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SYNOPSIS 

A new model of an instantaneously adaptive delta modulator called hero 

a "CONSTANT FACTOR DELTA MODULATOR", (abbreviated C. F. D. M. ) has been developed 

and the selection of suitable constant factors (adaptation constants) with its 

adaptation logic has been described. 

The basic delta modulator has been adapted to give an improved performance 

by introducing a small memory and prediction method in the feedback loop 

thereby enabling the coder to adapt to the instantaneous variations in the 

analogue input signal. This C. F. D. M. model of adaptive system adapts its step 

size, at every sampling instant r, as a result of the detection of the four possible 

binary groups formed from the last three binary values transmitted. The adaptation 

constant which is the ratio of-the present step size mr, to the previous step 

size mr_l, can have, at any sampling instant, one of four values with a magnitude 

of Ai; A2, A3 and A4, corresponding to the four different possible groups formed. 

The polarity of the present step size is the same as the present binary value Lr. 

The effect of this C. F. D. M. system is that for a given decoded signal to 

noise ratio, the necessary bandwidth of the transmission channel is reduced. 

The C. F. D. M. described here gives an improved overall coding characteristic and 

removes an objectionable hunting characteristic compared to the one-bit memory 

adaptive DM by JAYANT(13). It offers wider dynamic range for the bandlimited 

Gaussian Input. The results are compared with other similar schemes on adaptive 

delta modulators and computer plotted graphs are presented whenever necessary. 

From these results and responses, the C. F. D. M. seems to be promising for encoding 

video-signals. 

Several computer simulations have been made for the design of the Constant 

Factor delta modulator, JAYANT's CODER, WINKLER's H. I. D. M. coder and linear 

delta modulator. The performances of these coders have been compared. A 

considerable number of computer simulation results are presented which relate 

to digital low-pass filter and the estimation of power spectra. 
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'A NOTE ON PUBLICATION' 

A model on an Instantaneously Adaptive DaIta- 

Modulator, described in Chapter2, has been published in 

Electronics Letters, vol. 9, No. 4, pp 96-97,22nd Feb., 1973. 



CHAPTER 

INTRODUCTION 

The basic principles of delta modulator are well documented in 

the literature -3ý. therefore it will be described here, briefly, as 

one of the simplest and cheapest ways of encoding analogue information 

into a digital form. It is a closed-loop sampled data system producing 

a "-staircase" approximation to the analogue input signal, at the error 

point, if the integrator used on the feedback loop is an ideal 

integrator. Delta modulator can also be regarded as a one-bit differ 

ential P. C. M. because it essentially transmits either of the two codes, 

a positive pulse or a negative pulse, at every sampling instant, 

corresponding to a positive or a negative step of fixed amplitude, the 

sign of which is the sign of the pulse transmitted. A schematic diagram 

of a linear delta modulator is shown in Figure M. 

Despite the attractive simplicity of a linear delta modulation 

system, it has its drawbacks also. One of the major disadvantages of 

linear delta modulator is its limited dynamic range. These limitations 

are due to the two inherent types of distortion noise introduced by the 

system. Small or insufficient values of step sizes introduce "slope 

overload noise", that occurs during the large signal slope when the 

system cannot follow the input signal, by transmitting along a sequence 

of 'ones' or 'zeros'. The finite step size of the system introduces 

another type of noise called "granular noise", when the system is 

tracking the signal, during the small signal slope, by producing an 

alternate pattern of one and zero, at the output. Hence linear delta 

modulator has only one peak signal to noise ratio point, offering a 

very narrow useful dynamic range. ' Although the dynamic range can be 

improved by increasing the clock rate of the system, the limitation 

on the channel band width in every communication system has limited the 

maximum clock frequency which consequently limits the dynamic range. 
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Overload characteristic curves 
(1-3) for the linear delta 

modulator have the matching characteristics as that of the speech signals. 

Due to these drawbacks, and the overload characteristic of linear delta 

modulator, it has been confined to coding speech only. 

Therefore increasing the dynamic range, for a given bit rate, 

becomes highly essential, so that the limitations imposed by the linear 

delta modulator have been removed and to open wider and useful application 

of the system. To meet these requirements, and to operate delta 

modulator at relatively low bit rate, several types of adaptive delta 

" modulators 
(4-14) have been proposed. Such adaptation or "companding" 

can be achieved either at a syllabic rate or instantaneous. The word 

'companding' is the combined word for signal dynamic range 'compressing' 

at the encoder and 'expanding' at the decoder. 

Syllabic compandors 'are those which are characterized by 

'continuous' adaptation of the step size, where the gain of the 

adaptation circuitry varies in accordance with the level of the input 

signal but is substantially constant over a number of cycles of the 

input signal. The step size is controlled by the envelope of the analogue 

signal extracted from the output binary signdl. ' Such types of 

syllabic compandors are reported in the literature 
(4-7) 

Instantaneously adaptive delta modulators incorporate discrete 

adaptation of step size at every sampling instant. Most of the 

adaptation algorithms are based on the principle of doubling, halving 

or otherwise changing the step size when a string of consecutive 

'pulses' or 'no pulses' are detected in the binary output signals. 

These types of adaptive coders are widely described in references (8-14). 

Instantaneously adaptive coders are developed for coding video 

signals. The reasonisthat it is desirable to adapt the step sizo of 

linear delta modulator according to instantaneous signal value rather 

than an average value, as far as coding television signals is concerned. 
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Another interesting feature of instantaneously adaptive coders 

is their resistance to mathematical analysis 
(8,11,12) 

, which means that 

they are intuitively conceived rather than designed. None of the 

papers In the literature can achieve meaningful analysis except for those 
(20) 

concerned with most simple input signals. 'Moreover the analysis is 

further complicated by the variety of performance criteria. These 

criteria depend upon the type of signals to be encoded, the properties 

of the transmission channel, etc. 

In this piece of work, the main aim is to overcome the limitations 

of linear delta modulator and to design an instantaneously adaptive 

delta modulator, that would be able to encode television signals. As 

a result we have presented here a new type of instantaneously adaptive 

delta modulator called "Constant Factor Delta Modulator", which is 

named after the behaviour of the system. 

lt differs from the other schemes on adaptive delta modulator 

in that the adaptation of the new step size is made when certain groups 

of binary patterns are detected. Method of grouping of binary patterns 

according to their characteristics enables us to indicate the possible 

intermediate state of the system, rather than the overload and the 

idling states. 

The analyses have been made of the characteristics of C. F. D. M., 

dynamic range, compression law, quantization noise, and overall 

transmission characteristics, etc. 

The following chapters will describe in detail the development of 

our C. F. D. M. system and the presentation of the results from the 

computer simulations of the C. F. D. M. 

4 
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CHAPTER 2 

f CONSTANT FACTOR DELTA MODULATOR 

2.1 INTRODUCTION 

Many types of instantaneously adaptive delta modulators 
(8-14) have 

been designed. In these systems, the step size is changed significantly 

at every sampling instant in accordance with the present and the previous 

binary levels in L(t) waveform. Most-of-hem try to adapt the new step 

size when a consecutive 'ones' or 'zeros' are detected, or when a change 

of the polarity of the binary level occurs, at every sampling instant. 

Though all of these adaptive delta modulators offer some improvements to 

a certain extent, over the linear delta modulator, they do not seem to 

have used all the Information available in the L(t) waveform to be used as 

a control function for the adaptation of new stop size. 

Therefore, one should realise that a better adaptive system is to 

accommodate a sensing device which would be able to detect not only the 

occurence of the string of consecutive 'ones' or 'zeros' for the indication 

of an overload, but also provide a special care, such that the overloading 

is not encouraged or removed as quickly as possible if the overloading has 

occurred. It should sense also the immediate state after the overload 

condition by the detection of a sign reversal just after the sequence of 

'ones' or 'zeros' has been detected and should adapt the step size when 

the system is in an idling condition, *so that the step size converges to 

a minimum allowable value. 

In an attempt to achieve the above requirements and to overcome the 

limitations of the linear delta modulator which we have discussed earlier, 

we have developed a new instantaneously adaptive delta modulator called 

here by the author a "Constant Factor Delta Modulator'f24)The following 

sections will precisely describe its development and the principles of 

C. F. D. M. 
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Prior to the description of the development of C. F. D. M. system 

we have here-a few "assumptions" to be made. It is assumed that there is 

no error in the transmission channel. This means that the encoded binary 

signals which are transmitted through a noisy channel are correctly received 

before the decoding, it the receiving end. It has been assumed that an 

ideal Integrator is used in both the local decoders in the transmitter 

and the receiver. 

2.2 DESCRIPTION OF C. F. D. M. 

The C. F. D. M. coder is shown in figure (2), x(t) is the analogue 

signal and L(t) is the binary output of the coder. The L(t) signal is 

passed through a two-bit shift register and the outputs of this register, 

together with the present output from the coder, are applied to the 

adaptation logic. Thus the coder adapts itself according to the present 

binary level Lr and the previous two binary levels Lr-l and Lr-2'In the 

L(t) waveform. The subscript r denotes the rth sampling instant, and r-I 

the previous sampling instant, etc. The system provides a memory length 

of two for the ease of design feature and also to take into account the 

correlation existing In the subsequent input signal samples. 

Thus, the logic system is confronted with 23 = 8, possible binary 

patterns as shown in the table - I. Since each binary level has its own 

complementary level, these can be conveniently reduced to four groups 

which indicate the possible state of the system as shown in table- 2. 

Therefore, in general for a memory length of m bits long, the number of 

possible groups that could be formed is 

N 2n-I . 
........... 

(1) 

where n=m+ 

2.2.1 POSSIBLE GROUPS OF BINARY PATTERN 

As shown in table - 2, the groups can be classified as follows. 
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PATTERN 
NUMBER 

Lr L 
r-I 

L 
r-2 

0 0 0 

2 0 0 

3 0. I I 

4 0. 1 0 

5 I 0 0 

6 I 0 

8 I I 0 

TABLE I. POSSIBLE BINARY*PATTERNS FORMED. 
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ADAPT- 
GROUP NAME OF ATION PATTERN L Lr-I Lr-2 
NUMBER GROUP CONSTANT NUMBER r 

4 0 I 0 

I IDLING AI 

6 I 0 

3 0 
2 SIGN 2 

REVERSAL 5 1 0 0 

2 0 0 
SEMI 

3 A OVERLOAD 3 
8 I 1 0 

1 0 0 0 
OVER 4 OA A 4 D L 

I I I i 

Table 2. POSSIBLE BINARY GROUPS FORMED. 
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2.2. Ia GROUP I 

It is called the alternating polarity group or idling group and often 

occurs when the y(t) signal is trying to hunt a slowly varying or a steady 

slope input signal x(t). Pattern No. ' 4 and 6 are grouped together since 

one forms the complementary to the other. 

2.2. Ib GROUP 2 

The sign reversal group is characterized by the previous two bits 

having the same binary levels and different from the present binary level. 

As shown in pattern numbers (3) and (5), the presence of group 2 pattern 

indicates that the coder is coming out of the overload condition and is 

beginning to reduce its error voltage. 

2.2. Ic GROUP 3 

It is called the semi-overload group as the coder appears to be 

starting to form an overload pattern of alI ones or alI zeros. Pattern 

numbers (2) and (8) are regrouped together. 

2.2.1d GROUP 4 

It Is classified as an overload group. This is characterized by 

the inspection of pattern numbers (I) and (7). In these patterns all 

the three binary levels are "zeros" or "ones" indicating that the system 

is overloaded by the input signal having a negative or positive slope 

respectively. 

2.2.2 PRINCIPLES OF C. F. D. M. 

Instantaneous companding is achieved in our C. F. D. M. system. The 

basic principle of companding is the compression of the signal while 

encoding and expanding it when the decoding is done to reconstitute the 

original signal. Thus if an expanding function is applied in the local 

decoder of linear delta modulator, the coding will be performed with 

. compression characteristic. The companding is performed entirely in the 



local decoder by changing the step size at the input to the integrator, 

and the expanding function of the local decoder can be explained as 

follows. 

In this C. F. D. M. coder the selection of adaptation constants will be 

made on the basis of the characteristic feature of the groups of binary 

pattern formed in the logic system provided. It therefore follows that 

four different adaptation constants will be provided for four groups of 

binary pattern formed. The wave form at the output of the logic is z(t) 

and has at any sampling instant one of four possible values of adaptation 

constants. The evaluation of the actual magnitude of these will be 

mentioned later. 

If the binary pattern representing the group I is present, then 

the z(t) produces a voltage having a magnitude of AI. Similarly for the 

binary patterns representing groups 2,3 and 4, results in having the 

z(t) with a magnitude of A2, A3 and A4 volt respectively. The polarity 

is the polarity of Lr. 

z(t) Is multiplied by mr_i to give mr which is the voltage fed to 

the integrator. mr_I is obtained from mr by passing it through a one bit 

analogue delay Da. This mr differs from mr_I by one of the four constant 

factors, and hence the name given to this coder. Integration of mr gives 

the feed back signal y(t) which when subtracted from x(t) produces an 

error signal which is then quantised. The output of the quantiser is 

connected to a sample and hold circuit which is implemented with aD 

Flip-Flop, to give L(t) waveform. 

2.3 C. F. D. M. Decoder 

The decoder consists of the complete system in the feed back loop 

of figure (I), such that the received L(t) waveform can reproduce y(t), 

and followed by a low-pass filter network. The job of the low-pass filter 

is to remove the high frequency components in y(t) due to quantization and 

-pass the frequency components contained in the message band to reproduce 

the x(t) waveform. The C. F. D. M. decoder is shown in figure (3). 
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2.4 THE RESTRICTIONS ON 'A' PARAMETERS 

Before we describe the evaluation of the A parameters, we ihtroduce 

some basic bounds on these adaptation constants as follows 

(i) In order to hunt a signal with converging step sizes, the AI 

and A2 parameters have magnitude less than unity. 

i. e. I AI I<1.0 
................. (2) 

IA2 I<1.0 
................. (3) 

(ii) In order to adapt the signal at the semi-overload condition 

and to prevent getting into the state of overloading, it is of necessity 

that A3 parameter should have the magnitude greater than unity, excessively 

I. e. I A3 1>1.0 
................. (4) 

(iii) Adaptation of A4 parameter is reached always after the 

adaptation of A3. This simply implies that there is an insufficiency with 

the A3 parameter and therefore, in order to prevent further overloading 

of the system, it is essential that A4 parameter must be made greater than 

A3. 

i. e. JA4 1>I A3 ................. (5) 

2.5 EVALUATION OF 'A' PARAMETERS 

The c. f. d. m. system is required to accommodate a variety of input 

signals. In this thesis subjective evaluation of the system is not done, 

and it has been explored using well defined test signals such as sinusoids, 

steps, impulse functions and band-limited Gaussian signals. It can be 

intuitively anticipated that the adaptation constants to produce optimum 

encoding performance will be different for each type of input signal. It 

might be possible for the adaptation parameters to be themselves adaptive 

to changing signal conditions, but the solution decided here is to select 

a set of adaptation parameters which give satisfactory results for a wide 

range of types--of input signals. Thus at the outset it is acknowledged 

that these parameters are generally sub-optimum. The values ascribed to 

these parameters were arrived at by a combination of physical reasoning 
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based on. conditions of the encoderb stability, convergence, overshoots 

etc. and iterative procedures. 

The results of the step response are discussed in Section 3.5 and 

displayed in figure 18. When a sequence of identical polarity output 

pulses occur, i. e. the encoder is severely overloaded, it is clearly 

required that the feedback signal y(t) should increase at a rapid rate. 

The A-parameter in this situation is A4 and it is given a value of 2 

because this ensures that y(t) Increases in binary fashion, as it does 

in the Winkler's(9) coder. The coder described by Jayant(16) having 

only two parameters, rather than four, has an adaptation parameter in an 

overload condition of 1.5. The choice of A4 equal to 2 results in a 

step response which rises as fast as that of Winkler, and faster than 

that of Jayant. If A4 is made in excess of 2 it results in larger 

overshoots when tracking random signals. 

From table 2, it can be seen that A3 Is generated when the encoder 

is entering an overload condition. A3 must therefore be in excess of 

unity, and less than the severe overload parameter A4. The physical 

bounds on A2 mu-t be less than one because the encoder is coming out 

of an overload condition, and is less than Al, for the Iätter parameter 

is produced when the encoder does not know whether it is about to be 

semi-overloaded or the prevailing condition will be maintained. The 

above remarks can be summarised by 

A2 < AI < A3 < A4 

and the polarity of these parameters is equal to the sign of the current 

L(t) pulse. 
11 

In order to attach some actual values to these parameters the 

following iterative procedure was adopted fora sinusoidal input signal. 

The decoded signal to noise ratios were computed as a function of a 

particular A parameter while the other A parameters were held constant. 

The results are displayed in figures 4,5, and 6. When Ai >I or A2 > i, 

which is in conflict with the above inequality, the snr became negative. 

kh.: 
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This situation is not shown in these figures. It can be seen that these 

results are not always consistant and that the curves display irregularities. 

By themselves they do not indicate the obvious choice of parameters, but 

when used as a support to the physical arguments presented above they 

enabled the following set of. A parameters to be selected: - AI = 0.9, 

A2 = 0.4, A3 = 1.5 and A2 = 2.0. These parameters which were established 

for a sinusoidal input of I KHz and an encoder clock rate of 40 KHz were 

used for the step response, impulse response and tracking of Gaussian 

signals as described in sections 3.5,2.17.1 and 3.3. They were found to 

give satisfactory results, indeed for step input and pulse inputs, the 

encoder behaved better than other existing systems. Changes in the 

parameters were observed to have small effects. A possible explanation 

of the insensitivity of the pervormance of the system to differences in 

these A parameters may be due to the relatively low ratio of clock rate 

to the highest frequency in the input signal. This is because the input 

signal makes changes at too fast a rate for the full potential of the 

adaptation algorithm to be realised. It is anticipated that at higher 

clock rates the choice of the A parameters would be a crucial factor on 

the performance of the system. This low (fp/Fc2) ratio also results in 

a failure to exploit the CFDM. 

2.6 SELECTION RULES: 

The selection rules which by incirporating some kind of adaptation 

logic would select an adaptation constant at every sampling instant. 

Considering the facts we have just described, the following rules for the 

selection of adaptation constants can be developed. 

Z(t) = AI If Lr Lr_I and 

Lr-I # Lr-2 ................ 
(6) 

Z(t) = A2 if Lr Lr_1 and 

Lr-I = Lr-2 .......... 

I 
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Z(t) = A3 if Lr = Lr_I and 

Lr-I # Lr-2 ........... (8) 

Z(ß-) = A4 If Lr = Land 

Lr-I Lr-2 ........... (9) 

These can also be expressed in Boolean functions from table 2 as - 

`I - r r-I 
LL L+ 

r-2 
LrL 

r-I r-2 ................. 
(10) L 

Z2 = Lr Lr-I Lr-2 + Lr Lr-I Lr-2 
................. 

(II) 

Z3 Lr Lr-I Lr-2 + Lr Lr-I Lr-2. 
................. (12) 

Z4 = Lr Lr-I Lr-7_ 
.+ 

Lr Lr-I Lr-2 
................. (13) 

2.7 ADAPTATION CONSTANTS 

It is desirable to use the different set of suitable optimised A 

constants for different input signal, by doing the three SNR tests again. 

But for the simulation of C. F. D. M. the A constants . ue&are 

Ai -0.9, A2 = -0.4, A3 = 1.5 and A4 = 2.0. 

2.8 GENERALITY OF THE PRINCIPLES OF C. F. D. M. 

The principles of C. F. D. M. can be considered as the generalised 

principles for several types of instantaneous adaptive delta modulators. 

This can be verified by deducting different adaptation algorithms for 

these different adaptive schemes from that of C. F. D. M. For the later 

simulations of all these coders, the following adaptive algorithm were 

derived in terms of the adaptation algorithm of our C. F. D. M. coder, 

having four different adaptation constants for four different binary 

groups formed from the last three binary levels transmitted. 

The same length of memory store will be used as it was in C. F. D. M. 

coder. The only difference was the use of adaptation constants, different 

from that of C. F. D. M. coder, for each of these adaptive coders. This 

shows the sufficiency and the efficiency of the length of memory stores 

used in our C. F. D. M. 
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2.8.1 ADAPTATION ALGORITHMS FOR JAYANT'S CODER (13) 

in Jayant's coder, when a string of two consecutive binary levels 

of the same polarity were detected, adaptation constant P was selected. 

Whenever two unequal binary levels were detected adaptation constant of 

Q =- was selected where P=1.5. The detection process was made for 
P 

only two possible groups formed from the present and last binary levels 

transmitted. 

In terms of C. F. D. M. the two unequal binary levels were detected 

in group I and 2, and the occurence of two consecutive binary levels of 

the same polarity were detected in group 3 and 4. Therefore the 

adaptation algorithm for JAYANT's Coder in tarms of C. F. D. M. algorithm 

can be written as 

Z(t) = Ai = -Q If Lr Lr-i 
and 

Lr_i # Lr-2 
.............. 

(i4) 

Z(t) = A2 -Q If Lr 1 Lr-1 
and 

Lr-i = Lr-2 
.............. 

(15) 

Z(t) = A3 =P If Lr = Lr-I ' and 

Lr-1 ? Lr-2 
.............. 

(16) 

Z(t) = A4 =P If Lr = Lr-I 
and 

Lr_i = Lr-2 
.............. 

(17) 

where P=1.5 and Q= -0.66. 

2.8.2 ADAPTATION ALGORITHMS FOR WINKLER'S H. 1. D. Mý8'9) 

The High Information Delta Modulator (H. I. D. M. ) does not have any 

adaptation of the step-size when a string of two like binary levels are 

detected. However, lt doubles the previous step-size when the three binary 

levels of the same polarity are detected and keeps halving the step-size 

whenever a reversal of binary levels occurs at the output of the coder. 

The requirements of this type of coder can be easily achieved by using 
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the algorithm for C. F. D. M. and by just changing the values of the 'A' 

parameters to match the H. I. D. M. characteristic. Thus the algorithm 

for H. I. D. M. In terms of C. F. D. M. principle becomes 

Z(t) = -0.5 if Lr # Lr-I and 

Lr-I # Lr-2 
............. 

Z(t) _ -0.5 if Lr Lr-2 and 

Lr-I Lr-2 

Z(t) = 1.0 if Lr = Lr_i and 

Lr-i # Lr-2 

Z(t) = 2.0 If - Lr = Lr_ý and 

Lr_I = Lr-2 

2.8.3 

Therefore 'A' parameters of C. F. D. M. coder now have the values of AI 

= A2 = -0.5, A3 = 1.0 and A4 = 2.0. 

ADAPTATION ALGORITHM FOR L. D. M-. 1-3) 

The linear delta modulator increases or decreases its step-size 

by one unit depending on whether the last binary bit transmitted is a 

one or a zero respectively. We can think of linear delta modulator as 

an adaptive delta modulator system which adapts its step size with the 

adaption constants having the magnitude of one. Therefore the 

algorithm for linear delta modulation may be deducted from the adaption 

algorithm of C. F. D. M. as, 

Z(t) = -1.0 If Lr Lr-I 
and 

"Lr-1 
# Lr-2 

............. 
Z(t) = -1.0 If Lr J Lr-1 

and 

Lr_I = Lr-2 
............. 

Z(t) = 1.0 if Lr = Lr-1 
and 

Lr_l Lr_2 
............ 

(18) 

(19) 

(O) 

(21) 

(22) 

(23) 

(24) 
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Z(t) = 1.0 if Lr = Lr- I and 

' Lr-I Lr-2 
.............. 

Hence the 'A' parameters used in C. F. D. M. now have the value of 

Al = A2 = -1.0 amd A3 = A4 = 1.0. 

2.9 C. F. D. M. CHARACTERISTICS 

(25) 

Constant factor delta modulator has a special feature in the way 

it adapts the new step size. A adaptation of a new step magnitude is in 

a constant factor to the previous step magnitude, according to the 

selection rules described in section (2.6). Since the C. F. D. M. coder 

needs at least three binary levels to function as a C. F. D. M. coder, the 

adaptation of step sizes follows the sequence Ai, A, A4 ......... A4-2 

and increases exponentially in response to the sequence of n "ones" 

in L(t). The characteristic of the coder can be evaluated by studying 

the step response of the coder. 

When a step Input x(t) is applied to the coder, the C. F. D. M. system 

transmits a sequence of binary "ones" and the adaptation of step size 

follows the sequence described earlier and therefore for the nth 

adaptation the y(t) signal can be evaluated as 

r=n 
yn = -A ii iA3 A4 2 

............ 
(26). Z 

r=2 

Minimum value of r is 2 because we have assumed an 

initial step size of unity and two binary bits are required before 

the adaptation logic functions 

After the nth adaptation, let the y(t) overshoot the x(t) 

waveform. Therefore at t=n+I instant, yt waveform will have the value 

n-2 Yn+ 1 yn - A4 A1A2 A3 (27) 
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Suppose at t=n+2, if y(t) is still > x(t), y(t) waveform 

becomes, 

n-2 2 
n+2 = yn+I - A4 A1 A2 A3 .......... 

On the other hand if y(t) < x(t) at t= n+2 

then, 

yn+2 _ yn+I + A4 A2 Aý 
i 

A3 .......... 

etc. The essential characteristic of this coder is that it offers 

different weighting factor for the adaptation of new step size, in 

accordance with the different situation of the tracking signal y(t). 

Following the step response just described, the coder has the facility 

to accommodate the tracking ability to the step function and finally 

hunts the step with the basic idling pattern of I0I0....... with 

the smallest allowable step size, limited for the idling condition. 

The tracking of the step is shown in figure (7). 

(28) 

(29) 

2.10 MINIMUM STEP SIZE 

In order for a .... I010I0...... pattern to be formed a lower 

limit to the step size say, d min., Is put. The need of this can be 

easily verified by-studying the step response of C. F. D. M. After a 

certain length of clock periods Nt, a condition will be reached when 

the y(t) hunts the steady step input voltage x(t), in the mode of AI 

adaptation, at every sampling instant. The step size will always 

decrease and the point will be reached when the step size magnitude is 

less than 6 min. At this instant, however, the coder makes this step size 

equal to d min. Therefore from that sampling instant onwards, the y(t) 

will hunt the x(t), with a minimal step size a min, and the traditional 

,,,,. 10 1010....... pattern will be established. 
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2.11 COMPANDING LAW 

This law is obtained by using the experimental arrangement shown in 

Figure 8. It can be seen that a sinusoidal input Es sin Wst is applied to 

the CFDM encoder and the resulting binary waveform L(t) is decoded by a 

linear D. M. decoder to give the compressed sinusoid Esr sin wst. If the 

CFDM decoder shown in Figure 3 is used the output would of course be 

approximately equal to Es sin wst, but the absence of the 'expander' In 

Figure 8 results in a sinusoid having a smaller amplitude, i. e. Esr < Es 

The value of Es is varied over a wide range and for each value the decoded 

output signal Esr is noted. Figure 8a is the compression law for a sinusoid 

having a frequency of 800 Hz sampled at 40 KHz. 

This companding law should not be confused with those laws used in 

p. c. m. systems which 3ro independent of the input signal. The companding 

law shown in figure 8a may not be the same for other. input signals like 

speech, say. Its value is that it gives an indication of the amount of 

compression obtainable at a particular frequency, and this test can be 

used for other coders to give a comparison of their ability to compress 

the signal. 
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2.12 THRESHOLD OF CODING 

In the absence of input signal, the C. F. D. M. system will operate 

in the mode of adaptation by selecting the adaptation constant Al, with 

reference to the principle of C. F. D. M. producing an alternate pattern 

of 101010.... in the L(t) waveform. If the input signal has a peak- 

to-peak amplitude less than The minimum allowable step size of the system 

6 min, the alternating pattern of 10- I010 will not be disturbed 

and the output of the decoder will remain at zero. This minimum allowable 

step size 6 min below which no information will be transmitted, is called 

the threshold of coding and can be represented as, 

Xmin =6 ihmn """". """. (JO) 

2.13 OVERLOAD CONDITION 

Theoretically, there is no limitation in dynamic range since all 

ranges of step size can be generated by C. F. D. M. But, since every equipment 

has voltage limitations which affect maximum and minimum step sizes in 

the feedback signal, it is desirable to consider an overload point of 

the C. F. D, M. coder. The overload point is governed by the limitation 

of the maximum allowable. step size. The maximum size of the step has 

been limited to some hundred to 200 times the minimum allowable step size 

represented by dmax" 

There'ore, the overload condition has the relation given by, 

x1(t) : Amax fs .................... 
(31) 

where x1(t) Is the slope of the input signal and Amax is the limited 

maximum step size and fs is the sampling frequency. Thus for a sine 

wave input of x(t) = Xmax Sin(wmt), overload condition becomes, 

xmax wm Smax fs 

I. e. Xmax 0 
Smax fS 

.................... (32) 
c2 
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For a Gaussian input signal rms slope of the input is given by, 

dmax nfe, where fe is the effective band width of the signal given by, 

+fc2 

f2 1 X(f)12 df 

e +fc2 

IX(f)j 2 df 

0 

where fc2 corresponds to the highest frequency to be transmitted and 

therefore the overload condition for a band-limited Gaussian signal 

input can be expressed as, 

amax27r fe = Smax fs ................. 

i. e. CF ax = Smax- 
s 

27rf ................. 
e 

Therefore the maximum allowable input signal before the overloading 

occurs is, 

Xmax -F cr max 

2.14 QUANTIZATION NOISE 

In delta modulator type of systems, there are two types of 

quantization noise, granular noise and slope overload noise. Granular 

noise is determined by the instantaneous amplitude of the input signal 

and it occurs when a sufficient step size was used in the system. All 

of the quantization noise can be granular if very large step size is 

used. Slope overload noise is characterised by the slope of the input. 

This type of noise occurs when the slope of the input signal x1(t) Is 

greater than the maximum slope capability of the C. F. D. M. system. On 

the other hand, overload noise can occur when the maximum step size 

that C. F. D. M. could produce is limited to a certain value 6 
max' 

so that 

x'(t) >Sf max s 

(33) 

(34) 

(35) 

(36) 

................ 
(37) 



30 

Referring to the figure (2), the quantization noise may be 

defined as, 

nq(t) = X(t) - x0(t) ............ 

where x(t) is the input signal and xo(t) is the output from the 

decoder. 

The noise power can be calculated as, 

2.15 

+fc2 
2 Nq ýnq(t)12 dt =2 IN(f)1 2 df ............ 

00 

where T and N(f) are the length of the noise signal and noise spectrum 

respectively. 

AMPLITUDE RANGE OF C. F. D. M. 

The amplitude range of the C. F. D. M. system is defined as the ratio 

of the maximum amplitude of the input signal consistent with the 

overload condition of the system as described previously, to the 

minimum peak amplitude, below which the input signal falls to excite the 

coder occurs when the peak-to-peak amplitude of the signal is smaller 

than the minimum allowable step size of the C. F. D. M. coder, described 

In equation. (30). 

Hence, using equation (30) and equation (36) the amplitude range 

DR of the system is, 

DR a 20.0 log10 ( max ). 

min. 

where Xmax and Xmin may be calculated from the requirements referred 

to in Section (2.12) and (2.13). 

(38) 

(39) 

(40) 

I 

hhý 
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2.16 SIGNAL-TO-NOISE RATIO 

For a sine wave input, the mean square power that the C. F. D. M. 

handle is, 

22 (41) Xmax /2 .................... 

and the signal to noise ratio may be calculated using equation (39) 

as, 

2X2 

SNR = 10 log S2 
= 10 log10 

X 
max =10 log10 fc2 

max 
10 N2 (j 2 

q 21ýnq(t)1dt 
4 IN(f)I2df 

0 
0 

...................... 
(42) 

For the gausE-lan signal input SNR may be calculated as, 

S2 62 max Q2max 
SNR = 10 Io_q 10 2= 10 10910 10 Io910 fc2 N9 

nq (t)12 dt 
20 IN(f) 12 dt 

I 

0 

..................... 
(43) 

where a is restricted by equation (36). 

2.17 STABILITY 

Due to the presence of a feedback loop, the possibility that the 

instability in some sense could arise, exisis Since the instantaneous 

output y(t) of the feedback group always tries to approximate the input 

signal x(t), the desired condition is for the feedback signal y(t) to 

make it wandersbetween the adjacent levels in such a way that the base- 

band components of the noise in the equation (38) are not objectionable. 

This requirements clearly states the necessity to make the error signal 

x(t) - y(t) as small as possible. Therefore, the stability of the coder' 

entirely 
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depends on the design of the "local decoder" in the feedback loop, that 

produces pulses of various magnitudes to approximate the input x(t). 

Consequently, unnecessary large variations in the y(t) signal should be 

avoided. 

Taking into account the above requirements, the stability of 

C. F. D. M. is studied as described in the following section. 

x. 17.1 RESPONSE OF C. F. D. M. TO AN IMPULSE 

Figure (9) shows impulse response of C. F. D. M. plotting x(t) and the 

y(t) approximation to it. Actual input is pulse of width, '8'"clock period 

and magnitude of 2.5 volts, since the pulse in normal use will be 

broadened due to band limitation of an impulse. There is a delay of 

17' clock periods following the maximum amplitude in x(t). The feedback 

signal y(t) overshoots the input x(t) to a smatl--degree but it oscillates 

continuously and finally takes up the smallest step size magnitude, after 

the fall of the impulse. This demonstrates the stability of the C. F. D. M. 

coder and the optimality of the selection of its adaptation constants. 

2.18 EFFECT OF CHANNEL ERRORS 

The calculation(9) of channel errors in linear delta modulation 

systems'has been achieved for random errors. The success of this calculation 

results from the decoder being linear and time invariant, and enables the 

effect of transmission errors to be calculated by ignoring the presence of 

the signal. Figure 10 shows a detected binary signal, and an error signal, 

the latter being the difference between the transmitted and detected binary 

signals. The error waveform is therefore composed of pulses having 

amplitudes ±2 and a duration of one clock period. The power due to the` 

transmission errors at the output of the decoder is due to the decoded error 

waveform. Tha assumption made is that the true waveform and the error 

waveform are statistically independent 

However, this approach is inapplicable for instantGneously adaptive 

delta modulation systems due to the non-linearity in the local decoders. 

The effect of an error depends on the history of the L(t) pulses sequence, 
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Fig. (IO)a. C. F. D. M. RESPONSE TO A ZERO INPUT WITH A SINGLE CHANNEL 
ERROR AT 4th POSITION. 



36 

I 

1 

i 

i 
i 

I 

Fig. (IO)b C. F. D. M. RESPONSE TO A STEP INPUT WITH A SINGLE CHANNEL 
ERROR AT 2nd, 5th and 6th POSITION. 
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and this phenomenon will now be'demonstrated for the C. F. D. M. in response 

to an isolated channel error. 

Figure (IO)a(1) illustrates the persistant effects of a channel 

error which results at the output of the integrator in the decoder when a 

zero is wrongly interpreted by the decision circuit at the receiver as a 

logical one. Waveform (ii) applies to the errorless idling waveform which 

oscillates about zero, whereas the error idling waveform oscillates about 

4.5 units. Although the computer simulations were done with perfect 

integrators, it is apparent that in a practical coder integrators must have 

some leakage in order to combat the effect of channel errors. Waveform (iii) 

shows that a leaky integrator enables the decoder to overcome the effect of 

this single channel error. 

The effect of a single channel error when signals are being encoded 

is highly dependent on the location of the error pulse as previously. 

mentioned. This Is emphasised by reference to the step response shown in 

Figure (IO)b when the single error occurs in different time positions. 

The input step is 21-0 units and response (I) is for no errors. Responses 

(ii), (iii) and (iv) at the output of the decoder are steps having values 

of 5.0,6.6 and 80.9 respectively, and demonstrate the profound difference in 

decoded step sizes due to the location of the error pulse. 

Figure 11 shows the CFDM tracking a sine wave with no errors, while 

figures 12 and 13 show the effect of one e-ror occurring in different positions. 

It can be seen that the isolated transmission error has a level shift, phase 

change and distortion on the decoded waveform. 

In the examples given above the persistent effect of a single error 

can be devastating at worse and significant at best. They have however 

been drawn for perfect integrators which means that these errors persist for 

all time. By making the integrators in both the encoder and decoder leaky 

the accommulative effects of these errors are overcome. Nevertheless, the 
1 11 

considerable hierarchy in the transmitted binary signal makes C. F. D. M. 

vulnerdbie io channel errors. It is expected that in the presence of 

S. - 
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transmission errors this system would behave better than the h. c. d. m. system 

with its binary weighting, and worse than the J. A. D. M. system which has only 

two adaptation constants. 

2.19 COMPARISON WITH LOGARITHMIC P. C. M. 

The signal to noise ratios for the CFDM and the JADM systems are 

displayed in figures (t6) and (25) for Gaussian inputs bandlimited to 

3.1 KHz and a clock rate of 40 KHz. The peak signal-to-noise ratios of 

these systems are the same having a magnitude 21 dBs. It is expected 

that the peak signal to noise ratio of the system would diverge at higher 

ratios of (fp/f 
c2) 

because the full potential of the encoding algorithm 

of the CFDM would be realised. For example there would be less noise 

produced due to overshooting when tracking. 

An A-law pcm system which samples the input signal at 8 KHz, i. e. 

above the Nyquist rate of 6.2 KHz, has a peak signal-to-noise ratio*of 

27.5 dB when A is equal to 87.6. The C. F. D. M. system operating in these 

conditions therefore has a performance approximately equivalent to that of 

a4 bit A-law pcm system with A= 87.6. 

2.20 EFFECT OF MISMATCH OF 'A' PARAMETERS ON SNR 

We have assumed so far that the local decoders employed in the 

encoder and decoder have identically the same characteristics. However, 

it is not so in actual practice, due to the imperfections in the design 

of multipliers and mismatching of the values of the 'A' parameters 

used in the encoder and decoder. 

The receiver may track the transmitter in polarities of the step: 

but not in the magnitudes of the step size. This type of effect is 

called sometimes the "mistracking" of the transmitter and receiver. 

"N" 



42 

The result of this type of mistracking is referred to as the distortion 

of the scene-in busy areas, rather than the introduction of noise when 

encoding television pictures. The combined effects of incorrect step 

size adaptation and the channel error, instability of some kind could 

arise. 

Figure (14) displays the study of the effects of mismatch of 

'A' adaptation parameters on signal to noise ratio, with Bandlimited 

Gaussian signal at (3) dBm input level. For the adaptation constants of 

Al = -0.9, A2 = -0.4, A3 = 1.5 and A4 = 2.0 In the transmitter, the 

adaptation constants of Aý -0.9 + e, A2 =, -0.4 + s, A3 = 1.5 + e, 

" A4 = 2.0 +E are used in the receiver. The study has been made for 

the range of c= -0.2 to. c = +0.2. These results indicate that the 'A' 

adaptation-constants can have tolerances of the order of 10%, which 

results in a degradation of the signal to noise ratio of the order of 

2 dBs. 

2.21 C. F. D. M. WITH LARGE VALUES OF MEMORY LENGTH 'm' 

The extension of the coder's memory length 'm' Is not expected 

to cause any difficulty and in doing this it will increase the cost 

only marginally. 

It has been described in section ( 2.2) that, for a memory length 

of 'm', the number of possible binary groups formed in the logic circuit 

is given by N= 2n/2, where n= m+l. The number N also gives the 

number. of adaptation constants needed for the system and the value of 

'm' gives the order of C. F. D. M. 

Thus, for example, C. F. D. M. with a memory length of m=3, the 

extension could be achieved by again re-defining the pattern of each 

of the groups formed from table (2) In the C. F. D. M. with m=2. 

Re-defining the pattern of each group could be made on the basis of 

how each of the patterns of the group could have been derived from 

if one more extra memory length was added. Table (3) illustrates how 
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GROUP NO. ý fi BIN. PAT. NO 
OF 2nd L L r r-l 

I 

r- 
r-3 

OF 3rd ORD 

RDER CFDM r r-I r- C. F. D. M. 

0 1 0 0 
0 1 0 0 I 0 1 2 

1 0 I 1 
Fo 

1 0 3 
11 0 I I 4 

0 I 1 0 5 
0 1 I 0 1 I I 6 

2 
0 0 1 0 0 0 7 

0 

0 0 1 0 9 

0 0 I 0 0 I 1 10 
3 

0 I 1 0 0. 11 

I 1 0 I 12 

0 0 0 0 13 

0 0 0 0 0 0 I 14 
4 

I. I 1 1 0 15 

1 1 16 

Table (3) POSSIBLE BINARY PATTERNS OF 3rd ORDER C. F. D. M. 

ý -. 
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GRP. NO. OF GRP. NO. OF 
2nd ORDER L L L 

L 
r 

L 
r-I 

L 
r- r- 3rd ORDER 

C. F. D. M. r r-I r-2 C. F. D. M. 

0 1 0 

0 I 0 1 0 1 0 

0 1 0 1 0 0 

0 1 I 2 

0 I I 0 
0 I I I 0 0 I 3 

2 

0 0 0 

0 0 0 4 

0 0 1 0 
3 0 0 I I 1 0 I 5 

0 0 0 1 

1 0 0 6 

0 0 0 

0 0 0 I I I 0 7 
4 

0 0 0 
8j 

Table (4) POSSIBLE BINARY GROUPS OF 3rd ORDER C. F. D. M. 

I 
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each pattern of group I, 2,3 and 4 of 2nd order C. F. D. M. could be 

formed from the memory length of three. In this type of 3rd order 

C. F. D. M., the coder adapts itself according to the presented binary 

level Lr and the three previous binary levels Lr_l , Lr_2 and Lr_3. 

=2= 16 possible m Thus the logic circuit is confronted with 2+1 4 

- binary patterns as shown in Table (3). These can be conveniently 

reduced to eight groups with each group having the binary patterns of 

the same characteristic, as shown in Table (4). 

In this type of C. F. D. M. system, eight adaptation constants will 

be needed, namely Ai to A8 corresponding to groups I to 8 respectively. 

The evaluation of these adaptation constants may be made iteratively 

as has been done for the 2nd order C. F. D. M. 
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CHAPTER 3 

COMPUTER SIMULATIONS 

3.1 INTRODUCTION 

All the simulations were performed on I. C. L. 1904A digital 

computer at the University of Loughborough. Basically, the simulation 

of a delta modulator system of Fig. (2) comprises the simulation of 

input signal, the encoding and decoding functions of the system. 

The simulation of C. F. D. M. system was first made. Simulation 

of similar types of adaptive delta modulators were performed by 

introducing different adaptation algorithms for selecting appropriate 

'A' parameters, which satisfy the corresponding system's requirements. 

Specifically three types of instantaneously adaptive delta modulators 

and one linear delta modulator were being simulated, namely, 

(i) C. F. D. M. 

(ii) JAYANT's Adaptive delta modulator (J. A. D. M. ) 

(iii) WINKLER's H. I. D. M., and, 

(iv) L. D. M. 

A description of the simulation of each of these different adaptive 

delta modulators will not be given in detail on its own but instead they 

will be described in terms of the principles of our C. F. D. M. coder, 

since each of them can be considered as the special case of the C. F. D. M. 

coder, having different sets of 'A' parameters. This generalised 

principle of C. F. D. M. coder will be mentioned in Section (2.8). 

3.2. SIMULATION OF C. F. D. M. 

First of all, the description of the simulation of C. F. D. M. 

coder will be made. The C. F. D. M. system was simulated by making use of 

the adaptation algorithm described in Section (2.6). The assumptions made 

in Chapter 2 have been taken into consideration. By doing so the matching of 

the encoder and decoder characteristics were achieved. Throughout the 

simulation the minimum and maximum allowable step sizes were limited to 

L 
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+0.03 and +5.0 volts respectively unless otherwise stated for some 

simulation purposes. The 'A' parameters used for the simulation of 

C. F. D. M. were the same as described in Section (2.7) having the 

magnitudes of A= -0.9, A2 = -0.4, A3 = 1.5 and A4 = 2.0. The flow 

chart of the main programme organised for the simulation of Figure (2) 

Is shown in Figure (39)a of the Appendix. The various sub-programmes 

that will fulfill the purposes of the, main programme are shown in 

Appendix (A. 2)and the purposes of these sub-programmes are described 

clearly. 

3.3 RESPONSE TO BANDLIMITED GAUSSIAN SIGNALS 

The Gaussian amplitude distributed signals were generated 

internally by the University computer. It used the random number generator 

in the form of function UTRI, which employs the linear feedback shift 

register technique. Approximately 8 million numbers were generated 

before the sequence repeats. By setting the arguments (J, K, L) of the 

function UTRI, accordingly, the random numbers generated can have either 

a uniform probability distribution in the range 0.0 to 1.0 or a Gaussian 

probability distribution in the range -6.0 to +6.0 with unit variance. 

The algorithm for the random number generator could be written 

In the form, 

X= UTRI (J, K, L). A. 

where X= "a real variable which will contain the 

random number generated. 

J= An integer which defines the stream number. 

There are 4 possible sequences of random 

numbers, these are obtained by setting 

J I, 2,3 and 4.1 =I to the time inverse 

of J=4 and J=2 Is the time inverse of J=3. 

K= an integer variable which controls the 

distribution of the random numbers. If K=0, 

the random numbers have a uniform probability 
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distribution in the range 0 to I. o. 

If K#0 the random numbers have a Gaussian 

probability density function in the range 

-6.0 to +6.0 with unit variance. 

L= an integer variable which contains the 

random number generator. 

Band limitation of the Gaussian signals was easily achieved by 

passing these random numbers through a digital low pass filter having a 

relatively sharp cut-off frequency. The design of this type of digital 

filter is described later separately. The filter used has the gain 

characteristic shown in Figure (15). The filter characteristic is down 

3 dB at 3.1 kHz, and that-is why we call the bandwidth of the filter 

as 3.1 kHz. * The filtering was accompl'ished by convolving the input 

signal samples which we wanted to be filtered with the impulse response 

samples of the filter. 

3.3.1 DYNAMIC RANGE OF C. F. D. M. 

The input was a flat band limited Gaussian signal, bandlimited 

to 3.1 kHz, sampled for the simulation at 40 kHz. A wide range of about 

75.0 dBm input was applied to the C. F. D. M. coder and the decoder signal 

to noise ratio in dBs, against input signal power in dBm were plotted 

as shown in figure (16). 

It offers a maximum signal to noise ratio of 21.0 dBs and the 

dynamic range of 50.4 dBm for 16.5 dBs SNR. 

Waveforms for the input x(t) and y(t) signals are plotted in 

Figure (17). This can be compared with the response of J. A. D. M. shown 

In Figure (25). The tracking ability of C. F. D. M. Is better than J. A. D. M. 
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3.4 CALCULATIONS OF SIGNAL-TO-NOISE RATIO (SNR) 

There are several ways of calculating signal to noise ratio (SNR) 

achieved by the system. Some research workers in this field have 

calculated SNR before the final filtering In the decoder, some after 

the final filtering. Some have performed the calculation of SNR by 

filtering the error waveform in the encoding side. In our analysis the 

calculation was made In frequency domain, following the definition of 

SNR described later. F. F. T. algorithm rigorously used calculating the 

D. F. T. (Discrete Fourier Transform) of the time signals. The programmes 

written for the calculation of SNR is shown in Appendix (A. 2) and its 

functions were explained. This method of calculating SNR will be used 

throughout the work. 

3.4.1 DEFINITION OF SNR 

The signal to noise ratio (SNR) was defin3d as the ratio of the 
I 

input signal power to the power in the noise signal calculated over the 

message frequency band. The noise signal was defined as the difference 

between the input signal and the decoded output signal such that 

e(t) = x(t) - x(t) ........... (52) 

3.4.2 DEFINITION OF D. F. T. (Discrete Fourier Transform) 

Since the manipulation of SNR was carried out in frequency domain 

and made use of the F. F. T. (Fast Fourier Transform), it is worth while 

here to recall briefly the D. F. T. 

The D. F. T. of a set of N numbers 9K, K=0, I, 2 ..... N-I 

is a set of N Fourier coefficients G,, t=0, I, 2 ............ N-I 

defined by the expression 

G 
N-1 

9K e j27rK /N 

K=0 
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and its inverse transform is 

N-I 

g=I eJ2nKk/N G'.... KNK=0, I, 2 ,... N-I 

Z=O 

where j= r-TI 

3.4.3 THE F. F. T. 

The fast fourier transform (18) is a class of algorithm for 

efficiently computing the D. F. T. of a sequence of data samples. It 

greatly reduces the number of computations required to calculate the 

fourier transform of a set of numbers on a digital computer. 

3.4.4 THE ALGORITHM FOR THE CALCULATION OF SNR 

There are two sets of signal samples that we are dealing with in 

our calculation of SNR. These are the input signal x(t) and noise 

signal e(t), which are defined earlier in analysis. 

Suppose the spectrum of x(t) and e(t) are attainable by taking 

the F. F. T. and denoted by 

x(t) 
F. Q. T. X(f) 

e(t) 
F. F. T. E(f) 

Thus, 

(54) 

Xý = 
N-1 

XK e-J2nK£/N i, k_ -0, I, 2 ..... N-1 ...... (55) 

K=0 

and 

N-1 
_'27rKt/N ER a eK e, I=0, I, 2 ..... N-I ...... (56) 

K=0 

where N is the number of signal samples under consideration. 

(NOTE: N is made equal to 2n where n is any integer, so that the F. F. T. 

algorithm can operate on the signals) - 
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3.4.4-I ALGORITHM FOR INPUT SIGNAL POWER CALCULATION 

Though"-the low pass filter used in the simulations had a relative 

sharp cut-off frequency at 3.1 kHz, the use of F. F. T. In the design of 

the filter, allowed the lowpass filter characteristic to extend up to 

half the sampling frequency as shown in Figure (15). To pretend the low- 

pass filter had a rectangular sharp cut-off at 3.1 kHz, the input signal 

power is calculated up to 3.1 kHz band. Since the D. F. T. of a real sequence 

of time signals gives a two sided spectrum, symmetric about (N/2) +1 

sample, the calculation of the total signal power can be made by using 

the one side of the spectrum and multiplying the result by two except 

for the first sample of the spectrum. 

Suppose the sampling frequency is fs and there are N frequency 

sameIes, then the eiementary frequency spacing. between each frequency sample 

is 

Af = 
fS1 Hz ............. '(57) 

if the frequency band of the message signal is from 0- fc2, 

then this frequency interval must contain a certain number of elementary 

frequency band, in the sense of our treatment of variability. 

Therefore, the number of frequency band can be calculated as, 

message band 
elementary freq. band + 

=f +I_ 
f 

(58) 

Thus the algorithm for calculating signal power using single sided 

spectrum is, 

M 

s2 - 2.0 IX(Z) I2 + IX(O')12 
..................... (59) 
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3.4.4-2 ALGORITHM FOR NOISE POWER 

Noise power is calculated from the error spectrum ER, by taking 

only the frequency components that reside in the message frequency band 

as previcusly described. Therefore,, föliowing the same reasoning the 

algorithm for the calculation of noise power can be written as, 

Nq = 2.0 JEW 12 +I E(O) 12 
......... 4..... 

3.4.5. SIGNAL TO NOISE RATIO EQUATION 

From the definition, SNR may be calculated from the relation 

(60) 

SNR = 10.0 log10 (S2 ) .............. (61) 
Nq 

3.5 STEP RESPONSE OF C. F. D. M. 

A step input of 39.5 volts was applied to the coder. The input 

stayed. at 0.5 volt for the first 3 clock periods and the Input stepped 

up to 39.5 volts. The magnitude of this step is the same as that 

used by Winkler in his article 
9). 

Figure (18) shows the step response of 

C. F. D. M. (6) clock periods are taken to catch the input step demonstrating 

its fast response. It has a faster response and the overshooting is less 

than J. A. D. M. and H. I. D. M. After 8 clock periods, it hunts the step 

input with a minimum step provided for the system. It retains the basic 

... I01010... pattern while tracking the steady input of the step. 

3.6 STEP SIZE DISTRIBUTION OF C. F. D. M. 

Figure (19) 

system. Input sigi 

40 kHz, having the 

Input signal level 

symmetry about the 

input signal which 

shows the step size distribution of the C. F. D. M. 

ial is bandlimited to 3.1 kHz, at the sampling rate of 

gaussian amplitude distribution with zero mean. 

is about 3 dBm. The step size distribution has a 

zero and follows the statistical behaviour of the 

is very essential. It demonstrates the multi- 
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levelled nature of the step size dictionary achieved with just two 

bit memory in our C. F. D. M. 

3.7 ESTIMATION OF POWER SPECTRUM 

This work has been done to analyse the distortion power spectrum 

of the C. F. D. M. coder. Since we are dealing with finite data length, 

in our analysis, the spectrum we are getting by taking the fourier 

transform of this set of data will not be a true spectrum of the actual 

signal under investigation. Why is this so? This can be easily explained 

by realising the behaviour of the finite length data. 

To investigate into this; it is necessary to discuss the convolution 

properties of fourier transforms. Supposing we have a signal which is 

the product of two other signals, 

x(t) = y(t) . C(t) ................ (62) 

The fourier transform of x(t) will give 

X(f) x(t) -j 211 ft dt 

= y(t) . c(t) e 12nft 
dt ................ 

(64) 

c(t) can be substituted in terms of its fourier transform C(fo) 

in equation (64). _ 

+m4, s 

X(f) = JIy(t) C(f0) e-j27r(f-fo)t df0 dt ....... (65) 

Interchanging the Integral we have, 

+00 
X(f) 'Y(f-f0) C(f0) dfo .............. (66) 

00 

ý! ., 
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This relation in which Y(f) and C(f) are interchangeable, is commonly 

expressed symbolically as, 

X(f) = Y(f) * C(f) ................ 
(67) 

The implied operation (*) on Y(f) and C(f) is called a convolution. 

Similarly it can be proved also that if 

X(f) = Y(f) . 
C(f) ................... 

(68) 

Then, 

+00 

x(t) _v(t-T) c(T) dT ................... 
(69) 

x(t) = y(t) * c(t) .................... 
(70) 

Thus, If signals are multiplied in time domain, their respective spectra 

are convolved with one another In frequency domain. Similarly, 

multiplication of frequency spectra implies convolution of the time 

signals. 

Now let us use this property of fourier transform to explain our 

problem. We are now provided with a finite length of data x(t). This 

data can be considered as the product of the actual infinite length of 

data y(t) with a rectangular window function c(t) of finite length T. 

See Figure (20). Hence according to the property of fourier transform 

the computed spectrum X(f) will be the convolution of the actual spectrum 

Y(f) with the spectrum of the rectangular window function C(f). 

Since C(t) =I ITI <T 

=0 ITI >T 

Where T is the length of data. 

C(f) can be readily written as, 

C(f) = 
Sin irfT 

of ......... (72) 

where Ist zero crossing is at f= 4-, the bandwidth of the spectrum of 

rectangular window C(f). 
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Due to this convolution effect of the actual spectrum with the 

spectrum of rectangular window, the spectrum samples in Y(f), whose 

frequency spacing is smaller than the bandwidth of C(f), will not be 

resolved. This can be greatly improved by choosing a longer length 

of data T, since the bandwidth of the spectrum C(f) is inversely proportional 

to the data length. But still there is some disadvantage of the rectangular 

window. The spectrum of it has relatively large sidelobes. Though the 

resolution of the spectrum may be finer, the details of the true spectrum 

of Y(f) will not be restored again due to the effect of convolution of 

the spectrum Y(f), with the spectrum having high sidelobes. However, In 

analysing the signals, it is necessary that the details of the true 

spectrum of the signal should be brought back, somehow, otherwise mis- 

interpretation is likely to be made on-the signal under analysis. 

Therefore, the estimation of power spectrum becomes a very important 

task. 

In our case we are engaged with making estimations of power spectrum 

of random signals such as distortion noise signals and the random Gaussian 

input signals. From the definition, it is understood that the power 

spectrum of a random signal is the average of the power per unit 

frequency band. Clearly from the facts we have just described, obscurring 

of the spectrum is expected, having some errors in the estimated mean 

power (variance) of the signal and therefore it is necessary to take an 

average of the variance over a number of spectral estimates, to reduce 

the error. 

There are many ways of taking the average of the variance over a 

large number of spectral estimates. The averaging of the spectral 

estimates may be done either in time or in frequency domain. One of 

these methods will be adopted in our analysis. A combination of time 

and frequency averaging method was used for our analysis. This was 

particularly achieved through the use of lag window. 
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3.8 METHOD OF ESTIMATION OF POWER SPECTRUM 

For the estimation of pcwer spectrum of the signals X(t) and 

nq(t) defined in Section (2.14) the following method is adopted and 

all along the process, F. F. T. algorithm will be used. 

Firstly, the F. F. T. of the signal sample was taken and the power 

spectrum was calculated. This power spectrum differs from act uallspectrum- 

and therefore the need for the averaging of the variance over a number 

of spectral estimates were realised. This had been achieved by making 

use of the convolution property of the fourier transform. The auto- 

correlation. function for the same data length was calculated via the 

inverse F. F. T. of the power spectrum we had manipulated. Then the 

autocorrelation function was multiplied by a time window function, 

specially chosen for the purpose. There are several types of lag 

windows to choose. Two types of lag windows 
(19) 

are shown in Figure (21) 

together with their spectral window functions. The nature of the spectral 

window In these two pairs is the same, having sidelobes 1% to 2% of the 

height of the main lobe. The major differences are that the highest 

height of sidelobe of the "HAMMING" spectral window is 1/3 of the highest 

height of side lobe of "HANNING" window in frequency, and that the 

sidelobes of "HPNNING" window fall off more rapidly than those for the 

"HAMMING" window. With an idea to reduce the effect of obscur-ing the 

spectral estimates by the sidelobes of the spectral window, a HAMMING 

LAG WINDOW having the same length as the data was selected for our case. 

The equation for this type of lag window is, 

w(T) 0.54 + 0.46 cos (TT) < T. 
........... (73) 

=0 ITI >T 

where T Is the length of data samples. 

It has the spectrum of 

W(f) = 0.54 W0(f) + 0.23 W0(f + 
2T) 

+ W0(f - 
ZT) 

.......... (74) 
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The multiplied auto-correlation function was then fourier 

transformed by using F. F. T. and the resulting output gave us the finally 

averaged power spectrum estimates. Averaging or the smoothing action 

was achieved by replacing each spectrum estimate by a linear sum of the 

estimate and the two adjacent estimates, with weight 0.23,0.54,0.23 

of the HAMMING spectral window. 

3.9 INPUT AND NOISE SPECTRA OF C. F. D. M. 

Using the estimation of power spectrum technique just described, 

we have analysed the Input and noise power spectrum of the C. F. D. M. 

and these are illustrated in Figure (22) and Figure (23). Noise signal 

is defined In equation (18) and the input signal power and noise power 

spectra are calculated up to 10 kHz, since the actual highest frequency of 

Interest is 3.1 kHz. Noise in C. F. D. M. is flat inside the Input frequency 

band and since the noise Is measured after the final filtering in the 

decoder, the noise spectrum is tapered off after the message band. All 

the spectra apply for the input power level of 3 dBm. 

3.10 SIMULATIONS OF JAYANT'S A. D. M. 

One bit memory adaptive delta modulator invented by JAYANT in 

March 1970, was also simulated. In this type of coder, the adaptation 

of step size is based on the comparison between the two latest binary 

levels Lr and Lr_l. For the simulation of this coder, adaptation 

algorithm described in section (2.8.2) has been used. The simulation 

is a special type of C. F. D. M. coder, but with 'A' parameters, different 

from that of C. F. D. M. The A parameters used are AI = A2 `- 115 

and A3 = A4 = 1.5 A minimum step size of +0.03 and the maximum step 

size of 45 are used. 

ýiE 
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3.11 STEP RESPONSE OF JAYANT'S A. D. M. 

A step input was applied to the coder. The input was 0.5 volt 

for the first three clock periods, and stepped up to 39.5 volts; as 

used in Winkler's H. I. D. M. coder to be compared. The graph of the 

step response of JAYANT's A. D. M. is shown in Figure (24). Minimum 

step size of 1.0'unit is used. It takes about 8 clock periods to cope 

with the step input. It has a relatively *faster response than L. D. M. 

However, the step response shows that while tracking the constant level 

of the step input, (hunting periods), the step size does not always 

assume the smallest possible value. This is an inherent feature of this 

type of coder. The stability of the coder seems to be very poor. 

3.12 RESPONSE OF J. A. D. M. TO BAND-LIMITED GAUSSIAN INPUT 

The input is a Gaussian signal band-limited to 3.1 kHz at the 

sampling rate of 40 kHz. Input range of 75 dBm is applied to the coder 

and the graph of decoded signal to noise against input signal power is 

plotted as shown in Figure (25). Maximum signal to noise ratio of 

21 dBs is achieved having the dynamic range of 50 dBm at 16 dB SNR. 

Graph for input signal x(t) and integrated output signal y(t) is 

Illustrated in Figure (26), at the input power level of 3 dBm. 

3.13 IMPULSE RESPONSE OF J. A. D. M. 

Impulse of 2.5V having the width of eight clock periods is applied 

to the input to the J. A. D. M. Figure (27) shows the computer generated 

waveforms of the impulse input and the reconstructed signals. The 

representation of an impulse is inferior to our C. F. D. M. system. It 

took almost the same amount of delays to represent the impulse, but the 

hunting characteristic of J. A. D. M., after the impulse, is very poor. 

Due to this fact, the stability of the J. A. D. M. system seems to be poor 

compared to our C. F. D. M. It is this inability of J. A. D. M. 
(13) 

to follow 

sudden changes of input signal level, and would introduce the 'twinkling' 

effect when coding television pictures. 
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3.14 NOISE SPECTRUM OF J. A. D. M. 

Figure (28) displays the noise power spectrum of the J. A. D. M. 

3.15 

system. Input signal power spectrum is shown in Figure (22). Noise 

reduction of J. A. D. M. can be realised when compared to LDM of Figure 

(36). The noise power is nearly proportional to the input power, 

unlike linear d. m., and results in the large dynamic range displayed 

in figure"2S 

STEP SIZE DISTRIBUTION OF J. A. D. M. 

The distribution of step sizes utilised in the simulation of 

J. A. D. M. Is shown in figure (29). It is symmetric about the mean of 

zero, and has the similar statistical property as the input signal. 

It offers a wide range of step size excursion though only one bit 

memory length is used for the adaptation control. 

3.16 SIMULATION OF WINKLER1S H. 4. D. M. 

High Information delta modulator 
(8 ) 

proposed by Winkler, M. K... 

3.17 

In 1963 Is also simulated. It requires three binary levels to control 

Impulse steering circuit of H. I. D. M. Due to the generality of 

principles of C. F. D. M. coder, H. I. D. M. has been simulated employing 

algorithm developed for our C. F. D. M. coder. For this simulation a new 

set of A parameters are used with the magnitudes of AI = A2 = -0.5, 

A3 = 1.0 and A4 = 2.0. The minimum and the maximum step sizes are limited 

to +0.03 and +5.0 volts respectively. Throughout the simulation ideal 

Integration has been used. 

STEP RESPONSE OF H. I. D. M. 

The same value of step is applied at the input to the coder. 

Step height of 39.5 

0.5 volt is applied 

of 1.0 unit volt is 

this input is shown 

size exponentially 

it overshoots quite 

volts has been followed after the constant input of 

for three clock instants. The minimum step size 

used and the graph of the response of H. I. D. M. to 

in Figure (30). It increases the magnitude of step 

and it takes 6 clock periods to catch the input, but 

high and the step size oscillates around the constant 
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Input level of the step voltage. It finally hunts the input with a 

basis I0I0I0 pattern. Its response is quite fast compared to 

LDM or even faster than JAYANT's ACM. 

3.18 IMPULSE RESPONSE OF H. I. D. M. 

Figure (31) represents the impulse response of H. I. D. M. Input Is 

a pulse of amplitude 2.5V and width 8 clock periods. It takes about(s) 

clock periods to track the input pulse. The representation of the 

impulse is quite good with a bit of overshoot. It has a large under- 

shoot after the impulse, but it later oscillates with a10I010 

pattern and becomes stable. The stability is better than J. A. D. M. 

-3.19 SIMULATION OF L. D. M. 

To compare the performance of linear delta modulator with other 

adaptive delta modulators, a basic delta modulator, with a fixed step 

size whose sign depended on the sign of the last binary level 

transmitted, was simulated. Fortunately, the simulation of the linear 

delta modulator becomes easier, since the simulation of linear delta 

modulator is the special case of the C. F. D. M. coder and the programme 

written for the simulating C. F. D. M. has been used with the A parameters 

having the magnitude of AI = A2 = -1.0 and A3 = A4 = 1.0. The 

simulation used an ideal integrator in the feed back loop. 

The decoding was done in the encoding side of the system, by 

passing the output of the integrator in the feed back loop through a 

low pass filter, whose cut-off frequency is the highest frequency 

component in the message band. 

The flow chart of the main programme for the simulation of linear 

delta modulator isasshown in Figure (39)a. A minimum step size of 

+0.03 volt was used in the simulation. 
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3.20 STEP RESPONSE OF LINEAR DELTA MODULATOR 

The step' response of the L. D. M. has been studied. The input 

is 0.5 volt for the first 3 sampling periods, and it then steps up to 

39.5 volts. This value of the step is selected to compare with the 

response of Winkler's H. I. D. M. which uses the same value of the step 

function. The algorithm for generating the step function Is shown in 

Figure (32). The computer drawn graph for the step response of 1.0 

unit was chosen for the simulation. 

Linear delta modulator increases or decreases its step size by a 

unit factor to the initial step size, at the reception of one or zero 

level binary output. It takes L. D. M. 40 clock periods to catch up the 

step input, verifying the slow response of L. D. M. to rapid change of 

input level. The hunting characteristic of L. D. M. is a1010 

pattern, with a minimum step size of 1.0 unit. 

3.21 RESPONSE OF L. D. M. TO BANDLIMITED GAUSSIAN INPUT - 

Bandlimited Gaussian is applied to the input of linear delta 

modulator. Input is bandlimited to 3.1 kHz at the sampling frequency of 

40 kHz. Minimum step size of 0.03 volt is used for the simulation. 

The maximum signal to noise achieved by L. D. M. Is 21 dBs. It offers a 

very narrow dynamic range of 7.5 dBm measured at 16 dBs SNR. This is 

illustrated in Figure (16). Waveforms of x(t) and y(t) signals for linear 

delta modulator is shown in Figure (33). 

3.22 IMPULSE RESPONSE OF L. D. M. 

Since only plus or minus one unit of step size can change at every 

clock instant in linear delta modulator, the representation of an impulse 

is very very poor. Figure (34) shows the impulse response of L. D. M. 

The slow response of L. D. M. is verified. 

3.23 STEP SIZE DISTRIBUTION OF L. D. M. 

Figure (35) displays the step size distribution of L. D. M. Only two 

levels of steps are being used throughout the simulation. This 

demonstrates the non-adaptability of L. D. M. 
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3.24 NOISE SPECTRUM OF L. D. M. 

Linear-delt4 modulator is grossly overloaded at the input signal 

level of 3 dBm. Simulation of L. D. M. uses step size of 0.03 volt. 

Noise power in L. D. M. is as high as Input signal power. This explains 

why we have very low signal to noise ratio at this input level in 

Figure (16). Noise power spectrum of L. D. M. system is plotted in 

Figure (36). It is plotted up to 10-kHz, since the highest frequency 

of interest is 3.1 kHz for a bandlimited gaussian input signal. 

S 
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CHAPTER 4 

DISCUSSION 

A new type of instantaneously adaptive delta modulator, named 

"Constant Factor Delta Modulator", abbreviated C. F. D. M., has been 

presented. The principles of C. F. D. M. characterised by the use of a 

memory length of -two and itc special kind of adaptation logic, which 

forms the basis of the development of the C. F. D. M. system, has been 

described. C. F. D. M. coder offers finer interpolation for a given bit 

rate by producing more feedback step sizes. Analysis is made of the 

dynamic range, companding law, and stability of the system. Comparison 

" cf C. F. D. M. with logarithmic P. C. M. has been made. It'has an equivalent 

to 4 bit A-law PCM. Performance of C. F. D. M. has been compared with 

J.. A. D. M. and H. I. D. M. 
----- 

Compared to J. A. D. M. It offers. a marginal improvement in dynamic 

range and has approximately the some signal to noise ratio - peak signal 

to noise ratio of 21.0 dBs is achieved by C. E. D. M. For signal to noise 

ratio, 6 dBs below the peak value, the improvements in the dynamic range 

of C. F. D. M. are about 43 dBm, having the same peak signal to noise 

ratio when compared to linear delta modulator. 

Companding is achieved by producing more feedback step sizes as 

mentioned previously. Although it has only three bits to use for the 

control fun. tion, It offers a very wide dynamic range of step sizes, 

due to the adaptation constants used and the multipler circuit in the 

feedback loop. The stability of C. F. D. M. coder, is confirmed by having 

the best ever seen impulse response. Unlike J. A. D. M. it removes the 

undersirable oscillations usually occurring after the representation 

of the Impulse. Large oscillations of the step sizes between the 

largest values, are not desirable because they increase one form of 

granular noise in the flat areas of the picture when coding video signals. 
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The step response of C. F. D. M. is very good. Its response is as 

fast as any instantaneous adaptive delta modulator( 
9) 

designed for 

encoding T. V. signals. It removes the objectionable hunting characteristics, 

the effect of which appears as a twinkle in the picture after the TV 

signal has changed rapidly from black to white and vice versa. Although 

no subjective tests have been made with our C. F. D. M. system, this 

objectionable twinkling effect should be removed. When the television 

signal makes a rapid change, the error signal increases. This would not 

cause any problem to the viewer, since the eye can tolerate a large amount 

of errors in the picture areas, containing sharp detailed edges. The 

effect of the response of the C. F. D. M. overshooting the video signal 

may not be serious because the overshooting is only for a short while, 

well within two or three clock periods and the response tracks the signal 

*after such a length of time has elapsed. Further transients will be 

averaged by the eye and their effect should only mitigate the dimension 

of the spot size. 

Analysis made on the tolerances of 'A' parameters of the C. F. D. M. 

coders indicates that the 'A' constants can have tolerances of the order 

of 10% which results in a degradation of signal to noise ratio of the 

order of 2 dBs. The persistent effect of a single channel error on 

the decoded signal has been studied in section 2.18. The severity of 

the effect of this error was found to be crucially dependent on the recent 

adaptations prior to the event of the error. It is recommended that a 

leaky integrator should be employed to mitigate the accummulative 

effects of these errors. Spectrum analyses have been made for the Input 

and noise spectra of the system. The noise reduction of C. F. D. M. has 

been demonstrated. 

From the results obtained and the analyses made, though there 

is the lack of subjective evaluation of the coder for video signal 

encoding, the C. F. D. M. seems to be promising for coding television 

pictures. - 
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APPENDIX 

A. I CALCULATION OF PROBABILITY OF ERROR IN DETECTED SIGNAL 

Prior to the decoding process, is a decision circuit shown in 

Figure (37), which decides on the presence or absence of a pulse when 

noise is present. The threshold level of the decision circuit is set 

at zero level, if the polar binary signals are transmitted with the pulse 

amplitudes of +V and -V volts for one level and zero level respectively. 

As long as the noise amplitude is less than the pulse magnitude, there 

will be no errors in the detected signal. However, due to the random 

nature of noise, some binary signals will be detected with errors. 

When a +V level is transmitted, an error will occur if the signal v+n(t) 

<0 where n(t) Is the. noise voltage. Similarly, -v + n(t) >0 causes 

an error when a -v level is sent. Since most of the electrical noise is 

Gaussian, we assume here that the noise waveform n(t) has a Gaussian 

amplitude distribution with zero mean and variance a. 
2 

Assuming the presence or absence of a pulse is equally likely, 

such that the probability of the transmitted code using +v is equal to 

that of -v, 

I. e. P) - Po, we can calculate the probability of errors in the detected 

signal due to the corruption of channel noise. 

Let qi =v+ n(t) and ............. (75) 

qo = -v + n(t) ............. (76) 

Since n(t) Is assumed to have a Gaussian density function, 

n2 
p(n) = 

42 -,, 
e 2Q2 ............. 

it follows that ql and qo are also gaussian with variance a2 but 

with mean values of +v and =v respectively. Figure (38) illustrates 

the density functions of P(qi) and P(qo). Since qi <0 or qo >0 will 

make an error when a +v or -v level is transmitted, the probability of 

(77) 

errors can be calculated as, 
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If 'one' is transmitted, the probability of error is 

0 
PeI = p(qi) dql .................. (78) 

-(q -v)2 o l 

Pei = -Je 2(12 dq .......... (79) 

Similarly, i f 'zero' is transmitted, the probability of error is, 

- (qo+v) 
0 2 Peo dq 

c 2ý 
Je 2a (80) 

o 

o 

clearly, 

CO 2 

= Pe Pe = e2 du .......... (81) ) o 2, rß v 

2 

= 27r 
fe2 

dp .......... (82) 

+v 

Pe Pe =Q( ) l o 6 

If Po is the probability of an element '-v' is transmitted and 

PI the proba bility of an element '+v', then the probability of an error 

is, 

Pe - +P (P )Q (Q) =Q( ) .......... (83) I o ! 

Thus, knowing the pulse magnitudes and the variance of noise in 

the channel, the probability of error can be easily manipulated. 

In our case the magnitude of the binary levels become +1 or -I. 

Therefore Pe becomes 

Pe = Q(6) (84) 
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This can be readily calculated from the Q functions tables 

or equivalently from the (D functions as 

Pe =2-D (1) ............. (85) 
2 

Q-u 
where (1= e2 dp 

0 

For. the expected error rate of I in 103, the standard deviation of noise 

can be calculated as 

ID (1) = 0.5-. 001 
e 

Looking up from the D (-ý) from the table(21), a has been calculated 

as a-0.32 in which K is taken as 1. 

This value of a is used for our simulation for the analysis of 

the effect of channel errors. 
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A. 2. COMPUTER PROGRAMMES 

A. 2a. Main programme for the simulation and plotting of dynamic 

range and compression characteristics of C. F. D. M. 

The flow chart for this purpose is listed in Figure (39)1. 

It required two other subroutines INVALUE and ENCODER. 

These subroutines are subsequently described in detail later. 

The main programme for this is listed in Figure (39)la. 

A. 2b. Main programmes for the simulation and plotting of step 

size distribution and the estimation of power spectrum of 

C. F. D. M. 

The programme for this purpose Is shown in figure (39)2a. 

lt requires five other subroutines namely FIR, ENCODER, 

SHARP, SMOOTH, and GRAFT. The details of these subroutines 

are also described in the following section. The flow chart 

of this main programme is listed in Figure (39)2. 
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START 

OPEN PLOTTER 
FILE 
CALL UT POP 

READ 
D 

SET 
N= 64, BW=5 

TP =7 

COMPUTE FILTER 
" IMPULSE RESPONSE 

CALL FIR 

SET AM= 1.75 
A=1.25/64.0 
NUMBER=1024 

I >40 

i NO 

COMPUTE BANDLIMITED 
GAUSSIAN SIGNAL & INPUT 

PERFORM ENCODING 
CALL ENCODER 
FILTER THE BINARY OUTPUT 
CALL COMPRESS LAW 
COMPUTE FILTERED OUTPUT DBC 

PLOT DBC v DBM 
CALL UTP4C 
ALL UTP4B CALL UTPCL 

STOP 

Figure (39)1. FLOW CHART OF THE MAIN PROGRAMME FOR THE SIMULATION AND 
PLOTTING OF DYNAMIC RANGE AND COMPRESSION CHARACTERISTICS 
OF C. F. D. M. 
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START 

READ 

FP, D, CUT, L 

SET 
=64, BW=5, TR=3 

COMPUTE IMPULSE RESPONSE 
OF LOW PASS FILTER 
CALL FIR 

F SET NMAX=1024 
LNMAX = 10 
NPLOT =L 

COMPUTE BANDLIMITED SIGNAL 
AND COMPUT 

YES 
KKA 

NO 
YES P=PM=1.5 

`ý=1 

IR=Rl=-1/1.5 

NO 
YES P=I. O, PM=2.0 

K=2 R=R =-0.5 
NO 

YES P=I. 5, PM=2.0 K-2 R=0.9 R =-0. 
NO 

P=PM=1.0 
R=Rý=-I. 0 

PERFORM ENCODING AND 
DECODING 
CALL ENCODER 

COMPUTE SNR 
CALL SHARP 

ESTIMATE POWER 
CALL SMOOTH 

SPECTRUM 

PLOT POWER SPECTRUM 
CALL GRAFI i 

STOP Figure (39)2 . FLOW CHART OF THE 
MAIN PROGRAMME OF C. F. D. M. 
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L=-10 
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Gil=1.0 
G{"' T4 8I9 

443 P=1 .5 Pt. '=1 .5- R=-1 / Tý 

RL=F 
r, C 

GG=1.5 
G0 T0 ) '? 

441 P=1 .0_ 

L_R 
f; C=P 
(�G1,5 
GO TO u,: y 

445 F-1.5 

. n: 1=2. ° 

c .4 
86Q CO*gi 7 , 1I[= 
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Figure (39)2a MAIN PROGRAMME OF C. F. D. M. 
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A. 2.1 SUBROUTINE FIR 

It is listed in Figure (39). 3 It demonstrates how the Finite 

Duration Impulse Response of digital Iow pass fi Iter may be designed. 

It Is written In FORTRAN 4 and Is called by this statemen+. 

CALL FIR (N, BW, TR, B) 

Where,. 

U- number of samples representing frequency characteristic 

of the filter. 

BW - number of samples representing the pass band of the 

fifiter. 

TR   number of samples representing the transition bands of 

the filter. 

B-a real array of dimension N. 

This subroutine requ; res another subroutine NLOGN, listed in- 

Figure (42). NLOGN subroutine is used to take the discrete fourier 

transform of the frequency samples. The call statement is, 

CALL NLOGN (LN, X, N, DIR) 

The output of NLOGN gives the impulse response of the filter. 

To have the actual realizable filter, all the impulse response samples 

are shifted back by half the number of samples. 



----- - -- - -- - Stl[Iq 11'r1N FIR(14 Pt1. Tk, H) 
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0 15 J t64 -- 
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-- J- 

-__... - --- -- -- __--. i t: (. I , LF - 32) G0 TO 14 
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ºä) r, 0 T0 1.3 
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.; 
G'4 EN Y-, 

-- 
lE tl GT 11 r? zR_ ____-------- 19.11 Al -_ ___----- - 

" ý 
'ý"--.... __. _ .. - 
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____.... - 
-.. _...... __ -ý. 

- 
--_---- --= 

.s ý 
' "_"_-- ýý- ý 

3j 

r _` ýý = 

ue . . __.,. --. . 

ýý ý _ý 
J ý _ý 

ý. 
T---_. _ - .. . .. _. _- . _ 

...... _. . - ------ - 

j' 

+l-- -- 
---Figure--1.39}3: --PROGRAMME-fOR--COMPUTING-MPULSE--RESPONSE--OFt©W-PASS --FILTER-- - 
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A. 2.2 SUBROUTINE INVALUES 

It computes the samples of bandlimited Gaussian signals. 

The programme is listed in Figure (40). The call statement for this Is, 

CALL INVALUES (NUMBER, B, A, DBM; KR) 

The arguments of the subroutine are, 

NUMBER = number of samples of input 

B= real array for impulse response of lowpass filter. 

A= standard deviation of Gaussian input. 

DBM = Input signal power in dBm 

KR = Initial setting of the random number generator. 

The input to the subroutine is the random number generated from 

the function UTRI. It requires another subroutine FILTER. 

This subroutine is used to bandlimit the gaussian input signal. 

The call statement is, 

CALL FILTER (N, B, NUMBER, VIN, NM, Q) 

where N= length of impulse response 

VIN = real array for gaussian input 

NM = length of the filtered output 

Q= real array for the bandlimited gaussian signals. 



----ý---- -----_--- - -- -- - -- - ý------------ --------- ----ý--ý - ---.... ---- - -- -_. __. ý_. _. . ---- ý --- -i o2_ 
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----_- 
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- --- 
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Fl-gurE-(40)-----------PROGRAMME--FOR COMPUTING--BANDLIMI"TED GAUSSIAN--SIGNAL 
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__ ----, ---, -. AND . -. INPUT-POWER- 1N -DBM. -- 
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A. 2.3 SUBROUTINE FILTER 

Subrou-iine FILTER performs the filtering. Filtering is 

achieved by performing polynomial multiplication or equivalently performing 

the complete transient convolution of two signals. The call statement 

is, 

CALL FILTER (LA, A, LB, LC, C) 

where the subroutine inputs are, 

LA = length of array A 

A= real array of impulse response 

LB = length of array B 

B= real array of input samples to the filter 

and the subroutine outputs are, 

LC = length of array C. 

C= real array of output samples of the filter 

The programmes for this subroutine are listed overleaf in 

Figure (41). 



- '- - . -. _ 
ý- 
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) ZI IF14STON A(I. A)'B(LfC(LC 
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A. 2.4 SUBROUTINE, NLOGN 

It computes the fourier transforms and inverse fourier transforms 

of the real array x of dimension LX. LX is made an integral power of two. 

The transformed data is left in tho array x. The real variable DIR 

specifies whether a direct or inverse transform is to be computed. 

DIR = -1.0 for a direct transform or 

= 1.0 for an inverse transform 

The call statement for this subroutine is, 

CALL NLOGN (N, x, LX, DIR) 

Figure (42) shows the programmes for this subroutine. 
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SORR0UT1NF r; L0GI4XLXDIIt) -_-------"----- ------ -----. _. _.. -_ _-___-_. , 

1) 1 ME %, S I. X 
DO 1I=1, v 

1 I)=l-**("J-I) 
-- - 

. n0 4 1.1, ºJ 
_ 

QO 4 I1 LfCP'=1, N1 LOCK 

- -- - -- -- --- ----- ----- FLX =1. X 
1ß531*FK/FLxý---- 

------_.. __ ISTAPT=I. PL, iCK*(IFLOCK-1)----- -__-_ ____ __ _-___. ___ . ___-_.. _. _ __" 

J=ISTART+I 

2 CijT t "SUI 

IF(K. LT. M( GO 

j.. 

IFK. LT. PI(t)) fýS! T1) 7 
- -- -- __ 

#i 

6 K K-' <) 
--- -- -- - -- __ 

tF(nlr. LT.. 0 PfTUPN _. -_. ___. ___. __. _.. _.. _ .__. _ ------_-" : 

-. ---"- -k X(I)=). (i)i`LX . 
RETURN 

Figure (42) PROGRAMME FOR THE FAST FOURIER TRANSFORM. 
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A. 2.5 SUBROUTINE ENCODER 

It performs all the encoding and decoding functions of C. F. D. M. 

system of Figure ( 2). Input is scored in the real array S of 

dimension L. It requires subroutine HISTOGM and subroutine FILTER, 

to draw the step size utilized in the simulation and to filter the 

integrated signal, to reconstitute the baseband signal at the decoder 

output. The call statement for this subroutine is, 

CALL ENCODER (D, L, P, PM, R, RL, GG, GC) 

where, 

D= initial step size 

L= number of samples 

P= adaptation constant for group 3 

PM = adaptation constant for group 4 

R= adaptation constant for group I 

RL = adaptation constant for group 2 

GG =P 

GC =R 

It uses two other subroutines HISTOGM and FILTER. 

The programme for ENCODER is shown in Figure (43) and (43)a. 
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A. 2.6 SUBROUTINE HISTOGM 

Subroutine HISTOGM computes the step sizes utilized, stored in 

the real array CV of dimension 1024, and divides the step sizes into 

various slots of step sizes which are stored In the real array C of 

dimension 100. Each slot has the range of 0.25 volt. It also computes 

the probability of occurrence of each slot of step size and stores In 

the real array PROB of dimension 100. This subroutine also plots the 

histogram of step sizes utilized in the simulation by plotting PROB 

against C. The call statement is, 

CALL HISTOGM (AMIN, AMAX, L) 

AMIN = minimum step size for the plotTing of Histogram 

AMAX = maximum step for the plotting of Histogram 

L= number of samples 

The programme of this subroutine is listed in Figure (44) 

overleaf. 

ý; 
ý.; 
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A. 2. '7 SUBROUTINE SHARP 

It is used for the computation of signal power, quantization 

noise power and the signal to noise ratio. The subroutine sharp is listed 

in Figure (45). This subroutine may be called by the statement, 

CALL SHARP (NMAX, LNMAX, G, CUT, L, FUND, NHPASS, VNOISE, SNR, 

VHOLD, PWER) 

The arguments of this subroutine are, 

NMAX = number of samples which are integral power of two 

LNMAX to the base two = Iogorithm of M 
max 

G - clock frequency 

CUT = cut off frequency of low pass filter "ý 

L = number of samples used in the simulation 

FUND = elementary frequency band 

NHPASS = number of element frequency bands required to represent 

the cut off frequency 

VNOISE - RMS noise voltage 

SNR = signal to noise ratio 

YHOLD = sample of maximum power in the input power spectrum 

PWER = input signal power. °° 

It requires another subroutine NLOGN to compute the frequency 

of input and noise signals. DIR = 1.0 Is used to compute the direct 

fouri er transforms. 

k 

k 
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A. 2.8 SUBROUTINE SMOOTH 

It performs the estimation of power'spectrum of random signal 

datas. It computes the autocorrelation function of the power spectrum 

provided in the real array GNSQ of dimension L. It requires the 

subroutine NLOGN and subroutine WINDOW. DIR = +1.0 is needed for inverse 

fourier transform, and DIR = -1.0 is needed for direct fourier transform. 

The call statement Is, 

CALL SMOOTH (L) 

The programme is listed in figure'(46) 

'A 
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A. 2.9 SUBROUTINE WINDOW 

It Is-listed in Figure (47). It performs the multiplication of 

the autocorrelation function stored In the real array GNSQ of 

dimension L, and the lag window function stored in the real array AN 

of dimension L. 

The output of this subroutine is the weighted autocorrelation 

function stored in the real array GNSQ of dimension L. The call 

statement for this subroutine is, 

CALL WINDOW (L) 

4 
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A. 2. I0 SUBROUTINE GRAFI 

It plots the input signal waveform, decoded signal and the 

staircase approximated signal stored in the real arrays of VIN, BB and 

CV of dimensions 1087,1024,1024, respectively. The programme Is 

listed in figure (48), and the call statement for this subroutine Is, 

CALL GRAFI (D, NUMBER) 

where, 

D= step size of the coder, and, 

NUMBER = number of samples 
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A. 2. II SUBROUTINE COMPRESSION LAW 

It performs the computation of y(t) signal, when the L(t) signal 

is passed through the integrator, of the linear delta modulator, and 

also computes the baseband content from the y(t) waveform as shown in 

the experimental arrangement in figure 8. Input to this subroutine is 

the L(t) signals stored in the real array Q of dimension 1155, and the 

output filtered waveform Esr sin wst, in figure 8, stored in the real 

array ERR of dimension 1155. It also computes the filtered output 

signal power expressed in dBm. Filtering is achieved by convolving 

the impulse response stored in the real array B of dimension 64 of the 

filter with the y(t) signal, stored in the real array cv of dimension 

1024. The call statement is 

CALL COMPRESS LAW (NUMBER, DBC, B). 

where NUMBER = number of signal samples 

DBC = filtered output signal power in dBm. 

B= Impulse response of the lowpass filter 
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A. 3. DESIGN OF NON-RECURSIVE DIGITAL LOW-PASS FILTER 

For the band limitation of the input signal and filtering the 

step approximated signal in the decoder to reconstitute the baseband 

signal, a low-pass filter is required. For these purposes, a digital 

low-pass filter, having a relatively sharp cut-off frequency at the 

highest frequency component in the baseband signal, is designed. 

Non-recursive filter can be ea$ily designed to approximate any 

desired continuous frequency response, and have a linear phase 

characteristic so that the Filter contributes minimum signal distortion. 

Since the non-recursive filter has finite duration impulse response, 

Its frequency response is specified at equisporedfrequencies. 

The efficiency, in terms of the number of computational operations 

required per sampling period, for the non-recursive filter design, is 

usually much greater than that of the. recursive filter of comparable 

characteristic. However, if the *design methods based on F. F. T. (Fast 

Fourier Transform) are used, the efficiency of a non-recursive filter 

design could be much improved. Throughout this part of the work 

implementation methods based on F. F. T. algorithm will be employed. 

Several techniques for designing finite duration impulse response 
( 

digital filter (F. I. R. filters) have been reportedl7 . 
). Our interest 

Is in the "Frequency Sampling Technique". Non-recursive realization 

of filters include, basically, direct convolution and fast convolution. 

In our design feature, frequency sampling technique and direct 

convolution method realization of the filter will be used. 

A. 3. I FREQUENCY SAMPLING TECHNIQUE 

Frequency sampling technique is widely explained in the literature ýi7ý, 

but briefly here it can be-described as follows; 

Given N samples of impulse response, frequency response can be 

evaluated at N discrete frequencies by means of D. F. T. (Discrete Fourier 

Transform). 
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Thus, 

' N- - 2nKt 
NI hK eN 

K-0 P. = 0, I, 2, .... N-I 

whore IlL Is the frequency response at the frequencies f= NT, 
with a 

frequency spacing Af - 
NT between each sample, where T is the clock 

period. This implies that if N discrete frequency response samples 

are known, we can always find the impulse response (ho, hi, h2 ... hN_i) 

by taking the inverse O. F. T. of the frequency response samples 

(Ho, H1 ..... HN-1) 

N- 2nKt 
i. e. hK N HR eN............ 

1=0 K=0, I, 2 .... N-I 

where hK Is the impulse response. 

From the above relations, it can be realized that we can always 

approximate the impulse response from the frequency response, sampled 

at equispaeedfrequencies, which becomes the basis of the frequency 

sampling technique. 

(86) 

(87) 

Several types of frequency sampling design can be used. Basically 

there are two types of filter design, depending on whether N, the length 

of the frequency response samples, is odd or even and the frequency of 

the first sample of the frequency response. Type I design is for those 

(N even or odd) whose initial frequency is at zero frequency of the filter, 

whereas type 2 design is for those whose initial frequency is offset by 

half a sampling interval. 
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A. 3.2 REQUIREMENT OF A REALIZABLE FILTER 

In choosing the desired frequency response samples, care must be 

taken that the resulting filter is physically realizable and that its 

impulse response samples are purely real. For the impulse to be purely 

real, there are several constraints which should be met in selecting 

the frequency response samp! es. (Ho, Hl, H2 ... ""HN-l). 

For a physically realizable linear phase filter the required 

phase condition is, 

Arg H(eJ2aft) - -nfNT radians .............. (88) 

Above relation implies that there must be a delay of NT/2 corresponding 

to half the duration of the impulse response samples. In fact for the 

design of linear phase filter the phase of the desired frequency response 

samples can be put to zero, by selecting the frequency response samples 

purely real. The required delay of NT/2 clock periods could be put 

later in the impulse response. The method is given in the following 

section. 

A. 3.3 METHOD OF ACHIEVING LINEAR PHASE FILTER 

In fact for the design of a. linear phase filter the phase of the 

desired frequency response samples can be left unspecified, i. e. (the 

frequency response samples are all real by setting the imaginary part 

of it zero, for the sake of design sake. ). 

As the D. F. T. treats the sampled waveform periodic in N, the length 

of the samples, it is therefore convenient to represent the negative 

frequencies below the sampling frequency when describing the freq 
r 
uency 

response of the filter. 

i. e. f- Kfs is equivalent to f= (NN-K)fs 
....... (89) 

where K=I, 2 ..... (N/2 - I) 

Thus we only need to describe the spectrum in the positive frequency 

range 0tft fs 
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If we take the inverse D. F. T. of this type of frequency of 

response, the output wiII - be a sequence of impulse response samples 

existing for positive and negative time, which is not physically realizable. 

Physically realizable impulse response samples are those whose elements, 

-prior to time t=0, are all zero. This could be achieved just by 

rotating the samples by N/2 as shown in Figure (49). By doing this, we 

are reintroducing the required linear phase characteristic which is 

equivalent to a delay of N/2 samples or half the duration of impulse 

response. 

A. 3.4 PROCEDURE FOR DESIGNING DIGITAL LOW PASS FILTER 

A. 3.4. I SELECTION OF FREQUENCY SAMPLES 

There are threo parameters to be considered for the design 

problem, namely BW, M and N, where BW'is the number of frequencies samples 

-which occur in the passband of the filter, M is the number of frequency 

samples to describe the frequency characteristic function of the filter 

in the transition band and N is the number of frequency samples for the 

filter. Samples which occur in the passband are assigned to have the 

value of 1.0 and those in the stop band to zero. The transition values 

are chosen from the optimized values documented l7ý. 

For the frequency sampling technique we used here, the choice of 

a sot of frequencies is merely the cholse of the value of N, the 

length of the frequency response and the initial frequency. In our case 

the initial frequency is chosen to be at 0.0 Hz. 



129 

A. 3.4.2 ALGORITHM FOR CALCULATING THE PARAMETERS 

For a given length of frequency samples, N, the required number 

of BW and M that would specify the ideal frequency characteristic, 

could be calculated with some good approximation. Once N has been 

chosen, the frequency spacing between samples can be verified as, 

fs 
Af - 

fs 
................... (90) 

where fs is the clock (or) sampling frequency. 

Suppose an approximation is to design a low-pass filter, to have 

a passband from 0 to fc2, then the values for BW and M could be 

calculated as follows. 

Lot m be the nLmber of frequency spacings that occur in the 

passband, then, 

fc 

Therefore number of samples that occur in the passband can be 

written as, 

BW =m+I= 
fcof 

+I.................... (92) 

The number of M, the transition values, can be chosen as 

required. From the rough estimation,. adding one more transition 

sample M, for a given N and BW, would reduce the sidelobes about 20 dB. 
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A. 3.4.3 PARAMETERS USED 

We are concerned with type I filter design procedure, since 

D. F. T. using F. F. T. algorithm coon only operate for a length of sequence 

N= 2n, where n is any integer and we are interested in designing a 

lowpass filter having a passband from zero to fc2Hz, where fc is the 

cut oft frequency. 

For the required filter having a cut off at 3 kHz, the following 

calculations were made from equations (90) and (91). 

Lot fs t 40 kHz 

N=64 

From equation (90) 

FREQ. SPACING a Af = 
60'0 kHz 

If fc2 a 3.1 kHz 

From equation 

3.1 
m` Of 4 

. '. From equation (92) 

BW - m+ I -5 

The choice of N is made relatively low, i. e. N= 64 to use direct 

convolution method, for the filtering in time domain. Therefore the 

parameters are N- 64, BW = 5, and M=3. Selection of values of M is 

just. for increasing ratio of main lobe to sidelobe ratio of the filter 

charactoristic. 

A. 3.4.4 IIPULSE RESPONSE OF THE FILTER 

The frequency samples for all the values of BW were set to 1.0, 

the transitions values were set according to the table 17), 
and the 

values for the stop band were set at 0.0. To form an even frequency 

characteristic function, an odd number of BW is taken by making the sample 

value of fK the complex conjugate of the value at fN_K except for the 

sample at f-0. 
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Having the sequence of frequency samples, they were transformed 

to complex numbers having iheir complex terms zero, to operate with 

D. F. T. Then the D. F. T. of this sequence was taken and the real part 

of the D. F. T. output was shifted back by N/2 samples, as shown in 

Figure (49), so that the signal impulse response achieved has a delay 

of NT/2 with its centre at N/2. (Figure (5)). , 

A. 3.5 FILTERING. 

Then the input signal samples are convolved with this shifted 

impulse response sample in time domain to yield the filtered output. 

The impulse response approximated from the real discrete, frequency 

response samples and the 16: 1 Interpolated frequency response of the 

desired filter is shown in Figure-(15) 


