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ABSTRACT 

The problem of scheduling independent jobs on heterogeneous multiprocessor 

models (i. e., those with non-identical or uniform processors) with independent 

memories has been studied. Actually, a number of demand scheduling non- 

preemptive algorithms have been evaluated, with respect to their mean flow and 

completion time performance criterion. In particular, the deterministic 

analysis has been used to predict the worst-case performance whereas simulation 

techniques have been applied to estimate the expected performance of the 

algorithms. As a result from the deterministic analysis, informative worst- 

case bounds have been proven, from which the behaviour of the extreme 

performance of the c"onsidered algorithms can be well predicted. However, 

relaxing some or a combination of the system parameters then, our model 

corresponds to versions which have already been studied. (i. e. the classical 

homogeneous and heterogeneous models or the homogeneous one with independent 

memories). For such cases, the proven bounds in this thesis either agree or 

are better and more informative than the ones found for these simpler models.. 

Finally, the analysis of the worst-case and expected performance results 

reveals that there is a high degree of correlation in the behaviour of the 

algorithms as predicted or estimated by these two performance measurements, 

respectively. 
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CHAPTER I 

INTRODUCTION 
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The brief history of computing has been characterised by a constant 

pressure for more and more computing power while at the same time remaining 

within budget constraints. Until recently, the high cost of processor 

hardware has imposed the computer manufacturers to design computer systems 

around a single CPU, with emphasis on optimising its use by the different 

components of the system. Moreover, since the need for computational power 

has grown even faster than the developments in electronics, some manufacturers 

have decided to include more processing elements in order to satisfy such 

demands. So, a number of computing systems based on tightly coupled processors 

have been built (i. e., CDC 7600, ILLIAC IV, CDC STAR, etc. ). Although there 

is no doubt about the capability of such systems, they are very expensive and 

it seems that they could realise their full potential on only a small subset 

of problems, most of them being of a scientific nature (i. e. problems where 

matrix manipulation and solutions of linear or partial differential equations 

are tequired). 

An alternative approach to build computing systems with a desired power 

and suitable to more general applications would be a local complex of 

independent processors. (i. e. loosely coupled processors). Actually, it was 

the appearance of cheap micro- and mini-computers with operational and 

functional characteristics that compared favourably with conventional medium 

and large-scale mainframe systems, which pushed ahead this approach. More 

specifically,,, -, ome of the intuitive advantages of such multimicro- or 

multimini-computer complexes over a single mainframe are: 

- the economics of LSI technology 

- reliability 

- total system's power 

- incremental expansion and 

- more effective utilisation of existing equipment. 

These advantages are well illustrated in [ENL2], [FI, 2], [Fv], [Ha], [MF75], 
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[Shl, [Whl, [Wul or [WL]. In effect, a few such systems are already in 

operation (i. e., Cmmp., at Carnegie Mellon Univ., DSC, at California Univ., 

Irvine etc. ) and others are under development (i. e. Loughborough Unliv. of 

Tech., etc. ). 

However, the basic duties for computer researchers are to investigate 

the behaviour of a proposed system before it appears in the real world and 

there is no exception in multiprocessor systems based on tightly or loosely 

coupled processors. Especially, one of the topics of interest is: how the 

jobs can be organised and allocated to the various processing units in order 

to achieve certain performance objectives which is an important function in 

the design of computer operating systems. Generally, assigning external 

priorities to the jobs, based on a judgement about their importance, and 

using a particular job-scheduling function could answer this question. 

Moreover, in systems where the jobs requirements can be predicted or 

estimated in advance then, a pre-set ordering of the jobs according to their 

priorities, depending on some attribute or combination of attributes (i. e., 

memory requirement, estimated processing time, resources required, etc. ), 

could be as important as the scheduling function itself in order attain 

desired performance goals. Such systems are in our interests. Nevertheless, 

the choice of a pre-set ordering and/or scheduling function is neither 

obvious nor. an easy task. This can be realised from the substantial research 

which has been done in this area since the end of the 19601s. Actually, a 

number of abstract multiprocessor models have been examined and many job' 

scheduling algorithms evaluated under various procedures to form the pre-set 

ordering. 

Apart from the insight and the new scheduling ideas that such studies 

may reveal for real multiprocessor systems, many of the results obtained in 

job scheduling have immediate interpretations to several problem areas in 

operations research, industrial engineering, management science and business 
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administration. However, it is known that the first steps in performance 

evaluation of multiprocessor models were taken from the existing results 

in the above mentioned areas. 

Two common approaches to evaluate a scheduling algorithm are its worst- 

case and expected behaviour. These measures can be predicted and estimated 

respectively using different analysis. In particular, we must use the 

deterministic scheduling theory in order to predict the worst-case behaviour. 

According to this theory everything about the system and jobs' requirements 

are known in advance. On the other hand, we must use stochastic queueing 

theory to estimate the expected behaviour of an algorithm. Queueing theory 

assumes that many things about the system are uncertain. This uncertainty is 

characterised by probability distributions for the job's requirements, the 

arrival of each job in the system and the selection of processors or other 

resources for the various job steps. In addition, the expected behaviour can 

also be estimated by using simulation techniques. 

The main attraction of deterministic scheduling is its precision and its 

ability either to look for optimal algorithms or to calculate with no 

uncertainty the worst-case performance of heuristic algorithms. Instead,, 
I 

the stochastic queueing theory is mainly attractive for its compactness; 

relatively few parameters are required to calculate performance characteristics 

for complicated systems. 

The deterministic approach is a suitable tool for systems where a 

guaranteed level of performance is required. in addition, it could also 

direct us to examine more elaborated procedures for pre-set ordering and/or 

scheduling algorithms. Further, the worst-case performance of job scheduling 

algorithms, under various pre-set orderings, relatively to the corresponding 

optimal scheduling process give us the ability to compare and rank them. 

However, an open question is, whether the deterministic approach could be 

useful for systems, under our interests, where the expected behaviour is 
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more meaningful. This could happen if the worst-case behaviour of any 

algorithm agrees with its expected behaviour. Such a verification would 

show that these two approaches can be used in a supplementary way where, 

the deterministic approach will be used to choose the correct pre-set 

ordering and/or job scheduling algorithm and the queueing network theory 

or simulation techniques approach to estimate its expected performance. 

However, the literature contains very little evidence about this and hence 

further research is needed. 

As a matter of fact, this thesis will reveal some evidence towards the 

degree of correlation between these two approaches. A new abstract multi- 

processor model will be examined, which may be interpreted as a multimicro- 

or multimini- complex design, using the deterministic scheduling theory and 

simple simulation techniques. In detail, this thesis is organised in the 

following way. In Chapter 2, a background for the deterministic scheduling 

theory related to multiprocessor computing systems is given while in 

Chapter 3, a survey of the previous work done is studied. In Chapter 4, the 

computation model is defined as well as the specific aims and objectives of 

this research. Further, in Chapter 5 and 6 we use detdrministic analysis 

to evaluate the worst-case behaviour of a number of sched uling algorithms, 

under a variety of pre-set oTderings, for different performance goals. On 

the other hand, in Chapter 7 we use simulation techniques to evaluate the 

expected behaviour of these algorithms. Finally, Chapter 8 is devoted to 

conclusions and suggestions for further work. 



CHAPTER 2 

BACKGROUND IN DETERMINISTIC COMPUTER 

SCHEDULING THEORY 
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2.1 INTRODUCTION 

Generally, scheduling theory is a collection of algorithms, ordering 

procedures, models, techniques and logical conclusions that provide insight 

into the job scheduling function. Further, the job scheduling function can 

be defined as the allocation of available resources over a period of time 

to perform a set of tasks. (The terms task/job will be used interchangeably). 

Therefore, since the job scheduling function and the pre-set ordering of the 

jobs play an important role in the achievement of certain performance goals 

in computing systems", scheduling theory becomes a vital tool for the prediction 

of performance evaluation of new proposed systems. When the deterministic 

or the stochastic theory is used to evaluate scheduling algorithms for 

computing models, it is generally referred to as deterministic or probabilistic 

computer scheduling theory respectively. Similarly, the chosen analysis will 

characterise the computation models as deterministic or probabilistic ones. 

As stated in Chapter 1, a part of this thesis is to analyse a new 

proposed computational model using deterministic analysis. Therefore, a 

background in deterministic computer scheduling theory is required"ý Actually, 

in this chapter we attempt to give all the necessary definitions and concepts 

for deterministic scheduling theory to clarify the investigations which will 

appear in Chapters 5 and 6. However., such concepts can also be found in, [Co], 

[G], [GGJ] or [M]. 
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2.2 A GENERAL MODEL 

The computation model which is to be described in the following subsections 

will be so general as to include most of the models studied so far in the 

deterministic computer scheduling theory. 

2.2.1 Resources 

The -resources in a deterministic computing model can be characterised 

through the following assumptions: 

(a) A computing system consists of two classes of resources, dedicated resources 

and shared resources. In each class there are different types of resources., 

(b) There is a certain number of units of dedicated resources of each type. 

A job cannot be executed on more than one unit of each type concurrently, 

and no other jobs can be executed on the same unit which has already been 

occupied by a job. Examples of dedicated resources are processors, input- 

output devices, etc. 

(c) There is a unit of each type of shared resource. (no loss of generality 

arises in normalising each type of shared resources to one unit). The 

execution of a job -requires a fraction of a unit of each shared resource, 

including zero as a possibility. Concurrent execution of a number of tasks 

might share the same unit of shared resources, provided that the sum of 

fractions of the unit they sharej does not exceed one. Eýamples of shared 

-resources are core memories, magnetic disks and drums, etc. 

(d) The units of a dedicated -resource might not be identical. It might be 

the case that the execution times will be different when a job is executed 

on different units of a dedicated resource. It might also be the case that 

a job can only be executed on some of the units of a particular dedicated 

resource. 

(e) The unit of each shared resource is considered to be uniform. A job will 

release the poriions of shared resources it occupies when its execution 

on all the units of dedicated resources is completed. 
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A general task system for a given set of resources with pEZ+* types of 

dedicated resources, Z+ units of each type (there is no loss in generality 

in assuming the same number of units in each dedicated resource), and cF-Z+ 

types of shared resources can be defined as the system (J, <, {T k IJR k ), {w 0) 

as follows: 

1. J={Jlsj 2-**'-' JnI is a set of jobs to be executed. 

2. <- is a (irreflexive) partial order defined on J which specifies 

operational precedence constraints. That is, Ji <J i signifies that J 

cannot be started before J1 is completed. If <- is empty, then the 

jobs in the task system are said to be independent. 

3.1 T ký [t ij ], 1, <k, <n, is a (pxm) matrix of execution times, where 0, <t ij '<C0 
is the time required to execute a particular task Jk on the j th, 

unit 

of the i th dedicated resource. Note that if t then the job Jk 

cannot be executed on the j th 
unit of the i th dedicated resource and 

that for each i there exists at least one j such that t 

4. R k": [RI (jk) R 2(jk)"* ., R 
q 

(i k )], 1, <k, <n, specifies in the i th 
component, 

the amount (fraction) of shared resource type Ri required throughout 

the execution of J k* Always we have 0, <R i (i k ), <l for all i and k 

(1, <i, <q and 1ýk, <n). 

S. The weights w k' 1, <k, <n are interpreted as deferal costs (or more 

exactly cost rates), which in general may be arbitrary functions of 

the scheduling properties influencing J k' However, in most of the 

cases wk is taken as constant. Thus, the "cost" of a job Jk finishing 

at time t is simply wkt. 

If < is empty or there are no share4 resources in the system or w k": 1 for 

all 1, <k, <n then, the parameters <-, fR k ), fw kI will not appear as system parameters. 

z represents the set of positive integers. 
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The partial order * is represented as a directed acyclic graph (dag) 

with no (redundant) transitive arcs. In general however, the way in which 

a partial order is specified in a given problem may influence the complexity 

of its solution. 

For a set of resources with one dedicated resource and m identical units, 

no shared resources and weights w01,1<, k, <n, that can represent a set of 

identical processors P={P,,, P 2" .. 'P m 
1, a dag representation is pictured in 

Fig. 2.1. The notation J k1tk is introduced for labelling vertices. (Since 

there exists only one dedicated resource the execution time of job Jk is 

t 
1) =t J and since all units are identical tk=t i for all 1; ýj; ým, 1: ýkýn). 

It is necessary to define a number of terms -relating to dags. In 

particular, a path of length k from J to J1 in a given graph G is a sequence 

of vertices (tasks) Ji 
1 j'j '2"- '1 'k such that J=Jilj JI=J ik (k>, l) and 

P ij, jij+l ) is an arc in G for all 1, <j, <k-1. Moreover, if such a path exists, 

J will be called a predecessor of J1 and J1 a successor of J. If k=2, the 

terms immediate predecessor and immediate successor will be used. Initial 

vertices are those with no predecessors, and terminal vertices are those with 

no successors. The graph forms a forest if either each vertex has at most 

one predecessor or each vertex has at most one successor. If a forest has in 

the first case exactly one vertex with no predecessor or in the second case 

exactly one vertex with no successor, then it is called a tree. The level of 

" vertex J is the sum of the execution times associated with the vertices in 

" path from J to a terminal vertex such that this sum is maximal. Such a 

path is called a critical path if. the vertex J is at the highest level in the 

graph. 

I 
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16 /1 

FIGURE 2.1: A dag representation of (J, <, {t k 

Notations and properties: 

Acyclic 

13 /1 

1 /6 

2. No transitive edges: (J VJ6 ) would be such an edge. 

3. JlPj 2' 1Y1 10 are initial vertices; J 8' J9, J10 are terminal vertices. 

4. For example, J7 is a successor of J,, J 2'j3'j4 J, but an immediate 

successor of only J 4' 15; J5 is a predecessor of J 7' 1 8" 19 but an immediate 

predecessor of only J 7' 1 8* 
S. Levels: il 12131415161718191 

10 
8987735621 

6. Critical paths: J21 15 '1 8 and J2 
-' 
1 41 1 7'j9* 
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2.3 BASIC DEFINITIONS 

A number of useful terms concerning deterministic computer scheduling 

are defined in this section. 

Although, the term scheduling has been previously defined, more precisely, 

by scheduling a set of jobs on a computing system it means to assign to each 

job, within certain time interval(s), resources that are needed for its 

execution with the constraint that all the resources needed for the execution 

of a job are assigned to the job simultaneously. Such an assignment of 

resources to jobs is called schedule(S). 

An explicit way to describe a schedule, when there are no shared resources 

(q=O), is a timing diagram., which is also known as the Gantt chart. As an 

example, the timing diagram for the execution 
ýf the task system shown in 

Fig. 2.1 on three identical processors computing system is pictured in Fig. 2.2. 

The specific processors are shown along the vertical axis and a time scale is 

shown along the horizontal axis. The shading shown in the figure represents 

periods in which the processors are idle. 

In a schedule, a processor might be left idle either because there is 

no executable task at that time or because it is an intentional choice. (A 

task is said to be executable at a certain time instant if the execution of 

all its predecessors has been completed at that time). Clearly, it is neither. 

necessary nor beneficial in a schedule to have all the processors idle at the 

same time, For a given schedule, an idle period of a processor is defined to 

be the time during which a processor is not executing any job (while at least 

one of the other processors is executing some job). The symbol 0, appropriately 

subscribed when necessary, is used to denote such idle periods. Also, the 

Symbol D denotes the timing diagrams. The symbols si and fI denote, 

respectively, the start and the finishing times of job JI. Where necessary 

for indicating the dependence on a particular schedule S, the notation s i(s) 

and fi (S) is used. 
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FIGURE 2.2: Example timing diagram for Fig. 2.1 (m=3) 

Furthermore, a scheduling algorithm is a procedure that produces a 

schedule for every given task system. A scheduling algorithm is said to be 

non-preemptive if it follows the rule that once the execution of a task has 

begun, it must continue without interruption until completion. On the other 

hand, a preemptive scheduling algorithm is the one that permits the execution 

of a job to be interrupted and removed from the. processor, subject to the 

condition that the interrupted job is restarted later from the point at which 

it was last interrupted. In schedules that are produced by non-preemptivp 

scheduling algorithms there is exactly one execution interval for each task, 

while in those produced by a preemptive one, there might exist more than one 

non-overlapping execution interval for each task. 



14 

2.4 PERFORMANCE CRITERIA 

Different criteria can be used to measure the performance of a schedule 

produced by a specific scheduling algorithm. The most commonly used perform- 

ance criteria are going to be considered in the following discussion. 

A great amount of research has been done as far as the completion (or 

maximum finishing) time criterion is concerned. The completion time W(S) 

(or simply w) of a given sche dule S is the total time it takes to complete 

the execution of all jobs of the task system according to schedule S. Assuming 

that the starting time of a schedule is zero, then the completion time can be 

represented symbolically as: 

w(S) = max {f. (S)}, 
1, <i, <n 1 

where n is the number of jobs in the task system. It can be seen in Fig. 2.2 

that w=9 units of time. 

This criterion gives an insight about the utilisation of the resources 

and consequently about the throughput of the system. This is because shorter 

completion time means that the resources have been utilised better and 

therefore, the number of jobs processed per unit of time (throughput) will be 

greater. 

Another performance criterion with less research involvement, but not of 

least importance for the computing systems, is the mean flow time. The mean 

flow time U(S) (or simply Zi) of a given schedule is defined to be the sum 

of finishing times of all the jobs divided by the number of jobs (n) in the 

task system. Assuming again that the starting time of a schedule is zero 

then the mean flow time can be expressed as: 

1n U(S) 
n 

(S) - 

Referring to the schedule in Fig. 2.2, it can be found that a=43/9 units of 
W10 

time. 

This criterion provides a measure for the average time a task spends 
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in the computing system (turnaround time). Therefore, it is an indirect 

measure for the system's throughput. Because the shorter the time during 

which a task occupies certain resources (other than processors), the greater 

the amount of time that is available for other tasks to occupy those resources. 

Another reason for the importance of this criterion lies in its connection 

with the mean number fi of incomplete tasks over the schedule-length 

(completion time of the schedule), which can be a performance criterion by 

itself. It has been found (see [CD], [Co]) that 

T, 
-U 

Thus, the mean number of incomplete tasks is in the same ratio to the 

maximum number of tasks as the mean flow time to the completion time of a 

schedule. Also, the above equation indicates that, for a given task system 

and completýiqn time of a schedule, the mean flow time is directly proportional 

to the mean number of incomplete tasks. 

Once a performance criterion has been chosen, then a schedule can. be 

characterised as an optimal or non-optimal schedule according to the chosen 

performance criterion. More exactly, a schedule S is said to be optimal with 

respect to a certain criterion of performance if it minimises the chosen 

performance index, and non-optimal if it does not minimise it. Thus, if the 

completion time is used as the performance criterion for a schedule, then an 

optimal schedule is one which has the shortest completion time. A non-optimal 

schedule is believed to be a good schedule if its completion time is close 

to the completion time of the optimal schedule. 
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2.5 SCHEDULING ALGORITHMS 

As mentioned earlier a scheduling algorithm is a procedure that produces 

schedule for every given task system. Therefore, because of the generality 

they have, it becomes of great value to study the computational complexity of 

such algorithms, their optimality or non-optimality and also, as far as the 

non-optimal ones are concerned, to study their behaviour against the optimal 

one. These subjects will be analysed briefly in the following subsections. 

2.5.1 Complexity of Scheduling Algorithms 

In general, the complexity of an algorithm solving a given problem refers 

only to its execution time, expressed as a function of input-length; i. e. the 

number of elementary steps needed to describe an instance of the problem. 

Here, complexity is specified as a function of the basic problem parameters, 

primarily the number n of tasks. In some cases, this is a considerable 

simplification, but not an inappropriate one for this study. (In effect, it 

is assumed that numbers can be read and operated on in a constant time, which 

is reasonable in practice). 

In order to represent the complexity of an algorithm, the order-of- 

magnitude notation 0(. ) will be used, which concentrates on the terms of a 

function that dominates its behaviour. Thus, if it is written that an 

algorithm has complexity 0(n. 2 ), it simply means that there exists a constant 

c such that the function cn 
2 bounds the execution time as a function of n. 

(For more details see [Kn], p. 104-108 and [HoS2], p. 24-30) 

2.5.2 Optimal Scheduling Algorithms 

A scheduling algorithm is optimal with respect to a performance criterion 

if it produces an optimal schedule for every given task system. Since for a 

set of n jobs there is only a finite number of schedules, one could derive an 

algorithm which could find the optimal schedule through an exhaustive 

examination of all the schedules. Clearly, such an algorithm requires 
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considerable computation time (most probably exponential), which offsets the 

advantages gained by the optimal schedules. In effect, an optimal algorithm 

will be considered efficient only if it requires a reasonable computation 

time to produce optimal schedules. Such algorithms are those whose complexity 

is bounded by a polynomial of small degree. Moreover, these optimal algorithms 

are usually referred to as po Zynomia Z-time -bounded aZgorit7rns or simply 

polynomiaZ aZgoritli7ns. So far, for the general scheduling problem it has not 

been found any optimal algorithm with polynomial complexity. Instead, it has 

been shown that it falls in the category of what is known as non-detenninistic- 

poZynomial-time-hard or simply NP-hard t problems. 

. 
Roughly speaking, an optimisation or a decision problem is said to be 

NP-hard if given a deterministic polynomial algorithm for the problem, it is 

possible to use that algorithm to obtain a deterministic polynomial algorithm 

for every problem in the class of NP-hard. Further, a decision problem is said 

to be NP-complete t if it is NP-hard and if there exists a non-deterministic 

algorithm to solve the problem in polynomial time. So. either there exists 

polynomial algorithms for all NP-hard problems, or none of them has a polynomial 

algorithm. Although a great deal of time and effort have been spent in finding 

a polynomial algorithm for any of the NP-hard problems, so far no such 

algorithm has been found. However, in spite of the overwhelming empirical 

evidence to the contrary, it is still an open question whether NP-hard problems 

can be solved in polynomial time. 

It has been shown that the decision scheduling problem is a NP-compl , ete 

one, even for the following computation models: 

- all jobs in the given task system have equal execution time and the 

number of identical processors in the system is arbitrary; 

- there are only two identical processors in the system and the 

execution time of each job in the task system is either one or two 

t 
A more exact definition is given in [HoS21 Chapter 11. 
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units of time, when the completion time is the performance 

criterion Csee [Ul]); and 

- there are only two identical processors in the system and the 

execution time and weight of each job in the task system are 

arbitrary, when the mean flow time is the performance criterion (see 

[BCS1]). 

This means that the problem of designing optimal scheduling algorithms 

even for the above mentioned simple computation models is NP-hard and 

therefore intractable. 

2.5.3 Heuristic Scheduling Algorithms 

We saw in the previous section, that there is little hope in finding an 

efficient optimal scheduling algorithm even for simple submodels of the general 

model, which has been considered for this study. So, one comes to the 

decision to use approximate heuristic scheduling algorithms, which produce 

near optimal schedules, rather than search for optimal ones. Usually, 

heuristic scheduling algorithms are easy to understand, of low complexity and 

easy to implement. In other words, they hopefully produce good schedules in 

a reasonable amount of time, without giving a lot of trouble to the job- 

scheduler designer. 

A class of heuristic scheduling algorithms is the so called demand 

scheduling algorit7vns class. Such algorithms have the restriction that a 

processor is never left idle intentionally. That is, a processor is left 

idle if and only if there is no executable job within that period. (However, 

it should be noticed that it is sometimes necessary to leave a processor idle 

intentionally in order to have better completion time for a given task system). 

A demand scheduling algorithm can be specified by merely giving the rules on 

how jobs have to be assigned on processors, or how jobs are to be chosen for 

execution at any instant when one or more processors are free. (Of course, 
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the choice is only amongst jobs that are executable at that time). 

A subclass of demand scheduling algorithms is the priority driven (P. D. ) 

scheduling algoritlins. According to a P. D. scheduling algorithm, all jobs in 

the task system are assigned priorities and jobs with higher priorities are 

executed instead of jobs with lower priorities when they are competing for 

processors. Rules are also provided for breaking ties. In this type of 

algorithms, one just lists the jobs in J in descending order of their priorities 

from left to right. Such a list is called a priority list and will be noted 

by the L symbol. When a processor becomes free, the priority list is scanned 

from left to -right until the first executable job is found; that is, the job 

can be executed on the given processor, if all predecessors of J have been 

completed and sufficient shared resources exist to satisfy Ri (J) for each 1: ýi, <q. 

Then, this job is assigned to the free processor. (If two or more processors 

are available at the same time, a rule is also specified as to which of the 

processors will be assigned which job. ) Such a scheduling algorithm is also 

referred to as a list scheduling. As an example one can apply higher priorities 

to the jobs which are in higher level in the task system given in Fig. 2.1. 

Then, the following priority list can be obtained L=(j2'jl'j3'j4'j5'j8'j7'j6' 

J9. *j 10 ). Therefore, for that priority list a priority-driven scheduling 

algorithm can give the schedule DI shown in Fig. 2.3. 

t: O 1236 

Pl 

Di p2 

P3 

2 

10 5 
18 

3 
ol 01 16 02 

L=(J 
2' ii. Si 3' 1 4' issi 8-, 1 7' 1 6' 19ji 10) 

FIGURE 2.3: Example schedule for Priority-Driven_algorithms 
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When two or more processors were available, in the above example, the 

simple rule of assigning a higher priority job to a processor with lower 

index was used. There are other subclasses of demand scheduling algorithms 

as well. One of them is the earliest completion time (E. C. T. ) algoritknS. 

According to these algorithms when a task is being considered for assignment 

to a processor, it is assigned to that processor on which its finishing time 

will be, earliest. Priority lists can also be formed before such an algorithm 

is activated. The tasks in the priority list are considered one by one in the 

order they appear in the list. Ties are broken arbitrarily or by a specified 

rule. An E. C. T. algorithm, applied to the same priority list L=(J 2' jlJVj3J9j 4' 

J5.1J8.1j 7' 1 6' 1 91ilo ), as in the previous example, for the task system given in 

Fig. 2.1, gives the schedule D2 as shown in Fig. 2.4. In this example, ties are 

broken by assigning the task to the processor with the least index. 

t: O 
.123678 

Pl 

D2 P 
2 

p3 

4 7 

8 

/0 

2 

777 
0 

3 

1 

10 4 

L110 

L=(J 2' 1 l, 'j3"j4-'j5'j8'j7'j6'j9'JlO) 

FIGURE 2.4: Example schedule for E. C. T. algorithms 

Another subclass, similar to the one just described, is the so called 

class of quick and dirty (Q. A. D. ) scheduling alýgorithms. Acco-rding to the 

Q. A. D. algorithms a task is assigned to that processor on which its 

contribution to the mean flow time is the least possible. In contrast to the 
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previously mentioned algorithms these are right justified (i. e., a job Ji 

scheduled on the i th 
processor before the Jj+k job will be executed on that 

processor after Jj+k)' 

As an example, consider the task system defined by the set of independent 

jobs J={Jl, J2' J 3'J4'J5 } to be -run on a three non-identical processor system 

with no shared resources. Let the input matrix [t ij ] be: 

11 12 13 4 

p1 12 2 16 8 

p2 is 2.5 20 10 is 

p3 6 1 8 4 6_ 

Then, applying the Q. A. D. algorithm we get the schedule D3 as shown in Fig. 2.5. 

t: O 246 10 12 14 

Pl 

D3 p2 

p3 

01 
vz 

I z 
102711 

FIGURE 2.5: Example schedule for Q. A. D. algorithm 

C-ý 

Furthermore, there are the look ahead algorit7rns (or two dimensional 

i. e. 2D). In such algorithms an optimistic guess for the schedule length is 

always made at the beginning. Then by working across the schedule from left 

to right and top to bottom, an attempt is made to form a schedule of that 

length. If a schedule is actually produced, then the process stops with a 
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minimal final completion time. Otherwise the optimistic guess is increased by 

a unit of time and the process is repeated. Such algorithms are most 

applicable to task systems with independent jobs. As an example, consider 

the task system defined by the set of independent jobs J=[J,, J 2-' JVJ 4' J5 

with execution time requirements [t 
1] 

]=[6j8,4j6jl] (t i corresponds to Ji to 

be scheduled on a multiprocessor model with three identical processors. 

Making the guess for the schedule length to be 8 units of time we cannot 

produce a final schedule (Fig. 2.6, D4(a)). Then, increasing the guess length 

by one unit we can see (Fig. 2.6, N(b)) that a final schedule is produced. 

t: O 24 

p2 

p3 

Ji 

J3 

J3 J7 

D4(a) 

t: O 2456789 

Pl 

p3 

iI J2 

213 

ii/ 
/// 

4 

D4 (b) 

FIGURE 2.6: Schedules illustrating the look ahead algorithms 

Finally, if jobs in a task system have been allocated to processors 

according to a scheduling algorithm and consequently have been sequenced in 

a STF order on each processor, then such a procedure characterises the 

algorithms known as two-phase algorit7rns. The objective of such algorithms is 

to improve the mean flow time of a task system without changing its completion 

time. So, a two-phase Q. A. D. algorithm (Q. A. D. *) for the same task system, 

used in schedule D3, will produce the schedule DS as shown in Fig. 2.7. 



23 

t: 024 10 12 14 

p 1[ 
J2 

DS P2 
4 

Xz 

p 

FIGURE 2.7: A schedule illustrating the two-phase algorithms 

2.5.4 Evaluation of Scheduling Algorithms 

In case a scheduling algorithm is not optimal, one would naturally 

like to know how effective it is. The deterministic scheduling theory 

measures the effectiveness of an algorithm by the worst schedules it 

produces. So, the worst-case performance of. the algorithm is determined. 

More exactly, the worst-case performance or the extreme performance of 

an algorithm is evaluated by comparing the worst relative to the theoretical 

optimum value of the schedules, which can be constructed, for a particular 

performance criterion. Most of the times, the. worst value is upper bounded 

and the theoretical optimum value is lower bounded by expressions which 

contain relevant system parameters. Then, the ratio of the worst over the 

optimum value will result in upper bounds, which characterise the extreme 

performance of the algorithm. Actually, we refer to these bounds as worst- 

case performance bounds or guaranteed performance levels. Moreover, if 

examples can be constructed that cause the algorithm to deviate from optimal 

performance by the amount allowed by a proven worst-case bound (or 

asymptotically approach it), then that bound is clear ly the best bound 

provable (i. e., best possible bound) and one may say that the worst-case 

performance has been determined. 



CHAPTER 3 

A SURVEY OF PREVIOUS WORK 
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3.1 INTRODUCTION 

A great deal of research has been done during the past, and especially 

during the last decade as far as the deterministic scheduling of computing 

systems is concerned. So, before the model, which this thesis is concerned 

with, is described and the scheduling algorithms analysed, it would be worth 

while to answer some questions like: 

- has the general model described in section 2.2 been fully examined? 

- if not, which simplified versions have been studied? 

- what scheduling algorithms have been analysed? 

- what were their behaviour? 

- in the case where scheduling algorithms are not optimal, what worst- 

case bounds have been found and what is the average performance 

behaviour? 

As a matter of fact, this is the purpose of the present chapter. 

The survey begins with a general description of the models examined so 

far, followed by the known optimal scheduling algorithms and NP-complete 

problems, the woTst-case bounds of non-optimal algorithms and the average 

performance behaviour, where indicated. 
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3.2 MULTIPROCESSOR COMPUTING MODELS 

Unfortunately, the general model described in section 2.2 has not yet 

been fully examined. All the computing models, which have been considered 

so far, consist of one type of dedicated resources (processors). For this 

reason such models are known as multiprocessor computing models. A multi- 

processor model is a homogeneous one if all the processors in the model are 

identical. If there are different speed (uniform) processors or generally 

non-identical ones, then the multiprocessor system is called heterogeneous. 

Apart from the above restriction to the dedicated resources of the 

model, constraints have also been made for the task system. An arbitrary' 

task system has never been considered for scheduling. Always a simplified 

version characterised the task system. 

We are not going to give any further description of the exact models 

examined at this stage. This knowledge will be accumulated as one follows 

the remaining sections of this chapter. 
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3.3 OPTIMAL SCHEDULING ALGORITHMS AND NP-COMPLETE PROBLEMS 

It has been discussed in section 2.5 that algorithms which produce 

optimal schedules are of significant importance. Although there are such 

algorithms, these are applicable only for restricted versions of the general 

model. 

This section provides a reference of the known optimal algorithms so 

far, as well as for the scheduling problems which have proved to be NP-complete. 

Moreover, a brief description of some of the algorithms is given. The optimal 

algorithms have been considered with respect to completion and mean flow time 

performance criteria respectively. 

3.3.1 Optimal Scheduling Algorithms and NP-Complete Problems with Respect to 

Completion Time Performance Criterion 

The homogeneous multiprocessor computing models are considered first. 

Actually, there are non-preemptive and preemptive polynomial time optimal 

algorithms, with respect to completion time performance criterion, for 

homogeneous multiprocessor models. Moreover, such non-preemptive algorithms 

are known only for the following three cases: 

(1) a task system, that consists of unit execution time jobs with a 

forest being their partial order, scheduled on an arbitrary number 

of identical processors; 

(2) a task system, that consists of unit execution time jobs with an 

arbitrary dag being their partial order, scheduled on two identical, 

processors; and 

(3) a task system, that consists of independent unit execution time jobs 

and arbitrary shared resource requirements, scheduled on two 

identical processors. 

Hu [Hu] has found a list scheduling algorithm for case (1), when a tree 

charactetises the jobs' partial order. Higher priorities are assigned to 
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jobs of higher level. (Assignment of priorities to jobs of the same level .' 

is arbitrary) The level of a job is decided by the foll'OWing rules; - 

(i) the level of a job that has no successors is defined to be one; 

(ii) the level of a job that has one or more successors is equal to 

the maximum value of the levels of its successors increased by 

one. 

Chen and Liu JCLO have considered the same problem. Actually, 'they have 

proved that Hu's algorithm is optimal, when either a tree or a forest is I 

considered as the jobs' partial order. 

Fujii, Kasami and Ninomiya [FKN], Coffman and Graham [CGI and Sethi [Se2] 

have discovered different scheduling algorithms for case (2). In [FKN] an 

undirected graph GI is constructed from a task system with arbitrary dag G. 

An edge (J, JI) in GI denotes the fact that J<01 and JI<J are both false. A 

schedule on two processors is then determined from a maximal matching of G1. 

Both the construction of GI and the maximal matching are of O(n 3) time 

complexity. Later, Coffman and Graham gave a list scheduling algorithm to 

execute tasks, level by level as Huls algorithm for case (1), but when there 

is more than one task at the highest level, it makes a judicious choice 

which task to execute first. More exactly, in Coffman-Graham's (C. G. ) 

algorithm, the priorities are assigned to jobs as follows: - 

(i) starting with 1, which is the lowest priority, distinct and 

constructive priorities are arbitrarily assigned to jobs that 

have no successors; 

(ii) priorities are assigned to jobs with one or more successors 

recursively: 
I 

(a) Let S be the set of jobs with unassigned priorities and all 

their successors have assigned priorities. Then, label each 

job in S using the priorities of its successors (i,,, i 2""), 

which should be in increasing order; 
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(b) Find the smallest labelled job, according to lexicographical 

order rule, and assign to this job the lowest unassigned 

priority. 

While C. G. 's algorithm needs O(n 2) 
steps to determine the priorities of 

the jobs and O(n 2) 
steps to construct the schedule, Sethi [Se2] gave an 

algorithm with 0(n+e) and 0(na(n)+e) time complexity respectively, where e is 

the number of edges in a dag and a(n) is a functional inverse of the 

Ackermann's 
t function. '(a(n)=minfi-. A(i, 3)<L'092nJ')* 

For the case (3) Garey and Johnson [GJl] gave an algorithm where, an 

n-node graph G is constructed, having each node labelled by a distinct task, 

with an edge joining Ji to Ji if and only if Rk (i i )+R(J 
I 

); ýl for all 1, <k, <q. 

Thus, task J. and J. can be executed simultaneously if and only if there is 

an edge joining the corresponding nodes. Then, a maximal matching algorithm 

is applied, in order to construct the optimal schedule. 

The inability to discover efficient non-preemptive algorithms to produce 

optimal schedules for more complex versions of the general model has been a 

rather frustrating experience for quite a number of years. However, such 

frustration is at least partially pacified by some recent results in 

Complexity Theory, as mentioned in section 2.5.2. But apart from the two 

problems Ulman [Ul] found to be NP-complete, other ones have also been found, 

to be in the class of NP-complete problems, by other authors. 

Table 3.1 summarises these problems together with the optimal scheduling 

algorithms, which have already been discussed, though some remarks will be 

made for a better interpretation of the table. 

The columns correspond to the possible parameters of an algorithm that 

t Ackermann's function is defined by: 

A(O, j) = 2j and 
for iý: l., jý2 

A(i, O) = 0, A(i, l)=2 

A(ij) = A(i-1, A(i, j-1)) 
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solves a problem defined by the assumptions given in a row of the table. 

For those entries in which a value is specified, the free parameter is 

eliminated. For example, in problem 3, one finds that m is not a parameter 

but it is fixed at the value m=2. Similarly, It 
JI 

is not a parameter, 

because the specific common value It 
J} 

does not influence the algorithm. 

But, the partial order is a free parameter. Also, the number of jobs is a 

free parameter. 

The NP-complete problems indicated in Table 3.1 represent the simplest 

known cases for NP-completeness. Therefore, one should make appropriate 

inferences regarding more general problems. If one generalises any of the 

parameter 'restrictions in a given problem, obviously a problem will be 

produced which will be at least as hard as the original one. An important 

observation in this respect concerns a comparison of rows such as 8 and 6. 

Since problem 8 is NP-complete, it is easy to see that the problem with m as 

a free parameter is also NP-complete. However, the converse is not 

necessarily true. Problem 6 is a NP-complete one, but it is not known 

whether for any fixed value mý: 3 the corresponding problem is NP-complete and 

so it is regarded as an open problem. 

Finally, regarding polynomial-time algorithms, we do not in all cases 

claim that the complexity shown is minimal. 
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TABLE 3.1: Optimal non-preemptive scheduling algorithms - NP-complete 

problems - Completion time - Homogeneous multiprocessor 

models. lwkl='* Parameters n and 

1. 

2. 

3. 

4. 

S. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

No. of 
Processors 

M 

No. of 
Shared 
Resources 

q 

Partial 
Order 

Time 
Requirement 

Tk:: tk 

Algorithm 
Complexity References 

- 0 Forest Equal O(n) [Hu], [CLj] 

2 0 - Equal 
3 O(n ) [FKN] 

2 0 - Equal 0 (n 2) [CG] 

2 0 - Equal 0(na(n)+e) [Se2] 

Fixed 0 - Equal open 
: ý3 

- 0 - Equal NP-complete jul] 

Fixed 0 - ti E{1,2) NP-complete [Ul] 
3 

2 0 NP-complete [BCS1] 

2 - Equal 0 (n 3 [GJ11 

Fixed 1 Forest Equal NP-complete [GJlI 
>, 2 

Fixed I Equal NP-complete [Gjl] 
3 

max{t. ) 
0 

=P NP-complete (IK] 
minIt. T 

1 i 1 1 

Notation: 

1. - stands for a free parwneter; 

2. ý stands for empty partial order. 
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We move now from non-preemptive to preemptive scheduling algorithms. - 

Although the general preemptive scheduling problems, without shared resources, 

is a NP-complete one ([U2], p. 159), there are known optimal algorithms for 

the following four cases: - 
I 

a task system, that consists of independent jobs with arbitrary 

execution time requirements, scheduled on an arbitrary number of 

identical processors; 

(21) a task system, that consists of jobs with arbitrary execution time 

requirements and an arbitrary dag being their partial order, 

scheduled on two identical processors; 

(31) a task system, that consists of jobs with arbitrary execution time 

requirements and a forest being their partial order, scheduled on 

an arbitrary number of identical processors; 

(41) a task system that consists of independent jobs with arbitrary 

execution time requirements, scheduled on an arbitrary number of ' 

identical processors with independent memories. (The memories 

are independent in the sense that the information stored in the 

I 
th 

memory can only be accessed by the Pi processor. ) 

First, McNaughton [McN] has produced an efficient optimal algorithm for 

case (11) with linear time complexity. Such an algorithm also can be found 

in Coffman's book ([Sel], pp. 76-78). Later, Muntz and Coffman [MCI] have 

found an optimal algorithm for case (21). Actually, their algorithm 

constructs a processor shared schedule which can easily be converted into a 

preemptive schedule of the same length. Tasks at the same level get the same 

level service. More exactly, the Muntz-Coffman's (M. C. ) algorithm is as 

follows: 

Let s be the time when assignment of processors is made. Initially s=O. 

Amongst the tasks that are ready to be executed assign one processor each to 
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the tasks at the highest level. If there is a tie among b tasks (because 

they are at the same level) for the last a (a<b) processors, then assign a/b 

of a processor to each of these b tasks. Continue such an assignment until 

time t, at which one of the following events occurs. 

Event 1. A task is completed at t. 

Event 2. A task's level has caught up to the level (lower) of another 

task at t. 

In either case set s=t and reassign the processors to the unexecuted portion 

of the task system. Also, the authors [MC2] have realised that the above 

algorithm produces optimal schedules for case (31) as well. Finally, for 

case (41) Kafura and Shen [KS2] found an optimal polynomial time algorithm, 

based on the idea of McNaughton. 

The above results are presented in Table 3.2. The remarks made for 

Table 3.1 are also valid for Table 3.2. 

TABLE 3.2: Optimal preemptive scheduling algorithms - NPýcomplete 

problems - Completion time Homogeneous multiprocessor 
computing models. q=O., {w, }=l. Parameters n and k 

Number of Partial Time Algorithm References 
processors Order Requirement Complexity 

M <- Tk =t k 

I NP-complete [U2] 

2.2 O(n 2 [Mcl] 

3. Forest - O(n 1092 n) [MC2] 

4. Fixed - open 
: ý3 

S. - - ON [McN] 

6. - 0(nlog2n) [KS2] 

*indicates that each processor is connected with 
a private memory. 
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At this point one can raise the following question. If for a 

particular problem, a preemptive and a non-preemptive optimal algorithm is 

known, then which of them is most preferable? That question was answered 

by Liu [Lil] for a multiprocessor system with identical processors and no 

shared resources. He shows that if w is the completion time of an optimal 

non-preemptive algorithm and wl the corresponding one of a preemptive 

algorithm then w1>, 3w/4, for m=2 and w1>, (m+l)w/2m, for w; 3. Moreover, he 

found examples which reach these bounds. In other words, these results 

suggest, in terms of completion time, that although the optimal preemptive 

algorithms are preferred, if we know an optimal non-preemptive algorithm it 

might not be worth a great deal of work and effort to try to design an 

optimal preemptive one, because the gain will not be significant. Such a 

comparison between preemptive and non-preemptive algorithms can be found in 

Coffman's book ([Sel]pp. 86-87). 

So far, the homogeneous multiprocessor computing models have been 

considered. Now, we turn to consider the behaviour of optimal algorithms- 

for heterogeneous ones. 

Non-preemptive polynomial time optimal algorithms are known only for. 

two processor systems with different speeds and no shared resources in the 

following two cases: - 

(111) a task system consists of equal execution time requirement jobs 

and a tree being their partial order. The ratio between the 

speeds of the two processors is 2 (i. e., b1 /b 
2= 2); 

(211) a task system consists of independent jobs with equal execution 

time requirements. The ratio between the speeds of the processors 

is arbitrary. 

Moreover, preemptive polynomial time optimal algorithms are known for 

models without shared resources in the following four cases: - 

I 
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(311) a task system, that consists of arbitrary execution time 

requirement jobs and an arbitrary dag being their partial 

order, scheduled on two uniform processors; 

(411) a task system, that consists of independent jobs with arbitrary 

execution time requirements, scheduled on an arbitrary number 

of uniform processors; 

(511) a task system, that consists of independent jobs with arbitrary 

execution time requirements, scheduled on a model with one fast 

processor and the remainder identical; 

(611) a task system, that consists of independent jobs with arbitrary 

execution time requirements, scheduled on two non-identical 

processors, but each job can be executed on both processors. 

Optimal algorithms for cases (111) and (211) have been found by Baer [Ba 

In case (111), he adapted Hu's algorithm to construct an optimal algorithm, 

while in case (211) he presented a simple optimal algorithm with linear time 

complexity. More or less at the same time, Liu and Yang [LY] presented an 

optimal preemptive algorithm for case (511) and, Schindler and Simonsmeir [SS] 

another one for case (611). But very recently, Horvath, Lam and Sethi [HLS1 

have adapted the Coffman-Muntz algorithm for multiprocessor models with 

different speed processors. Actually, that algorithm proved to construct 

optimal schedules for case (311) and (411). 

Table 3.3 summarises the above discussed algorithms. The remarks 

made for Table 3.1 are valid for Table 3.3 as well. 

I 
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TABLE 3.3: Optimal scheduling algorithms - Completion time - 
Heterogeneous multiprocessor computing models. 

q=O, lwkl='* Parameters n and 

Type of 
Processors 

No. of 
Processor 

m 

Time 
Requirement 

Tk ={t 

Partial 
Order Rule Algorithm 

Complexity References 

b 
Uniform 2 Equal tree Nonpr. O(n) [Ba] 

2 

Uniform 2 -Equal Nonpr. 0 (n) [Ba] 

One fast 
and the - Pr. O(nlog 2 n) [LY] 
rest ident. 

Non-ident. 2 Pr. 0(n) [SS] 

Uniform 2 Pr. O(n 
2 [HLS] 

Uniform - Pr. O(mn 
2 [HLS] 

11 

2. 

3. 

4, 

51 

6, 

Notation_: 
_ 

1. Nonpr. - corresponds to non-preemptive algorithms; 

2. Pr. - corresponds to preemptive algorithms. 

3.3.2 Optimal Scheduling Algorithms and NP-Complete Problems with Respect to 

Mean Flow Time Performance Criterion 

The problem of constructing optimal scheduling algorithms with respect 

to mean flow time criterion appears to be more difficult than the corresponding 

one where the completion time is considered as the performance index. As a 

matter of fact, optimal non-preemptive algorithms are known only if the task 

system consists of independent jobs, equally weighted and there are no 

shared resource requirements. Such algorithms exist for homogeneous and 

heterogeneous multiprocessor models. 
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Conway, Maxwell and Miller ([CMM], pp. 74-79) have considered 

homogeneous models and they have found that a list scheduling algorithm, 

with higher priorities assigned to jobs with less execution time requirement, 

constructs schedules that minimise the mean flow time of the jobs in the task 

system. In order to show the optimality the authors base their proof on the 

observation that, the mean flow time of a task system with n jobs can be 
n 

written as 7ý-- k1t 
1] 

/n, where kI is one greater than the number of tasks 

following Ji on the j th 
processor and the fact that, if a1>, a 2 >,... >, a n and 

bl, b 2" .., b 
n are two sequences of numbers, a permutation a=(ala 2' ... 'a n) n 

minimises the quantity aIb if and only if ba <b 
a 

ý..., <b 
a 12n 

Also, they have shown, based on the same observation and fact, that an 

algorithm can be found to minimise the mean flow time when uniform processors 

characterise the heterogeneous models. A more precise implementation of 

their idea has been given by Horowitz and Sethi [HoSý. 

Finally, Bruno, Coffman and Sethi [BSC2] have found an optimal algorithm 

when non-identical processors characterise the heterogeneous models. They 

reduce the scheduling problem to an equivalent minimal-cost flow problem and 

then they propose an efficient algorithm that produces optimal schedules. A 

detailed description of the algorithm is given by Bruno [Brl]. 

No optimal algorithms are known when a partial order exists between the 

jobs of a task system. Very recently, Sethi proved that the scheduling 

problem of a task system with arbitrary execution time requirement jobs, 

equally weighted and a tree being their partial order is a NP-complete 

problem. On the other hand, Bruno, Coffman and Sethi [BCS1] have shown 

that the same problem but for task systems with independent jobs of 

different weights is also a NP-complete one. (See also Sahni [Sa]. ) 

These results are contained in Table 3.4. The comments describing 

Table 3.1 also apply to Table 3.4. 
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TABLE 3.4: Optimal non-preemptive scheduling algorithms - 
NP-complete problems - Mean flow time - 
Multiprocessor computing models. q=O. 
Parameters njT k =ft i) and 

Type of 
Processors 

No. of 
Processors 

m 

Weights 
{w 

k 

Partial 
order 

<- .I 

Algorithm 
Complexity 

References 

Identical Equal 0(nI 092 n) [CMM] 

Uniform Equal 0(nloge) [CMM], [HoSI] 

Non-ident. Equal 
23 

O(max1mn ,n [BCS2], [Brl] 

Identical Fixed Equal tree NP-complete [Se3] 

m>12 

Identical Fixed NP-complete [BCSI], [Sa] 

mý2 

1. 

2. 

3. 

4. 

5. 
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3.4 WORST-CASE BOUNDS FOR HEURISTIC SCHEDULING ALGORITMS 

In view of the difficulty in designing optimal algorithms for arbitrary 

task systems and the discovery of the classes of NP-hard and NP-complete 

problems, it is rather clear that heuristics and efficient enumerative 

procedures are very likely to play the main role in the progress of computer 

scheduling theory. 

Initially, performance bounds are derived for arbitrary (unstructured or 

random) sequencing rules. The known worst-case bounds for homogeneous and 

heterogeneous models, under the completion time performance criterion appear 

in Table 3.5. All the bounds in Table 3.5, as well as in the following 

tables, are best possible unless otherwise stated. The objectives for 

deriving such bounds is to demonstrate the importance of developing efficient 

heuristics and to gain insight into the combinatorial structure of the 

problem. 
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A number of unexpected anomalies have been reported by Graham ([Grl], 

[Gr2], [Gr3]) for the problem of minimising the schedule length in a mullti- 

processor model with no shared resources, identical processors and m, t k" and 

<- arbitrary, when list scheduling algorithms are used. The anomalies show 

that individual decreases in jobs' execution time requirements, increases in 

the number of processors and removal of precedence constraints can in fact 

lengthen the schedules. An analysis is provided by the same author to 

demonstrate that the new schedule length resulting from the changes can be 

no more than 1+(m-l)/ml times larger than the original, where ml: ým is the new 

number of processors. Note that problem I in Table 3.5 follows from the 

bound just mentioned when m=ml. 

From the bounds stated in Table 3.5 some observations can be made. For 

homogeneous multiprocessor models with no shared resources and m, tk and <- 

arbitrary, a schedule produced by a list scheduling algorithm, with priorities 

assigned arbitrarily to the jobs, is never worst than an optimal schedule by 

100%. For the same problem, but with independent jobs in the task system, 

the bound in the second row indicates that if none of the execution times is 

large compared to the sum of all execution times then the schedule length of 

an arbitrary list scheduling algorithm is not far from the optimal schedule 

length. In problem 3, where uniform processors characterise the heterogeneous 

models and for the same task system parameters as in problem 2, the bound 

implies that the ratio of the maximum and minimum speed of the processors 

mainly characterise the performance of such models. This is apparent if 
.z 

m. b. is very large. When homogeneous multiprocessor models with dedicated 

th th 
private memories are considered, the bounds in the 4 and 5 row conclude 

that if the independent jobs constraint relaxes to an arbitrary dag then the 

bound converts from a logarithmic to a linear function of m. Similar effects 

are indicated from problems 6,7,8,9 and 10 where, the consideration of 

shared resources causes an increase in the worst-case bounds. Finally, the 
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bound of problem 11 shows that the presence of the processor constraint, 

due to a shared memory, contributes about I to the worst-case bound. 

But, can the worst-case bounds, presented in Table 3.5, be improved 

if one uses a heuristic approach to sequence the tasks before the actual 

scheduling takes place? An answer to that question is given in Tables 3.6, 

3.7 and 3.8. 

Firstly, Table 3.6 shows the worst-case bounds of some cases, where 

efficient algorithms that produce optimal schedules under a certain set of 

conditions are considered as heuristics and applied to situations that do 

not satisfy all or part of these conditions. 

One can see that., as far as the homogeneous multiprocessor models are. 

concerned we could not achieve much better worst-case' bounds if one of the 

algorithms, which produces optimal schedules under a certain set of 
_7 

conditions, is used as a heuristic to form a priority list for more general 

models. For heterogeneous multiprocessor models with uniform processors a 

worst-case bound has been found, which is independent from the speeds of the 

processors. 

On the other hand, Table 3.7 contains the worst-case bounds for 

heterogeneous and homogeneous models when simple different ordering strategies 

are used to construct the priority list needed for a list scheduling algorithm. 

So, in homogeneous multiprocessor models with no shared resources and 

when the partial order <-is empty (independent tasks) if a little care is 

taken to prepare the priority list L then, we can see, the worst-case bounds 

can be improved considerably. Especially, if the tasks are ordered in non- 

increasing sequence of their execution time requirements then, as 

Graham [Gr2] shows, a list scheduling algorithm can never produce a schedule 

of length greater than (4/3-1/3 m) times the optimal one. Recently, 

Coffman and Sethi [CS2] have found a general bound (the bound in row 2) 
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Notation: 

W0 corresponds to optimal list L 

2. w corresponds to the list produced by the ordering strategy; 

3. k: the maximum number of jobs executed on the processor which 
finishes at w; 

4. r: the number of the first r largest tasks; 

rb. ] rb j 
-1 

5. Q=max min T+l 
I, 

y-ii r+l 
kbibik 
I mi fbil jmIb 

6. m=m I +M 2 +... +m.,, where Z is the number of groups with different 

processor speeds and m1 the number of proqessors with speed b i; 

7. b: the speed of a processor; 

8. LTF largest time first; STF shortest time'first; 

9. CP critical path; 

10. SMF shortest memory first; LMF largest memory first; 

11. SPF shortest product first; LPF largest product first; 

12. LMLT largest memory first and then the jobs with the same memory 

requirement largest time first; 

13. Lxj: the greatest integer less than or equal to x; 

14. fxj: the least integer greater than or equal to x. 
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which includes the bound derived by Graham. That bound is more informative 

than Graham's. The greater the number of jobs in the task system the closer 

the schedule lengths, produced by a list scheduling algorithm under LTF 

ordering strategy, are to the optimal ones. (Although, the authors present 

an analysis to prove the bound, a much simpler one is known by the author 

of this thesis3 Another approach (problem 3) to prepare the priority list 

L for the same problem was also given by Graham. According to this approach, 

having scheduled the r largest task optimally then the list L is formed by 

joining the -remaining tasks arbitrarily. The larger the number of optimal 

scheduled tasks the closer to optimal the worst-case bound becomes. However, 

finding an optimal list for the largest r tasks may itself be a hard problem. 

The same approach was used by C. Liu and J. Liu [LiLl] for heterogeneous 

multiprocessor models characterised by uniform processors. As before, the 

worst-case bound depends on the number of largest tasks scheduled optimally. 

When there is one processor fast and the rest are identical C. Liu and J. Liu 

[LiLl] using the LTF ordering strategy have found worst-case bounds 

relatively better than the corresponding ones, when an arbitrary priority 

list was used. Problem 6 indicates that if the tasks are ordered according 

to their memory requirements in non-increasing order (LMF) then the bound 

of problem 11 in Table 3.5 can be improved by one. Also the bound in row 7 

of Table 3.7 shows the improvement which can be achieved if a critical path 

is used for preparing the priority list of problem 10 in Table 3.5. Further, 

problems 8 till 11 show the worst-case bounds of a number of different 

ordering strategies when models of identical processors with private memories 

are considered. Although some of the ordering strategies can not produced 

better bounds then an arbitrary priority list, the DIF or IJILT ordering have 

produced bounds upper bounded by 2. 
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Finally, Table 3.8 presents the known worst-case bounds for some E. C. T. 

algorithms as well as the bound for a 2D algorithm. 

TABLE 3.8: Worst-case bounds - E. C. T. and 2D scheduling algorithms - 
Heterogeneous and homogeneous multiprocessor models 

Completion time. q=O, {wkl=l, -=empty. 

Parameters: n_, m,, Tk ={t jI and 

Type of L (w) 
Processors 

Uniform LTF 

2. One fast 
and the 
rest 
identical 

LTF 

3. Non-identical 

4. Non-identical I LTF MIN 

S. Non-identical I LTF MAX 

Identical 1MF (2D) 
with 
independent 
memories 

Bounds 

-CLE 2-2t 
w0 m+l 

3 tt 

w02 2m 

WO 

w 
-l< w0 

t the bound is best only for m=2 
tt the bound is best only for m, <3 

[IKI 

[KS2], [Kaf] 

Notation: 

LTF MIN : the smallest time requirement of each job is chosen first 

and then jobs ordered in LTF according to the chosen values; 

LTF MAX : the largest time requirement of each job is chosen first 

and then jobs ordered in LTF. 

References 

[GISI 
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Comparing the bounds of problems 1 and 2, in the above table, with 

the corresponding problems, 3 in Table 3.5 and 4,5 in Table 3.7, one can 

conjecture the advantages of these algorithms. A disadvantage is that 

the bounds are not best possible ones, for all ffý2. When the heterogeneous 

models with non-identical processors are considered, one could not notice 

any advantages of the worst-case bounds if some effort is spent to prepare 

a priority list, according to the results given by IbaTTa and Kim [IK) for 

the problems 3 till 5 in Table 3.8. What one can notice is the large worst- 

case bounds which has been found in the case of non-identical processors 

without any shared -resources and the partial order being empty. In the last 

problem, where identical processors with independent memories are considered, 

a 2D algorithm cannot produce much better worst-case bounds compared with 

the known bounds of a list scheduling algorithm for the same problem. (See 

Table 3.7, problems 10,11). 

So far, attention has been given to form heuristic scheduling algorithms 

with respect to completion time performance cirterion. When a task system 

of independent jobs is scheduled on an arbitrary number of non-identical 

processors and the mean flow time is considered as the performance criterion, 

only Clark [CZ] has tried to form heuristic scheduling algorithms and find 

their worst-case bounds. His results are presented in Table 3.9. 

Although Clark's bounds are very rough, one could not ignore them 

since they open a way to form heuristics when the mean flow time criterion 

is of interest. Also, he has proved that there is a permutation of jobs in 

the task system for which Q. A. D. algorithms perform optimally. Their time 

complexity varies from O(nm) to 0(max{nm, nlogn)) when an arbitrary or permuted 

list is considered respectively. Thus, Q. A. D. algorithms spend less 

computation time to schedule a number of independent jobs rather than the 

optimal known algorithm (see Table 3.4, problem 3). 
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TABLE 3.9: Worst-case bounds - Q. A. D. scheduling algorithms 
Heterogeneous multiprocessor models - Mean flow 

time. q=O, {w k 
M, <=empty. 

Parameters, n., m., T k it 
j} and 

Type of L(strategy) Bounds References Processors 

III 

1. Non-identical 

2. it LTF w<n 
AVE 

w0 

3. it LTF MAX 
[CL] 

4. if LTF < MIN 2 
WO 

Notation: 

a corresponds to the mean flow time of the schedule derived from 

L(strategy); 

W0 corresponds to an optimal mean flow time schedule; 

AVE: the average execution time. 

Further, we should mention the effort, which has been made to find good 

schedules with respect to completion time for priority lists, when higher 

priorities are assigned to shorter execution time requirement jobs (STF). 

We recall that if a task system of independent jobs is scheduled on 

identical processors then a priority-driven scheduling algorithm with 

priority list formed as described, performs optimally, when the mean flow 

time is considered as the performance criterion. It has been shown [BCS1] 

that there are O(m! n/m ) schedules which might have different completion 

times but the same optimal mean flow time. Therefore, as it was expected 

some heuristics were studied. Their worst-case bounds together with the 
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worst-case bound of a two-phase heuristic algorithm, with 'respect to mean 

flow time, appear in Table 3.10. 

Generally, schedules produced by using a STF list are bounded as those 

produced by an arbitrary list (problem 1). 

TABLE 3.10: Worst-case bounds - Simple and two-phase list 

scheduling algorithms - Homogeneous multiprocessor 

models - Mean flow and completion time. q=O, 

4=empty, fw 
k 

1=1, Parameters: n, m, T k =t k 

L(w) L(wl) Bounds References 

1. OPT STF wl 
, 2- 

0) m 
[BCS1] 

wl 1 
2. LTF STF -, <2- 

wm 

3. STF LTF wt Sm-2 [BCS2] 
w ýM- I 

W, 3 4. STF STF 
w2 

S. STF 1 STF 1, -3 
t 

<EL 
4m 

< [Csi] 
w 3m-2 

2 wl Sm-4 6. STF STF I< ' w< 4m-3 

7. OPT LTF* m [BCS1] 

t that bound is best possible only for m, <3 
Notation: 

w, '@ correspond to the schedule produced by list L(w); 

W"ZP corresponds to the schedule produced by list L(w'); 

STF corresponds to the longest possible schedule a STF list can 

produce (the largest task of each -rank executes on the same 

processor); 

STF corresponds to a minimal length STF schedule; 

STF I corresponds to STF schedules whose last rank is assigned the 

largest job first as processors become available; 
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Notation: 
2 STF corresponds to STF schedules whose tasks of each -rank are 

assigned the largest job first as processors become available; 

LTF* corresponds to two-phase schedules produced by LTF list. 

Schedules produced by a STF list may be up to 20% shorter than the one 

produced by a LTF list for a task system. A schedule produced by a STF list 

cannot be more than 50% worse than the one produced by a STF list for a task 

system. If a STF 1 list is considered, then the constructed schedule is no 

more than 4/3 times the length of a STF schedule. Finally, if a STF 
2 

list 

is considered then STF 
2 

schedules are at most 25% longer than STF schedules. 

The inverse problem is of interest as well. We recall that a LTF ordering 

strategy produces lists which construct schedules very near to optimal. 

Unfortunately, their mean flow time is very far from optimal. So, without 

changing the completion time of the LTF schedules we can apply a two-phase 

algorithm, which is expected to have a near optimal mean flow time. Although 

the proven bounds is increasing linearly with the number of processors in 

the system, we cannot reject it since there are no other bounds available 

to compare with. 
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3.5 AVERAGE PERFORMANCE OF NON-OPTIMAL SCHEDULING ALGORITHMS 

As stated in Chapter 1 there is a question if the deterministic scheduling 

analysis can also be a useful tool for systems where the average (expected) 

performance is more meaningful than the worst-case bounds. In addition, it was 

mentioned there7 how this could be verified So far, towards the verification of 

this question, which is believed to be positive according to [Gr3], [Ch] and [Kr], 

very little work has been done. The average performance of an algorithm, with 

respect to a performance criterion, has been approximated by simulating selected 

configurations of the computation model and evaluating the algorithm for different 

task system using statistical analysis. 

Adam, Chandy and Dickson [ACD] have chosen the average performance as a 

measurement to evaluate scheduling algorithms. They have examined the problem 

of an arbitrary task system, with equally weighted and no shared resource 

requirement jobs, scheduled on an arbitrary number of identical processors, when 

the completion time is considered as the performance criterion. The results 

they have provided show that the scheduling algorithm, which assigns higher 

priorities to higher level jobs, has significantly better performance (near- 

optimal one) than the one which assigns priorities randomly. However, apart 

from the fact that the average performance results are much better than the worst- 

case ones the ranking of the average performance agrees with the ranking of the 

worst-case bounds for these two algorithms. (See problem 1, Table 3.5 and 

problems 2-6, Table 3.6. ) Also, they have considered a number of other heuristic 

list scheduling algorithms, whose worst-case bounds are not known. The near- 

optimality of longest-path list scheduling algorithm has been confirmed by 

Kohler [Koh] as well. Moreover, he demonstrated that the average performance of 

this algorithm deviates from the optimal one as the number of processors 

increases. One can guess such behaviour of the algorithm from the worst-case 

bounds which are presented in Table 3.6 (problems 2-6). 

On the other hand'. Clark [Ck], through his simulation study, has shown 

that the ranking of the average performance of the Q. A. D. algorithms he 

Or, 
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considered, with respect to mean flow time is: LTF MIN' LTF AVE' LTF M'kx and RAND. 

That ranking does not violate the ranking of the worst-case performance 

bounds presented in Table 3.9. We note that he considered the problem of a 

task system of independent, equally weighted jobs to be scheduled on an 

arbitrary number of non-identical processors with no shared memory. 

Finally, a promising answer for the question mentioned at the beginning 

of the present section has been given by Kafura [Kaf]. Kafura examined the 

problem of a task system of independent, equally weighted jobs to be scheduled 

on an arbitrary number of identical processors, each one associated with a 

private memory, and no shared resources, when the completion time is 

considered as the performance criterion. His simulation results show that 

there is a high correlation between the ranking of the average performance 

and the worst-case performance bounds for the list scheduling algorithms he 

studied. 

loli 



CHAPTER 4 

A'HETEROGENEOUS MULTIPROCESSOR COMPUTING MODEL 

W-1 
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4.1 INTRODUCTION 

From the previous chapter one can see that the multiprocessor computing 

systems which have been studied by deterministic analysis are: - 

(a) those with only processors as resources and where the processors have 

been considered identical ([Hu], [FKN], [CG], [Se2,3], [Ul, 2], [BCS1,2], [GJI, 

[IK], [MC1,2], [McN], [CMM], [Sa], [Gr, 1,2,3,4], [Kau], [Ch], [LS], [Lil], [CS1,2]), 

uniform ([Ba], [LY], IIILS], [CMM], [HoSI], [LiLl], [GIS]), and non-identical 

([CY. ], [IK], [BCS1,2], [Brl], [SS2]); 

(b) homogeneous models with shared memory ([Kr], [KSS1,2]) or arbitrary many 

types of shared resources ([GG1,2], [Ya], [GGJY]); and 

(c) the models with identical and independent processors, each processing a 

fixed, though possibly different sized memory ([Kaf], [KSI, 2]). 

It is obvious therefore, that most of the investigation, which has 

been done, characterise models with only processors as resources. Such a 

motivation was due to the tractability of those models and also due to the 

lack of results as far as the worst-case performance was concerned. Although 

little attention has been given to models with independent processors, each 

processing a fixed though possibly different sized memory, they appear very 

attractive since such models may be interpreted as local networks of mini- 

or micro-computers (uniprocessors). The intuitive advantages of such 

complexes over a single mainframe have already been indicated in Chapter 1. 

So far, only kafura and Shen ([Kaf], [KSI, 2]) have examined such models 

with identical processors as mentioned in (c). So, the idea of considering 

similar models with non-identical or uniform processors sounds very 
W, interesting. Those models are of particular interest because they may be 

interpreted to systems (networks), more close to reality. This could be 

realised from the necessity to replace a processor, due to its failure to 
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reach some requirements, with a smaller cheaper and more powerful one, or 

to add a new processor (or more) to the system, due to increases in work 

load. Furthermore, the technology of large-scale integration assures us for 

the production of cheaper and more powerful mini- and micro-computers in the 

near future. The inherent significance and the lack of results for such 

models would be enough justification for someone to decide to consider and 

study them. As a matter of fact those models will be examined in this thesis 

and we shall refer to them as heterogeneous multiprocessor systems with 

independent memories. 

lopd 
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4.2 A FORMAL DESCRIPTION OF THE MODEL 

The model of computation being analysed consists of m>, 2 non-identical 

(or uniform) independent abstract processors P={P,, P 2"**Ipm 
). A fixed size 

private memory, denoted by lPil, 1, <i, <m, is associated with each processor. 

Each memory is private in the sense that information contained in the i th 

memory is accessible only by the Pi processor. The memory sizes are fixed 

since IP 
lIIIP2II***-'IPmI -remain constant throughout the execution of a task 

system. For convenience, the processors are indexed so that JPij: flPi, 
jjs 

1: ýi*m-l. 

The task system J, to be scheduled on the above mentioned set of 

processors, will consist of n independent jobs ( <-is empty), J={J 1IJ2'**"Jn 
I. 

Each job is specified by its time requirements Ti =ft i 1,1, <i, <m and its memory 

requirement mj, 1, <j, <n. So, the task system can be represented by a three- 

tuple (J, {m }, {T. 1). An important scheduling parameter is the number of iJ 

processors which can execute a given task under its memory constraint. For 

the j th task the number of such processors will be denoted by t j, '. -- .1 

Because of the one dedicated resource the parameter fT iI in the task 

system can be replaced by a (mxn) matrix [t ij ], that gives complete 

information about the time requirements of each job on different processors. 

So, the task system can appear as (J, mj., [t ij ]) or just (J, [t ij ]). When the 

memory requirement of the i th job cannot be satisfied by the i th 
processor's 

memory, then this job cannot be executed on that processor and therefore 

In the case when uniform processors are considered, the task time 

requirements for the processors on which it can be executed, differ by the 

ratio of their speeds. In particular, if blpb 2-***, b 
Y, I 

1, <Y, i <m, are the 

speeds of the first Li processors, where the 3' 
th job can run, then the time 

requirements will be t ij =t/bli t 2j =t/b 21-Itt jj=t/b, j., 
where t is the time 

needed by job j to run on a "standard" processor. 
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4.3 AIMS AND OBJECTIVES 

In this thesis, we shall analyse only non-preemptive scheduling 

algorithms. The nature of the multiprocessor model, which is being considered, 

does not allow us to examine preemptive algorithms due to the high cost of 

transmission rates. However, note that the problem of finding optimal non- 

preemptive scheduling algorithms, with respect to completion time performance 

criterion, for task systems of independent jobs scheduled on any model 

configuration considered in this thesis is a NP-hard problem. This is implied 

from the fact that the problem of determining optimal schedules for task 

systems of independent jobs on two identical processors is a NP-hard problem 

(see Table 3.1, problem 8). On the other hand, Bruno's algorithm [Brl] can 

be adapted to produce optimal schedules for our problem when the mean flow 

time is taken as the performance criterion. Moreover, its time complexity 

is 0(maxfn 3n2 
m)). Therefore, these facts make us devote our attention to 

heuristic scheduling algorithms. 

From sections 3.4 and 3.5 one can realise that the performance of the 

heuristic scheduling algorithms has either been measured according to the 

mean flow or the final completion time performance criterion. 
-The 

only 

exception was for the classical homogeneous multiprocessor model where the 

P. D. algorithm under the LTF ordering rule was measured for both of these 

performance criteria. In the following chapters the performance of all the 

scheduling algorithms will be measured with respect to the mean flow as well 

as to the completion time criterion. This approach will give a better 

understanding of the behaviour of each particular algorithm. Furthermore, 

we will be able to find out if there is any algorithm which performs well 

under both performance criteria. The existence of such an algorithm is of 

great importance because both computer users and system manager will be 

satisfied. 
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Among the various heuristic scheduling algorithms we shall consider 

only the demand scheduling algorithms. Within this class priority-Driven, 

Q. A. D. and Two-Phase algorithms will be analysed. When two or more 

processors are available simultaneously, or a task has the same flow time 

contribution on two or more processors then, the task is assigned to that 

processor which executes it faster and if there is another "tie break" aý 

this stage, the task is assigned to the processor with the largest index 

(i. e., smaller memory). 

We shall use the deterministic scheduling theory as well as simulation 

techniques to analyse the behaviour of the algorithms. So, using the 

deterministic analysis we shall establish worst-case performance bounds for 

each algorithm under various priority lists. Actually, in Chapters 5 and 6 

we evaluate the algorithms with respect to the mean flow and completion time 

criterion, respectively 
t. So far (except for one case only [CS2]), the 

worst-case bounds were shown to be best possible using single pathological 

examples. As a result, such bounds are not as informative as might be 

desired. Therefore, more informative bounds are demanded and for this reason 

we consider that as an additional objective for this research. Finally, as 

indicated in Chapter 1, this thesis has the aim to reveal evidence towards 

the degree of correlation between the extreme and expected behaviour of the 

algorithms. So, in order to make that possible, in Chapter 7 the algorithms 

will be evaluated by their average performance using simulation techniques. 

t Moreover., in Apendices I-IV the worst-case bounds of the algorithms for the 

corresponding homogeneous multiprocessor model are also given. 
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4.4 A FORMAL DESCRIPTION OF THE ALGORITfiMS 

Although a brief description of the algorithms which we are concerned 

with has already been given in section 2.5, it would be better to specify 

them completely for the computation model under investigation. 

In every algorithm, which appears in a structured programming form, 

the input is as follows: 

Input: m, the number of processors; n, the number of jobs; J={J,, J 2*'*' 1 
n}l 

the set of jobs to be scheduled; [t I, a (mxn) matrix defining the ij 

time requirements of the jobs on the various processors; and kj, the 

number of processors with sufficient memory to -run the Ji job. 

Algorithm 1. 

procedure Priority-Driven algorithms (m, n, J, [t ij ], L i) 
//input: as given above; 

output: Li., I*i; ým, the set of jobs to be run on processor P 

in a FIFO order// 

A-(--l; //P. D. algorithm// 

M-2; //P. D. * algorithm// 

//step 1// for i=I(I)m do 

F1 +0; //Fij the. current completion time of processor PI 

Li+-O; 

end; 

//step 2// for j=1(1)n do 

find the set IP k ): F k": min {F i 1; Mind the processor(s) 

with the earliest completion time// 

let s be the largest index of the processors in IP 
k} where 

rJ i(=-{k} -13 
L -+-L UJ ; //assign the job J. on the P processor// Ss 'J J -% FS +F S +ts5; //update the completion time of processor Ps// 

end; 
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//step 3// if A=2 then for i=1(1)m do 

put the jobs in Li, 1, <Lým, in non-decreasing 

order according to their time requirements; 

end; 

return. 

Algorithm 2. 

procedure Quick-And-Dirty algorithms (m, n, J, [t 

//input: as given at the beginning; 

output: Qi, 1, <i, <m, the set of jobs to be run on processor P 

in a LIFO order// 

B-4-1; //Q. A. D. algorithm// 

B-(-2; //Q. A. D. * algorithm// 

//step 1// 'for i=I(I)m do 

Qi-4; 

h1 -(--l; //h: ip the number of jobs already allocated on the P, 

processor increased by 1// 

end; 

//step 2// for j=1(1)n do for i=I(I)m do 

Rl, -(-h, tl,; //R: 
L,., 

the mean flow time 

contribution of the job Ji on P, processor// 

end; 

find the set [P I: Rk, = min R. -}; //find the processor(s) k 

where the job J. has the minimum mean flow time contribution// 
.I 

let s be the largest indexed processor in fPý where 

t 
rj = min ft ij 1; 

iC-Ikj 

Qi-'-Qiuj j; 
hi -*-h i +1; 

end; 
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//step 3// if B=2 then for i=1(1)m do 

put the jobs in Qi, 1; ýi, <m in non-increasing 

order according to their time requirements; 

end; 

return. 

Therefore, the time complexity of the P. D. and P. D. * algorithms are 

O(nlog2m) and O(n'092 n) respectively, since we can implement steps 1,2 and 

3 of the Algorithm I in times proportional to m, n1092 m and n1092 n, 

respectively. On the other hand, the Q. A. D. and Q. A. D. * algorithms have 

time complexity expressed by O(nm) and 0(max{nm, n'092 n)), since the steps 

1,2 and 3 of Algorithm 2 can be implemented in times proportional to m, nm 

and n'092 n respectively. 



CHAPTER 5 

DETERMINISTIC ANALYSIS OF HEURISTIC SCHEDULING 

ALGORITHMS - MEAN FLOW TIME PERFORMANCE CRITERION 
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5.1 INTRODUCTION 

As was indicated in section 4.2, this thesis is concerned with the 

problem of scheduling a task system (J, [t ij 
1) of independent jobs on 

heterogeneous multiprocessor systems with independent memories and a fixed 

number of processors. This means that a number of scheduling algorithms 

should be examined. In fact, the aim is to analyse non-preemptive scheduling 

algorithms with respect to mean flow time as well as to completion time 

performance criterion. The investigation begins in this chapter with the 

analysis of the worst-case performance of several scheduling algorithms 

when the mean flow time is chosen as the performance criterion. 

The mean flow time, as described in section 2.4. is the sum of finishing 

times of all the jobs divided by the number of the jobs in the task system, 
n1n 

i. e., U-1 f or equivalently 9-- kt where k. is one greater than 
njni ij, 

th the number of tasks following Ji on the i processor. Instead of comparing 

such quantities to decide the performance of a particular heuristic algorithm 

relative to the optimal one, it is equivalent to compare just the summation 

of the finishing times. So, we shall follow this approach inthe remainder 

of this thesis, i. e., we shall consider 
nn I f. or I k. t.. 

j=l 3 j=j 1 13 

A variety of scheduling algorithms i. e., priority driven, two-phase 

priority driven, quick and dirty as well as two-phase quick and dirty, 

under a number of ordering rules will be analysed in sequence. At first, 

a worst-case bound is derived for each class of algorithms, when an 

arbitrary (random) ordering rule is used to form the priority list. Such 

a bound is meaningful because an arbitrary ordering rule represents a 

first-come, first-served (FCFS) scheduling function. In addition, this 

is the largest possible bound since, the priority list of an arbitrary 

ordering rule can be chosen to be the same as the priority list formed by 

any other ordering -rule. 
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Having established the worst-case bound for an arbitrary ordering rule 

the analysis then turns to the examination of several hburistic ordering 

rules. However, since we are dealing with heterogeneous multiprocessor systems 

we cannot order the jobs according to execution time requirements until a 

single value is chosen for each job. Such single values can be obtained by 

considering the minimum or the maximum execution time of each job. Therefore, 

using one of these simple functions, when it is required, the following 

ordering rules are examined: 

- largest memory first (LMF) : job Jj preceeds job < Jk 'f LjLk; 

- shortest time first (STF t 
: job Jj preceeds job A<tA tt 

; A) 
Jk 'f tj k 

AA 
- largest time first (LTF A) : job Jj preceeds job Jk 'f tj >, t k; 

largest memory shortest time (LMST A): job Jj pTeceeds job Jk 'f: 

AA (a) t <z or (b) t "2k and yct ik j" k k; 

largest memory largest time (LMLTA) : job Jj preceeds job Jk 'f: 

A (a) t <t or (b) t =t and t >t jkjk3 k' 

However, using any of these ordering -rules the complexity of the P. D. 

or P. D. * and Q. A. D. or (I. A. D. * algorithms will be 0(nl 092 n) and 0(max{mn, n'1092 n)) 

respectively. 

tA is the function to single value the jobs. 

"ý'ýt A is the time requirement of job J 1, <p, <n, according to the function A. 
p P, 
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5.2 PRELIMINARIES 

Before we start analysing the scheduling algorithms it is necessary to 

define a number of variables, to declare some set of jobs as well as to prove 

some lemmas, which are used in the following sections. 

Let us consider a task system (J, lm i 
I'Itij ]), as being defined in 

section 4.2. We define T as the minimum execution time requirement of a job, 

i. e. -r. = min It ij ), where 1: g i <m and 1, <j, <n, and a as the maximum execution 3 1, <i, <Zj 
time requirement of a job, i. e., a. = max ft.. ), where 1: ýk,, <m and 1; ýj; ýn. 

Also, we define: 

Fr 
T min {t 

1, <i, <r 
Tic FV 

-1 I'< i: ýz i "i i 

Fr 
a. = max ft ij I, where 3 1, <i, <r 

fje Fr 

Fr is the set of jobs with yr, 1, <r, <m; 

moreover, let nT be the number of jobs belonging to F 
r; 

Gr (ýr 
min a. ma-x ft. -I, where 1, <Z <m, 

J<i<p, - 
1J 

ýýJ 
Tj C 

and GT is the set of jobs scheduled on the Pr 

processor, where 1: ýr: ým; moreover let n: 1, be the number of jobs belonging to 

G 
r; 

Finally, Dr is the set of jobs {J (r-l)m+l'***, J-rm in the priority 
-ýn 
m] 

list', where 1, <r, < If n is not a multiple of m then, D {J 
1'..., 

J 

r is 

ral 
i M+ 

Similar y, Fi the set of jobs fJ (r-l)i+l'-1 J ir I inside Fis 

r I ni 
1*rý<[ i] , and Gi is the set of jobs {J (r-l)v i +l'-'Jrvi 

inside Gi, 

_L 
L 

[n 
j! 'rl=F 1, <r, < and v. = max {z However it is obvious that U fD }==,. T, U{F 

, V. -G. rrrii IL J. (= 

and U{G r }=G 
Ti 

Now, we continue this section of preliminaries with the description and. 

proof of several useful lemnas. 
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Lemma 5.2.1: If a S+l >, a 
s+2 

>,... >, a 
s+d' 

where as+lQZ+* for i=1(1)d and 

s=d(Y, -I), where E, d>, l and t, dEZ+, then 

(k+s+l)a 
S+l +(k+s+2)a s+2 +... +(k+s+d)a s+d d-i 
(a 

S+l +a s+2+***+ a s+d) 
d 2Z 

where k>, O and kEZ+. 

Proof: The above inequality (5.2.1) is equivalent to 

2k+2dk-d+l (k+s+l)a 
S+l 

+ (k+s+2) a s+2+ ** *+ (k+s+d)a 
s+d 

2Z --k (a 
s+l+ a s+2 

+.. . +a s+d) 

which, since all aiq i=s+I(I)s+d and X are positive, is equivalent to 

(2k+2di-d+l)(a, 
+, +a s+2*"**+ a s+d 

)-2(k+s+l)a 
S+l 

-2(k+s+2)a s+2-*'*- 
2(k+s+d-I)a 

s+d-l- 
2(k+s+d)a 

S+d :ý0 (5.2.2) 

Because s=dt-d the inequality (5.2.2) is equivalent to 

(d-1)a 
s+l +(d-3)a s+2+***+ 

(3-d)a 
s+d-l+ 

(1-d)a 
s+d 

ý 0. (5.2.3) 

Matching as+, with a s+d' a s+2 with a s+d-1 and so on, we obtain 

S+l- a S+d 
)+(d-3)(a 

s+2- a s+d-1 
)+... +Cd-d)a 

S+ 
[A21 >, 0, (5.2.4) 

if d is an odd integer; and 

(d-1)(a 
S+I- a s+d 

)+(d-3)(a 
s+2- a s+d-I 

)+... +(a d- ad 0' 
S+! S+ý+l 

if d is an even integer. 

Due to the constraint that aI>, a i+l >0 for i=s+1(1)s+d-1, each term 

in (5.2.4) and (5.2.41) is non-negative. This establishes (5.2.3) and 

therefore (5.2.1). Equality holds in (5.2.4) and (5.2.41) if all the 

terms are 0, or equivalently ai =a i+1 for i=s+I(I)s+d-1; otherwise, some 

R represents the set of reat positive nwnbers. 
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term will be positive and (5.2.1) will be strictly obtained= 

(Note: This lemma generalises the one proved by Professor G. W. Stewart in 

Clark's report ([CZ), page 4). He proved inequality (5.2.1) when k=O and 

S =0) 

Lemma 5.2.2: If al, a ..., aE=-R n>, 2 and 2'n 

c S+l a S+l +C s+2 a s+2+ *+ c s+d a s+d 

ge(as+ 1+a, +2+ . +a s+d Y, 
+ 

k-1 v 

where s, Z, diPvEEZ , s=. l dij 2, =1(1)v, d =n, ýcs+j, glGR+, cs+jics+j+l 
1=1 

i 9- 

for 1, <j, <d yl- 1, and ft is a positive function, then 

vdk 
I 

jIl 
(cs+jas+j) 

d max {f 
Y. 

(c, g)) 

gp. ( Ia1, <Z, <v 
Y, i, j=1 s3 

Proof: From inequality (5.2.5) for Z=1(1)v we get the following 

inequalities respectively: 

ca +c a +... +c a (c, g),, [gf(a +... +a 1122dId11d 

cd +1 ad+, +... +C d +d ad +d l< f (c, g)-[g-(a +, +... +a A 121222dId1 +d 2 

ca+... +c a (c, g),, [g -(a +... +a nd +1 nd +1 nnvvnd +1 n vvv 

Since both sides of the inequalities (5.2.7) are positive the next 

inequality holds 
v CLk v (I 
II (c a ma-x If (c, g) )I Xg lr( Xt aA 

Y, =i j=l S+j S+j 1, <Z, <v 
k k=l xi=1 S+j 

Moving the second factor of the right hand side to the left hand 

(5.2.5) 

(5.2.6) 

(5.2.7) 

side we get eventually (5.2.6). Equality holds if v=l (i. e., n=d 1) and 
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the equality condition of (5.2.5) for k=1 is fulfilledn 

Lemma 5.2.3: If a1 : ýa 2>... >, a n and bl., b 2*'*-* bn are two sequences of numbers, 

then, 

(i) a permutation a=(al., a 2'"% ) minimises the quantity 

n 
-I a. b (5.2.8) 
j=l I Cj 

if and only if ba : ýb 
a -< : ýb 

a n' 

(ii) a permutation aI=(aj, a2I,..., anI) maximises the quantity (5.2.8) 

if and only if b 
ct I 

>, bav>,... >, b 
a 1. 12n 

Proof: In order to show (i), we shall prove that the permutation which 

minimises the quantity (5.2.8) is the one which orders the bi., 1; ýi*n, in 

non-decreasing order. 

Let us suppose that this is not true and the permutation which 

minimises (5.2.8) is given by: 

i-I a j+k a j+l a j+k-l'ctj 'a j+k+l' 'ctn) 

Therefore, 

a3ba+a j+k 
b 

ctj +k 
>a3b 

ctj +k 
+a j+k ba (5.2.9) 

or 

j- a j+k )b 
aI+ 

(a j+k -a j )b 
aj+k 

>0 

or 
(a a) (b -b )>0. i j+k aj ctj +k 

(5.2.10) 

But the inequality (5.2.10) does not hold, since ai : ýaj+k'and b 
a. 

<ba. 
+k* 

This contradicts our assumption and establishes that the non-decreasing 
n 

sequence of ba j=1(1)n minimises the quantity Iajba. 
j=l I 

A similar analysis can be used to show the second part (ii) of the 

lemma. -Now, the equivalent inequalities for (5.2.9)-(5.2.10) will have 

the opposite diTectionn 
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(Note: The first part of this lemna can be found in [Co ] (p. 136) with 

only a suggestion for the prooQ 

Lemma 5.2.4: Let a task system (J, [t ij )) with n independent jobs be 

scheduled on a heterogeneous multiprocessor system with m independent 

memories. If -Go corresponds to the optimal mean flow time of the above task 

system, then 
w OPT 

>, T1+T2+... +T 
n 

Proof: If c. is the contribution of job J to an optimal schedule with 
-1 

i 

respect to mean flow time, then 

W OPT c1+C2++Cn 

Thus, if we show that ci>, -r i for j=1(1)n, then (5.2.11) is proven. 

From equation (5.1.1) we see that the contribution of a job J. to 

mean flow time is 

kt i ij (5.2.12) 

where kI is one greater than the number of tasks following Ji on i th 

processor. However, since ki : ýl and t ij >, Ti then from the equation (5.2.12) 

we always get cJ >- TJ 

Equality in (5.2.11) holds only if the number of jobs in the task 

system is less or equal to the number of processors (i. e. n, <m), and the 

jobs minimum time requirement occurs on different processors. That means 

k. =l and t =T for j=I(I)nn 
3 ij i 

Lemma 5.2.5: Let a task system (J, [t 
ij ]) with n independent jobs, which 

are in a STFM ordering (i. e., T <T -<..., <, r be scheduled on a IN n n-l 
heterogeneous multiprocessor system with m independent memories. Then, 

-ý'O 
PT >' (r 1 +T 2 +. .. +T 

m 
)+2 (T +. . . +T 2m + *+ 

rii] 
(T . +T )1 (5.2.13) 

M+l m lnlm+, +*' ým 
Im-i 

ri] 

where 
[ME] 

m is the first integer greater or equal to n which can be 
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divided by m, and the tasks J 
n+l'* .., j [n have zero execution time 

requirements. 
ii] 

Proof: If the minimum time requirement of the obs in consequent ranks of 

m tasks occur on different processors, then the optimal mean flow time of 

the above task system is given by, 

M)4 .. . +[ (T +T . +TM)+2(TM+, +. --+T 
El] (T +... +T UOPT 

2+** 2m Fnj M 
M+l iml m 

(5.2.14) 

n 
This is true because of ýj= I k. t.., T= min It.. }for j=1(1)n, I: g <m 

j=l 3 13 j 1, <i, <. t Ij 

and Lemma 5.2.3. 

Unfortunately, the above assumption is satisfied only occasionally. 

This happens because, even in an optimal schedule, the memory constraint 
th [n 

may force some jobs of the task system belonging to the r rank, 1, <rý. iý] 

to run in a consequent rank. This means that the STF ordering will not hold 

any more and hence the value of the optimal mean flow time will increase and 

will become-greater than the right hand side of (5.2.14) (see Lemma 5.2.3 ). 

Also, since it is unlikely the minimum time requirements of all the 

jobs in consequent ranks of m tasks to occur on different processors, the 

contribution of some jobs to the optimal schedule, with respect to mean 

flow time, will be greater than the corresponding one, which has been 

considered in the evaluation of (5.2.14)a e, t ij : ýT J 
for i=1(1)tj., 1: ýZ i : ým and 

j=1(1)n). Thus, the value of optimal mean flow time will be greater than 

the right hand side of (5.2.14) in this case as well. 

Therefore, inequality (5.2.13) is always heldn 

Lemma 5.2.6: Let a task system (. T, [t 
13 

]) with n independent jobs, which are 

in a STF MAX ordering, (i. e. an '<CY n-l'<""<Gl 
) be scheduled on a heterogeneous 

multiprocessor system with m independent memories. Then, 
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Ci) for non-identical processors: 

1 )+... +[nl +cr +... +a )+2(a +. .. +CF -UOPT> TE (cy ,2m M+ I 2m 
(a, [n] 

M+l 

(5.2.15) 

and '(ii) for uniform processors: 

.. +um)+2(cFm+l+... +ct (CF +. OPTý*TE 
(crl+cF2+ . 2m ýil 

M+ IMm 

where 
lal 

m. is as described in Lemma 5.2.5, J 
n+l' ..., J have zero 

m 

execution time -requirements, X= max T' 1, <j, <n 
and a= max fb i I/ min'fb i 1. 

j, 1, <i, <m Iýil<m 

Proof: Let the permutation a=(a,., a 2' ... 'a n) produce a priority list 

L= (Ja 
n 

31 a n-l"***" 
Ja 

2" 
JaI) so that Tan <T an-I ... <Ir 

a2 
<-r 

a I' 
When the jobs 

are in such order, then according to Lemma 5.2.5 the optimal mean flow 

time is always 

'50PT>' (T(X 4. . . +T )+2 (T +. . . +T 
[, n], (T 

a 
. +T 

ama M+l cc 2m m (, [ýn 
M+ 1m 

a 
a 

But, T3,1: ýj; ýn. Thus, the above inequality becomes 
a. 3 

za- 
OPT 

(a 
CE . +CF 

aM 
)+2 (cy 

a M+1 
+. . . +C; 

C1 2m 
. +Cj 

ýn 
i] m+1 ýM 

C, lal TTD 
The sum of the right hand side of the last inequality is minimised when 

U Ct. 
i=1(1) m are in non-decreasing order. (See Lemma 5.2.3) Therefore, 

[ýn 
'OPT X M-4- 2m TB 

m+1 
cl [n] 

TM 
ýid 

E 

Which proves part (i) of the Lemma. In the case of uniform processors it 
11 

is obvious that X should be substituted by 0. So, using a similar analysis 

we can verify part (ii) as wellm 
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Lemma 5.2.7: Let a task system (J, [t.. ]) with n independent jobs, which 
4 FV i r-. F2 

are in a LMSTM ordering (i. e. T <T ý<T 
1 <T1,4i, <m), be scheduled IN n. n. -I 21 

11 
on a heterogeneous multiprocessor system with m independent memories. Then, 

n r, F, FF F2 I 
r2 F2 

.2 
F2 rl 

21 
F2 

>(T +2T +... +n Ir +T )+2 (T +T )+. k-r +'r OPT 121nI 
)+[(-rl 

234 [n [n 

2+1 2 
2! 2! 

FM 
... 

Fm Fm Fm [nm] FM FM 
m+1 m 

+... +[(T + +T )+2(T +... +T )+... + (T +... +T 1 M. 2m m 

m+1 

(5.2.16) 

m 
where ni =n, 

r-T]i 

is the first integer greater than or equal to ni 

which can be divided by i, and the jobs J1 
+lP ... 'i 

I<i*m, have zero 
n [n. ] 

i 

execution time requirements. 

Proof: Let us suppose that the jobs J1 (with Z 1) have been scheduled on i j= 

PI after any other job with 2, <Z i <m. Therefore, according to Lemma 5.2.3, 

their contribution to the optimal mean flow time will be 

-1 
F, K F, I 

W0= Tl+ T 
2+* .. +n, T n1' 

(5.2.17) 

provided rj, j=1(1)n,., are in non-increasing order. However, the condition 

made for the jobs with ZJ =1 cannot be always satisfied even in an optimal 

schedule. So, some of the coefficients Of Tj, 1, <j; ýnl, in the equality 

(5.2.17) will become greater than j. This means that the contribution 

of these jobs to the optimal mean flow time is greater than the right 

hand side of (5.2.17). Finally, we can say, 

-1 
F, F, F, 

W0 >' T1+2T 2+** . +nl Tn 
1 

(5.2.171) 

Also, if the jobs J2 (with k =2) have been scheduled on P and P ii12 

processors after any other jobs with ki J2 and their minimum time 

requirements in consequent ranks of two tasks occur on different 

processors, then their contribution to the optimal mean flow time will be 
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2 F2 F2 FF [nk FF 
-r +T )+2CT 2 

+-r 
2 )+. 2+T2 

(5.2 . 
. 18) zo 

1234 -n 2 
[n 

2 -n 2 2+12 

Again, such a condition is occasionally satisfied and therefore, the 
2 

contributions of jobs J 1: ýj, <n 2' to the optimal mean flow time is always 

F [nk F FF22 F2 
-2 

F2 
22 

01234 [n >ý(T +T )+2(T +T +T [-22 
2 2+1 

n- 

2! 

3 Following the same way of thinking we can show that for the jobs Jj., 

1: ýj; ýn 3' we have 

F3 nF 3 
F3 F3 F3 F3 F3 F3 

3 +T + +T +-r + >, (T T3 )+2(T 
456T [n, ] +. . . +T 

012[. 3 In 3 3+1 3 
3 

m 
and finally, for the jobs Ji, 1, <j, <n m 

.] 
Fm -M Fm Fm Fm F n. 

2m) +m (T [nm TFnl 

m_ --;::. M+ 1 
mm 

-1 -2 -M -1 -2 
- 

-m 

I m1n, 

But, Ei 
OPT=(Jo +W 0 +WO . Thus, substituting wowoy..... wo by the right 

hand side of the inequalities (5.2.171), (5.2.181),..., (5.2.201) 

-respectively, we get the inequality (5.2.16) which proves the lemma= 

Lemma 5.2.8: Let a task system (J, [t.. ]) with n independent jobs, which 1 Fi Fi 
are in a LMSTMAX ordering (i. e., a n. '<CF n. -lý<*** 

<01 , 1: ýi: ým), be scheduled 
11 

on a heterogeneous multiprocessor system with m independent memories. 

(5.2.19') 

(5.2.201) 

Then, for non-identical processors, 
1 F, F, F1 1 F2 F2 F2 F' n 22 

F2 F2 
UOPT>_ý_, (a 

I +2c'2+ . +nl an, )+ T2[(al"2 )+2(a 
3+a4 

)+ + (Jn2 +CF 
n 

2+1 2 
2 22 

n Fm m I FM Fm FM FM Ra +... +Cy )+2(cy 
m 

(a [n 

m]m+l+ 

'+a[ 
m 

mm m 

xMIm U] m nm 

(5.2.21) 
m [ni 

=n, i] where ni is as described in Lemma 5.2.7, jobs 

1: ýi: ým have zero execution time requirements and max n ir +1 n. j EEF 
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122 
lall..., a Proof: Let the permutation a=(a,, a 2'"an n 

M a,, ... am 
, nm 

produces a priority list 

1122 L '***"j 2 
m 

I ... 'i 
) 

'***Ij 
m 

1 ý2 M m C a1 an1 cc na1an an CE 
2 Fi ri ri for 1, <i, <m. <-T so that, T %<..., <T i i i 

an 
-IaI 

an 
i i 

According to Lemma 5.2.7 we have 

F 1 F, F, F2 F2 F2 F2 F2 F2 
- -2 

(T +2T +1 )+[(T +T )+2(T +T )+... + - UOPiý 11T2222 2] 
(T 

2 
+T 

12n11234 a n n [ 

2? 2+1 2 
D 

rn -1 F F F F m M M +. .. . +[(T )+... +I--!! 
j(T m +T 

m amamm Ima n 
m a ni [ 

m M+l F 
[ 

m m m m iM m (5 . 2.22) 
. a a. F i But, T i: 

ýX 
' 

for ll<i; ým and 1: ýa', <n Thus i i' . a I i 

n. Fi Fj Fi 'i [ ] 

)+ + .+ (-r (T 

i a1 ai 
L 

a an 1i [ni 
i i+l 

n Fi Fi ri Fi [ 
I 

+... +a (CF (CT i i i 
a a ia n 1i a [ 

i i+l i 

However, the sum of the right hand side in the last inequality is minimised 
Fi in . 

j<i -increasing order. So, when a 1, <a i. are in non 

Fi Fi Fi Fi 
(T +... +T TT 

ai ai a n n I i i i+l i L 

1 Fi Fi Fi i i )+... + +... +Cy (Cr +... +a (CI (5.2.23) 
1 [ni l i i+l i 

where 1*iým. 
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Therefore, the inequality (5.2.22) because of the inequalities (5.2-. 23) 

results in the inequality (5.2.21), which proves the Leman 

Lemma 5.2.9: Let a task system (J, [t ij ]) with n independent jobs be scheduled 

on a heterogeneous multiprocessor system with m independent memories. Also, 

let UQAD be the mean flow time of the schedule constructed bythe Q. A. D. 

algorithm, when the priority list is formed by any heuristic ordering rule. 

Then, for uniform or non-identical processors, we have 

w QAD 
<T 

1 +2T 2 +... +nT n 

Proof: Let cj., 1ýj: ýn, be the contribution of job J. to w So. 1 J QAD* 

W QAD=cl+c2+*"+cn' Therefore, if we show that ci d-r i for j=1(1)n then the 

lemma is proven. 

From the definition of the mean flow time, when job JJ is scheduled on 

the i th 
processor, we have 

cI=hIt ij , 

where hi is one greater than the number of tasks following Jj on the i 
th 

processor. 

Now, suppose that T3 occurs on the k th 
processor, 1, <k, <t i (i. e. Tj =t kj). 

From the nature of the Q. A. D. algorithm, we have 

hit ij <hkt ki * 

But, since always hk, <j, from the last inequality we obtain ci ýjT 
i, 

which 

proves the lemma. Furthermore, it is easy to see that the equality holds 

only if all Tj, 1, <j, <n occur on the same processor and the jobs have been 

scheduled on this processor as well= 

(Note: This lemma can apply to heterogeneous multiprocessor systems without 

any independent memories. However in that case, Clark [CZ] has shown 

this lemma to be true only when the priority list is formed by the LTFMIN 

ordering rule. ) 
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, 5.3 -PRIORITY DRIVEN (P. D. ) SCHEDULING ALGORITHMS 

This section establishes worst-case ýerformance bounds for the 

P. D. algorithm under several ordering procedures. As was stated in the 

introduction of the present chapter, first we shall establish an upper 

bound when an arbitrary ordering rule is used to construct the priority list. 

Let UPD be the mean flow time of the schedule constructed by the P. D. 

algorithm, when the priority list is formed by a heuristic ordering procedure, 

and GOPT be the mean flow time of an optimal schedule for a given task system 

(J, Itij ]), 1, <i, <m, 1, <j, <n. 

Theorem 5.3.1: Let the priority list be in an arbitrary ordering (RAND). Then, 

(i) for non-identical processors: 

w PD 
-< max [X! n! ) 
wOPT 1, <i, <m 11 

and (ii) for uniform processors: 

W PD 
< max j0!. n! l 

OPT 1, <i, <m 11 

where n=n I +n , +... +nl, ? L! = max 
i 

12mIJi GG 
i 

fTjl 

0! = max {b I/b and v. max 1 1, <k, <v iki 

for i=1(1)m. 

Proof: (i) Let F, 31., Ui 2' - *' Um be the contribution to the mean flow time of the 

jobs ij., where for i=1(1)m respectively. So, immediately we 

have 
w PD ": w1 +W 2 +... +w 

m 

But, the contribution of the jobs scheduled on P1 is always 
Q, (ýI (ýl 

l(nllrl+(nll + +2 W1<A, 1 -')T2 ... TnlI 
_, 

+T 
n1l) ' 

Similarly, (72 (32 G2 G2 
W2 <X2'(n2lTl+(n2l -')T2+* .. +2T 

n2l _, 
+T 

n 12) (5.3.2) 

and 1!: 
ým GM Gm 

W< XI(n T +(nl-l)T +... +2T mmm1m2 n' 

ýnm 

mm 
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Therefore, because of the inequalities (5.3.2) the equality (5.3.1) 

becomes 
ai 

. 
(: ýi q, (ý'2 G2 Cl 

2 <Xj(nlrl+(n1' (nf-r +(n1-1)T +... +T -UPD 
1 -1) T2+ **. +rn >X '2 

12122n 21 
(ýM G' m (ýM 

+... +XI(n1-r +(n1-1)T +.. . +T (5.3.3) 
mm1m2n 

m 

From Lemma 5.2.4 we have 

G, (ý, (: ýl (ý2 (ý2 am (ým 
UOPT >IT 

I 
+T 

2 +... +T 
n, 

+T 
1 +... +T 

n' 
+... +T 

I 
+... +T 

n' 
(5.3.4) 

12m 

since n=n, '+ný+... +nl. m 
Because X TýCR 

+ for j=1(1)n! and i=1(1)m, then from (5.3.3) and (5.3.4) 

the following inequality can be derived 

n! mI Gi 
X, I ((n! +I-j)T 

PD i=l -j-1 
Wmn! Gi OPT III 

. L-JL J=l 

It is easy to see that 
G, G, ýi Gi 

Äll(nlt, r 1 +(nj -1)'r2+* .. +2Tnl +T 
n, ' 

, C- ý Z- i<X, 
n' ,; q 1 '. 3 1 %AJ 

T1+T2+ . +T 
n 

qm QM 
XI(nIT +(n1-1)T +... +T mm1m2 n) 

and m <X' n' ý, im %4m (X Mmm 
T l+T2+»**+Tnl 

m 

(5.3.5) 

(5.3.6) 

Thus, because of (5.3.6) we can obtain from Lemma 5.2.2 for v=m, Z=i, 
1 qi 

d., =n! fori--I(I)m, and c, +j=n! +I-j, a =T for j=I(I)n! the inequality 
11 S+j i1 

[ n! mI Gi 
I xf I ((n! +I-j)T 

ij 
=1 

-I 

PI 

[; klnl) (5.3.7) 
m n! i 

I 
Gi 1, <i, <m T 

i=l j=l 
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From inequalities (5.3.5) and (5.3.7) one can show that 

wPD 
< max [X! n! ) 

wOPT 1, <i, <m 1 3, 

which proves part (i) of the theorem. 

(ii) In the case of uniform processors, instead of the inequalities (5.3.2), 

we have 

< max {b }/b. (n! -r kI112n. 
ll, 

<k, <v 11 
for i=1(1)m. Afterwards, using the same analysis we find 

PD < max WWI 
wOPT 1, <i, <m 11 

which proves part (ii)n 

However, this bound, when 1, <i, <m, agrees with the one found 
II 

for the homogeneous multiprocessor system with independent memories. (See 

Theorem 1.1, Appendix I. ) 

Between the two extremes of using an optimally chosen priority list 

and of using a completely arbitrary priority list, there is the possibility 

of using priority lists obtained by simple heuristic Procedures. Through 

the remaining theorems of this section we shall see if the heuristic 

procedures chosen in this thesis to construct priority lists can produce 

better worst-case bounds, relative to the one already found in Theorem 

5.3.1, when a completely arbitrary priority list is used. 

Theorem 5.3.2: Let the priority list be in a LMF, LTF MINI LTF MAX. - LMLT MIN 

or LMLT MAX ordering. Then, 

(i) for non-identical processors: 

PD Wn! ) 
wOPT 1, <i, <m 3,1 

and (ii) for uniform processors: 

w PD 
-< max Wn') 
wOPT 1, <i, <m 3, :L 
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where X! and are as defined in Theorem 5.3.1. 

Proof: Inequalities (5.3.2) as well as (5.3.4) are valid when the priority 

list is constructed by the IMF, LTF MINI LTF MAX , LMLT MIN or LMLT MAX ordering 

rule. This means that finally, the upper bounds of Theorem 5.3.1 are 

obtained., 

Theorem 5.3.2 indicates that the simple ordering procedures IMF, LTF MIN' 

LTFMAX, LMLT MIN and LMLT MAX offer no improvement in a worst-case sense over 

an arbitrary ordering for the P. D. algorithm, when the mean flow time is the 

performance criterion. 
r 

Now, let us observe the bounds presented in Theorems 5.3.1 and 5.3.2. 

It is clear that, if the number of processors increases and the number of 

jobs in the task system remains constant or decreases then the value of the 

worst-case performance bound of the P. D. algorithm under the considered 

ordering rules decreases, since n' = max fn! ) decreases as well. In a max 1, <i, <m 1 

vice-versa situation the value of the worst-case bound increases. Nevertheless, 

this is not an absolutely accurate interpretation of the bound, because it 

also depends on the X! variable. So, few increases or decreases in the 
I 

number of processors or jobs in the task system might result in the behaviour 

of the algori - 
thm to be slightly different to the one already presented. 

Now, we turn to examine the STF ordering procedures. 

Theorem 5.3.3: Let the priority list be in a STF MAX ordering. Then, 

(i) for non-identical processors: 

OPD 
< min max x! V. 

(v 
max 

(nI+1 

II [h i 'i< 
- 2"'* 

J] :L 
OPT 1, <i, <m l< 'm 2 

and (ii) for uniform processors: 
w PD Lvi 'L 111 min max , max 

I 
ýl - [ 

J'j ( 
-12 

v 

i 'i n, 
I )II 

, 
<i-<M i 1, <i-<m 

E'OPT 1,2 

where M, a! and v. are as defined in Theorem 5.3.1. 
111 
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Proof: (i) Let 91, -@ -0 be the contribution of the jobs ij, where 2"" m 

ectively, to the mean flow time of the schedule J. E=G. for i=1(1)m resp 

which is constructed by a P. D. algorithm while the priority list is formed 

by the STF MAX ordering rule. It is always 

(ýi G, G, 
I n1a +(nl-l)a +... +a, I n' I n1-1 

(T2 
1 

(ýý2 1 q2 
W n1a +(n2l 22 n2l cyn I *+Ol 

2 
(5.3.8) 

am (ým qm 
and WnI cy +(nl-l)a 

mm n' mn mm 

qi Gi (ýi 
where cy nl*anl_ '<**"<Gl 

for i=1(1)m, due to the nature of the priority 
iiI 

list. 

But, 

w PD wIW2wm 

or because of the inequalities (5.3.8) 

l< 
m 

(n! 
5 

,+ (n! -1 
qi Gi 

)- (')PD i n. i 
)On'-l+**'+al (5.3.9) 

-1 -2 -M Furthermore, let '0"0 '... 'w 0 be the contribution to the optimal 

mean flow time of the jobs Jj, where ,; -J-GG., for i=1(1)m respectively. 

Also, let us suppose that the jobs Ji GGip 1, <i, <m3 are the only ones in the 

task system. Then, from Lemma 5.2.6 we get 
.-q 1ý-j G, G (ýj [n 

11 
(ýj 

1 
(Cyl +... +CF 

+Cf + +cY )+2(a 
+, +... +a )+ 

va in 1 
V1 

0 Xi 12-vv 2v 'v [n 

V v, 
v v +1 

-2 
62 C12 G2 (: ý2 q2 2 (; 2 1 G 

w 0 2' 
(cr +CY + 12 ... +Cf )+2(cy +. . +a )+. 

.. + 
v +1 2v - n cl n 

+ "*'Cr 
1 

v 2v v2 

1 

2 2 

-m 
Gm 

m 
[n 1] 

mm 
Cm G 

m 
Gm qm 

w> 0X 
(o 

1+0 2+ + 
m 

+. . +a +2 +Crm) (Clm+ 
1 2m cy nl 

+ 
ni '+cr 

l 

m m 
[ ]m+l l 

m 
[ 

1m 
m I m 

(5.3.10) 
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Gi I where cY 
nl+l =... +u [n! =0, i, <vi, <m for i=1(1)m. Now, 

Vv 

-1 2m 
w OPT 'ý w0+Z0+... +-fA3 

0 

or because of the inequalities (5.3.10) 

m Gi (ii Qi 
> +... +a )+2(a +... +0 WOPT 

2vv+1 2v 

v. 

] 

. +Cf 

v 

CF 
n! [n! 

3. 
v +1 V. 

1 

FV v Vý 

From inequalities (5.3.9) and (5.3.11) we have 

m rn! V. G. 
II 

ýv 
1'((r-l)v +j)a 1 

PD i=l r=l i=l (r- 1) vi +j_ 
@OPT 

m 
Fn! /vil Vi Gi 

--I 
'I 

r cr (T-I)v +j 

(5.3.11) 

(5.3.12) 

However, using Lemma 5.2.1 with k=O, d=v,., k=r and a . =a I<j<m 
[nj'j S+j (r-l)v 

i +j 

V. Vi L 
for r=1(1) and then applying Lemma 5.2.2 we get 

Fn! /vil vi 1 Gi 
x, I ((-r-')Vi+j)a(r-l)v +j (v 1) -r=l j=l i V. Fni, /vjý Vi Gi -I 
IrX G(r-l)v +j r=l j=l i 

or multiplying both sides by X! 
1 

rn! /vil vi 
((r-I)v. +j a' 

r=l 
_j=l 

1 (r-l)v i +j. 
< XF v 

(v 

Fn! /v vi(i 
IIiC, ý 2 

reil 

-1 ru (r-l)v +j 
:1 r=l j=l i 

for i=1(1)m. 



85 

Again, applying Lemma 5.2.2 for the inequalities (5.3.13), we obtain 
rn! /v, ý vi q. 

- 1 I 
l l 

((r-l)v +j)a i (r-l)v i +j (v -1) j= r= < mv 

m 
rn! /v i Vi [n 

2 1 
r a(r-l)v +j 1 

V. v 
T=1 j i 

(5.3.14) 

Finally, because of the inequalities (5.3.12) and (5.3.14) 

(v 
PD 

< max v- -Lý 

"I- 
(5.3.15) 

1 [n. 11 

Vv 

wOPT 1, <i, <m 
_1 2- 

Another way to find an upper bound is to use Lemma 5.2.4 to 

bound the optimal mean flow time, instead of Lemma 5.2.6 as used previously. 

So, 

-I ýl "ýl Q, 
010 >a 

141 
r 
a2 

+ ** +T 
ctnl 

CE 
or because Of T>1, <j, <n and Lemma 5.2.3 

ai 

0> 
(a I -ý T + Cr 2+ +a 

Similarly, 
2 1 

G2 G2 (ý2 
- W0> ' (11 a2+ + +CF n) 2 2 

!: ým 
M m 

and > 0 - ý -, (cFl ... + (12 + +a 
n') m m 

where al>'a2 >,... >, a f or i=1(1)m. 

-1 Since -w OPT 0 
2 

+ 'do -M + '00 then 

m Gi Gi 
ýOPT > 7! (al + CF + +a 2 n. 

(5 .3.10 
t) 

(5.3.111) 
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From the inequalities (5.3.9) and (5.3.111) we get 

m nt 

w ]CF. 3 PD i=l j=l 
@OPT 

m n! 
j 

On the other hand, Lemma 5.2.1 for k=O, d=n!, s=O, Z=1 and 
(ýi I 

a =0 for j=1(1)n! will give us S+j iI 

nt. Qi 
I 

-j=l n, Qj 
a 

j=l 

or multiplying by A! both sides 1 

li 3 CY 

n! 
at 

j=l 

Now, applying Lemma 5.2.2 for the above inequalities we obtain 

m n! qi 
I jcrj 

i=l j=l 
m 1n! qj 

i c cy l 

n+ 
max 

1, <i, <m 

(5 . 3.12 t) 

(5.3.14') 

Thus, the inequality (5.3.121) because of (5.3.141) becomes 

w PD nl+l 
=- < max 
w OPT 1: ýi*m 

Therefore, because of the inequalities (5.3.15) and (5.3.151), the 

(5.3.151) 

worst-case bound of the P. D. algorithm when the priority list is formed 

by the STF MAX rule is: 

(v I)P n. PD 
< min max max 

ýX! 

2 
rn 

m12 
UOPT 1, <i, <m 

ýxi ( 
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I 

which proves part (i) of the theorem. 

(ii) For the case of uniform processors the inequalities (5.3.8) must be 

substituted by 

G, (, 
min {b I/b 

(nlul 
+(nl-l)(cýFl k' 1) n1 nll-l+* 

, <kýv I 

2 (42 2) Zi 
(1min 

{b )/b 
(n (ý 

+(nl-l)a 2k 2) 2cFnl 2 n2l-l+***+(ll 
, <k, <v 22 

CA Mm E min lb I/b n1a +(nl-l)a 
_, 

+... + 
IM 

mk m] 
(m 

n' mn 
(1, 

<k: ýv mmmG, 

] 

and X!, 1, <i, <m, in the inequalities (S.. 3.10) by max {b I/ min {b 
1 1, <k, <v ik1, <k, <v ik 

Then, using the same analysis (i. e., the one used to prove part (i)) we 

get eventually, 

w (v nl+ll PD a! 
i )I 

min max vm ýx 2 
2 1, <: L, m 

&OPT 
11<11<M 

F3,. ] 

which proves part (ii)13 

Theorem 5.3.4: Let the priority list be in a STF MIN ordering. Then, 

(i) for non-identical processors: 

w nl+l PD 
< min max max X! v i 2r j max X! 

%PT 1, <i, <m n! 1, < i, <m 
r, < 1 i 

] 

v 1 

(ii) for uniform processors: 

w (v n ,L PD 
< min max max 

r 
2r Mx a: -i2 

) 

UOPT rn ll<i; ým 

where M, a! and v. are as defined in Theorem 5.3.1, 
111 
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max and 
i. E'G r 

3i 
[n! l 

1 
for r=1(1) v and i=I(I)m. 

L] 

max fb }/b 
1 k, < Y, 

Iki 
JGGi 

Proof: Let -G 1'1'2* *" Ui 
m 

be respectively the contribution of the jobs 

J3 EGij i=1(1)m, to the mean flow time of the schedule which is constructed 

by the P. D. algorithm while the priority list was formed by the STF MIN rule. 
1 -2 -M Also, let Zoqwo.,. . -, Iwo be the contribution of jobs J. E=-G. , i=1(1)m, to the 

:L 
the optimal mean flow time. 

Then, for non-identical processors we have 

"ýi qi Gi 2q- (ýi 
(-r +2T +... +v T )+X' ((V +I)T 

I +... +2V T )+ 
12iviiv +1 i 2v. 

1 
n il 

j 

[n 1 

1 V. n' vj 
! 

[V. 

IIL 
1] v +1)T +... +F vTn. 

(5 3.16) 

vi 
:L 

V. +I 
V. V. k[ L] 

i 
where -r IT2 >1 T 

n! 
and T 

nl+lý-' .. =T [n =0 for i=1(1)m; 

Vv 
V. 

assuming that the jobs JJ EGi, 1<, i; ým, are the only ones on the task 

system then because of Lemma 5.2.5, 

Ci-- Gi n.! 3. 

L 

W +T + . +T )+2(T +. . +T T 
vi 

L 
012V +1 2v Vj n 

V. +l V 
(5.3.17) 

for i=I(I)m. 

However, Zj and Z for i=1(1)m can also be bounded by 
i0 

ýý (ýi 
<X! (T +2T +.. . +nIr 12in. 

and 

W -r +T +... +T 012 nt 

because of Lemma 5.2.4. 
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On the other hand, in the case of uniform processors the inequalities 

(5.3.16) and (5.3.18) must be substituted by 

i 
ý'i 'ýi Gi 12 qi qi 

U<a! (-r +2T +. 
i112 .. +V T ((V +I)T + iViiV1 +1 ... +2v r )+ i 2v 

n 

V n! n! 

V 
+I)T 

V ! T (5.3.161) 
nj 

V. +1 
] V nL] 

j 

:L V. I L 1 1 V. 1 
mid 

w. < (T 
11 +2-r +... +n! T 2 n') 

(5.3.181) 
3. 1 1 

respectively, whereas (5.3.17) and (5.3.19) remain the same. 

Now, following a simila-r analysis with the one used pTeviously 

to prove Theorem 5.3.3 we find, 

(V. ýv 'Lj nI+l PD 
< min max W max X! V l 

. 
)l 

i -2r max 
OPT 1, <i, <m n ! 1<i, <m i L 

] 

L 
for non-identical proce ssors and 

PD r 
(Vi rýl nI+l 

< min max @ max V 
I 

i 2r j max 2 OPT I'<i<'M -n T I'<1'<M 
, 

V 

for uniform processors, which proves Theorem 5.3.4r' 

The bounds given by this theorem as well as by the previous one 

l.., (Theorem 5.3.3) for X <r, < and 1, <i, <m, agree with the 

corresponding worst-case bound found for the homogeneous multiprocessor 
I 

system with independent memories. (See Theorem 1.2, Appendix I. ) 

The second factor of the bounds of Theorem 5.3.3 and 5.3.4 might be 

less than the first one if n' 
3m 

- 1, where n' = max Wl. This is 
max 

ý2j 
max 1, <i, <m 1 

in + 
because M 

(M 1) 
when n! < 

3m 
- 1. The last statement can be 

2h2 

[ý2 

m 
verified by an induction process. 
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Generally, Theorem 5.3.3 and 5.3.4 indicate that the STF MAX and 

STFMIN ordering procedures, in contrast to the previous analy 
. 
sed ones, 

can offer improvement over the extreme performance of an arbitrary 

ordering P. D. algorithm, when the mean flow time is the performance 

criterion. The greater the value n' is the larger the difference 
max 

between the guaranteed performance levels of the arbitrary and STF rules 

becomes. 

Also, we can observe that the upper bounds of the P. D. algorithm under 

STF MAX and STFMIN rules may increase as the number of processors increases 

and n' > 
13M 

- 1, and hence their worst-case performance will deviate from 
max 

Lý L2J 

the optimal one as m increases. However, we cannot be too rigorous, since 

their upper bounds depend on X! and X! r respectively. Finally, the extreme 11 

performance of the RD-algorithm under the STF MIN rule might be better, in 

some cases, than the corresponding one of the P. D. algorithm under STF MAX 

rule, because X! r <? L! and 0! 'ý< 0! . IIII 
Furthermore, we shall complete this section by analysing the P. D. 

algorithm under LMST ordering procedures. 

Theorem 5.3.5: Let the priority list be in a LMST MAX ordering. Then, for 

non-identica, processors: 
UPD 

< min- max max X. max 
(M-1)1 

m 

14 2r fl m 

(m 
[ný E'OPT 1, <i, <m_ 

J 

[n. ] i, 
i 2M 1, <r, < i MI 

max max 
fXi (k 

+ 
(n + rn + 1) 

m 

where k= max {n! -n. ) and X max 1*i*m, 1, <j, <ni. 
=F: 

I 

IIicT 

Proof: Let 2' ... 'U be the contribution to the mean flow time of the 

jobs with kI =i for i=I(I)m respectively. So, we have 

PD 1+ Ei 2+... +ui 
m 

(5.3.20) 
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However, the contribution of jobs with k. =l is always 3 

1+1) 
F1 

+ (k+2) F, 
+... +(k+n ) 

F, 
9, < Ck a, Cy 21an 

Similarly, when Zj =i, i=2(1)m-1 

F2 F2 F2 
j2< (k+ 1) a, + (k+ 2) c'2+ (k+n 

2) crn 
2 

F. 
- 

rm Fm 
Zi 

M- 1< 
(k+l)a 

I +(k+2)a 2 +... +(k+n 
M- I)a n M-1 

Fm Fm F m and wa1 +2a 2 +... +n man m 

(5.3.21) 

Therefore, because of the inequalities (5.3.21), equality (5.3.20) becomes 

F, F, F2 

)F2 OPD < [(k+l)cy 1 +... +(k+n 1 )a 
nI 

]+[(k+l)a 
I +... +(k+n 2an2 

FM-l Fm-1 Fm Fm 
+[(k+l)u 1 +... +(k+n m- 1) (Yn 

I 
]+[a 

1 +... +n m Cr n 
(5.3.22) 

Fiq Fi Fi 
I Since a -<Cr -1 

<al for i=1(1)m, from Lemma 5.2.8 we get n n. 2' 
1 

I F, F, F, 
T] 

2 
F2 

T-(al+2 +n 
F2 

GF2 +2 
F2 F2 rL 

2 UOPT > cF2+ lcyn 
((Y 

1+ 2) 
(03+04)+***+ - +cý 

I X2 nn 

2! 2+1 _ -2] 2 

Fm Fm Fm Fm nm Fm 
(a 1 +... +a m +2 (cF 

M+1+"'+cy2m)+'**+[i]-(cyln I +. . +C; [nim 
11 m 

rm m 
mI mi mm 

mjm+l 

F-I (5.3.23) 

where cr I : "- = 
Fi 

=0 for i=1(1)m. 
m 

n1 +1 ni- 
m 

[I 

Therefore, from inequalities (5.3.22) and (5.3.23) we obtain 

PD. 

OPT 

m-1 . 
Fi Fi r- rm rm rm [(k+1)a +(k+2)a +... +(k+n )al ]+(a +2cr +... +n a 12in112mnm 

[Fni/il., 
(F 

or 
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m ni/i n rm/ ml m 
j (k+Cr-1)i+j)cr 

(r-1)i+j+ 
i «r-1)M+j)CY, 

(r-1)m+j wPD 
< 

i=I r=l j=I r=I j=l 

woPT 
i ri 

r cr 

JL-l 
Lr . -1 i1 ýI 

(5.3.24) 

Fj 
Now, using Lemma 5.2.1 with k as being defined, Z=r, d=i and a, +j-a (r-l)i+jl 

-i and then for i=1(1)m applying Lemma 5.2.2 and 1, <j, <i, for r=1(1) 

multiplying both sides of the resulting inequalities by Xi., we get 

respectively, 
n1 ri 
i (k+r) cr r 

<x1 (k+1) 

Fn2/21 
2 F2 

(k+ (r-1) 2+j)a (r-1) 2+j 
r=l j=l 

< max +2 

12 
121. 

r 
(j2 F2 2 [n 

2 
'r T-rl 

(r-1) 2+j 
2 

rr=l 

=1 

Fn 
M-l/m- 

1IM-1 F 1, II [(k+(T-1)(m-l)+j)am(, - 

r=l j=l 'r-1) Cm-')+j 
<)L max 

fl,. 
m_ 

(m- 2) 
Fn /M-11 M-1 [nm_ 

IT 
2r 

M-1 -1 F, 
-1 1-Ir (m yaM I<r< 

M-1 X 
M-11 r=l i =1 

(r-1) (m-')+i)l 

and 
rn 

m 
/ml 

mF 
Iy [((-r-')m+i)CFM 

r--i J=l 
Fnm/ml 

m Fm 
IT cr (r-l)m+j 

mIL JL 

I 
(M - 1) 

-1 rnm J 
2M 

MI 

(5.3.25) 

Then, applying Lemma 5.2.2 for the inequalities (5.3.25) we get, 
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m-1 
rn il i, E rn 

m 
/ml 

mE i 
iý 

,j [Ck+Lr-1)i+j)a 3.1 m- 1- 
r=l j=l (r 1)m+j 

m 
11 'ýi] r 

F' 
77 
1 r=l 

max max X. max 
ýTk 

+i 
1ý1 

mM 
(M- 1) 

-1 ll<i%<m-l 1 [n. ] rh 

1, Lm < 

Because of the last inequality, (5.3.24) becomes 

PD 
< max max X. max 

k+i (M-li 
-LI 

1) 11 
, XM 

(m )I 
U'OPT [n. ] 2r n 

2 1<r< 
IM 

(5.3.26) 

Nevertheless, the optimal mean flow time, except the bound (5.3.23), 

can also be bounded from below by: 
m1 Fi Fi Fi 

(CY + +. . . +(3 (73OPT 1 cY2 n. 
) 

This lower bound for. gorcan be verified in exactly the same way as the 

bound (5.3.111), which has been found in Theorem 5.3.3. Afterwards, 

following a similar analysis as the one which has been used to prove 

(5.3.26) we obtain 
(n + 1) tn + 1,, PD< 

max max 
- 

jXi (k 
+i2Xm (5.3.27) , 'jOPT 1, <i, <m 

Therefore, because of the inequalities (5.3.26) and (5.3.27) the worst- 

case performance bound of the P. D. algorithm when the priority list is 

formed by the LMST MAX rule is: 

W PD 
< min max max 

k 
+i Mýx 

ý; 
k i 2r m Fn -1 

-, III 
X 

(m IM-11 
wOPT 

21 ml 
m 

(n + 1) n +1 
max max 

ýXi 
k+ 

JL 

<i, <m- 
-2, 

L 

m 
M2 

which proves the theorem u 



94 

We can see that the second factor of the above bound can be less than 

the first one, whenever: 

n 
[72-j 

- 1, where P= s: X k+sý ma x k+i- 
max [n xi -LFniTL- 

I 

S( 

)=I, 

<i, <m if 

I-i 

Is 
2 

SS] 
21 

i-i 
and 2k-(i-l)<O or k, < 1, <j: ým; and 

+L+ n <p-1, where p= s: Xs 
(k 

+s+')= max Xi 
(k+'+' 

max 

121: 

5i, <M-lf 
2 

i-I 
and 2k-(i-l)>O or k> 

N-1 
, 1, <i, <M. 

Recall that n max = max In i I. 
1, <i, <m 

Note that for the uniform processorscase, LMST MAX and LMST MIN orderings 

are identical. So, the bound of the next theorem for uniform processors is 

also the worst-case performance bound for the LMST MAX ordering rule. 

Theorem 5.3.6: Let the priority list be in a LMST MIN ordering. Then, 

(i) for non-identical processors: 

PD (k 
< min- maxllmax max 

wOPT < i, <m-l n 

r (m 
max x 

Fn If m 
1, <r, < 11 

m 
(ni+l) n+ IL 

1, 
max max 

(k "m 

<i, <M-11 
2M( 2"' 

(ii) for uniform processors: 

PD k (il-1) 
< min max max max ,i- 

! L-. 
a 

(M-1) 
2r m 

(m 

n wOPT i, <m [n. m 2 
Di-I 

(n i +1) n +1 
max max k+ 2 am 

("12 



95 

CF 

where k, )L are as defined in Theorem 5.3.5, X r= max i1J EF 
r 

IT I 

ii 

max {b 
s 

}/b for i=1(1)m. 
1, <s, <i 

Proof: Let Zl., 'O ., U be the contribution to the mean flow time of the 2"' m 

jobs with kI =i for i=1(1)m -respectively. So we have 

w PD w1 +w 2 +... +w 
m 

(5.3.28) 

flowever, the contribution of jobs with kI =i for i=1(1)m is always, 

F, F, F, 
< (k+l)-r + (k+2) T2+. (k+n 

1)Tn, 

FFF 12222 
F2 

'ý2 <'ý2 (k+I)T 
I +(k+2)T 2 

]+x 
2 

[(k+3)T 
3 +(k+4)T 4]+"' 

n 
[n FF 

[- 

-2 
2+1) 2 n2 2 

+X 2k+2T [n + 
(k 

+ 2-2] 
2n2 

n2 

2 2+1 2]2 

I 
FM_l Fm- 

I 
i 

E 
m- 

<X 
m- 

(k+ 1) T1+... +(k+m-I)T M-1 
]+... +x M-11 

[(k 
+ 

_ 1] 
1F [nm_L M-1 M-1 

- -1)+l Tk+ 

M-1 

M-1 
(m 

Tn 11 
(M 1)) TrL 

1 

m 
(M-I)+l 

M_l 
(M- 1) 

n- 

n na] 
mFm m 1 Im NIm 

... +MTM)+... 4-X M+1 T[ TrI - 

mI 

IMI IIm-m ný 
M+l m 

Also, from Lemma 5.2.7 we have 
(5.3.29) 

r2 
22 

f2 Fý 
(2 

(T +2T +... +n T )+ (T +T )+2(T +T )+... + T +T 
OPT 121n12342nn 

2+1 -2 21 
ý2? 

FM FM rm 
+... + (T +... +T )+2(-u +... +T T 

m In] 

1m m+l 2m [n ++m 

m+l M- 

(5.3.30) 

However -I for i=I(I)m can also be bounded by 
.t 

tij i and -Dý 
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Fi F- Fi 
<A ((k+I)T +(k+2)-r 1 +... +(k+n )-r i2n. 

Fm Fm FM 
(S. 

- 
3.31) 

-0 <A (-r 
1 +2T 2 +... +n T 

m 

and 
. ri Fi zool :ýT1 +T 

2 
+. . . +T 

n. 
(5.3.32) 

1 

respectively. 

On the other hand, for the case of uniform processors, 
Fi ri Fi 'g. <0 ((k+I)T +(k+2)T +... +(k+n )T i12in. 

FM FM FM (5.3.33) 
< (r 1 +2T 2 +... +n T 

m 

and -3' is bounded by (5.3.30) or (5.3.32). WO 

Furthermore., following a similar analysis with the one used for 

Theorem 5.3.5, either for the case of non-identical or uniform processors, 

we obtain respec, ively, 

W PD 
-< min, max max wOPT I*i, <m-l 

max 
Fn; ý 

-r (ir 
+ -L:, i 

Hrll II 

iL 

(n +1) 
max m max1l max-, 

ýXi 
k+ L2 

nm <i'<M 

m n+I 
and M(2 

"m"' 

wPD 
< min max 

Ilmax 

-1 
M+i 

U-1) 
U'OPT 

'<i'<M 
[n 

fir 4'r-1 I 

(M-1)1 Jai (k 
+ 

(n +1) 
am 

(11, 

in max 
lmax 

m 
2 

[M] 

n +1 
2 am 

I 

which proves the theorem 0 

If n <1 T-1 while 2k-(i-1), <O or if n< -(i-l)>o then, 
max 

rI 
max1P_1 while 2k 

as for the bound of Theorem 5.3.5, the second factor of the bound for uniform 
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processors in Theorem 5.3.6 is less, whilst the corresponding one for the , 

bound for non-identical processors in the same theorem may be less than the 

first factor. 

The worst-case performance bounds of the last two theorems for 

r 1, <i, <m, agree with the corresponding one found for the homogeneous 

multiprocessor system with independent memories. Also, Theorems 5.3.5 and 

5.3.6 reveal that the utilisation of memory, in contributing to the extreme 

performance of the P. D. algorithm under the STF ordering rules when the 

mean flow time is chosen as the performance criterion, does not offer 

improvement, except for special cases only. Generally, if k is very small 

LMST might have better worst-case performance bounds than those given by STF 

ordering rules. More exactly, when k=O, i. e. I t.. >' It for 
J EF J EF i+l 

i=1(1)m-1, we can distinguish the following cases: 

(1) If nip 1, <i, <m, are not in decreasing order then the upper bounds of the 

Theorems 5.3.5 and 5.3.6 become: 

(n +1 PD 
< min mý. 

JXi (i 
max 

ýX 

OPT nj i2 
2 

PD ri (i-I)l 
< min max max X. 2r max Xi 

wOPT 1, <iým rnil 

II( 

for non-identical processors respectively and, 

PD < min max max 
WOPT 1, <i, <m 

rn. 
2 

for uniform processors. 

n +1 

(fl. +1) 

} 
We can see that even for k=O the worst-case performance bounds of the 

P. D. algorithm under the LMST ordering rules are not clearly better than the 

corresponding ones when the STF rules are. used to build up the priority list. 

r Again, these bounds for XI =X i =J=oi agree with the bound found in this case 
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for the hombgeneous multiprocessor system with independent memories. 

(See Theorem 1.3, Appendix 13 

(2) If nip 1, <iým are in decreasing order i. e., n1>. n 2 >-. >, n m we have 

(a) when the priority list is formed by the IMST MIN procedure 
M Fi Fi Fi 

Z'PD < (n iT1 +(n i- 
I)T 

2 +... +T n 

and 
m Fj Fj Fj 

FOOPT >, I (nT, +(n i- 
1. )T 

2 +... +T n 
Fi Fi'=' ri 

where TI <T 
2<..., 

<T for i=1(1)m. 
1 

(b) when the priority list is formed by the LMSTMAX procedure 

m Fi ri Fi 
W PD < (nial+(n i- I)a 2+"'+Un. 

) 

and 
(n a+ (n 1) aI+... +a ZOPT > i- 2n 

Fi Fi 
where aI<a 2< "<cyn. for i=I(I)M. 

I 

(5.3.32) 

(5.3.33) 

Furthermore, following the techniques used in previous theorems 

and with the help of Lemma 5.2.2 we can obtain < Xfor both ordering wOPT 
procedures. 

Similarly, for uniform processor, 
w PD 

J-ax 
max {b Vbiý. From,. ZaOPT 

<i, <m 

ll'<S: 

ýi s 

the last bound it is apparent that if the speeds of the processors bip 1: ýi: ým 

are in an increasing order i. e., bI ; ýb 2, <..., <b 
m, 

then the LMST ordering rule 

offers an optimal schedule. For X=ý i =1 we get optimal schedules as found in 

the homogeneous multiprocessor system with independent memories. 

However, the observations made for the upper bounds of the P. D. 

algorithm under STF MAX and STF MIN ordering procedures in comparison to the 

arbitrary one, can also apply for the LMST MAX and LMST MIN rules. 

Finally, one could summarise this section by making the following 

remarks: 
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- the extreme performance of the P. D. algorithm for each of the 

considered ordering procedures, when the mean flow time performance 

criterion is used, is well presented; 

the bounds are widely varied from one heuristic ordering rule to 

another; and 

there is a lack of examples which can attain the values of the 

proven bounds. 
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5.4 TWO-PHASE PRIORITY DRIVEN (P. D. *) SCHEDULING ALGORITHMS 

In the previous section we found worst-case performance bounds for a 

variety of P. D. algorithms. Here, we shall analyse the corresponding P. D. * 

algorithms. We know, that the two-phase algorithms without changing the 

completion time of the schedules, arrange the jobs, which have been allocated 

on the same processor, according to their time requirements in an increasing 

order. However, since it is obvious that such an arrangement tries to 

minimise the mean flow time of the task system, intuitively P. D. * algorithms 

are expected to perform better than the corresponding P. D. ones. At this 

stage one could raise the question: can the P. D. * algorithms offer an 

improvement over the worst-case performance of the corresponding P. D. 

algorithms? This is what we shall find out in this section through the 

establishment of a number of theorems. 

Let Ui PD* be the mean flow time of the schedule constructed by the P. D. * 

algorithm, when the priority list is formed by a heuristic ordering rule, 

and -w 
OPT be the mean flow time of an optimal schedule for a given task system 

(j, [t ij 1, <i, <m and 1, <j, <n. 

Theorem 5.4.1: Let the priority list be in an arbitrary (RAND), STF MAX or 

LTF 
MAX ordering. Then, 

(i) for non-identical processors: 
w PD* 

< min max X! v 
(v i- 

UiOPT 1, <i, <Ml 11 i rn! - 
2 

.1v 
and (ii) for uniform proc. essors: 

PD* 
< min max 0! v 

(v 

UOPT l, <i, <Mf I(i Fn! - 
2 

v 

1 

n, '+l 1 
(5.4.1) mýX 

'. L] ý 
X! 

[_ 
27 1, <i, <m 

nl+l 
m ax (5.4.2) 

ijß! i 

i2, 

1, < 

where M; $! and v. are as defined in Theorems 5.3.1. 
111 

Proof: If the priority list is in an arbitrary, STF MAX or LTF MAX ordering 

and the P. D. * algorithm is used to do the scheduling then Z is bounded by 
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m (ýj > W5 1 
, +(n! -l)a . +cr PD* nl-l 

Further, from Lemmas 5.2.6 and 5.2.4 we can obtain 

m kn 
, l] 1i wOPT > -1 (Cy I +CF 2 +... +a v 

)+2(a 
V. +l-+... +a 2v. )+... + In,! 

1 
v V. V. +l 

(5.4.3) 

+CF 

(5.4.4) 
m Gt. (a 

and L 1+... +al (5.4.5) &OPT > (0: 1+a2 n') 
Gi Gi Gi i Gi 

respectively, where aI>, a 2 >, CF n' and a nl+l=*-ýcy ný- =0 for i=1(1)m. 
ii 

-3. v. 
V. 1 

[I 

Now, for the pairs of inequalities (5.4.3)-(5.4.4) and (5.4.3)-(5.4.5) 

if we apply exactly the same analysis as the one used in Theorem 5.3.3, we 

will obtain the worst-case bound (5.4.1). 

On the other hand for the uniform processors case, replacing the 

inequality (5.4.3) by 

mi Gi Gi EiPD* min {b I/b )(ný +(n! -I)cT +... +a ki1n. 1 nl-l : L=l 1, <k, <v 
111 

and X! by max {b I/ min {b I in the inequalities (5.4.4) and (5.4.5) and 1 1, <k, <v ik1, <k, <v ik 
working similarly as in the case for non-identical processors, we eventually 

obtain the worst-case bound (5.4.2), which completes the theorem u 

Theorem 5.4.2: Let the priority list be in a STF MIN or LTF MIN ordering. Then, 

(i) for non-identical processors: 

PD* r <min max 
I 

max 
fx! 

ui OPT Lýi*m [n! 11 2r 

v. 

and (ii) for uniform. processors- 

PD* Ir <min max 

I 

max v 

< 

@OPT 1, <i, <m 1( i- 2r )fj 

Vý. 

n. 1 
i Mýx X! 2 

(5.4.6) 

ni 

2 

(5.4.7) 
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where and X! r a! r are as defined in Theorems 5.3.1 and 5.3.4 IIi11- 

respectively. 

Proof: For the case of non-identical processors ýi is bounded by 

m (T C_ 
W<X! (-r 3. 

+2T 
L+ 

+V T )T 
+, +... +2%) 1 

PD 1[ 112iViiV i'r 2v + 

[n !, 
:L 

Vv n j] in! 

VV +1 T [n! ] +***+ V Vi 'r n' 
(5.4.8) 

vI Vi I Vi 

3. 
V. +I V. 

[V 

or 

< X! (T'+2T'+.. . +n! 
ý 

(5.4.9) 
m 

&'OPT 
1121n 

where T -ýT : ýT and T =0 for i=1(1)m. 
12n. n! +l ný_ 11V. 

[V 

jI 
From Lemmas 5.2.5 and 5.2.4 we can obtain respectively, 

m 
w (T +T +... +T )+2(T +... +T )+... + T +... +T 

OPT 12vv. +l 2v V. [n! 
I 

[v 

1 nil iv 
vI V. +l 
I V-1 

(5.4.10) 
and 

w> (T +T +... +T 
1 

OPT ,12n 

Now, for the case of uniform processors U is bounded as in (5.4.8) 
n, I 

and (5.4.9), but with X! r, 1, <r, < 1 and A! being substituted by ,r and 
ii 

- 
I V. 

] 

11 
respectively, whilst UOFýs bounded as in (5.4.10) and (5.4.11). 

Furthermore, following a similar analysis, as in Theorem 5.3.3, for 

the pairs of inequalities (5.4.8)-(5.4.10), (5.4.9)-(5.4.11) for non-identical 

and uniform processors we finally achieve the worst-case bounds (5.4.6) and 

(5.4.7) respectivelym 
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Theorem 5.4.3: Let the priority list be in a LMF, LMST or LMLT 
MAX MAX 

ordering. Then, for non-identical processors: 

wPD* 
c min -max- max 

IA. 
max 

k+1 
wOPT 1, <i, <m I n, ' r 

- (i-1)l A Im - 
(m1)} 

2rJJ' m 

n+ 

<m_l 

l'i (k 
max max m +22 

" "t, 1 

(V. 
max X! v X! max 

where X!, v and X,, k are as defined in Theorems 5.3.1 and 5.3.5 respectively. Ii 
Proof: For the priority list being in such an ordering, i. e., IMF, LMST MAX 

or LMLT MAV 
ýi is bounded by 

mI ri Fi F F.. Fm m < 
[(k+l)al+(k+2) 

.. +(k+ni)o' +((Y +2a +... +n a (5.4.13) wPD* 02+' n] 12 mn m 

Fi Fi Fj 
where cy 1 >, a 2 ýG for i=1(1)m. 

I 
Now, from Lemma 5.2.8 we have 

m nijil [F1 F Fýi)] i WOPT >r (Cr 
(r-1) i+ 1+ + Crr (5.4.14) 

1=1 I r=l 

Fi where a0 for i=1(1)m, whereas from Lemma 5.2.4 we can 

i]i 
ni ni 

obtain m1F; F; Fi 
> -(a +CY +... +a %PT 

A12n. 

Furthermore, following the same analysis, as in theorem 5.3.5, for the 

pairs of inequalities (5.4.13)-(5.4.14) and (5.4.13)-(5.4.15) we obtain 

respectively 

PD* 
ý< max max A. 
WOPT 1, <i, <m-l 1 

and 
PD* 

< max max X. 
I @OPT 

max +X 
(m 

ini 

i2-r- 

1'r 2 
< 

(n i+n+ 
JlL 

k+ "M 
(-a--) 

, 2 22 
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In addition, the inequalities (5.4.3), (5.4.4) and (5.4.5) of the 

Theorem 5.4.1 are held even if the priority list is in the LMF, LMST 
MAX or 

LMLTMAX ordering. This is true, since for each job JI, 1, <j, <n, which is 

scheduled on the i th 
processor with (k-1) jobs following it on that processor, 

F; F; F- ri 111 t <(; where a ý: a a for i=1(1)m. So, the upper bound for non- ij' ks 1 2>' nI 

identical processors on Theorem 5.4.1 is eventually obtained. 

Finally, combining this bound with the ones found previously in this 

proof we get the worst-case bound (5.4.12), which proves the theoremn 

Theorem 5.4.4: Let the priority list be in a LMST MIN or LMLT MIN ordering. 

Then, 

(i) for non-identical processors: 

LOPD* 
< min max- max max 

w OPT 1, <i, <m-l 

I 

Ri 

r (, k, 
+ r(m jý- ) 11 

, max -X rM 
m 

maxjjm? x 
I 

ýXj (k 
+ 

(n + 1) 
- 

: ýI, <M- 

ý i'2"'L jII 

(v 
max kn 

2 
v .1 

(-ii) for uniform processors: 

wPD* 
ý< miw max- max 
wOPT 1, <i, <m-l 

-I n1l + 
m 

M, 
2 

nl+l ýx (", 
-I-; (5.4.16) 

2 il<i, m 

k+ 
[n 

41 

max max ýj 
(k 

+ 
< 

ll, 

<i, m 

max v 
1<, i, <m 3. 

2 
v 

F-ýll 

, rn -1 
21 mi 

m 

n +1 

m 
M2, *, L) 

max 
C-M 
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where M, a! and vi, k and X,, and Ar, S are as defined in the Theorems 5.3. '1, 
11ii 

5.3.5 and 5.3.6 respectively. 

proof: The mean flow time of the schedules constructed by the P. D. * algorithm 

when the priority list is in a LMSTMIN or LMLT MIN ordering, for the case of 

non-identical processors, is botmded by 

m 
Fni/il 

. F: 11 XT (k+(r-I)i+I)T 
... +(k+ri)T UPD* <111 (r-l)i+l+ 

i 

i=l r=l ril 

Fi Fi Fi Pi Fi 
where 'r, >. T 2>'... >, T 

n 
and T 'ýT [n =0 for i=I(I)m, or 

M-1 Fi Fi ' Fi 1+ Fm 
<x k+l)T +(k+2)T +... +(k+n )x2+... +T T+T 

ým 
). (5.4.19) 

FM 

PD* 
LI JL 

i 
1( 

12inim2nm 

On the other hand, for uniform processors we always have 

M-1 Fi Pi Fj ], om(Fm 
Fm Fm 

jPD* ýi 
l(k+I)T 

1 +(k+2)T 2 +... +(k+n i 
)T 

nTI 
+2T 2 +... +n 

mTn i: m 

However, from Lemmas 5.2.7 and 5.2.4 we have respectively, 
Fni/ij F, [7 

W T(T 
i 

+... +T (5.4.21) OPT (r-l)i+l ri 

and 

W OPT 
(T 

1 +T 2 +... +T 
n. 

(5.4.22) 
3. 

Now, for the pairs of the inequalities (5.4.18)-(5.4.21), (5.4.19)- 

(5.4.22) and (5.4.20)-(5.4.21), (5.4.20)-(5.4.22) following a similar 

analysis as in Theorem 5.3.5, we obtain the first two factors of the 

bounds (5.4.16) and (5.4.17) respectively. Furthermore, the inequalities 

(5.4.3), (5.4.4) and (5.4.5) of Theorem 5.4.1 are also held when the 
F-. 

priority list is in a 'MSTMIN or LMLTMIN ordering. (Recall that t 
1) 

ýa 3 

Therefore, combining the obtained two factors with the bounds of Theorem 

5.4.1 we finally get the bounds (5.4.16) and (5.4.17) which prove the theoremm 

The above found worst-case bound for uniform processors also applies 

for the cases where the priority list is in the IMF, LMST MXX or LMLT MAX 

ordering. 
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The bounds of all the Theorems 5.4.1,5.4.2,5.4.3 and 5.4.4 for 

r agree with the bounds which have been found for the 

homogeneous multiprocessor system with independent memories. (See 

Theorems 1.4 and 1.5, Appendix I) 

The theorems already mentioned in the present section indicate that 

the P. D. * algorithms can offer improvement to the worst-case performance 

bounds over the corresponding P. D. algorithms only when the priority list 

was formed by the RAND, LMF, LTF MIN' LTF MAX , LMLT MIN or the LMLT MAX 

ordering rule. For the remaining ordering procedures either very little 

or no improvement has been achieved. However, the remarks made for the 

bounds in the section 5.3., which appear here, are also valid. 

Furthermore, in this section we observe again the informative style 

of the proven worst-case bounds as well as the lack of examples to attain 

their values. Nevertheless, in contrast to the conclusion made in the 

previous section, the worst-case performance bounds of the P. D. * algorithms 

are very close to each other when simple heuristic procedures are used to 

construct the priority list. 
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5.5 QUICK AND DIRTY (Q. A. D. ) SCHEDULING ALGORITHMS 

We recall that the philosophy of the Q. A. D. algorithms is to allocate 

each job of the task system on such a processor, so that its contribution 

to the mean flow time is the least possible. Such a behaviour makes us 

believe that they should perform better than the corresponding P. D. algorithms. 

However, whether or not the Q. A. D. algorithms offer an improvement over the 

worst-case performance of the corresponding P. D. algorithms we shall find out 

in the remainder of this section. Further, since the Q. A. D. algorithms are 

right justified while the P. D. ones are left justified, the STF and LMST 

ordering rules correspond to the LTF and LMLT respectively, and vice versa. 

For this section, let ý'QAD be the mean flow time of the schedule 

constructed by the Q. A. D. algorithm, when the priority list is formed by a 

heuristic ordering procedure, and 'UOPT be the mean flow time of an optimal 

schedule for a given task system (J, [t ij 1), 1, <i, <m, 1, <j, <n. 

As in the previous sections (5.3 and 5.4), we start the analysis by 

examining an arbitrary ordering priority list. 

Theorem 5.5.1: Let the priority list be in an arbitrary ordering. Then, for 

non-identical or uniform processors, 

wQAD 
=- < n' 
wOPT max 

. where n' max {n! ). 
max 1, <i, <M I 

Proof: Let S and S0 be the schedules which correspond to '5QAD and UOPT 

respectively. Also, let c. and c0 be the contribution to GOAD and i %PT 

respectively. of the job Jj., 1, <j, <n. So, 

c h. t. . 3. 

and 0 cbkt kj 

where h and h0 are integers and actually, one greater than the number ik 

of jobs following Ji on the 1 
th 

processor of the S schedule and the k th 

processor of the S0 schedule respectively. 
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However, 
n 

bi QAD cj 

n 0 (A) 

OPT C' 

and therefore, n Ic 
W QAD j=1 
(A) 

OPT n0 y C. 
j=j 3 

Now, it is obvious that if we show 

c. 

-J- < n, Iýj, <n (5.5.2) 
o' max C. 3 

then the proof will be almost completed. 

Suppose that the inequality (5.5.2) is false for some j; then, 

C. 
--I> n' 0 max C. 3 

and because of the equalities (S. 5.1) 

h. t.. > n' h0t 
1 13 max k kj 

However, 

h. t.. = min {h t .}, 1 1] 1ý<g, <z 9 93 

where 1, <k i ; ým, and therefore 

(5.5.3) 

hit ij <hkt ki (5.5.4) 

where hk can be defined analogous to h in the equations 

Combining the inequalities (5.5.3) and (5.5.4) we obtain 

hth tij > n' hot k kj i max k kj 

0 or h> n' hj k max 

This is not t-rue since h and h0 are integers greater or equal to 1 and kk 

h <nl So, this contradiction proves the inequality (5-5.2). k max 
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Consequently, 

QAD 
-< n' (5.5.5) 
w OPT max 

The equality has been rejected from (5.5.5) since it cannot be c. =nt c0 
j max j 

for all 1, <j, <n. 

In addition, the bound is a best possible one. This can be realised 

by considering the Example 5.1 which is incorporated into the proof of the 

following theoremn 

(Note: The above proven upper bound applies also to the case of the 

heterogeneous multiprocessor system without private memories. In addition, 

comparing this bound with the one presented by Clark [CZ] for such a system, 

(see Table 3.9), we conclude that the present one is more informative) 

Theorem 5.5.2: Let the priority list be in a LMF, STF MINI STF MAX' 
LMST 

MIN 

or LMST MAX ordering. Then, for non-identical or uniform processors, 

: 2AD 
< n' 

wOPT max 

Proof: Since the upper bound of Theorem 5.5.1 was proved for an arbitrary 

priority list, that bound is also an upper bound for any particular priority 

list when the Q. A. D. algorithm is used to construct the schedule. Moreover, 

there are examples which can cause the Q. A. D. algorithm under the LMF, 

STF STF LMST or LMST orderiiýg rules to deviate from optimal MAV MIN' MAX MIN 

performance by the amount allowed by the proven worst-case bound. In fact 

the following example is one of them. 

Example 5.1: Let the task system (j, [t be defined by the set of 

independent jobs J={Jl 
J%J 21"1 n} and the (mxn) matrix 



[tij I= 

n2 nm 

E... F- E... c ... E:... E E ... r X 

x 
... 

x. x... x X 
... 

x X+Z 

Co .. Co ... 
X... X X 

... 
X X+Z 

X ... X X ... X X+Z 

00 ... 
00 Co 

... 
00 

. X ... X X+Z 

(il, .nI +n 2')n) 

where n=n 1 +n 2 +... +n m, c, X, 2ER + and F-<<X<<Z. 

2 
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Clearly, the priority list L=(J l' J 2-**" jn) is a LMT, STFMIN' STF 
MA'X, 

LMST MIN or LMSTMAX ordering and also an arbitrary ordering. The schedule 

resulting from the priority list L is given in Fig. 5.1, whereas the 

corresponding optimal one is shown in Fig. 5.2. 

x (n-I)E 

Pl 

p 
m 

FIGURE 5.1: Worst-case schedule to illustrate Theorem 5.5.2 



ill 

Pl 

P 
In 

FIGURE 5.2: Optimal schedule to illustrate Theorem 5.5.2 

The ratio of the mean flow iimes of these two schedules is: 

W QAD nX+f 1 
CE) 

wOPT X+f 
2(P-) 

or 

lim 
WQAD nX n' 

c-+O w OPT x max 

which is the value predicted by Theorem 5.5.2. 

The above mentioned task system, when Jn is replaced by another Jn 

with time requirement (X, X 
2 /E,..., x 

2 /c), can be used as an example to 

show that n' is also a best possible bound for the case of uniform max 

processorsm 

The bound of Theorems 5.5.1 and 5.5.2 agrees with the one found for the 

homogeneous multiprocessor system with independent memories. (See Theorem 

II. 1, Appendix II. )- Therefore, the use of a heterogeneous multiprocessor 

system instead of a homogeneous one does not worsen the guaranteed performance 

levels of the Q. A. D. algorithm when the priority list is in a RAND, LMF, 

STF MIN' STF MAX , LMST MIN or LMST MAX ordering. 

(n-1)c x 
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Nevertheless, Theorem 5.5.2 indicates that the use of the heuristic 

procedures LMF, STF MIN' 
STF 

MkX , 
LMST MIN or LMST Kkx to pre-order the priority 

list does not offer any improvement in a worst-case sense over an arbitrary 

ordering Q. A. D. algorithm. 

In addition, comparing Q. A. D. with the corresponding P. D. algorithms 

when the priority list is constructed by one of the above mentioned heuristic 

procedures, we can realise that the Q. A. D. algorithms have a better worst-case 

performance. However, if X!, Iýi; ým, is very'close to I and the n' of the 
1 max 

schedule constructed by a P. D. algorithm is less than the n' of the schedule max 

corresponding to a Q. A. D. one, then P. D. algorithms appear to have a better_ 

worst-case performance. Finally, the remarks made for the upper bound of 

Theorem 5.3.1, i. e., how the bound behaves as the number of processors or 

tasks in the task system increases or decreases, are valid for the bound given 

in Theorem 5.5.1 as well; in fact, they are more meaningful in this theorem. 

Now, we continue the analysis of the Q. A. D. algorithm for the cases where 

LTF ordering rules are used to form the priority list. 

Theorem 5.5.3: Let the priority list be in a LTF MAX ordering. Then, 

(i) for non-identical processors: 

< min max 
X (M-I) i- 

,, 
ýx i -i n. 1 

f1l (M 
2r M 

WOPT I'M 1<r, < 2 
v 

nl+l 
max n maxl 

I L 

1, <i-<m 

(ii) for uniform processors: 

tOQAD 
=- < minj max 

L- 
-Lllýl max 

ýal ýv 

wOPT [n 
(m Mr, 111,1, 

ýi, <m 1i n' 
D 

1* rl< iij 2v 

nl+l 
max 0! . n' (5.5.7) 

ý1(2 
max 

1 

11 

Where M, a! and vit n' and X, a are as defined in Theorems 5.3.1,5.5.1 
11 max 
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and Lemma 5.2.6 Tespectively, Pr= min T and ý r= min - max {b 
k 

I/ min {b 
k 

J. F-D i ED 

fl, 

<k, <t. 1, <k, <t 
Jrjr 

[g] 

Proof: From Lemma 5.2.9 we have 

GQAD < 'r 1+ 
2-c 

2++ nT 
n 

CT 
. 

Nevertheless, since T 
J- 

. where J EED 
, 

I<r< and i, <j, <n, the above iVrjr 

inequality becomes 

rn ml 
QAD 

<f 
[ý, 

- 
(((r-l)m+l)cr 

(r-I)m+l . +rma (5.5.8) 
r=l r r 

rm)l 

where aa2 . >, a and 1= ... =a =0. 

However, from Lemma 5.2.6 

n mj 
wOPT 

1 
>T 

ý 
a r(cy(T-I)M+1+**'+ rM 

(5.5.9) 

Also, jQAD and ý)OPT can be bounded as 

m Q, qi 
w (a + 2a n! cF 2 QAD i=1 3. n 

m n /v. ý 

and 'OPT > 
1 j I ((r-l)v 

i+ 
1) CT (r-l)v +1 

+... +rv. cr 
I rV X! 

11 

iI =1 i 1 

or 
m 

WOPT (a 
1 +cr 2+ +a 

nl) 

G 
where a >, a >,. . >, d and aa =0, for Iýi, <m. 12 n' n' nT I i+j vi 

[v 

Now, considering the pairs of the inequalities (5.5.8)-(5.5.9), 

and (5.5.10)-(5.5.12) and following a similar analysis 

as in Theorem 5.3.3 we obtain respectively: 

: 2AD < max wOPT P, 
(m 

2r j 
nr 
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< Max 
OPT 1<i<m 1 

2 

g nl+l Q, AD 
and < U max 

( 

2 OPT 1, <i, <m 

Then, combining the above inequalities with the inequality )<nl ý'QAD'%PT 
max 

which is true since it holds for an arbitrary priority list, we obtain the 

worst-case bound for non-identical processors given in (5.5.6). 

For uniform processors we obtain the worst-case bound (5.5.7), by 

replacing the inequalities (5.5.8), (5.5.9), (5.5.11) and (5.5.12) with 

fnýmj 
- ((r-I)m+l)a .. +rma (5.5.81) wQAD <r[; I-r (r-I)m+l+' 

4 
Ij 

I /Ml aOPT I 
(r-l)m+l+***+ rm 

r=l 

rn! /ml 
mI qi 

UO 
PTý"I -ý!! - 

I ((r-l)v i +I)a (. -l)v +1+... +rv 
3. cr rv i=l I- r=l 

(i 

mI ! ýIi QI (ý I and wOPT > +CF + +CF 
nl) 12i 

respectively and following a similar analysis. 

Moreover, the bound n' is a best possible one. This is realised max 
by the following example. 

Example 5.2: Let the task system (J, [t il 
1) be defined by a set of 

independent jobs J={J I-'j2-'*"-'Jn} and the (mxn) matrix 
. 
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2 

E 

X+Z 
... 

X+Z X+Z... X+Z 

Co 
. 

00 
... X+Z ... X+Z 

X+2 ... X+Z 
Co "0 Co 

n m 

E 

X+Z 
... 

X+2 

X+Z 
... 

X+Z 

X+Z 
... 

X+Z 

F- 00 

Iin2 ji m-2'-"jm-ll*`jn-l' 
i 

n) Ini +1 1ni 
i=2 i=2 

M-1 
where n=n 2 +n 3 +... +n m, 

Ini >n m -1, c, X, ZER and c<<X<<Z. 
i-2 

We can see that the priority list L=(J l'j2"*"Jn ) is a LTF MAX ordering. 

The schedule resulting from this priority is shown in Fig. 5.3 whereas the 

corresponding optimal one in Fig. 5.4. 

pm 
(n 

M- 
1) c 

FIGURE 5.3: The schedule resulting from L using the Q. A. D. algorithm 

Pl. 

p 
In 

in 
FIGURE 5.4: The optimal schedule for the given task system (J, [t ij 

in Example 5.2. 

(nml 
ax- 

1) c 

(n I- 1) E: Max 
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The ratio of the mean flow times of these, two schedules is: 

n' X+f (c)+fl(c) wQAD max II 
W OPT X+f 2 (C)+fl(C) 

or 
n' X wQA, D max lim Wax 

6+0 wOPT m 

n where n' x= 

r 

Further, a similar task system, with the (X+Z) time requirements of the 

jobs J,, J J being replaced by (2X), can be used to show that n, is 2'***-' n-1 max 

also a best possible bound for the case of uniform processorsa 

For 1, <i: m and hence lyl=Or, 1: ýr, < the given bounds in 

Theorem 5.5.3 agree with the corresponding worst-case bound found for the 

homogeneous multiprocessor system with independent memories. (See Theorem 

11.2. Appendix II) 

Furthermore, although n' is a best possible bound, we cannot accept max 
it as the worst-case performance bound of the Q. A. D. algorithm under the 

LTF MAX rule, because it is based on pathological examples like the one 

given, i. e. Example 5.2. So, other bounds have been derived, based on the 

nature of the priority list and its advantages, which although cannot be 

reached by examples, in most of the cases they are better than n? In 
max 

addition, these bounds show the ability of the LTF MAX rule to produce 

better worst-case performance bounds than the one provided by the previously 

examined procedures. However, comparing the bounds offered by the latest 

theorem with the corresponding ones of Theorem 5.3.3, we can see that the 

Q. A. D. algorithm under the LTF MNX rule may have better guaranteed 

performance levels than the P. D. algorithm under STF MAX rule. 

Theorem 5.5.4: Let the priority list be in a LTFMIN ordering. Then, 
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(i) for non-identical processors: 
: LAD 

< min 
(m 

- 
(M-1)) 

I max max 
fx!, r (v -- ýv 

I- 'I) I 

nIi 2r OPT 2[] J 
I'< i, < M nil 

r, < 

nl+l 
max n Ilx 

1 

J] 

M, 

(ii) for uniform processors: 

: 2E < min m- 
(M- 1) 1p 

max max r (v ývl ". I, 

r n 
-Lj] 

OPT 2JI<i<mI 
l< rl< 

ni 

(nl+l 
n, inax I max 1, <i, <m 

where X!, O! and vi, n' and X! r a! T are as defined in Theorems 5.3.1, 
11 max 

5.5.1 and 5.3.4 respectively. 

Proof: From Lemmas 5.2.9 and S. 2.5 we have 

a-QAD T1+ 2-r 2+... +nT n 

> 
rnýmj 

(T (5.5.1 
. 
6) and 'UOPT , 

=, 

Ir 

(r-l)m+l+ +T-rm)l I 

where T >IT and T =0. 12n n+l': * 
m iT 

In addition, UQAD and U"OPT can be bounded by: 
rn, l /vl 

mr qi qi 
UQAD < 

(((r-I)v 
+I)r +... +rv T 

i (r-I)v +1 i rv i=l r=l 

[: 
L i 

and rn! /v. ] 
mI I[+... 

+T 
i Z'O PT >' IY r(Ti(r-l)v 

+1 rvi)] 
r=l 

(Sýi Gi i (ýi G- 
where T >, T >,. - . >5r and TT =0,1ýi, <m; or 

'v 
L 

12 ni In nl+l 3. 
V. 

[I 

:. 
1 

m Gi 
Z'QAD < E'ý I (T 1 +2T 2 

+... +T 
nl)] 
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and m ! ý'j GýL 
Z5 OPT 

>, (T 
I +T 

2 . +T 
nl) 

(5.5.20) 

Consequently, considering the pairs of the inequalities 

and (5.5.19)-(5.5.20) and following a similar analysis 

as in Theorem 5.3.3 we get respectively: 

WQAD 
c 

(M-I)l 
-OOPT 

IM 
- p 2 Fnl 

wQAD 
< max max w OPT 1; ýi, <M ýn [ 

! nll + 1 
and 

Q, ýR 
< U' max X! 

( 
2 OPT I'< i, <m I 

(v-i) 'I 

i lu {i (i 
2r JJJ' 

Now., combining the above bounds with the bound ( <nlax, which 6QAD16OPT) 
m 

comes from Theorem 5.5.1, we obtain the upper bound (5.5.13). However, 

working similarly we can obtain the bound (5.5.14) for the case of uniform 

processors, ti 

Although the bound 
(m 

seems much better than the others, 

for X! r or a! r very close to I or n' m-l this might not be the upper 11 ma)ý 
bound of the Q. A. D. algorithm under the LTF MIN rule. However, except those 

cases, where the A! and a! are very close to 1, this bound is much better 

than the worst-case performance bounds of the Q. A. D. algorithm under the 

LTF MAX rule (see Theorem 5.5.3) and hence, even better than the corresponding 

ones of the P. D. algorithm under the STF MIN or STF MAX rules (see Theorems 

5.3.3 and 5.3.4). Furthermore, it should be noticed that if the equality 

holds in (5.5.15) then this Q. A. D. algorithm produces optimal schedules. 

Finally, if X! =X! r= 1=0! =B! T we get agreement with the bound found for 
I111 
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the homogeneous multiprocessor system with independent memories. (See 

Theorem 11.2, Appendix 11) 

Since we have already established worst-case performance bounds for 

the RAND, LMr, STF, LMST and LTF ordering -rules we now turn to examine 

the LMLT ordering rules, which will complete the analysis of the Q. A. D. 

algorithm. 

Theorem 5.5.5: Let the priority list be in a LMLT MAX ordering. Then, for 

non-identical processors: 

(ni +1 
n' QAD 

< min max xi 
(i 

Im u <ýx 
2 max 

i 2i OPT 11<m 

where X. and n' are as defined in Theorems 5.3.5 and 5.5.1 respectively. 
1 max 

Proof: The quantities and are bounded by the following upper UQAD IaOPT 

and lower bounds respectively: 

m Fi Fi Fj 
wQAD < (a 1 +2a 2 +... +n ian 

(5.2.22) 

and 
m 

Fni/i] 
Fi Fi 

'SOPT >IXIr (cr (r-l)i+i+-- . +a ri 
(5.2'. 23) 

iIi r=l 

or 
m1 Fi Fi Fi 

wOPT (CY 
1 +CF 2 +... +a 

n. 
(5.2.24) 

ri Fi Fi ri Fi 
where a1 >1 CF 2>- and cy n. *=a 0 for i=1(1)m. 

Now, -for the pairs of inequalities (5.5.22)-(5.5.23) and (5.5.22)- 

(5.5.24) we follow a similar analysis as the one used in Theorem 5.3.5 

and we get respectively: 

: ýAD 
< max X 

woPT 1, <i, <m 

ý 
[n i 2 

and n +1 
< max X 

wOPT 1, <i, <m 

f 
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Furthermore, combining the above bounds with the (w /W )<nl QAD OPT max' 
which obviously holds (see Theorem 5.5.1), we obtain the upper bound 

5.3.2 1. Moreover, the bound n' is a best possible one and this is 
max 

realised by the following example. 

Example 5.3: Let the task system (J, [t ij 
1) be defined by the set of 

independent jobs J=Ijlj 
2'***-'Jn I and the (mxn) matrix: 

n2n m-2 nm_l n 

c ... cXE... c 
X ... X... X... X X+z X ... X 
Co. 

. . 
"0 

... 
X... X X+z X ... X 

X ... X X+Z 

[tij 
X 

... X X+Z 

00 ... 
00 X+Z X ... X 

co ... co M... 00 co CE 

(i II, i 

m M-1 
where n= I n,, Ini >n m, 

E, X, Z R and 6<<X<<Z. 
i=2 i=2 

Clearly, the priority list L=(J,., j 2"**-' jn) is a LMLTMAX ordering. 

The schedule resulting from this priority list and the corresponding 

optimal schedule are shown in Fig. 5.5 and 5.6 respectively. 

(n' - 
1) E: x max 

i n xc m 

FIGURE 5.5: Worst-case schedule illustrating Theorem S. S. S. 



121 

(n I- 1) c max 

Pi 

p M 
n xc m 

x 

FIGURE 5.6.: Optimal schedule illustrating Theorem 5.5.5. 

The -ratio of the mean flow times of these two schedules is: 

n' X+f (c)+fl(c) 
_QAD = max 1-I 
wOPT X+Ycý+fl(c) 

or 
UTQAD 

=nIX lim max =n 13 
c-*O O)OPT x max 

As it was previously stated the LMLT MAX and LMLT MIN orderings are 

exactly the same for the case of uniform processors. So, the corresponding 

bound of the next theorem applies here as well. 

Theorem 5.5.6: Let the priority list be in a LMLT MIN ordering. Then, 

(i) for non-identical processors: 

WQAD ! 
2r 

Ixi (n 
< min max max X. 

i -13)11, 

lmiax 

12+1)1' 
n' 

II 

max wOPT I, < i, < m Fnjj <1 m 
I <r, < I il . (5.5.25) 

(ii) for uniform rocessors: 
w QAD (i-l) f, 

i 
(n +1 

< min max mi- 
si- 

-- -i- 1. lmax , n' . @OPT 1, <i, <m 
i [n 

i <i, <m 
2 max 

L 1, < r, < i (5.5'. 26) 

where XijX r and ai, and n' are as defined in Theorems 5.3.5,5.3.6 and i max 
5.5.1 respectively. 
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Proof: The values of 'ýiQAD and UOPT are bounded respectively as follows: 

m 
Fn 

i/il Fi 
XI XT( ((r-l)i+l)T +rifi- (5.5.27) wQAD < 

i=l r=l 

[i 

(r-l)i+l+ ri 

)] 

or m Fi Fi Fi 
'OQAD < [X 

i (T I +2T 2 +. .. +n 
iTn. 

(5.5.28) 
1 

and 
m 

Fn, /il Fi Fi 
wOPT >' IX [r(T 

(T- 1) i+ 1 +.. . +Ir 
ri) 

(5.5.29) 
i=l T=1 

or r4 
1+ Pi 

WOPT >' J (-rl +T n. 
) 

ýi Fi Fi Fj Fi 
where T >, T > ... : ýT and T .. =T 0 for i=1(1)m. 

1 2' nn1 +1 [n 
i- 

For the pairs of inequalities (5.5.27)-(5.5.29) and (5.5.28)- 

(5.5.50) an analysis similar to the one used in Theorem 5.3.5 will 

result in the following upper bounds respectively: 

WQAD 
< max max WOPT 1, <i, <m [ni 

i 
and 

n +1 wQAD 
==- < max wOPT 1, <i, <m 

Those two bounds together with the (i5 <nI , which is obviously QAD'i5OPT) max 
because of Theorem 5.5.1, -result in the upper bound (5.5.25) for the case 

of non-identical processors. However, replacing the inequalities (5.5.27) 
m ri ýi Fi 

and (5.5.28) by w< (T +2T +... +n r and following a similar QAD i12in 

analysis as above, we obtain the worst-case bound for uniform processors 

(5.5.26). 

Finally, since the priority list L of the Example 5.3 is also a 

L LT ordering, the example can also be used to show that n' is a best M MIN max 
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possible bound for case (i) of this theorem. Moreover, if the CX+Z) time 

requirements of the J 
n-n 

job are replaced by CX 2 /c) then, the same 
m 

example shows that n' is a best possible bound for the case of uniform max 

processors as wellm 

As in Theorem 5.5.3, although n' is a best possible bound for the max 
LMLT MAX or LMLT MIN ordering rule, we cannot accept it as the worst-case 

performance bound since we have found bounds which appear to be better than 

n' in many cases. max 
Now, comparing the bounds of Theorems 5.5.5 and 5.5.6 with the 

corresponding ones of Theorems 5.5.3 and 5.5.4 we can see that the 

utilisation of memory, in contributing to the worst-case performance of 

the Q. A. D. algorithm under the LTF rules, when the mean flow time is chosen 

as the performance criterion, does not offer any clear improvement. In 

particular, although for the LTF MAX rule the utilisation of memory may 

improve the guaranteed performance levels, for the LTF MIN -rule the 

utilisation of memory worsen the worst-case bounds if X or 0r are not i 

very close to 1. However, the worst-case performance bounds may be better 

when the priority list is in the LMLT MIN orderin g rather than in LMLT MAX 

ordering, since Xr ; k.. il< I 
On the other hand, the extreme performance bounds which have been 

derived for the QAJD algorithm under the LMLT ordering rules are better 

than the corresponding ones found for the P. D. algorithm under the LMST 

-rules. Moreover, this is true even for schedules where n! =nil 1; ýi; ým 

(i. e. k=O). Whenever such schedules are derived then, no matter what the 

- Fb values of nI are, for non-identical processors (w QAD"OPT) <'ý whereas for 

the uniform processors case w QAD=w OPT (optimal schedules). 

Also, we should notice the agreement of these bounds with the 

corresponding one found for the homogeneous multiprocessor system with 

r independent memories, as Xi=Xi =1=B I, 
1, <i*m. (See Theorem 11.3, Appendix II) 
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Finally, concluding this section we shall point out that although 

the nLx bound is a best possible one for all but the LTF MIN rule, for the 

LTF,.,, LMLT MkX and LMLT MIN rules, when the Q. A. D. algorithm is used, other 

bounds have also been found, which appear to be better than n' in many max 

cases. This means, that best possible bounds based on pathological 

situations might not be accepted as the worst-case performance bounds of 

the algorithm when better and more informative bounds can be found for a 

number of special cases. Here, as for the P. D. scheduling algorithms, the 

worst-case performance bounds of Q. A. D. algorithms can vary widely when 

simple heuristic procedures aTe used to form the priority list. 
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5.6 TWO-PHASE QUICK AND DIRTY (Q. A. D. *) SCHEDULING ALGORITHMS 

The aims of the present section are similar to the ones for which 

section 5.4 was established, i. e., whether or not the Q. A. D. * algorithms can 

offer an improvement, in a worst-case sense, over the corresponding Q. A. D. 

algorithms. 

Let E'QAD* be the mean flow time of the schedule constructed by the 

Q. A. D. * algorithm, when the priority list is formed by a heuristic ordering 

procedure, and - be the mean flow time of an optimal schedule for a given ý)OPT 

task system (J, [t 
ij 

]), 1, <i, <m, 1, <j; ýn. 

In the remainder, we present a number of theorems, which provide worst- 

case performance bounds for those Q. A. D. * algorithms whose value of 'E'QADI can 

be bounded better than the value of -6QAD for the corresponding Q. A. D. 

algorithm. 

Theorem 5.6.1: Let the priority list be in an arbitrary or STF MAX ordering. 

Then, 

(i) for non-identical processors: 

W (v n'+l QAD* < min max 
IM 

v max X! 
F2 

n' ax OPT <i< m 1 ni l< <m 1 m 
, , 

[ 
2 

v 

(ii) for uniform processors: 

W * (v niL QAD < min 
I, 

max a! V. I max 1 

k ) 
2 

( 
n' max 

I 

UOPT 1 1, <i, <M ILL "i'm 2 
] 

(5.6.2) 
1 

v a! where M and n' are as defined in Theorems 5.3.1 and 5.5.1. 
, , 11i max 

Proof: When the priority list is in a RAND or STF MAX ordering then the values 

of Z5QAD* and '50PT are bounded as their corresponding ones in Theorem 5.4.1. 

This means that the upper bounds (5.4.1) and (5.4.2) are valid even if the 

Q. A. D. * algorithm is used to construct the schedules and the priority list 

is in the RAND or STF MAX ordering. However, because of Theorem 5.5.1 we 
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also have ( <nI . Therefore, combining these upper bounds we i5QADI/@OPT) 
max 

obtain the worst-case bounds (5.6.1) and (5.6.2) for non-identical and 

uniform processors respectivelyn 

Theorem 5.6.2: Let the priority list be in a STF 
MIN ordering. Then, 

(i) for non-identical processors: 

'r 
L(v 

< min- max max xiv 2rL wOPT 1, <i, <m [n 

V. vi 
1, < r, < 

(ii) for uniform processors: 

n. 1 I 
Max X! 

$ 

1, <i, <Mf 1( 2 
11 

m 
(5.6.6) n, max 

W (v 
QAD* 

max max max 
'+ 

< min 
1v 2r 

<2 

ýv 
UOPT 1, <i, <m [n m2j 

_L 
:L 

v , V; 
1, <r, < 

V. 1 
n (5.6.7) 

max 

where X!, O!, v and XI r. atr are as defined in Theorems 5.3.1 and 5.3.4 
13iii 

respectively. 

Proof: Here, the values of the quantities UQAD* and UOPT are bounded as 

their corresponding ones in Theorem 5.4.2. Therefore, following a similar 

analysis we will find the first two factors of the worst-case bounds (5.6.6) 

and (5.6,7). Furthermore, (w QAD*/6 <nI as indicated in the previous OPT) max 
theorem. Thus, we finally obtain the bounds (5.6.6) and (5.6.7) for non- 

identical and uniform processors respectivelyn 

Theorem 5.6.3: Let the priority list be in a LMST 
MAX or LMF ordering. Then, 

for non-identical processors, 

1+ (M-1) 
< min maxllmax 

_1 

fXi 
max 

4 
2r Jý M(m E30PT 

2 
MI 
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n +1 
maxllmax 

_1 

fAi 
k+i'. ,Xn! 2+1 2 

11 
-I, nm ial 

w 

I ax , <i, <m 2 

(v 
max 

ýXjl (v 
kni 

v 

max (5.6.8) 

where M, v and X,, k are as defined in Theorems 5.3.1 and 5.3.5 
1 ir 

respectively. 

Proof: The values of the quantities ýUQAD* and ZOPT are bounded as their 

corresponding ones in Theorem 5.4.3. Therefore, the upper bound of that 

theorem is held here as well. However, because of Theorem 5.5.1 we also 

have ( <nlax. Now, combining these two upper bounds we obtain ý)QAD*"E'OPT) 
m 

the worst-case performance bound (5.6.8), which proves the theoremn 

Theorem 5.6.4: Let the priority list be in a IMST MIN ordering. Then, 

(i) for non-identical processors: 

ý'QAD* 
r M; 

-ri, < minýmax max M 2r max 
fX r (m 

M &'OPT 

ll, 

<i, <m_ 

J 

n. 
r< 

r=M] 

M 

(n n +. L 
maxjjm? ý k+m- n' 

: ýI, <M-l 
2 

)ý' 
'ým[ 21] 

1 

Max 

(v 
max [n 

v 
2_ 

njl+l)ý 
max 

f 
ýil 

( 
-2 ,; (5.6.9) 

(ii) for uniform processors: 

E'QAD* 
max max 

k+i (i-I)l 
n ZOPT 1, <i, <m_l n in 

<r, 

j 
2m 

ml 
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ni +1 , 
maxl, max 

jBi(k 
+2 

Jý 

, <i-<m 

max 

2 

rn + 1) 
ma nI max 

max 
l< , i< 'm 

I 

ir2 

]I (5.6.10) 

T 
where M, a! and v., k and Xi, X. an are as defined in Theorems 5.3.1, 

5.3.5, and 5.3.6. 

Proof: When the priority list is in LMST MIN ordering then the values of 

W QAD* and i5 OPT are bounded as their corresponding ones in Theorem 5.4.4. 

Thus, the upper bounds of that theorem are held here as well. In addition, 

<nI as can be resulted in from Theorem 5.5.1. Thus, combining (ýQAD*' OPT) max 
these upper bounds we obtain the worst-case bounds (5.6.9) and (5.6.10) for 

non-identical and uniform processors-respectivelyr, 

We recall that when the priority list is in IMF or LMST MAX ordering then 

for the case of uniform processors the upper bound (5.6.10) is held. 

Finally, if the priority list is in LTFMAX-* LTFMINI LMLTMAX or LMLTMIN 

ordering, the value of '5QAD* is bounded as when the Q. A. D. algorithm, under 

these ordering rules, is used to construct the schedules, i. e., the values of 

W QAD in Theorems 5.5.3,5.5.4,5.5.5 and 5.5.6 respectively. Therefore, the 

Q. A. D. * algorithm under the LTF or LMLT ordering rules does not offer any 

improvement over the worst-case performance bounds of the corresponding 

Q. A. D. algorithms. The only exception is that the bound n' is not a best 
max 

possible one any more. 

Before we finish the present section, one could notice that the Q. A. D. * 

algorithm produces informative guaranteed performance levels, which are 

better than the corresponding Q. A. D. one, only when the priority list is in 

the RAND, STF, LMF or LMST ordering. Also, not one-of the worst-case 

performance bounds found for the Q. A, D. * algorithms is a best possible one. 
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Furthermore, although the bounds of the Q. A. D. * algorithms are close to 

each other, they are not so close as the corresponding ones of the P. D. * 

algorithms. However, generally the worst-case bounds of the Q. A. D. * algorithms 

may be better than the corresponding bounds of the P. D. * algorithms. 

Moreover, the bounds of all the theorems 5.6.1,5.6.2,5.6.3 and 5.6.4 

for X. =)L! =X! r=, =, =,! =, r agree with the bounds which have been found for the 

homogeneous multiprocessor system with independent memories. (See Theorems 

IIA and 11.5, Appendix II) 



CHAPTER 6 

DETERMINISTIC ANALYSIS OF HEURISTIC SCHEDULING 

ALGORITHMS - COMPLETIONTIME PERFORMANCE CRITERION 
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6.1 INTRODUCTION 

In the previous chapter we have analysed a variety of non-preemptive 

algorithms under several heuristic ordering procedures and we have proven 

worst-case performance bounds for each of them, when the mean flow time is 

chosen as the performance criterion. However, in order to achieve 

completely the objectives of this thesis, as far as the deterministic 

analysis is concerned, guaranteed performance levels must also be established 

for these algorithms when the completion time is the performance criterion. 

As a matter of fact, this is the aim of the present chapter. 

We recall, that the completion time (or maximum finishing time) of a 

given schedule S is the total time it takes to complete the execution of all 

jobs of the t ask system according to that schedule i. e., W=max Ifi(S)). 
1, <i, <n 

The following two sections are dedicated to P. D. and Q. A. D. algorithms. 

The remainder P. D. * or Q. A. D. * algorithms are not considered since w PD=WPD* 

and w QAD=wQAD** 

However, before we start analysing the algorithms let us define UI to 

be the busy time of the processor P 1, <i, <m (i. e., U, =Xt ij ) and 11 
J. GG. 

31 
to be the corresponding idle time of the Pi processor (i. e., Ii =W-U i). 
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6.2 PRIORITY DRIVEN (P. D. ) SCHEDULING ALGORITHMS 

As it was indicated the completion time will be the performance 

criterion throughout this chapter. However, first we shall derive worst- 

case performance bounds for the P. D. algorithm under the heuristic ordering 

rules already used in the previous chapter. 

Let w PD be the completion time of the schedule constructed by the P. D. 

algorithm, when the priority list is formed by a heuristic ordering procedure, 

and wOPT be the length of the optimal schedule for a given task system 

V11til ]); 1, <i*m, 1, <j*n. 

Theorem 6.2.1: Let the priority list be in an arbitrary ordering (RAND). Then, 

(i) for non-identical processors: 

PD u M, 
- ;ýA [r +2+X [2 + log -, ) 
w OPT 2r (Z+I) i 2(e+l 

for 2, <Z, <m-1, 

PD u I+ X(T +1+I+ Xlog (M) 
-T+I) 2 WOPT 2 

for Z=l, and 

PD 1 
- ; ýX (2 - j'j) for Z=m; 
wOPT 

(ii) for uniform processors: 

rw PD) m b. 
maxi= +I-2, 

OPTf 
jIb 

i-1 

w PD 
+b max 

b 
max 

bm wOPT min b 

for 1, <t, <m-1 and 

for t=m, 

where X is as defined in Lemma 5.2.6, k=t 
w and Jw is the longest job 

to finish at time w PW m=2 r (Z+I)+u, and r is the greatest integer such that 

r 2 (9+1)m. 

Proof: (i) When the non-identical processors characterise the heterogeneous 
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multiprocessor sYstem then, three guaranteed performance levels will be 

derived which depend on the value of the parameter Z. 

(1) Let 2, <k, <m-1. In such a case the proof will be by contradiction, which 

is similar to the one used for the corresponding algorithm in [Kaf] and [KS2]. 

Suppose that there is a task system for which w PD >X[-r+2+ 
(m 

r2 OPT* 2 (Z+l) 

We shall analyse the structure of such a schedule and derive several conditions 

that must be satisfied by the given task system. 

The schedule produced by the P. D. algorithm is divided from right-to-left * 

into r+3 intervals (d,., d 2'***' d 
r+3 

). Each of the first r+2 intervals has 

length Xw OPT and hence they occupy the time period [w 
PD-X 

(r+2)w OPT' W PD 
] in 

the schedule. However, the i th interval is the half open time period 

EW 
PD-ý"W OPT'OPD- x ('-') W OPT)' 

1*i, <T+2 while the final interval dr+ý occupies 

the time period [O, w PD- X(-r+2) wOPT)* 

Now, let us assume: 

a. to be the number of processors containing no idle time in the 

interval dip 

X. to be the largest label ( maxfk })of any task beginning in the 
I J. 

interval dip and 

TI to be the total busy time of the processors in the closed 

interval [w 
PD- 

AW 
OPT'OPD]' 

The following relationships apply to the interval dl., 

a1 1 

TI "ý' XWOPT ' 

(6.2.1) 

(6.2.2) 

and xI>, L. (6.2.3) 

Relation (6.2.1) is true since every interval must have at least one 

processor which is continuously active. This also implies relation 

(6.2.2) since the length of d1 is AwOPT . Nevertheless, since no job 

can have a time requirement greater than Xw OPV at least one task begins 

in dl. Thus, relation (6.2.3) follows immediately as the task Jw2 
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which finishes at w PD , has the label kw =Z and its time requirement cannot 

exceed the XwOPT units of time' N 

Further, we derive three recursive formulae defining aij,, and x1 for 

i, <-r+ 2. First 0 

ai;, > x i-I * (6.2.4) 

This can be realised since, the existance of at least one job in the 

interval d i-I which can fit into the x i-l largest memories means that the 

corresponding processors cannot be idle before the beginning of that job. 

Consequently, these processors cannot be idle during the interval d 
3. . 

The second formula follows immediately from the definitions of aI and 

Ti. 9 TI;, > T i-I +a iýwOPT * (6.2 1 
. 5) 

This can also be written as: 

Ta iýwOPT + ai_ ? 'W OPT+' .. +a IýwOPT 

or i 
T. AW a (6.2.6) 

3. OPT j 

Finally, the formula which defines x is, 

i 
x >, I a. (6.2.7) 

i j=l 3 

However, we need fiTst to show that the inequality 

(6.2.8) 

holds. In the case where the inequality (6.2.8) was not true, there 

would exist a job in d i-I which could fit into some memory where no 

task beginning in dI could fit into. This would imply that this task 

could have commenced earlier and hence the demand scheduling principle 

would have been violated. Therefore, the inequality (6.2.8) must hold 

in any valid schedule. 

Consider the interval [w 
PD-X'wOPT'wPDI . By definition TI is the 

total busy time of the processor in this interval. On the other hand, 
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inequality (6.2.8) implies that the memories which can contain the tasks in 

this interval are the xI largest ones. Thus, 

W OPT >, Ti/; kx i 

or 
xTi Aw 

OPT 
Substituting Ti from (6.2.6) in the last inequality we obtain 

i 
xIaj 

j=l 

which proves the inequality (6.2.7). 

Moreover, using the induction process the following inequalities can 

be shown to be true for 2: ýi: ýr-2: 

xi>, 2 i-2 (k+ 1) (6.2.9) 

and 
Ti>, 2 i-2 (L+I); kw OPT (6.2.10) 

Initial step: From (6.2.7) for i=2 we have 

20 
x211aj=aI+a2 Z+l 2 (Z+l) 

j= 

while from (6.2.5), we have 

T2 >' TI+a2 XW OPT >' XW OPT +-"OPT 

or 
T2 >' (Z+1)2LW 

OPT 2 (k+')ýw OPT 

because a1>, I, a2>, x 1 >, k and T 1ý: XwOPT . Therefore, the inequalities (6.2.9) and 

(6.2.10) hold for i=2. 

Induction step: Assuming that the inequalities (6.2.9) and (6.2.10) hold 

for any i<k, where 3, <k: 5r+2, we will show that they hold for i=k as well. 

We have kk 
Xk >' 11aj=a1+a2+Xa. 

j= j=3 
k 

or xk >' 1+Z+I xj-1 (6.2.11) 
j=3 
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According to the induction-assumption, 

xi>, 2 
i-2 

(R+I), for 2, <i, <k. 

Thus, the inequality (6.2.11) becomes 

k 
xk >, (1+Z) +I 2j- 3 (R, +J) 

j=3 
or 

k. 3 
xk >, (L+ 1) [1+X 23 -] 

j=3 
or 

xk >, 2 k-2 (6.2.12) 

Furthermore, 

Tk >, T k-1 + YOM 

or Tk >, 2 k-3 (Y, +l)Xw OPT + Xk-I Xw OPT (6.2.13) 

since from inequality (6.2.4) and induction hypothesis for TI we have 

ak 'ý; x k-1 and T k-1 >, 2 k-3 (k+l)Xw 
OP'T respectively. Finally, since xk-I >, 2 

k-3 
(Y+I)l 

from inequality (6.2.13) we obtain 
Tk>, 2 

k-2 
(L+1)Xw 

OPT 
(6.2.14) 

The inequalities (6.2.12) and (6.2.14) complete the induction step 

and hence (6.2.9) and (6.2.10) hold for any 2, <i, <r+2. 

Now, in the time period [w 
PD- 

(r+2)Xw OPT' W PD 
I the processors are 

kept busy for T 
+2 units of time. Thus, from (6.2.10) we can obtain 

T 
r+2 >, 2 T ('ý+ 1 )ý'W OPT . This implies that at most (m-2r(z+l))XwOPT schedule 

time has been left to be used in the interval d 
Y+3' since the total time 

cannot exceed the mAw OPT units. Since x r+2 ý: 2 T (Z+I) according to the 

inequality (6.2.9) for i=r+2, there exists at least one task with label 

2T (k+l) which commences in the interval d 
r+2* 

least 2r(k+l) processors contain no idle time 

hence, the length of that interval is at most 

However, since each of the other r+2 interval, 

This indicates that at 

in the interval d 
r+3 and 

(, -2'r (Z+'))ýWOPT /2*r(t+l). 

s is of length XwOPT' we obtain 

w PD < X[r +2 +(m-2 r,., +, )) /2t(t+l)]w 
OPT* 
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This final inequality contradicts our original assumption and 

therefore, the worst-case bound for part M of the theorem, *when 1, <k, <(m-j), 

has been partly proven. 

In order to complete the proof we shall show that 

2++u<2+m'$ (6.2.15) 
2 (Y, +I) 

- 10 g2 (1 =+l--) 

where m=2 r (Y, +I)+u and 0, <u, <2 (Y, +I). Define a function 

f (r, u) =2+ log2 2+r+ru 
2 (Y, +l) 

%2r 
(k+')+U) 

r-u 1092 (Y, +I) ,2r(. 
Z+I) 

Consider a fixed, arbitrary value of r. Then, 

and 

af 11 
Du (£n2) (2 r (£+1)+u) 2r (Y, +1) 

a2f=- 
-1 -<0. 7 r� 3u (in2) (2 + 1) +u) 

2 

If af 0, then m= is a local maxima. The local minima must occpr au kn2 

at the end points u=O and u=2 r (k+l). At these points f(r, O)=f(r, 2 r (k+l))=O. 

Thus, f (r, u)>, O. Finally, the definition of f (r, u) implies the inequality , 

(6.2.15). 

(2) Now let k=l. To prove the first part of the worst-case bound we 

follow a contradicting process similar to the one used in (1) of this 

theorem. The reason which causes the slightly different bound is that the 

initial relation (6.2.2) must be substituted by the relation 

TIý: W OPT * (6.2.2t) 

The second part can be established by following a similar mathematical - 

analysis to the one used in (1) for the corresponding case. Therefore, 

eventually we obtain the bound given in the theorem for Y, =l. 
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(3) Finally, if Z=m we use a different approach to prove the guaranteed 

performance level for this case. We have 

w=I [U +I+U+I++u+I PD M, 1122mM 

or equivalently, 
mmm 

(U +I U PD m 

Clearly, 

W PD 
Ui+II for i=I(I)m, 

1 n. .nm 
-( 

I T. ) > -L( 
Ia) >' IU 

OPT mj-Ij Am j=l im i=l 

<W 
tfor i=l (I)m; - iýx ,IX OPT 

and 1 0, 

where x is the index of the processor where Jw is allocated. 

Using the relationships (6.2.17), equation (6.2.16) becomes: 

MW MW + MW +W PD OPT PD VPD XX OPT 

and thus, 

W PD X(2 
W OPT 

which completes the proof for part (i) of the theorem. 

(6.2.16) 

(6.2.17) 

Moreover, there are task systems for which the P. D. algorithm constructs 

schedules whose completion times deviate from their optimal finishing times 

by the amount allowed by the proven worst-case bounds so far. Such task 

systems are given in the Examples 6.2 and 6.3., which are incorporated into 

the proof of the next theorem. 

(ii) In the case of uniform processors, to prove the lower limit of the worst- 

case performance of the P. D. algorithm under an arbitrary ordering rule a 

method will be given which achieves the bound for arbitrary m and 

The general example consists of (m-k+2) groups of jobs. In the priority 

list the jobs in the (k+l) st group precede those in group k, l, <k, <(m-Z+l). 

This is because ai <Xw OPT for every job (since no parts of the same job can 
be executed simultaneously on two or more processors) and 1, <o i (since no 

processor is idle before sw). 
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The number of tasks in the last (m-k+l) groups is (k+Z-2), 2: ýk; ý(m-L+2), 

while in the first group there are k jobs. The memory and time requirements 

of the jobs in the group k=(m-L+2) are given by P 
Jk 'IP Jk 

I-"(jk-') r:. b jk 1), 

m and c>O is a very small quantitly; for'the latter (m-t) groups are 
k+Y. -2 

given by (J k' 
IP 

k+t_ll, 
(b b k+2, -l 

b i)')' "<jk'< (k+Z-2), Zft-<(m-Z+l); ik 

and for the first group are given by (Jj,. 9IP z 
J, {b 

j, 
1), 1, <j 1, <Z. The jobs in 

each group appear in the priority list in an increasing sequence according 

to their job-index. We should notice that the (k+t-2) jobs of each group k, 

2, <k, <(m-L+2) and the Rjobs of the first group terminate within an c-time 

difference as the processors index increases. So, for each group k, 

th th l, <k, <(m-L+l), the i processor becomes available before the (i+l) processor 

for l, <i, <(k+k-2). However, the contribution of each group k, 2, <k, <(m-R'+l), to 
k+Z-2 

the schedule length is (b bi) while the contribution of the jobs in 

the first group is 1. Therefore, the total schedule length is 

M j- 
[I +I (b. / Ibi )+(Z-l)c]. The appearance of the general schedule produced 

j=i+l 3 i=1 

by the P. D. algorithm for the above mentioned task system is shown in Fig. 6.1. 

Now, we shall present that an optimal schedule of length [1+(m-l)c] can be 

formed for the given task system. Clearly, if each processor i, L: 5i: ým, 

executes the jobs of the (i-k+l) th 
group and if each processor il, 1, <i 11<Y-1 

executes the job Jjl., 1, <jl, <. t, of the first group while the jobs in the 

(m-L+2) th 
group being scheduled as in the general schedule, then the 

completion time will be [1+(m-l)e]. Therefore., the bound produced by this 

example achieves the bound given in the theorem as c-*O. 

Now, for X=m we have 
m 

+Ii)l PD M[ iII 
(Ui 

or equivalently, 
In 

(ij (U b, )) 
Inax 

PD m 

mb -b. m 
(-Eb!! ý: L) (U, +I, ) + : Uý(Jj (Ijbi)) 

max 
(6.2.18) 
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P 

group m- 2 (M- 
group 
(M-k+l 

group 
(m-Y. +2) 

P 
m 

group group 

lf-j-T 
b 

in 
b 

M-1 
TiF- I m-2 

b, ' bb3. 

I 

FIGURE 6.1: General schedule produced by the P. D. algorithm 

However, 

Vý 

+ 

W PD 
Ui+ Ii Iýiým, 

mm 
WOPT >' (Ui bibi 

b 
max wOPT ijX 
min 

and 10 
x 

where x is the index of the processor where Jw is allocated. 

Because of the relations (6.2.19), the equation (6.2.18) becomes: 

wOPT mW PD m wOPT m 

-'-PD "bbi+- PD bbi+bi 
max min 

or iix 

.w PD 
b 

max 
b 

max 
-<I+-- wOPT b 

min m 
b 

(6.2.19) 

(6.2.20) 
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which completes the proof of part (ii) and hence the theorem is proven. 

Moreover, the bound (6.2.20) is a best possible one and can be realised 

by the following example. 

Example 6.1: For simplicity, let us assume that P1 is the processor with the 

minimum processing speed and PM the processor with the maximum speed. In 

such a heterogeneous multiprocessor system with uniform processors let the 

task system (J, fm 
j 

), IT 
1 

1) be defined by: 

iI: (IP11, {E: bll) 

ii: (1p i 
1, {2eb 

i 
1) for j=2(1)m 

im+j 
: (IP 

1 
1,1 

mb3 

ý) 
for j=1(1)m, i=1(1)m-l 

b 
3. 

and j2: (IP 
m 

1, lb 
m 

1). 

The schedule resulting from the priority list L=(J, 3j 2... 31 2 
+1 

) using 

the P. D. algorithm is shown in Fig. 6.2, whereas the optimal schedule for the 

given task system is given in Fig. 6.3. 

Clearly, the ratio of the completion times of these two schedules is 

PD 
[ In-' Ta 

(Ibi/Xbi+ (bm/bl) + c] /(1+2E: ) 
WOPT i=l i=l 

or bb PD M I+ 
w OPT b1m 

bI 

as c-*O, and since b 
max =b M and b 

min =b V it becomes 

P+ max max 
w OPT min m 

b 

which is the predicted value of the bound (6.2.22)n 
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t: O c 
pJ 

p 

M-1 

p 
m 

M-1 
bYb. 

E+ E+L- 

q 

mm 

M-1 
bmib. 

C+ +- -) bm 

M+l (M-I)M41 JM2+1 

i 
m+2 

ýýl) 
m+ 2 

2m-1 JM2-1 

2m m 
2c 

FIGURE 6.2: Schedule constructed by the P. D. algorithm for the 

given task system in Example 6.1 

t: O 

pIF 

M-1 

p 
m 

(1+2E: ) 

M+l 

km- 

M+ll 2m 

9S 

m+2 

Jým-l)m+2 1 

3m 

2m- I 
ým 

2_1 JM2 

JM2+1 

FIGURE 6.3: Optimal schedule for the given task system in 
Example 6.1 
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As can be seen, the worst-case bound, when non-identical processors 

characterise the heterogeneous multiprocessor system, increases logarithmically 

as m increases and Z is constant The-extreme performance depends 

also from the value of X. In particular, when the-deviation of the jobs 

time requirements amongst the processors increases,. the value of the bound 

increases as well. Furthermore, although wehave not found upper bounds for 

the worst-case when there are uniform processors, the proven lower limit 

indicates a similar, logarithmic type behaviourof. the algorithm as one of 

the quantites m or I increases and the other remains constant. 

When X=l the bounds found in the (i) part of the theorem agree with the 

corresponding worst-case bound established for the homogeneous multiprocessor 

system with independent memories. (See Theorem IIIJ, Appendix III) 

Finally, when Z--m the worst-case bound proved here for uniform processors 

agrees with the corresponding one found in [LiLl] for the classical 

heterogeneous multiprocessor system with uniform processors. Actually, we 

should expect this to be so, because the nature of the algorithm and the 

fact that Z=m degenerate the memory constraint. 

Theorem 6.2.2: Let the priority list be in a STF MIN or STF MAX ordering. Then, 

(i) for non-identical processors: 

PD 
ýx+2+ for 2ýt: ým-l, 

wr T(Y, 
4-1 

;] <' X[2 + log2(11+'-l')] 
OPT 

I 

Y, 

w PD u 
l< +A (r +1+I+X lo g, (m for E=l, and 

r+l 2 
OPT 2 

w PD 
ýX2 for 9, --m; 

OPT 

(ii) for uniform processors: 

fw PD .>mb. 
max 1+ for 1, <Z, <m-1, and jb 

i=l 
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w PD 
b 

max 
b 

max 
-<I+ for Z=m, 
wOPT b 

min m 
b 

where X and t, r, u are as defined in Lemma 5.2.6 and Theorem 6.2.1 

respectively. 

Proof-(i) Since the upper bounds for non-identical processors in Theorem 

6.2.1 were proved for an arbitrary priority list, these bounds can be 

considered as extreme performance levels for any priority list when the 

P. D. algorithm is used to construct the schedule. In particular, we shall 

present examples which can cause the performance of the P. D. algorithm under 

STFMIN or STFMAX ordering rules to deviate from optimal completion time by 

the value allowed by the worst-case performance bounds stated in the theorem 

for non-identical processors. First, we present an example which attains 

the bound for the case where 2*k, <m-1. 

Example 6.2: Let the task system (J, [t ]) be defined by the set of 
- 

ij 

independent jobs J={J,, J 2-"**'Jn I and the following (mxn) matrix, where 

c>O is a very small quantity, u=m-2 r (k+l), w the largest integer which 

satisfies the conditions w>O, w, <u and 
r Z+1)-O(mod(v)), 

vC=Z+, n=a+2 r+l (Y, +I) w 

and a= [ (m (m+l). - (2 r (2, +l)+w-1) (2r(t+l)+w))/2). 

Clearly, the priority list L=(Jl3J 
2"'*3 1n) is a STFMIN or STF 

MAX 

ordering and also an abritrary ordering. The schedule resulting from the 

priority list L, when the P. D. algorithm is used, is given in Figure 6.4 

whereas the optimal sche. dule for the same task system is shown in Figure 6.5. 

The ratio of the completion times of the schedules shown in Figures 

6.4 and 6.5 is: 

w PD wm x+2++I r 1)] 
/ 

OPT 2r (k+l) i =k 
or 

6)PD 
Xw lim r+2+r+XI-, 

c-*O OPT 

12 

(k+l) i=k 
'-'] 
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r 

p 

2r 

J+c 

I+mc 

pm 
t: O me 

2r (Y+I) tasks of length I 

w 2r (k+l) tasks of length 
r 2 (Y. +l) 

w 
(2r(ýFl), w) tasks of length 

.1 2 (. ýF I) +w 

ý-(m-l) tasks of length 
m 

FIGURE 6.5: Optimal schedule for the task system given in 
Example 6.2. 

where k=2r(t+l)+w+l. The ratio (6.2.21) approaches the worst-case bound 

given by the theorem in part (i) for 2, <k, <m-l very closely. (i. e., let m=7 

and Z=3 . Consequently, -r=O, u=3 and w=2. Thus, from (6.2.21) we get 
21 )=X(2+rý) whereas from the proven bound (2+ý). Also, PD OPT ((OPD/wOPT)4X 4 

if m=9 and Z=4 and hence r=O, u=S and w=l, we get from (6.2.21) the result 
11114 (W PD/W OPT)=ý' 

(2+-§+rrP instead of (wPD /W 
OPT 

)4 (2+k) obtained from the 

worst-case bounQ 

Also, there are two special cases when u=O and w=u>O. However, rather 

than construct different but similar examples, it should be better to 

consider for each case a relaxed version of the general example as. given 

above. 
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(1) If u=O and hence m=2 r (9, +l), then consider as a new task syste .m the 

first m and the last 2r (k+l) jobs of the general task system given in the 

Example 6.2. It is easy to see then that for such a task system the ratio 

of the worst completion time over the optimal one is: 

lim 
wPD 

= X(Y+2), 
C-*0 OPT 

which is the value of the worst-case performance predicted by the theorem in 

part (i) for ZMM-I, when u=O. 

(2) If w=u>O and hence, w=m-2 T (L+l) then, consider as task system the one 

formed from the first m and the last 2 r+1 Ck+l) jobs of the task system given 

in the Example 6.2. Thus, with such a task system we can obtain 

lim 
W PD 

=X+2+I 
E: -*O 

w OPT 

which is the extreme value of performance that the P. D. algorithm is allowed 

to deviate from the optimal performance according to the bound given in 

part (i) of the theorem for 2, <k, <m-1. 

When 9. =I, the job which finishes at w PD should have at most an w OPT 

time requirement. Example 6.2, with the last job changed, can be used again 

to show that the worst-case performance bound proved for this case is a best 

possible one, when the priority list is in a STF MIN ordering and also in a 

RAND ordering as well. However, the bound is not a best possible one when 

the priority list is in a STF MAX ordering. 

Furthermore, for the case where k--m, consider the following example in 

order to realise that the proven bound for this case is a best possible one. 

Example 6.3: Let the task system (J, [t 
ij 

1) be defined by the set of jobs 

J={Jl$i 21"Jn 
) and the (mxn) matrix: 
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[tij I =1 

M-1 
-M 

c 2c ... me 
MMMmm 

co 2e ... 
ME: 

Ix... XxI. 
x 

MmmMM 
1AxI 

co Co. 
. 

me CID -... --. 
x 

MMMM 

00 -... Me -- 

m m m 

m m m 

00 Co ME M '10 **' C, ' 1 
. m . 

pV 12***im ji M+l I*.. 'i 2m' * ***' 12 
+1 

) 

where n=m 
2 
+1 and c>O is a very small quantity. 

p 

The priority list L=(J 
l'j2'***'Jn) 

is in a STFMIN or STF 
MAX ordering and 

hence in a RAND ordering as well. The schedule which the P. D. algorithm 

constructs from such a priority list is shown in Fig, 6.6 whereas the 

corresponding optimal schedule is given in Fig. 6.7. 

M-1 

t: O mmM 
I P 2m+l 

ýM- 
1)n+l JM2+1 FM-+, 

S& x (1+m- .. M-) 

PMi 2m 
i 

3m JM2 

ME: 

FIGURE 6.6: Schedule produced by the P. D. algorithm for the priority 
list L given in Example 6.3. 
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m 

I + 1 
m m m t: 0 

p1 llj2m-1 I... ýM2-1 1 
'j2m-l 
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p 
m 

2m-1 M2-1 'j2m 

i 
M+l 3m 

12 JM2 2m-2 -21 

I LM 

JM2+1 

me (I+me) 

FIGURE 6.7: Optimal schedule for the task system given in Example 6.3. 

The -ratio of the completion times of these two schedules is: 

M-1 +'-"-) +C PD. 
W OPT I+ME 

or 
lim -w 

PD 
= X(2 

E: -*O 
WOPT 

which is the bound predicted by the theorem in part (i) for Z=m. 

(ii) In the case of uniform processors, the general approach given in 

Theorem 6.2.1, to achieve the lower limit worst-case bound for arbitrary 

m and l, <k, <m-l, can also be used here for the same purpose. However, the 

STF MIN or STF MAX ordering of the jobs in the priority list is guaranteed if 
J-2 

b ýb ý... >, b and b -<(l+(b b ))b,., 3; ýj, <m. Thus, eventually we can' 
m M- I- i j-1 i 

show f wPD 
>mb max 17 _, I+ 

u)OPT) 
X 

j-1 jb 

Now, if k=m, the bound obtained for the*corresPonding case in Theorem 
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6.2.1 can be used as the worst-case performance bound even when the priority 

list is in a STF or STF ordering. Moreover, the bound is a best MIN MAX 

possible one. This can be realised by considering the task system of the 

Example 6.1. For that task system, the priority list Ll=(J,,, J 2***' 12 
M +1 

is a STFM ordering, while the list L= (ilpi 
... 'JM'j 

(i 
IN 2 2' m+l' m+2'j2m+llj2m+2)' 

(i 
m+3' 

i 
3m+l' i 2m+31 i 3m+2' i 3m+3)""'(JM+(m-')' i (M-i)M+1'***, i (m-2)m+(m-1)' 

i (m-I)m+(m-2)' i (m-')m+(m-') 
), iM+M 'i 2m+m"***' i (M-I)M+M' jm2 

+1 
) is a STF 

MAX 
b. 

ordering provided that b >b > ... ýbl, and (b : ý. Ib ), for 1: ýj, <m-l 
M, M-1, j+l b, j 

respectively. The schedule resulting from L, or L2 using the P. D. algorithm 

is exactly the same as the corresponding one resulting from priority list. 

in the Example 6.1 (i. e., Figure 6.2). Therefore, it can easily be seen 

that the ratio w PD I+b Tax 
b 
max 

w OPT b 
min m 

b 

which is the value of the worst-case bound given in. part (ii) of the 

present theorem for Y. =mm 

Theorem 6.2.2 indicates that the.. STF MIN or STF MAX ordering procedures 

can not offer any improvement in a worst-case sense over an arbitrary 

ordering for the P. D. algorithm, when the completion time is the performance 

criterion. 

Theorem 6.2.3: Let the priority list be in a LMF, LMST MIN or LMST MAX ordering. 

Then, 

for non-identical processors: 
w PD 

< X*(2 
OPT t 

1, <. E, <m; 

for uniform processors: 

PD 
b 

+ max 

OPT b Jt 
min 

max 
L 

b 
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where k is as defined in Theorem 6.2.1, X*= max k 
ICY j. ý, 

bt = maxib P, T max 1ý<i, <z J. E=- (UF. ) 

Y. 
= and b. min[b. l. 

min 1, <i, <Y, 'I 

Proof: (i) Let Jw, 1, <w, <n, be the largest task which finishes at w PD* 
Also, 

let w OPT 
be the optimal completion time of the jobs in the truncated list 

Q 
l'j2'***'Jw 

I which can be scheduled on the first t. processors. However, 

if W' is the completion time of the schedule constructed by the P. D. 
PD 

algorithm while the jobs in the truncated list are in a LMF, LMST or MIN 

LMST MAX ordering, then we will have 

PD AD 

wOPT wO'PT 
(6.2.22) 

since w PDý--'OP'D and 'OOPiý'&T * 

Now, wl can be*expressed in a similar manner as w has been 
PD PD 

expressed in (6.2.16). In particular, 

I 
[l X* 1(Y, 

t 

(itlui) 
3 X* 

I 1. (6.2.23) 03PD 
k =1 

However, 

4)P'D '= Ui+Ii' 

W6PT X*k > 
(i', 

rj) 
(j"cyj) 

>- 
(i, 

=t 
Uil (6.2.24) 

I l< 
1: ýi, <t, ijx 

i 2, OPT 

and Ix = 0, 

where x is the processor on which the Jw is scheduled. 

Because of the relationships (6.2.24), equation (6.2.23) becomes 

Y, W 1< + kw , 
(Z-1) X* W1 X* ?, * X* - 

1- 
wýD + PD PD i OPT 

or equivalently, 
6)P'D 

,< X* (2 - =. -) - 
(6.2.25) 

w6PT L 
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Finally from the inequalities (6.2.22) and (6.2.25) we obtain 

W PD 
;ý X* (2 1 

OPT 

which proves part (i) of the theorem. Note, that equality holds only if 

Z=1. In such a case, we obtain the optimal schedule since X*=l. 
I 

Moreover, this bound is a best possible one and can be realised from 

the following example. 

Example 6.4: Let the jobs IJ,., J 2"***-' JwI of the task system (J., [t 
ij 

]), with 

at most kI =X, 1-<j, <w, be defined by the (mxw) matrix: 
x. - JL 

Z-1 £-l 2F- 
. .. (t-2)F- 

£-l £-l 1 1 

2E: E 

cm 2E 

cm Co Co (E-2)c X*( ( 3 

[tiji =1 
00 00 Co 

00 00 clo 

Co Co Co 

x* 

(£-2)E: X*( 
t-1 

( £-l 1 1 

x* x 
x* 9 Co Co Co 1 1 

- 

pip 1 
2' 

1 
3' 

1 4' **)i 2Z-S' . .11 2k-2-' ... 'i 3. R - 3) 

where w=3Z-3 and c>O is a very small quantity. 

The priority list L=(J 
l-'j2"**, 

Jw) is in a LMF, LMSTMIN or LMST MAX 

ordering. Now, the schedule constructed by the P. D. algorithm and the 

corresponding optimal one are given in Fig. 6.8 and Fig. 6.9 respectively. 
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t: O 

p2 

x X* (2- 1 
ZV 

2 39-3 

4 

2Z-3 

i 
29- 

ý2k-l 1 
J39-4 

1 

FIGURE 6.8: Schedule produced by the P. D. algorithm for the 
priority list given in Example 6.4. 

2-t-3 
JJR-m 

2 2k-1 

2k-4 3 k- 4 

U-3 

t: O (1+ (Z-2 ) 6) 

FIGURE 6.9: Optimal schedule for the truncated task system 
given in Example 6.4. 
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The ratio of the completion times of these two schedules, as c-*O, is: 

w PD 
to OPT 

which is exactly the value of the bound given in part (i) of the theorem. 

(ii) Following a similar analysis as given in part (i) of the theorem and 

having in mind that 

b ý' 
-b- (Ui+ji)] 

t. 
1 (iyl max i (I b 

i) wPD 
b 

max 

Iým, 

t 
ax max 

as well as 

6)PD Ui + li' 

(U b bi) 
OPT 

li=l 
ii 

xi 

I 

max 
b JE OPT 
min 

and I =0 1 . X 

where is x is the processor on which J scheduled, we obtain: w 

w 9 z b ' b 
ZW < 

OPT )+ 
RwI Ib 

'( 
PD b 

] ( 1 + I I ( max 
--T--'w , PD i=1 PD i i 1 b1 i= I b OPT b0 

max max Vx max min 

or kk ' 
. 

t'3 D max max P 
<1+- - 1, <2,, < 'm ' 1 

Tbk w6 . P 
min b 

and finally, because of the inequality (6.2.22), 

bb W PD + max max 
- 

OPT bX 
T 

b i m n 

which completes the proof of the theorem. 

Furthermore, the following example shows that the value of the bound 

can be attained and hence the bound is a best possible one. 
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Example 6.5: Let the jobs IJ 
IIJ21, **Ijw 

} of the task system 

with at most yk, 1, <j, <w, be defined by: 

IP 

IP I, b j y 
b 

b 
J. : IP 1, max b j=k(l)(2Z-2), i=1(1)(Z-1) 

i Y. 
b 

and : 
(IP I., {b 

2X-1 , max 

where w=2k-l and b <b <..., <b 12 

Clearly, the priority list L=(J,., J 2' ... 'J w) 
is a LMF, LMSTMIN or LMST MAX. 

The schedule resulting from this priority list using the P. D. algorithm is 

shown in Fig. 6.10, whereas the corresponding optimal schedule is given in 

Fig. 6.11. bb 
I- + max 

_ 
ma? i c 

Y, bzkb 
Ib min b 

t-n 1 

p2 

29--l IN, - 

2 

F I 2Z-2 

- 
FIGURE 6.10: Schedule produced by the P. D. algorithm for the priority 

list given in Example 6.5. 
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t: O 

pJ 

p2 

b 
fi 

____ 

2. 
b. 11 

2Y, -2 

2Z 1 

FIGURE 6.11: Optimal schedule for the truncated task system given 
in Example 6.5. 

The -ratio of the completion times of the above schedules as c-*O, is: 
b 9, bk ")P'D max max 

W1 =1+R, _ -T- 
.1 OPT b 

min b 

which is the value of the proven bound in part (ii) of the theorem= 

From the given bounds in Theorem 6.2.3 one can easily realise that the 

extreme performance of the P. D. algorithm when the priority list is in a 

LMST MIN' LMST MAX and hence a IMF ordering deviates from the optimal 

performance as the value of X increases. In addition, when k increases the 

values of X* or (b Y. 
ax/b 

Y, 
may increase as well. However, although the km min) 

worst-case bound is always much better than the corresponding one of an 

arbitrary ordering, for Z=m it gets exactly the same value. This also means 

that, apart from the case where k=m, the utilisation of memory in 

contributing to the STF ordering rule does offer an improvement in the 

worst-case performance of the P. D. algorithm. Finally, if X relaxes to I 
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or bI to b 
1+1' 

1, <i, <m-1, then the bounds of the last theorem agree with the, 

corresponding one found for the homogeneous multiprocessor model with 

independent memories. (See Theorem 111.2, Appendix III) 

Theorem 6.2.4: Let the priority list be in a LMLT 
MIN or LMLT 

MAX ordering. 

Then, 

(i) for non-identical processors: 
w PD 

+11 for L=1,2 and wOPT kl+l (kl+l)) 

w PD I++ for 3, <k, <m ,<x max k' kl+l T(-k 
11 

-+l wOPT 

(ii) for uniform processors: 
w PD 

-=I for Z=l and 
w OPT 

w b ý' bk b Jt bk I PD max + max 

7 
ax I 

1 
( 
_ 

max max for 2, <Z, <m q OPT R, b +1 l 
z b z 

min b min b 

iix 

where t and X* bkbk are as defined in Theorems 6.2.1 and 6.2.3, x is k max' min 
the index of the processor with the lowest speed and kI is the maximum 

number of jobs with k. =k scheduled on a particular processor before J has 
Jw 

begun its execution. 

Proof: (i) As in the previous theorem 

w PD 
;ý 

4)PD 

OJOPT w'OPT 

where w' and w are the completion times of the schedule constructed by PD 6PT 

the P. D. algorithm and the corresponding optimal process respectively, for 

the truncated list of jobs [J,, J 2' ... 'Jw). Therefore, the analysis needs 

only to be concerned with the truncated list and the first k processors. 

Let x and z be the indices of the processors where the schedule 
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finishes and k, occurs, respectively. Then, according to the values of x 

and z, we can distinguish two cases when x<z and x>, z. 

Case 1: If x<z then, w1 1) and I. are bounded by: PD't6PT 1 

WP'D Ui 

u £x* WOIPT '< 
(iý 

1 iM Z) 

ll<i: ýt , 

p 

X*w , /kl t 
t OPT 

Iz '< WOIPT-ý'*NPT 
tt 

1-<i; ýZ, iýxjz, 

and 1 0. 

OP'D is expressed in the equation (6.2.23) as 

U PD Xt A* kI 
(U +I 

L (ikl, 
i)] +y+ 

(6.2.26) 

Then, following a similar analysis as in Theorem 6.2.3 and having in mind 

the relationships (6.2.26) and (6.2.22) we can obtain 

PD 

OPT 

Case 2: If x>, z then, only the idle times of the processors are bounded 

differently and hence should be replaced in the set of relations (6.2.26). 

tI 
<X*wl /kI, because a <X*wl /kI (since no parts of a job can be 

i Y, OPT wk OPT 

executed on two or more processors simultaneously and if a >X*w ' A, and wZ OPT 

hence T >wl 
w 6PT/kI then, because no schedule could have completion time 

less than kIT subject to the conditions that: T. >, T or a >, a for every WIWiW 
job with k. =k and s >(k'-l)T a'kIT >, kla /X*>wl which is 

JWW 
w6PT 

Wwk OPT 

a contradiction) and I i, <Cy W 
(since Ui ýS 

W 
for 1, <i, <k and iýxjz). 

tt I <w w because -Uz and U >, >, *w 
z PD-ý* 

6PT' Iz=wPD 
zk 

6PT* 
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In particular, W1 
t 

1, <i, <t and Vx. iZ k1+1 

Therefore, from equation (6.2.23) using the new set of relations and 

(6.2.22) we get 

w PD 
<; k* I+1 

w OPT 
' '2' 

1 
kl+l 

Now, combining the proven worst-case bounds for Case I and 2 we obtain 

w PD 
x max 1+1- k' + 

OPT 
kl+l 

This bound characterises the extreme performance of the algorithm when 

3, <Y,, <m, since for Z=l Case 2 always occurs and for k=2 the second factor 

of the above bound is worst than the first for any value of kI. So, 

w PD 
* X* I+1, for k=l,, 2. 

OPT z( kl+l 

For the case of uniform processors wt can be expressed as in 
PD 

equation (6.2.19), i. e., 
z bZ -b max w l - III b+ X ))I (U +l )] 

I 
+ (I b ))] 

P D R, ii k b i ki j i 
max max max 

Then, for Case I we have 

tI<; 
k*wl /(kl+l), because cr <X*wl 1(k, +l) (since no parts of the same ik OPT w'-Y. OPT 

job can be run simultaneousZy on two or more processors and if a >, X* /kl 
W 9. wOPT 

then., because a : ýcr Or T. >. T for every job with i =k, w> iW)Wi 
4iýsw+(l / 

't)V 

s +(I/X*xk)cr and s >, k'T >, kla /X*, fill >w +wl /(Zkl) which is a 
WEWWWwk -OPT' OPT OPT 

contradiction) and Ii, <a W 
(since Ui : ýS 

W 
for 1, <i, <k and ijx). 
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WP'D ui+ Iijo 

(U, b, )) b, 
l 

WOtPT 
ýjl 

I-Ii 

I /k 1) (b t /b' iix, z, i '< 
(WO'PT 

max min 

Iz ý< w PD - WOtPT 

(6.2.27) 

and I=0, 

On the other hand, when Case 2 occurs in the above set of relationships 

only the idle times of the processors are bounded differently. In 

particular, 

I (k 1 +1)) (b t /b'ý. i '< 
((')OPT/ 

max min 

Now, bearing in mind the equation (6.2.18) and the relations (6.2.27) for 

Case I we obtain zk 
PD 

<+I max max 
W k' 

(T 
L OPT 

min b 

iýx 

whereas for Case 2 

wkbz PD 
+1 max max 

w OPT 
kl+l kk) 

min b 

Then, combining these two bounds we have 

b b b b (')PD I max 
,cI- + max X 

-Ei- 
( max 

- 
myý <Z, <M. for 2, ;i (') PT b O 

min b min b 

Vx 

Finally, since for L=l Case 2 always takes place, 

wPD 
for t=l. 

wOPT 

Moreover, for Case 1 the following example shows that the corresponding 

bound is a best possible one. 
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Example 6.6: Let the jobs IJ,, J 2' ..., J 
wI 

of the task syst 
. 
em (J, {m 

J 
), {T 

j 
j, <w, be defined by: with at most Z =k, 1, < 

b 
IP 1, ý ý(l 

- b - 1 , 
k' b 

lp l, ý[l 
bj j 

k' b 
) 

i 

J [i1i, {1 
- 

2-1 

I____ [ib. J. :- 3 
ktl b) I. U / 

ji: 
( lpzi 

II ilý -, xb 
-Zý 

) 

and J 2, t-l+kl : 
(JPJ 

, 
ýTl, 

- x b, 
_, 

) 

i=. Z-2ý1)1. 

P* j=(2Z-2)(1)(2Z-2+k') - 

where w=2Y. -I+kl and b,, <b <..., <b, 
_, 

=b 2 

It is easy to realise that the priority list L=(Jllj2l""Jw) is a 

LMLT MIN and therefore, a LMLT MAX ordering as well. However, the schedule 

resulting from the P. D. algorithm is shown in Fig. 6.12, whereas the - 

corresponding optimal schedule is given in Fig. 6.13. 
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t: O 

p2 

p 
Z-2 

p 
P, I 

p 

bk bz b Y- 
max max ( 

max c 
b Z-1 b 

k' b min b 

2 

9,2 z-2 

L-1 k-3 

(2Z-2) (2k-2+kl) 
E::::: 

ý 

t: O 

p2 

p 

I 
Tt (1--L 

') I k 

FIGURE 6.12: Schedule produced by the P. D. algorithm for the 
priority list given in Example 6.6 

- -* j (2"'Z-3) 

r 

2 
j (2k-4) 

R-2 Fý, 
k-l (2t-l+kl) 

=J2 

Z2 (29, -2+k 
t: O I 

TV (1-1 jýl )1 

FIGURE 6.13: The optimal schedule for the task system given 
in Example 6.6. 
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The ratio of the completion times of the above schedules, as c-*O is: 
k R, 

w PD 1+1 
(b max max 

OPT 
kbX1 

min b 
i=l 

which is the value of the worst-case bound proven for the corresponding 

case in Theorem 6.2.5a 

We can see that the established bounds for the P. D. algorithm, when 

the priority list is in a LMLT MIN or LMLT MAX ordering, depends mainly on 

the values of k' and k. In effect, as Z increases and k' is constant the 

values of the worst-case performance bounds increase since, A* or (b z /b k) 
t max min 

may increase as well. On the other hand, when k' increases and k is 

constant the extreme performance of the algorithm becomes more close to 

the optimal one. However, the value of k' is expected to increase as the 

number of the jobs in the task system increases. Thus, the greater the 

number of jobs in the-task system, the better the worst-case bound becomes. 

Further, in the pathological situation where kI=l the bounds of the last 

theorem become close to the corresponding ones found in Theorem 6.2.3, when 

the priority list is in a UIF ordering. (Actually, (w 1w 
PD OPT t 

and (w 1w ), <I+(b 
k /by' )-(b k/k 

PD. OPT max min max 
bi) for non-identical and uniform 

Vx 

processors respectively. ) Finally, we could say that when the priority 

list is in a LMF ordering, the extra effort to arrange the jobs with Zi =i 

in a LTF ordering, i=1(1)m, can offer an improvement in the extreme 

performance of the algorithm. The degree of improvement depends mainly on 

the values of k' and k; in fact, it becomes higher when the values of k' 

or k are increased. For X*=l or b. =b 1, <i, <m-1. the bounds of the tI i+l' 

Theorem 6.2.4 agree with the corresponding ones found for the homogeneous 

multiprocessor system with independent memories. . (See Theorem 111.3, 

Appendix 1113 
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Theorem 6.2.5: Let the priority list be in a LTF MAX or LTF 
MIN ordering. 

Then, 

(i) for non-identical processors: 

max 
f (1) PDJ >, X (1 + HF + Rm 

f-02-m-111 
for 2: g; ým-l, 

'XI +m -HF I -(, 3 -OP V-1 ý] +Z-J) 
11 

tM t2, -lJJ 

max 
fw PDJ 

ý: I+X (H H rX, 
.1+I 

[tn (ý 
for 9. =l, and I -bi 

0 
-PT-f rlxl +m -1-ý+. Z-J) = 

w PD 
< 

OPT 

w PD 
<x (i + -! - - -I-) , k*>, 3 for k=m; 

w OPT k* k*m 

(ii) for uniform processors: 

maxl7wPD. +1mbi forlýtým-l, and 
OPT b 

max 

(j=k+j 

w PD 
<b max 

p k*=1,2p 
op, 

- 'ý 5- 

wbb PD 
<+I(, 

E, 
max 

_ 
max for Z=m, 

OPT 
k* 

min 
m 

b 

where X and k are as defined in Lemma 5.2.6 and Theorem 6.2.1 respectively, 
n 

H is the harmonic number (i. e., H 
n= ný: O) and k* is the maximum 

number of jobs, amongst the first w, scheduled on any particular processor. 

Proof: (i) To prove the lower limit of the worst-case performance of the 

P. D. algorithm under the LTF MAX or LTF MIN rule., a method will be given 

which achieves the bound for arbitrary m, while Y. can vary from I to (m-1). 

The general example consists of (m-t+l) groups of jobs. In the 

priority list the jobs in the (k+l) st group precede those in group k, 

1, <k<, (m-Z+1). The number of tasks in each of the last (m-k) groups is 
(m-z+l-k) [2 x(k+t-l)], 2, <k, <(m-t+l) and k is the group index. The tasks in 
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the k th 
group have memory requirement IP 

(k+Z-1) 
1. However, the time 

requirements of the jobs belonging to the (m-t+l) st group as well as to 

any group k, 2, <k, <(m-Z), are as given in Fig. 6.14(a) and (b) respectively. 
(m-z+rl) (M-L) On the contrary, the first group has [(2 +2 xt)t] jobs, where r 

rl> is the smallest integer which satisfies the condition 2 X, with memory 

requirements 1P. 1 and time requirement As given in Fig. 6.14(c). The jobs 

of each group appear in the priority list in an increasing sequence 

according to their job index and so the LTF MAX or LTF MIN ordering rule is 

preserved. We should notice, that the jobs in each particular group have 

the same maximum t ime requirement (i. e., for the k th 
group., 

(m-I+I-k) 
a k=; k/ (2 x(X+k+Z-2)), 2*k, <m-k+l, whereas for the first group, 

CY 1 =A/(2 +2 YO) 

Now, if we apply the P. D. algorithm to schedule the jobs then, the m 

tasks of the (m-t+l) st 
group, which appear first in the priority list, will 

terminate within an e-time difference as the processors' index increases 

and will contribute to the schedule length a time interval of length 

0, <h(c). <(m-l)c. Consequently, since the number of jobs 

m 

1 

2 

(a) 

m- 2 

M-1 

m 

-xx 1- 
- Ym- 

Z+ i 'Im-g. +i 
ýTJ9, 

+i 
1 

'Im- £+i 
Ym 

£+l 

'Im-t+i 

- im-O+ I) 



k+9-1 

Yk 

Yk Yk Yk 

Yk Yk Yk 

Co 00 . .. Co 

00 Co Co 

k 
' 

k 1 '*.. j 2 1 k+Z-l 2 

(m-k+rl) 
(2 +2 
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Yl Yl Yl 
1 

Y, Yl Yl 
I 

Yl Yl Yl 

(c) Yl Yl Yl 

11x 
Yl Yl Yl 

00 Co 00 

m 00 Co 00 J 

(J' ,J1. JJ 
1 2' (2 +2 Z) 

NOTATION: (m-L+I-k) m-k+rl (m-k) 
YC (2 x(X+k+k-2)) for k=2(l)(m-k+l) and yl=(2 +2 90 

FIGURE 6.14: Time requirements and the sequence of jobs (a) in the (m-Y, +I) st 

group, (b) in the kth group, 2, <k, <m-k and (c) in the first group. 
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in the k th 
group, I*k, <m-k, is a multiple of the number of processors 

capable of executing those tasks, and since the P. D. algorithm allocates 

the maximum time requirement of the jobs to each of these processors, the 

last (k+Y, -I) jobs of the k th 
group will also terminate within an c-time 

difference. In addition, one can realise that the contribution of the jobs 

in the k th 
group, 2, <k, <(m-L) will be a solid block of length (; k/(X+k+Y-2)), 

while the jobs of the first group will contribute a time interval of length 
(M-. Z+l) 

X. Therefore, the total schedule length is [X+ I (X/(X+k+k-2))-h(e)]. 
k=2 

However, the appearance of the general schedule for the above mentioned 

task system, using the P. D. algorithm, is shown in Fig. 6.15. We shall 

present now that an optimal schedule of length I can be formed. Clearly, 

if the jobs of the I st group appear at. the beginning in the priority list, 

followed by the jobs of the k th 
group, for k=2(l)(m-t+l), then, the P. D. 

algorithm can construct a schedule of length 1. 

(ý 
-(M-I)E) 

X+m-2 X+z 

p 

p 

p 

P 
In- 
P 
m 

FIGURE 6.15: The general schedule produced by the P. D. algorithm 

t: LA 4IA ý1 I (A+m-1) IA+m-2) A 
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Therefore, as E-+O 

p 
(M-Y, +I) 

-=X+I (X/ 
w OPT I k=2 

or, since 
1 (T+-k 
+ -k- 2 -) , FXJ A+k-2 .1 

w (M-t+l) 
PD x1+111 

WOPT 
J%-If. 

ý FXI +k+L-2) 

=+ rx1m_1 ([X1_1)1i. 

i=1 i=1 hi) 
(I + HFXI+M_f H 1+t_, ) 

However, since HI=kn(n)+y+T - ý2n 2 -f 
120n 

4 O<r-< 
252n. 

6, where 
n 

y=0.577215664 ... is Euler's constant, we can approxiiftate Hn by kn(n). Thus, 

W PD X(1+HFXI+M_I-HFXI+k_, ) =X+. Zn 
wOPT. 

11 

So, the bound produced by the example achieves the lower bound given by the 

theorem in part (i) for 2, <k, <m-1. 

If Z=l, we can see that the contribution of group 1 will be a time 

interval of length 1 and hence in this case, 

w PDý 
maxf. 

wOPT 

r [xj +M- 1 
( rxi +. t -i 

Further, for k=m we can distinguish the following cases which depend on the 

value of k*. When k*=I, then it is obvious that the completion time of any 

valid schedule can not be worse than 1W OPT* For k*=2, since tw=m, the Jw 

task will be scheduled on the processor, amongst those with one job already 

being executed, which becomes available first, according to the P. D. 

algorithm. Therefore, as for the case of k*=I, w PD : ýXw OPT' 
This results in 

w PD for k*=1,2. 
OPT 
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For k*ý3, since, 

")PI D= Ui + Ii 

m 

ui) / cxm) WOI PT ýý 
(, I 

Xw OPT 1: ýiým, ijx 
k* 

and Ix = 0, 

following a similar analysis as the one used in part (i) of Theorem 6.2.4, we 

can obtain 
w PD 

*A1+ k*>, 3. 
OPT 

k* 
n 

iMT) 

(ii) A similar approach to the one given in part (i) of this theorem can 

achieve the lower limit bound of part Cii), when l<, Z, <m-l. In particular, 

the general example consists of (m-t+l) groups of jobs. The processing 

speeds of the processors are considered to be in the bI>, b 2 :ý... : ýb m order. 

Further, although the number of tasks of the (m-k+l) st group is nm =m. 7 . 

the number of jobs in the k th 
group (i. e., n k+t-l ), when the number of tasks 

st in the (k+l) group (i. e. nk+k) is known, is the smallest integer such that 

n k+9, -l 
ýc and (nk+. 

Z_l/(k+L-l))=O(mod(v)), 2ýkým-t where vEZ+ and 

c=n k+Y. (b k+t-i /b k+z ). However, the memory and time requirements of the jobs 

in the k th 
group, 2, <k, <m-k+l. are IP 

k+z-l 
I and (b k+k-l 

/n 
k+y, -l 

I respectively. 

In addition, the number of jobs in the first group is-n 
k k, where nz can be 

defined in a similar way as nip k+l, <i: ým but now c=n Z+l 
(b 

I 
/bt+, ). The memory 

and time requirements of the n jobs in the i th 
subgroup, 1, <i, <k are JPil 

k 

and {b 
I 

/n 
JE 

I respectively. Thus, in order to preserve a. LTF ordering in the 

priority list the jobs of the (k+l) st group must precede the tasks of the k. th 

group. Then, the P. D. algorithm will result in a schedule of length at 
M 

least [1+ 1bi /(jb 
max 

)]. The general appearance of the schedule is shown 
j=t+l th in Fig. 6.16. On the other hand, if we schedule the jobs of the k group., 
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P+1 

M-1 

pmI 

t: l *- 1 
m 

b 

FIGURE 6.16: The general schedule for the task system given in 
part (ii) of the Theorem 6.2.5 when LýZ, <m-l. 

2, <k, <m-Y, +l on the processor P k+k-l' then a schedule of length I will be 

constructed. Therefore, since b, =b max we have that 

w PD m 
+b 

OPT max 

lj=2, 

+l 

which is the lower bound given in the present theorem for part (ii) when 

1, <Z, <m-l. 

Finally, when k=m and for k*=1,2 we can easily obtain 

W PD 
b 

max 
W OPT min 

Furthermore, for k*>, 3, since 

M-1 
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WP'D = Ui + Ii' 

m 
(U b 

OPT ýý i 

Ii* (001PT /k*) (bmax /bmin) for i=I(I)m, iýx 

and Ix = 

following a similar analysis as the one used in part (ii) of Theorem 6.2.4, 

we can provethat W PD bb 

,<I+I(, 
L'max 

_ 
max 

OPT k* 
min m 

b 

which completes the proof of the theoremn 

For 1, <k, <(m-1), although an upper limit on the worst-case bound has not 

been found, the lower limits given in Theorem 6.2.5 show the behaviour of 

the algorithm when the priority list is in the LTF MIN or LTF MAX ordering. 

So, as in the case of an arbitrary ordering the bound should increase 

logarithmically without any limit as m increases and k is constant, whereas 

if k increases and m is constant, the bound should decrease logarithmically. 

In addition, one can realise that as k becomes close to m, the extreme 

performance of the algorithm improves and for L=m the values of [X(1+(I/k*)- 
m 

(1/(k*m)))] and [1+(l/k*)((bmax/bmin )-(b 
max 

bi)))], k*>, 3 are obtained for 

non-identical and uniform processors respectively. Moreover, if k*>kl, these 

values of the worst-case bound might be better than their corresponding ones 

when the priority list is in a LMLT MIN or LMLT MAX ordering. Also, it should 

be noticed that when A=l or b =b 1+1' 
4i, <m-ll, the worst-case bounds of 

theorem 6.2.5 agree with the corresponding ones found for the homogeneous 

multiprocessor system with independent memories. (See Theorem 111.4, 

Appendix III. ) 

Finally, from the established worst-case bounds for the P. D. algorithm, 

when the completion time is the performance criterion, one can realise that: 
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- they vary widely from one ordering rule to another; 

- they are informative; 

- most of them are best possible bounds 

- the extreme performance may improve when the jobs in the priority 

list are arranged according to a heuristic ordering procedure; and 

- the improvement depends on the values of the system parameters, 

which are involved in the expression of the bounds. 
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6.3 QUICK AND DIRTY (Q. A. D. ) SCHEDULING ALGORITHMS 

In order to complete the aims of this chapter we shall establish here, 

guaranteed levels of performance for the Q. A. D. algorithms, when the 

completion time is chosen as the performance criterion. 

Let w QAD be the completion time of the schedule constructed by the 

Q. A. D. algorithm, when the priority list is formed by a heuristic ordering 

rule, and wOPT be the length of the optimal schedule for a given task 

system (J, [t Iýiýmv 1, <j, <n. 

Theorem 6.3.1: Let the priority list be in an arbitrary ordering (RAND). 

Then, 

(i) for non-identical processors: 
WQAD 

I+ X(v - 1) 
w OPT x 

(ii) for uniform processors: 
v x 

wIbi QAD < i=l 
iT- LOOPT ý 
min 

where X and vx are as defined in Lemma 5.2.6 and Theorem 5.3.1, respectively 

and x is the index of the processor where the schedule finishes. 

Proof: (i) The value of w QAD cannot exceed a time interval of length 

[(V 
x -1)XW OPT +W OPT 

], because no more than vx jobs with T jý'W OPT and 

a =)Lw can be scheduled on a processor P, 1, <r*vx. This is true since i OPT r 
these jobs can only be scheduled on the first v processors and if nl>. v +1 

n' 
xxx 

I Tj V +I 
then 

i=l x which is a contradiction. Moreover, at least wOPT>' : j- >- -v tPT' 
xx 

one of them should require its minimum time on that processor, since 

otherwise w =W 
X-1 

which is also a contradiction. Therefore, 
OPT OPT + 7, - 0)OPV 

w QAD '< (vx-l)'NPT + WOPT 
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or 
63QAD 

+X (v 
w OPT x 

(ii) Following a similar argument as in part (i) and considering Px to be 

the processor with the lowest speed we can prove that 
V x 

QAD 
j1b, 

< 
OPT min 

Moreover, both of the bounds are best possible ones. This can be 

realised from Examples 6.7 and 6.8, which are incorporated into the proof 

of the next theorem. 

Theorem 6.3.2: Let the priority list be in a STF MIN , 
STF 

MAX , 
LMF, LMST MIN' 

LMSTMAX' UILTMIN or UILTMAX ordering. Then, 

(i) for non-identical processors: 

QAD 
;ýI+ X(v -1) 

OPT x 

(ii) for uniform processors 
v x 

Ib1 

_'QAD 
i=l 

< 
OPT min 

where X. vx and x are as defined in Lemma 5.2.6, and Theorems 5.3.1 and 

6.3.1., respectively. 

Proof: Since the upper bounds for non-identical and uniform processors in 

Theorem 6.3.1 proved for an arbitrary priority list, these bounds can be 

considered as extreme performance levels for any priority list when the 

Q. A. D. algorithm is used to construct the schedule. In particular, we 

shall present examples which can cause the performance of the Q. A. D. 

algorithm under the 1, MF, LMST MIN or LMST MAX ordering rules to deviate 

from the optimal completion time by the value allowed by the worst-case 

bounds stated in the theorem. 
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Example 6.7: Let the task system (J, [t ij 
1) be defined by the set of 

independent jobs J={JlsJ 2' ... 'J nI and the following (mxn) matrix, where 

c>O is a very small quantity and n=v 
X(vx-l)Fxl+x. 

The priority list L=(J,.. J 2' ... 'J n) 
is in UIST 

MIN or LMST MAX and hence 

in IMF as well. The schedule -resulting from the priority list L, when the 

Q. A. D. algorithm is used, is shown in Fig. 6.17. On the other hand, if the 

vx jobs scheduled on the IP 
xI processor are allocated each one on a 

different processor amongst the first vx, then a schedule of length 

(w 
OPT +V 

x 
rXlc) can be obtained. 

Vx 

p 
X-1 

p 
x 

p 
X+l 

P- V- 
x ___ 

(Tj5A1 

(1+(v -1)X)w x OPT 
L. A 

X-1 
I 

OPT 'ýWOPT OPT w OPT 'ýWOPT 

FIGURE 6.17: Schedule produced by the Q. A. D. algorithm for 
the priority list given in Example 6.7. 
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Therefore, the ratio of the completion times of these two schedules 

becomes, 

QAD X- 
1)X)w OPT 

w OPT w OPT 
+V 

x PlE: 

or lim 
WQAD 

= 1+ (v 
X- 

1); k 
c-*O OOPT 

which is the worst value of the bound given in part (i) of the theorem. 

Example 6.8: Let the jobs {J 
l'j2, '**'-'Jn I of the task system (J, {m i 

}, {T 

be defined by: 

E 

[b 
! mýax : (lPil, ebi) r= j=1(1)(V r), I*i, <X-l (i-I)v r+j x 

x mln 

: (1p 
x 

1, biw OPT 
), j=(a+l)(1)(a+x), a=(x-1) vxr 

i 
ct+X+i 

(IP 
x+ll, 

(Ipx+ll I 

(IP 
x+21' 

(IP 
x+21$ 

eb X+1), 

b 
X+l w OPT 

), O=a+x+(x+l)r-1 

eb x+2 
), j=I(I)Cx+2)r 

b 
x+2 w OPT 

), y=a+(x+2)r 

i a+j 

J 
-I. 

J 
n 

(1p 
v 

1, bvw OPT n=v x 
(v 

X- 
1)r+x 

xx 

where c>O is a very small quantity bx+lýb 
x+2'='* *2--bv =b max X 

The priority list L=(J,, J 
2' ... 'j n) 

is again in LMST and hence in 

UfF ordering as well. Then, using the Q. A. D. algorithm a similar schedule 

to the one given in Fig. 6.17 can be drawn, with completion time 

V x 
bib 

min wOPT* However, it can be realised that a schedule of length 

(W + max c) can be formed. So, the ratio of these schedules as c-+O OPT 
min] 

vx Vx 
is ti) 

Y-b 

lim QAD 
= 

i=l i 

r:. -)ýO 
wOPT b 

min 
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which is the worst-case bound given in part (ii) of the theorem. 

Finally, when the priority list is in the STFMIN' STFMAX, LMLT 
MIN or 

LMLTMXX ordering then, the proven worst-case bounds are best possible only 

if Vx =x. 7bis is realised by considering relaxed versions of the examples 

mentioned above. 

Theorem 6.3.2 indicates that the use of the heuristic ordering rules 

STFMIN' STFMAX, LMF, LMSTMINI LMSTMAX, LMLTMIN Or LMLTMAX to form the 

priority list does not offer any improvement in a worst-case sens-e over an 

arbitrary ordering for the Q. A. D. algorithm, when the completion time is 

the performance criterion. Moreover, comparing the Q. A. D. and the 

corresponding P. D. algorithms, when the priority list is constructed by 

one of the above mentioned ordering rules, we can easily realise that the 

worst-case performance bounds of the Q. A. D. algorithms are always worse. 

Generally, they worsen dramatically as the number of processors in the 

system increases. In effect, the worst-case performance deviates from the 

optimal one as m increases (since vx may increase as well). 

Theorem 6.3.3: Let the priority list be in a LTF MIN or LTF MAX ordering. 

Then, 

(i) for non-identical processors: 

w 'DT m niaQAD) X(I+H for Iýt*, <m-l and 
OPT 

WQAD 
(1 +T- 

1 if Tý: m-l and 
W OPT T+1 

wQAD 
< A(I + 

L) 
, otherwise, for t*=m; 

W OPT . 
T+1 

(ii) for uniform processors: 

max 
QAD. 

>1+1 
(j mb 

b 
+1 

. for 1, <Z*, <m-1 and 
wOPT max =t 
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M-1 
toQAD 

+1 
iýjb, if k>m-1 and 

min w OPT 
-T -- 

k 

COQAD 
c1+ otherwise, for X*=m, 

W OPT 

(i+-'-, ) 
b 

min 

I 

where X, and Hn are as defined in Lemma 5.2.6 and Theorem 6.2.5 respectively, 

Y, *=k and J is the longest job amongst those with k., <k , which commences a 

execution at t=O and K is the number of jobs, amongst the first w, 

allocated prior to sw on the processor which finishes the schedule. 

Proof: (i) To prove the lower limit of the worst-case performance of the 

Q. A. D. algorithm under the LTFMIN or LTFMAX rule when L. * varies from 1 to 

(m-1), a general example similar to the one used in part (i) of Theorem 

6.2.5 must be considered. 

Although the general task system will not be given, this can be 

realised from the appearance of the schedule in Fig. 6.18 (since it is 

similar to the corresponding one in part (i) of Theorem 6.2.5). In 

addition an optimal schedule of length 1 can also be found here, using 

the same way as in the above mentioned theorem. 

Therefore, 

WQAD 
+mm wI . 

1i) 
=X (I +H -Hy*) 

OPT i=t+l 1m, 

which is the lower value of the bound given in part (i) of the theorem 

when 1, <k*, <m-1. 

When V=m, following a similar analysis, as the one used for the 

corresponding case in Theorem 6.2.5, and bearing in mind that 

w 4AD ýui+ Ii 
5 
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FIGURE 6.18: The general schedule produced by the Q. A. D. algorithm 

m 

OPT Xm 

t 

IIm 
ý'() 6PT 

1, <i, <M, ijx 
T+ I 

and I=0 
x 

t This is so, because if is the nwnber of jobs allocated on Px then, 

there should be at least T jobs on any processor, a <Xwl /(F+l) (sincle 
W OPT 

no parts of a job can be run simultaneously on two or more processors and 
if aA and hence -r >, w I IT then., because a. >, cy , or T. >, Tw for every W OPT w OPT 3 W_ 

-3 job amongst the first w. wl >s +T /m: ýs +a (ým) and s ý: kT ý: kcy OPT' wwWWWWW 
ol >w? +wt /(km) which is a contradiction) and I <mcr (since if I >ma OPT' OPT OPT iWiW 
then, -1 >s +I /(Xm) or >kr +(mXWI )/[(k+l)xm]=wl which is also OPT' wi -OPT W OPT OPT 
a contradiction). 
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we can obtain 
wQAD 

+ 
w OPT 

However, the above1ound is true only if kým-l. In the case where 1<m-1, 

because, 
k (=' ))LWI I<i, <M, ijx 

k+l OPT '" 

following a similar analysis we eventually get 

OQAD k 
W< 

?L+z -') - OPT k+l 

(ii) The same example, which was given in part (ii) of Theorem 6.2.5, can 

be used here as well to attain the lower limit of the bound when 

provided that (b 
max 

/b 
min)<(m-2'*)/(M-(k*+l))' 

When Z*=m, we have 

034AD Ui + 

mm (. 
1 U b, 

)/(iylbi) 
)PT i 

m 
Ibr I- 

WOPT 

, 
1ýiým, ijx Ii 

l< 
T=1 
9--. - 

op I 
ITI min 

i+ -I 

and = 

Furthermore, since 
m rb -b m 

ub min "I 
i)] P. +I. ) +Ib toýAD mb. - 

i) (11bIi 
min 

Ul 
i) 

11 

L min min 

li-I 

using the above set of relationships we can verify that 

M-1 

Wb1 QAD 
;ý1+b for kým-l. 

OPT F+l min 

When k<m-1, because k 
Xb 

I 1< 
r=l x 

(4)OPT) 
1, <i, <M, iýx ib 

min 
[T+l 

following the same argument we obtain, 
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k 
Ib 

t')QAD 
< 1+ 1 i=l 

WOPT (T+l) b 
Min, 

which completes the theorem. 

Therefore, when the priority list is in the LTF MIN or LTF MAX ordering, 

the Q. A. D. algorithm has guaranteed performance levels slightly worse than 

the corresponding ones of the P. D. algorithm. Nevertheless, their behaviour 

appears identical. Further, although the bound increases logarithmically 

without any limit as m increases and k* is constant, it is better than the 

one given in the previous theorems. Finally, we should notice that when 

X=l or bI =b i+l' 1: ýi*m-l, the bounds given in all the theorems of this 

section agree with the corresponding ones found for the homogeneous multi- 

processor system with independent memories (see Appendix IV). 



CHAPTER 7 

PROBABILISTIC ANALYSIS OF HEURISTIC SCHEDULING 

ALGORITHMS -A SIMULATION STUDY 
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7.1 INTRODUCTION 

In the last two chapters a variety of heuristic scheduling algorithms 

were evaluated by their worst-case performance when the mean flow or the 

completion time is chosen as the performance criterion. In Chapter 1, it 

was indicated that this method of analysis is applicable to systems where a 

guaranteed level of performance must be provided. Such systems arise when 

we are dealing with critical real-time events. A contrasting kind of 

analysis evaluates the performance of an algorithm by its expected (average) 

behaviour. In systems where there are no critical deadlines, the average 

performance of an algorithm is more meaningful than the worst-case bounds. 

Actually, this is the main purpose of the present chapter (i. e. to evaluate 

the average performance of the algorithms which have been examined 

previously, under each one of the performance criteria). The average 

performance of an algorithm will be approximated by simulating the model 

of computation and evaluating the algorithm for different task systems using 

statistical analysis. 

Therefore, - having in mind the worst-case as well as the average 

behaviour of the considered algorithms we will be able to find out the 

degree of correlation between these two performance measures for the 

model under investigation. Such information willbe a promising or not 

indication that the deterministic scheduling analysis can be a supplement 

tool, in the way described in Chapter 1, for systems where the average 

performance is morz. -meaningful. than the worst-case bounds. 
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7.2 SIMULATION PRELIMINARIES 

In this study, we shall simulate a more realistic heterogeneous 

multiprocessor system with independent memories than the one described in 

Section 4.2. So, rather than assume that the jobs' time requirements are 

completely arbitrary and hence no processing speed relations exist between 

the processors, it is more down to earth to consider the existence of 

classes of jobs for which different processing speed relations may exist 

between the processors. In fact, this is a realistic approach since, we 

can roughly determine in advance factors of speed difference among the 

processors, as a measure of their relative power, when a particular job 

class is considered. However, if we impose some jobs to run on different 

processors we could obtain sufficient additional information so that our 

initial estimations on processors speed difference can be refined and 

improved. 

More exactly, we have written a computer program 
t 

which simulates-the 

heterogeneous multiprocessor model with independent memories where: 

(i) the ranking of the processors, according to their processing 

speeds, varies from one job class to another; 

(ii) the processing speeds differ uniformly in each job class, 

i. e., there is a constant percentage p of difference between 

them; and 

(iii) p may vary for different job classes. 

Further, a number of parameters, which define the simulation 

experiments, have to be chosen. These parameters describe: 

(i) the processing system (i. e., number of processors, distribution 

function governing the selection of processors' ranking, size 

of the processors speed and size of private memories); 

t The computer program was written in FORTRAN and run on the CDC 7600 

machine based at the Manchester Regional Computer Centre. 
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the characteristics of a randomly generated task system (i. e., 

number of jobs and number of classes in the task system, 

distribution functions governing the selection of time and 

memory requirements of a job as well as the selection of its 

class). 

Once these parameters are determined a number of trials are made for each 

experiment. In each trial a random task system is generated according to 

the parameters of the experiment. The jobs of the task system, being 

ordered by each of the considered sequencing rules (i. e. RAND, LMF, STF MIN' 
STF MAX' LTF MIN' LTFMAX, LMLT MIN' IMLT MAX LMST MIN and IMST MAX 

), are scheduled 

on the computation model illustrated by the defined processing system in 

the experiment, according to the demand scheduling algorithms examined in 

this thesis (i. e., P. D., P. D. *, Q. A. D., Q. A. D. *). Then, the mean flow as 

well as the final completion time of the schedules produced by each 

algorithm under each ordering rule are calculated. The optimal mean flow 

time of the task system is evaluated using Bruno's algorithm [Brl]. On the 

other hand, since the problem of scheduling on the computation model under 

investigation is a NP-complete one, it is impractical to determine the 

optimal completion time for an arbitrary task system. So, a lower optimal 

completion time is estimated for each task system according to the method 

given in Appendix V. At the end of each trial, statistics are collected 

on the ratio of the mean flow or completion time of each algorithm under 

every ordering -rule as compared to their corresponding optimal or lower 

optimal calculated values respectively. As-successive trials are performed 

the mean of each statistic should converge to the expected mean flow or 

completion time ratio of the corresponding algorithm for the given probability 

distributions governing the memory and time requirements of the jobs. In 

order to determine the number of trials which must be made to obtain 

meaningful results, the confidence interval technique of mathematical 



188 

statistics is used. So, in each trial a 95 percent (95%) confidence 

interval is calculated for the mean of each statistic. In statistical 

terms, this means that the probability of the true mean of the statistic 

(i. e. expected performance of the algorithm) lying within the calculated 

confidence interval is 0.95. The trials, which must not be less than 40 

in order to satisfy the statistical terms for meaningful results, proceed 

until the length L of the confidence interval of the mean of the statistics 

becomes L: ý0.05 (For details, see [Kre] pp. 168-193). However, due to 

computation time constraints, we do not allow more than 400 trials in each 

experiment. This means that in some cases L might have greater value than 

0.05. Two algorithms will be ranked according to their computed average 

performance only when their respective 95 percent (95%) confidence intervals 

are non-overlapping. In case the confidence intervals do overlap, the 

algorithms will'be considered indistinguishable. 
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7.3 SIMULATION RESULTS 

We -recall that the purpose of the experiments in this study is to 

assemble a reasonable compelling background so that, we could examine the 

degree of correlation between the worst-case and the average performance. 

The results of the experiments of the first test are presented in 

graphical form in Fig. 7.1-7.12. In these and succeeding graphics the 

confidence interval is not explicitly indicated. However, the average 

performance of the various algorithms, as far as the mean flow time and 

the completion time performance criteria are concerned, relative to the 

corresponding optimal performance is shown in these figures as the number 

of processors m is increasing from 2 to 8. In each trial, the number of 

jobs in the tas k system was n=50 while the number of job classes was nc=3. 

The exponential distribution was used for the selection of processors 

ranking according to their processing power. More exactly, a (mxnc) matrix 

was formed using random numbers generated from an exponential distribution. 

The numbers in each column of this matrix were sorted according to the 

STF rule and then a new matrix D 
: LJ , 

1, <i<, m, 1*j, <nc was created by assigning 

an index which the i th 
number in the sorted list of column j had in the 

original matrix. Notice, that in order to rank the processors according 

to their processing power, when the computation model is expanded from r 

to k processors, 2ýr; ýk, <m, the random numbers generated for the model of r 

processors were used again, together with f(k-r)nc] new ones selected from 

the governing distribution. This is a realistic approach, since only the 

new introduced processor(s) is (are) ranked among the existed processors, 

when the computation model is expanded. The processing speeds of the 

processors for each class of jobs were obtained from the form: 

b=I+c. x m-'+' x pj , 1, <i, <m, 1, <j, <nc, (7.1) [D ij3j Im 

where pj is the probability of speed difference between the processors, 
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which was obtained from a uniform distribution in the range [0,1], (I+c ) 

is a limit on the speeds of the processors for the j th 
class of jobs and 

cI was selected from a uniform distribution in the range [1,7]. Further., 

the size of the private memories was decided from the form: 

1 Pil =B+ [A x M-'+' x pl , ic, <m , (7.2) 

where B=4 is the base value of the memory sizes, A=60, (A+B) is the 

extreme value of memory sizes, and p*--O. 5 is the percentage of memory 

differences between the processors. Finally, the jobs in the task 

systems were generated by selecting their time and memory requirements 

from uniform distributions in the range [0,100) and [4, (4+6()XO. S)] 

respectively. Moreover, their class index was dec ided by Laj], where aj 

is a -random number selected from the uniform distribution in the range 

fl, (nc+l)]. 

Many conclusions can be drawn from the above set of experiments 

when we observe the results of the average performance of the previously 

discussed algorithms. First of all, as was expected, the average 

performance of any algorithm under any priority list is much better than 

the corresponding worst-case performance. However, the remaining 

observations and conclusions are given in two parts according to the 

chosen performance criterion. 

(a) When the mean flow time is the performance criterion from the results 

given in Fig. 7.1-Fig. 7.7 we can observe: 

(1) the average performance of the P. D. and Q. A. D. algorithms, under 

the RANDLMF, LTF or LMLT and RAND, LMF, STF or LMST orderings 

respectively, is decreasing as the number of processors in the 

model increases (see Figs. 7.1 and 7.2). 

(2) further, the performance of the P. D. and Q. A. D. algorithms, 

under the STF or LMST and LTF or LMLT orderings respectively, is 

increasing as the number of processors in the system increases 

(see Figs. 7.1 and 7.2). 
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(3) the distances between the performance curves of the ordering 

-rules mentioned in (1) and (2) are becoming less as the number of 

processors increases (see Fig. 7.1 and 7.2); 

(4) the performance of the P. D. algorithm under the STFMIN and STF MAX 

rule is very close to each other; moreover, the utilisation of 

memory in contributing to the STF ordering does not offer any 

improvement in the average performance (see Fig. 7.1); 

(5) the performance of the Q. A. D. algorithm under the LTF MIN ordering 

is better than when the LTF MAX ordering rule is used and the 

utilisation of memory worsens its performance; on the other hand, 

the utilisation of memory in contributing to the LMF MAX -rule offers 

a slight improvement for some instances (see Fig. 7.2); 

(6) the performance of the Q. A. D. algorithms is better for some 

instances or indistinguishable to the corresponding P. D. algorithms 

(see Fig. 7.3); 

(7) the P. D. * and Q. A. D. * algorithms do offer a great deal of 

improvement in average performance over the P. D. and Q. A. D. 

algorithms only when the priority list is in a RAND, LMF, LTF or 

LMLT and RAND, LMF, STF or LMST ordering respectively (compare 

the results given in Fig. 7.1,7.2 and 7.4,7.5); moreover, for the other 

ordering rules although the P. D. * and Q. A. D. * algorithms have better 

or indistinguishable average performance, the improvement is small 

(see Fig. 7.6); 

(8) the performance of the Q. A. D. * algorithm is always better than or 

indistinguishable to the P. D. * algorithm when identical priority 

lists are used (see Fig. 7.7); and 

(9) the performance of the Q. A. D. * algorithm under the considered 

ordering rules varies in a larger range than the P. D. *algorithm 

does for the corresponding ordering rules (see Fig. 7.4 and 7.5); 



198 

in fact, the performance of the Q. A. D. * and P. D. * algorithms 

varies in an average of 5 and 2.5 percent (5% and 2.5%) respectively. 

Nevertheless, the above mentioned observations show that the behaviour 

of the algorithms, based on the average performance, 'agrees in principle 

with the one predicted from the worst-case bounds in Chapter S. Also, we 

should notice that ordering procedures with identical worst-case bounds 

may have significantly different expected performance. This is illustrated 

by the following ordering rules: RAND, LMF, UILT and LTF in Fig. 7.1 and RAND, 

LMF,, LMST and STF in Fig. 7.2. An explanation of this matter could be the 

fact that the performance of the P. D. and Q. A. D. algorithms, under the LTF 

or UILT and STF or LMST rules respectively, is expected to be worse as 

compared to the corresponding performance of the algorithms under the RAND 

or LMF rules. Further, ordering rules with distinct, though close, bounds 

may possess expected performances which are indistinguishable by simulation 

techniques. This is illustrated by the results of the STF MINI STF MAX' 

LMST MIN and LMST MAX ordering -rules given in Fig. 7.1, LTF MAX' LMLT MIN and 

LMLT MAX 
in Fig. 7.2 and by many ordering rules in Fig. 7.4 and 7.5. The 

Q. A. D. algorithm under the LTF MIN ordering rule, which has the best worst- 

case bound (see Chapter 5), display very good performance characteristics. 

As it appears in Fig. 7.2 the average difference between the performance of 

this algorithm and the optimal one is approximately. 3.5 percent (3.5%). 

However, the average difference between the performance of the P. D. and 

Q. A. D. algorithms, under the STF, LMST and LTF MAX , LMLT rules respectively, 

and the optimal one is approximately 14 and 12 percent (i. e., 14% and 12%). 

Furthermore, one can realise that in some cases, the performance of two 

ordering rules are ranked while their difference is less than 0.05 although 

we should expect them to be indistinguishable. This can be explained and 

it is not an anomaly. Actually, the trials of an experiment proceed until 
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all the confdience intervals of the statistics for each ordering rule and 

scheduling algorithm become less than 0.05 and hence, some of the ordering 

rules produce confidence intervals shorter than 0.05. Finally, when the 

mean flow time is chosen as the performance criterion and for the parameters 

used in this set of experiments, there is perfect agreement between the 

-ranking of the expected and worst-case performance when the P. D. or Q. A. D. 

algorithm is used to construct the schedules. On the other hand, for P. D. * 

and Q. A. D. * algorithms we can say that there is a considerable agreement 

between the ranking for these "two performance measures. 

(b) When the final completion time is used as the performance criterion 

from the results given in Fig. 7.8-7.12 we can observe: 

(1) the average performance of the P. D. or the Q. A. D. algorithm under 

all the ordering procedures is generally increasing as the number 

of processors increases (see Fig. 7.8 and 7.9); 

(2) the utilisation of memorY in contributing to the STF or LTF 

ordering offers a great deal of improvement when the P. D. 

algorithm is used (see Fig. 7.. 8); 

(3) the P. D. algorithm under the IMLT ordering procedures have 

always had the best performance (see Fig. 7.8); and 

(4) the performance of the P. D. algorithm is always better than the 

one the Q. A. D. algorithm produces for all the ordering rules 

except the STF MIN 
(see Fig. 7.10-7.12). 

All these observations agree with the behaviour of the algorithms 

predicted from the worst-case bounds in Chapter 6, except the anomaly 

mentioned in the 4 th 
observation. Moreover, we should notice that 

ordering rules with identical worst-case bounds may have different expected 

performances. This is illustrates by the RAND, STF MIN' STF MAX ordering 

rules, when the P. D. algorithm is used, and by the LTF MIN' 
LTF MAX orderings 
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when the P. D. or Q. A. D. algorithm is used. Also, we should notice that both 

of the algorithms under any priority list may perform better than indicated 

in the Fig. 7.. 9-7.12, since the estimated optimal value for the completion time 

is a lower bound on the true optimal. However, the most unexpected results 

is the performance of Q. A. D. algorithm under the LTF MAX rule. This actually 

makes the ranking of the average performance, when the Q. A. D. algorithm is 

used, to disagree with the corresponding worst-case one. Apart from that, 

there is a perfdct agreement between the rankings of average and worst-case 

performance for the P. D. algorithm and a considerable one for the Q. A. D. 

algorithm. 

Although this test could not be regarded as substantial evidence for 

the behaviour of the average performance and hence further tests must be made, 
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this study is not intended to consider every possible combination or 

variation of the simulation parameters. Rather,, fixed values or reasonable 

restrictions are placed on these parameters in order to narrow the number 

of tests which must be performed. The fixed value of a particular parameter 

was decided by making experiments similar to the former ones with different 

values for that parameter and choosing the one which gives the most 

reasonable results. Such experiments were carried out with the. values of 

the various parameters as indicated below: 

- the number of jobs in each trial to be 60 and 70; 

- the number of classes in each task system to be 2 and 4; 

- the distribution governing the ranking of the processors according 

to their processing power to be the normal and the uniform distribution; 

- the percentage of difference between the speeds of the processors pj 

to be decided from the uniform distribution in the ranges [0,0.25] 

and [0.75,1]; and finally 

- the percentage of difference between the private memories to bep*=0.2 

and p*=O. 9. 

It was found that increasing the number of jobs in each trial, decreasing 

or increasing the classes of jobs in the task system, using different 

distributions to decide the ranking of the processors and imposing the 

percentage of difference between the speeds or the memories to be small or 

large had negligible influence t in the ranking of the algorithms under the 

various ordering rules. 

Now, since different values of the various parameters can not produce 

any significant changes in the results of the average performance of the 

algorithms, the values of these parameters can be considered reasonable and 

they will -- be used in the remaining simulation study. Also, this makes 

t 
By negligible influence we mean that the ranking is either identical to 

the first experiment or slight different, which does not damage the ranking 

of the algorithms when compared to the worst-case performance. 
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the results of all the tests comparable. Moreover, our decision to consider' 

models with 2 to 8 processors and their processing speed to differ up to 8 

times is also reasonable, since most practical interest is concerned with 

systems of small numbers of processors and since it is difficult to find a 

mini- or micro- computer to be 8 times more powerful than another one, which 

is doing the same or similar functions. Further, an objection may be raised 

from the fact that the memory sizes differ in a regular manner, since such an 

arrangement does not allow those cases where there are significant variations 

in the differences between memory sizes, or where some memories are of the 

same size. However, the effect of these variations can be achieved with 

regular memory sizes by properly biasing the distribution function governing 

the jobs memory requirements. 

In the remainder of this chapter we will study the results of the 

average performance of the algorithms for some additional tests. Actually, 

in these tests we use biased distribution functions for the time or memory 

requirements of the jobs. In detail ' the various cases, which we consider, 

are summarised in Fig. 7.13 using a tree structure. However, as can be seen, 

the number of tests are 9 and the first one, already completed corresponds 

to the path (142A45A). 

A uniform distribution of the job requirements may be represented as in 

Fig. 7.14(a). A uniformly distributed random variable y, in the range [0,1] 

is generated. Then, the reflection of y, in the line indicated, becomes a 

uniformly distributed random variable x in the range [0,100]. 

A biased distribution in the range [0,100] is shown in Fig. 7,14(b). 

In this case the uniformly distributed random variable y is transformed 

into a biased random variable x when the reflection, in the line indicated, 

is performed. 

Moreover, the biased distributions which will be used in the experiments 

of the following tests for the time and memory requirements are shown in 

Fig. 7.15 and 7.16 respectively. 
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test 
index 

FIGURE 7.13: A tree to summarise the simulation study 

Notations: 

1: a simulation study of the average performance for the considered algorithms; 

the distribption function of the memory requirements to be: 

(A) uniform distribution; 

(B) biased distribution favouring small memory requirements; 

and (C) biased distribution favouring large memory requirements; 

the distribution function of the time requirements to be: 

(A) uniform distribution; 

(B) biased distribution favouring short time requirements; 

and (C) biased distribution favouring long time requirements. 
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First, we will show the results of the average performance of the 

algorithms as compared to the optimal one, when th6 mean flow time is used 

as the performance criterion. So, in Fig. 7.17-7.20 the results of the 2 nd 

test (i. e., the memory requirements of the jobs are selected from the uniform 

distribution and the time from the biased distribution favouring the small 

time requirement jobs) are given. 

Generally, we can observe that the ratio of the average performance of 

the algorithms to the optimal one has been worsened in this test. Especially, 

for the LTF., LMLT, IMF, RAND and STF, LMST, LMF, RAND ordering rules when the 

P. D. and Q. A. D. algorithm is used respectively. Nevertheless, we should have 

expected such a behaviour, since the existence of few large jobs in the task 

system (i. e. 25%) and their allocation at the beginning of the schedule can 

only worsen the mean flow time. However, the ranking of the P. D. and Q. A. D. 

algorithms is exactly the same as test 1. On the other hand, although the 

ranking of the P. D. * and Q. A. D. * algorithms does not agree with the 

corresponding one of the 1 st test, there is still a considerable agreement 

with the ranking of the worst-case bounds. Further, all the other observations 

made for the 1 st test can be realised from the results of this test as well. 

0 100 
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Now, the results of another set of experiments, which complete the 

requirements of test 3, are shown in Fig. 7.21-7.24. In contrast to the 

previous test, here the average performance of the P. D. and Q. A. D. 

algorithms, for the LTF, IMLT, LMF or RAND and STF, LMST, IMF or RAND 

ordering rules respectively, as compared to the optimal one is better than 

their corresponding ratio in the 1 st test. This is so, since most of the 

jobs (i. e., 75%) require execution time in the interval [75,100] and hence 

their arrangement at the beginning of the schedule cannot worsen the mean 

flow time as much as in test I or 2. Also, we can observe that the 

utilisation of memory in contributing to the LTF MAX rule offers a better 

performance for the Q. A. D. algorithm. Although this observation contradicts 

the corresponding ones made in the previous tests, it does not damage the 

behaviour of the algorithms predicted by the worst-case bounds or the 

agreement of the rankings. Again, there is a considerable agreement between 

the ranking of the average and the corresponding worst-case performance for 

the P. D. * and Q. A. D. * algorithms. 

The results of the set of experiments for test 4, where most of the 

jobs in'the task systems require small memory, are given in Fig. 7.25-7.28. 

Although, the ranking of the average performance of the algo rithms differs 

slightly from the corresponding one which appeared in the previous tests, 

there is perfect agreement with the ranking of the worst-case bounds for 

the P. D. and Q. A. D. algorithms and a considerable one for the P. D. * and 

Q. A. D. * algorithms. Moreover, we can observe that: 

for the P. D. algorithm, the utilisation of memory in contributing 

to the STF ordering worsens the average performance significantly 

as compared to the previous tests; 

the LTF MAX ordering rule gives a performance closer to the LTF MIN 

ordering and always better than the LMLT MAX onewhen the Q. A. D. 

algorithm is used. 
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However; such a behaviour of the performance agrees with the one which can 

be predicted by the worst-case bounds when most of the jobs in the task 

systems require small memories (since k tends to higher values, ' i tends to 

m and X tends to X). 

The results of tests 5 and 6 agree with those of test 4 but they are 

affected, in the same way as in test 2 and 3, by the biased distributions 

favouring the short and long time jobs respectively. Finally, the results 

of tests 7,8 and 9, apart from small variations in the values of the ratio 

(average/optimal) performance, agree absolutely with the results of tests 

1,2 and 3 respectively. As a sample, we give the results of the tests 5 

and 9 in Fig. 7.29-7.36. 

Now, we proceed to show the results of the considered tests when the 

completion time is chosen as the performance criterion. The results of the 

2 nd test are given in Fig. 7.37 and 7.38. Although the ranking of the 

average performance of the P. D. algorithm under the various ordering rules 

is not the same as the corresponding one in test 1, there is a perfect 

agreement with the ranking of the worst-case bounds. Moreover, the 

performance of the algorithm under the LTF MAX or STF MAX rule is closer to 

the corresponding one of the LTF MIN or STF MIN ordering rule, respectively. 

This happens since most of the jobs in this test require short execution 

times and hence the differences between Ti and ai for 75% of the jobs are 

small. On the other hand, the distance between the curves of the average 

performance of the LMST and LMLT ordering rules worsens as compared with 

test 1. The existence of a small number of jobs with long time requirements 

is the reason for this behaviour. Further, for the Q. A. D. algorithm there 

exists a considerable agreement between the average and the worst-case 

performance. Nevertheless, we should notice that the use of memory in 

contributing to the STF and LTF ordering rules worsens their average 

performance. This is not clear from the established worst-case bounds in 

section 6.3. 
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The -results of test 3, which are shown in Fig. 7.39 and 7.40., are 

similar to the ones'in test 1. However, the following distinct observations 

can be made for the P. D. algorithm: 

- there is a larger difference in the distance between the performance 

curves of the STF MIN and STF 
MAX as well as between the LTF MIN and 

LTF MAA ordering rules; and 

- the performance curves between the LMST and LMLT ordering rules are 

closer. 

This behaviour is due to the large number of jobs with long time requirements 

and opposes the behaviour of those procedures in test 2. 

Furthermore, the results of the experiments made for test 4 are 

presented in Fig. 7.41 and 7.42. Generallythe rankings of the average 

performance of both of the algorithms for the various ordering rules differ 

significantly as compared to the -rankings of the previous tests. In detail, 

for the P. D. algorithm we can observe that: 

- the RAND ordering, in some instances, has better performance than 

the IMF ordering while it always performs better than the LMST 

procedure; 

- the RAND., STF, LMF and 1MST as well as the LTF and LMLT ordering 

rules have an average performance very close to each other; and 

finally 

- the utilisation of memory in contributing to the LTF MIN ordering 

does not offer any improvement when mý: 3 while it does so for some 

instances when contributing to LTF MAX' 

Such a behaviour was expected and actually, agrees with the one predicted 

by the worst-case bounds, since P. tends to m when most of the jobs require 

small memories. Therefore, the agreement between the rankings of the 

average and extreme performance of the P. D. algorithms is still perfect. 
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Then, for the Q. A. D. algorithm we can observe that the utilisation of 

memory in contributing to the STF or LTF orderings does not offer any 

improvement if mý3. This agrees with the worst-case bounds when vx and Z* 

tend to m. However, we can say that generally, there is a considerable 

agreement between the rankings of the algorithms for the two performance 

measurements. 

The results of the experiments for test 5 and 6 agree with those of 

test 4 but they are affected, in the same way as in test 2 and 3, by the 

biased distributions favouring the short and the long time jobs respectively. 

Moreover, the results of tests 7,8 and 9, apart from small variations in the 

values of the ratio (average/optimal) performance, agree exactly with the . 

results of tests 1,2 and 3 respectively. As a sample, we present the results 

of the experiments made for test 5 and 9 in Fig. 7.43-7.46. Therefore, 

tests 5.6 and 7,8,9 behave in the same manner as compared to previous tests 

when the mean flow or the completion time is used as the performance criterion. 

In view of the reasonable nature of the restrictions we have made for 

the various parameters, it is believed that the results derived from the 

previous experiments represent the fundamental characteristics of the 

average performance of the considered algorithms. Generally, we can summarise 

all the evidence presented in this chapter by the following conclusions. ' 

The behaviour of the average performance of the P. D. algorithms is exactly 

as has been predicted by the worst-case bounds when either the mean flow or 

the completion time performance criterion is used. The same happens for the 

Q. A. D. algorithms when the mean flow time is the performance criterion. For 

the other algorithms, when any of the two performance measurements are used, 

there is a considerable agreement in the behaviour predicted by the worst- 

case bounds and the one presented by the average performance in this chapter. 

So, a high degree of correlation exists between the ranking of the algorithms 

given by the extreme and expected performance. Finally, when the mean flow 
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time is the performance criterion the P. D. algorithm under the STF or LMST 

ordering, the Q. A. D. algorithm under the LTF or LMLT ordering and the P. D. * 

or Q. A. D. * algorithm under any ordering rule gives a desirable expected 

performance. On the other hand, when the completion time is the performance 

criterion, the P. D. algorithm under the IMLT orderings has always desirable 

expected performance and for some cases, the LMF, LMST or LTF rules present 

a competitive expected performance as compared to that of the LMLT ordering 

rules. 



CHAPTER 8 

CONCLUDING REMARKS 
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From the proven worst-case bounds given in Chapters 5 and 6, the 

simulation study presented in Chapter 7 and bearing in mind the discussions 

which analysed the results in each of the above mentioned chapters as well 

as the work previously done on related models (i. e., summarised in Chapter 

3), we could draw the following conclusions. 

First, the proven bounds in Chapters 5 and 6 are so informative as to 

make us thoroughly understand the behaviour of the considered algorithms, 

under the various pre-set ordering procedures, in different situations. 

This gives us the chance to choose the appropriate ordering -rule and/or 

algorithm, in order to achieve desired performance goals, for a particular 

operational environment. So, when our interests are to obtain as good a 

turnaround performance of the system as possible, which is represented by 

the mean flow time, the best choice would be the Q. A. D. algorithm under 

the LTF MIN rule for any operational environment. Clearly, variations of 

the jobs requirements in the task systems cannot affect greatly the worst- 

case bound for this ordering rule and hence it will always remain the best 

in comparison to the others. On the other hand, when we are interested to 

obtain better utilisation of the system resources (i. e. processors and 

memory in our case) then, the P. D. algorithm under the LMLT ordering rul es 

would be the best choice for most of the cases. However, in situations 

where most of the jobs in the task system require small memories or 

alternatively most of the processors have the same private memory, then the 

P. D. or the Q. A. D. algorithm under the LTF ordering rules seems to be 

satisfactory choices and some times the best ones. Moreover, in such 

situations the Q. A. D. or the P. D. * algorithm under the LTF MIN ordering -rule 

would be the best choices if we would like the turnaround and the throughput 

of the system to be as good as possible with only a slight influence on 

the turnaround or throughput respectively. In other operational environments, 

the best algorithm to satisfy both performance criteria would be the P. D. * 

under the LMLT ordering rules. 
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The model which this thesis has examined can be considered as a 

generalised one compared to the ones already studied when independent jobs 

are to be scheduled in more than one processor. More exactly, if the 

parameter X relaxes to 1 or b. =b. I<i<m-1 then, our model becomes the 

one which Kafura and Shen have studied (see [Kaf], [KSI], [KS2]). In this 

case, the proven worst-case bounds are identical to the ones given in 

Appendices I-IV. Moreover, although the results given in Appendices IJI 

and IV are new and we cannot compare with others, the bounds proven in 

Appendix III are more informative and more general than the ones Kafura and 

Shen found. In fact, their bounds satisfy the corresponding ones given in 

Appendix III only for special values of the parameters. (see Tables 3.5 

and 3.7, problem 4 and problems 8-11 respectively). Further, when t=m, our 

model becomes the classical (i. e., without any resource restrictions) 

heterogeneous multiprocessor model with non-identical or uniform processors. 

Clearly, for non-identical processors when k or V1 becomes m the bounds 

given in Theorems 5.5.1,5.5.3 and 5.5.4 are better and more informative 

than the ones proven by Clark [CL] (see Table 3.9). Also, the bounds in 

Theorems 6.2.1 and 6.2.5 for non-identical processors appear more informative 

and probably better than the ones proven by Ibara and Kim [IK] (see Table 

3.8, problems 3,4 and 5), although even better bounds might be proven for 

an E. C. T. algorithm. Now, for the case of uniform processors when Z=m the 

bound given in Theorem 6.2.1 agrees with the one found by Jane W. S. Liu 

and Liu C. L. [LiLl] (see Table 3.5, problem 3); also the bounds given in 

Theorem 6.2.5 are more informative and in most cases better than the ones 

proven by the above mentioned authors [LiLl] (see Table 3.7, problem 5) 

and Gonzalez, Ibara and Sethi [GIS2] (see Table 3.8, problems I and 2). 

Finally, when X or bI relaxes to one (1) and k to m, our model then 

represents the classical homogeneous multiprocessor model. For such a case, 

the bounds in Theorems 6.2.1 and 6.2.5 agree with the ones proven by 
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Graham [Gr, 1,2] (see Table 3.5 problems I and 2) and Graham [Gr2,3] or 

Coffman and Sethi [CS2] respectively (see Table 3.7 problems 1 and 2), 

while the bounds in Theorems 5.4.1 or 5.4.2 relax to a slightly better 

but more informative bound than the one Bruno, Coffman and Sethi [BCS1] 

have proven (see Table 10, problem 7). 

When the mean flow time is chosen as the performance criterion, then 

there are facts which support the idea for further research using the 

deterministic analysis. These are that there are not task systems which can 

cause the performance of the algorithms to deviate from the optimal mean 

flow time by the values allowed by the worst-case bounds, and the values of 

the average performance of the P. D. or the Q. A. D. algorithm under the STF, 

LMST or LTF, LMLT ordering rules respectively as well as the P. D. * and 

Q. A. D. * algorithms under any pre-set ordering are very close to the optimal 

value. In particular, more informative bounds as far as the Q. A. D. algorithm 

under the LTF MIN ordering rule are of extreme importance. This is so because 

first, its expected performance value on average is not more than 5% 

different from the corresponding optimal one and second, its time complexity 
3 is 0(max{mn, n1092 n)) which compares favourably with the complexity O(n ) of 

Bruno's [Brl] optimal algorithm. Such an investigation should be approached 

by proving better (or more informative) upper or lower values to bound the 

quantities U and Z50PT and/or considering the range of difference in the time 

requirements of the jobs. In addition, the nature of the Q. A. D. algorithm 

itself might also help towards this investigation. On the other hand, it 

is also interesting to prove a worst-case bound for Bruno's algorithm when 

the completion time is considered as the performance criterion. Clearly, 

a promising bound would make this algorithm even more valuable. 

Furthermore, the deterministic analysis appears to be a promising 

supplementary tool for systems where the expected performance is more 

meaningful than the guaranteed levels. This is true, since the behaviour 
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of the algorithms predicted by the worst-case bounds agreed, in most cases,. 

with their behaviour as presented by the average performance results. In 

particular, the behaviour of the P. D. algorithm for both performance 

criteria as well as the Q. A. D. algorithm for the mean flow time criterion 

is exactly the same when we analyse their worst-case bounds or average 

performance results. For the other algorithms when any one of the two 

performance criteria is used, there is considerable agreement in their 

behaviour as can be predicted from the worst-case bounds and presented by 

the average performance results. This non-perfect agreement is believed 

to be relevant to the close worst-case bounds found for the P. D. * and Q. A. D* 

algorithms, and the inherent complexity of Q. A. D. algorithm as far as the 

completion time criterion is concerned. 

However, the above mentioned promising conjecture for the determinisitic 

analysis needs further work to be fully justified. In actual fact, the 

queueing network theory or simulation techniques for a more detailed system, 

based on the abstract model we have considered, must be used in such an 

investigation to evaluate the expected performance of the algorithms under 

various ordering rules. Then, we will be in a position to say positively if 

the deterministic analysis can play a supplementary role for the performance 

evaluation of systems where the expected behaviour is more meaningful. A 

work recently published by Schewtman [Sc], alghtough it is not oriented 

towards the direction as described, it evaluates the expected performance 

of a numbe r of Priority-Driven resource allocation functions, when the 

priority list is in various orderings for a multiprogramming system using 

simulation techniques; the selection of pre-set orderings based on the 

results presented in [Kr] and [KSS2], where a deterministic analysis was 

used. His primary conclusion was that both the pre-set ordering and the 

scheduling algorithm affect the performance of the system, but he did not 

examine the correlation between the results he found and the corresponding 

ones proved by deterministic analysis. 
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From the other point of view, since simple simulation studies on the 

abstract model can offer us information about the average performance 

behaviour of an algorithm, there is a question whether they are sufficient 

so that the deterministic analysis is superfluous rather than a supplementary 

tool. Actually, we cannot trust such simulation studies without the support 

of the worst-case bounds because: - 

- the rate of increase or decrease of the performance of the algorithms 

as the system parameters change values would not be known; 

- the behaviour of an algorithm when for some operational environments 

its ranking changes could not be explained properly; 

- the chosen configurations of the model as a sample to be simulated 

might not be sufficient; and finally 

- we would not have the ability to work towards optimal or more 

-elaborated heuristic scheduling algorithms. 

As a result of the assumptions made for the task systems in this 

thesis (i. e., considering independent jobs with arbitrary time requirements), 

one can see that the studied model corresponds to a general purpose 

heterogeneous multiprocessor model with independent memories. So, it can 

be used as evidence in the development of a general workload system which 

could consist of a number ofvarious mini- or micro-computers, each one 

having one or two extra functions. Moreover, our results could have had 

immediate applications to several problem areas in operations research, 

management science, industrial engineering or business administration. 

An example would be when a substantial typing work has to be carried out 

in a typing department, where there are typewriters with various capabilities 

and typists with different abilities for different kind of typing work. 

An extension of the computing system, just mentioned above, would be 

" system with functionally dedicated processors, which could correspond to 

" so-called cluster network. A multiprocessor model corresponding to that 
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type of network has already been, studied by Jane W. S. Liu and C. L. Liu [LiL3] 

using deterministic analysis. However, further investigation is needed for 

various heuristic pre-set orderings, since the idea to use such computing 

networks in the future is under great consideration. 

Finally, we may conclude that the deterministic scheduling theory 

although it is always needed to predict the behaviour of systems where a 

guaranteed level of performance must be provided, it may be a supplementary 

tool for systems where the expected behaviour is more meaningful. In 

addition, because of the importance of producing informative worst-case 

bounds, we must always try to include in the analysis as many of the 

critical parameters, which affect the performance of the algorithm, as 

possible. 
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Consider a task system with n independent jobs to be scheduled on a 

homogeneous multiprocessor system with independent memories and a fixed 

number m of processors. Let UPD be the mean flow time of the schedule 

constructed by the P. D. algorithm, when the priority list is formed by a 

heuristic ordering procedure, and E'OPT be the mean flow time of an optimal 

schedule. 

For the cases where the priority list is constructed by the RAND, LMF, 

LTF or LMLT ordering rule, UPD and ZIOPT are given as follows: 

m Q. (Fi qi t 
W (n! t' + (nl-l)t + +t PD i2 n' i 

and 

m qj qi 
(t + t'+ OPT 12 

Following a similar analysis with the one used previously to prove 

Theorem 5.3.1 the next theorem is established. 

Theorem 1.1: If the priority list is formed by the RAND, LMF, LTF or IMLT 

ordering rule, then 
W PD 

< ax 31 wOPT m 

where n' max {n! } 
max 1 

The following example shows that the worst-case performance of the P. D. 

algorithm under the ordering rules mentioned in Theorem I. 1 can be approached 

asymptotically. 

Example I. l: Let the task system (J, {m 
i }, {t 

i 
}) be defined by: 

i ir+l : (IP i+l 
J, X), 0, <i, <M-l 

i ir+j : (1p i+l 
1, C) , 0; 5i; ýM-l, 2ýj, <r, 

Fj F- Fý a QI (3- q* t 
Here, T (Y t 1, <j, <n. Similarly T. =a 

I=t 1A -ci 4. =ý i 
L. 

j= j= j, 3jj Ui 
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where n=mr, ni =r for i=j(j)m, {F-', X}Eýý and E<<X. 

Clearly, the priority list Ll=(J,,, J 2"***, 1n) is in LMF or LMLT ordering, 

whilst the priority list L 2= (i lljr+llj2r+ll***"J(m-l)r+l-' 1 2-' 1V... 'j r 'i r+2'**" 
i 2r-- ., j (m-I)r+2P"*'Jmr ) is in LTF ordering. We can choose as RAND ordering 

any of these two lists. The schedule resulting from the priority list Ll or 

L 21 when the P. D. algorithm is used, is shown in Fig. I. I. The corresponding 

optimal schedule is given in Fig. I. 2. 

x (r-1)e 

p2 

3' ... 

r+1 2 
I. 

"" 

J ".. - 

(m-1)r+1 
__________________ 

FIGURE I. l: Worst-case schedule to illustrate Theorem I. I. 

(r-1) x 
C -� 

p2 
r+l 

T . .1 
FIGURE 1.2: Optimal schedule to illustrate Theorem I. 1 
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The ratio of the mean flow times of these two schedules is 
m y [rX+(-r-l)e+... +2E: +c] W 

PD i=l mrX+f 
1 

(C) 

OPT 

But, 

m 
{rc+(r-1)s+.. 

1=1 

() Dn 

mx+f 2 (C) 

lim r= n' 
c-+O W OPT mx max 

which is the value predicted by Theorem 1.1. 

Equality in Theorem I. 1 holds only if n' =1. max 

Furthermore, let the priority list be in STF ordering. Then, ZPD and 

wOPT are given by 

m ai q- -@ (Ti (n! - 1) t PD i n! 1 (n! -I) 

and 

(1.1) 

v 

m G- [n:. ' ]G 
I_LI [(t'+t'+... +t' )+2(t' +... +t - (t +... +t 'OFIT 12vV. +1 2v v [n.! n! 

.v]v v1vI V. +l V. 

or 
(1.3) UOPT >' (tll+tl2+***+tn') 

G 
t where v. =max ft 1, t , <t and ti =t =0 for i=lCl)m. i n. n. nI+l J EG iv 

71L] 1 
L 

Consequently, using a similar analysis as in Theorem 5.3.3 the 

following theorem is derived. 

Theorem 1.2: If the priority list is formed by the STF ordering rule, then 

(v 1) n' +1 PD 
< min max vI max 

2 EOPT 
2 

Obviously, the value of the second factor is less than the value of 

the first if n' 
3m 

- 1. Equality holds only if n' =1. max'< 
[ ý2] 

max 
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Finally, let the priority list be ordered by the LMST rule. Then, 

md Z are bounded respectively by wPD ý OPT 

m-1 Fi F.. F. 
j< [(k+1)t +(k+2)tl+... +(k+n )tl ]+(t m +2t m +... +n tm PD 12in12mn 

and 
m 

Fn, /i] Fs 
ti +... +tFi Z; 

OPT >' (r-I)i+l ri i=l r=l 
or 

m F- Fj F.: 
- >1 I (t 1 +t I +... +t 1 
WOPT 12n 

Fi Fi Fi F 
where k= max {n! -n t >'t >,... >, t and ti t10 for 1(1)m. 

1*i, <m 112nn1 +1 ni 
i] 

i 

Again, using a similar analysis as in Theorem 5.3.5 the following 

theorem is established. 

(1.4) 

(1.5) 

(1.6) 

Theorem 1.3: If the priority list is formed by the LMST ordering procedure, 

then we have 

PD rk 
< min max max max -+ 

[M (M 
UOPT 

fr 

m Flii 

MI 

mj 
(n + 1) n +1 

ax max k+ 2""L 
11,2 

<i, <m 

Moreover, the bound is a best possible if k=O. This can be [nm 
_i_ 

Im 

2 -'M MI 

realised by considering the next example. 

Example 1.2: Let the task system (cT, {m 
I 

Ift 
i 

1) be defined by: 

(1p i 
Ix, 

(1p 
m I'l), 

1jm-1 

m. jm+X-1 

where )OEZ+, X=rm=n 
m 

and n=m+X-1. 

Obviously, the list L=(JljJ2-"**' in) is in LMST ordering. The schedule 

resulting from this list, when the P. D. algorithm is used, is shown in Fig-I-3. 
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whereas the corresponding optimal is given in Fig. 1.4. 

p2 

FIGURE 1.3: Worst-case schedule to illustrate the bound m- 
(M-I)l 

nI 
in Theorem 1.3 21 Ell 

IM 

t: 01 

p1 
[Jnl 

p2 

p 

r r+X 

Jn . Ji 
I 
/ 

4. 
. 1.1 1"1 / 

LI 

"I. II // 

". " JTn_1 

FIGURE I. 4_: Optimal schedule for the given task system in Example 1.2 

t: O 12 X-1 x 
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The ratio of the mean flow times of these two schedules is: 

w PD m[2(m-l)+(n m +1)] 
-'YOPT 2 (m 2- 

1) + (n +M) 

which by our choice of n, can be made to approach m- 
(M-1) 

m [nm 
2 

tm 

MI 
arbitrarily close. 

The bound of theorem 1.3, for k=O becomes 

PD < min max 
n max 

4-1 

Z5 OPT M+l 
f2 

<i, <m 2 
[ý±2 

In addition, if k=O and ni>, ni+,, 1, <i, <m-1, then, L-) PD =Z3 OPT (i. e., LMST ordering 

produces optimal schedules). 

Now, let Z PD* be the mean flow time of the schedules constructed by the 

P. D. * algorithm, when the priority list is formed by a heuristic ordering 

procedure. 

Clearly, when the priority list is formed by the RAND, LTF or STF 

ordering rule then, @ PD* and 5 
OPT are bounded to their corresponding values 

in the set of inequalities (1.1)-(1.3). Therefore, the following theorem 

can be established. 

Theorem 1.4: If the priority list is formed by the RAND, LTF or STF ordering 

rule, then 
w PD* 

(v 
i- 1) n' +1 

ý< min max v 
w nil OPT 2F 

F71 

If the priority list is in the RAND or LTF ordering then the bound 

(V. - 1) 
max V. is a best possible one. This can be realised by 

1, <i, <Mf I- 
2 

considering the Example 1.2. On the other hand, if the priority list is 

in STF ordering, then the P. D. and P. D. * algorithms produce identical schedules. 
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However, when the priority list is in a LMF, UILT or IMST ordering 

then the values of EiPD* and -60PT are bounded as their corresponding ones in 

the sets of inequalities (1.1)-(1.3) as well as (1.4)-(1.6). Such a 

- and leads to the establishment of the behaviour of the quantities wPD ZOPT 

next theorem. 

Theorem 1.5: If the priority list is formed by the LMF, IMLT or LMST ordering 

procedure, then 

PD* 
Fn 

1L 
+ 

OPT 
< min max max max li-r4 m-2 [n 

m1 

ýr LI 

n] 

- Lj (n n +1 
max 

ýJmax 
k+ 

(v n' 
max vi 

2 

V. - 

The bounds 
(M 

and Mýx V are best possible ones. 
il<: Ll<m 2 -M 2F1 

. U- m V. 1 
This can also be realised by considering the Example 1.2. However, schedules 

with k=O and ni >n i+l' 1-<i, <m-1, which have been produced by the P. D. * algorithm 

under the LMF, LMLT or LMST ordering rule are optimal ones. 
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Consider a task system (J, {mj, {t 1) with n independent jobs to be 

scheduled on a homogeneous multiprocessor system with independent memories 

and a fixed number m of processors. Let w QAD be the mean flow of the 

schedule constructed by the Q. A. D. algorithm, when the priority list is 

formed by a heuristic ordering procedure, and EiOPT be the mean flow time of 

an optimal schedule. 

For the cases where the priority list is constructed by the RAND, LMF, 

STF or LMST ordering rule, then following a similar analysis as the one used 

previously in Theorem 5.5.1, the next theorem can be established. 

Theorem II. l: If the priority list is in a RAND, LMF STF or LMST ordering, 

then w QAD < n' 
w OPT max 

Moreover, there are examples which approach the bound n' asymptotically. max 
In fact, Example I. 1 in Appendix I is one of them. However, the priority 

lists of that example must be modified so that the LMF, IMST or STF orderings 

are presented. 

Furthermore, let the priority list be in LTF ordering. Then, the 

values of MQAD and OPT are given by 

m (W - qj 
UQAD 

In 1n I 
and 

In i 'UOPT > )+ 2 
Vk 2v 

(t 
n. 1 n. 1 3. +l i 

[ ] 

V. +l 

[ 

V. 
v V v, VI 

or (11.2) 

m G. 
l l +... +t (tl+t 12 

(11.3) 
OPT n 

ýi ýi qi 
where v max{k. l, tIý: t 2 >,... >, t n' and t 

nl+l="' =0 for i=1(1)m. =t n l JJE G. 
[ 

j 
] 

v. V V. .I I 
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Consequently, the following theorem can be derived: 

Theorem 11.2: If the priority list is in LTF ordering, then 

cv 1) nt +1 (4QAD i- a < min max v (-_L_ X-- ,fn] 2x 

v 

w OPT 1, <i, <m 2i 

Equality holds only if n' =1. max 
Now, if the priority list is in LMLT ordering, then the values of UQAD 

and %PT are bounded as follows: 

m Fi Fi 
bi OAD 

(ti +2t 2 +... +n itn. ) 

and 

m 
Fni/i] 

'GOPT >, 
i=l 

or 

m E. rý F-. 
'30PT (t 1 +t 2 . +t n. 

) 

ri F4 Fi 
where t >, tl>,... >, t". and tl =... =t -0 for i=1(1)m. 12n1n+n 

As a -result, the following theorem can be established. 

Theorem 11.3: If the priority list is in LMLT ordering, then 

n +1 OQAD 
-< minj 

, 
max i max 

OPT m+ 2r-i 
2 

Schedules with n! =n., 1, <i, <m, which are produced by the Q. A. D. algorithm 11 

under the LMLT ordering rule are optimal ones. Moreover, the bound 

max 
Ii-1) is a best possible one. This can be realised by 

M+ 
[h i im 2i 

r2 I 

considering the following example. 

Example NJ: Let the task system (J, fm i ), It i 1) be defined by: 
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is 
1- 

+j -. (1pil , 
C) for 1, <i, <m-I.. 

i 
n-n +j : CIP 

m 
1,1) for 1, <j: ýn m, 

si =s i-i +ni i. s0 

where c is a very small positive quantity, , e<ni, 1, <i, <m-1, ni =n i+l' 1, <i, <m-2 

and n =rxm (n is a multiple of the number of processors). MM 
Clearly, the priority list L=(Jlsj 2"***' 1n) is in LMLT ordering. The 

schedule resulting from this list., when the Q. A. D. algorithm is used, is 

shown in Fig. II. 1, whereas the corresponding optimal is given in Fig. H. 2. 

M-1 

p 
m 

t: 0 

FIGURE II. l: The schedule of the Q. A. D. algorithm for the priority 
list L given in Example 11.1 

1n 
M- 1m 
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Pl 

M-1 

p 
m 

n1x F- rxl 

n-m 

r-1 

FIGURE 11.2: An optimal schedule for the given task system in 

Example II. 1 

The ratio of the mean flow times of these two schedules is: 

rm(rm+l) 
QAD 2+f1 

(C) 

w OPT m(r 
(r+ 1) 

+f 22 
But, 

WQAD rm+l m(r+l)-m m lim (M 
c-*O W OPT r+I r+1 

which by our choice of r can be made to approach (m - 
(M-1) ) arbitrarily close. 2r 

In the remainder of this appendix, let 15QAD* be the mean flow time of 

the schedule constructed by the Q. A. D. * algorithm, when the priority list 

is formed by a heuristic ordering procedure. 

Clearly, when the priority list is in a RAND or STF ordering, then ý3QAD* 

obtains the value given by equation (II. 1). Therefore, the following theorem 

can be established. 

Theorem IIA: If the priority list is in RAND or STF ordering, then 
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cv 1) n' +1 QAD* aax min max vi2 
OPT 2 

Rl 

vi 

There are examples which can approach the bound max vi- 
vi 

i, < m2 re'll 

1 

asymptotipally. Example II. 1 is one of them. 

On the other hand, when the priority list is in LMF or LMST ordering 

and the Q. A. D. * algorithm is used to construct the schedules, the values of 

-UOPT are bounded to their corresponding values in the inequalities W QAD* and 

(1.1)-(1.3) and (1.4)-(1.6) (see Appendix I). As a result, the following 

theorem can be proved. 

Theorem II. S: If the priority list is in LMF or LMST ordering, then 

WQA 
<min max max ax m- 

(M- 1) 
Fo 

ý1, 
I) +i -OPT 

<i, <M-l 

ým 
ri r 2r 

2 
TM 

(n +n +1 
max max k+2 (-ý-) 

fi, 

<i, <m- 

j211 

(v n' 
max V 

2 

Moreover, there are examples which can approach the bounds 

(vi -1) (M-1) 
max v- and m asymptotically; again, Example II. 1 

[h ni -i 
:L _i vm 

2v 21 ml 

1] 
is one of them. 

Now, if the priority list is in LMLT ordering, the value which bounds 

W QAD in the inequality (IIA) cannot be improved and so, the worst-case 

bound of Theorem 11.3 is valid even when the Q. A. D. * algorithm is used to 
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construct the schedules, However, if the priority list is in a LTF ordering, 

the Q. A. D. and Q. A. D. * algorithm produce identical schedules. Finally, note 

that schedules with n! =n 1, <i; 5m, which are produced by the Q. A. D. * algorithm i i' 

while the priority list is in a LMF, LMT or LMST ordering are optimal ones. 
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Consider a task system (J, fm i }'[t i }) with n independent jobs to be 

scheduled on a homogeneous multiprocessor s ystem with independent memories 

and a fixed number of processors. Let w PD be the completion time of the 

schedule constructed by the P. D. algorithm, when the priority list is 

formed by a heuristic ordering procedure, and w OPT be the length of the 

corresponding optimal schedule. 

Although such a computation model was examined by Kafura and Shen in 

[Kaf], [KSI] and [KS2], they established worst-case bounds for the P. D. 

algorithm which correspond to pathological situations and hence, they are 

not as informative as might be desired. In this appendix, we establish 

generalised worst-case performance bounds for the same algorithm when the 

priority list is in a RAND, STF, IMF, UIST, LMLT or LTF ordering. 

Theorem III. l: If the priority list is in a RAND or STF ordering, then 

w PD 
r+2+u2+ log m 

w OPT 
F2+ -1) 2 

for l, <z, <(m-l), and 

PD 
c2 for Z=m. 

w OPT m 

This bound can be obtained by following a similar analysis as the one used 

in Theorem 6.2.1. Further, similar task systems with the ones used in 

Examples 6.2 and 6.3 can cause the algorithm to deviate from the optimal 

performance by the values given in Theorem III. l. Thus, the bounds are best 

possible ones. However., notice that for k=l, we obtain the corresponding 

worst-case bound presented in [Kaf] and [KS2]. 

Now, if the priority list is in a LMF or LMST ordering then, following 

a similar analysis the one given in Theorem 6.2.3 we can establish the 

following theorem. 

Theroem 111.2: Let the priority list be in a LMF or LMST ordering. Then, 

PD 
-<2 

OPT 
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Moreover, this bound is a best possible one and can be realised by 

considering a task system similar to the ones presented in Examples 6.4 

and 6.5. For k=m, (w 1w ), <2-Iwhich is the bound proved by Kafura and PD OPT m 
Shen for this case. 

Furthermore, if the priority list is in LMF ordering and the jobs with 

z3 =i, 1ýi, <m, are arranged in LTF ordering, then the following theorem can be 

proved. 

Theorem 111.3: Let the priority list be in a LMLT ordering. 7ben, 

w PD 
;ýI+II. for k=1,2 and 

OPT kl+l (kl+l)k 

w PD 

OPT 
< max kl+l 

for 3: g; ým. 

The bound. is a best possible one. A similar task system with the one 

presented in Example 6.6 can be used to show that the first factor of the 

bound is attained. On the other hand, the following example shows that 

the second factor of the bound can also be reached. 

Example III. I: Consider the task system (J, {m 
J 

), {t where the jobs 

with at most kJ =P, are defined by: 

(IP I 

(IP I 
i (k 1 +1) Z 

(IP i 

(IP I, (I 
k kl+l 

and J (1ptl 

The priority list L= (JIIJ21**"J(kl+l)(Y, 
-l)+2 

) is in a LMLT ordering. 

The schedules resulting from the P. D. algorithm and the corresponding optimal 
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scheduling process are shown in Fig. 11I. 1 and Fig. III. 2 respectively. 

However, the ratio of the completion times of these schedules is: 

w PD I 

OPT 
kl+l 

which s the value of the second factor of the bound given in Theorem 111.3 

I 2t-l 
t: O (kl+l)X (kl+l)Y. 

p2 

p 

p2 

p 
Z-1 

Pt 

k'-l -ýk ý+l 

J. Z+l i 3(P. -I)+l 
J(kýf 1)(R, 4- 

ý2. 
1 9, +2 

1 
3(Y. -l) 

J(kl 
+ 1) (k -I' 

1 2 (ZI) +1 2(9-1)+2 

FIGURE III. I: The schedule constructed by the P. D. algorithm for the 

priority list given in Example III. 1 

'X- 

J. 2 

IJ3(. 
Q-I)+2 ... oýý (2,4) +2 

Z-1 U-2 

12 (f, - l)-a 
ý(Z4)+2 J2(9, 

-I)+3 1) +3 

t: O I/ (k 1 +1) 2/(kl+l) 3/(kl+l) (1-1/(kl+l)) I 

FIGURE 111.2: The optimal schedule for the task system given in 

Example III. 1 
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In the case, where X=mý3 and kl=l we obtain (w 
PD/wOPT) <2-(l/(m-1) 

while for kl=l and k=2 we get (w 
PD/W OPT) <5/4. These bounds have been 

proved as the worst-case bounds when the priority list is in a LMLT 

ordering in [Kaf] and [KS2]. 

Finally, if the priority list is in a LTF ordering then in order to 

obtain the lower limit of the worst-case performance for 1: ýZ; ým-l as well 

as prove the upper lir. it for k=m, a similar analysis to the one used in 

part (i) of Theorem 6.2.5 is followed. 

Theorem IIIA: Let the priority list be in a LTF ordering. Then, for 

1ýz; ýM-l, 

and for k=m, 

fw PDJ m max 1+H -H =I+ kn (: ý) ý -Wo -PT fMkk 

W PD 
=1 k*=I, 2, and 

wOPT 

W PD 1 
'< 1+ -L k*: ý3. 

W OPT k* k*m 

For Z=1 we have max 
fW PDJý: H =kn(m), which is the lower limit provided in 17WOPTf m 

[Kaf) and [KS21- On the other hand, for L=m the bound is exactly the same 

with the one derived in [CS2] for the same algorithm, when the classical 

homogeneous multiprocessor model is examined. However, our analysis is 

much simpler than the one used in [CS21 to prove the bound. In addition, 

this bound is a best possible one. This is shown in the following example, 

which is an extension of the examples given in [CS2]. 

Example 111.2: Consider the task system (J, {m i ), {t where the jobs are 

defined by: 

11: (IP 
mI, 

(4m-2)) 

:. (IPM_j+ll, (4m-(j+l))), 

: (1p 
i+l 

I, (3m-i)), 

j=2(1)m 

(1) (2m- 1) , i= 1 (1) (M- 1) 
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and i (1p 
m 

1,2m), j=2m(l) ((k-l)m+l) 

where k >, 4. 

Clearly, the priority list L=CJ,., J 2'* * *' i (k*-l)m+l 
) is in a LTF 

ordering. Fig. III. 3 and Fig. IIIA show the schedules resulting from the 

P. D. algorithm and the optimal scheduling process respectively. 

k*-3 2 (k*m+m- 1) 
t: O 3m- I 6m- 2, I 

p2 

p3 

M-1 

p 
m 

m M+l 3m ... (k*-l)m 

M-1 m+2 3m-1 (k*- I) m- I ýZX 

m- 2 m+3 3m- 2 

12 2m-1 2m+2 ... (k*: -2)m+2 

2m 2m+l (k*- 2) m+ I 
J(k*- 

m+ I 

FIGURE 111.3: Schedule resulting from the P. D. algorithm for the 

given priority list in Example 111.2 
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k*-3 

p2 

p 
m-2 

p 
M-1 

p 
m 

t: O 3m 6m-1 8m 2(k*-I)m 2k*m 

M-1 m 2m- 1 

m-2 M+l 2m+3 (k*-Zm+3 

2 2m- 3 3m-1 
J(k*-I)m-1 

1 2m-2 3m J(k*-I)m 

2m 
I 

2m+l 2m+2 
I 

3m+l 
I J(kt-l)n+l 

" 
- I- 

FIGURE IIIA: Optimal schedule for the given task system in 

Example 111.2 

Thus, the ratio of the completion times of the above schedule is: 

(W PD 
/W OPT )=I+(I/k*)-(I/(k*m)), which is the value of, the worst-case bound 

of Theorem IIIA for k=m. 

For k*=3, a similar example with the one presented in [Gr2] can show 

that the bound is a best possible one for this value of k* as well. 
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Consider, as in the previous Appendices a task system (J, fm 

with n independent jobs to be scheduled on a homogeneous multiprocessor 

system with private memories and a fixed number of processors. Let W QAD 
be the completion time of the schedule constructed by the Q-A. D. algorithm, 

when the priority list is formed by a heuristic ordering rule, and wOPT be 

the length of the corresponding optimal schedule. 

Theorem IV. l: If the priority list is in an arbitrary ordering, then 

COQAD 
w 

OPT 

where vx and x are as defined in Theorems 5.3.1 and 6.3.1, respectively. 

A similar argument with the one given in Theorem 6.3.1 can prove this 

ý---heorem. 

Moreover, the STF, IMF, LMST and LMLT ordering rules can not provide 

any improvement over the worst-case performance of an arbitrary ordering. 

Actually, the task system in Example 6.8, when bi =b 1+1 , 
1, <i, <m-1, can be 

used to support the above statement and also to show that the bound is a 

best possible one. 

Theorem IV. 2: Let the priority list be in a LTF ordering. Then, 

w 
max 

fwQAD. 
> I+H -Ht* = 1+kn(!! ), for I*k*, <m-1, and Iýi 

OPT m 

WQAD 
<+ 1-11 

_p if T: ým-l and 
OPT T+1 

QAD 
+k otherwise, for 1*=m. 

wOPT T+1 

A similar analysis with the one used in Theorem 6.3.3 can prove the 

above theorem. Moreover, when Z*=m both bounds are best possible 

ones. This is realised from the following example. 

Example IV. l: Consider the task system (i, fm i 
}, ft 

i 
1), where the jobs are 

defined by: 
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(1p 
mI, zm=-) k+l 

I 
and 1+(j-l)m+i : (1pil, =--) , i=1(1)m, j=l(lfk. 

k+l 

Clearly the priority list is L=(J l'j2'**. 'j6+1) is in a LTF ordering. 

The schedule resulting from the Q. A. D. algorithm is shown in Fig. IV. 1. 

Moreover, an optimal schedule of length 1 it can be easily formed. 

k 

Pl 

p 
M-1 

p 
m 

JK(m-l)+2 J2 

Jým 
... 

JýM+l 
M+l 

t: 0 (-J) + 
k+1 k+l k+l 

FIGURE IV. l: Schedule constructed by the Q. A. D. algorithm 
for the priority list given in Example IV. 1 

Therefore, the ratio of these two schedules is 

W QAD 
+ m-1 

W OPT iý+ i 

which is the worst value of the corresponding bound given in Theorem IV. 2 

for V=m and 
7K->. 

m- I 

When ! -<m-1, we can show that the worst value of the corresponding 

bound. is also attained. Actually, we need only to consider the previous 

example with the time requirement of job J1 to be 1 instead of m/(k+l), in 

order to show that the bound is a best possible one. 
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Consider a task system (J, [t 
ij 

]) with n independent jobs to be 

scheduled on the heterogeneous multiprocessor system with independent 
r 

memories, as described in section 7.2. Let {A 
rs 

}= UF 
ks, 

1ýr, <m, 1; ýs, <nc, 

. Z= 1 

where F ks 
is the set of jobs with k jý k, I: Mým, 1, <j; ýn, which belong to the 

s 
th 

class of jobs and nc is the number of classes in the task system. 

Also, let T 
rs 

be the sum of the time requirements of all the jobs belonging 

to the set A 
rs , when they are run on a standard processor. Finally, let 

b ks be the processing speed of the R th 
processor for the s 

th 
class. 

We define w and t as: 

w= max 
max nc T 

rs (V. I) 
r (max [b Iýrý<M 

fs=l 

<r 
is 

and 

max 2-- Max {T 
1, <j, <n 

Now, we say that 

wMIN = maxltmax'wl (V. 2) 

is the minimum completion time of the jobs in the task system (J, [t ij]) - 

The first term guarantees that the minimal length is at least as long as 

the maximum of the minimum time requirement of all the jobs in the task 

system. This is necessary since no parts of the same job can be executed 

simultaneously. The second term in the definition of wMIN insures that 

there are sufficiently large memories available for enough time to 

satisfy the memory requirements of the jobs. The following theorem 

establishes that OMIN is a lower optimal bound for the final finishing 

time of any task system. 

Theorem: For the model under investigation, 

w OPT >' OMIN * 

Proof: Let us assume that 

w OPT < 0MIN * (V. 3) 

Then, because of the equation (V. 2) we have 
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w OPT < maxit 
Max 

wl 

and since, w OPT >'t max 
we have 

w OPT Wj- 

or because of the equation (V. 1) 

nc T 
rs wOPT "ý Oax r(max lb 77 

1, <r, <m 

01 

1: ýi, <r 
is 

Let k be the smallest integer such that 

nc T ks Yk 
(max lb IT 

S=l 1, <i, <k 
is 

Thus, the inequality (VA) becomes 

nc T ks 
wOPT <I k(max {b 

S=l 1, <i, <k 
is 

On the other hand, if ws1, <s, <nc, is the theoretical optimal OPT' 

completion time of the jobs in the set A ks' we have 

T kw I( max lb. 1) 
kl OPT ll 

2 
T k2 kwOPT ( max fb 

i2 1, <i, <k 

and Tw nc ( max fb. 1) 
k, nc OPT 1, <i, <k i, nc 

Furthermore, the summation of the inequalities (V. 6) will give us 

an inequality of the same direction, which can be expressed as 
I 

nc T ks x 
k(max (b. wOPT 

S=j is 

(V. 4) 

5) 

(V. 6) 

since, >Wl +... +w nc This inequality contradicts the inequality w0iý OPT OPT' 
(V. 5) and hence (V. 1) as well. Thus, w OPT>'OMIN and consequently, OMIN 

is a lower optimal bound for the final finishing time of a task system. 


