.F.D.M. system
we have here-a few "assumptions" to be made. It is assuméd that there is
no error in the transmission channel. This means that the encaded binary
slgnals which are transmitted through a noisy channel are correctly received
before the decoding, ir the receiving end: |+ has been assumed Tthat an
ideal Integrator is used in both the local decoders in the transmitter

and the receijver.

DESCRIPTION OF C.F.D.M.

The C.F.D.M. coder is shown in figure (2), x(+) is the analogue
signal and L(T) is the binary output of the ccder. The L(+) signal is
passed through a two-bit shift register and the outputs of tThis register,
together with the present output from the coder, are applied to the
adaptation logic. Thus the coder adap}s |tself according to the present

binary level Lr and the previous two binary levels Lr-1 and Lr-2 ‘In the

th

L(1) waveform. The subscript r denotes the r  sampling instant, and r-|

the previous sampling instant, etc. The system provides a memory length
of two for the ease of design feature and also tfo take into account the

correlation existing in the subsequent input signal samples.

5

Thus, the logic system is confronted with 2~ = 8, possible binary

paf?erns as shown In the table - |. Slnce each binary level has its own
complementary level, these can be conveniently reduced to four groups
which Indicate the possible state of the system as shown in table - 2.
Therefore, in general for a memory length of m bits long, the number of

possible groups that could be formed is

N = 2n-l | (1)

m + |

where n

POSSIBLE GROUPS OF BINARY PATTERN

w

As shown In table - 2, the groups can be classified as follows.



PATTERN
NUMBER

TABLE 1. POSSIBLE BINARY PATTERNS FORMED.
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1O

2.2.1a  GROUP |
It is called the alternating polarity group or idling group and often
occurs when the y(t) signal is trying to hunt a slowly varying or a steady

slope input signal x(+). Pattern No. 4‘and 6 are grouped together since

one forms the complementary to the other.,

2.2.1b  GROUP 2
The sign reversal group is characterized by the previous two bits
having the same binary levels and different from the present blinary level.
As shown in pattern numbers (3) and (5), the presence of group 2 pattern
Indicates that the coder is coming out of the overload condition and is

beginning to reduce its error voltage.

2.2.1c  GROUP 3
[+ Is called the semi-overload group as the coder appears to be
starting to form an overload pattern of all ones or all zeros. Pattern’

numbers (2) and (8) are regrouped together.

2.2.1d GROUP 4
I+ Is classified as an overload group. This is characterized by
the Inspection of pattern numbers (1) and (7). In these patterns al|
the three binary levels are "zeros" or "ones" indicating that the system
is overloaded by tha input signal having a negative or positive slope

respectively.

2.2.2 PRINCIPLES OF C.F.D.M.

Instantaneous éompanding is achieved in our C.F.D.M. system. The
basic principle of companding is the compression of the signal while
encoding and expanding it when the decoding is done to reconstitute the
original signal. Thus {f an expanding function is'applied in the local
decoder of linear delta modulater, the coding will be performed with

.compression characteristic. The companding is performed entirely in the



2.3

local decoder by changing the step size at the input to the integrator,
and the expanding function of the local decoder can be explained as
fol lows.

In this C.F.D.M. coder the selection of adaptation constants will be
made on the basis of the characteristic feature of the groups of binary
pattern formed in the logic system provided. |+ therefore follows that
four different adaptation constants will be provided for four groups of
binary pattern formed. The wave form at the output of the logic is z(t)
and has at any sampling instant one of four possible values of adaptation
constants. The evaluation of the actual magnifude.of these will be
mentioned later.

|f the binary pattern representing the group | is present, then

the z(t) produces a voltage having a magnitude of A Similarly for the

z
binary patterns representing groups 2, 3 and 4, results in having the

z(t) with a magnitude of A2, A, and A, volt respectively. The polarity

3 4
Is the polarity of Lr'

z(t) is multiplied by m..y o give m_ which is the voltage fed to

the integrator. m Is obtained from m. by passing it through a one bit

r=|
analoque delay Da. This m differs from m | by one of the four constant
factors, and hence the name given to this coder. Integration of m. gives
the feed back signal y(t+) which when subtracted from x(+) produces an
error signal which is then quantised. The output of the quantiser is

connected to a sample and hold circuit which is implemenfed'wlfh aD

Flip-Flop, to give L{(t) waveform.

C.F.D.M. Decoder

The decoder consists of the complete system in the feed back loop
of'figure (1), such that the received L(t+) waveform can reproduce y{t),
and followed by a low-pass filter network. The job of the low-pass filter
is to remove the high frequency components in y(t) due to quantization and

.pass the frequency components contained in Thé message band to reproduce

the x(1) waveform. The C.F.D.M. decoder is shown in figure (3).
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2.4 THE RESTRICTIONS ON 'A' PARAMETERS

Before we describe the evaluation of the A parameters, we ihtroduce
some basic bounds on these adaptation constants as follows

(i) 1In order to hunt a signal with converging step sizes, the AI
and Az parameters have magnitude less than unity.
i.e. 'Al | < 1.0 Ceecessesestenens - (2)

IA S 7 .o (3)

2 |

(i11) In order to adapt the signal at the semi-overload condition
and fo prevent getting into the state of overloading, it is of necessity

that A3 parameter should have the magnitude greater than unity, excessively

i.e. | A > 1.0 i ieieiireeseaes (4)

3 |
(iii) Adaptation of A4 parameter is reached always after the

adaptation of A3.

the A3 parameter and therefore, in order to prevent further overloading

This simply implies that there is an insufficiency with

of the system, It is essential that A4 parameter must be made greater than

A3.

.e. | A (5)

2.5 EVALUATION OF 'A' PARAMETERS

The c.f.d.m. system is required to accommodate a variety of input
signals. In this thesis subjective evaluation of the system is not done,
and it has been explored using well defined test signals such as sinusoids,
steps, impulse functions and band-iimited Gaussian signals. |t can be
}nfuifively anticipated that the adaptation constants to produce optimum
encoding performance will be different for each type of'inpuf signal. |t
might be possible for the adapfafién parameters to be themselves adaptive
to changing sigﬁal conditions, but the sofution aeclded here Is to select
a set of adaptation parameters which give satisfactory results for a wide
range of fypes-of input signals. Thus at the outset it is acknowledged
that these parameiers are generally sub-optimum. The values ascribed to

these parameters were arrived at by a combination of physical reasoning
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based on conditions of the encoders stability, convergence, overshoots

etc. and iterative procedures.

The results of the step response are discussed in Section 3.5 and
displayed in figure 18. When a sequence of identical polarity output
pulses occur, i.e. the encoder is severely overloaded, it is clearly
required that the feedback signal y(+) should increase at a rapid rate.

The A-parameter in this situation is A, and it is given a value of 2

4
because this ensures that y(+) Increases in binary fashion, as iT does

(16)

in the Winkler's(g) coder. The coder described by Jayant having

only two parameters, rather than four, has an adaptation péramefer in an

overload condition of 1.5. The choice of A4 equal to 2 results in a

step response which rises as fast as that of Winkler, and faster than

that of Jayant. |If A4 is made in excess of 2 it results in larger
overshoots when tracking random signalé.

From table 2, it can be seen that A, is generated when the encoder

3

Is entering an overload condition. Ay must therefore be in excess of

unity, and less Than the severe overload parameter A The physical

4°
bounds on AZ mu-t be less than one because the encoder is coming out
of an overload condition, and is less than AI, for the latter parameter
is produced when the encoder does not know whether it is about to be
semi-overloaded or +the prevailing condition will be maintained. The

above remarks can be summarised by

A2<AI<A3<A4

and the polarity of these parameters is equal to the sign of the current

L(+) pulse.

In order to attach some actual values to these parameters the

following iterative procedure was adopted for a sinusoidal input signal.

The decoded signal to noise ratios were computed as a function of a

particular A parameter while the other A parameters were held constant,

The results are dtsplayed in figures 4, 5, and 6. When A, > | or A, > 1,

l
which is in conflict with the above inequality, the snr became negative.
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78

This situation is not shown in these fiqures. |+ can be seen that these

results are not always consistant and that the curves display irregularities.

By themselves they do not indicate the obvious choice of parameters, but
when used as a support to the physical arguments presented above they

enabled the following set of A parameters to be selected:- A, = 0.9,

|
A, = 0.4, Ay = 1.5 and A, = 2.0. These parameters which were established

5
for a sinusoidal input of | KHz and an encoder clock rate of 40 KHz were
used for the step response, impulse response and tracking of Gaussian
signals as described in sections 3.5, 2.17.1 and 3.3. They were found to
give satisfactory resuilts, indeed for step input and pulse inputs, the
encoder behaved better than other existing systems. Changes in the
parameters were observed to have small effects. A-possible explanation
of the insensitivity of the periformance of the system to differences in
these A parameters may be due to the relatively low ratio of clock rate
to the highest frequency in the Input signal. This is because the Input
signal makes changes at too fast a rate for the full potential of the
adaptation algorithm to be realised. |+ is anticipated that at higher
clock rates the choice of the A parameters would be a crucial factor on

2

the performance of the system. This low (fp/FC ) ratio also results in

a failure fto exploit the CFDM.

SELECTION RULES:

The selection rules which by incirporating some kind of adaptation
logic would select an adaptation constant at every sampling instant.
Considering the facts we have just gescribed, the following rules for the

selection of adaptation constants can be developed.

Z(t) = A, 1f L. #L_, and

I r r- |
s F % & & % & % s » 9 & @ (6
bee F L2 o )
Z(t) = A
e (7
Lr_' Lr__z $ & @ )
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Z(t) = Az | f L. = L and

f Loy F ls creeeeeenn (8)
2ty = A, If L. = L., ar?d

Ly = L5 Ceeseesenen (9)

Zl il Lr Lr"l LF-Z ) Lr Lr--l Lr—2 . sesssessssesence cos (10}
\ Z2 i —Er l'r-l I‘r‘-2 ' Lr' -':r-l T:r-z cierecavans coecans (1)
23 i tr tr-l |‘r‘—2 ) I'r I‘r-l tr-z chessscecasanses .o (12)
24 ] tr rr-l —Er-z N Lr I‘r*--l I'r‘--2 cessescsesesesens (13)

2.7 ADAPTAT ION CONSTANTS

It is desirable to use the different set of suitable optimised A
constants for different input signal, by doing the three SNR tests again.
But for the simulation of C.F.D.M. the A constants used ‘are

A, =09, A, =-0.4, A, =1.5 and A

2 3 = 2.0.

1 4

2.8 GENERALITY OF THE PRINCIPLES OF C.F.D.M.

The principles of C.F.D.M. can be considered as the generalised
principles for several types of instantaneous adaptive delta modulators.
This can be verified by deducting different adaptation algorithms for
these different adaptive schemes from that of C.F.D.M. For the later
simulations of all these coders, the following adaptive algorithm were
derived in terms of the adaptation algorithm of our C.F.D.M.icoder,
having four different adaptation constants for four different binary
groups formed from the last three binary levels transmitted.

The same length of memory store will be used as It was in C.F.D.M.
coder. The only difference was the use of adaptation constants, different
from that of C.F.D.M. coder, for each of these adaptive coders. This

shows the sufficliency and the efficiency of the length of memory stores

used In our C.F.D.M.

- — —— - - -
-—-——--_-l!-lm
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2.8.1  ADAPTATION ALGORITHUS FOR JAYANT'S CODER''”

In Jayanf's coder, when a string of two consecutive binary levels
of the same polarity were detected, adaptation constant P was selected.
Whenever two unequal binary levels were detected adaptation constant of
Q =-%- was selected where P = |.5. The detection précess was made for
only two possible groups formed from the present and last binary levels
transmitted.

In terms of C.F.D.M. the two unequal binary levels were detected
in group | and 2, and the occurence of two consecutive binary levels of
the same polarity were detected in group 3 and 4. Therefore the

adaptation algorithm for JAYANT's Coder in terms of C.F.D.M. algorithm

can be written as

Z(t) = Al = =Q ifﬁLr F 'Lr-l and
Lr—l f Lr—2 cossevosacs ‘oo | (14)

Z(t) = A2 = -Q If L. 7 Lr-l and
Lr-l =L cesececnes oo (15)

Z(t) = A3 = P I f Lr = Lr-l' and
Lr-l 4 Lr—2 cecescsenseses (16)

Z(t) = A4 = P | f L. = L—1  and
Lr-I = L2 cesessane s 0o (17)

-0.66.

where P = |.5 and Q

2.8.2  ADAPTATION ALGORITHMS FOR WINKLER'S H.1.p.M‘89

The High Information Delta Modulator (H.!.D.M.) does not have any
adaptation of the step-size when a string of two like binary levels are
detected. However, It doubles the previous step-size when the thiree binary
levels of the same polarity are detected and keeps halving the step-size

whenever a reversal of binary levels occurs at the output of the coder.

The requirements of this type of coder can be easily achieved by using
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the algorithm for C.F.D.M. and by just changing the values of the 'A'

parameters to match the H.l.D.M. characteristic. Thus the algorithm

for H.l.D.M. in terms of C.F.D.M. principle becomes

Z(t1)

Z(1)

Z(1)

Z(t)

-0.5

1.0

2.0

i f

|

i f

If -

Therefore 'A' parameters of C.F.D:M. cdder now have the values of Al

= A2 = =0.5, A

one or a zero respectively.

adaption constants having the magnitude of one.

algorithm of C.F.D.M. as,

Z(T)

Z(1)

3

~1.0

-1.0

i f

| f

= 1.0 and A, = 2.0.

ADAPTATION ALGORITHM FOR L.p.M.!™3

L. # L., and
Lr—l 4 Lr-2 ............. (18)
Lr 7 L., and
Lr--l ) Lr--2 Ceveceves (19)
L. = Lr-l and
Leep 7 L e (20)
Lr = Lr-l and
b % b2 eeeees (21)
4
The linear delta modulator increases or decreases Its step-size
by one unit depending on whether the last binary bit transmitted Is a
We can think of linear delta modulator as
an adaptive delta modulator system which adapts itsstep size with the
Therefore the

algorithm for linear delta modulation may be deducted from the adaption
Lr 7 Lr--l and
.Lr-l f Lr"z T YT EEEE R X, (22)
Lr 7 Lr-l and
Lr-l ) Lr-z s s s 6 s 8 ew ¢ 0 (23)
Lr i Lr-l and
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Z(1) 1.0 if L

"
—

—
W
—

r-| F=2 it ieecsesscsnse (25)

Hence the 'A' parameters used in C.F.D.M. now have the value of

AI = AZ = -].0 amd A3 = A4 = 1.0,

2.9 C.F.D.M. CHARACTERISTICS

Constant factor delta modulator has a special feature in the way
It adapts the new step size. A adaptation of a new ctes magnitude Is in
a constant factor to the previous step magnitude, §ccording to the
selection rules described In section (2.6). Since the C.F.D.M. coder
needs at least three binary levels to function as a C.F.D.M. coder, the

adaptation of step sizes follows the sequence Al, A, A4

and increases exponentially in response to the sequence of n "ones"

in L(1t). The characteristic of the codar can'be evaluated by studying

the step response of the coder,
When a step input x(+) is applied to the coder, the C.F.D.M. system

transmits a sequence of binary "ones" and the adaptation of step size

follows the sequence described earlier and therefore for the n1Lh

adaptation the y(+) signal can be evaluated as

r=n

_ r—2
Yo = -A, HA3 Z A4 ............ (26).

r=2 -

Minimum value of r is 2 because we have assumed an

initial step size of unity and two binary bits are required before

the adaptation logic functions

—r— it - ——— —_ gy

After the nth adaptation, let the y(t) overshoot the x(%)

waveform. Therefore at + = n + | instant, y, waveform will have the value

= _ 2D=2 .
Yn'l'l Yn F\4 AI Az A} TR ¢ (27)

= =t T "l'ﬂ"‘!"-h_.- O ey — — . b - —_— - — _—— el -t e —-—— —_ ——
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Suppose at t =n + 2, if y(+) is still > x(+), y(1+) waveform

becomes,

- N £ 2
- y A A Az A3 e » 9 & & & " B ® ® (28)

Yn+2 n+ | 4 |

On the other hand if y(+) < x(+) at t = n+2

then,
(29)

+ A A, A

yn+2 yn+| 3 et o 000000 e

etc. The essential characteristic of this coder is that it offers

di fferent welghting factor for the adaptation of new step size, In
accordance with ‘the different situation of the tracking signal y(1).
Following the step response just described, the coder has the facility
to accommodate the tracking ability to the step functlion and finally
hunts the step with the basic Idling patternof 1 O 1 0 ....... with
the smallest allowable step size, limited for the idling condition.

The tracking of the step is shown in figure (7).

MINIMUM STEP SIZE

In order fora .... 101010 ...... pattern to be formed a lower
|imit to the step size say, 6§ min., Is pu+; The4need of this can be
easlly veritied by -studying the step response of C.F.D.M. After a
certaln length of clock periods Nt, a condition will be reached when
the y(1) hunts the steady step input voltage x(t), in the mode of Al
adaptation, at every sampling instant. The step size will always
decrease and the point will be reached when the step size magnitude is
less than § min. At this instant, however, the coder ﬁékes this step size
equal to 6 min. Therefore from that sampling instant onwards, the y(%)
will hunt the x(t), with a minimal step size § min, and the traditional

..... ] O1010....... pattern will be established.

— - = S 'l:._:.—::'_rﬂw 1t -
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2.11 COMPANDING LAW

This law is obtained by using the experimental arrangement shown in
Figure 8. |t can bé seen that a sinusdidal input Es sin msf is applied to
the CFDM encoder and the resulting binary wavefor; L{(+) is decoded by a
| inear D.M. decoder 1o give the compressed sinusoid ESr Sin wsT. | ¥ the
CFDM decoder shown in Figure 3 is used the output would of course be
approximately equal fo ES sin W s s but the absence of the 'expander' in
Figure 8 results in a sinusoid having a smaller amplitude, i.e. ESr < Es'
The value of ES is varied over a wide range and for each value the decoded
6u+pu+ signal Egr is noted. Figure 8a is the compression law for a sinusoid
having a frequency of 800 Hz sampled at 40 KHz.

This companding law shoulid not be confused with those laws used in
p.c.m. systems which are independent of the input signal. The cbmpanding
law shown in figure 8a may noT-be the same for other. input signals like
speech, say. lts value is that it gives an indication of the amount of

compression obtainable at a particular frequency, and this test can be

used for other coders to give a comparison of their ability to compress

the signal.
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2.12 THRESHOLD OF CODING

In Thé'abgence of input signal, the C.F.D.M. system will operate
in the mode of adaptation by selecting the adaptation constant AI’ with
reference to the principle of C.F.D.M. producing an alternate pattern
of | 01 010 .... in the L(+) waveform. [f the input signal has a peak-
to-peak amplitude less thai the minimum allowable step size of the system
§ min, the alternating pattern of 1 O | O 1 O will not be disturbed
and the output of the decoder will remain at zero. This minimum allowable

. | step size 6 min below which no information will be transmitted,is called

the threshold of coding and can be represented as,

Xmin = 6 min I (20)

2.13 OVERLOAD CONDITION

Theoretically, there is no limitation in dynamic range since all
ranges of step size can be generated by C.F.D.M. But, since every equipment

has voltage limitations which affect maximum and minimum step sizes in

the feedback signal, it iIs desirable to consider an overload point of
the C.F.D.M. coder. The overioad point is governed by the limitation
of the maximum allowable step size. The maximum size of the step has
been limited to some hundred to 200 times the minimum allowable step size
represented by ¢

max’

There’ore, the overload condition has the relation given by,

XVCH) 2 8 . T eeeevnniaiiininenn. | (31)

where x'(1) is the slope of the input signal and 5m$x is the limlted
maximum step slize and fS is the sampling frequency. Thus for a sine

wave [nput of x(+) = Xmax Sin(me), overload conditfion becomes,

Xmax %m = Smax s
| X _ 6max S ,
'e. max 21’[f NN EEEEEEREENEEENEEE N NN NI (32)

- —_——_ —
- . — - —— - —r —— . ammommm = = = — [T M S T —— - - — -
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For a Gaussian input signal rms slope of the input is given b¢3)

S ane, where fe is the effective band width of the signal given by,

Mmax

+fc, 2
J 2 | X(H)]? df -

f = I E (33)

S e —
+fC2
J IX(F)]? df
O

where fc

5 corresponds to the highest frequency to be transmitted and
therefore the overload condition for a band-1limited Gaussian signal

input can be expressed as,

................. (34)

omax2“ fe ®  Omax fs
i.e. %ax = Omax- s (35)
Eﬁﬁ::__- cevecacss ceessese
Therefore the maximum allowable input signal before the overloading
occurs 1s,
X = V20 0 eeeeeeieiianans (36)
2.14 QUANT IZAT ION NéISE_

In delta modulator type of systems, there are two types of
qﬁanflzafion noise, granular noise and slope overload noise. Granular
nolse Is determined by the instantaneous amplitude of the input signal
and 1t occurs when a sufficient step size was used in the system. All
of the quantization noise can be granular if very large step size is
used. Slope overload noise is characterised by the slope of the Inpuft.

This type of noise occurs when the slope of the input signal x'(t) is

greater than the maximum slope capability of the C.F.D.M. system. On

the other hand, overload noise can occur when the maximum step size

that C.F.D.M. could produce is limited to a certain value Gmax’ so that
x'(+) > & f (37)

max s P Y E N

»
-
~
ol bl e
= —_—
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Referring to the figure (2), the quantization noise may be

defined as,

o

nq(+) = x(t) - xo(f) ............ (38)

where x(1) is the input signal and x;(f) is the output from the
decoder.
The noise power can be calculated as,

T +f02
N2 2 2
q = \nq(+)| dt =2 [N(HO|T df ..eveennnn. . (39)

O O

where T and N(f) are the length of the noise signal and noise spectrum

respectively.

AMPLITUDE RANGE OF C.F.D.M.

The amplitude range of the C.F.D.M. system is defined as the ratio
of the maximum amplitude of the input signal consistent with the
overload condition of the system as described previously, to the
minimum peak amplitude, below which the input signal fails fto excite the
coder occurs when the peak-to-peak amplitude of the signal is smaller
than the minimum allowable step size of the C.F.D.M. coder, described
in equation.(30).

Hence, using equation (30) and equation (36) the amplitfude range

DR of the system is,

X
= max
DR 20.0 'Oglo ( X ) S 0 & 8 & % 8 % & 0B OB VS (40)
min. .
where X _ and X , may be calculated from the requirements referred

to In Section (2.12) and (2.13).
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2,16 SIGNAL-TO-NOISE RATIO

For a sine wave Input, the mean square power that the C.F.D.M.

handle i3,

AN . (4])
S Xe Ly e

and the signal to noise ratio may be calculated using equation (39)

as,

N

SNR = |0 IogI0

prd Fn
D N

lllllllllllllll ¢ & & & 0 9 (42)

For the gauscian signal input SNR may be calculated as,

52 czmax szay
SNR = 10 logjq =5 = 10 logq | ————tx—(- 10 log Tﬂ:z"—__;__
3 ~ 20 IN(EY|© dt
J|n (T)‘z dt | |
G 0
0

(45)

where o is restricted by equation (36).

2.117 STABILITY

e e —

Due to the presence of a feedback loop, the possibility fthat the
instability in some sense could arise, exists Since the Instantaneous
output y(1+) of the feedback group always tries to appfoxima+e the input
signal x(t), the desired condition is for the feedback signal y(+) to
make it wandersbetween the adjacent levels in such a way that the base-
band components of the noise in the equation (38) are not objectionable.

This requirements clearly states the necessity to make the error signal

x(t) - y(¥) as small as possible. Therefore, the 'stabllity of the coder"

enfirequ

- - — e —— T e Er—— L —— T T — ey S— —
 m
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depends on the design of the "local decoder" in the feedback {ocop, that
produces pulséé of various magnitudes to approximate the input x(t).
Consequently, unnecessary large variations in the y(1+) signal should be
avoided.

Taking into account the above requirements, the stability of

C.F.D.M. is studied as described in the following section.

=2 .17.1 RESPONSE OF C.F.D.M. TO AN IMPULSE

Figure (9) shows impulse response of C.F.D.M. plotting x(1) and the

y(t) approximation to it. Actual input is pulse of width, '8' clock period
and magnitude of 2.5 volts, since the pulse in normal use will be
broadened due to band limitation of an impulse. There is a delay of
'7' clock periods following the maximum amplitude in x(+). The feedback
signal y(t) overshoots the input x(t) to a smatl-degree but it oscillates

N continuously and finally takes up the smallest step size magnitude, after
the fall of the impulse. This demon;TraTes the stability of the C.F.D.M.

coder and the optimality of the selection of its adaptation constants.

. 2.18 EFFECT OF CHANNEL ERRORS

T

The calculafion(?) of channel errors in Iinear'gelTa modulation

systems ‘'has been achieved for random errors. The success of this calculation
results from the decoder being linear and time invariant, and enables the
effect of transmission errors to be calculated by ignoring the presence of
the signal. Figure 10 shows a detected binary signal, and an error signal,
t+he latter being the difference between the transmitted and detected binary
signals. The error waveform is therefore composed of pulses having
amplitudes *2 and a duration of one clock period. The power due to the
transmission errors at the output of the decoder is due to the decoded error

waveform. Tha assumption made is that the true waveform and the error

waveform are statistically independent

However, this approach is inapplicable for instantzneously adaptive

delta modulation systems due to the non-linearity in the loca! decoders.
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Fig. (10)b  C.F.D.M. RESPONSE TO A STEP INPUT WITH A SINGLE CHANNEL
ERROR AT 2nd, 5th and 6th POSITION.

gyt T ——

b . BrEE ks ekl e ERL e el el bk m T P o .




19

and this phenomenon will now be’ demonstrated for the C.F.D.M. in response
to an isolated channel error.

Figure (10)a(l) illustrates the persistant effects of a channel
error which results at the output of the integrator in the decoder when a
zero is wrongly interpreted by the decision circuit at the receiver as a
logical one. Waveform (ii) applies to the erroriess idling waveform which
osci | lates about zero, whereas the error idling waveform oscillates about
4.5 units. Although the computer simulations were done with perfect

integrators, it is apparent that in a practical coder integrators must have

some leakage in order to combat the effect of channel errors. Waveform (iii)
shows that a leaky integrator enables the decoder to overcome the effect of
this single channel error.

The effect of a single channel error when signals are being encoded
is highly dependent on the location of the error pulse as previously,
mentioned. This is emphasised by reference to the step response shown in
Figure (10)b when the single error occurs in different time positions.

The input step is 21-0 units and response (i) is for no errors. Responses
(ii), (iii) and (iv) at the output of the decoder are steps having values

of 5.0,‘6.6 and 80.9 respectively, and demonstrate the profound difference in
decoded step sizes due to the location of the error pulse.

Figure Il shows the CFDM tracking a sine wave with no errors, while
figures 12 and |5 show the effect of one eror occurring in different positions.
|+ can be seen that The Isolated transmission error has a level shift, phase
chaﬁge and distortion on the decoded waveform.

In the examples given above the persistent effect of a single error
can be devastating at worse and significant at best. They have however
been drawn for perfect Integrators which means that these errors persist for
all time. By making The‘in+egra+ors in both the encoder and decoder leaky
the accommulative effects of these errors are overcome. Nevertheless, the
considerable hierarchy In the transmitted binary signal makes C.F.D.M.

vulnerable 1o channel errors, 11 is expected thatl in the presence of
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transmission errors this system would behave better than the h.c.d.m. system
with its binary weighting, and worse than the J.A.D.M. system which has only

two adaptation constants.

2.19 COMPARISON WITH LOGARITHMIC P.C.M.

2.20

The signal To noise ratios for the CFDM and the JADM systems are
displayed in figures ('6) and (@S) for Gaussian inputs bandlimited to
3.1 KHz and a clock rate of 40 KHz. The peak signal-to-noise ratios of
these systems are the same having a magnitude 21 dBs. It is expected
that the peak signal 1o noise ratio of the system wou}d diverge at higher
ratios of (fp/fcz) because the full potential of the erncoding algorithm
of the CFDM would be realised. For example there would be less noise
produced due To overshooting when tracking.

An A-law pcm system which samples the input signal at 8 KHz, i.e.
above the Nyquist ra}e of 6.2 KHz, has a peak signal-to-noise ratio of
27.5 dB when A is equal to 87.6. The C.F.D.M. system operating in these
conditions therefore has a performance approximately equivalent to that of

a 4 bit A-law pcm system with A = 87.6.

EFFECT OF MISMATCH OF 'A' PARAMETERS ON SNR

We have assumed so far that the local decoders employed in the
encoder and decoder have identically the éame characteristics. However,
i+ is not so in actual practice, due to the imperfections in the design
of multipliers and mismatching of the values of the 'A'! parameters
used in the encoder and decoder.

The receiver may track the transmitter in polarities of the step:

but not in the magnitudes of the step size. This type of effect is

called sometimes the "mistracking" of the transmitter and receiver.




The result of this type of mistracking is referred to as the distortion
of the sceAé-iﬁ busy areas, rather than the introduction of noise when
encoding teievision pictures. The combined effects of incorrect step
size adaptation and the channei error, instability of some kind could
arise.

Figure (14) displays the study of the effects of mismatch of

'A'! adaptation parameters on signal t0 noise ratio, with Band! imited

Gaussian signal at ( 3 ) dBm input level. For the adaptation constants of

AI = -0.9, AZ 3 4

adaptation constants of Al = ~0,9 + ¢, A

= -0.4, A, = |.5and A, = 2.0 In the transmitter, the

2 = =0.4 + ¢, A3 [.5 + ¢,

Ay = 2.0 + € are used in the ireceiver. The study has been made for

the range of ¢ = =0.2 to.e = +0.2. These results Indicate that the 'A"

adaptation -constants can have tolerances of the order of 10%, which

-results in a degradation of the signal to noise ratio of the order of

Z2 dBs., )

C.F.D.M. WITH LARGE VALUES CF MEMORY LENGTH 'm!

The extension of the coder's memory length 'm' is not expected
to cause-any difficulfy and In doing this it will increase the cost
only marginally.

I+ has been described in section ( 2.2) that, for a memory length
of 'm', the number of possible binary groups formed in the logic circult
is given by N = 2''/2, where n = m+l. The number N also gives the
number of adaptation consfaﬁfs needed for the system and the value of
'm! gives the order of C.F.D.M.

Thus, for example, C.F.D.M. with a memory length of m = 3, the
extension could be achieved by again re-defining the pattern of each
of the groups formed from table (2) in the C.F.D.M. with m = 2,
Re-deflining the pattern of each group could be made on the basis of
how each of the patterns of the group could have been derived from

| f one more extra memory length was added. Table (3) illustrates how
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BIN.PAT.NO

GROUP NO.
OF 2Znd
ORDER CFDM

C.F.D.M.

POSSIBLE BINARY PATTERNS OF 3 rd ORDER C.F.D.M.

Table (3)



Table (4)

GRP.NO. OF

2nd ORDER
C.F.D.M.

I
|

POSSIBLE BINARY GROUPS OF 3rd ORDER C.F.D.M.
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each pattern of group |, 2, 3 and 4 of 2nd order C.F.D.M. could be

formed from the memory length of three. In this type of 3rd order

C.F.D.M., the coder adapts itself according to the presented binary

level L. and the three previous binary levels Lo Lr-2 and L__.

Thus the logic circuit is confronied with 2m+| = 24

|6 possible
binary patterns as shown in Table (3). These can be conveniently
reduced to eight groups with each group having the binary patterns of
the same characteristic, as shown in Table (4).

In this type of C.F.D.M. system, eight adaptation constants will

be needed, namely Al To AB corresponding to groups | to 8 respectively.

The evaluation of these adaptation ccnstants may be made iteratively

as has been done for the 2nd order C.F.D.M.
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CHAPTER 3

COMPUTER SIMULATIONS
3.1 INTRODUCT ION

All the simulations were performed on |.C.L.1904A digital
computer at the University of Loughborough. Basically, the simulation
of a delta modulator system of Fig. (2) comprises the simulation of
input signal, the encoding and decoding functions of the system.

The simulation of C.F.D.M. system was first made. Simulation
of similar types of adaptive delta modulators were performed by
introducing different adaptation algorithms for selecting appropriate
'A' parameters, which satisfy the corresponding system's requirements.
Specifically three types qf ins+anfaneous|y adaptive delta modulators

and one linear delta modulator were being simulated, namely,

(i) C.F.D.M.

(i) JAYANT's Adaptive. delta modulator (J.A.D.M.)

(Pii) WINKLER's H.1.D.M., and,

(1v) L.D.M.

A description of the simulation of each of these different adaptive
delta moduiafors will not be given in detai! on its own but instead they
will be described in terms of the principles of our C.F.D.M. coder,
since each of them can be considered as the special case of the C.F.D.M.
coder, having different sets of 'A' parameters. This generalised

principle of C.F.D.M. coder will be mentioned in Section (2.8).

3,2. SIMULATION OF C.F.D.M.

First of all, the description of the simulation of C.F.D.M.
coder will be made. The C.F.D.M. system was simulated by making use of
the adaptation algorithm described in Section (2.6). The assumptions made
in Chapter 2 have been taken into consideration. By doing so the matching of

the encoder and decoder characteristics were achieved. Throughout the

simulation the minimum and maximum allowable step sizes were |imited to
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+0.03 and +5.0 volts respectively unless otherwise stated for some
simulation pﬁrposes. The 'A' parameters used for the simulation of
C.F.D.M. were the same as described in Section (2.7) having the

magnitudes of A = -0.9, Az = =0.4, A3 = .5 and A, = 2.0. The flow

4

chart of the main programme organised for the simulation of Figure (2)
is shown in Figure (39)aof ihe Appendix. The various sub-programmes
that will fulfill the purposes of the main programme are shown in

Appendix (A.2) and the purposes of these sub-programmes are described

clearly.

5.5 RESPONSE TO BANDLIMITED GAUSSIAN SIGNALS

The Gaussian amplitude distributed sighals were generated
internally by the Unlversify compu}er. |+ used the random number generator
in the form'of fun;Tlon UTR!, which emgloys the |linear feedback shift
.regisfer technique. Approximafelg 8 ﬁlllion numbers were generated
before the sequence repeats. By setting the arguments (J,K,L) of tThe
function UTRIl, accordingly, the random numbers generated can have either
a uniform probabllity distribution in the range 0.0 to 1.0 or a Gaussian
probablll+y distribution in the range -6.0 to +6.0 with unit variance.

The algorithm for the random number generator could be written

in the form,

X = UIRI J,K,L). A.

where X = .a real variable which will contain the
random number generated.
J = An integer which defines the stream number.

There are 4 possible sequences of random

numbers, these are obtained by setting

J ='I, 2, 3and 4. J = | to the time inverse

of J = 4 and J = 2 Is the time Inverse of J = 3,
K = an integer variable which controls the

distribution of the random numbers. |[f K = 0O,

the random numbers have a uniform probability
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distribution in the range O to I.o.
L |f K # O the random numbers have a Gaussian
probability density function in the range
-6.0 to +6.0 with unit variance.
L = an integer variable which contains the

randow number generator.

Band limitation of the Gaussian signals was easily achieved by
passing these random numbers thrcugh a digital low pass filter having a
relatively sharp cut-off frequency. The design of this type of digital
filter is described later separately. The filter used has the gain
characteristic shown in Figure (15). The filter characteristic is down
3 dB at 3.1 kHz, and that is why we call the bandwidth of the filter

as 3.1 kHz. The filtering was accomplished by convolving the input

signal samples which we wanted to be filtered with the impulse response

%

samples of the filter.

DYNAMIC RANGE OF C.F.D.M.

The input was a flat band |imited Gaussian signal, bandlimited
to 3.l'kHz, sampled for the simulation at 40 kHz. A wide range of about
75.0 dBm input was applied to the C.F.D.M. coder and the decoder signal
to noise ratio in dBs, against input signal power in dBm were plotted
as shown In figure (16).

|+ offers a maximum signal to noise ratio of 21.0 dBs and the
dynamic range of 50.4 dBm for 16.5 dBs SNR.

Waveforms for the Input x(+) and y(+) signals are plotted in
Figure (17). This can be compared with the response cf J.A.D.M. shown

In Figure (25). The tracking ability of C.F.D.M. is better than J.A.D.M,
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5.4.1

3.4.2
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CALCULATIONS OF SIGNAL-TO-NOISE RATIO (SNR)

The;é,afe several ways of calculating signal to noise ratio (SNR)
achieved by the system. Some resecarch workers in this field have
calculated SNR before the final filtering in the decoder, some after
the final filtering. Some have performed the calculation of SNR by
filtering the error waveform in the encoding side. |In our analysis the
calculation was made In frequency domain, following the definition of
SNR described later. F.F.T. algorithm rigorously used calculating the
D.F.T. (Discrete Fourier Transform) of the time signals. The programmes
written for the calculation of SNR is shown in Appendix (A.2) and its
functions were explained. This method of calculating SNR will be used

throughout the work.

DEFINITION OF SNR

The signal to noise ratio (SNR5 was definad as the ratio of the
input slignal power to the power in the noise signal calculated over the
message frequency band. The noise signal was defined as the difference

between the Input signal and the decoded output signal such that

e(t) = x(1) = x_(+) | e eeeneaees (52)

DEFINITION OF D.F.T.{Discrete Fourier Transform)

Since the manipulation of SNR was carried out in frequéncy domain
and made use of the F.F.T.(Fast Fourier Transform), it is worth while
here to recall briefly the D.F.T.

The D.F.T. of a set of N numbers Ik » K=20,1, 2 cese N - |
js a set of N Fourier coefficlients Gl’ 2 =0, I, 2 voeseasessss N - |
defined by the expression

N=-|
G, - z g, e JZHKQ’/N, 2 =0, 1, = ....N=-l oiiaen (53)

K=0
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and its inverse transtorm is

e s (54)
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THE F.F.T.

The fast fourier Transform(IB) is a class of algorithm for
efficiently computing the D.F.T. of a sequence of data samples. [t
great!ly reduces the number of computations required to calculate The

fourier transform of a set of numbers on a digital computer.

THE ALGORITHM FOR THE CALCULATION OF SNR

There are two sets of signal samples that we are dealing with in
our calculation of SNR. These are the input signal x(+) and noise
signal e(t), which are defined earlier in analysis.

Suppose the spectrum of x(1+) and e(+) are attainable by taking

the F.F.T. and denoted by

«(+) 5T xen
o(t) 5T E()
Thus,
And - {2TKL /N _
X£ = z xK eJ » R':O’ I, 2 s 000 N-I * e e 0o (55)
K=0
and
= -J2rKe/N
E, - Z~e'< ¢ , 20, I, 2 «.... N-I (56)
K=0

where N is the number of signal samples under consideration.
(NOTE: N Is made equal to 2" where n is any integer, so that the F.F.T.

algorithm can operate on the signalis)

S S — e mm —— —— -




3.4.4-1 ALGORITHM FOR INPUT SIGNAL POWER CALCULAT ION

mm

Though the low pass filter used in the simulations had a relative
sharp cut-off frequency at 3.1 kHz, the usec of F.F.T. in the design of
the filter, allowed the lowpass filter characteristic to extend up to
half the sampling frequency as shown in Figure (15). To pretend the low-
pass filter had a rectangular sharp cut-off at 3.1 kHz, the input signal
pover is calculated up to 3.1 kHz band. Since the D.F.T. of a real sequence
of time signals gives a two sided spectrum, symmetric about (N/2) + |
sample, the calculation of the total signal power can be made by using
the one side of the spectrum and multiplying the result by fwo except

for the first sample of the spectrum.

Suppose the sampling frequency is fs and there are N frequency

samples, then the eiementary frequency spacing between each frequency sample

— - gt L b — -—rg— = —-—-—-—l-———-- - S ——F— S SE—_— . L— T —————

is

fs

Af = "N"::I HZ e s e s s @ s o0 e 00 @ (57)

| the frequency band of the méssage signal is from O - ch’
then this frequency interval must contain a certain number of elementary

frequency band, in the sense of our treatment of variability.

Therefore, the number of frequency band can be calculated as,

messa
M = ge band .l

elementary freq. band

"
O
N

.AT- + I Y EEERE RN I I I BRI A A _ (58)

Thus the algorithm for calculating signal power using single sided

spectrum Is,

2 ! 2 |
s = 2.0 Z R 3T e PT(e DY O ¢
L=

— ————— —— e e




3.4.4-2

5.4.5.

5.5

5.6

56
ALGORITHM FOR NOISE POWER

Noise power is calculated from the error spectrum E_, by taking

R‘?
only the frequency components that reside in the message frequency band
as previcusly described. Therefore, following the same reasoning the
algorithm for the calculation of noise power can be written as,

5 M

N, = 2.0 Z B + | EO]% ..., (60)

2=

SIGNAL TO NOISE RATIO EQUAT ION

From the definition, SNR may be calculated from the relation

SNR = 10.0 log, Cm ) 61

STEP RESPONSE OF C.F.D.M.

A step input of 39.5 volts was applied to the coder. The input
stayed .at 0.5 volt for the first 3 clock periods and the input stepped

up to 39.5 volts. The magnitude of this step is the same as that

used by Winkler in his arTiclég). Figure (18) shows the step response of

C.F.D.M. (6) clock periods are taken to catch the input step demonstrating
its fast response. |t has a faster response and the overshooting is less
than J.A.D.M. and H.1.D.M. After 8 clock perlods, it hunts the step

input with a minimum step provided for the system. It retains the basic

] 0 1 O I O ... pattern while tracking the steady input of the step.

R - N —

——

STEP SIZE DISTRIBUTION OF C.F.D.M.

Figure (19) shows the step size distribution of the C.F.D.M.
system. Input signal is bandlimited to 3.1 kHz, at the sampling rate of

40 kHz, having The gaussian amplitude distribution with zero mean.

Input signal level is about 3 dBm. The step size distribution has a
symmetry about the zero and follows the statistical behaviour of the

Input signal which is very essential. |+ demonstrates the multi-
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5.7
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level led nature of the step size dictionary achieved with just two

bit memory in our C.F.D.M.

ESTIMATION OF POWER SPECTRUM

This work has been done to analyse the distortion power spectrum
of the C.F.D.M. coder. Since we are dealing with finite data Iengfh{
in pur'analysia, the spectrum we are getting by taking the fourier
transform of this set of data will not be a true spectrum of the actual
signal under investigation. Why iIs this so? This can be easily explained
by realising the behaviour of the finite length data.

To Investigate into this; it is necessary to discuss the convolution
proparties of fourier transforms. Supposing we have a signal which is
the product of two other s?gnals,

x(t) = y(+) . c(+) - ceseccans coesasas (62)

The fourier transform of x(t) will gl@e

Xf) = J x(1) e 2T g4 . cecas (63)
+00
= J y(t) . c(t) e JAMT G s, (64)

0

c(t) can be substituted in terms of its fourier transform c(fo)

in equation (64).

+004 e

X)) = H yit)  C(f ) e~J2m(f-15)t df b eeenen (65)

- 0D
=00

Interchanging the integral we have,

+ 0o

= Y(f-
X(f) I (f fo) C(fo) dfo teevees cecs e (66)

e OO
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This relation in which Y(f) and C(f) are interchangeable, is commonly

expressed syﬁbolically as,

XUf) = Y(f) * C(f) ieiieessecenncran (67)
The implied operation (*) on Y(f) andtf(f) is calied a convolution.

Similarly it can be proved also that if

XCF)Y = YUf) . CUf) ieeeesevessssssssons  {(68)
Then,
+00
X(+) = J v(it=-1) c(t) dt cessescesensensnens (69)
x(1) = y(t) * c(+) ot teeeeceenseseensena (70)

Thus, If signals are multiplied in time domain, their respective specira
are convolved with one another in frequency domain. Similarly,
multiplication of frequency spectra Implies convolution of the Time
signals.

Now let us use this property of fourier transform to explain our
problem. We are now provided with a finite length of data x(t). This
data can be cdﬁsidered as The product of the actual infinite length of
data y(1) with a récTangular window function c(1) of finite length T.

See Figure (20). Hence according to the property of fourier transform
the computed spectrum X(f) will be the convolution of the actual spectrum

Y(f) with the spectrum of the rectangular window function C(f).

Since c(+) = | |T| < T :
ceesssans (71)
= 0 l'rl > T
Where T is the length of data.
C(f) can be readily written as,
c(f) = =nmfT (72)

f

where IsT zero crossing is at f = the bandwidth of the spectrum of

L}
T’
rectangular window C(f),
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Due to this convolution effect of the actual specirum with the
spectrum of Pec%angular window, the spectrum samples in Y(f), whose
frequency spacing is smaller than the bandwidth of C(f), will not bve
resolved. This can be greatly improved by choosing a longer length
of data T, since the bandwidth of the spectrum C(f) is inversely proportional
to the data length. But still there is some disadvantage of the rectangular
window. The spectrum of it has relaTiyely jarge sidelobes. Though the
resolution of the spectrum may be finer, the detalls of the true specirum
of Y(f) will not be restored agaln due to the effect of convolution of
the spectrum Y(f), with +he spectrum having high sidelobes. However, In
analysing the signals, it is necessary that the details of the true
spectrum of the signal should be brought back,somehoﬁ, otherwise mis-
interpretation is likely fto be made on- the signal under analysis.
Therefore, the estimation of power spectrum becomes a very important
task. '

In our case we are engaged with making estimations of power spectrum
of random signals such as distortion noise signals and the random Gaussian
input signals. From the definition, it is understood that the power
specfrum.of a randém signal Is the average of the power per unif
f requency band. Clearly from the facts we have just described, obscurring
of the spectrum is expected, having some errors in the estimated mean
power (variance) of the signal and therefore 1t is necessary to take an
average of the variance over a number of spectral estimates, to reduce
the error.

There are many ways of taking the average of the variaﬁce over a
large number of spec+éal estimates. The averaging of the spectral
estimates may be done either in time or in frequency domain. One of
these methods will be adopted in our analysis. A combination of time
and frequency averaging method was used for oﬁr analysis. This was

particularly achlieved through the use of lag window.
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METHOD OF ESTIMATION OF POWER SPECTRUM

For the estimation of pcwer spectrum of the signalé X(1) and
nq(T) defined in Section (2.14) the following method is adopted and
all along the process, F.F.T. algorithm will be used.

Firstly, the F.F.T. of the signal éample was taken and the power

spectrum was calculated. This power spectrum differs from acfui”épecTrum'

rlar—
————

and therefore the need for the averagina of the variance over a number
of spectral estimates were realised. This had been achieved by making
use of the convolution property of the fourier transform. The auto-
correlation .function for the same data length was calculated via the
inverse F.F.T. of the power spectrum we had manipulated. Then the
autocorrelation function was multiplied by a +ime window function,
specially chosen for +hé purpose. There are several types of lag

(19) are shown in Figure (21)

windows to choose. Two types of lag windows
together with Thefr spectral window functions. The nature of the spectral
window In these two pairs Is the same, having sidelobes 1% to 2% of the
helght of the main lobe. The major differences are that the highest
height of sidelobe of the "HAMMING" spectral window Is |/3 of the highest
height of side lobe of "HANNING" window in frequency, and that the
sidelobes of "HANNING" window fall off more rapidly than those for the
"HAMMING" window. With an idea to reduce the effect of obscur ing the
spectral estimates by the sidelobes of the spectral window, a HAMMING

LAG WINDOW having the same length as the data was selected for our case.

The equation for this type of lag window is,

w(t) = 0.54 + 0.46 cos (%I- |T[ < T.
cesosans .o (73)

= 0 |t > T
where T is the length of data samples,

|+ has the spectrum of

(F) = 0.54 W () + 0.23 W (f+20) + W (f - L (74)
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The multiplied auto-correlation function was then fourier

transformed by using F.F.T. and the resulting output gave us the finally
averaged power spectrum estimates. Averaging or the smoothing actlion
was achieved by replacing each spec+%uﬁ estimate by a linear sum of the
estimate and tThe ftwo adjacent estimates, with weight 0.23, 0.54, 0.23

of the HAMMING spectral window.

INPUT AND NOISE SPECTRA OF C.F.D.M.

Using the estimation of power spectrum technique just described,
we have analysed the Input and noise power spectrum of the C.F.D.M.
and these are illustrated in Figure (22) and Figure (23). Noise signal
is defined In equation (18) and the input signal power and noise power
specfré are calculated up to 10 kHz, since the actual highest frequency of
Interest is 3.1 kHz. Noise in C.F.D.M. is flat inside the input ffequency
band and since the noise iIs measured after the final filtering in the
decoder, the noise spectrum is tapered off after The\message band. Al

the spectra apply for the input power level of 3 dBm.

SIMULATIONS OF JAYANT'S A.D.M.

One bit memory adaptive delta modulator invented by JAYANT in
March 1970, was also simulated. In this type of coder, the adaptation
of step size Is based on the comparison between the two latest binary
levels Lr and Lr-l' For the simulation of this coder, adaptation
algorithm described in section (2.8.2) has been used. The simulation
s a special type of C.F.D.M. coder, but with 'A' parameters, different
from that of C.F.D.M.‘ The A parameters used are‘AI = A2 =*--K%§

and A3 = A4 = 1.5 A minimum step size of +0.03 and the maximum sTep

size of 45 are used.
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3. 11 STEP RESPONSE OF JAYANT'S A.D.M.

A sfepfinpuf was applied to the coder. The inputwas 0.5 volt
for the first three clock periods, and stepped up to 39.5 volts, as
used in Winkler's H.l1.D.M. coder to be compared. The graph of the
step response of JAYANT's A.D.M. is shown in Figure (24). Minimum
step size of |.0'unit is used. |t takes about 8 clock periods to cope
with the step input. |+ has a relatively faster response than L.D.M.
However, the step response shows that while tracking the constant level
of the step input, (hunting periods), the sfgp size does not always
assume the smallest possible value. This is an inherent feature of this

type of coder. The stability of the coder seems to be very poor.

3.12 RESPCNSE OF J.A.D.M. TO BAND-LIMITED GAUSSIAN [INPUT

The input is a Gaussian signal band-limited to 3.1 kHz at the
sampling rate of 40 kHz. Input range of 75 dBm is applied to the coder
and the graph of decoded signal to noise agalnst input signal power is
plotted as shown in Figure (25). Maximum signal fo noise ratio of
21 dBs Is achieved having the dynamic range of 50 dBm at 16 dB SNR.

Graph for input signal x(t) and integrated output signal y(t) is

i |lustrated in Figure (26), at the input power level of 3 dBm.

5.13 IMPULSE RESPONSE OF J.A.D.M.

W

Impulse of 2.5V having the width of eight clock periods is applled
t+o the Input fo the J.A.D.M. Figure (27) shows the computer generated
waveforms of the impulse input and the reconstructed signals. The
representation of an impulse is inferior to our C.F.D.M. sysftem. It
+ook almost the same amount of delays to represent the impulse, but the
hunting characteristic of J.A.D.M., after the impulse, Is very poor.

Due to this fact, the stability of the J.A.D.M. system seems to be poor

(13)

compared o our C.F.D.M. I+ is this inability of J.A.D.M. to follow

sudden changes of input signal level, and would introduce the 'twinkling®

cffect when coding television pictures.
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3.14 NOISE SPECTRUM OF J.A.D.M.

—___W

Figure (28) displays the noise power spectrum of the J.A.D.M.
system. Input signal power spectrum is shown in Figure (22). Noise

reduction of J.A.D.M. can be realised when compared to LDM of Figure

(36). The noise power is neariy p}OporfionaI to the input power,

unlike linear d.m., and results in the large dynamic range displayed
“in figure-28. : R R

- ——

315  STEP SIZE DISTRIBUTION OF J.A.D.M.

The distribution of step sizes utitised in the simulation of
J.A.D.M. is shown in figure (29). |t is symmetric about the mean of
zero, and has the similar statistical property as the input signal.
|+ offers a wide range of step size excursion though only one hit

memory length is used for the adaptation control.

3.16 SIMULATION OF WINKLER'S H.l.D.M.
High Information delta modulator'® ’ proposed by Winkler, M.K.,
in 1963 Is also simulated. It requires three binary levels fo contfrol
impulse steering circuit of H.1.D.M. Due to the generality of
principles of C.F.D.M. coder, H.l.D.M. has been simulated employing
algorithm developed for our C.F.D.M. coder. For this simulation a new
set of A parameters are used with the magnitudes of Al = A2 = -0.5,
Ag = 1.0 and A, = 2.0. The minimum and the maximum step sizes are |imited

to +0.05 and +5.0 volts respectively. Tbroughout the simulation ideal

integration has been used.

3.17 STEP RESPONSE OF H.1.D.M.
The same value of step is appllied at the input to the coder.
Step helight of 39.5 volts has been followed after the constant input of
0.5 volt Is appllied for three clock instants. The minimum step size
of 1.0 unit volt Is used and the graph of the response of H.l.D.M. to
this input Is shown in Figure (30). [+ increases the magnitude of step

sjze exponentially and it takes 6 clock periods to catch the input, but

i+ overshoots quite high and the step size oscillates around the constant
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input level of the step voltage. It finally hunts the input with a

basis | O 1 O | O pattern. |[ts response is quite fast compared to

LDM or even faster than JAYANT's ACM.

5.18 |MPULSE RESPONSE OF H.[.D.M.
Figure (31) represents the impulse response of H.l1.D.M. Input Is
a pulse of amplitude 2.5V and width 8 clock periods. It takes about (8)
cloék periods 1o track the input pulse. The representation of the
impulse is quite good with a bit of ovegshoof. I+ has a large under-
shoot after the impulse, but it later oscillates with a 1 01 O}t O

pattern and becomes stable. The stability is better than J.A.D.M.

3.19 SIMULATION OF L.D.M.

To compare the performance of linear del+a modulator with other
adaptive delta modulators, @ baslic delta modulator, with a fixed step
slze whose sign depended on the sign of the last binary level
transmitted, was simulated. Fortunately, the simulation of the linear
delta modulator becomes easier, since the simulation of linear delta
modulator is the special case of the C.F.D.M. coder and the programme
written for the simulating C.F.D.M. has been used with the A parameters
having the magnitude of AI = A2 = -]1,0 and A3 = A4 = [.0. The
simulation used an ideal Iintegrator [n the feed back loop.

The decoding was done in the encoding side of the system, by
passing the output of the integrator in the feed back loop through a
low pass filter, whose cuf-off frequency is the highest frequency
component in the message band.

The flow chart of the main programme for the simulation of |inear

delta modulator isasshown In Figure (39)a. A minimum step size of

+0.03 volt was used in the simulation.
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STEP RESPONSE OF LINEAR DELTA MODULATOR

The step response of the L.D.M. has been studied. The input
is 0.5 volt for the first 3 sampling periods, and it then steps up to
39.5 volts. This value of the step is selected To compare with the
response of Winkler's H.1.D.M. which uses the same value of the step
function. The aloorithm for generating the step function lIs shﬁwn in
Figyre (32). The computer drawn graph for the step response of |.0
unit was chosen for the simulation.

Lincar delta modulator increases or decreases its step size by a
unit factor to the initial step size, at the reception of one or zero
kvel binary output. [+ takes L.D.M. 40 clock periods to catch up the
step input, verifylng the slow response of L.D.M. to rapld change of

input level. The hunting characteristic of L.D.M. isa 101 O

pattern, with a minimum step size of |.0 unift.

RESPONSE OF L.D.M. TO BANDLIMITED GAUSSIAN INPUT

Bandlimited Gaussian is applied to the input of linear delta
modulator. Input is bandlimited to 3.1 kHz at the sampling frequency of
40 kHz. Minimum step size of 0.03 volt is used for the simulation.

The maximum signal to noise achieved by L.D.M. is 2! dBs. It offers a
very narrow dynamic range of 7.5 dém measured at 16 dBs SNR. This is
i1lustrated In Figure (16). Waveforms of x(+) and y(t) signals for linear

delta modulator is shown in Figure (33),

IMPULSE RESPONSE OF L.D.M.
Since only plus or minus one unit of step size can change at every
clock Instant in linear delta modulator, the representation of an impulse

s very very poor. Figure (34) shows the impulse response of L.D.M.

The slow response of L.D.M. is verified.

STEP SIZE DISTRIBUTION OF L.D.M.
STEP SIZE DISTRIBUTION OF L.D.M.

Figure (35) displays the step size distribution of L.D.M. Only two

levels of steps are being used throughout the simulation. This

demonstrates the non-adaptability of L.D.M.
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3.24

NOISE SPECTRUM OF L.D.M.

Linear delta modulator is grossly overloaded at the input signal
level of 3 dBm. Simulation of L.D.M. uses step size of 0.03 volft.
Noise power in L.D.M. is as high as input signal power. This explains
why we have very low signal to noise ratio at this input level in
Figure (16). Noise power spectrum of L.D.M. system is plotted in
Figure (36). It Is plotted up to 10-kHz, since the highest frequency

of interest is 3.1 kHz for a bandlimited gaussian input signal.
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CHAPTER 4

L D1SCUSS 10N

A new type of instantaneously adaptive delta modulator, named
"constant Factor Delta Modulator", abbreviated C.F.D.M., has been
presented. The principles of C.F.D.M. characterised by the use of a
memory length of iwo and its special kind of adaptation logic, which
forms the basis of the development of the C.F.D.M. system, has been
described. C.F.D.M. coder offers finer Interpolation for a given bit
rate by producing more feedback step sizes. Analysis is made of the

dynamic range, companding law, and stability of the system. Comparison

cf C.F.D.M. with logarithmic P.C.M. has been made. |t has an equivalent

+to 4 bit A-iaw PCM. Performance of C.F.D.M. has been compared with

|.D.M. d ' o e

Tl
h —m—
o a

J.A.D.M. and H.

—errr— P M — _— e

—_— | —rman

i S ————

Compared to J.A.D.M. it offers.a marginal Improvement in dynamic
range and has approximately the same signal to noise ratio - peak sigha!
t+o noise ratio of 21.0 dBs is achieved by C.E.D.M. For signal to noise
ratio, 6 dBs beloﬁ the peak value, the improvements in the dynamic range
of C.F.D.M. ére about 43 dBm, having the same peak signal to noise
ratio when compared to linear delta modulator.

Companding is achieved by producing more feedback step sizes as
mentioned previously. Although it has only three bits to use for the
control function, it offers a very wide dynamic range of step sizes,
due to the adaptation constants used and the multipler circuit in the
feedback loop. The stability of C.F.D.M. coder, is confirmed by having
t+he best ever seen impulse response. Unlike J.A.D.M. it removes the
undersirable oscillations usually occurring after the representation
of the Impulse. Large osclllations of the step sizes between the

largest values, are not desirable because they increase one form of

granular noise in the flat areas of the picture when coding video signals.
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The step response of C.F.D.M. is very good. Its response Is as

fast as any instantaneous adaptive delfa modulator designed for

encoding T.V. signals. |t removes the cbjectionable hunting characteristics,

+he effect of which appears as a twinkle in the picture after the TV
signal has changed rapidly from black to white and vice versa. Although
no subjective tests have been made with our C.F.D.M. system, this

objectionable twinkling effect should be removed. When the television

signal makes a rapid change, the error signal increases. This would not

cause any problem to the viewer, since the eye can folerate a large amount

of errors in the picture areas, containing sharp detailed edges. The

effect of the response of the C.F.D.M. overshooting the video signal

may not be serious because the overshooting is only for a short while,
well within two or three clock periéds-and the response tracks the signal
-after such a length of time has elapsed. Further transients will be

averaged by the eye and their effect should only mitigate the dimenstion

of the spot size.

Analysis made on the tolerances of 'A! parameters of Thé.C.F.D.M.
coders indicates that the 'A' constants can have tolerances of the order
of 0% which results in a degradation of signal to noise ratio of the
order of 2 dBs. The persistent effect of a single channellerror on
the decoded signal has been studied in section 2.18. The severity of
the effect of this error was found to be crucially dependent on the recent
adaptations prior to the event of the error. |t is recommended that a
leaky integrator should be employed to mitigate the accummulative
effects of these errors. Spectrum analyses have been made for the Input
and noise spectra of the system. The noise reduction of C.F.D.M. has
been demonstrated.

From the results obtained and the znalyses made, though there
is the lack of subjective evaluation of the coder for video signal

encoding, the C.F.D.M. seems tc be promising for coding televlsion

pictures.
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