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Abstract 

The present research focuses on the development and computer implementation 

of a novel threedimensional, anisotropic turbulence model not only capable of 
handling complex geometries but also the turbulence driven secondary currents. 

The model equations comprise advanced algebraic Reynolds stress models in con- 

junction with Reynolds Averaged Navier-Stokes equations. In order to tackle the 

complex geometry of compound meandering channels, the body-fitted orthogonal 

coordinate system is used. The finite volume method with collocated arrange- 

ment of variables is used for discretization of the governing equations. Pressure- 

velocity coupling is achieved by the standard iterative SIMPLE algorithm. A 

central differencing scheme and upwind differencing scheme are implemented for 

approximation of diffusive and convective fluxes on the control volume faces re- 

spectively. A set of algebraic equations, derived after discretization, are solved 

with help of Stones implicit matrix solver. 

The model is validated against standard benchmarks on simple and compound 

straight channels. For the case of compound meandering channels with varying 

sinuosity and floodplain height, the model results are compared with the pub- 

lished experimental data. It is found that the present method is able to predict 

the mean velocity distribution, pressure and secondary flow circulations with rea- 

sonably good accuracy. In terms of engineering applications, the model is also 

tested to understand the importance of turbulence driven secondary currents in 

slightly curved channel. The development of this unique model has opened many 

avenues of future research such as flood risk management, the effects of trees near 

the bank on the flow mechanisms and prediction of pollutant transport. 

Key words: Compound meandering channel flows, Turbulence modelling, Collo- 

sated finite volume method, Body fitted orthogonal grids 
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CHAPTER 1 

Introduction 

1.1 Introduction 

The ability to determine the overbank flow behaviour of rivers and their associated 

flood plains is a vital prerequisite in the design of flood prediction, warning and 

alleviation schemes as well as for the planning of river/floodplain management 

strategies. Global warming and climate change has increased the frequency and 

severity of flooding in the UK and in other parts of the world. This has added 

to the urgency in developing a better understanding of two-stage river/floodplain 

flows. The investigation and analysis of these flows leads to the requirement for 

a design tool that is capable of predicting the flow field crucial for the prediction 

of flooding. 

In traditional one-dimensional (1D) methods, only the discharge, or section- 

averaged velocity, is calculated for a given flow depth. Thus, only one value is 

provided for the whole section or subsection. The calculation is performed via 

a flow resistance equation with empirical corrections for energy dissipation other 
than boundary friction (Rameshwaran and Willetts (1999)). The accuracy of 

such 1D methods is restricted by the assumptions they make about the channel 

geometry, flow interaction, boundary roughness and vegetation. Given these 
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limitations, higher dimensional methods are required to successfully address the 

river engineering issues associated with two-stage channels. 
In recent years, two-dimensional (2D) and three-dimensional (3D) computa- 

tional fluid dynamic (CFD) methods have been increasingly used in river engi- 

neering in order to improve understanding of turbulent flow behaviour and de- 

velop design tools for predicting the flow field and bed shear stress (Morvan et at. 
(2002), Rameshwaran and Shiono (2002), Rameshwaran and Shiono (2003)). 

Shiono and Knight (1989) and Shiono and Knight (1990) presented a 2D 

method for calculating the variation in depth-averaged velocity across a two- 

stage channel, based upon approximate forms of the Reynolds Averaged Navier- 

Stokes (RANS) equations and using a simplified eddy viscosity model. Such 2D 

solutions are particularly important when detailed main channel and floodplain 

flow distributions are required, as in the prediction of sediment transport. In 

compound channels with overbank flow, turbulence anisotropy drives secondary 

circulation; a phenomenon that is particularly noticeable in the region of the 

main channel/floodplain interface. A number of 3D turbulence models have been 

applied to this, notably algebraic stress models (Krishnappa and Lau (1986), 

Naot et at. (1993b), Cokljat and Younis (1995)), non-linear k-e models (Shiono 

and Lin (1995), Pezzinga (1994)), a non-linear k-w model (Sofialidis and Prinos 

(1999)) and large eddy simulation (Thomas and Williams (1995)). 

Until today, little efforts had been made to simulate turbulent flow in curved 

compound channels numerically. Wilson et at. (2002) recently used a 2D depth- 

averaged finite element method, which predicted lateral free surface elevations and 
depth-averaged velocity for reach-scale flows in meandering compound channels 

with straight floodplain banks. They pointed out that 3D and secondary current 

effects may also become important for velocity prediction, particularly in the case 

of meandering channels, but did not rule out the possibility that a more finely 

resolved 2D code would be sufficient to incorporate these effects. 
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1.2 Identifying the Research Gap 

Further effort is yet to be expended to use various turbulence models to predict 

turbulent flows in curved channels with compound cross-sections. Most turbu- 

lence models applied thus for have been particularly tuned to predict correctly 

the magnitude of the secondary currents in simple cross-section (e. g. square) 
duct flow or a straight compound open-channel flow. A model that is well tested 

for duct flow may however need further investigation before being applied to pre- 
dict flows, where either the channel curvature or the cross-section configuration 
is changing. 

Since the Reynolds stress model is based on a set of differential transport 

equations, which increase the complexity of the simulation, simple algebraic stress 

models have often been chosen for numerical modeling of 3D, curved compound 

channel flows for reasons of computational economy. Among these models, the 

Launder and Ying (1973) algebraic stress model (LY model) has been favoured 

especially for calculation of the flow in channels with complex geometrical cross- 

sections. The nonlinear k-e (NLKE) model (Speziale (1987)) was applied in a 

curved simple crosssection duct flow calculation by Hur et al. (1990) and generally 

agrees with measured secondary flows; and the NR model (Naot and Rodi (1982)) 

was used by Naot et al. (1993b) for flow in an asymmetric compound channel. 
The use of a boundary-fitted orthogonal curvilinear coordinate system can 

take into account the impact of channel curvature in a mathematical way without 

using additional terms in the governing equations and turbulence stress models. 
Though generation of 3D orthogonal grid is challenging, if done it offers distinct 

advantages over finite element and unstructured grid. Due to the simplicity in 

computer programming, it is also easier to incorporate higher order turbulence 

models like LY, NR and NLKE to simulate compound meandering channel flow 

with orthogonal grids. 
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1.3 Aims and Objectives 

The principal aim of this research is to develop a hydraulic simulation model for 

open channel flows using the collocated Finite Volume Method as a numerical 

technique and an orthogonal coordinate system to tackle complex geometries. 

The detailed research objectives are: 

" Develop a 3D, fast and efficient model to simulate flow mechanisms within 

rectangular, compound and compound meandering open channels. 

" Incorporate existing anisotropic algebraic stress models to capture the sec- 

ondary currents in straight, rectangular and compound channels. 

" Simulate the velocity profiles and secondary currents in straight as well as 
meandering channels with varying sinuosity and relative depth. 

" Validate the developed model for various scenarios with the help of available 

experimental data. 

" Investigate the effects of anisotropic turbulence in the compound meander- 
ing channel. 

1.4 Thesis Structure 

The scope of the thesis is outlined as follows: 

" In Chapter 2, the current knowledge of the flow characteristics for complex 

channel geometries such as straight channels with rectangular and com- 

pound cross sections and meandering channels is reviewed. Various aspects 
of numerical modelling including recent trends are also covered. 

" The governing equations and boundary conditions describing the flow phe- 

nomena within open channels are discussed in Chapter 3. 
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9 In Chapter 4, a solution technique for the Reynolds Averaged Navier Stokes 

equations, a finite volume numerical method and relevant issues are dis- 

cussed in detail. 

. The process of mathematical mapping from the physical plane to a compu- 

tational plane, the governing equations in an orthogonal coordinate system 

and simulation strategy on the transformed plane are discussed in Chapter 

5. 

9 In Chapter 6, different test cases of model development are presented, which 

cover rectangular and compound channels and compound meandering chan- 

nels flow 
-simulations. 

9 In Chapter 7, the conclusions of the present work are summarised and 

possible future enhancements of the work are also discussed. 
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CHAPTER 2 

Literature Survey 

2.1 Introduction 

To date, an extensive investigation has been carried out to understand the com- 

plex phenomena of turbulent channel flows. However, it is still far from reaching 

definitive conclusions. This is due to the complexities involved in turbulent flows 

which depend on various geometries as well as hydraulic conditions. 
In this section, a brief and the latest literature review is presented covering 

following points to create a base for the present research: 

" Flow mechanisms in rectangular channels, 

" Flow mechanisms in compound channels, 

" Flow mechanisms in meandering channels; and 

" Numerical modeling of compound meandering channels. 

In each of these sections, issues such as distribution of longitudinal velocity, 

secondary circulations, main channel/floodplain interaction and boundary shear 

stress are discussed. In the last, recent developments in numerical modelling of 

compound meandering channels are also presented. 
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Figure 2.1: Longitudinal velocity distribution and secondary flow pattern in a closed 
duct. The secondary currents cause bulging of velocity contours in the corner of duct. 
(after Speziale (1987)) 

2.2 Rectangular Channels 

Before understanding complicated flow mechanisms in a meandering channel, 
its vital to gain a foothold in a straight channel with rectangular cross section 

and compound channel with closed and open free surface. The following section 
discusses the flow distribution within rectangular closed and open channels. 

2.2.1 Closed Channel 

In fully developed turbulent flow through a closed channel (see Figure 2.1), a pair 

of vortices is formed in each corner of the duct and their orientation is from the 

corner towards the wall bisector. At this position, due to the plane of symmetry, 
the secondary currents is deflected and changes direction, moving low momentum 
fluid from the wall region towards the center of the channel. This occurrence has 

a direct effect on the longitudinal velocity distribution. 

To illustrate this effect of secondary currents on the longitudinal velocity 
distribution, a sketch of the longitudinal velocity distribution is shown in Figure 
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2.1. As would be expected, the maximum velocity occurs at the center of the 

duct. Due to the presence of secondary currents, high momentum fluid is carried 
from the core region towards the corner of the duct, causing the velocity contour 

to bulge towards the corner. 

This type of currents is known as Praudtl's second kind which is turbulence- 

driven and resulting from the anisotropy of the turbulent stresses. Its magnitude 
has been observed to be mostly between 1- 4% of the bulk mean velocity in most 

straight ducts with non-circular crosssection. However, its effects on wall shear 

stress distribution and heat transfer rates are quite significant. 
This behavior, known as corner flow has been observed by many researchers 

(Speziale (1987), Nikuradse (1933), Launder and Ying (1973) and many others). 
A comprehensive review on the subject is given by Bradshaw (1987). 

2.2.2 Open Channel 

For rectangular open channels, Nezu and Rodi (1993) found that secondary flow 

circulation patterns are different from those observed in closed channel flows, due 

to the presence of the free surface. In case of non-circular conduits, the secondary 
flow circulations transports high momentum fluid towards the corners, leading to 

a bulging of velocity contour lines towards the corner. This clearly demonstrates 

the effect of secondary flow circulations on the primary flow behavior. 

In simple open channel flows, secondary motions cause the maximum primary 
flow velocity to lie below the free surface. This phenomenon is widely referred to 

as velocity dip effect (Nezu and Nakagawa (1993)). The secondary flow circula- 

tions near the free surface is directed away from the bank and it transports the 

fluid with relatively low longitudinal momentum towards the centre point of the 

channel, leading to the velocity dip effect (Naot and Rodi (1982)). 

Figure 2.2(a & b) show the typical secondary flow circulations observed by 

Nezu and Nakagawa (1993) in rectangular closed and open channel with aspect 

ratio (B/H) approximately equal to 2.0, where B is width and H is height of the 
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ondary currents; (c) & (d) Longitudinal velocity isovels for closed and open channel 
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Nezu and Nakagawa (1993)) 
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Figure 2.3: Bed shear stress distribution in closed and open channels (after Tominaga 
and Nezu (1990)). Secondary circulations cause wavy distribution of bed shear stress 
in transverse direction. An increase in bed shear stress implies the downward flow 

and vice versa. 

channel. The corresponding isovels of the primary velocity fields which demon- 

strate the velocity dip effect (for open channel) and the bulging of velocity contour 
(for closed non-circular conduit) are also shown in Figure 2.2(c & d). 

Nezu (2005) explain the effect of secondary flow circulations on the bed shear 

stress. Nezu (2005) stated that secondary flow circulations cause a wavy distri- 

bution of bed shear stress in the transverse direction. An increase in bed shear 

stress implies downward flow whereas a decrease implies up-flow. This is also 

clear from Figure 2.3, which shows that at the centre line of a duct, bed shear 

stress attains a local minimum whereas, in case of open channel, bed shear stress 

attains a local maximum at the same location. 

In simple open channels, the small magnitude (1 to 3% of the primary mean 

velocity) of secondary velocity components (transverse and vertical components 

of velocity) makes it very difficult to measure them accurately (Tominaga and 
Nezu (1990)). 
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Tominaga et al. (1989) used a calibrated hot-film anemometer to measure 

secondary flow circulations and three-dimensional turbulent structures in rect- 

angular and trapezoidal open channels. Their research aimed at investigating 

particularly the effects of free surface, channel shape and boundary roughness 

on secondary flow circulations. They stated that secondary flow circulations in 

rectangular open channel comprise of free-surface vortex and bottom vortex, sep- 

arated at about y/H = 0.6 where y is height and h is water depth, when B/H 

equal to 2. They attribute the velocity dip effect to the free surface vortex, as 
demonstrated by previous researchers like Nezu and Rodi (1993). 

They further confirmed that the circulations patterns are different between 

rectangular and trapezoidal cross-sections and that the velocity dip effect is not 

seen in the trapezoidal cross-section. The uniform boundary roughness condition 

of the channel was found not to change significantly the pattern of secondary flow 

circulations. 
In general, the secondary flow circulations were found to affect the distribution 

of primary mean velocity, turbulence intensities and Reynolds stresses and the 

spanwise distribution of the boundary shear stress. 

2.3 Compound Channels 

Many rivers and estuaries by their nature or design are classified as compound 

channels. A compound channel is composed of a main channel and a floodplain. 

Turbulent flow in a compound channel is characterised by a shear layer generated 

due to the velocity difference between the usually faster flow in the main channel 

and the slower flow on the flood-plain. In the shear layer, there exist a not only 

vortices in the vertical direction but also in the longitudinal direction. These 

vortices affect the mean velocity profile and mixing process considerably. 
Shiono and Knight (1991) illustrated the overall flow mechanism that con- 

tribute to the transport and mixing processes in compound channel flow which 

is shown in Figure 2.4. 
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Figure 2.4: Sketch of the compound channel flow with trapezoidal cross section 
showing the overall flow mechanism that contribute to the transport and mixing 
processes. (after Shiono and Knight (1991)) 

2.3.1 Longitudinal Velocity Distribution 

The modification of the longitudinal velocity distribution due to horizontal vor- 
tices created by the turbulent interaction between the main channel and the 
floodplain was first recognised by Sellin (1964) followed by Rajaratnam and Ah- 

madi (1979). 

Tominaga et al. (1989) described the flow behaviour as: 

"The isovel lines of the longitudinal velocity bulge upward in the vicin- 
ity of junction the main channel with the flood plain. The velocity in 

this region is decelerated due to low-momentum transport by the sec- 

ondary currents away from the wall. On both sides of this decelerated 

region, the isovel lines bulge toward the wall due to high-momentum 
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transport by the secondary currents. " 

To illustrate the longitudinal velocity distribution in a compound open chan- 

nel, the results obtain by Tominaga and Nezu (1991) are shown in Figure 2.5. 

2.3.2 Secondary Currents 

As shown in Figure 2.5, strong upflow, which is associated with a pair of longitu- 

dinal vortices, is generated in the main channel/flood-plain junction area. Exis- 

tence of this strong secondary flow around the main channel/flood-plain junction 

area in a compound channel is demonstrated by Knight and Shiono (1990) and is 

recognised by many other researchers (Cokljat and Younis (1995), Lin and Shiono 

(1994) and others). 
Shiono and Knight (1989) identified two major secondary flow circulation 

cells in the compound straight channels as shown in Figure 2.6. A strong up- 
flow inclined towards the main channel from the top edge of the floodplain and 
downflow in the corner of the main channel. They stated that these secondary 
flow circulation cells change strength as the main channel side slope changes. In 

the floodplain region only one large secondary flow circulation cell was observed, 

which extends laterally to a considerable distance. 

2.3.2.1 Generation of Secondary Currents 

The streamwise vorticity equation is often used by researchers to explain the 

generation mechanisms for Prandtl's first and second kinds of secondary flow 

circulations. 
During the early research, Brundrett and Baines (1964), Gessner and Jones 

(1965) and Perkins (1970) have shown that, in theory, it is mainly the inequality 

between the normal turbulent stresses and the gradients of this inequality that 

induces the secondary flow circulations (Naot and Rodi (1982)). This anisotropy 

of turbulence is caused by boundary roughness conditions of the bed, sidewall 
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Figure 2.5: Compound channel flow profiles for different relative depths (h/H): (a) 
Secondary currents; (b) Longitudinal velocity contours. As relative depth decreases 
the interaction between main channel and flood plain decreases. This leads to less 
bulging of longitudinal velocity at floodplain/main channel junction. (after Tominaga 
and Nezu (1990)) 14 
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Figure 2.6: Illustration of secondary circulations in compound channels (a) with rect- 
angular cross section (b) with trapezoidal cross section. Secondary flow circulation 
cells strength increases as the main channel side slope increases (after Shiono and 
Knight (1989)). 

and free surface, as well as the aspect ratio of the channel and channel geometry 
(Tominaga et al. (1989)). 

Tominaga and Nezu (1990) stated that the magnitude of difference in the nor- 

mal Reynolds stresses was found to be the most important term of the streamwise 

vorticity, which is responsible for the production of turbulence-induced secondary 
flow circulations. 

2.3.3 Effect of Relative Depth on Flow Behavior 

Lai and Knight (1988) analysed the distribution of longitudinal velocity in com- 

pound ducts, and found that flows in compound channels are strongly related to 

the relative depth. The relative width was found to be a less significant parame- 

ter. 

Nezu et al. (1999) found that the isovel lines of the longitudinal velocity are 

changed by the upflow in the main channel flood plain junction area. This effect 
increases with an increase of the flow depth on the flood plain. 
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Cokljat (1991) shows that with the decrease in the relative depth, all the 

characteristics of the flow remain but the interaction between main channel and 
flood plain is not so strong any more, and the bulging of the mean velocity 
distribution becomes weaker. These findings are also confirmed by the numerical 

simulation of Sofialidis and Prinos (1999). 

2.4 Meandering Channels 

Investigation into flows in channel bends has been one of the most important 

topic in water engineering. Thomson (1876) observed the characteristic spiral 

motion of the flow in a channel bend and concluded that the essential source 

of this phenomenon is the centrifugal force generated due to the curved flow 

path. The resulting spiral motions, i. e. secondary flows, have significant effect 

on engineering matters such as flow resistance, sediment transport, erosion and 

deposition, and so on. 

Sliukry (1949) investigated the flow through closed U bend by using specially 
designed pitot tube capable of recording the three components of velocity. This 

study was first to present the detailed behaviour of flow around the bend. Shukry 

(1949) observed that due to the centrifugal force, the secondary circulations along 
the bend showed a continuous tendency to deviate from the original pattern of 
the straight approach flume and to form a new one. 

As a result of extensive research activities for more than a hundred years, lots 

of literature is available dealing with bend flows and related issues. In this section 

primary flow, secondary flow, bed shear stress and different aspects of numerical 

modelling pertaining to a meandering channel are discussed briefly. 

2.4.1 Primary Flow 

In meandering channels (see Figure 2.7), the maximum velocity core travels to- 

wards the outer bank as flow reaches the middle of the cross-over region. At the 
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next bend apex section, this maximum velocity core again occupies its position 

near the inner bank of the main channel showing that the main channel flow 

follows the shortest path of travel. Shiono and Muto (1998) stated that the pri- 

mary main channel velocity below the floodplain level follows the channel sides, 

whereas above floodplain level it follows the floodplain direction as the floodplain 

depth increases. The flow pattern observed in a meandering channel is totally 

different from those observed in a straight channel. 
Patra et al. (2004), in their investigation on the flow and velocity distribution 

in a compound meandering channel, found that the flow and velocity distribu- 

tions in meandering compound channels are strongly governed by the interaction 
between the flow in the main channel and that in the floodplain. 

2.4.2 Secondary Flow 

2.4.2.1 Circulation Pattern 

As discussed earlier in Section 2.3, in straight compound channels the secondary 
flow circulations are generated mainly due to the anisotropy of the turbulence. 

However, in the case of curved or meandering channels, secondary flow circula- 
tions are generated due to the curvature effects of planform geometry. These 

types of circulations are called as geometry or pressure driven secondary flow cir- 

culations or Prandtl's first kind of circulations which has magnitude 10 - 40% of 
the bulk streamwise velocity. The strength of these types of circulations is much 
higher as compared to that of Prandtl's second kind. 

In compound meandering channels, a helical secondary circulation cell occu- 

pying most of the main channel cross-sectional area is present at the bend apex 

section. Toebes and Sooky (1967) found the patterns of secondary flow circula- 
tions to be significantly different between inbank and overbank flows in compound 

meandering channels. 
For overbank flows, the circulations were found to be stronger and with op- 

posite sense of rotation as compared to those in inbank flow. Shiono et al. (1994) 
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(a) Flood plain flow Secondary' flow generated 
by the flood plain flow crossing 
over mäin channel 

Flood plain flow Flood plain 

Flood plain 
i Main channel flow 

Main channel 

Shear generated turbulence due to interaction 
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Flood plain flow 
between flood plain flow and main channel flow 

J Secondary flow generated turbulence 

Section A -A 
77 -77 =Z 
generated turbulence 

Figure 2.7: Conceptual sketch of complex 3D flow structures associated with a com- 
pound meandering channels: (a) Secondary flow pattern in compound meandering 
channel with rectangular cross-section. Anticlockwise circulation cell is present at 
bend apex which losses its strength as flow reaches just upstream of crossover region. 
New clockwise circulation cell starts to generate from here due to the impingement 
of floodplain flow into the main channel. (b) Contributions of flow mechanisms (tur- 
bulent shear, secondary flows and anisotropy of turbulence) towards the production 
of turbulence energy (after Shiono and Muto (1998)). 
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and Imamoto et at. (1982) carried out experiments on a meandering channel with 

meandering floodplain walls (usually straight in most of the studies) and reported 
that the dominant cell for the overbank case rotated in the same direction as that 
for the inbank cases. This clearly indicated the effect of meandering floodplain 

walls on the secondary flow circulations. 
Different mechanisms behind the generation of secondary flow circulations 

for inbank and overbank flows were identified during previous studies. Ervine 

and Ellis (1987) stated that the meander bend with outward centrifugal pres- 

sure generates transverse secondary currents occupying most of the main channel 

cross-sectional area. 
Selling et at. (1993) gave a conceptual presentation of the mechanisms behind 

the generation of the secondary flow circulations as shown in Figure 2.8. As can 
be seen from the figure, the vortex is initiated approximately from the start of 
the cross-over region mainly due to the floodplain flow plunging into the main 

channel. 
Willetts and Hardwick (1993) through dye injection experiments demon- 

strated that the flow structures in the main channel with trapezoidal cross-section 

are different from those observed in meandering channels with natural cross- 

section. Ervine and Jasem (1995), based on their experiments on the skewed 

compound channels illustrated the effect of the main channel aspect ratio and 
the channel bank side slope on the patterns of secondary flow circulations. This 

is shown in Figure 2.9. 

The secondary flow circulations in compound meandering channels are studied 

extensively in the past by many researchers [e. g. Toebes and Sooky (1967), Mck- 

eogh and Kiely (1989), Sellin (1991), Sellin et al. (1993), Willetts and Hardwick 

(1993), Shiono and Muto (1993; 1998) and many others]. 

2.4.2.2 Complex Turbulent Flow Structures 

Shiono and Muto (1998) undertook detailed turbulence and secondary flow mea- 

surements using a two-component Laser Doppler Anemometer in meandering 
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Figure 2.8: Conceptual sketch of the generation and destruction of secondary currents 
within compound meandering channels with trapezoidal cross-section. Overtopping 

and plunging of overbank flow into the main channel creates and drives the strong 
vortex (after Selling et aL (1993)). 
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Figure 2.9: Conceptual sketch of the three dimensional flow structures within com- 
pound meandering channels. Flow structures are clearly affected by changing the 
slope of side walls (after Ervine and Jasem (1995)). 
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channels having a rectangular cross-section and straight floodplain walls. Based 

on these measurements, they conceptually presented the overall flow structures 
in a meandering channel for the overbank flows, as shown in the Figure 2.10. 

As shown in this figure, a dominant anti-clockwise secondary circulation is 

present at the bend apex, which losses its strength as flow travels along the 

meander till the upstream edge of cross-over region. From here a new clockwise 

circulation cell occurs and gains strength as the floodplain flow plunges into and 

over the main channel in the cross-over region. The floodplain flow plunging into 

the main channel causes interfacial shear stress at around the bankfull level. They 

reported that this large interfacial shear stress induced at around the bankfull 

level, especially in the cross-over region and was found to be larger than the bed 

shear stress. They further stated that the strong shear layer generated by the 

floodplain flow crossing over the main channel flow is controlled by the angle 
between the meandering channel and the floodplain wall together with the depth 

of the water. 
The pattern of floodplain flow plunging into the main channel varies with 

the floodplain flow depth. This is shown in Figure 2.7. The figure shows the 

flow visualisation for different relative depths as conducted by Shiono and Muto 

(1998). For shallower floodplain depth, the main channel flow is still seen to be 

dominant and as the floodplain flow depth increases the floodplain flow dominates 

the main channel flow direction above the bankfull level (see Dr_ 0.25 in Figure 

2.7). 

In case of straight channels the shear is normally generated due to the differen- 

tial velocity between the main channel and floodplain flows. Thus the mechanisms 
behind shear generation are significantly different between compound straight and 

meandering channels. Shiono and Muto (1998) stated that for the inbank flow 

cases, the clockwise secondary circulation cell at the bend apex gains strength 
due to the stretching of vortices, which is caused due to the centrifugal effect 

of the bend or the curvature. As this cell reaches the cross-over section it starts 

weakening as centrifugal forces or bend effect weakens. However, for the overbank 
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Figure 2.10: Illustration of the floodplain flows resolved in streamwise direction rep- 
resenting the effect of meander channel angel on flood plain flow and turbulence 
structures (after Shiono and Muto (1998)). 
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flow cases, the clockwise secondary circulations cells are generated just near the 

upstream edge of the cross-over region by the floodplain flow plunging into the 

main channel. Thus for inbank flows, the bed- and wall-generated turbulence are 

the most dominating feature whereas, for overbank flows the turbulent intensities 

just below the bankfull level become more important. 

From the Reynolds stress analysis, Shiono and Muto (1998) found that the 

main contribution of shear stresses to the turbulence production in the strong 

secondary flow region come from term generated by the secondary flows. Figure 

2.11 shows the main contributions to the turbulence energy production in the 

cross-over region. As can be seen from the figure, the main contribution to the 

turbulence production is from the secondary flow and due to the shear generated 
by the main channel and floodplain flow interaction. 

2.4.3 Bed Shear Stress 

The bed shear stress is usually measured using a Preston tube technique (Preston 

(1954)). Moreover, Ghosh and Kar (1975), Knight et al. (1992), Lorena (1992), 

Muto (1997) and many others measured the bed shear stress in compound me- 

andering channels. 
The distribution of boundary shear stress around the wetted perimeter of an 

open channel is normally affected by the existence of secondary flow circulations. 
Knight et al. (1992) measured the boundary shear stress in strong secondary flow 

regions in a large-scale meandering compound channel at the FCF. Their results 
indicated that an undulation of the boundary shear stress distribution is closely 

related to secondary flow structures. The downward motion of secondary flow is 

generally related to larger boundary shear stress whereas; the upward motion is 

related to smaller boundary shear stress. Shiono et al. (1999) confirmed this later 

while comparing the bed shear stresses measured by both a Preston tube and a 

heated thin film sensor in small-scale meandering channels. 
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Figure 2.11: Experimentally flow visualisation compound meandering channel flow for 

relative depth 0.15,0.20 and 0.25 (after Shiono and Muto (1998)). 
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2.4.4 Numerical Modeling of Meandering Channel Flow 

Extensive research work to model the flow behaviour within meandering chan- 

nels has been done since early 1989. A few of the researcher who have tried to 

simulate complex geometries include Stein and Rouv (1989), Wenka et al. (1992), 

Jenkins and Keller (1992), Rameshwaran and Shiono (2003), Rameshwaran and 
Naden (2004), Shukla (2006) and others. Major challenges faced whilst modeling 

meandering channel flows are complicated geometry of the meandering channel 

and the determination of factors influencing the flow behaviour e. g. established 

model constants, capturing free surface variation etc.. In this section, work done 

by other researchers is reviewed emphasizing: 

Method adopted to tackle the meandering channel geometry, 

Types of grid considered, 

Turbulence modeling, 

Pressure velocity coupling algorithm; and 

Advantages and disadvantages of the adopted method. 

Sugiyama et al. (1999) carried out a study of turbulent flow developing in a 

meandering open-channel with rectangular cross sections using an algebraic stress 

model. In the calculation, governing equations are transformed from the physical 

plane to the computational plane by using boundary-fitted non-orthogonal coor-) 
dinate system. They reported that the adopted numerical method could predict 

well the features of streamwise velocity, i. e. the maximum streamwise velocity 

generated at the inner bank bend apex and the location of the maximum velocity 

moved to the other side of bank along meandering channel. They also suggested 

that meandering channel flow is featured by unsteady movement of the secondary 
flow pattern. 
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Sugiyama and Saito (2002) performed the numerical analysis for the devel- 

oping turbulent flow in a compound meandering open-channel using an alge- 
braic Reynolds stress model. Again, the boundary fitted coordinate system was 

adopted to handle the complicated geometry of the compound meandering chan- 

nel so that the transport equation were converted from the physical plane to the 

computational plane. Figure 2.12 shows the body fitted grid used by the author 
for the numerical simulations. They studied the flow behaviour in meandering 

channel under the influence of centrifugal force, pressure driven force and shear 

stress generated between the main channel and flood plain. Though the pro- 

posed method able to reproduce the characteristic features, the agreement with 
the experimental data was not perfect quantitatively. 

Ye and McCorquodale (1998) presented a 3D model of turbulent flows devel- 

oped for a body-fitted curvilinear coordinate system and applied it to simulate the 

flow through curved channels. In the horizontal plane, a channel-fitted curvilin- 

ear coordinate system were used, whereas in vertical plane, the o transformation 

was applied to track the free surface and bed topography. 

The modified standard k-- model, in which eddy viscosity in the horizon- 

tal and vertical directions were formulated algebraically, was considered to take 

into account the streamline curvature and damping effects as well as solid walls 

effects appearing in the shallow curved channel. The governing equations were 

solved in a collocated grid system by a fractional three-step implicit algorithm 
(Ye and McCorquodale (1997)). The model was applied to two typical curved 

open channel flows: 

1. A single 270° channel bend with a sloped outer bank, 

2. A meandering channel with pollutant transport. 

They reported that the strength of secondary currents were much stronger in 

a single bend than that in meanders due to the opposite spiral motion generated 
by the alternate bends of the meandering channels. The lateral mass transport 

due to secondary currents in curved channel could be considerable. 
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Lai et al. (2003) proposed a 3D non-hydrostatic numerical method based on 

an unstructured grid technology to solve flow problems in hydraulic engineering. 
The model solved 3D turbulent flow equations and utilised a collocated and cell- 

centered storage scheme with a finite-volume discretization. The model adopted 

the general framework of an unstructured grid technology with arbitrarily shaped 

cells so that both structured and unstructured grid could be used. 

The model was tested on an S-shaped open-channel flow with the use of 
hexahedral, tetrahedral and prismatic cells. Authors reported that a prismatic 

mesh was as efficient and accurate as a hexahedral mesh, and it might be a good 

choice for flows in natural rivers. They also found that high aspect ratio or 
highly stretched tetrahedral meshes produced less accurate solutions and should 
be avoided. 

Rameshwaran and Naden (2004) presented a 3D numerical study for the cal- 

culation of turbulent free surface flow in a meandering channel. In the calculation 
Reynolds Averaged Navier Stoke's equations with the standard k-- model for 

steady flow was used. Moreover, a free surface treatment for spatial variation 

was also employed. They analysed the distribution of water free surface eleva- 
tion, bed shear stress, streamwise and transverse velocities to check the model 

performance by comparing the results with experimental data obtained from UK 

FCF for inbank flow. Results showed that the free surface treatment for the 

spatial variation of the water surface was vital for the accurate prediction of bed 

shear stress. 
Shao et al. (2003) proposed a model based on orthogonal curvilinear system 

in conjunction with algebraic stress models to simulate the secondary currents 
in helically coiled channel. They used various combinations of cross sections and 

channel curvature for a helically coiled compound channel to examine the effects 

of anisotropy on the secondary motion and other turbulence properties. They 

reported that for primary velocity profiles, both the LY model and the NLKE 

model captured the stronger flows near the side-wall of the main channel (concave 

side) in curved channels. The LY model properly produced the low velocity zone 
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that extends from the junction edge to the free surface whilst tlhe NLKE model 

predicted a shorter extension of the low velocity- zones'. 
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simulations by Sugiyama and Saito (2002) and Wormleaton and Ewunetu (2006). 
The grid represents one channel meander. 
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the UK FCF for different flood plain depths, roughness and planforms. They 

reported that the standard k-e model provides good agreement between total 

main channel flows and their variation through a meander wavelength. However, 

they also concluded that the model underestimates the outward secondary flows 

which is very important for the prediction of boundary shear, bed morphology 
development and sediment transport. 

Shukla (2006) used 3D finite element model to handle the complicated geom- 

etry of compound meandering channel and considered isotropic k-e turbulence 

model in conjunction with the Reynolds Averaged Navier Stoke's equations to 

investigate the flow mechanism. They reported that the horizontal shear layer 

at the inner bankfull level generated secondary flow circulations. As the depth 

of flow increased, the point of generation of secondary flow circulations moved 
downstream. They noticed that in terms of the generation of secondary currents, 
the secondary flow shear stress significantly contributed towards the generation 

of streamwise vorticity and the production of turbulent kinetic energy. 
Shukla (2006) also noticed that the rate of turbulence kinetic energy pro- 

duction was higher than the rate of its dissipation in the crossover region. The 

turbulence extracts more energy from the mean flow than what is actually dissi- 

pated. It was also found that the strength of geometry induced secondary flow 

circulation increases with the increase in the relative depth. 

2.5 Concluding Remarks 

This chapter has presented the review of work carried out by other researchers to 

understand the the flow mechanisms occurring in straight rectangular channels, 

compound channels and meandering channels with and without floodplains. The 
flow behaviour in these channels is summarized as follow: 

" In simple open channel flows, the secondary currents (Prandtl's second kind) 

are generated due to the wall and bed shear stresses, which have magnitude 
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of 1- 4% of the bulk mean velocity. The secondary circulations cause the 

maximum primary flow velocity to lie below the free surface, which is widely 
referred as the velocity dip effects. 

" In compound channels, the shear layers are generated due to the velocity 
difference between usually faster flow in the main channel and slower flow 

on the floodplain. In these layers a strong vortex exists which affects the 

mean velocity profile and mixing process considerably. 

" The flow mechanism is in compound meandering channels are affected by 

the channel sinuosity (responsible for the centrifugal forces) and plunging 

of floodplain flow into the main channel. The secondary currents are, gen- 
erally, pressure or geometry driven and known as the Prandlt's first kind of 

circulations which have magnitude of 10 - 40% of the bulk mean velocity. 

Important aspects of the numerical modeling of open channel flows are also 

covered, concentrating types of grid used, turbulence modelling and accuracy of 
the method which can be summarized as: 

" The traditional 1D models used for prediction of the discharge and sec- 
tional average velocity have limitations due to the assumptions made for 

the channel geometry, flow interaction and boundary roughness. 2D mod- 

els, based on RANS equations and iso-tropic turbulence models, are only 

sufficient to calculate the detailed variation in dept-averaged velocity and 
sediment transport. A number of 3D anisotropic models such as algebraic 

stress models have been developed and used to predict the detailed flow 

mechanism of open channel flows. 

" Beside conventional time averaging approach (RNAS modelling), Large 

Eddy Simulations and Direct Numerical Simulations are also adopted for 

open channel flow simulation, which have increased the accuracy of numer- 
ical accuracy considerably. But these methods are very time and computa- 

tional energy intensive. 
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" Finite element, unstructured finite volume and non-orthogonal types of nu- 

merical discretization have been used to handle the 3D geometry of com- 

pound meander channels. However, only isotropic models have used for 

these methods. 
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CHAPTER 3 

Governing Equations 

3.1 Introduction 

To predict the behaviour of mean flow properties and turbulence parameters 

within open channels, the governing equations must be solved. These equations 

are based on the conservation laws of mass, momentum and energy. The 3D, 

steady state, incompressible, turbulent flow through open channels can be de- 

scribed by the Reynolds Averaged Navier Stokes equations, generally known as 
RANSe, which are adopted as the governing equations in the present research. 
These equations are the result of time averaging of the Navier Stokes equations, 

which can be found from Versteeg and Malalasekera (1995), Rodi (1993), Abott 

and Basco (1989) and Ferziger and Peric (1995). 

This section describes the governing equations in a Cartesian coordinate sys- 
tem, considered for the flow through simple channels and compound channels 

shown in Figure 3.1. The formation and derivation of equations in the orthogonal 

coordinate system, for the case of meandering channels, is discussed in Chapter 

5. 
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x, U, u 

Figure 3.1: Typical sketch of an open channel flow configuration. I1 and II are 
the channel width and height respectively. The primary flow direction is 

.r while 
secondary flow direction occurs in the y and :ý planes. 11, V and 11 are primary 
velocity components and it, c and it, are components of secondary velocity in the x, 
y and ti directions respectively. 

3.2 Reynolds Averaged Navier-Stokes Equations 

The continuity equation is expressed as 
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0 217 
U-(pU) +v (pU) + 11' (p(j) + l" >+ /1( 22+ lit 

01 
üa cry Jý Or J1.2 ß)y 2 (; 3 . 2) 

+ pg Sill 0, 

0 
;) t0 (l 0 (lJP 

i.,, c) 0 
U- 

ox 
+ ti - )V') +U t)=- 

ý) 
+)r 

. rý T (1)_1'1') -T (f'r'') (a.: 3) 
0.11 ik 

II-(ýýi1 )+C0 
OP x)21 l0 i) 

L'-(Fýi( )+ li -(p1I) _ -- + p, ýýr) - (/)It IV) D I. Dy Dv 0-- Dv-- Dyy r) _ 
(: 3.1) 
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3.3 The Standard k-e Turbulence Model 

where U, V, Tip are mean and ü, v, w are fluctuating velocity components in the 

x, y and z direction respectively; p is the fluid density; and pt is the turbulent or 

eddy viscosity; P is the mean static pressure, g is the gravitational acceleration 

and 0 is the angle of channel with the horizontal axis. 
In these equations, the terms contributing molecular effects are dropped due to 

the turbulent nature of the flow. The terms appearing in Equations 3.3) and (3.4 

[-#v--v, -pww and -#v] are the Reynolds stresses which arise due to the time 

averaging of the Navier Stokes equations. Modelling of these terms is discussed 

in the following sections. 

3.2.1 Eddy Viscosity Concept 

The eddy viscosity concept proposed by Boussinesq (1887) is one of the oldest 

concepts for modelling the turbulent or Reynolds stresses. It assumes that in 

analogy to the viscous stresses in laminar flows, the turbulent stresses are pro- 

portional to the mean-velocity gradients. For general flow situations, this concept 

may be expressed in tensor form as 

- 2ti2dj = vt 
ýÖxt 

Taxi) 3UaJ 
J=O ifi=j (3.5) 1J=1 ifi0j 

Here, vt is the turbulent or eddy viscosity which, in contrast to the molecular 
viscosity p, is not a fluid property but depends strongly on the state of the 

turbulence and 5 is the Kronecker delta. 

Equation 3.5 provides the framework for constructing turbulence models if 

the distribution of vt is known. This is discussed in following section. 

3.3 The Standard k- .6 Turbulence Model 

The two transport equations for turbulent kinetic energy (k) and kinetic energy 
dissipation (e), described by Rodi (1993) are considered here to calculate the 

distribution of turbulent viscosity (µt). 
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3.4 Algebraic Stress Models 

The turbulent kinetic energy equation is expressed as 

aaaa 
__ _ 

U- (pk) +V- (P) +W- (P) __ 
lit ak 

+a µt ak 
+a µt ak 

TX ay az ax Qk ax äy Qý ay TZ Qk az 

+Pk - pE. 
(3.6) 

The turbulent energy dissipation equation is given by 

aaa=a ptaE a (Et ac) 0 /tai Uä7(pý)+Väy(ps)+Waz(PC) Tx Tx +ay 
(a, 

ay +az 
QEaz) 

+ (CElPk 
- Ce2PE) 

(3.7) 

where Pk is the production of kinetic energy by the mean velocity gradients 
expressed as: 

/ zz 
Pk=ii (ýU) +µa 

(, gUaz) 
(3.8) 

\y 
and µt is the turbulent viscosity defined as 

2 

µt=CN, p 
ký 

(3.9) 

The model constants, proposed by Rodi (1993) are given by (CEI, Cf2, vk, orf, Cµ) 

= (1.44,1.92,1.0,1.3,0.09). 

3.4 Algebraic Stress Models 

The linear or standard k-- model has been shown to be incapable of accu- 

rately predicting the normal Reynolds stresses, hence making the description of 

secondary flows by these type of models impossible (Speziale (1987)). 

In the present thesis, instead of solving the complete set of equations describ- 

ing the Reynolds stresses, three different algebraic stress models are adopted. In 

these models, algebraic expressions are used to predict the normal as well as cross 
Reynolds stresses. 
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3.4 Algebraic Stress Models 

3.4.1 Launder and Ying Model 

Launder and Ying (1973) derived algebraic expressions for the Reynolds stresses 

by simplifying the transport equations of the Reynolds stresses. They modelled 

the Reynolds stresses as a function of longitudinal velocity gradients, which are 

expressed as follows: 

and 

PUT = -C'µt 
2 

ay /+ 
Ck pk, (3.10) 

\ 
pw = -C' µt ` 

ýz 
J2 -I- Cpk, (3.11) 

pvw = pwv = -C'µt 6 
(ay) u-). (3.12 

The values of empirical constants are CC = 0.522 and C' = 0.0325 and it is 

these that governs the magnitude of the secondary currents. 

3.4.2 Noat and Rodi Model 

Naot and Rodi (1982) refined the LY model by introducing wall and surface 

proximity functions, which are quadratic in nature, to take boundary effects into 

account. The model, known as the advanced algebraic stress model, is expressed 
by the following equations for Reynolds stresses: 

v2 -k 1-ß+C1-1 2 (a l+ ß (U 
-U- 2vt 

DV )E 
äz) ay C1 + 2C3 f2 äy \ 

(3.13) 

k [2( 1\ v2, ß 
-au 

au 1 "V 72 . ci a-2, ß + Cl -1 I+ Csfz Te zw 
w 

üv ýy J- 2vt 
az 
(3.14) 
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3.4 Algebraic Stress Models 

vw=wv=C1+3csf2 uwýy+üvOz)-vt[(919WY)+(9Vaz)]. (3.15) 
2 

The empirical values are a=0.7636 f 1, ,3=0.1091 + 0.06 f 1, Cl = 1.50 - 0.5 f1 

and C3 = 0.1. 
The wall proximity function, fl, was taken as the absolute value of the gradient 

of the length scale, 1, as suggested by Ilegbusi (1985) and f2 was determined by 

the Naot and Rodi (1982)'s formula as presented in Cokljat (1991). 

3.4.3 Speziale's Non-linear k-E Model 

Speziale (1987) demonstrated a special case of the complex non-linear eddy vis- 

cosity model obtained by Yoshizawa (1984), namely the non-linear k-e (NLKE) 

model. The approach is based on the derivation of asymptotic expansions of the 

Reynolds stresses, which maintain terms that are quadratic in velocity gradients. 

Like the algebraic stress models (ASM), this model can account for the secondary 

flows in fully developed non-circular duct flow. The normal and cross Reynolds 

stresses are expressed as follows. 

-w2 = -V 
- aW 

-CDl2 
1 au 2 C ) (DU)21 

_1 _CE12 
1 [(DU)2 Ov 2+ ) (DU)21 

äZ12 äz 6 öy3 öz öy 
(3.16) 

-v2 = -V hl 
av 

_CD12 
1 ( au 2_ ) (DU) 12 

_C 12 
1 1 av ()2+ ( au 2 ) 

äy 12 äy ciz3 6 äy äz 
(3.17) 

1 alb 
_1 

au 
Dy vw = wv = -2ýl 

(LV 
+ äy- 4c 

l2 
äz ä 

(3.18) 
öz 

(au) 

where, l= 2C, k312E-1 and Cµ = 0.09. CD and CE are coefficients determined 

from experimental data. Both have been found to be 1.68 using duct flow data. 
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3.5 Boundary Conditions 

To evaluate the turbulent length scale 1, k and e equations as discussed in Section 

3.3 are solved. Naot and Rodi (1982) suggested coefficients for Equations 3.6 and 

3.7 as (CEI, CE2, ok, vf) = (1.44,1.92,1.225,1.225). 

3.5 Boundary Conditions 

3.5.1 Inlet and Outlet Boundaries 

In the present calculations, the fully developed values of U, k and e are imposed 

at the inlet boundary. As the region is sufficiently long downstream it may be 

assumed that the flow is fully developed at the outlet which implies that the 

gradients of all of the variables are negligible, i. e. 

a- 
äx= 

0,0 = U;, P, k, e, u; uj. (3.19) 

3.5.2 Free Surface Boundary 

In the case of duct flow, symmetrical boundary conditions are applied at the 

axisymmetric planes, in which gradients of fluxes, k and e are considered to be 

zero. 
In the case of open channel flows, the secondary current near the free surface 

is directed away from the bank, which transfers the fluid with relatively low 

momentum towards the centre of the channel. The influence of the free surface 

on the turbulence can be explained in two ways: 

9 The presence of the free surface serves to damp turbulent fluctuations in 

the vertical direction. According to continuity therefore, fluctuations in the 
horizontal plane increases. 

9 The reduction of the length scale of turbulence due to the geometrical re- 
distribution. This consequently, increases the dissipation of energy. 

38 



3.5 Boundary Conditions 

The effect of the free surface leads to a recluº"t iº>n III the e(Iºlv viscosity near 

the surface resulting in the parabolic distrihººtion of º'º1ºIv viscosity. 'iºº(c, it 

is the difference in the normal stresses that drives the seconºbºrv ºnotion, Hic 

redistribution effect of the free surface ºinºst he Illoddlcº1 corre< t lv iu order to 

obtain a realistic distribution. 

In the present work. the formula proposed by Mot mid H (di (1982) is ººseedI 

to model the turbulent energy dissipation at the free slirl ºce, expressed as: 

s/a Cµ 
A. 3/9 + (3.20) 

K ri' O. O i II 

where K is the von harnten constant, H is the dept Ii Of w ater (1 r/' is t 1i( (IIst, I 
from the side wall. 

3.5.3 Wall Boundary 

-Near the Nvall. viscous effects become cloi1ii11iitit and the local lieviiodils iiu>>ilier is 

very low. which snakes turbulence iiioclels inadequate to aa1>ply. Ni )rem, cl., then, 

is a steel) variations of properties near the wall, which needs a very refine(( ; rid 

to be resolved. To overcome both of these effects a special tre, atitietit. (ailed Ihr 

law of the wall function proposed by Lainider and Spalding (I! 171) is a1(1001)te(I in 

which the boundary conditions are not specified right at I lie will, bist at t lie first 

grid point that lies outside the viscous sublaver in it regi(>>i where the iOgaaritiiiiiie 

law of the wall prevails and the turbulence is nearly ill local e(tnilihriiun. I' igiire 

: '). 2 shows the node arrangement at the lhottoiii wall boundaary in vý lii("li T. P auol 

B represent the top, the P and hottoni nodes. 

The log law is expressed as: 

v,. 1 v+ _ ýr = -(In E--+) (3. ý 
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3.5 Boundary Conditions 

T 

Z 

0 

w 
U 

P -iýý 

IBT 

ý1-- 
fw 

U' .... Lº 

-------------. ý 

1)+ %K On E z') ºý 

Figure 3.2: Illustration of the node arrangement at wall boundary on the cross sec- 
tional (y.. ) plane. T, P, and B are the top, the first node from wall and the 
bottom node. U+ and ý+ are the dimensionless velocity and the dimensionless dis- 
tance of a first node from the wall. They are connected by the wall function as 
U+ = 1/h(1nEý'). 

where U+ is the dimensionless velocity, U, is the resultalit velox itv, (Ir is I1ic 

shear velocity, ý+ is the normalised distance defined as _- ' _= E' I, ', ' t Ile 

roughness parameter. which is taken 9.0 for smooth surfaces and 11) is 1 lie 

von Karinen constant. 

This law is employed in following, way: 

" For ti+ > 30.0, where lit /p > 1, T ; zt T,,.: 

1. Incorporation of the loh 1; lvV into computer cO(lc is 1) ls('(1 oll the (-oii- 

cept of the turbulent viscosity (Perk (2(I0-1), Faarli; iniehi , iiid I), ivids(m 
(1993)). which is calculated in following way. First. calculate the u slivnu. 

velocity based on sui initial gees', of' A as: 

Ur = j; 
/'ý (3.22) 
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3.6 Concluding Remarks 

Then, calculate the dimensionless distance: 

+= Urzp 
(3.23) 

µ 

The wall shear stress is obtained by calculating the viscosity at the 

node adjacent to the wall from the log law and multiplying it with the 

velocity gradient. 

%w=JUT=µt 
ur 

/1tzr (3.24) 

The turbulent viscosity in the momentum equation is calculated in the 
following manner with help of Equations 3.21 to 3.24: 

µe = PUz Ur = 11 
( 

Ji 
z) 

\Ur) - µz+ln(Ez+) (3.25) 

2. We can also write the turbulent kinetic energy as: 
2 

k= 
UG, 

. (3.26) 

3. The turbulent energy dissipation is: 

U3 

6=. ." (3.27) 
rz 

" For z+ < 30.0, where µt/µ « 1, T Tw: 
Here, UT is obtained from 

U,. 
= 

PUT z (3.28) UT µ 
which gives, 

Tw = PUT = , 
Ur 

" z 
(3.29) 

3.6 Concluding Remarks 

In this chapter, equations describing the flow in open channels and boundary 

conditions are discussed, which can be summarized as follow: 
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3.6 Concluding Remarks 

" The 3D anisotropic, turbulent flow in open channels are modelled with 
RANS equations. The Reynolds averaging of Navier Stokes equations leads 

to additional source terms, which are known as Reynolds stresses. These 

terms are modelled isotropically (constant eddy viscosity concept) as well 

as anisotropically (LY, NR and nonlinear k-e models). 

" The k and e equations contain source terms, which are function of under- 
lying variables. These makes the equations non-linear and very difficult to 

converge hence require linearisation. 

" Anisotropic models of LY, NR and non-linear k-e provide the algebraic 

approximation (second order polynomial) of Reynolds stresses, each with 
different capabilities. NR model incorporates the wall and surface proximity 
functions while in non-linear k-e model quadratic longitudinal velocity 

gradients in vertical and transverse directions are used. 

9 The only difference between closed and open channel simulation is the 
boundary condition posed at free surface. In the closed channel symmet- 

ric boundary condition is applied while for the open channel free surface 
condition is used, which considers the reduction in turbulent length scale 

near free surface. The steep variation of velocity gradient is tackled by the 
law of wall function at first grid point from the wall. In this research, the 

normalised distance (y+) is taken equal to 9.0. 
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CHAPTER 4 

Numerical Implementation 

4.1 Introduction 

The set of governing equations discussed in Chapter 3 are parabolic in type and 

non-linear in nature (Patankar and Spalding (1972)). Hence, an exact solution 

of these equations, which can give the distribution of dependent variables in the 
domain of interest is not possible. These equations can be solved with help of 

numerical techniques. 
In this research, the computer model developed by Lilek et al. (1995) is 

adopted as a starting point. The model was created to simulate the 3D lid-driven 

cavity flow and offered following advantages: 

9 The governing equations comprised of 3D Navier-Stokes equations and the 

continuity equation, which can be easily modified to 3D Reynolds-Averaged 

Navier-Stokes equations for compound meandering channel flows. 

" The discretization schemes used such as upwinding scheme for convec- 

tion terms and central differencing scheme for diffusion terms can also be 

adopted for turbulent flow computations (Peric et al. (1989)). 
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4.2 Finite Volume Foriiiulat. icii 

. In terms of computing, arrays were created with 1D indexing nistend (431) 

indexing. which tn<tkt's <ottttttItiltMil Lister ai Id j)arallt'l (o u tputtug Itu, tiilole. 

" \lultidrid convergence accelerator is t1 'º1 ftlr fastet 011(1 effiº"it'tºt tºnufºnhº- 
tions. 

In this chapter, the discretization of the ('(hint iOiS with t iefinit( 

volume method (FVM), the pressure velocity coupling aalgunt 11111, t Ile fuwiuuu 11 1i i1m 

of a set of algebraic equations and the iterative solutions of iIo s(egiuit i0ýii, is 

discussed. 

4.2 Finite Volume Formulation 

The goveriºing equations, (lemril>ect in l)re bus sect iun are (IN(lvt i/A'(I ººsýiiºg t Ii( 

FVM1, which is based on the I)rincipal of the eon servaºtion 11f' jwOjwrties aºcr�sý 

the control volume (CV) (Ferziger ºncl Peric (1995), Veisteeg and \lalaºlasekein 

(1995). Patankar (1980)). All the governing egiwtions, discussed iii (Impter 

can be expressed in a general form as 

O(pI'(')) 
+ 

J(p ý4ý) 
+ 

0(j, ý1'y) U+ 0/ ýI4 vdýl r) ýý 
o- Ov 0ti Jr Ox J Jr 0t 0- 

+ 
(1.1) 

Ili Equation 1.1, i, the conserved (1lUUliitity, U, j' midi 11' nrv Clue nie; ui 

VVelocities ill , r. ij and directions respectively. p is the fluiid density mid I' is the 

geiieIalize(l diffusivity. The t('rills oll the left 1I in(l side of tliv vg iintloll r('t)rrý, "Vuf 
the convective fluxes. on the rig lit lian(l side first t teriiis rrj>r<'seiit t he fliix('5 
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4.3 Approximation of Fluxes 

due to diffusion and the last terra is source terili. Equation 1.1 is ii iiegraIed OV('r 

the 3D CV, shown in Figure -1.1. 

lk 

Figure 4.1: Illustration of a 3D Cartesian CV showing different faces like north(/i), 
south(. ), east(c ), west(w), top(/), bottom(b) and CV center(/'). -. r, AY and -'Y;; 
are dimensions of the CV in x, y and :ý directions respectively. 

The CV surface consists of 6 plane faces, denoted 1>v hum, (']. (-, IS(' 1(t1ers ýý, r 

responding to their direction i. e. east (r). west (u'). iu rtli (r)), Solltb (s), tol> 

(t) and bottom (b) y-ith respect to the cciitI al luoulc P. III fnlluvving sect iuu, t lie 

discretization of convective and diffusive f axes and t lie lillenrisaat iini of t Inc , unrý 

term are described. 

4.3 Approximation of Fluxes 

4.3.1 Convective Fluxes 

The convective terms arc cliscretize(1 using; all 11J Wr71(i (/I: f/(I(i) ( ig 

Consider Figure 1 
. 
2, which shows the node arrarngeiuc'iit, III the x directi(m, 1'()1 

example. 

To evaluate the net convective fiutes tliruug; h a ('V it is ueccýtiýirý to finial wit 

the properties at the CV faces. In UDS. the value of of (,, ) at sui interface is set 
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4.3 Approximation of Fluxes 

dx 

Figure 4.2: Typical grid cluster showing 1D node arrangement. The convective and 
diffusive fluxes are evaluated at CV faces w and e with help of UDS and CDS differ- 
encing schemes respectively (see Section 4.3). 

equal to the value of 0 at the grid point on the upwind side of the face depending 

on the flow direction. 

So, the value of conserved property at east face ce is approximated with help 

of upwind difference scheme as: 

and 

&= op if (pU) >0 (4.2) 

Oe = OE if (pU) <0 (4.3) 

The approximation of mass flux, (pU = rh), at the CV faces is given by: 

(mq5)e = max(the, O. )OP + min(mef O. )qE, (4.4) 

and 
(mq)w = max(mw> O. )q5w + min(th , O. )qp. (4.5) 

Expressions for convective fluxes at the north, south, top and bottom faces 

can be derived in the same manner. 

4.3.2 Diffusive Fluxes 

To evaluate the diffusive terms, a central diferencing scheme (CDS) has been 

adopted to approximate the value at the CV face centre. The scheme is a straight- 
forward approximation and is based on linear interpolation between the two near- 
est nodes. 
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4.4 The Discretized Equation and It's Solution 

With the help of CDS, 0 at east face of the CV (Figure 4.2) can be obtained 
as 

Oe - OEAe + OP(1- Ae), (4.6) 

where, the linear interpolation factor ae , is defined as 

ire= Xe - Xp 
(4.7) 

XE - Xp 

The above derivation is based on the Taylor series expansion of the gradient 
ä, which is second order accurate. The assumption of a linear profile between 

the P and E nodes also offers the simplest approximation of the gradient, which 
is needed for the evaluation of diffusive fluxes, so that: 

rv, (a 
= r�, (op - Ow) 

w 
Dw Öx)w xp-XWw 

(oP 
- oW(4.8) 

and 

F- 
1) 

re 
OP - OE 

D, (Op - cE) (4.9) ex 
e= 

xp-xE 
e= 

In above equations, D. = (Fe/xp - XE) and D. = (I`u, /xp - xW) are the 
diffusion coefficients. We can simplify the rest of the diffusive terms in a similar 

way. 

4.4 The Discretized Equation and It's Solution 

After inserting the convective and diffusive approximations into Equation 4.1 and 

on simplifying further, we find a discretized algebraic equation in following form: 

apcp = aEcE + awcbw + aNON + asgs + aTOT + aBOa + S44xhyAz, (4.10) 

where, 
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4.4 The Discretized Equation and It's Solution 

aE (De + max(the, 0. ))DyLz (4.11) 

aw = (Du, + min(m,,,, 0. ))DyAz (4.12) 

aN = (D, ti + max(th , 0. ))Oxhz (4.13) 

as = (D3 + min(rn� 0. ))Axzz (4.14) 

aT = (Dt + max(tht, 0. ))Oxhy (4.15) 

aB = (Db + min(rnb, 0. ))Oxzy (4.16) 

ap=aE+aw+aN+as+aT+aB. (4.17) 

After evaluating the above coefficients and linearizing the source terms, the 

discretized equation for each variable attains the following form 

APgp +> Atq51 = Sp (4.18) 

where P denotes the node at which the partial differential equation is approxi- 

mated and index 1 represents the neighboring nodes. The coefficients Al depend 

on the fluid properties and geometric quantities. SP contains all the terms which 
do not contain unknown variables values and its presumed to be known. 

The system of equation can be written in the form of matrix notation as 

AO =Q, (4.19) 

where A is a square coefficient matrix, 0 is a vector or column matrix containing 

the variable values at the grid nodes and Q is the vector containing the terms on 
the right hand side or the known values. 

In the present research, the system of equations has been solved with the 

strongly implicit method (SIP) (Ferziger and Peric (1995)). 
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4.5 Source Term Linearisation 

4.5 Source Term Linearisation 

" Source term of k equation: In the k equation (Section 3.3), the source term 

is expressed as Pk - pe, which is a function of one of the dependent variables 

e and hence make the source term nonlinear. Linearisation of the source 
term is achieved by adding Pk to So and p. - to a,, of Equation 4.10 in 

following way 
SO = SO + Pk 

and 

ap = ap + pe/k. 

" Source term of e equation: The E equation source term is expressed as 
k (cc1Pk - cE2pe). This term is also highly non-linear in nature. As with 
the k equation linearization is achieved as follows: 

SO=S46 +6(CclPk) 

and 

ap = ap +EE (Cc2P) 
- 

" Source terms due to Reynolds stresses: The Reynolds stresses, which ap- 

pear in the V and W momentum equations, are calculated from the LY 

model implicitly. The gradients of these Reynolds stresses are coupled to 

momentum equations by adding them to source the term, in the following 

way: 

a Sv = Sv - ay (#v) -a 'z (pv) 

Sw = SW - ay 
(pvw) - 

(z 
(pww). 

These gradients of the Reynolds stresses are added to the source terms from 

node 3 instead of node 2. Here, node 2 represent a first node from the wall 
boundary. At node 2, the Reynolds stresses are calculated isotropically in 

the form of turbulent viscosity, obtained from the log law as explained in 

Section 3.5.3. 
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4.6 Pressure Velocity Coupling 

4.6 Pressure Velocity Coupling 

4.6.1 SIMPLE Algorithm 

For the RANS equations there is no direct method of specifying an equation for 

pressure. Instead, pressure is determined indirectly using the continuity equa- 
tion. If the correct pressure field is used to solve the momentum equations 
then the continuity equation will also be satisfied. In the present research, the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) of Patankar and 
Spalding (1972) is used to handle the pressure-velocity coupling. 

The steps involved in the SIMPLE algorithm can be summarized as follows: 

1. Initially a pressure field is guessed, P*, which is used in the discretized 

momentum equations to find the guessed velocity field. 

2. An equation is solved for the pressure correction, P', which gives the pres- 

sure difference between the guessed pressure and the pressure necessary to 

satisfy the continuity condition. 

3. The pressure and velocity fields are then updated based on the pressure 

correction (with some under-relaxation). 

4. Other scalar transport equations are solved (e. g. k and E) and eddy viscosity 
is updated. 

5. Steps 1-4 are repeated (using the pressure field from the previous step as 
the initial guess) until the calculation has converged. 

The complete simulation model is shown in Figure 4.3. 

4.6.2 Under-Relaxation 

Under-relaxation is a means of slowing down the updating process of the variables 
and is necessary for convergence of coupled non-linear equations. Variables are 

updated in the following manner: 
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4.6 Pressure Velocity Coupling 

1. Model Construction & Parameter Input 

  Construct FV grid (Cartesian or orthogonal) based on the 
hydraulic conditions 

  Read input details: Convergence parameters, under-relaxation 
factors, No. of iterations, fluid properties, boundary conditions, 
turbulence model to be used and other details 

  Read coordinates of the FV grid from input grid file 
  Calculate the scale factors for meandering channel simulations 

2. Computation 
1. Initialise the computational domain 
2. With initial guessed pressure solve pressure correction 

equations to obtain approximate solution of velocity 
components 

3. Update pressure and velocities with some under-relaxation 
4. Solve k and e equations; update eddy viscosity 
5. Calculate the Reynolds stresses with either LY, NR or NLKE 

model 
6. If convergence is achieved then stop else go back to ste 1 

3. Analysis of Results 

  Write variables values of converged solution in separate file for 
analysis 

Figure 4.3: Flowchart explaining the model construction, computational algorithm 
and post processing. The computation part is based on the SIMPLE algorithm for 

pressure velocity coupling proposed by Patankar (1980). 
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4.7 Numerical Grid 

OPw- aO"C +(1-a) (4.20) 

where 5pd is the value of 0 from the previous iteration and 01 is the result of 
the current calculation. Applying the above formula to the discretized transport 

Equation 4.10 gives: 

a OP new 
- anbOnb + Q0 + (1- a) 

. opd. (4.21) 

In practice, under-relaxation involves the modification of the coefficient ap 
and source SO: 

(ap)new = p__ (4.22) 

ý'Sýýnew =S -f- (1 - cr)(ap)newcp (4.23) 

Its effect, therefore, is to increase the diagonal dominance of the coefficient 

matrix and add in a source term. Since the pressure is updated by means of a 

pressure correction, its under-relaxation takes the form: 

PpeLJ = Pp' -I- app (4.24) 

where P is the pressure correction. 
If the under-relaxation factor, a, in the above equations is set to unity there is 

no under-relaxation and the new value is equivalent to the calculated value. Typ- 

ical values for the under-relaxation factors used in the case of straight rectangular 

and compound channel are 0.7 for U and 0.4 for P. 

4.7 Numerical Grid 

The numerical solution of partial differential equations requires discretization 

of the computational domain into a collection of points or elemental volumes 
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(cells). This discretion or sub-division of a domain into a number of smaller, 

non-overlapping sub-domains is known as numerical grid or mesh generation. 
Numerical grids can be categorised into structured (regular) grids, block struc- 

tured grids and unstructured grids depending on the shape of the domain and 
the elemental volumes. Based on the discrete locations at which the variables 

are to be calculated, the grid can further be classified as a staggered grid and 

non-staggered or collocated grid. 

4.7.1 Staggered Grid 

In a Cartesian coordinate system, Harlow and Welsh (1965) introduced a stag- 

gered grid arrangement. This arrangement for a 2D grid is shown in Figure 4.4 

(a). In the staggered grid, the velocity components are calculated for the points 
that lie on the faces of control volumes while the scalar quantities are being 

evaluated at the control volume centre. 
From Figure 4.4 (a) it can be seen that both pressure and diffusive terms, 

which are stored at a control volume centre, are easily approximated without 
interpolation by central difference approximations. The velocity components re- 

quired to evaluate diffusive terms are readily computed at the control volume 
faces. Most importantly, the evaluation of mass fluxes in the continuity equation 

on the faces of a pressure CV is also straightforward. 
The biggest advantage of staggered grids is the strong coupling of pressure and 

velocity components. This coupling helps to overcome the problem of convergence 

and oscillation in the pressure and velocity fields. 

Despite the fact that it is easy to handle pressure-velocity coupling, the stag- 

gered approach can be used only in generalised coordinate systems, when other 

grid oriented components of vectors and tensors are the working variables. The 

curvature effect is difficult to treat as the curvature terms are difficult to treat 

numerically and may create non-conservative errors when the grid is not smooth. 
It is also difficult to implement the multigrid procedure with a staggered grid 
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(a) (b) 

Figure 4.4: (a) Staggered Grid arrangements; (b) Collocated Grid arrangements. 
Here, --> and " represent storage locations of velocity components and pressure re- 
spectively. In the staggered grid pressure is computed at CV faces and velocities at 
CV centre. For collocated grids, both pressure and velocities are calculated at CV 
centre which makes the transfer of residuals (in multigrids) and the handling of grid 
discontinuity (e. g. meander channels) easier. 

arrangement. These problems are very well tackled with the collocated grid ap- 
proach. 

4.7.2 Collocated Grid 

In the collocated grid arrangement, all the variables are stored at the same grid 

point of the same control volume as shown in Figure 4.4(b). In a collocated grid, 
the number of coefficients, which are generated after discretization and must be 

computed and stored are minimised and the programming is simplified. The 

significant advantage of collocated grid is its compatibility with the multigrid 

method. When multigrid procedures are used to accelerate convergence, the 

same restriction and prolongation operators for transfer of information between 

the various grids can be used for all variables. 

Furthermore, when the solution domain is complicated and the boundaries 
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y1 

Figure 4.5: 2D Cartesian mesh showing node numbers and cell widths. The expansion 
of a mesh follows a geometric series expansion, which helps to generate a refined grid 
near the walls where variable gradients are steep. 

have slope discontinuities, or the boundary conditions are discontinuous, the col- 
located grid proves very advantageous. A set of control volumes can be designed 

to fit the boundary, including the discontinuity. 

The major drawback of the collocated grid arrangement is pressure-velocity 

coupling. However, this can be tackled by use of the improved pressure-velocity 

coupling algorithm, which is discussed in Section 4.6 

4.7.3 Grid Generation 

For rectangular and compound straight channels, governing equations are solved 

on cartesian grid whilst for meandering channels orthogonal grids are used. In 

this section, the generation of cartesian and body-fitted orthogonal grids are 
discussed. 
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4.7.3.1 Cartesian Grids 

The governing equations described in Chapters 3 and 5 are solved over an al- 

gebraically generated grid for the entire domain of interest. In order to obtain 

sufficient resolution of the dependent variables, it is necessary to use a refined 

grid in the vicinity of the wall. A schematic diagram of a simple 2D Cartesian 

grid is given in Figure 4.5, which represents the non-uniform arrangement of com- 

putational nodes. The locations of the bottom and top of the grid (locations yl 

and y7) are already defined. Between nodes i=1 to i=7, the grid is expanded 

with a given ratio, r, according to 

Dy; = r0yi-i 

where Ayt is the cell width for node i. The distance between the first and last 

boundary locations consists of the sum of the control volume widths: 

yn - yi = Ay + r0y + r20y +... + r(n-3)Dy 
n-3 

_> rmLy 

m=0 

where n is the number of nodes, in this case n=7. The width of the smallest 
control volume (0 = y2 - y') is then given by: 

yn-Y1 02� 
- n-3 m ýM=O r 

The position of the cell faces then can be calculated in recursive fashion as 

+ r(m_2)Ly for m=2,3,4,... (n - 2). (4.25) 

The coordinates of the CV centered nodes can be calculated from the coordinates 

of the CV faces in the following way: 

ymp 
y'' + y'n-1 for m= 2>3>4 (n - 2) 

2 s.. 
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4.7 Numerical Grid 

Figure 4.6: Typical sketch of a 2D Cartesian mesh for compound channel geometry. 
In the highlighted bottom left corner, computational arrays are "blocked-off", which 
represents the solid wall. During computations, the source term and the variables are 
set to zero, while the term ap is set equal to one (see Section 4.7.3.2). 

4.7.3.2 Grids for Compound Channels 

In the present research, the computer program as written for a regular Cartesian 

grid is modified to handle compound channel domains. This is done by "blocking- 

off" some of the control volumes of the regular grid so that the remaining active 

control volumes form the desired irregular domain. Figure 4.6 shows a grid for a 

compound channel where the highlighted area (bottom left) represent the inactive 

control volumes. 
As such, the inactive region represents the stationary solid boundary, the 

velocity components in that region are set equal to zero. The desired values in 

the inactive region are set, with help of the Equation 4.18 in following way: 

1. Set all neighbouring coefficients equal to zero, i. e. Ej AIO = 0. 

2. Impose A5 = 1. 

3. Fix Sp equal to the desired value, which is zero. 
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Finally, the wall boundary condition is imposed to the cells next to the 

blocked-off cells. The method of applying the boundary condition (the log law) 

to these cells is same as discussed in Section 3.5.3. 

4.7.3.3 Orthogonal Grids 

In the case of meandering channels, the successful numerical calculation of the 

solution to a set of partial differential equations is strongly dependent on the 

quality of grid especially the grid orthogonality. Extensive literature is available 

on 2D orthogonal grid generators (Eca (1996), Thompson et al. (1985)). In the 

present research, the algorithm proposed by Akcelik et al. (2001) has been adopted 

to generate 2D orthogonal grids for compound channel domains. This also uses 

a forcing function to control grid aspect ratio. 

The 2D orthogonal grid generation system is based on following system of 
equations: 

(f )+ (f 
ä) + P(he) +Q_, (hj = 0, (4.26) 
ý 027 

(4v) + 
(fe) 

+ Py(hý) + Qy(hn) = o. (4.27) 

where x and y are coordinates in the physical space while ý and y are orthogonal 
curvilinear coordinates. In above equations, f (x(ý, 71), y(ý,, q)) is the distortion 

function, which is defined as the ratio of the scale factor in the n7-direction to that 
in the c-direction, i. e. 

n, (4.28) 

where the scale factors h£ and h,, are defined by: 

+ 
()2 

(4.29) 
2 

h'' 
RX 
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22 

/ 

-+( 
ý/ (4.30) ht - 

F(! 
La, x 

Formulas to evaluate the distortion function, f, are given in Eca (1996). In 

Equations 4.26 and 4.27, P(h£) and Q(h, 7) are inhomogeneous source terms that 

alter the solution (x, y) in such a way as to control the scale factors hC and h,, 

favorably, and hence the aspect ratio of the resulting grid. Evaluations of these 

source terms are described in Akcelik et al. (2001). 

Because the presented system of Equations 4.26 and 4.27 is nonlinear, an 
iterative algorithm is used to solve it numerically: 

1. Choose four corner points of the physical domain that serve as the corner 
points of the grid in computational domain. Calculate x and y values of 
the other boundary grid points by dividing physical boundaries into equal 

segments. 

2. Determine an initial approximation for the interior grid points by bilinear 

interpolation (see Figure 4.7 (a)). 

3. Calculate distortion function, f, from Equation 4.28. 

4. Solve the system of Equations 4.26 and 4.27 with fixed f values calculated 
in Step 3 using SOR iterative method. Calculate source terms P and Q in 

following way (Akcelik et al. (2001)): 

L2 
P(ht) =c ht -t1 (4.31) 

ht 

) 

hz 
, Q(h, 7) =c hn - (4.32) 

where c is a force constant and ht and h. are mean scale factors. By chang- 
ing the magnitude of force constant, it is possible to change the intensities 

of P and Q. The functions P and Q act like distributed forces proportional 
to the deviation of the local scale factors from the mean scale factors. 
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5. Adjust boundary conditions; if Dirichlet boundaries are applied nothing 
is done, if sliding boundaries are applied (Neumann-Dirichlet), relocate 
boundary nodes to satisfy orthogonality. 

6. If convergence criteria on orthogonality are not satisfied, return to step 3. 

The orthogonality condition is expressed by Equation 5.16 and discussed in 

detail in Section 5.2.3. 

The results obtained after implementing the algorithm, are shown in Figure 

4.7. The computation starts with the initial grid approximation shown in Figure 

4.7 (a). In the absence of pseudo forcing functions P(hC) and Q(h, 7), several 

grid lines tends to collapse onto each other at the curved boundary which may 

cause convergence problems. This result is shown in Figure 4.7 (b). However, the 

introduction of pseudo-force prevents the grid lines collapsing and imposes some 

control on grid spacing which is represented in Figure 4.7 (c) and (d) for forcing 

function values of 0.001 and 0.2 respectively. 

This algorithm was applied to create orthogonal grids for compound mean- 
dering channels with three different values of sinuosity; 1.093,1.370 and 1.570. 

For each of this case the forcing function values used are 0.15,0.2 and 0.25 re- 

spectively. Figure 4.8 shows the orthogonal grids for one bank with different 

sinuosities. In all grids, boundary conditions are fixed at all boundaries except 

at the bottom where a sliding boundary condition is specified. 

4.8 Concluding Remarks 

In this chapter, the finite volume discretization of a generalised governing equa- 
tion, handling the non-linearity of governing equations as well as source terms 

and different type of numerical grid generation are discussed. The discussion can 
be summarised as follows: 
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(a) 

(c) 

(b) 

(d) 

Figure 4.7: Illustration of initial and orthogonal grids for the domain (24 x 24) limited 
by x=0, x=1, y=1 and y=0.85 + 0.15 cos(irx). Grid (a) represents the initial 
approximation of the grid. Force constants are 0 in grid (b) 0.001 in grid (c) and 0.2 
in grid (d). Boundary conditions are specified or fixed at all boundaries. 
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(a) 

(b) 

(c) 

Figure 4.8: Orthogonal grids for different geometries: (a) sinuosity = 1.093 (b) 
sinuosity = 1.370 and (c) sinuosity = 1.570. These grids represent one part of 
the complete overbank grid, which is shown in Section 6.4. It can be seen that by 
increasing the curvature, the grid lines tends to bulge near the curved boundary. 
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9 The finite volume formulation with the help of UDS for convective terms 

and CDS for diffusive terms leads to a set of algebraic equations which are 
solved using SIP solver. 

" The numerical solution becomes stable and converges if source terms are 
linearised. The SIMPLE algorithm with predetermined under-relaxation 
factor is used to couple the pressure and velocity, which are updated in each 

inner iteration while in outer iteration solution of all governing equations is 

updated. 

" The geometric expansion of a cartesian grid gives better control on grid 

refinement wherever it is desired. Implemented algorithm for orthogonal 

grid generation works well for different sinuosities. The forcing function 

gives better command over the grid aspect ratio. However, as sinuosity 
increases the orthogonal grid lines start to bulg near the curvature peak. 
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CHAPTER 5 

Body-fitted Coordinate System 

for Meandering Channel 

Simulations 

5.1 Introduction 

For 3D flows involving complex geometries, it is desirable to employ a numerical 

technique in such a way that the flow in the wall layer can be accurately resolved 

with a reasonable number of grid points. Where the shape of the physical do- 

main and the numerical grid is complex, such as a meandering channel, boundary 

conditions must be described precisely. The boundary-fitted curvilinear coordi- 

nate technique has been developed to meet these requirements (Thompson et al. 
(1985)). This technique transforms the coordinates in the physical plane to coor- 

dinates in a computational plane, which helps to specify the boundary conditions 

with sufficient accuracy. 
Once such a coordinate system is selected for a given geometry, the equation 

of motion must be formulated in that system. One option is to transform the 

equations completely, including the independent and the dependent variables. In 
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this case, the use of contra-variant velocity components, which follow the grid 
lines, allows a much more accurate resolution of the boundary-layer flow near a 

solid surface. 
However, the fully-transformed equations involve many geometric coefficients 

and their higher-order derivatives, which increases the computational time and 

complicates the programming. Sometimes the arrangement of variables on the 

grid affects the accuracy and efficiency of the numerical algorithm. 

Despite these disadvantages, as already discussed in Section 2.4.4, the body- 

fitted coordinate system is one of the most popular techniques for simulation 

of meander channel flows (Wormleaton and Ewunetu (2006), Shao et al. (2003), 

Sugiyama and Saito (2002), Ye and McCorquodale (1998)) due to the ease of han- 

dling complicated geometries. In this study also, a body-fitted grid is considered 
for simulation purposes. 

This chapter focuses on the basic methodology involved in coordinate trans- 

formation from the physical plane to the computational plane, transformation 

parameters and their evaluations. The governing equations are subsequently 

converted from cartesian to orthogonal coordinates. The numerical implemen- 

tation of the converted equations for simulations of meandering channel flows are 
discussed briefly at the end. 

5.2 Method of Coordinate Transformation 

The use of a generalised coordinate system, as explained by Fletcher (1989), 

comprises the following steps: 

1. A distorted or complicated physical (x, y, z) space is mapped into a rectan- 

gular region in the generalised coordinate space as shown in Figure 

5.1. 

2. The governing equations are then converted or expressed in terms of the 

generalised coordinates as independent variables. 
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y 
.x 

z 

.ý 

,_ 

(a) (b) 

Figure 5.1: Illustration of (a) physical domain and (b) generalised or computational 
coordinate domain. This shows the correspondence of the physical domain charac- 
terized by (x, y, z) coordinates and the generalised domain represented by (e, 77, () 
coordinates. 

3. The equations are discretized into generalised coordinate space. 

4. Computation is performed on generalised space. 

To understand the mapping of physical space into computational space, con- 

sider a two dimensional curved duct as shown in Figure 5.2. Here, it would be 

appropriate to construct a grid lines coinciding well with the curvature of phys- 
ical geometry. The location along the duct wall, say from A to B or D to C, 

correspond to a specific value of ý in the computational domain. Similarly, a 
location on A to D or B to C corresponds to a specific value of 77. 

Points on AB and CD, connected by a particular 77 line, 'will have the same 

value ; but different 77 values (iii on A'B' and 11JMAX on C'D'). The same 

applies to points on AD and BC, connected by a particular e line, which will 
have the same value i but different ý values ('1 on A'D' and eIMAX on B'C'). 

At a particular point (i, j), highlighted in the figure, e=& and 77 = rj,. A 

corresponding point, x= x(ei, rib) and y= y(t, r7? ), exists in the physical domain. 
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C j=JMAX 
D' Co 

j+t 
en J 

j-t 

A, i-t t t+t B' j=1 
i=1 i=IMAX 

Figure 5.2: Illustration of 2D curved duct in (x, y) plane and transformed (C77) 

plane. Domain ABCD represents the physical domain and A'B'C'D' represents the 
computational domain. The constant 7) and ý lines are constructed coinciding with 
wall duct. The computational domain is created with uniform spacing of C and 7) 
generally keeping AC = Ord = 1. 

5.2.1 Transformation Relationship 

In this section 2D relations between the physical (x, y) and computational (, 77) 

coordinates are established. It is assumed that there exists a unique, single-valued 

relationship between the generalised coordinates and the physical coordinates 

which can be written as 

Z= Z(x, y), and 17 = 77(x, y) 

and by implication, x= x(e, 77) and y= y(e, ii). The specific relation can be 

established once the physical grid is generated as discussed in previous section. 
Once, the functional relationship is known the governing equations can be 

transformed into corresponding equations containing partial derivatives with re- 

spect to ý and 77. For example, the first derivatives of the velocity components u 

and v with respect to x and y become 
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eu 8u öu eu e¬ e 
X ay Oý ä, 7 aX ay 

a� av av a� 877 N 
(5.1) 

8x 8y 8£ 8ý ex Oy 

Here, the Jacobian matrix, J, of the transformation can be defined as 

a 
J ex ey (5.2) 

all 817 

OX Dy 
If an analytic relationship _ e(x, y) is available then the elements of J can be 

evaluated directly. In practice, an explicit analytical relationship is not available 
hence, it becomes more convenient to work with the inverse of the Jacobian 

matrix, J, given by 

J_1 = 
eý a'' (5.3) 

[ox 8x 

BY 19Y 
aý an 

The determinant of the inverse Jacobian matrix, la-1 I is given by 

I! -i I= Xon - x, 7yc (5.4) 

where x4 - äx/äff , etc. Now, the elements of J can be expressed as 

1ianspose of Cofactors (J-1) 
(5.5) 

or 

= IJ 
°1 

, ýy =J 
xi 

77x =J 
yl 

, and 77y =Ji (5.6) 

Once a grid representing the complicated domain is constructed, the dis- 

cretized form of the elements, e. g. xý of the inverse Jacobian are evaluated. 
Equation 5.6 can then be used to evaluate the elements, e. g. ý., of the Jacobian 

matrix of Equation 5.3. This helps the discretization of the governing equations 
in generalised coordinates. 
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5.2.2 Matric Tensor and the Physical Features of Trans- 

formations 

In order to link the coordinates of the physical domain and the generalised co- 

ordinates the matric tensor gzj is introduced, which is related to the Jacobian 

matrix J. 

As already assumed, the physical domain, shown in Figures 5.1 and 5.2, is 

represented by Cartesian coordinates x'(- x, y) and the computational domain 

by generalised coordinates ýi(-1, 

The small distance As between two points in physical space can be written 
in terms of coordinate displacement as 

a 
Ost =E OxkOxk. (5.7) 

k=1 

The increments in the physical coordinates Axlc can be related to the change 
in generalised coordinates Obi by 

k C9X 
Axk = Obi (summation over i implied). (5.8) 

Consequently the small distance As in physical coordinates can be related to 

generalised coordinates by: 

os2 =2E 
(ai k 

obi) (j) 
k_1 (5.9) 

= g;, ji t1 3 (summation over i and j implied), 

where 2 axk Oxk 

gij =E`t (5.10) 
k=1 

as aS'" 

It is also convenient to express Equation 5.10 as a matrix 

(x£ + yy) (xzxn + yeyn) (5.11) 
(xzxn+yfyn) (xn+yý) 
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t 

Figure 5.3: Illustration of physical features of the computational domain. Length of 

the sides: ASn =(x, 7+ y,, )Or) and OSE =( xC + y)0ý; The grid Aspect Ratio: 

AR = Asn/L s£; The angle 0 between the coordinate lines: cos8 = 912/ (9ii922)- 
Symbols are explained in Section 5.2.2. 

The matric tensor gjj relates the contribution to the distance As to small 

changes in the generalised coordinates 0ý'. In two dimensions the distance mea- 
sured along ý and 77 grid lines is given by 

As4 = 9ii2A and Osn = 922 2L ij (5.12) 

respectively, as shown in Figure 5.3. 

The metric tensor gzj and the various transformation parameters, x£ etc., 

on which it depends can be interpreted in relation to the physical features of 
the computational grid. The transformation parameters are evaluated in Section 

5.3. The other properties of the physical grid in connection with generalised 

coordinates can be expressed in following way: 

Cell Area: The grid cell area is given by 

Area = jgj1/20ýOr/, (5.13) 

70 



5.2 Method of Coordinate Transformation 

i+I 

J-1 

+1 

y 
L'X 

Figure 5.4: Illustration of node arrangement in a computational grid equivalent to 
the physical domain. At node P the evaluation of transformation parameters (xe, for 
example) is given by x£ = (xi+lj - x: -ij)/(fit+lj - &-ia). 

which gives a physical interpretation of the inverse Jacobian determinant. 

Here, IgI1/2 = IJI-1. 

Aspect Ratio: The grid aspect ratio AR is given by the ratio of the magnitude 

of the tangent vectors (with L= Ord) 

As" 9221 
1/2 

AR = 
(911 

Local Distortion: The local distortion of the grid is determined by the angle 0 

between the ý and 77 coordinate lines. Thus 

cos 6- 912 
1/2. 

(5.15) 
(911922) 

5.2.3 Simplification Due to Orthogonal Coordinates 

The use of generalised coordinates permits arbitrary geometries to be considered. 
However, it is well known that the accuracy of the solution is degraded by grid 
distortion. For high accuracy, the grid should be orthogonal or nearly orthogo- 

nal. For orthogonal systems some of the transformation terms disappear and the 

equations simplify further. 
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For 2D orthogonal systems the grid innst have 0= 9)U" (see Figure 

from Equation (5.15) the orthogonality condition for the 2D phaue is 

g12 = .C X71 = U. (ýý. 16; ) 

In three dimensions the orthogonality condition become, 

fjij = 0, i J. (x,. 1 1) 

For 2D orthogonal coordinates, the Iiiatric tons or ("ont, Ii>>n only diagoiml teriiis, 

Otj, hence we can define 

(x.. 2+ 2)1/2 and / =1, =(! Jjj )1/'_(: r2 +1/2)1/'. 

(5.18) 

The terms h, can be interpreted as "scale fa. ctor, s", which arc alrv, i(ly dcfii1( 1 

in Section -1.7.3.3. 
The rnaxiiiiuln deviation ('\IDO) arid incan (1eviati iti (: ýI)O) Crýýui ý, rtliýý u 

nality are calculated frone 

LIDO = nlax(190° - 0, ») (5.19) 
H 

E(1901, 
- H;, (5.20) ADO =212 ýýs 11y> 

> 

\vllere 

(ý,. 2 !) o= arccOS 
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A small change in the ý' coordinate. ill the orthogonal grid. pn)(111ce", ,I ; (.; Il cd 

overall movement given b 

psi = irýýý ýýiýýl ý, ti. ý = h"ýýrý. (5.22) 

For computational convenience pill-poses Soho' ad(lit, io1111 t('rui- are d(dim'd 

as 

1 AI? I11 Ah., 
)3ý and (5.23) 

rý 1 h", Aq r,, /11/1., ; ýý 

'fliese terms are used extensively in the <lcriv itio n of workiuh ((ii ; it iom, ['Or 

the simulations of compound ineancleriiig clialliiels. 

5.3 Evaluation of Transformation Paraiiicters 

Once the lilappinö is defined at grid points, we love to vvnlunt t' t lie t r; iusG )riii, it i(ni 

parameters numerically. Here. a central difference scheme is (((sickre I. which I,, 

discussed in fo1lovt"ing section. 

5.3.1 Central-Difference Scheele 

The ( almitioll of the tI'ansforiimtion paranlel(`I's (31.1h1 (`f('. ) is ('211'1'1(`( (1111 wiil1 

the help of a cerltral-clifferellce sellenie. Hellee, for the point Pas shown in F'iý; llre 

. 5.4 11 central (llffel'eIlce evaluation of the parameters gives 
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xt = 
xi+lj - xi-l, j 

yE = 
Yi+i, j - yi-1j 

r &+lj - &-1,2 
and 

6i+lj - i-1j, (5.24) 
xij+l - xi, j-1 Yi, j+1 - Yi, j-1 X71 = Y77 = 
77i, j+1 - 17i, j-1 71i, j+1 - 77i, j-1 

Similarly, second order transformation parameters are evaluated as 

xi-,, j - 2xi, j + xi+1, j yi-1, j - 22Ji, j + yi+1, j 

and (5.25) 
xi, j-i - 2xi, j + xi, j+l Yi, j+l - 2yi, j + Yi, j-1 x7771 - 0?? 2 y, 7,7 = 0772 

Here, a uniform (ý, i) grid is assumed, i. e. 04 = ýt+ij - ýtj = 077 = 77äj+i - 
77Zj = 1. Once the basic parameters have been evaluated as discussed above, the 

transformed parameters & etc., can be obtained with help of Equations 5.6. 

5.4 Equations Governing the Flow Through Me- 

andering Channels 

The 3D steady, incompressible, turbulent flow in meandering channels (see Figure 

5.5) is governed by continuity, momentum balance, turbulent kinetic energy and 

energy dissipation equations as already discussed in Section 3. 

In this section, the governing equations are derived in an orthogonal curvi- 
linear coordinate system. The detailed derivation of the governing equations in 

generalised coordinate systems can be found in Ye and McCorquodale (1997), Ye 

and McCorquodale (1998), Warsi (1998) and Shao et al. (2003). 

5.4.1 Continuity Equation 

The continuity equation for meandering channels in orthogonal coordinates may 
be expressed as 

Ti- - 
h2 

[ 
ß(112v) + a_(hly) + I_(hih2W)] 

=0 (5.26) 
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Lq 

(a) (b) 

Figure 5.5: 2D numerical grids of a meandering channel: (a) physical domain in (x, y) 
plane (b) computational domain in (ý, 77) plane. Physical domain represents the single 
meander of a channel with sinuosity = 1.370. Number of CVs have to be same both 
in physical and computational grids. 
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5.4 Equations Governing the Flow Through Meandering Channels 

where h1 and h2 are the scale factors defined in Egtuatio»is . 5.1ý: U. 1' itnd 11' , ire 

velocity components aligned with grid lines in 
. r, i) acid : directions. 

After applying the chain rule of differentiation and fining l; gtiuulio11s 5.122 , in(l 

"`). 2: 3, we get: 

w at" 3W UV ++ +-+-_O 381 v5. ß Dz ,,, v 

5.4.2 Momentum Equations 

The 11millentnm equation's irre expressed in the folluvViIig sections. 

5.4.2.1 Streamwise Direction 

The stremm vise.. r-direction inoineiitttin equation in: w he (1('s("riI)('(I : i, -" 

(5.2 7) 

U DU V DU 
. 
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h2 Of/ 
+ It 

Tti 
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h, h. 2 Oll 111112 ik h, 04 p} 
(lll i)112 

ýhi P111112 he 

ýa 
(h2T12)+ 

all 
(111T,, )+ 

vý(h, 
h"2r,. 

z) + 
l , hih, i) Il 

Which, on siniplification. leads to 
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+ 29) 
f) OSI )s., 
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5.4 Equations Governing the Flow Through Meandering Channels 

5.4.2.2 Lateral Direction 

The lateral or y-direction momentum equation may be expressed as 

U av V av av UV ah2 U2 ah2 
_1a1P\ hl ä+ h2 ärß + ý' äz + hlh2 ä lzlh2 äßl 

2 ý] n J+ 

1a yý an2 Týý ahl 
phlh2 

[h2r) 
+ ö7/(h1Týý) + Lhih2rz]) +T 

ph, h2 ab - 
ph, h2 i977 

(5.30) 

After doing further simplification, we get 

av av av UV U2 v+v-+tip-+- --_ --a 
(P) 

asl as2 az r, 7 rý 5s2 p 

+1 (aTyx + 
aTyy 

+ 
arxz 

p as, as2 äz (5.31) 

+1(2 nvx) 
.ý1 

(rrV - Tex 
rJ` rc 

5.4.2.3 Vertical Direction 

Similarly, for z-direction we may write 

U OW V äW aW aP 
hiö+hzärý+W äz -äz p 

+ 
phih2 [(h2r) + -2-(h, 7-, y) + 

L(hih2rzz)] 
Oý C977 TZ 

(5.32) 

which leads to 

Uaw+Vaiv+Waw_ as1 as2 az Pl P(07.. i 

+1T? - + 
Tz? / 

p r, 7 rr 

) 

CITzy ClTzz 

082 + az 
(5.33) 
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5.4.2.4 Reynolds Stresses 

In Equations 5.28 to 5.33, the term ri; is the shear stress. In open channel flow, 

these stress are modelled with help of Boussinesq's approximation (Boussinesq 

(1887)), which in orthogonal coordinates, takes the following form: 

TP , au Tby=2v'I aV 
+U f Tp; 

=2vý9IV =2v asi+r 
)lp 

\as2 r17 /' az' 

TPy TP - vl LCau )+ CaV + ý)J 
as2 rn as 

Ty, 
_ 

Tzy 
v, av + aiv Týz _ Tzx _ vý 

au + DIV 5.3 ( 
(Cz 

5s2 7PPC TZ asl) Pp) 

where ii is the eddy viscosity. 

5.4.3 Momentum Balance Equations in Their Final Form 

After considering the expressions for the Reynolds stresses expressed in Equa- 

tion 5.34 and performing some mathematical manipulation, we can express the 

momentum balance equations as: 
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U Momentuni 

AU DU All P 02U r)'(l i)2 1; 
U +V; +W-=- 

ýý+1' 
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ý 
iii 

cis Os Dz Os p OS 2ý T Os 
� 
., 0): _- 

+1 
ý2 UV 

5.35) 

V Momentum 

ov w av vP, DFV 
J 

321 , i)21 Uasi +V 382 + TV 
082 

\Pý+ý; 
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1V Momentuni 
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In Equations 5 
. 
35 to 5.31, the l1Tl(I('l'})1'a(e terillti ill'(' I lie ii(Idit I111; 1l 

terms. winch arise duc to the coordinate trainsfuriiiati(m. In tIle 1' ; Iii(I 1, ilu)- 

mention equations, the last highlighted terms rel)rVn('Iit 

re, l>OI1, il)lc for the centrifugal ('ffe(ts. 
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5.4.4 The Standard k-- Turbulence Model 

The / and equations in ('artesial1 ('Ou1 di11ates i1I( aIrea(1v 110 ('d 111 Sect 11 111 3.3. 

In this section. the model equations are derived for a urt l long mo I (( )O1(I ill; lt c 

system. 

5.4.4.1 The Equation 
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+ Sk 

(1). 3S) 
where, Sk = Ph, + F, Pk. is the tI I rhulerit I)10(111(., l(>>I I(flfl fill I v, iIIIecldy 

viscosity. After further simplification, vVP get 

ill Ali Ok. v 02k 3)``A. 1924 tý 1 i)l I i)l 
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5.4.4.2 The - Equation 
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5.4 Equations Governing the Flow Through Meandering Channels 

5.4.5 Reynolds Stress Models 

In this section, the ASM equations discussed in Section 3.4 are transformed in 

an orthogonal coordinate system. For this derivations, the shear stresses terms 

discussed in Section 5.4.2.4 are used to evaluate the gradients. 

5.4.5.1 LY Model 

Primary flow direction: 

vl (au (5 Txy--puu - pvt as, +r J (5.44) 

Cau- v (5.45) Tay = -puv = pvt as2 rnl . 45) 

Cl Tex=-p2iw=p1/t aazvJ (5.46) 

Secondary flow direction: 

V 
Tyy _ -pvv = -Cl 

pvEtk öU 

s2 
+- Ckpk (5.47) 

r 

Tzx = -pw = -c1- I 
ýz 

I- Ckpk (5.48) 

Tyx=Tzy=-1. JVW=-C1pta 
(TZ 

) 
\a 2+ E/ 

(5.49) 

Here, Cl and Ck are the dimensionless constants discussed in Section 3.4.1. 

This transformation has given additional terms, particularly V/re, which take 

care of centrifugal effects on Reynolds stresses. 
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5.4 Equations Governing the Flow Through Meandering Channels 

5.4.5.2 NR algebraic stress model 

Primary flow direction: 

Txy = -Puu = Pvt 
(9s, 

+r (5.50) 
f 

(au U-V1 T. y - -puv - PVt2 88r J (5.51) 
2n 

Txz = -puw = puts 
M ) 

(5.52) U 
U 

where vt2 and vt3 are equal to the same quantities in Cartesian coordinates, as 
discussed in Section 3.4.2. 

Secondary flow direction: 

Tom, =-pvv 

-pk 
Cl 

taß+c1l 3(2 1+cs 
fa -k +-lvw7z 

C)-üvi 

r), 

} 

/v 

+ 2pvt 
9V 

+Ur, 

(5.53) 
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cl + 2c3f2 
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+ CaiV) 2Pvt 
az J 
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2 
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Cl + 3C3f2 E SL 3s2 rn + az 1+ Pvt as2 + az 

(5.55) 
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5.4 Equations Governing the Flow Through Meandering Channels 

Similar to LY model, the transformation has raised additional terms, which 

might influence the secondary current behaviour in meandering channels. 

5.4.5.3 Nonlinear k-e Model 

Primary flow direction: 

Txx --puu - Pvt(äs +rI (5.56) 
f/ 

V 
Tyy = -puv = Pvt 

(äs au 
- n) 

(5.57) 

7 Xz = -puw = pvt 
(c7z) 

(5.58) 

Secondary flow direction: 
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=-3 pk + p1ý1121 
ay (a81 u 
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rn /+ 

CDp12 
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_ 12 
(as2 @2 au 2 

6 
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ý au v\2\ 
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(as2 
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5.5 Numerical Implementation of Orthogonal Coordinates 

It can be noticed from ASM models in transformed coordinates that, the 

conversion process has created in stress terms also for longitudinal direction. As 

discussed in Chapter 3, the Reynolds stresses are treated as additional source 

terms and handled explicitly. 

5.5 Numerical Implementation of Orthogonal Co- 

ordinates 

Once the governing equations are converted into orthogonal coordinates, their 

numerical discretization is carried out with help of the FVM. As the FVM is based 

on the principal of global conservation of quantities inside the computational 
domain, the discretization process remains similar for orthogonal coordinates and 

cartesian coordinates (Ferziger and Peric (1995)). Hence, coding becomes more 

easy. 
The discretization of convective and diffusive fluxes, the SIMPLE algorithm 

and the set of derived algebraic equations in orthogonal coordinates remains the 

same as for Cartesian coordinates as discussed in Section 4. The only change is 

the area of the CV and-volume of the CV. 

5.5.1 The System Equations and Their Solution 

Here, CV areas can be expressed in the computational domain as: 

Os10s2 = hih21 L ij 

Os10z = h, A Lz 
Os2Az = h2L77Oz 

and the volume (OSt) can be expressed as 

Os10s20z = h1h2L izz= ASZ. 
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5.6 Concluding Remarks 

The discretized algebraic equation is expressed as: 

aP, OP = aEOE + awcw + aNON + as0s + aTcT + aBOB + S4AII (5.62) 

where, 

aE = (De + max(7 z, 0. ))OS2Az 

aw*= (Dw + min(th , 0. ))Os2Az 

aN = (D,, + max(1n, i, 
0. ))Os10z 

as = (De + min(rn8,0. ))Os1 .z 

aT = (Dt + max(rnt, 0. ))Os10s2 

aB = (Db + min(rnb, 0. ))Os10s2 

aP=aE+atv+aN+as+aT+aB. 

5.5.2 Source Terms 

The source term UV/r£ is a function of the dependent variable U in the U mo- 

mentum equations and hence makes the source term non-linear. This source term 

is linearised by adding it to the ap in following way: 

ap = 
uV 

= V/re 
E 

Other source terms are treated explicitly, i. e. they are evaluated with the help 

of values from the previous iteration. 

5.6 Concluding Remarks 

The basic mechanism of coordinate transformation from physical to computa- 
tional plane, derivation of governing equations including RANS equations and 
ASM equations, and their numerical implementation are discussed in this sec- 
tion, which can be summarised as follows: 
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5.6 Concluding Remarks 

" Important aspects of relationship between physical and computational co- 

ordinates including grid cell ares, grid aspect ratio and local distortion are 
established. 

" The orthogonality condition, mean and maximum deviation from orthogo- 

nality and scale factors are discussed in detail. These terms play a vital role 
in the orthogonal grid generation and in the transformation of governing 

equations. 

" Momentum balance and continuity equations, the k and e equations with 
kinetic energy production terms and algebraic stress models of LY, NR, and 

non-linear k-e are derived in curvilinear coordinates. This transformation 
from cartesian to curvilinear leads to additional source terms in equations, 

which take care of the centrifugal effects. 

" Numerical implementation of converted equations remains similar to that 

of the original equations. The only difference is in the evaluation of control 

volume surface areas, which are multiplied by scale factors in the case of 

curvilinear coordinates. This, in fact, provides ease of computer implemen- 

tations for numerical simulations. 
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CHAPTER 6 

Results and Discussions 

6.1 Introduction 

The 3D RANS equations have been solved numerically in conjunction with the 

continuity equation to predict the flow mechanisms in a simple channel, a com- 

pound channel and compound meandering channels. The objectives of this chap- 
ter are to: 

" investigate the flow by examining the effects of isotropic and anisotropic 
turbulence on it 

" reproduce flow mechanisms with the help of the model 

" validate the model by comparing the computed results with experimental 
data 

" investigate the impact of anisotropy in a compound meandering channel of 
low sinuosity (s=1.093). 

These objectives are achieved in four phases. In each phase, the complexity 

of the channel geometry is gradually increased. 
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6.1 Introduction 

1. Simple channel: The simple channel geometry is the most straightforward 

case considered here. Therefore, the simple channel flow simulation can be 

considered to be the first step towards the simulation of complex compound 

meandering channel flow. In this section, closed and open channel flow 

conditions are simulated to validate the model when the symmetry and 
free-surface boundary conditions are considered in conjunction with the 

rigid lid approximation at the surface. The ASMs discussed in Section 3.4 

are tested to reproduce the secondary currents and their effects on the mean 
flow behaviour. The computed results are also compared with the published 
literature in this section (Section 6.2). 

2. Compound channel: The performance of the masking array concept is 

thoroughly tested by simulating turbulent flows in a compound channel 
during the second phase of validation. In this section (Section 6.3), as in 

phase one, the effects of boundary conditions are tested in conjunction with 
the masking arrays concept whilst simulating the compound duct and open 

channels. 

3. Compound meandering channels: In this phase of model validation 
(Section 6.4) , the model is applied to simulate the flows in compound me- 

andering channels. The performance of the orthogonal coordinate system 

coupled with masking arrays are checked by simulating three different types 

of meandering channels (s = 1.093,1.37 and 1.57). For each of the mean- 
dering channels, three different relative depths (Dr=0.0,0.15 and 0.5) are 

also simulated. 

4. Anisotropy in compound meandering channel: Finally, the LY model 
is applied for less sinuous compound meandering channel case (s=1.093) to 

investigate the effects of anisotropy on flow mechanism. For meandering 

channels, generally, the secondary currents are pressure driven, however in 

less sinuous channels, the secondary currents may be generated due to the 
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6.2 Simple Channel 

turbulence anisotropy (similar to simple channels) or due to the centrifu- 

gal forces (similar to meandering channel). In this section (Section 6.5), 

the effect of anisotropy on the secondary current generation mechanism is 

investigated. 

While performing the simulations for a simple channel, compound channel and 

a compound meandering channel cases, fully developed flow is achieved using the 

periodic boundary conditions. This was achieved by checking the profiles at inlet 

and exit. For simple and compound channels, uniform flow was assumed to have 

established when the profiles became almost identical, proving that the shear 
forces on the walls of a flow domain is balanced by the force which drive the flow 

as follow: 

- 
(LP 

+ pgsinO) " Area =f Twall dp (6.1) 

where the integral expresses integrated shear stress (Twat) over wetted perimeter 
(p). The convergence criteria was set to be achieved once the difference be- 

tween the variable values of two successive iterations dropped below 0.1%. This 

optimum value was decided based on numerical experiments with different con- 

vergence criteria such as 0.01% and 1.0%. In presented results (Figures 6.1 to 

6.70), the lateral axis represents the lateral distance y normalised by the chan- 

nel depth h. The vertical axis expresses the vertical distance z normalised by h, 

which is taken from the channel bed. The velocities are normalised by the section 

averaged velocity Ue = Q/A, where Q is the total discharge and A is the cross 

sectional area at the inlet. 

6.2 Simple Channel 

The aim of this section is to judge the performance of the LY, NR and NLKE inod- 

els by checking their ability to reproduce the turbulence driven secondary currents 

and their effect on the mean velocity profile. In this section, the predicted mean 
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6.2 Simple Channel 

velocity distributions, secondary currents and Reynolds stresses obtained from 

these models are presented and compared with published data in the literature 

(Section 2.2) for closed and open channel flows. 

6.2.1 Closed Channel 

A sketch of the closed channel duct is shown in Figure 6.1, which shows the 

axis configurations and respective velocity components. The geometry is axisym- 

metric in the y as well as z directions, hence only the bottom left quadrant is 

simulated. This geometries with aspect ratio of one for closed channel and two 

for open channel are widely adopted for benchmarking of computation for open 

channel flows. Figure 6.2 shows the non-uniform numerical grid of the bottom 

left quadrant adopted for the simulations. The number of control volumes used in 

the present study are 40,40 and 100 in lateral, vertical and longitudinal direction 

respectively. During simulations, non-dimensional parameters (shown in Table 

6.1) are used and the value of Reynolds number (Re = 4U, R/v) is kept equal to 

50000, where R is the hydraulic radius, 0 is the bed slope and v is the molecular 

viscosity. In Figure 6.3 (a) secondary currents and (b) longitudinal velocity con- 
tours for closed duct flow captured experimentally by Nezu and Nakagawa (1993) 

are presented, which- will be used to validate the model. 

Table 6.1: Non-dimensional hydraulic parameters considered for simple channel flow 
simulations 

Closed channel Open channel 

Height (H) 1.0 0.5 

Width (B) 1.0 1.0 

Aspect Ratio (B/H) 1.0 2.0 

Reynolds number (Re (x 104)) 5.0 5.0 

Channel slope (9) 0 1/2000 
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6.2 Simple Channel 

(a) 

Figure 6.1: Typical sketch of a computational duct: (a) Longitudinal view (b) Cross 
sectional view, where L= length, B= breadth, H= height of the duct. U, V and W 
are mean velocities in x, y and z coordinates respectively. For simulations, only the 
bottom left quarter is considered due to the effects of axisymmetry. 

Figure 6.2: Non-uniform computational grid of one quadrant of the duct. The ge- 
ometrical expansion factor (r) used for non-uniform grid generation is 1.05 (section 
4.7.3). The number of CVs are (y, z) = (40,40). 
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6.2 Simple Channel 

The objective behind the simulation of closed channel flow is to validate the 

model with data from the literature when symmetry boundary conditions are 

imposed at the right and top boundaries (see Figure 6.2) of the domain. The 

symmetry or the zero gradient boundary condition is applied, in conjunction 

with the rigid lid boundary condition, for all the computed variables, including 

the Reynolds stresses in following way: 

19Y 19Z 

Mright 

oP 

Figure 6.4 shows the isovel lines of the mean primary velocity normalised by 

the section averaged velocity calculated using (a) linear k-C model, (b) LY model, 
(c) NLKE model and (d) NR model respectively. It can be seen that for the LY, 

NLKE and NR models the isovel lines bulge markedly toward the corner along the 

corner bisector and slightly toward the core along the axes of symmetry. However, 

no bulging effect is observed in the case of k-e model, due to model's inability 

to calculate the difference in the Reynolds stresses responsible to generate the 

secondary currents. Naturally, the maximum velocity is predicted at the centre 

of channel. The predicted results from the ASMs are in close agreement with the 

experimental observations (see Figure 6.3 (a)), which display the the distortion 

of the contours towards the corner as a result of movement of high momentum 
fluid near the centre outwards along the diagonals. 

Figure 6.5 shows the secondary currents predicted using (a) LY model (b) 

NLKE model and (c) NR model. It can be observed that the direction of sec- 

ondary currents are from the centre towards the corner, from the corner towards 

the midpoint of adjacent walls and back to the centre parallel to the bisector of the 

wall. This phenomenon causes the bulging of the mean velocity isovels towards 

the corners and towards the centre of the channel. The maximum magnitude 

of secondary currents is observed to be 2% of the cross-sectional mean velocity. 
Again, the predicted secondary currents from all ASNIs are well in agreement 
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Figure 6.3: Flow patterns in closed channel observed experimentally by Nezu and 
Nakagawa (1993): (a) Longitudinal velocity (U/U3) isovels (b) Secondary currents. 

with the experimental data as shown in Figure 6.3 (b) in terms of secondary 

circulation direction and magnitude. 
From close observation, it can be seen that the locations and the pattern of 

secondary currents are slightly different for the LY, NLKE and NR models. The 

origins of currents in the LY model case are closer to the side walls compared 
to the NLKE and NR model cases, which causes a strong flow near the wall at 

y/B = z/H = 0.3. This also causes the bulging of velocity contours away from 

the side wall at same the location for the LY model. In the case of NLKE model, 
the mean velocity bulging is less intense towards the centre away from the walls 

along the axis of symmetry compared to the previous literature. Hence, NR model 

seems to have captured the secondary currents and its effect on mean velocity 
distribution in the best manner amongst all the implemented ASMs compared to 

the experiments. 
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Figure 6.4: Prediction of the mean primary velocity distribution U(y, z)/U, using (a) 
k-e model (b) LY model (c) NLKE model and (d) NR model in a closed duct. 
The implemented anisotropic models are capable of predicting the bulging of isovel 
lines towards corner bisectors unlike the isotropic k-e model (Section 2.2). Mean 
velocity U is normalised with cross sectional averaged velocity U, instead of maximum 
velocity. This leads to (U(y, z)/Ue) >1 near channel core. 
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Figure 6.5: Prediction of secondary currents using (a) the LY model (b) the NLKE 

model and (c) the NR model in a closed duct. Algebraic stress models are able to 

predict the secondary currents, which transport the momentum and energy from the 

core toward the corners unlike the isotropic ý" -- model (Section 2.21). The maximum 
magnitude of the currents is 0.02 x (- 

. 
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6.2 Simple Channel 

Figure 6.6 shows the distribution of turbulent Reynolds stresses Uw normalised 
by U; calculated from (a) the LY model, (b) the NLKE model and (c) the NR 

model. The gradients of secondary velocity contribute to the generation and mag- 

nitude of -vw/U; . 
From the figure, it can be observed that -vw/U; predicted 

from all three models have the same characteristics, i. e. the value is negative along 

the corner bisector and positive in the vicinity of side wall axis of symmetry junc- 

tions. This behaviour is corresponding to the symmetry of the secondary currents 

along the corner bisector as shown in Figure 6.5. However, from the distribution 

of -vw/U; it can also be seen that the magnitude, size and location of the origin 
is different for all three ASMs. The highest value of 0.08 is observed in the case 

of NR model results compared to 0.01 in the LY model results and 0.02 for the 

NLKE model results. This is due to the fact that in NR model the contribution 
from lateral Reynolds stresses (-üv and -uw) are added while calculating the 

vw algebraically, which makes the secondary current stronger as predicted from 

the NR model than LY model (see Section 3.4 for model equations). 
The distribution of normal Reynolds stresses or the square of lateral turbulent 

intensity -vv/U; computed from (a) the LY model, (b) the NLKE model and 
(c) the NR model is shown in Figure 6.7. From the figure, it can be seen that 

the intensity predicted from all the models is highest on the channel bed, steadily 
becoming lower as distance from the bottom increases, until the symmetry bound- 

ary is reached where the value is lowest. Slightly higher values are found close to 

the side wall. In general, the turbulent intensity is higher near the walls where 
the turbulence kinetic energy is high. The range of -vv/U; is observed from 1.8 

to 0.8,2.0 to 1.0 and 2.0 to 0.6 for the LY model, NLKE model and NR model 

respectively. The square of vertical turbulent intensity -ww/U; computed from 

the LY model, NLKE model and NR model is illustrated in Figure 6.8. The 

highest intensity occurs at the channel wall, as opposed to the bed, where the 

high lateral intensity occurred. This suggests that the intensity is reduced by 

the solid boundaries running perpendicular to the vertical plane. Moreover, the 

profile of -ww/U; is mirror image of -vv/U; at corner bisector, which is due 
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Figure 6.6: Prediction of Reynolds shear stresses -, u normalised by (-; with (a) the 
LY model (b) the NLKE model and (c) the NR model in a closed duct. 
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Figure 6.7: Prediction of Reynolds normal stresses -vv normalised by U; with (a) 
the LY model (b) the NLKE model and (c) the NR model in a closed duct. 
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Figure 6.8: Prediction of Reynolds normal stresses -ww normalised by U; with (a) 
the LY model (b) the NLKE model and (c) the NR model in a closed duct. 
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6.2 Simple Channel 

to the symmetry boundary condition applied at both top and right sides of the 

quadrant. From the produced results it can be said that all the models are able to 

reproduce the separation between the vertical and transverse component, which 
drives the secondary currents and match reasonably well with the previous work 

of Nezu and Nakagawa (1993), Naot and Rodi (1982), Launder and Ying (1973) 

and others. The NR model has a more refined function for the distance of wall 

influence, and the effect of the free surface and symmetry. Hence, lateral fluc- 

tuations close to the horizontal symmetry boundary are enhanced, and damped 

close to the vertical ones compared to the LY model. 
From these observations, it can be concluded that the prediction of the mean 

velocity distribution and secondary currents closely match with the previous lit- 

erature. The implemented ASMs capture all the essential behaviour of the flow 

when the symmetry boundary condition is imposed at the top and right of the do- 

main to simulate the flow in a closed channel. In terms of the secondary currents 

pattern, magnitude and its effects of the mean velocity profile, the NR model 

is found to predict the flow behaviour with the most accuracy in comparison 

with experimental data and will be carried forward to simulate open channel and 

compound channel flows. 

6.2.2 Open Channel 

In modelling open channel flow, it is assumed that the horizontal plane of symme- 
try in a duct flow is analogous to the free surface due to the fact that there is zero 

shear stress. However, the important difference is that in open channel flow, the 

vertical component of turbulent intensity is damped out at the free surface and 
the longitudinal turbulence intensity is increased (see Section 3.5.2 for details). 

This difference has been captured by imposing a free surface boundary condition, 

which can be expressed as 

3/4 

t°p 
Cý 

kt°p2 
(y1+0.07H) 

(6.3) 
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6.2 Simple Channel 

where n is the von Karman constant, H is the depth of water and y' is the distance 

from the nearest wall. In this section the model is validated by reproducing the 

essential flow behaviour of open channel flow with the help of NR model and 

comparing with experimental data. 

Figure 6.9: Typical sketch of an open channel: (a) longitudinal view (b) cross sectional 
view, where L= length, B= breadth, H= height of the open channel. U, V and 
W are mean velocities in x, y and z coordinates respectively and 0 is the channel 
slope. For simulations, only half of the open channel considered due to the channel 
axisymmetry. 

Figure 6.9 shows a sketch of the straight open channel with aspect ratio 2.0, 

which is used frequently for benchmarking in the literature (Naot and Rodi 
(1982), Nezu and Nakagawa (1993) and others). The channel slope and other 

non-dimensional hydraulic conditions are described in Table 6.1. As the geome- 
try is symmetric about the z axis, only the left side of the channel is simulated. 
The numerical grid used for the closed channel, shown in Figure 6.2, is also used 
for open channel flow simulations. From the results of the closed channel simula- 
tions with different turbulence models, it was clear that the NR model produces 
better results as compared to the LY and NLKE models. Hence, only the NR 

model is carried forward for the simulation of open channel flow. In Figure 6.10 

experimental observations of Nezu and Nakagawa (1993) for open channel (aspect 

ratio=2.0) is illustrated which shows (a) the longitudinal mean velocity contours 
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Figure 6.10: Flow patterns in closed channel observed experimentally by Nezu and 
Nakagawa (1993): (a) Longitudinal velocity isovels (b) Secondary currents. 

and (b) secondary currents. These results will be used to validate the model 

performance. 
Figure 6.11 (a) shows the isovel lines of mean velocity (U) normalised with 

cross sectional average velocity (U, ). It can be seen from the figure that the 

isovel lines bulg toward the side wall, and they indicate a large retardation near 
the free surface. The maximum velocity is located not at the channel centre like 

duct flow but slightly below the free surface at z/H = 0.6. This effect, known 

as the velocity dip effect as discussed in Section 2.2, is captured well with the 

model in comparison to the experimental data shown in Figure 6.10 (a). The 

locations of points of local maximum streamwise velocity along the vertical line, 

generally known as max-line, is found along z/H = 0.55, which also match with 
the experimental data. 

In Figure 6.11 (b) the velocity vectors of secondary currents are shown. The 

magnitude of the arranged secondary current is 2% of U� which is similar to that 

of the closed channel case. It can be observed from the figure that a strong vortex 
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Figure 6.11: Prediction of (a) mean velocity distribution normalised by and 
(b) secondary currents with help of the NR model in an open channel. The isovel 
lines bulge toward the sidewall and retardation near the free surface. The free surface 
damps fluctuations normal to it which causes a strong vortex near the free surface. 
The maximum magnitude of the currents is 0.02 x I',,. 

occurs in the upper layer and is paired with a much small size vortex near the 

bed. These vortices are known as the free-surface cortex and the bottom cortex 

respectively. The presence of the free surface. dampens the vertical component of 

velocity and causes a strong free surface vortex. Moreover. the free-surface vortex 

is much stronger than the bottom vortex. The strong down flow occurring at the 

channel centre causes the velocity dip as longitudinal momentuni is transferred 

from the free surface towards the mid-depth. The behaviour of the predicted 

secondary currents match reasonably well with the experimental (Iota of Nezu 

aitd Nakagawa (1993) as shown in Figure G. 10 (h). 

Figure ýý. 12 shows the Reynolds stresses normalised by t-, ' using the \ß model. 

Frotn the profile of Reynolds shear stresses -i ( [Figure 0.12(a)], it can be 

seem that near the yvaater surface. there is a large area of positive -FT1( vailues. 
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Figure 6.12: Prediction of Reynolds stresses with the NR model in open channel flows 
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6.2 Simple Channel 

This is the only area of positive -vw/U; in the channel and corresponds to the 

clockwise rotation of secondary flow (free-surface vortex) in the region 0.5 < z/H, 

where as in close channel case [see Figure 6.6 (c)] positive values of -vw/U; are 
seen at the junctions of symmetry boundary and walls. The largest negative 
value of vw/U;, -0.45, occurs where approximately y/B = 0.15 and z/H = 0.15 

as well as y/B = 0.15 and z/H = 0.55, which corresponds to the anti-clockwise 

secondary flow vortex. On the examination of the secondary flow [see Figure 

6.11 (b)] it can be observed that there is a strong current directed towards the 

comer from the water surface at an approximate angle of 45° to the bed, which is 

responsible for high negative value in the corner region compared to the positive 

value near the surface. 
From the distribution of -vv/U; as shown in Figure 6.12 (b) it can be seen 

that, similar to closed channel flow (See Figure 6.7 (c)), values are positive at 
the bed and gradually reduce toward the channel surface. However, values at 

side wall are less in magnitude (0.8) in the case of open channel compared to 

the closed channel (1.4), which is due to the free surface effect in open channel. 
The distribution of -ww/U; calculated from NR model is illustrated in Figure 
6.12 (c). It can be seen from the figure that, similar to the closed channel flow 

case (Figure 6.8 (c)), the values of vertical intensity are high at the side wall 
and reduces towards the free surface as well as towards the symmetry boundary. 
However, compared to the closed channel case, values of vertical intensity are less 
intense (1.8) compared to the closed channel (2.0). This is because in an open 
channel the vertical intensity is dampened due to the presence of free surface as 
explained earlier in beginning of this section. 

The profiles of Reynolds stresses computed from the NR model are in good 
agreement with previous experimental (Naot and Rodi (1982), Kearney (2000)) 

and numerical findings (Naot et al. (1993b), Sugiyama et al. (1995)). 

106 



6.3 Compound Channel 

Flow Outlet 

ýy t--------a------/-- i 

11 
L1 ý 

11 

ýýýýýýýýýýi 

Flood plain 

Main Channel ! '- Symmetry 

Figure 6.13: Typical 3D sketch of a compound channel showing the floodplain and 
the main channel. H is the total height of a compound channel and h is the height 
of a floodplain. The relative depth of a compound channel is define as Dr=h/H. 

6.3 Compound Channel 

A compound channel consists of a main channel and a floodplain. The flow in the 

main channel is faster than the flow in the floodplain. This difference in velocity 

generates shear layer and as well as secondary circulations in the cross-section, 

which ultimately influence the primary mean velocity field in the same way as in 

square and rectangular channels (Tominaga and Nezu (1990), Bradshaw (1987)). 

In computations the cross section of the channel is modified with the help of 
the masking array concept to produce the compound channel cross-section. The 

compound channel geometry is created by blocking off unwanted CVs as discussed 

in Section 4.7.3.2. The purpose of this section is to assess the performance of the 

masking array concept by simulating closed and open compound channel flows. 

In this section, mean velocity profiles, secondary currents and Reynolds stresses, 

produced from the NR model are presented. 
Figure 6.13 shows a sketch of the compound channel representing the main 
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Table 6.2: Non-dimensional hydraulic parameters considered for compound channel 
flow simulations 

11 1 Closed channel Open chan nel 

Floodplain height (h) 0.3 0.15 

Floodplain width (b) 0.5 0.5 

Total height (H) 0.8 0.4 

Total width (B) 1.0 1.0 

Relative depth (h/H) 0.375 0.375 

Reynolds number (Re (x104)) 10.0 10.0 

Channel slope (0) 0 1/2000 

channel section, floodplain and flow configurations. For simulation purposes a 

narrow channel with relative depth (h/H) equal to 0.375 is considered to assess 
the model's ability to reproduce the compound channel flow behaviour. The 

computed results, especially the mean velocity profile and secondary currents are 

compared with the published results of Naot et al. (1993a). The non-dimensional 
flow parameters such as channel dimensions, Reynolds number and channel slope 

are shown in Table 6.2. The uniform finite volume grid generated for simulations 
is shown in Figure 6.14. The numerical grid comprised of 38 and 24 CVs in 

the lateral and vertical directions respectively. The highlighted portion is the 
blocked-off region in which no computations are performed. 

6.3.1 Closed Channel 

Similar to the simple channel flow case, discussed in Section 6.2, the compound 

closed channel is first simulated to check the model capability whilst applying 

a symmetry boundary condition at the top, coupled with the masking array 
concept. 
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6.3 Compound Channel 

Figure 6.14: Uniform numerical grid of a compound channel. The highlighted bottom 
left corner is blocked off during computations. Number of CVs are (y. _) = (32,28). 
The relative depth, h H, of a compound channel considered for numerical simulations 
is 0.375. 

The longitudinal velocity distribution and secondary flow currents for the 

compound closed channel case computed frone the NR model are shown in Figure 

6.16. 

Figure 6.16 (a) shows the longitudinal velocity- distribution normalised Iv the 

sectional averaged velocity-. Strong bulging in the contour lines is observed in the 

junction area between the main channel and the floodplain. On the left side oil 

the channel , yj'B < 0.5 are higher than the rest of the channel. On the floodplain 

near the side wall. the longitudinal velocity decreases as the water surface is ap- 

proached. This behaviour matches schematically- with the experiitients as shown 

in Figure ic 1A (a ) and is further explained by the secondary currents. 

Secondary currents for the compound closed channel are shou-ii in Figure t;. l(i 

(b). It can he observed that a vortex pair is formed in the main channel foo(h laic 

junction area. Thee vortices move fluid with low mnotnentttm frone the junction 

towards thy, water surface. decreasing the velocity in this region and conseg ictitly 

cruising the bulging in the longitudinal velocity contour. The vortex formed on the 
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Figure 6.15: Flow patterns observed in compound open channel (h/H = 0.5) ob- 
served experimentally by Tominaga and Nezu (1990): (a) Longitudinal velocity con- 
tours (b) Secondary currents. 

right hand side of the junction, moves downward after reaching the water surface, 
and carries fluid with high momentum toward the sidewall/corner of the main 
channel. The distortion of the longitudinal velocity (Figure 6.16 (a)) matches very 
well the current pattern in the region. The vortex formed on the floodplain, after 

reaching the water surface transfers high momentum fluid from the water surface 

region towards the corner of the floodplain. Due to the downward movement of 
this vortex toward the corner of the floodplain, another vortex is formed on the 
floodplain which occupies the rest of the part of floodplain. This behavior of 

secondary currents is also in good agrement with experimental data as shown in 

Figure 6.15 (b). 
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Figure 6.16: Prediction of (a) mean velocity distribution normalised by Umax and 
(b) secondary currents in a compound duct using the NR model. The velocity dif- 
ference between the main channel and the floodplain causes momentum exchange 
between them. This velocity difference also generates the shear layers and hence the 
vertical vortices along the interface between the main channel and the floodplain. 
The magnitude of secondary currents is found to be 2% of the U,. 
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6.3 Compound Channel 

The maximum magnitude of secondary currents is about 2% of cross-sectional 

mean velocity. This value is in accordance with the values observed by Tominaga 

and Nezu (1990). 

Figures 6.17 (a) shows the distribution of Reynolds shear stresses (vw) nor- 

malised by the squared friction velocity U; calculated from the NR model. From 

the figure it can be seen that negative values of -vw/U*2 are observed in the 

corners of floodplain and main channel with a highest value of -0.10 in the main 

channel corner. At the side wall-symmetry boundary on the floodplain positive 

values are observed, which corresponds to a small clockwise circulation observed 

at the same location. At the main channel-floodplain junction, a clockwise circu- 
lation exists as well as an anticlockwise circulation, hence positive and negative 

values of -vw/U; prevails at the same location. 

From the profile of vv/U; [see Figure 6.17 (b)], it can be seen that in a similar 

way to the simple channel flow, values are highest at the bottom of main chan- 

nel (0.7) and floodplain (0.6) and gradually decrease toward the main channel- 
floodplain junction and symmetry boundaries. For -ww/U. 2, values are highest 

at side walls of main channel (0.6) and floodplain (0.5) and gradually decreasing 

towards the main channel-floodplain junction and symmetry boundaries as shown 
in Figure 6.17 (c). 

The flow mechanism predicted by the NR model for the compound closed 

channel captures its essential behaviour, which is similar to that of the compound 
open channel shown in Figures 6.15. The results show that the concept of a 

masking array works with reasonably good accuracy and is able to reproduce the 

essential characteristics of compound closed channel flow. 

6.3.2 Open Channel 

Simulating compound open channel flow is the last step to be performed before 

simulating compound meandering channel flow. Hence, the purpose of this section 
is to validate the model, especially the masking array concept with the free surface 
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(a) 

(b) 

Figure 6.17: Prediction of -vw/U*2 and -vv/U*2 in a compound duct using the 
NR model. 
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(a) 

Figure 6.18: Prediction of -u w/U*2 in a compound duct using the NR model. 

boundary condition, by reproducing compound open channel flow characteristics. 

The non-dimensional parameter are adopted for simulations are listed in Table 

6.2. The numerical grid is the same as that used for the compound closed channel, 

shown in Figure 6.14. 

The longitudinal velocity distribution and secondary flow currents for the 

compound open channel case computed from the NR model are shown in Figure 

6.19. 

The profile of longitudinal velocity (U) normalised by cross-sectional average 

velocity (U3), shown in Figure 6.19 (a), is similar to the compound closed channel 
[see Figure 6.16 (a)], except on the floodplain and at the channel step. It can be 

seen that the longitudinal velocity decreases as it approaches the water surface 

on the floodplain (y/B < 0.3) and the effect is stronger compared to the closed 

channel case. At the floodplain main channel junction the bulging of longitudinal 

velocity is stronger towards water surface compared to the closed channel. In 
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Figure 6.19: Prediction of (a) mean velocity distribution normalised by Umax and 
(b) secondary currents in a compound channel (Dr=0.375) using the NR model. The 

magnitude of secondary currents is found to be 2% of the U,. 

115 



6.3 Compound Channel 

(a) 

(b) 

Figure 6.20: Prediction of (a) -vw/U*Z and (b) -ii/U*2 in a compound channel 
(Dr=0.375) using the NR model. 
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Figure 6.21: Prediction of -ww/U*2 in a compound channel (Dr=0.375) using the 
NR model. 

the rest of the channel (y/B > 0.5), the distribution found similar to the closed 

channel. In general, the profile of longitudinal velocity distribution matches well 

with the experimental data as shown in Figure 6.15 (a). 

The secondary currents for the compound open channel computed from the 

NR model are shown in Figure 6.19 (b). From the figure it can be observed that 

the small vortex at floodplain sidewall/free surface junction, observed in the case 

of compound closed channel [Figure 6.16 (b)], becomes stronger in the case of 

compound open channel flow. The floodplain vortex is observed strong compared 

to the closed channel case, which transfer the low momentum fluid from the 

junction towards the water surface causing the strong bulging at junction. The 

rest of the secondary current patterns remain similar to those of the compound 

closed channel. As discussed in Section 2.2 the presence of the free surface in the 

compound open channel reduces the turbulence length scale, retards the vertical 
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movement and increases the horizontal flow towards the channel center. This 

increases the strength of the small vortex at free surface-side wall junctions on 
floodplain. This behaviour of the secondary currents in compound open channel 
flow matches well with the experimental work shown in Figure 6.15 (b). 

The Reynolds shear stresses, -vw, normalised by squared friction velocity 
UU is shown in Figure 6.20. There is negative value in the region of the twin 

secondary flow vortices at the channel step. On the floodplain, the maximum 

negative value of -vw/U; is -0.06 the the bottom region, corresponds to a an- 
ticlockwise circulation of secondary flow. In the free surface floodplain side wall 

region, -VTpeaks at 0.04 correspond to a clockwise circulation. Compared 

to compound closed duct flow case [see Figure 6.17 (a)], the area of positive val- 

ues at the free surface floodplain side wall region seems expanded, due to the 

stronger clockwise circulation at the same location. Within the area of main 

channel, no positive values are observed, which are seen in the compound close 
duct case, which may be due to the stronger secondary flow towards the main 

channel sidewall/corner and weaker pairing vortex, rotating anticlockwise, at the 

main channel corner. 

Figure 6.20 (b) shows the distribution of -vv/U; for compound open channel 
flow computed from the NR model. The peak intensity occur on the floodplain 

(0.6) and main channel (0.7) beds similar to the compound duct flow case [see 

Figure 6.17 (b)], which reduces rapidly at the free surface and channel center. In 

Figure 6.18, the square of vertical turbulent intensity normalised by friction veloc- 
ity (-ww/U, ) computed from the NR model is plotted. A noticeable difference 

between the values for closed duct case and open duct case is at the floodplain 

side wall free surface region. The presence of free surface in open channel damp- 

ens the vertical intensity and reduces the intensity of -ww/U; . This effect can 
be observed near the free surface, where -ww/U, 2 equal to 0.3 and 0.5 in the 

open channel case and closed channel case respectively as shown in Figure 6.18. 

For masking arrays, secondary flow and other parameters in the corners of 

compound channels seem to be not quite same as simple channel cases. It may 
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be affected by setting boundary conditions differently from the simple channel 

case. However, this difference has not affected the flow behaviour in significant 

manner. 
From the predicted results for the case of compound open channel flow using 

the NR model, it can be said that the masking array concept with free surface 
boundary condition captures the essential behaviour of the flow structures similar 
to produced by Tominaga and Nezu (1990) experimentally as shown in Figure 

6.15. Hence it can be concluded that the concept of masking array coupled with 

a free surface boundary condition works with reasonably good accuracy. 

6.4 Compound Meandering Channels 

The flow in a compound meandering channel is characterised by the presence 

of strong helical secondary flow circulations in the streamwise direction and the 

variation of the flow parameters along the meander wavelength. The interaction 

between the main channel and floodplain flows also plays a crucial part in the 
flow behaviour. 

In this section, the concept of orthogonal coordinates (see Chapter 5) is ap- 

plied to reproduce the compound meandering flow behaviour. The objective of 
this section is to check the performance of the governing equations in orthogonal 

coordinates coupled with a masking array by simulating compound meandering 

channel flows. The complicated flow mechanism within compound meandering 

channels is governed by the sinuosity of the channel and relative depth of the flow 

besides other parameters. Therefore, three different cases of sinuosity with three 

different relative depths of flow are simulated and discussed in terms of the effect 

of sinuosity on floodplain flows. 

Figure 6.22 shows an idealised sketch of the compound meandering channel 
in which the sinuosity (s) is defined as the ratio of curved channel length to 

straight valley length. The algorithm to generate orthogonal grids is discussed 
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{ Lw = Meander Wavelength 
(= Straight Valley Length) 

Ls Curved Channel Length 
Lro w Crossover Length 
B® Total Width 
BW =Width of Meander Belt 
b- Channel Width 
a- Double Amplitude 
rc . Bend Central Radius 
r1" Bend Inner Radius 
ro = Bend Outer Radius 
11 - Water Depth 
h= Flood Plain Height 
sa Sinuosity (s ULN, ) 
(p - Angle of Arc 
0- Angle of Crossover 

Figure 6.22: Sketch of an idealised compound meandering channel explaining various 
terms (after Muto (1997)). The sinuosity of a meandering channel is define as the 
ratio of curved channel length to straight valley length. The starting point of a 
meandering wavelength is known as the apex region. Inner apex and outer apex 
regions are at r; and ro respectively. Three different cases of sinuosity (s = 1.093, s 
= 1.370 and s=1.570) are simulated in the this research. 

in detail in Section 4.7.3.3. Simulating a compound meandering channel involves 

the following steps: 

1. Generate an orthogonal grid of a compound meandering channel. 

2. Generate corresponding cartesian grid and calculate transformation param- 

eters. 

3. Perform simulations on a cartesian grid (see Figure 4.3). 

4. Transfer or plot the computed results on the orthogonal grid. 

Muto (1997) collected high quality data for compound meandering channels 

with varying sinuosity and relative depth. In this research, these data are used 

to validate the model. Table 6.3 describes the meander parameters such as sin- 

uosity and channel dimensions used during experiments and are adopted for the 

numerical simulations. 
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6.4 Compound Meandering Channels 

Table 6.3: Meander parameters for experimental and modelled channels 

Case 1 Case 2 Case 3 

Sinuosity (s) 1.093 1.370 1.571 

Angle of arc (cp°) 60 120 180 

Meander Wavelength (Lti� mm) 1502 1848 1700 

Total width (B, mm) 1200 1200 1200 

Width of meander (Bu� mm) 452 900 1000 

Bend radius (re, mm) 425 425 425 

Crossover length (L, 
0, mm) 376 376 0 

Crossover angle (00) 30 60 90 

Channel width (b, mm) 150 150 150 

Flood plain height (h, mm) 53 53 53 

In this section, depth averaged and cross-sectional profiles are discussed for 

nine different cases. In absence of the experimental data, the computed results 

are used to discuss the depth averaged longitudinal velocity, velocity vectors and 

pressure. The flow behaviour on the cross-sectional plains are discussed based on 

the experiments. 

6.4.1 Case 1: Sinuosity = 1.093 

The model was initially applied to simulate the turbulent flow in a compound 

meandering channel with sinuosity 1.093. The aim of this section is to validate 
the model by comparing computed results for three different relative depths with 

the experimental data of Muto (1997). 

In Figure 6.23 a sketch of the compound meandering channel (s=1.093) is 

shown, where S1, S3, S5, S7 and S9 are measuring locations, where the view 

point of data comparison is the same as the direction of flow. The experimental 
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FLOW 

(Dlmendons In mm) 

Tq 

S9 

Figure 6.23: Sketch of the physical domain of a compound meandering channel 
(sinuosity = 1.093) representing dimensions and measuring locations. Simulation 
results are compared for locations S1, S3, S5, S7 and S9 with experimental data. 
The view point of the cross section is same as the direction of flow. 

data are collected in curvilinear space. Though the computations are performed 

on cartesian computational domain, the results are mapped backed on to the 

curvilinear physical domain; making the comparison possible. 
The hydraulic conditions such as relative depth, discharge and Reynolds num- 

ber for each of these cases are represented in Table 6.4. With the help of this 

hydraulic data, the orthogonal grid for the channel is generated, which involves 

following steps: 

1. Generate an orthogonal grid for main channel only, as shown in Figure 6.24 

(b). This grid gives the boundary data required to generate top and bottom 

floodplains. 

2. Generate a grid for the top floodplain with the help of specific geometri- 

cal boundary conditions, which is shown in Figure 6.24 (a). The grid is 

generated based on the algorithm discussed in Section 4.7.3.3. 
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6.4 Compound Meandering Channels 

Table 6.4: Hydraulic conditions for channels with s=1.093 

1 1 Case 1(a) Case 1(b) Case 1(c) 

Relative depth (Dr=(H-h)/H) 0.0 0.15 0.5 

Water depth (H) 0.0525 0.0633 0.1078 

Mean velocity (U� m/s) 0.237 0.157 0.352 

Discharge (Q, m3/s) 1.876 3.102 25.755 

Friction velocity (u., m/s) 0.0166 0.0121 0.0225 

Reynolds number (Re (x104)) 2.63 0.82 6.26 

3. Similarly, generate a grid for bottom floodplain, as shown in Figure 6.24 

(c). 

4. Combine all of these grids to get grid points for the compound meandering 

channel, which is represented in Figure 6.25. 

In Figure 6.25, a plan view of the computational orthogonal grid is presented, 

which comprises 120 and 78 CVs in longitudinal and lateral direction respectively. 
The cross-sectional view of the grid at apex section (S1 of Figure 6.23) is shown 
in Figure 6.26, which comprises 78 and 36 CVs in lateral and vertical direction 

respectively. The deviation from orthogonality of the generated grid is shown in 

Figure 6.27. It can be seen from the figure that the highest deviation of 10° is 

found near the apex sections. However, the mean deviation from orthogonality is 

calculated to be roughly 2.8°. Moreover, from Figures 6.24 (a) and 6.24 (c) it can 
be seen that the grids of the two floodplain sides are not completely similar, which 
is also reflected in Figure 6.27. This is because top and bottom floodplains are 

exposed to the different geometrical boundary conditions. The top floodplain is 

geometrically constrained on two sides, for which two side boundaries are narrow 

as compared to the bottom floodplain. This deviation from orthogonality of the 
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Figure 6.24: Different portions of a compound meandering channel. First, the main 
channel grid is generated. Floodplain grids are generated in two steps in sich a way 
that the boundary point coordinates of main channel match with inner boundary of 
flood plains. 
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Figure 6.25: Plane view of an orthogonal computational grid (sinuosity 1.093) of 
two meanders. No. of CVs are in horizontal (. r) and lateral (q) directions are 10 

and 78 respectively. In the main channel, no. of CVs are 26. 

Figure 6.26: Cross-sectional view of the computational grid in (y, z) plane where y 
and z are lateral and vertical directions respectively. This grid is for the relative depth 

equal to 0.5. 
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Figure 6.27: Contour lines showing the deviation from orthogonality of a niimcric. il 
grid shown in Figure 6.25. Maximum deviation 10", Mean deviation 2.67 
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Figure 6.28: S=1.093, Inbank flow: Plan view of (a) depth averaged mean velocity 
in iii/. sr c, (b) velocity vectors and (c) pressure distribution in V/1r, 2. Due to the 
centrifugal forces the velocity is higher at inner side of the apex section, which causes 
low pressure at the same location. The pattern is repeated at each apex section. 
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6.4 Compound Meandering Channels 

channel comprising two meanders. Experimental data are not available, Bence 

computational results are used to explain the depth averaged flow characteristics. 
From Figure 6.28 (a) it can be seen that at each apex section, a high velocity of 
U=0.25 m/s is observed at the inside of the bend and U=0.20 m/s on the 

outside. It can also be seen that a core of higher velocity is formed, which moves 
towards outer apex from the inner apex within a bend radius. The direction of the 

primary flow is roughly along the wall of the main channel or in the streamwise 
direction, which can be seen from the velocity vectors [Figure 6.28 (b)]. Due to 

the small sinuosity, less variation is found for the streamwise velocity distribution 

in the lateral direction than those in the other sinuous channels (shown in later 

sections). 
Moreover, within the bend curvature, on the cross-sectional plane, the flow 

moves toward the outer apex from the inner apex, which increases the pressure 

near the outer apex wall and decreases near inner apex as shown in Figure 6.28 

[c]). The behaviour of the pressure field and its resulting effect on the free surface 
is known as the "super elevation effect" and the "depression effect" respectively. 
Based on the hydrostatic pressure assumption, the difference in the depth aver- 

aged pressure field (OP) between inner and outer bend can be connected to the 

difference in height of the water level (AH) by the following equation: 

OP = P90H or OH = 
OP 

(6.4) 
P9 

With the help of Equation 6.4, the difference in water level (AH) is found 

equal to 1.223 mm for the pressure difference (AH) of 12 N/m2. It is difficult to 

measure 1.223 mm in experiments, but computation at least shows 1.223 mm of 
super elevation occurred at the outside of the bend. 

The situation is reversed at the next apex section, and a similar pattern can 
be seen at alternate apex sections throughout the channel, which is due to the 

repetitive channel geometry. Due to the channel curvature, the flow experiences 

a centrifugal force, which is responsible for the higher velocity at the inner bank 
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6.4 Compound Meandering Channels 

of the apex. In the governing equations, this force is described in the U and V 

momentum equations as an additional source term (see Equations 5.35 and 5.36). 

Figure 6.29 shows the predicted and measured cross sectional distributions of 
the streamwise velocity along the channel meander (sections S1 to S9 of Figure 

6.23). It can be seen from the measured data that the maximum velocity, with 

magnitude over 20% larger than U8 is located near the inner wall of the main 

channel at the bend apex (Section 1). As the flow goes through the latter half 

of the bend, the core starts to shift towards the outer wall and the velocity 
distribution becomes more uniform during its path through the crossover section 
(S3 to S7). The maximum velocity is observed at the end of crossover region and 

the beginning of the next bend (Section 7). The mirror images of these velocity 
distributions are attained between consecutive bend apices (Sections 1& 9). 

For the computed results, it can be seen that the path traveled by the maxi- 

mum velocity core is similar to that of the experimental data. From sections S5 to 

S9 the core is found to be below the free surface. This may be due to the presence 

of a strong secondary circulation, rotating in an anticlockwise direction, near the 

free surface-left wall junction, which is discussed in the following paragraphs. 
The growth and decay process of secondary flow through the bend is repre- 

sented in Figure 6.30, which compares the prediction with measured values. From 

the measured data it can be seen that, the magnitude of secondary the currents 
is noticed to be 10% of U,. From the figure, it can be seen that there is no large 

secondary cell occupying the majority of the cross section, which is observed in 

apex section of s=1.37 and s=1.57 channels (discussed in following sections). In- 

stead, a clockwise circulation starts to develop at S1, which strengthens at S3 

but weakens as it reaches S5. Finally, at S9 the clockwise circulation attains its 

maximum potential and occupies half of the cross section, which is opposite to 

Si. 

From the computed secondary currents, it can be seen that, similar to the 

experimental data, a clockwise circulation starts to grow at S1 but it does not 
develop completely. However, from S1 to S9 a circulation, rotating anticlockwise, 
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Figure 6.29: S=1.093, Inbank flow: Comparison of simulated U/U8 with experimental 
data collected by Muto (1997) at different sections. For section configuration in the 

channel, see Figure 6.23. 
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6.4 Compound Meandering Channels 
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Figure 6.30: S=1.093, Inbank flow: Comparison of simulated secondary currents 
with experiments data collected by Muto (1997) at different sections. For section 
configuration in the channel, see Figure 6.23. Strength of secondary current is around 
10% of the mean velocity. 
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6.4 Compound Meandering Channels 

is seen at the free surface-left wall junction. This circulation drives the momentum 

transfer from the left wall towards the free surface, which forces the maximum 

velocity core below the free surface. 
Although the secondary flows near surface in various sections over predicted, 

the model is able to reproduce the essential behaviour of the meandering channel 
inbank flow for s=1.093. The predicted results are in reasonably good agreement 

with the experimental data. 

6.4.1.2 Overbank Flow (Dr=0.15, s=1.093) 

Once the inbank flow was simulated successfully, the model was then applied to 

simulate overbank flow with Dr=0.15. It is clear from the previous investigations, 

discussed in Section 2.4, that due to flooding or overbank flow, the flow struc- 
tures in the main channel are significantly affected by floodplain flow (Shiono and 
Muto (1998)). In this section, the flow characteristics of overbank flow are dis- 

cussed and the predicted depth-averaged velocity, cross-sectional mean velocity 

and secondary circulations patterns are compared with experimental data. 

Figure 6.31 shows the prediction of (a) depth averaged longitudinal velocity, 
(b) velocity vectors and (c) pressure for s=1.093 channel with Dr=0.15. From 

the depth averaged velocity plot it can be observed that on the right and left 

floodplains (side walls), the value of mean velocity is observed to be 0.01 m/s 

and 0.02 m/s respectively. High velocity contour lines at the inner bend of apex 

section is also noticed. In comparison to inbank flow (see Figure 6.28), the flow 

pattern is altered slightly in the crossover region. 

From the vector plot [Figure 6.31 (b)], the flow in the main channel tends to 
follow the streamwise direction while on the floodplain it follows the longitudinal 

direction. Moreover, the magnitude of the velocity vectors are higher in the main 

channel compared to the flood plain. Due to this difference in the direction of 
flow, complex flow behaviour is created, especially from the crossover region to 

the first half of the following bend. It can also be seen that in the crossover region 
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Figure 6.31: S=1.093, Dr=0.15: Plan view of depth averaged ((a) mean velocity 
in �//. s(c, (b) velocity vectors and (c) pressure distribution in 
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centrifugal forces the velocity is higher at inner side of the apex section which camases 
low pressure at the same location. The pattern is repeated at next apex section. 
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of the main channel, the vectors have changed direction slightly from streamwise 

to longitudinal, which is due to the presence of the floodplain flow. This can be 

seen more clearly by 3-D velocity distributions along the meandering channel as 

shown in Figures 6.46 and 6.33. Higher pressure [Figure 6.31 (c)] is observed at 
the outer bend of the apex sections (2 N/m2 equivalent to AH = 0.2mm), which 

is similar to the inbank flow behaviour in terms of profile. 
It can be noticed from the computed results that the flow behaviour is not sym- 

metrical on floodplains. This is mainly due to the way in which floodplain grids 

are generated. As shown in Figure 6.24 the orthogonal grid for each floodplain 

is generated separately and both are exposed to different boundary conditions. 
The symmetrical flow behaviour might be achieved in future by simulating more 
than two channel meanders, trying different grid refinement and validating the 

model for different situations such as flow through bend to find out any manual 

error in the model. 
Figure 6.32 shows the comparison of predicted mean velocity distribution with 

experimental data at various sections of the main channel. It can be seen from the 

experimental data that the maximum velocity core is formed at the inner bend of 
the apex section S1. This core starts to shift towards the other side as it enters 
into the next bend curvature (S7). At the next apex section S9, the core occupies 

the position near the inner bend, which is opposite to section S1. From S3 to 

S7, the intrusion of floodplain flow into the main channel can be seen. However, 

the velocity gradient between the main channel flow and floodplain flow is not as 

steep at S5 where the angle between main channel and floodplain is the highest. 

Moreover, higher U/U, is observed within the main channel along the meander 

compared to the floodplain, showing the dominance of the main channel flow. 

From the predicted results, it can be said that the mean velocity distribution is 

captured well by the model. 
The growth and decay pattern of the secondary currents is shown in Figure 

6.33. It can be seen from the experimental data that a secondary circulation 

exists rotating in an anticlockwise direction, with magnitude of 20% of U. at the 
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apex (section Si). This circulation, however, disappears within the bend (S1 to 

S5). A new clockwise circulation starts to form in the vicinity of the inner bend 

area at S3. This clockwise circulation grows as it reaches the crossover region. 
Then a large clockwise circulation occupies most of the cross section of the main 

channel. A clockwise rotating cell can be seen developing in crossover region (S5), 

which grows and gains strength as it travels to the next apex section (S9). This 

behaviour of circulation is also well captured by the model. 

6.4.1.3 Overbank Flow (Dr=0.50, s=1.093) 

By increasing the discharge (see Table 6.4), the relative depth is further increased 

to 0.5 from 0.15, which makes the flow mechanism more complex due to the in- 

creased interaction between the main channel and floodplain flow in the crossover 

section. In this section flow behaviour is discussed for the channel with Dr=0.5 

by describing depth averaged parameters and cross-sectional mean velocity and 

secondary currents. 
Figure 6.34 represents the prediction of (a) the depth averaged longitudinal 

mean velocity, (b) the velocity vectors and (c) the pressure distribution for Dr=0.5 

case. From the depth averaged velocity profile a high velocity at the inner bend of 

the apex sections can be seen, which is similar to the behaviour found in inbank 

and Dr=0.15 cases. However, in the crossover region due to the increased plunging 

effect from the floodplain flow, the mean velocity profile is changed, which is 

discussed in the next paragraph. Similar to the Dr=0.15 case, the profiles on 

the two floodplains are different, which is due to the grid generation mechanism, 

as explained in the previous section. For the floodplain and main channel, the 

magnitude of vectors is roughly the same and in the same direction [Figure 6.34 

(b)]. The main channel flow direction is affected by the strong overbank flow. The 

flow direction of the main channel is deviated partially from the streamwise to 

the longitudinal unlike the Dr=0.15 case. An increased pressure on the floodplain 

(20 N/m2) and a high pressure at the outer bank (30 N/m2) can also be observed 
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from the pressure plot [Figure 6.34 (c)]. Though the pressure distribution profile 
is similar to Dr=0.15 cases, the magnitude of OP =5 is high for Dr=0.50 case 

at apex section which is equivalent to OH = 0.5mm. 

Figure 6.35 and 6.36 show the comparison of calculated mean velocity with the 

experiments. From the measured data, as in the Dr=0.15 case, no steep gradient 

between the main channel flow and floodplain flow is observed at sections 03 

and 05, where the floodplain flow intrudes into the main channel. In addition, 

the maximum velocity is found to be in the overbank region, which shows the 

dominance of floodplain flow. The flow below the bankfull level has a value of 
U/U8=1.0 along the meander compared to 1.2 in the overbank region, which 

suggests that the flow in the overbank region in stronger than that in the main 

channel. This behaviour is successfully predicted by the model. 
In Figures 6.37 and 6.38 the secondary currents at different sections are com- 

pared for Dr=0.5 case. From the measured data, it can be noticed that at section 

01, a large anticlockwise circulation with a magnitude of 50% of U, occupies the 

whole cross section, disappearing at section 03. From section 03, a clockwise cir- 

culation starts to form from the inner wall of the bend, which grows in strength 

as it travel across the crossover region till it reaches next bend apex (S9). This 

is due to the plunging of overbank flow into the main channel, which induces 

strong secondary currents within the main channel. The computed results have 

captured all the flow characteristics successfully. 
From the computed results for the case of the meandering channel (s=1.093) 

for inbank, Dr=0.15 and Dr=0.5 flows, it can be concluded that the model is able 

to reproduce the essential flow behaviour. 
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channel, see Figure 6.23. 
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Figure 6.37: S=1.093, Dr=0.50: Comparison of simulated secondary currents with 
experiments data collected by Muto (1997) at different sections. For section config- 
uration in the channel, see Figure 6.23. Strength of currents are 50% of the mean 
velocity. 
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Figure 6.39: Sketch of the physical domain of compound meandering channel (sinu- 
osity = 1.370) representing dimensions and measuring locations. Simulation results 
are compared for locations Si, S3, S5, S7, S9, S11 and 513. The view point of the 
cross section is same as the direction of flow.. 

6.4.2 Case 2: Sinuosity = 1.37 

In the previous section, a compound meandering channel with s=1.093 was sim- 
ulated. In this section, the channel sinuosity is increased to s=1.37 and simula- 
tions are carried out for three different relative depths; inbank flow, Dr=0.15 and 
Dr=0.5. 

A sketch of the compound meandering channel with s=1.370,120° arc and 

rectangular cross section, is shown in Figure 6.39 where Si, S3, S5, S7, S9, S11 and 
S13 are measuring locations. An orthogonal computational grid of two meanders 

corresponding to the physical domain is represented in Figure 6.40. In Figure 6.41 

the deviation from orthogonality is presented. It can be seen that the maximum 
deviation is around 10° and the average deviation is 3.2°, which is greater than 

in the s=1.093 case. It can be also noticed that the deviation is not symmetric 
due to the way in which the grid is created (see Section 6.4.1). The hydraulic 

parameters adopted for simulations are presented in Table 6.5, which describes 
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6.4 Compound Meandering Cli<uiucls 

Figure 6.40: Plane view of an orthogonal computational grid (sinuosity 1.3() of 
two meanders. No. of CVs are in horizontal (x) and lateral (y) directions are 120 and 
36 respectively. In the main channel, no. of CVs are 12. 
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Figure 6.41: Deviation of a numerical grid (shown in Figure 6.40) from orthogon, ility: 
Maximum deviation = 10°, Mean deviation = 3.2" 

Table 6.5: Hydraulic conditions for channels with s 1.370 

Case 2(a) _ºýc '2(Iº) Case-2(c) 

Relative depth (Di"=(H-li)/II) 0.0 0. I5 O., 5 

Water depth (11) 015 19 1059 

1\'Iean velocity (U,, 0. P) 7 11.129 (). '-), S 2 

Discharge (Q. iii' /s) 1.556 2.5 I: i 19.996 

Friction velocity (ii., iii/ti) 0.01 , 18 O. ))12)) )). ( 22I 

Reynolds number (Re (x10. ')) 2. P) (1. ); G I. 92 



6.4 Compound Meandering Channels 

parameters such as flow discharge and Reynolds numbers for the three relative 
depths. 

In this section, the flow mechanisms are discussed by describing depth av- 

eraged parameters, cross-sectional mean velocity and secondary currents for the 

three different relative depths. The model performance is also assessed by com- 

paring computed results with experimental data. 

6.4.2.1 Inbank Flow (Dr=0.0, s=1.37) 

Figure 6.42 (a) shows the predicted depth averaged mean velocity profile for 

the inbank flow of meandering channel (s=1.37). From Figure 6.42 (a) it can 
be seen that a maximum velocity core (0.2 m/s) is formed, which is smaller 
than in s=1.093 case. This core shifts from the inner side of the bend to the 

outer wall within the bend curvature and reaches the side wall of the cross over 

region. Finally, the core reaches the inner side of the next apex section. Similar 

behaviour is reflected in the velocity vectors plot as shown in Figure 6.42 (b). 

The flow direction is streamwise, particularly in the crossover region, as it follows 

the channel wall. At the inner bend of the apex section high velocity vectors 

are clearly observed, which also suggests the formation of a maximum velocity 

core at the same location. Figure 6.42 (c) shows the depth averaged pressure 
distribution for the inbank flow case. From the figure it can be seen that at the 

inner bend, where the high velocity core formation is observed, a low pressure 

region exists and at the outer bend, a high pressure region can be seen, which is 

smaller in profile to s=1.093 case. However, in the crossover region no pressure 

variation is noticed. In terms of the free surface elevation effect, the difference in 

the water level is found to be 1.325mm corresponding to AP = 13 (see Equation 

6.4), which is greater than in s=1.093 case. 

The mean velocity profiles for different cross sections (S1 to S13 of figure 6.39) 

obtained from the model and from experiments are produced in Figure 6.43. From 

the measured data it can be seen that the maximum velocity, the magnitude of 
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to the centrifugal forces the velocity is higher at inner side of the apex section which 
causes low pressure at the same location. The pattern is repeated at next apex section 
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6.4 Compound Meandering Channels 

which is over 20% larger than U, is located along the inner wall of the main 

channel at the bend apex (Section 1), which is similar to the s=1.093 case. As 

the flow goes through the latter half of the bend, the core region moves towards 

the outer wall. In the middle of the crossover region (Section 7), a faster flow 

region with a velocity 10% larger than U8 reaches the right side wall and runs 

along it, whilst for s=1.093 case profile remains uniform throughout the crossover 

region. In the latter half of the meander (Section 11), same as the s=1.093 case 

the maximum velocity reaches up to 25% of U, and starts to shift towards the 

inner wall and attains almost mirror image at S13. This behaviour is very well 

captured by the model. 

. Figure 6.44 shows the secondary circulations for different sections of the mean- 
der, which has a strength of 10% of U8. The magnitude and circulation patterns 
found to be similar to s=1.093 case. At apex section S1 two currents, one rotating 

in a clockwise and another in an anticlockwise direction, are observed, each of 

them occupying half of the cross section, which is similar to the s=1.093 case. 
As the flow passes through the bend (S1 to S5), the circulation rotating in the 

clockwise direction grows and transfers away momentum from the inner to the 

outer wall. Within the crossover region (S5 to S9), the circulation tries to stabi- 
lize. As soon as the flow enters the latter half of the meander (S9 to S13), the 

anticlockwise circulation starts to grow and dominate most of the cross section 

at S13, which is opposite to S1. 

The secondary currents reproduced by the model are in reasonably good agree- 

ment with the experimental data. 

6.4.2.2 Overbank Flow (Dr=0.15, s=1.37) 

Figure 6.45 shows the plan view of (a) the depth averaged mean streamwise 

velocity, (b) velocity vectors and (c) the pressure distribution for a compound 

meandering channel with s=1.370, Dr=0.15. The flow structures found similar 

to those of s=1.093 (Dr=0.15) case. However, the important difference can be 

described as follow. 
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6.4 Compound Meandering Channels 

From the depth averaged velocity profile (see Figure 6.45 (b)) it can be seen 

that the maximum velocity of 0.12 m/s is observed at the inner bend of the apex 

section, which is lower than in s=1.093 case (0.18m/s). Within the crossover 

region, floodplain flow enters and leaves the main channel, which causes the 

plunging effect. This effect is greater in s=1.37 case than in s=1.093 due to the 

high crossover angle for s=1.37 case. However, the flow pattern is not changed 

significantly as the flow in the main channel is dominant. The main channel flow 

profile remains similar to inbank flow as shown in Figure 6.42. 

From the velocity vectors, shown in Figure 6.45 (b), it can be observed that 

the flow entering from the upstream floodplain into the main channel deviates 

from the longitudinal direction to the streamwise direction. This is due to the 

stronger main channel flow. However, at the main channel-floodplain junction 

near crossover region, the deviation of flow is slightly stronger than in s=1.093 

case. The effect of the centrifugal force on the pressure distribution can also be 

seen in Figure 6.45 (c), which is almost similar to s=1.093 case in terms of profile. 

The difference in pressure at apex section is found equal to 3 N/"12 (equivalent 

to AH = 0.31mm), which is greater than s=1.093 case. 
In Figure 6.46 the calculated normalised mean velocity at different sections 

(Si to S13) is compared with the experimental data. It can be seen from the 

experimental results that at bend apex section (Si), a maximum velocity core, 

similar to s=1.093 case, is seen to develop at the inner wall of the bend, which 
has a magnitude about 10% higher than the cross sectional average velocity. This 

core remains at same location within the bend curvature. However, as soon as the 

flow enters into the crossover region, the core shifts towards the other side wall 

and remains at same location till it reaches the next apex section. For s=1.093 

case, the core shifts at the middle of crossover region. In addition, the slowly 

moving floodplain flow intrudes into the main channel in which the flow is fast. 

This causes a high velocity gradient at the main channel-floodplain junction (S5), 

which is less visible in s=1.093 case. An increasing area is getting affected due to 

the intruding flow along the crossover sections (S5 to S9). It can also be noticed 
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6.4 Compound Meandering Channels 

that, in most of the sections (S1 to S13) U/U8 >1 in the main channel, compared 
to the floodplain where the ratio is U/Ue < 0.8 (the floodplain flow is not clearly 
distinguishable in s=1.093 case). This proves the dominance of the main channel 
flow. 

Experimental data show the presence of two maximum velocity cores at both 

apex sections (S1 and S13), which are not seen in the computational results. 
In rest of the sections, the computational results match reasonably well with 
the experiments. The deviation at the apex sections might be due to the error 
introduced by the non-orthogonality of the grid and grid refinement, which can 
be justified in the future. 

Figure 6.47 shows the comparison of calculated secondary currents to the ex- 

perimental investigation for the Dr=0.15 case, which has a magnitude of 20% of 
U,. The circulation pattern remains similar the s=1.093 case. However, the pres- 

ence of floodplain flow is noticed clearly at section S5 (beginning of the crossover 

region), where it enters into the main channel and at section S11 (begging of the 

next bend) where it leave the main channel. 
From the model results it can be noticed that the computed results have again 

captured the essential behaviour of compound meandering channel flow (s=1.37), 

Dr=0.15, with reasonably good agreement compared to the experimental data. 

6.4.2.3 Overbank Flow (Dr=0.50, s=1.37) 

Figure 6.48 represents (a) the depth averaged streamwise velocity, (b) velocity 
vectors and (c) pressure distribution for the Dr=0.5 case. From the depth av- 
eraged velocity profile, the bulging of higher velocity (0.25 m/s) is observed at 

apex sections. Compared to the Dr=0.15 case, the intrusion of floodplain flow 

is even more visible in the crossover region. It can be noticed that the profile is 

not symmetrical at two consecutive apex sections. Moreover, the velocity profile 
on both sides of overbank is roughly similar but not symmetrical. Flow on the 

top floodplain is found faster than on the bottom floodplain. This may be due 
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to the way in which the orthogonal grid (refer Figure 6.40) is generated. As 

discussed in Section 6.4.1, two separately generated overbank grids have differ- 

ent deviation from orthogonality and hence are prone to non-orthogonality errors 

of differing magnitude. The magnitude of error is observed to be the same for 

different relative depths. 

From the vector plot (see Figure 6.48 (b)) it can be seen that flow on the 

floodplain is dominant. The main channel flow, especially in the crossover region, 

is affected by the strong floodplain flow. Hence, the flow direction of the flow in 

the main channel deviates partially from streamwise to longitudinal unlike the 

Dr=0.15 case. The magnitude of the vectors becomes roughly equal for flood 

plain and main channel flows. 

From the pressure plot, Figure 6.48 (c), it can be noticed that there is a 
formation of high pressure on the floodplain near each apex section, which is 

due to the fact that the floodplain width reduces on the approach to the apex 

section. One of the reasons for this might be that the flow in the main channel 

is slightly faster (0.2 m/s) than the floodplain flow (0.15 m/s). Therefore, the 

flow on floodplain converges and increases the pressure as it approaches the apex 

section. There, the floodplain flow suddenly enters the main channel and releases 

the pressure. At apex section, AP = 10 N/m2 which is equivalent to 1.02 mm 

of AH and greater than s=0.15 case. 
Figures 6.49 and 6.50 shows a comparison of the calculated mean velocity with 

the experiments. From the experimental data it can be seen that similar to the 

Dr=0.15 case, a steep gradient is observed at section 05 where the floodplain flow 

intrudes into the main channel, which is less visible in s=1.093 case. A slower 

velocity, roughly 60% of U8 is observed on the outer wall of bend sections. The 

flow below the bankfull level has a value of U/U, less than 1.0 throughout the 

meander, which suggests that the main channel, in this case act as a resistance 

to the overall flow. Contrary to this, in s=1.093 case, no significant difference 

noticed between the velocities of main channel and floodplain flow. From the 
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produced results it can be seen that the mean velocity profiles are captured very 

well by the model. 
In Figures 6.51 and 6.52, a comparison of secondary currents at different sec- 

tions is made between predictions and measurements for the Dr=0.5 case, which 

have strength of 50% of U8. The secondary circulations pattern found similar to 

s=1.093 case. However, compared to s=1.093 case, very strong floodplain flow is 

seen from sections S5 to S11. From above results it can be said that the model 
is able of capture the secondary flow pattern reasonably well. 

6.4.3 Case 3: Sinuosity = 1.57 

After simulating compound meandering channels with s=1.093 and s=1.37, in this 

section simulation results are validated for a channel with a stronger sinuosity of 

s=1.57. Compared to previous channels, s=1.57 channel has the highest angle of 

arc and crossover angle, equal to 180° and 90° respectively. 

eso-------ý 

C> 
nJow 

(Dimcmlans In mm) 

T 

1 

Figure 6.53: Sketch of the physical domain of compound meandering channel (sinu- 

osity = 1.573) representing dimensions and measuring locations. Simulation results 
are compared for locations S1, S3, S5, S7, S9, S11 and S13. The view point of the 
cross section is same as the direction of flow 
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6.4 Compound Meandering ('1ia>iiiels 

Figure 6.54: Plane view of an orthogonal computational grid (sinuosity 1.093) of 
two meanders. No. of CVs are in horizontal (x) and lateral (y) directions are 160 and 
30 respectively. In the main channel, no. of CVs are 10. 

lN 

Figure 6.55: Deviation of a numerical grid (shown in Figure 6.51) from orthogon, ulity 
Maximum deviation = 12-, Mean deviation = 3.8" 

Figure 6.53 shows a sketch of the physical dons lin Of t Iris (-(ýI ilwiit I iil ; wder 

ing channel (s=1.57) describing the dimensions and (Xperii11(111 lM( tiiilwri 
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Ii llity are 12° and 3.8° respectively, which is shown in FiL»u-c Ihuul li Of 1 beer 
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6.4 Compound Meandering Channels 

quantities are higher than s=1.093 and s=1.37 grids. This deviation seems non- 

symmetric on both floodplains, which is due to the way in which the orthogonal 

grid is generated, since the top floodplain side boundaries are less constrained 

compared to the bottom floodplain. Hence, more deviation is observed in the 

bottom floodplain region. 
The hydraulic conditions for inbank flow, Dr=0.15 and Dr=0.50, are presented 

in Table 6.6. In this section, the flow mechanism is discussed for inbank flow, 

Dr=0.15 and Dr=0.5 cases and for each case computational results are compared 

with experimental data to assess the performance of the model. 

Table 6.6: Hydraulic conditions for channels with s=1.571 
11 1 Case 3(a) Case 3(b) Case 3(c) 

Relative depth (Dr=(H-h)/H) 0.0 0.15 0.5 

Water depth (H) 0.0532 0.0631 0.1087 

Mean velocity (U3, m/s) 0.170 0.113 0.268 

Discharge (Q, m3/s) 1.382 2.204 19.881 

Friction velocity (u., m/s) 0.0140 0.0120 0.0226 

Reynolds number (Re (x104)) 1.95 0.62 5.16 

6.4.3.1 Inbank Flow (Dr=0.0, s=1.57) 

Figure 6.56 shows (a) the depth averaged mean velocity, (b) velocity vectors and 
(c) the pressure distribution for the inbank flow (s=1.57) case. Compared to the 

s=1.37 and s=1.57 cases, the channel has a greater bend length and crossover 

angle but a smaller crossover length as shown in Table 6.3. 

In the depth averaged velocity profile (Figure 6.56 (a)) the maximum velocity 

core is formed at the beginning of the bend and within the bend, the core shifts 
towards the other side wall. The vector profile (Figure 6.56 (b)) and pressure 
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6.4 Compound Meandering Channels 

profile (Figure 6.56 (c)) are almost similar in terms of the distributions to the 

inbank flow, s=1.37 channel (Section 6.4.2). However, in terms of magnitude AP 

is found equal to 14 N/m2, equivalent to 1.43 mm of super elevation effect, which 

is greater than s=1.093 and s=1.37 cases. 

In Figure 6.57, the mean velocity profiles at different sections are shown as 

obtained from simulation and experiment. As with the inbank flow (s=1.37) case, 

a maximum velocity core is found near the inner bend of the apex (Si). From 

S3 to S7, the velocity becomes uniform and the maximum velocity core starts to 

move toward other side of the wall, which is similar to the s=1.37 case. From 

the results, it can be concluded that the computed results for mean velocity are 

in good agreement with experimental data. Importantly, the model is able to 

capture the bulging of velocity in the corner of the main channel especially at S5 

and S7 with good accuracy. 

The secondary currents at various sections are shown in Figure 6.58. It can 

be seen that a dominating clockwise circulation is seen at S1 along with a small 

anticlockwise circulation at the outer bend/free surface junction. Both circula- 

tions are found to be of equal magnitude of 10% of the U� which is similar to 

the s=1.093 and s=1.37 cases. As the flow moves within the bend, a clockwise 

circulation occupies most of the cross section transferring momentum and energy 

from the inner wall to the outer. Once the flow enters into next bend the clock- 

wise circulation weakens and anticlockwise circulation starts to gain strength, 

which also starts to transfer the momentum from the inner to the outer wall. At 

S13, the circulation pattern becomes opposite to that of S1. From the plotted 

results, it can be concluded that the computed results are in good agreement 

with experiments and the model works reasonably well for the inbank flow case 
(s=1.57). 

6.4.3.2 Overbank Flow (Dr=0.15, s=1.57) 

In Figure 6.59 (a) the depth averaged mean velocity, (b) velocity vectors and 
(c) the pressure distribution are shown for the Dr=0.15 case. The overall flow 
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6.4 Compound Meandering Channels 

mechanism remains similar to the s=1.37 (Dr=0.15) case. However, from Figure 

6.59 (a) it can be noticed that on the top floodplain a maximum velocity of 
0.04 m/s is observed as compared to 0.03 m/s for the bottom floodplain. This 

difference is due to the deviation from orthogonality of both floodplains as shown 
in Figure 6.55. From the vector plot, shown in Figure 6.59 (b), it can be seen 

that the flow is dominant in the main channel as the flow direction is streamwise 

and the vectors are larger than those of the floodplain flow. From the velocity 

vectors it is noticeable that on left part of the floodplain flow velocity is slightly 

slower than the velocity on the right part of floodplain. As the main channel 
flow is dominant, this difference has not caused any significant effect on the main 

channel flow. The difference in pressure distribution at apex section found equal 
to 6 N/m2 or OH = 0.6mm, which is greater than s=1.37 and s=1.093 cases. 

The flow behaviour is expected to be different in the crossover region due to 

difference in crossover angle as compared to s=1.37, which is shown in Figure 

6.60. At Section 07, a steep velocity gradient is seen between the floodplain and 

main channel flows, which is due to the plunging of slowly moving floodplain flow 

into the main channel. Near the right side wall, no contour value is seen in the 

computed results, which is due to the coarse nature of the computational grid. 
Figure 6.61 shows the comparison between the calculated and experientially 

obtained velocity vectors at different sections. With respect to the s=1.37 case, a 

strong secondary circulation is seen at Section 09 rotating clockwise, which causes 

erosion of the channel. Moreover, in experimental data at S7, the flow is seen 
to be penetrating the free surface, which is not observed in the computed results 
due to the rigid lid boundary condition, for pressure, at the top. 

Based on a comparison between the computed results and experimental results 
for cross-sectional mean velocity and secondary currents, it can be concluded that 

the computed results are in good agrement with the experimental data. Hence, 

the model is able to capture the essential flow behaviour for a channel of s=1.57 

with Dr=0.15. 
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6.4 Compound Meandering Channels 

6.4.3.3 Overbank Flow (Dr=0.50, s=1.57) 

Once the model was successfully applied to simulate inbank flow and Dr=0.15 

cases, it was extended to simulate the deeper Dr=0.5 case. Figure 6.62 shows (a) 

distribution of depth averaged mean velocity (b) velocity vectors and (c) pressure 
distribution for the Dr=0.5 case. From the depth averaged mean velocity profile it 

can be observed that the flow behaviour is not symmetrical at the two consecutive 

apex sections, which is due to the different magnitude of mean velocity on the 

floodplains (0.2 m/s on top and 0.18 m/s on bottom) interacting with the flow in 

the main channel at apex sections. This difference seems to be improved compared 
to the Dr=0.15 case. The flow direction in the main channel (Figure 6.62 (b)) 

is significantly altered towards the longitudinal direction from the streamwise 
direction proving that the flow on the floodplain is dominant. High pressure 

zones (Figure 6.62 (c)) are seen just before the apex sections on the floodplains, 

which is due to the convergence of flow on the floodplains and then its sudden 

release into the main channel. At apex section, within main channel, AP is found 

to 12 N/m2, which is greater than s=1.093 and s=1.37 cases. 
Figure 6.63 and Figure 6.64 show the mean velocity distributions at different 

cross sections obtained from the model and experiments. The flow behaviour is 

found to be similar to the s=1.37, Dr=0.5 case as discussed in Section 6.4.2. The 

dominance of floodplain flow is seen across all the sections with U/U8 equal to 0.8 

on the floodplain and U/Ue equal to 0.5 within the main channel. Secondary cir- 

culations (Figure 6.65 and Figure 6.66) are also found to be similar to the s=1.37 

case. No free surface effect is observed at S7 compared to Dr=0.15 (s=1.57) case. 
Results obtained from the developed model are found to be in reasonably 

good agreement with experimental results for the Dr=0.5, Dr=0.15 and inbank 
flow cases. 

172 



6.4 Compound Meandering Channels 

b) Velocity vocl(irti 

ýý--ýý 
'ýý= 

.= 

_ýý trl 
(c) I'1( 1i! nc 

F. ýý... 

`-. r_ 

. ýýý 

y" O 

l_ Xv 

Lý 
_ 

ý1 

Figure 6.62: S=1.570, Dr=0.50: Plan view of depth averaged (a) mean velocity 
in (b) velocity vectors and (c) pressure distribution in N /m2. Due to the 
centrifugal forces the velocity is higher at inner side of the apex section which causes 
low pressure at the same location. The pattern is repeated at next apex section. 

i 
w f 

(1 ) I, uugiIIvIina, I \(I(( it 
IN, 
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6.4.4 Summary 

" For overbank flow it was found that the magnitude and direction of velocity 

were significantly changed around the bankfull level where a strong 3D type 

flow occurred along the meander channel. The interaction between the main 

channel flow and the floodplain flow in the crossover region found to play 

an important role of change of flow structure for the overbank conditions. 
As the water depth increases from inbank to overbank flow a change in the 

direction of secondary flow rotation was observed at the bend section. 

" From the presented results produced from the model it can be concluded 
that the model has the ability to reproduce the flow mechanisms for com- 

pound meandering channels with varying sinuosity and relative floodplain 

flow depth. The mean velocity distribution is captured well especially when 
the plunging of floodplain flow into the main channel (s=1.37 and s=1.57 

cases) is significant. The generation and decay of secondary currents across 
the channel meander is also well captured. Due to the orthogonality er- 

ror non-symmetric behaviour is observed in the profiles of floodplain flows. 

However, it has not affected the essential flow behaviour in the main channel 
significantly. 

" The developed model offers unique advantages in terms of faster computa- 
tions and applicability to complex geometries. The computation is very fast 

(roughly six hours with a standard personal computer for s=1.57, Dr=0.5 

case) to achieve the fully developed flow conditions. The model can be 

adopted easily to analyse estuaries and river flows. In terms of disadvan- 

tages, the orthogonal grid for high sinuous channels (s=1.57) has shown a 

higher degree of deviation from orthogonality, which has introduced addi- 
tional errors. However, this may be overcome by trying different options 

such as simulating more than two meanders, adopting grids with different 

densities and trying different ways of generating orthogonal grids. 
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6.5 Engineering Applications 

6.5.1 Aim 

Meandering channel flows are widely seen in nature, hence indepth understanding 

can help us prevent or minimize the effects of flooding. In Section 6.4, meander- 

ing channel flow simulations were discussed. The linear k-e model was used 

for computations, which is not able to capture the turbulence driven secondary 

currents. Secondary circulations in meandering channel flows are, generally, pres- 

sure driven but in less sinuous channel the effect of anisotropic turbulence may 

play an important role, as in the cases of straight simple and compound channels. 
Therefore, the aim of this section is to investigate the effects of anisotropy using 

the anisotropic turbulence model to simulate a compound meandering channels; 
the least sinuous, s=1.093, case among the cases studied in the previous sections. 

6.5.2 Methodology 

In this section, flow characteristics are discussed for a compound meandering 

channel s=1.093, apex section S9 (see Figure 6.23). The results produced from the 

k-e model and anisotropic LY model are presented. The LY model is selected due 

to its simplicity of implementation in orthogonal coordinates as compared to the 
NR model in which the wall and free surface functions in orthogonal coordinates 
were complex to implement. Three different flow situations are analysed; inbank 

flow, Dr=0.15 and Dr=0.5. For each case, the following parameters are discussed: 

" Secondary currents and mean velocity distribution - comparison of com- 

puted results with experimental data 

" Reynolds shear stress (-vw/U. 2) - comparison of k-e model with LY model 

" Wall shear stress (-üv/U; ) - comparison of k-e model with LY model 

" Bed shear stress (pU; ) - comparison of k-e model with LY model 
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The governing model equations for the standard k-e and LY models in an 

orthogonal coordinate system are discussed in Sections 5.4.4 and 5.4.5 in detail. 

6.5.3 Discussions 

Inbank flow: Figure 6.67 shows the mean velocity profile, secondary currents, 

-Uw/U;, -Vvand bed shear stress distributions at apex section S9 (see 

Figure 6.23 for the location of S9) calculated from the linear k-e model and 

the LY model. The mean velocity and secondary currents obtained from 

the experiments are shown in Figures 6.29 and 6.30. It can be seen that 

a maximum velocity core exists at inner wall (right side) for both models; 
this behaviour is similar to that observed in the experiments. However, for 

both cases the bulging is less intense at the outer wall (left side). 

Two secondary circulations are seen, rotating in both clockwise and 

anticlockwise directions. The circulation rotating in anticlockwise direction 

seems dominant, which is not seen in experiments. From the circulations it 

can be observed that the secondary currents are stronger in the LY model 

prediction and match closely with measured data than the k-e model. 
This may be due to the fact that the LY model adds the contribution 

of Reynolds stresses generated from the turbulence anisotropy; giving the 

additional strength to the currents. The effect of stronger circulation for 

LY model case can be clearly seen in the Reynolds shear stress (-vw/U; ) 

distributions. The highest value of -0.06 is observed near free surface in the 
LY model case compared to -0.04 in the k-e model case. The magnitudes 

of wall shear stresses -üv/U; found to be 1.0 near the left wall and 3.0 the 

near right wall for both the LY and k-e model cases. However, for the 

LY model case the magnitude is higher near the right wall. The magnitude 

of bed shear stress (pU; ), similar to the distribution of wall shear stress, is 

1.0 near the left wall and gradually increasing to about 2.5 near the right 

wall. However, the distribution is more wavier in the case of LY model 
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Figure 6.67: S=1.093, Inbank flow: Comparison of normalised flow parameters com- 

puted from linear h-- model and the LY model 
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Figure 6.70: S=1.093, Dr=0.50: Comparison of normalised flow parameters com- 
puted from the linear k-6 model and the LY model 

results near the right wall, which is correspond to the circulation patter at 
the same location. In general, the reason for higher shear stresses near the 

right wall is due to the faster mean velocity (U/U3) and consequent steep 

velocity gradients at the same location. 

In terms of super elevation effect, OH is found to be 1.72mm and 
1.22mm for the LY and k-e models respectively. Slightly higher magnitude 
of iH might be due to the stronger secondary currents and subsequent 

effect on the pressure distribution. 

Dr=0.15: Figure 6.68 represents the mean velocity profile, secondary currents, 

-vw/U; , -TVand bed shear stress distributions at apex section S9 

calculated from the linear k-e model and the LY model. In Figures 

6.32 and 6.33, the mean velocity and secondary currents obtained from the 

experiments are shown. From the mean velocity profile it can be seen that 
both models are able to capture the maximum velocity core location at 
the inner wall of the channel, similar to the experiments. In the case of 
the secondary circulations, the magnitude of currents captured by the LY 

model seem slightly stronger compared to those from the linear k-e model 
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similar to the inbank flow case. A dominant clockwise circulation is shifted 

more towards the floodplain/main channel junction at the inner wall in the 

case of the LY model as compared to the linear k-e model. 

Similar to inbank flow case, the magnitude of Reynolds shear stresses 
(-VTis higher in the case of the LY model (-3.0 near the surface) than 

the k-- model (-0.6). The wall shear stresses distribution (-üv/U; ) found 

increasing gradually from the left wall toward the right wall for both the 

LY model and the the linear k-e model cases. However, steep gradients 

noticed at the walls. The profiles of bed shear stresses found gradually 
increasing from the left wall toward the right wall similar to the wall shear 

stresses. No significant difference is observed for the super elevation effect 
(OH = 0.2 for both cases) in the results from the LY model and the linear 
k-E model. 

Dr=0.50: Figures 6.69 and 6.70 show the mean velocity profile, secondary cur- 

rents, -vw/U;, -v/U; and bed shear stress distributions calculated from 

the linear k-e model and the LY model. In Figures 6.35,6.36,6.37, and 
6.38, the mean velocity and secondary currents obtained from the exper- 
iments are shown. It can be seen from the mean velocity and secondary 

current profiles that the model predictions are in good agrement with the 

experiments. One dominating cell, rotating in the clockwise direction is 

seen in both cases, however for the LY model the origin of the cell is shifted 
towards the bottom wall and is also greater in strength. 

The maximum value of -vw/U; is found to be 0.08 and 0.05 for the 
LY model case and the linear k-e model case respectively. Similar to 

inbank flow and Dr=0.5 cases wall shear stress increases from the left wall 
(0.13) toward the right wall (0.3). The bed shear stresses, similar to the 

wall shear stress increases gradually from the left wall towards the right 

wall. No significant difference (OH = 0.5 for both cases) is observed in 

terms in super elevation effects. 
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6.5.4 Summary 

" In terms of the secondary current pattern, the linear k-e model results 

are slightly closer to the experimental data, but in terms of the current's 

strength, the LY model seems closer to the data. 

" The magnitude of the Reynolds shear stress (-vw/U; ) is found to be 

stronger for the LY model in the inbank and Dr=0.15 cases as compared to 

the linear model. 

. Though no significant difference in -v/U; distribution is observed, bed 

shear stress distribution found to be wavier using the LY model as compared 

to the linear k-e model for inbank flow, Dr=0.15 and Dr=0.5 cases. 

" As relative depth increases difference between the LY model and the k-E 

model for mean velocity and Reynolds stresses distribution decreases. This 

shows that the flow structures depends on the plunging effects and the 

geometrical effects than the anisotropy of turbulence for overbank flows. 

9 From the analysis, it can be said that to see the effects of anisotropic tur- 

bulence on flow structure, the sinuosity need to reduce. 
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CHAPTER 7 

Summary, Conclusions and 

Future Work 

7.1 Summary 

A novel three-dimensional computational model has been developed to simulate 
the complex turbulent flows within simple channels, compound channels and com- 
pound meandering channels. Various stages of this research can be summarised 
as follows: 

Identifying the Research Gap: From the literature review discussed in Chap- 

ter 2, it was found that the linear k-e model is often used for the simu- 
lations of compound meandering channel flows. The computational models 
developed so far are based on methods such as finite element', finite vol- 

ume and finite difference. The non-orthogonal grid is also used frequently 

for numerical simulations'. The computational time for these methods to 

achieve uniform flow condition in the meandering channel is dramatically 
'Refer the publication Olsen (2003) and weblink: http: //www. telemacsystem. com/ 
2SSIIM developed by Norwegian University of Science and Technology is based on the non- 

orthogonal grid method (http: //folk. ntnu. no/nilsol/ssiimwin/). 
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high'. Based on this investigation, an opportunity was identified to de- 

velop a model, which is computationally efficient and able to capture the 

anisotropy of turbulence in compound meandering channels. 

The Model Development Process: A computer model developed by Lilek 

et al. (1995) created to simulate the three-dimensional lid driven cavity 
flow was adopted as a starting point2. The reasons behind the selection of 

this model are discussed in Chapter 4. The following enhancements were 

introduced to achieve the objectives of the research (Section 1.3) . 

1. Turbulence models: The governing equations were modified to Reynolds- 

Averaged Navier-Stokes (RANS) equations by incorporating the isotropic 

k-e model of Launder and Spalding (1974) to simulate the turbu- 
lent flows in a simple channel (Chapter 3). To capture the secondary 

currents and its effects on the streamwise velocity, the algebraic stress 

models of Launder and Ying (1973), Speziale (1987) and Naot and 

Rodi (1982) were added to compute the Reynolds stresses. 

2. Masking array concept (Blocked cells): The geometry of a simple chan- 

nel was modified by masking (blocking off) the unwanted arrays during 

computations. Logical arrays were created and binary numbers, one 
(=perform) and zero(=not to perform), were specified for simulations. 
This is one of the most efficient way to prevent the computations to oc- 

cur in specified CVs. Mathematical modifications implemented for the 
blocked off region are discussed in Section 4.7.3.2. Then, the isotropic 

k-e model and anisotropic NR model were tested to check the perfor- 

mance of the masking array concepts by simulating the flow through 

compound duct and open channels. 
ITelemac2D used by research colleagues took more than two days to achieve uniform flow 

condition for compound meandering channels on a 512MB RAM and 2.1GIIz desktop computer. 
'The computer code 3dc is available online at ftp: //ftp. springer. de/pub/technik/peric/. 
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3. Curvilinear coordinates: In the final stage of development, governing 

equations including BANS equations, isotropic model equations and 

anisotropic model equations were converted into the curvilinear coor- 
dinate system (Chapter 5). The channel geometry was modified to the 

compound meandering channels by generating orthogonal curvilinear 

grid and using masking array concept. The grid generation method for 

channels with different sinuosity and forcing functions used to prevent 

the grid line collapsing are discussed in Section 4.7.3.3. According to 

author's knowledge, though the orthogonal grids are often used for 

two-dimensional ocean flow modelling, it has never been tested for 

three-dimensional compound meandering channel flows'. 

7.2 Conclusions 

In this work, the new computational approach is developed to simulate the com- 

plex turbulent flows within simple channel, compound channel and compound 

meandering channels. The performance of the model for each type of the channel 

can be concluded as follow. 

Simple Channel: The implemented ASMs were first tested to simulate the sim- 

ple duct flow (Section 6.2). It is found that the ASNIs reproduced all the 

essential behaviour of the flow when the symmetry boundary condition is 

imposed at the top and the right of domain to simulate the flow in the bot- 

tom left quarter of a closed channel. The NR model is found to predict the 

flow behaviour (secondary currents and mean velocity distribution) more 

closely with the previous literature among all the ASMs (Section 6.2.1). 

For open channel flow simulations free-surface boundary condition for e 
'GRIDGEN, a MATLAB-based tool developed by United States Geological Survey depart- 

ment, is developed to construct orthogonal curvilinear grids for ocean circulation models, which 
is available online at http: //woodshole. er. usgs. gov/operations/modeling/gridgen/index. html. 
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was imposed at the top which causes the highest longitudinal velocity to 

be below the free surface. This behaviour was also reproduced reasonably 

well with the NR model (Section 6.2.2). The periodic boundary conditions 

used to achieve the uniform flow condition worked successfully and helped 

to reduce computational time. 

Compound Channel: The masking arrays concept adopted for compound chan- 

nel grid generation was able to reproduces the compound closed and com- 

pound open channel flow behaviour. The exchange of momentum between 

the floodplain and main channel flows and resulting formation of secondary 

currents on lateral plan was reproduced with the NR model with good accu- 

racy (Section 6.3). An additional circulation was noticed on the floodplain 

in compound open channel compared to compound closed channel. This is 

due to the presence of free surface in compound open channel flow. 

Compound Meandering Channels: The orthogonal grids with steep curva- 

tures (s=1.37 and s=1.57) were created successfully using forcing functions. 

These functions provided the control to prevent the grid line collapsing near 

the curved regions. In terms of flow behaviour, secondary currents and mean 

velocity distributions computed from the model for s=1.093, s=1.37 and 

s=1.57 cases matched reasonably well with the experimental data of Muto 

(1997) (Section 6.4). The effects of varying sinuosity and relative depths 

on the flow behaviour in terms of secondary currents and plunging of flood- 

plain flow into the main channel were reproduced with good accuracy. It 

was noticed that for the overbank flow situations, non-symmetric flow be- 

haviour was observed on both floodplains, which was due to the different 

deviations from orthogonality of the grid for top and bottom floodplains 

(Section 6.4.1). The difference in deviation tends to increase as channel 

sinuosity increases. Though this different grid property had caused faster 

flow on one floodplain than the other, it had not affected the main channel 
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flow significantly. The non-symmetry on both floodplains in terms of devi- 

ation from orthogonality and speed of the flow might be improved in the 

future by working on different way to generate orthogonal grid, simulating 

more than two meanders, trying different grid refinement and finding out 

any manual error (bug) into the model. 

Anisotropy in the Compound Meandering Channel: Finally, a unique and 

a new study was carried out to understand the turbulence effect within 

compound meandering channel and to demonstrate the capability of the 

developed model. The anisotropic LY model was applied to the less sinuous 

case of compound meandering channel s=1.093 and results were compared 

with the linear k-e model. Three different flow conditions, namely, the 

inbank flow, Dr=0.15 and Dr=0.5, were investigated for the s=1.093 case. 
Flow characteristics such as secondary currents, mean velocity distribution, 

Reynolds shear stresses, wall shear stress and bed shear stresses were dis- 

cussed (Section 6.5). It was noticed that in terms of secondary current pat- 

tern, the linear model result was slightly closer to the experimental data; 

but in terms of strength the LY model result seemed closer to the data. 

The magnitude of Reynolds shear stress was found to be stronger for the 

LY model in inbank and Dr=0.15 cases compared to the linear model. Bed 

shear stress distribution found slightly higher in magnitude near the right 

wall for all inbank flow, Dr=0.15 and Dr=0.5 cases compared to the linear 

k-e model. No significant difference in wall shear stress distribution was 

observed by using the LY model compared to linear model. 

7.3 Future Work 

The developed model has enormous capabilities of dealing with complicated ge- 

ometries coupled with higher order anisotropic turbulence modelling, which can 
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be applied to solve a wide variety of problems in a computationally efficient man- 

ner. The following are few of the potential areas in which the developed model 

could be extended: 

1. Engineering Applications 

9 In case of flooding the flow through a river inundates the river bank, 

which is, in real life, occupied by trees (vegetation) and other civil- 
ian constructions. A replica of a similar situation has been set up at 
Loughborough University's Department of Civil and Building Engi- 

neering laboratory as shown in Figure 7.1. The developed model can 
be modified to tackle a similar situation by extending the concept of 

masking arrays (Section 4.7.3.2). Thereafter, the model can be used to 

predict the flow discharge under different vegetation conditions, which 

can help to work out a floodplain management strategies and to min- 
imize the flooding consequences. 

" The river flow causes the erosion of banks and transports as well as 
deposits the sand and debris to various locations. By incorporating 

the concept of varying bathymetry and sediment transport into the 

model, this phenomena can be understood thoroughly. 

" The discharge of pollutants from various sources into a river is a fre- 

quently encountered problem in the real world. With the help of the 

model, coupled with a scheme for solving an additional scaler transport 

equation, the optimum location of pollutant discharge can be worked 

out by specifying the location of the pollutant source in the channel. 

2. Understanding the Complicated Flow Physics 

" The developed model is based on the assumption of a rigid lid at 
the free surface. The rigid lid boundary condition can be modified 
by incorporating the concept of the "v" coordinate in the vertical 
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direction. This will help to understand the free surface variation of 
the flow, its effect on bed shear stress and the effect of sloshing. 

" Turbulent flow through a compound meandering channel is one of the 

most complex flow phenomena as it comprises various flow regimes 

generated due to the nature of geometry and the turbulent nature of 
flow. The computational tool can easily be adapted to understand 
these regimes such as the location of turbulent energy production and 
dissipation, the secondary flow generation and decay thoroughly. The 

concept of Large Eddy Simulations can also be coupled with the model 
for the similar purposes. 

3. Computational Efficiency Enhancement 

" For numerical simulations, the computer programme was developed in 

FORTRAN 90, which represents one of the latest versions in FOR- 

TRAN compiler series. Advanced features of FORTRAN 90 like mod- 

ules and dynamic memory allocation can be implemented to make the 

programme less memory intensive. In addition, the programming style 
can be modified to take the advantage of parallel processing, which 
would reduce the computation time drastically. 

. Finally, a user-friendly front-end can be created for data input in MAT- 

LAB or Visual Basic of Applications to make the computer model 

easier to operate. The use of MATLAB can also be extended for post- 

processing of the numerical results. 
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(h) 

Figure 7.1: Meandering channel flume at Loughborough University, UK. The model 
could be extended to simulate (a) overbank flow with trees (b) trees on the edge of 
main channel. (after Prof. Shiono's presentation) 

191 



References 

ABOrr, M. B. AND BASCO, D. R. (1989). Computation Fluid Dynamics: An 

introduction for engineers. John Wiley & Sons, New York, USA. 3.1 

AKCELIK, V., JARAMAZ, B. AND GHATTAS, 0. (2001). Nearly orthogonal two- 

dimensional grid Generation with aspect ratio control. J. Comp. Phy., 171, 
805-821.4.7.3.3,4.7.3.3,4 

BOUSSINESQ (1887). Esai sur la theories des eaux courantes. In Memories Pre- 

sente par Divers Savants al' Academie des Science,, vol. 23,1-680.3.2.1, 

5.4.2.4 

BRADSHAW, P. (1987). Turbulent secondary flows. Annu. Rev. Fluid Mech., 19, 
53-74.2.2.1,6.3 

BRUNDRETT, E. AND BAINES, W. D. (1964). The production and diffusion of 

vorticity in duct flow. Annu. Rev. Fluid Mech., 19,375-394.2.3.2.1 

COKLJAT, D. (1991). Mathematical modeling of turbulent flows in two stage 

channels. Transfer report, Department of Civil Engineering, City University, 

London, UK. 2.3.3,3.4.2 

COKLJAT, D. AND YOUNIS, B. (1995). Second order closure study of open- 

channel flows. J. Hydraul Engi, ASCE, 95,94107.1.1,2.3.2 

EcA, L. (1996). 2D orthogonal grid generation with boundary point distribution 

control. J. Comput. Phys., 125,440.4.7.3.3,4.7.3.3 

195 



REFERENCES 

ERVINE, D. A. AND ELLIS, J. (1987). Experimental and computational aspects 

of overbank floodplain flow. Transaction of the Royal Society of Edinburgh: 

Earth Sciences, 78,315-325.2.4.2.1 

ERVINE, D. A. AND JASEM, H. K. (1995). Observations on flows in skewed com- 

pound flows. In Proc. Instn. Civ. Engrs., London, vol. 112,249-259. (docu- 

ment), 2.4.2.1,2.9 

FARHANIEH, B. AND DAVIDSON, L. (1993). Employment of second moment 

colsure for calculation of turbulent recirculating flows in complex geometries 

with collocated variable arrangement. Int. Jou. Num. Meth. Fluid, 16,525- 

544.1 

FERZIGER, J. J. AND PERIL, M. (1995). Law of flow in rough pipes. Nat. Advis. 

Comm. On Aero. Tehc. Mem. 1292, Washington D. C, USA. 3.1,4.2,4.4,5.5 

FLETCHER, C. (1989). Computational Techniques for Fluid Dynamics. Springer- 

Verlag, London, 1988.2nd volume. 5.2 

GESSNER, F. B. AND JONES, J. B. (1965). On some aspects of fully developed 

turbulent flow in rectangular channels. J. Fluid Mech., 23,689-713.2.3.2.1 

GHosx, S. N. AND KAR, S. K. (1975). River flood plain interaction and distribu- 

tion of boundary shear stress in a meander channel with flood plain. In Proc. 
Civil Eng., London, vol. 59(2), 805-811.2.4.3 

HARLOW, F. H. AND WELSH, J. E. (1965). Numerical calculation of time depen- 

dent viscous incompressible flow with free surface. Phy. Fluids, 8,2182-2189. 

4.7.1 

HUR, N., S. THANGAM AND SPEZIALE, C. G. (1990). Numerical study of tur- 

bulent secondary flows in curved ducts. J. Fluid Eng., 112,205-211.1.2 

196 



REFERENCES 

IMAMOTO, H., ISHIGAKI, T. AND FUJISAWA, H. (1982). On the characteris- 

tics of open channel flow in bends with flood plains. Annuals DPRI, Kyoto 

University, (in Japanese), 25B-2,529-543.2.4.2.1 

JENKINS, G. A. AND KELLER, R. J. (1992). On the numerical modelling of flows 

in natural rivers. In Proc. 24 th IAHR Cong., Madrid, Spain, C229-C238.2.4.4 

KEARNEY, D. (2000). Turbulent diffusion in channels of complex geometry. 

Ph. D. thesis, Loughborough University, UK. 6.2.2 

KNIGHT, D. W. AND SHIONO, K. (1990). Turbulence measurements in a shear 

layer region of a compound channel. J. Hydraul. Res., 28,175-19G. 2.3.2 

KNIGHT, D. W., YUAN, Y. M. AND FARES, Y. R. (1992). Boundary shear in 

meandering channels. In Proc. Int. Symp. Hyd. Res. Nature and Laboratory, 

Yangtze River Scientific Research Institute, China, vol. 2,102-107.2.4.3 

KRISIINAPPA, B. G. AND LAU, Y. L. (1986). 1 rbulence Modelling of Floodplain 
Flows. J. Hydraul. Eng., ASCE, 112,251-266.1.1 

LAI, Y. G., WEBER, J. AND PATEL, V. C. (2003). Nonhydrostatic three- 

dimensional model for hydraulic flow simulation. I: formulation and verification. 

J. Hydrau. Engi., 129,196-204.2.4.4 

LAUNDER, B. E. AND SPALDING, D. B. (1974). The Numerical computation of 
turbulent flows. Comput. Methods Appl Mech. Eng., 3,269-289.3.5.3,1 

LAUNDER, B. E. AND YING, W. M. (1973). Prediction of flow and heat transfer 

in ducts of square cross section. Proc. Instn. Mech. Engrs, 187,455-461.1.2, 

2.2.1,3.4.1,6.2.1,1 

LILEK, Z., MZAFERIJ, S. AND PERIL, M. (1995). Efficiency and accuracy as- 

pects of a full-multigrid SIMPLE algorithm for three-dimensional flows. Nu- 

merical Heat Transfer, Part B, 31,23-42.4.1,7.1 

197 



REFERENCES 

LIN, B. AND SHIONO, K. (1994). Three-dimensional numerical modelling of rect- 

angular open channel flows. J. Hydraul. Engi., Chinese Hydraulic Engineering 

Society, 3,47-58.2.3.2 

LORENA, M. (1992). Meandering compound flow. Ph. D. thesis, University of 

Glasgow, UK. 2.4.3 

MORVAN, H., PENDER, G., WRIGHT, N. G. AND ERVINE, D. A. (2002). Three- 
dimensional hydrodynamics of meandering compound channels. J. Hydrau. 

Engi., 128,674-682.1.1 

MUTO, Y. (1997). Turbulent flow in two-stage meandering channels. Ph. D. the- 

sis, University of Bradford, UK. (document), 2.4.3,6.22,6.4,6.4.1,6.29,6.30, 

6.32,6.33,6.35,6.36,6.37,6.38,6.43,6.44,6.46,6.47,6.49,6.50,6.51,6.52, 

6.57,6.58,6.60,6.61,6.63,6.64,6.65,6.66,7.2 

NAOT, D. AND RODI, W. (1982). Calculation of secondary currents in channel 
flow. J. Hydrau. Div., ASCE, 111,116-125.1.2,2.2.2,2.3.2.1,3.4.2,3.4.2, 

3.4.3,3.5.2,6.2.1,6.2.2,6.2.2,1 

NAGT, D., NEZU, I. AND NAKAGAWA, H. (1993a). Calculation of compound- 

open-channel flow. J. Hydrau. Engi., 119,1418-1426.6.3 

NAOT, D., NEZU, I. AND NAKAGAWA, H. (1993b). Hydrodynamic behaviour 

of compound rectangular open channels. J. Hydrau. Engi., 119,390408.1.1, 

1.2,6.2.2 

NEZU, I. (2005). Open-channel flow turbulence and its research prospect in the 
21st century. J. Hydrau. Engi., 131,229-246.2.2.2 

NEZU, I. AND NAKAGAWA, H. (1993). Turbulence in Open-Channel Flows. IAHR, 

Monograph, Rotterdam, Balkema, USA. (document), 2.2.2,2.2.2,2.2,6.2.1, 

6.3,6.2.1,6.2.2,6.10,6.2.2 

198 



REFERENCES 

NEZU, I. AND RODI, W. (1993). Experimental study on secondary currents in 

open channel flow. J. of Hydrau. Engi., 119,390408.2.2.2,2.2.2 

NEZU, I., SAGARA, Y. AND IKETANI, K. (1999). Secondary currents and bed 

shear stress in compound open channel flows with shallo flood plains. In Proc., 

28th IAHR Congress, Gratz, Austria, vol. D6,1-8.2.3.3 

NIKURADSE, J. (1933). Laws of flow in rough pipes, NACA TM 1292,1950. 

Translated from "Strmungsgesetze in rauhen Rohren. Forsch. Arb. Ing. -Wes. 
No. 361.2.2.1 

OLSEN, N. R. B. (2002). SSIIM user's manual. Www. bygg. ntnu. no/ nil- 

sol/ssiimwin; Norwegian Univ. of Science and Technology. 2.4.4 

OLSEN, N. R. B. (2003). Three-dimensional CFD modelling of self-forming me- 

andering channel. J. Hydraul. Eng., 12,336-372.2.4.4,1 

PATANKAR, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere, 

New York, USA. (document), 4.2,4.3 

PATANKAR, S. V. AND SPALDING, D. B. (1972). A calculation procedure for Beat, 

mass and momentum transfer in three-dimensional parabolic flows. Int. J /teat 

and Mass Transfer, 15,1787-1806.4.1,4.6.1 

PATRA, K. C., KAR, S. K. AND BHATTACHARYA, A. K. (2004). Flow and ve- 
locity distribution in meandering compound channels. J. Hydraul. Eng., 130, 

398-411.2.4.1 

PERIC, M. (2004). Email Corrospondence with author. 1 

PERIC, M., RUEGER, M. AND SCHEUERER, G. (1989). A finite volume multi- 

grid method for calculating turbulent flows. In Proc. 7th Symp. on Turbulent 

Shear Flows, vol. 1.4.1 

199 



REFERENCES 

PEZZINGA, G. (1994). Velocity Distribution in Compound Channels by Numer- 

ical Modelling. J. Hydraul. Engng. ASCE, 120,1176-1198.1.1 

PRESTON, J. H. (1954). The determination of turbulent skin friction by means 

of Pitot tube. J. Roy. Aeronau. Soc., 58,109-121.2.4.3 

RAJARATNAM, N. AND AHMADI, R. M. (1979). Interaction between main chan- 

nel and flood-plain flows. J. Hydr. Div., Proc. ASCE, 105,573-588.2.3.1 

RAMESHWARAN, P. AND NADEN, P. S. (2004). Three-dimensional modelling of 

free surface variation in a mearnding channel. J. Hydrau. Res., 42,603-615. 

2.4.4,2.4.4 

RAMESHWARAN, P. AND SHIONO, K. (2002). Predictions of velocity and bound- 

ary shear stress in compound meandering channel. In Proc. of River Flow, 

International Conference on Fluvial Hydraulics, Louvain-la-Neuve, Belgium, 

(BOUSMAR D. and ZECH Y (eds)), September 4-6, vol. 1,223231.1.1 

RAMESHWARAN, P. AND SHIONO, K. (2003). Computer modelling of two-stage 

meandering channel flows. In Proc. of the Inst. of Civil Engineers, Water and 
Maritime Engineering, vol. 156,326339.1.1,2.4.4 

RAMESHWARAN, P. AND WILLETTS, B. B. (1999). Conveyance prediction for 

meandering two-stage channel flows. In Proc. of the Inst. of Civil Engineers 

Water, Maritime &4 Energy, vol. 136,153-166.1.1 

RODI, W. (1993). Turbulence models and their application in hydraulics: a state- 

of-the-art review. IAHR Monograph, Rotterdam : Balkema, NETHERLAND. 

3.1,3.3,3.3 

SELLIN, R. H. J. (1964). A laboratory investigation into the interaction between 

flow in the channel of a river and that of its flood plain. In La Houille Blanche, 

Grenoble, France, vol. 7,793-801.2.3.1 

200 



REFERENCES 

SELLING, R. H. J., ERVINE, D. A. AND WILLETTS, B. B. (1993). The behaviour 

of two-stage channels. Proc., Instn. Civ. Engrs., Water, Maritime and Energy, 

London, 101,99-112. (document), 2.4.2.1,2.8 

SHAG, X., WANG, H. AND CHEN, Z. (2003). Numeircal modeling of turbulent 

flow in courved channels of compound cross-section. Adv. Water Eesou., 26, 

525-539.2.4.4,5.1,5.4 

SHIONO, K. AND KNIGHT, D. W. (1989). Transverse and vertical Reynolds stress 

measurements in a shear layer region of a compound channel. In Proc., 7th 

Symp. on Turbulent Shear Flows, Stanford Univ., 28.1.1-28.1.6. (document), 

1.1,2.3.2,2.6 

SHIONo, K. AND KNIGHT, D. W. (1990). Mathematical models of flow in two or 

multi-stage straight channels. In Proc., Int. Conf. on River Flood Hydraulics, 

W. R. White, ed., Wiley, New York, Paper GI,, 229-238.1.1 

SHIONO, K. AND KNIGHT, D. W. (1991). Turbulent open-channel flows with 

variable depth across the channel. J. Fluid Mech., 222,617-646. (document), 

2.3,2.4 

SxloNO, K. AND LIN, B. (1995). Numerical modelling of solute transport in 

compound channel flows. J. Hydraul. Res. IAHR, 33,773-788.1.1 

SHIONO, K. AND MUTO, Y. (1998). Complex flow mechanisms in compound 

meandering channels with overbank flow. J. Fluid Mech., 376,221-261. (doc- 

ument), 2.4.1,2.7,2.4.2.2,2.4.2.2,2.10,2.4.2.2,2.11,6.4.1.2 

SHIONO, K., MUTO, Y., IMAMOTO, H. AND ISIHGAKI, T. (1994). Flow struc- 

ture in meandering compound channel for overbank. In 7" International Sym- 

posium on Application of Laser Techniques to Fluid Mechanics ,2, 
Lisbon, 

Portugal, vol. 376,28.2.1-28.2.8.2.4.2.1 

201 



REFERENCES 

SHIONO, K., AL-ROMAIH, J. S. AND KNIGHT, D. W. (1999). Stage-discharge 

assessment in compound meandering channels. J. Hydraul. Eng., 125,66-77. 

2.4.3 

SHUKLA, D. R. (2006). Three-dimensional Computatinal Investigations of Flow 

Mechanisms in Compound Meandering Channels. Ph. D. thesis, Loughborough 

University, UK. 2.4.4,2.4.4 

SHUKRY, A. (1949). Flow around bends in an open flume. Trans. ASCE, 115, 

751-779.2.4 

SOFIALIDIS, D. AND PRINOS, P. (1999). Numerical study of momentum ex- 

change in compound open channel flow. J. Hydraul. Eng., 125,152-165.1.1, 

2.3.3 

SPEZIALE, C. G. (1987). On Nonlinear k-1 and k-e models of turbulence. J. 

Fluid Mech., 178,459-475. (document), 1.2,2.1,2.2.1,3.4,3.4.3,1 

STEIN, C. G. AND Rouv, G. (1989). 2D depth-averaged numerical predictions 

of the flow in a meandering channel with compound cross section. Hydrosoft, 

2,2-7.2.4.4 

SUGIYAMA, H. AND SAITO, T. (2002). Numerical study of turbulent in com- 

pound meandering open-channel. In Proc. of JSCE, 712/II-60,25-43. (docu- 

ment), 2.4.4,2.12,5.1 

SUGIYAMA, H., AKIYAMA, M., MATSUBARA, T. AND HIRATA, M. (1995). 

Numerical analysis of three-dimensional turbulent structure in open channel 
flow. Jou. of Comp. Fluid Dynamics, 4,236-262.6.2.2 

SUGIYAMA, H., AKIYAMA, M. AND SATO, R. (1999). Numerical study of tur- 

bulent stucture in rectengular meandering channel flow. In Proc. of JSCE. No 

628111- 48.2.4.4 

202 



REFERENCES 

THOMAS, T. G. AND WILLIAMS, J. J. R. (1995). Large Eddy Simulation of Tur- 

bulent Flow in an Asymmetric Compound Open Channel. J. Hydraul. Res. 

IAHR, 33,27-41.1.1 

THOMPSON, J. F., WARSI, Z. U. A. AND MASTIN, C. W. (1985). Numerical grid 

generation. North-Holland, New York, USA. 4.7.3.3,5.1 

THOMSON, J. (1876). On the origin of windings of rivers in alluvial plains, with 

remarks on the flow of water round bends in pipes. In Proc. Roy. Soc. London., 

vol. 25,5-8.2.4 

TOEBES, G. H. AND SOOKY, A. (1967). Hydraulics of meandering rivers with 
floodplains. J. Waterw. Harbors Div., Am. Soc. Civ. Eng., 93,1053-1066. 

2.4.2.1 

TOMINAGA, A. AND NEZU, I. (1990). Turbulence measurements in compound 

open channels. In Mem. Fac. Eng., Kyoto Univ, vol. 52. (document), 2.3,2.2.2, 

2.5,2.3.2.1,6.3,6.15,6.3.1,6.3.2 

TOMINAGA, A. AND NEZU, I. (1991). Turbulent structure in compound open- 

channel flows. J. Hydraul. Eng., 117,21-41.2.3.1 

TOMINAGA, A., EZAKI, K. AND NAKAGAWA, H. (1989). Threedimensional 

turbulent structure in straight open-channel flows. J. Hydraul. Res., 27,149- 
173.2.2.2,2.3.1,2.3.2.1 

VERSTEEG, H. K. AND MALALASEKERA, W. (1995). An introduction to Com- 

putational Fluid Dynamics: The Finite Volume Method. Longman Scientific 

and Technical, England, UK. 3.1,4.2 

WARST, Z. (1998). Fluid Dynamics: Theoretical and Computational Approaches. 

2'u1 edition, CRC Press, Inc.,. 5.4 

203 



REFERENCES 

WENKA, T., VALENTA, P. AND RODI, W. (1992). Depth-averaged calculation 

of flood flow in a river with irregular geometry. In Proc. 24th IAHR Cong., 

A225-A232.2.4.4 

WILLETTS, B. B. AND HARDWICK, R. I. (1993). Stage dependency for overbank 
flow in meandering channels. In Proc. Inst. Civ. Eng., Waters. Maritime En- 

erg., vol. 101,45-54.2.4.2.1 

WILSON, C. A. M. E., BATES, P. D. AND HERVOUET, J. M. (2002). Comparison 

of turbulence models for stage-discharge rating curve prediction in reacliscale 

compound channel flows using two-dimensional finite element methods. J. Hy- 

drol., 257,42-58.1.1 

WORMLEATON, P. AND EwUNETU, M. (2006). Three-dimensionla k-c nu- 

merical modelling of overbank flow in a mobile bed meandering channel with 
floodplains of different depth, roughness and planform. J. Hydraul. Res., 44, 

18-32. (document), 2.4.4,2.12,5.1 

YE, J. AND MCCORQUODALE, J. A. (1997). Depth-averaged hydrodynamic 

model in curvilinear collocated grid. J. Hydraul. Eng., 123,380-388.2.4.4, 

5.4 

YE, J. AND MCCORQUODALE, J. A. (1998). Simulation of curved open channel 
flow by 3D hydrodynamic model. J. Hydraul. Eng., 124,687-697.2.4.4,5.1, 

5.4 

204 


