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ABSTRACT 

This thesis deals with selection strategies in gaze interaction, specifically for a context where 

gaze is the sole input modality for users with severe motor impairments. The goal has been to 

contribute to the subfield of assistive technology where gaze interaction is necessary for the 

user to achieve autonomous communication and environmental control. 

From a theoretical point of view research has been done on the physiology of the gaze, eye 

tracking technology, and a taxonomy of existing selection strategies has been developed. 

Empirically two overall approaches have been taken. Firstly, end-user research has been 

conducted through interviews and observation. The capabilities, requirements, and wants of 

the end-user have been explored. Secondly, several applications have been developed to 

explore the selection strategy of single stroke gaze gestures (SSGG) and aspects of complex 

gaze gestures. 

The main finding is that single stroke gaze gestures can successfully be used as a selection 

strategy. Some of the features of SSGG are: 

- That horizontal single stroke gaze gestures are faster than vertical single stroke gaze 

gestures. 

- That there is a significant difference in completion time depending on gesture length; 

- That single stroke gaze gestures can be completed without visual feedback. 

- That gaze tracking equipment has a significant effect on the completion times and 

error rates of single stroke gaze gestures 

- That there is not a significantly greater chance of making selection errors with single 

stroke gaze gestures compared with dwell selection. 

The overall conclusion is that the future of gaze interaction should focus on developing multi-

modal interactions for mono-modal input. 
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1 INTRODUCTION 

1.1 CONTEXT AND MOTIVATION 

The general area being addressed in this dissertation is gaze interaction; specifically making 

selections based on eye movements. Gaze interaction entails using eye tracking technology to 

place the direction of gaze in relation to a screen or other object of interest, which can then be 

manipulated by gaze. In the context of this research gaze is viewed mainly as a sole input 

modality. The main challenge of gaze as sole input is to determine when and what the user 

wants to interact with. In this chapter, a general introduction to this field of research is given. 

Initially the basic design constraints of gaze interaction along with the main motivation for 

this research is introduced; followed by a brief presentation of the theoretical background 

which leads to the main hypothesis. Finally, there is a description of the methodology and a 

thesis overview. 

1.1.1 MOTIVATION 

Gaze interaction has some innate design constraints and affordances (Norman, 1999). The 

three aspects presented in figure 1 constitute the three different approaches generally taken 

in the general field of eye tracking research: gaze tracking, gaze patterns and cognition, and 

end-user directed applications. 

Firstly, the development of stable eye trackers is very much of concern to the gaze tracking 

research community. This type of research entails building hardware and software solutions 

that extract features from the eyes in order to establish gaze- and eye movement detection. 

There is a special interest in creating low cost eye trackers which will increase availability of 

eye tracking to the general public (D. W. Hansen, et al. 2004; San Agustin, 2009; San Agustin et 

al., 2010). 

The second field of research in eye tracking is that of relating gaze patterns to cognitive 

processes. This is the focus of neuro – and cognitive psychologists and researchers in other 

areas of both natural and human sciences (Carpenter, 1988; Daniel & Whitteridge, 1961; Land 
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& B. W Tatler, 2009; Yarbus, 1973). Historically, this has been the most prevalent research 

field. 

Finally, there is the field of applied gaze interaction where the end-user is in focus. Here both 

the gaze tracking equipment and the cognitive processes which guide search patterns in 

natural behaviour are perceived as ‘black boxes’. The questions asked in this field are not: 

‘How do we track what we are looking at?’ or ‘How do we interpret what we look at?’ – It is: 

‘How do we use the movements of our eyes to infer our intention to a system?’ As indicated in 

figure 1 it is the latter of these research areas which constitutes the epistemological 

standpoint taken in this work. 

However, an understanding of the two other research areas is of great importance when 

designing sustainable gaze interaction: 

(1) Eye tracking technology has certain limitations in regard to precision and reliability, 

which need to be taken into account. 

(2) The eyes as input have certain physiological and cognitive constraints which affect how 

interaction can be implemented. 

(3) Depending on the context of the end-user – what and how interaction with gaze can and 

should be implemented differs greatly. 

 

Figure 1: The three main aspects of eye tracking research, the red circle represents the primary placement of this 
research. 

Gaze Patterns and Cognition

Gaze Tracking Technology

End-user Applicability

Eye Tracking Research
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Gaze is used to perceive information from our surroundings. However, in gaze interaction the 

aim is to be able to convey information from the eyes to a system. The problem with the eyes 

as input is that they are always ‘on’. This problem is sometimes referred to as the Midas touch 

problem (Jacob, 1991a, 1996; Jacob & Karn, 2003). (The mythical figure of King Midas was 

granted a wish for doing service to a god. He wished that all he touched would turn to gold. 

When this wish was granted, he quickly found a flaw in his plan, as all he touched, including 

food and drink, indeed turned to gold and he nearly starved to death). The design challenge in 

gaze interaction is to determine whether it is the intention of the user to perceive information 

or to instigate action. This constitutes one of the main motivations of this research. 

Another motivation is to understand the constraints of gaze tracking technology. Inaccuracy is 

an issue even in the most expensive commercial eye tracking systems. Generally, systems are 

inaccurate to 1° of visual angle on most commercial systems. Manufacturers claim ½˚ 

accuracy but these measurements are often based on ideal circumstances (Porta & Turina, 

2008a). In pointing based gaze interaction, where gaze direction is used to substitute a mouse, 

this inaccuracy affects the size required of on-screen targets; these need to be quite large, if 

the goal is to reliably affect them by gaze, to compensate for the discrepancy between 

intended point of gaze and tracking of gaze. 

Finally, motivation also comes from understanding the needs of end-users who can benefit 

most from eye tracking technology. Gaze interaction has many potential applications; it could 

be used to supplement existing main stream input modalities enhancing performance in 

computer-games, 3D modelling programs and in general actions such as scrolling and 

panning. It could also be employed in any situation where the hands are otherwise occupied, 

for example a doctor operating, a soldier moving in hostile area, etc. However, the research 

conducted here has concerned itself with gaze as sole input specifically for people with 

various motor impairments. 

For individuals who are paralyzed and with complete or incomplete Locked-in-Syndrome 

(LIS) (Mollenbach et al., 2008), which renders them unable to interact with a computer in a 

conventional sense, eye tracking provides the potential for autonomous action. Gaze 

interaction can mean the difference between users retaining their jobs and maybe more 

importantly allows them to communicate with friends and family. Gaze control can allow 
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users to write e-mails, articles and even books, play computer games, and engage in 

conversations without the need of an assistant carer. 

Uncovering flexible and sustainability gaze interaction principles which take into account the 

nature of eye movements, the limitations of gaze tracking technology and the needs of users 

with motor- impairments is both the motivation and theoretical foundation for this thesis. 

THE END-USER 

One end-user who has contributed to this research is the Danish physicist Arne Lykke Larsen, 

who has had ALS (Amyotrophic Lateral Sclerosis) for almost 10 years. He has contributed 

through interviews and has also written a Danish book on ALS called ‘Rather die of laughter 

than ALS – 99 truthful stories of what it means to live with Amyotrophic Lateral Sclerosis’ 

(Larsen, 2009). He has advanced ALS, which renders him completely paralyzed except from 

certain facial expressions and eye movements. However, he is also an Associate Professor in 

theoretical physics at the University of Southern Denmark. I will let him introduce himself: 

’There is not much to say about my childhood. I was naturally a child prodigy with unique 

mathematical, musical, linguistic, artistic and athletic abilities. But unfortunately no one ever 

noticed….. 

I was diagnosed with ALS at the age of 35 in November 2000. At that time I had already gotten 

my first wheelchair, but could still walk a few meters with a walker frame. 

[...]When I got the diagnosis I went into a state of shock and disbelief -mostly disbelief. The 

doctors were probably wrong; it had been heard of before. I also clung to the fact that I didn’t 

have all the symptoms of ALS. For instance I still had normal speech. So, it was probably 

something else which would blow over – just a question of time. Several months passed before I 

accepted that I had ALS. But I was determined to continue my old life, with work and hobbies, to 

as great an extent as possible. 

Unfortunately, I must admit that the disease has spread so much that I am now more or less 

paralyzed in the entire body, I can’t speak and I have started having problems breathing and am 

fed through a tube in my stomach. I am getting worse and worse; and each month I can feel 

myself regressing. 
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I can still move my head relatively freely, so I can easily control my computer. But besides from 

that I need help with everything. ‘Help with’ is incidentally a misleading term in my situation: My 

own contribution is pretty much non-existent. I live alone in a small 1 bedroom apartment and 

am now 100% dependent on my personal helpers 24 hours a day. 

[...] This has meant that I have been able to continue my work – which is mainly research. At the 

moment I am also supervising a masters student, with whom I communicate solely by speech 

synthesis. So I still have my daily ‘grind’ at the University every afternoon, and also work a lot 

from home. My spare time is filled with wonderful drives to forests and beaches (though mainly 

in the summer) or to places of historical or archaeological interest. Visits to friends and family 

and also frequent trips to the cinema. 

Most evenings I use my Bi-PAP (breathing support). Even though I can manage without it for the 

time being, it provides a nice relief. Besides, it constitutes a super, and indisputable excuse for 

sitting passively in front of the TV (news, American movies and sport) all night, because there 

really isn’t much else you can do … 

I haven’t felt any bitterness about my bad luck at any time. For a short while, after I got the 

diagnosis, I felt sorry for myself. But it didn’t help.’ 

Arne Lykke Larsen 

Throughout this thesis excerpts from his book, which I have been allowed to translate, email 

exchanges and comments from interviews will help to keep the focus of this research on the 

end-user. 

1.1.2 GAZE TRACKING 

Most modern eye tracking equipment for interaction is based on one or more high-resolution 

cameras capturing the eye. Specific software can then extract eye-features that have been 

enhanced by external light sources. These light sources create a clear reflection on the eye, 

similar to the ‘red eye effect’ that can be caused by a photographic flash. Having a bright light 

directed at the eye is very uncomfortable, so infrared light sources are usually employed. 

Infrared reflection can be detected by a camera but is not noticed by the human eye (Ebisawa 

et al., 1989; Morimoto et al., 2000). In spite of the technological leaps that have made gaze 
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tracking both non-invasive and robust – eye tracking is still cumbersome, inaccurate and 

expensive. Gaze tracking systems require calibration for every new user and quite often for 

every new session of use – sometimes even mid-session re-calibrations are necessary. As 

mentioned, most commercial systems have an inaccuracy of approximately 1° visual angle 

(Porta & Turina, 2008a) and they also cost more than £6,000-7,000, which makes them 

inaccessible to many people (San Agustin, 2009). 

1.1.3 THE EYE AND EYE MOVEMENTS IN GAZE INTERACTION 

The physiology of the eye and the nature of eye movements will be covered in greater detail in 

Chapter 2. However, a few points are needed to create a context before reading the main 

hypothesis. As mentioned earlier, one of the major challenges in gaze interaction is the Midas 

Touch problem, that is, the accidental selection of anything that is looked at. To avoid this 

dwell time selection was invented, which is a fixation based gaze selection strategy that builds 

on a familiar button-metaphor. An on-screen button can be triggered by having one’s gaze 

fixated on it for a prolonged duration of time (a dwell). If this extended dwell duration was not 

implemented clicks would occur every time a user simply glanced at an on-screen button 

(Midas touch). Eye fixations are generally considered to last no less than 100ms and often 

between 200-400ms (Salvucci & J. H. Goldberg, 2000). On-screen dwell- buttons usually do 

not activate until after a 400ms fixation. Dwell- buttons have been a key building block in the 

development of gaze interaction (Bates, 2002; Jacob, 1996; Majaranta & K. J Räihä, 2002). 

However, dwell-time selection can be affected by uncontrollable jitter from small eye 

movements or from larger involuntary eye movements. The consequence can be that an 

intentional fixation is broken half way through. This paired with the previously mentioned 

inaccuracy of gaze tracking equipment force on-screen targets to be quite large. This greatly 

limits the amount of information that can be displayed on the screen and impacts both how 

data can be structured and visualized. 

The other major type of eye movement is the saccade. Saccades are rapid ‘jolts’ (ballistic 

movements) that the eye makes between fixations. These can move in every direction and 

recently many theories have emerged on how combinations of eye movements could be used 

in gaze interaction. These combinations are generally referred to as gaze gestures and 

constitute the main focus of the research conducted in this thesis. 
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1.2 RESEARCH QUESTIONS 

This research investigates selection strategies in gaze interaction and different approaches 

have been investigated and will be discussed. The issue of gaze selection strategy was 

examined from an end-user point of view, from an interaction design point of view and from a 

theoretical and empirical point of view. The following research questions will be addressed: 

1. Gaze as input has specific interaction design features. 

a. What are these features? 

b. What considerations are important when designing gaze selection strategies? 

 

2. There are many different types of selection strategies. 

a. What are these strategies? 

b. When and how are they best used? 

c. How could they potentially be used in the future? 

 

3. Users with severe motor impairments have special needs. 

a. What are these needs? 

b. How can these be assessed from a design perspective? 

c. How do these affect design of gaze based applications and selection strategy? 

 

4. Gaze gestures constitute a selection strategy. 

a. What is the simplest form of gaze gesture? 

b. What are some of the basic characteristics of simple gaze gestures? 

c. How could these characteristics affect the way gaze gestures are implemented? 

1.3 GOALS AND METHODS 

The goal of this research is to contribute to the field of gaze interaction; as mentioned 

specifically the area of gaze interaction that concerns itself with gaze as sole input for users 

with severe motor impairments. The contribution is two-fold. Firstly, some theoretical 

perspectives, which could be useful to other researchers, have been formed. Secondly, some 
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practical guidelines have developed through the empirical investigation conducted in the 

course of this work – these could potentially be useful for designers of gaze applications 

Theoretically, the approach has been to understand existing selection strategies in the field of 

gaze interaction. By structuring and analyzing the affordances and constraints of these 

methods an overview of gaze interaction selection strategies is created. From this overview, 

theories on the current and future state of gaze interaction will be presented and a definition 

of the basic principles which govern gaze selection strategies proposed. 

Empirically two main methods have been used. First an ethnographic design approach was 

taken in gathering information from the user-group. Interviews were conducted on an 

individual basis with people with Locked-in-Syndrome, along with several observational 

sessions where the individuals were engaged in various daily activities such as e-mail writing 

or communicating with a spouse, relative or carer. Also formal discussions have been 

undertaken with carers and professionals who work with users with motor impairments. 

The second empirical approach was experimental. Several programs have been designed in 

order to explore the gaze selection strategy of single stroke gaze gestures (SSGG): a simple 

form of gaze gesture which in the case of this research consists of horizontal and vertical 

point-to-point eye movements. 

1.4 THESIS OVERVIEW 

The thesis is divided into four major parts: 

Part I: This Introduction 

Consisting of Chapter 1; a general overview of the research topic that has been explored in 

this thesis and function as a reading guide. 

Part II: The Background 

Consists of two chapters; Chapter 2 is concerned with the physiology of the eye and the 

technology of eye tracking. Chapter 3 deals with previous work in the field of gaze interaction, 

specifically creating a taxonomy for different types of gaze selection strategies. 



9 
 

Part III: Empirical Research 

Consists of five chapters; Chapter 4 is concerned with the end-user and introduces the design 

context for the work which will be empirically explored. Chapter 5 consists of two pilot 

studies that were conducted and introduces many aspects of the experimental methodology 

that is subsequently used. Chapter 6 is the first of three experiments conducted regarding 

single stroke gaze gestures, and is mainly concerned with enabling a direct comparison 

between single stroke gaze gestures and dwell selection. Chapter 7 is the next single stroke 

gaze gesture experiment, which is concerned with looking at gesture completion on different 

eye trackers. Chapter 8 is the final experiment regarding single stroke gaze gestures and is 

mainly concerned with exploring gesture completion with and without visual feedback. 

Chapter 9 introduces a new iteration of gaze gesture research, which looks at determining a 

threshold for different levels of gaze gesture complexity. 

Part IV: Design, Reflection and Discussion 

Consists of the final chapter in which an overall discussion is taken in regard to the 

experimental design and results presented in the thesis. As well as presenting ideas for future 

implementations and future research areas. 
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2 THE EYE, GAZE AND EYE TRACKING 

2.1 THE EYE AND THE VISUAL CORTEX 

When conducting eye tracking research, both applied and theoretical, there is a need to 

understand the basic physiological traits of the eye before it is used for input or analysis. 

Three main aspects constitute this understanding: (1) the eye as an organ, (2) the connection 

to the visual cortex and (3) the muscles which ensure eye movements. The full complexity of 

these issues far exceeds the scope of this research and will therefore only briefly be described. 

The eye is a light sensitive organ, which absorbs light impulses and directs them to the brain 

via different pathways. Light is a form of electromagnetic radiation created from the 

oscillation of electrically charged materials. This is in abundance in our surroundings; which 

is most likely the reason that humans have developed a sense to register electromagnetic 

radiation (Sekuler & Blake, 1994). 

Visible light only constitutes a very small part of the actual spectrum of electromagnetic 

energy (other forms being radio waves, infrared and ultraviolet radiation, microwaves etc.). 

However, visible light’s ability to interact with the surface of objects through absorption and 

reflection allows for a great amount of detail to be conveyed. The structure of the eye (Figure 

2) has carefully evolved to map these detailed light impulses to the brain. 

Only a few of the components of the eye will be discussed here. The ‘white’ part of the eyes is 

the sclera and is a protective layer that not only protects the inner workings of the eye, but 

also defines the curved shape of the eye. The shape of the eye is fundamental both in regard to 

the movement of the eyes and the way that the optic nerves transfer information to the visual 

cortex. 
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Figure 2: The anatomy of the eye 
 

At the centre front the sclera becomes transparent and a small bulge protrudes. This 

transparent area is called the cornea, which constitutes the main light filter. This area is very 

sensitive and any damage or decrease in transparency to the cornea has a detrimental effect 

on visual perception. The iris is multilayered and the pigmentation value of one of its layers 

defines the colour of the eye. The iris surrounds the pupil, which is a gap set between two sets 

of muscles that ensure the expansion and retraction of pupil size depending on light levels. It 

decreases when the amount of light projected towards the eye increases and vice versa. The 

size of the pupil varies from person to person and with age it can decrease to less than half of 

its original size. The lens lies behind the iris and it (should be) is transparent – the shape 

determines near or far sightedness and a decrease in transparency (e.g. cataracts) greatly 

reduces visual perception. The part of the eye with most volume is the vitreous body, which 

consists of a transparent fluid through which light is filtered. This brings us to the inner most 

part of the eye. Light is funnelled through the cornea, pupil, lens and vitreous body to the 

retina. (Sekuler & Blake, 1994) 

The process of receiving and transforming light waves into visual information begins in the 

retina. There are several different ways to sub-divide the retina in order to understand how it 

is mapped to the visual cortex. The first has been by defining areas of the retina that 

correspond to the field of view which they relay information from to the visual cortex. This 

can be done by subdividing the field of view into four areas: Nasal, temporal, upper and lower 

(Figure 3). (Zeki, 1993) 

Lens

Iris

Pupil

Cornea

Vitreous Gel

Optic Nerve

Fovea

Macula

Retina
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Figure 3: The high level visual pathways of the right and left eye1. 
 

Because the eye is curved the nasal area of the left eye and the temporal area of the right eye 

convey information about the left field of view to the brain; this is called the left hemifield. The 

same principal applies to the right field of view; the right nasal and the left temporal retinal 

areas constitute the right hemifield. These hemifields can then be subdivided again into upper 

and lower quadrants depending on whether we are looking up or down. Again because of the 

curvature of the eye the lower part of the retina transfers information from the upper field of 

view and vice versa, the upper part looks at the lower field of view (Zeki, 1993). 

                                                        
1 http://www.diycalculator.com/imgs/cvision-left-to-right.gif 

http://www.diycalculator.com/imgs/cvision-left-to-right.gif
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The other way of looking at how information get’s transferred through the retina is by looking 

at a cellular level. There are approximately 130 million light receptive cells in each retina; 

these can be sub-divided into central and peripheral portions (Hubel, 1963). These millions of 

cells can be split into two types: cone and rod cells (Figure 4). Cone cells are responsible for 

our central daylight vision and are placed mainly in the macula (c.f. Figure 2), an area that 

covers a 5˚ angle of our visual field and which can be referred to as our central vision. 

However, in the fovea (c.f. Figure 2), a small pit in the macula area of the retina, cone cells are 

placed even more densely and are responsible for 1˚ of visual angle of very high definition 

viewing. This is also sometimes referred to as central vision, however so as to not confuse 

things it shall be referred to as fovic vision in the context of this research. Rod cells cover the 

remaining retina and are responsible for our peripheral vision and are active in situations 

with low illumination, such as night-time. 

 

Figure 4: Cross-section of the retinal layers2.  

The journey that light takes after passing through the retina can broadly be described as 

follows: The photoreceptor cells receive light impulses and translate them into electrical 

impulses. These impulses then move through several layers of neurons until they reach the 

                                                        
2 http://en.wikipedia.org/wiki/File:Gray882.png 

http://en.wikipedia.org/wiki/File:Gray882.png


15 
 

ganglion layer, from here a collective information stream is passed to the optic nerve. The 

impulses are then carried through the optic nerve, until they reach the optic chiasm. At this 

point impulses that come from the nasal area of the retina pass over to the opposite cerebral 

hemisphere. In other words, impulses from the left nasal retinal area pass over to the right 

cerebral hemisphere and vice versa. Beyond this point the optic nerve becomes known as the 

optic tract and relays information to a subdivision of each cerebral hemisphere called the 

lateral geniculate nucleus (LGN) (c.f. Figure 3). From here the journey of light moves to the 

visual cortex with its various processing centres (v1, v2, v3, v4, v5) which are beyond the 

scope of this research (Zeki & Marg, 1993). 

However, some basic observations on the actions of the visual cortex are of relevance here. 

One observation is that by far the largest part of the visual cortex is concerned with 

information received from the fovea (i.e., central high definition viewing), which is known as 

cortical magnification (Daniel & Whitteridge, 1961). A consequence of this is that the muscles 

around our eyes have developed to enable rapid eye movements from one high definition 

viewing fixation to another, in order to gain detailed information about a larger area. These 

eye movements are called saccades and will subsequently be described in detail. 

Another observation about the visual cortex that is of relevance here is the concept of saccadic 

suppression (Matin, 1974), which entails that while our eyes are moving from one fixation 

point to another the visual cortex is not receiving information. A very insightful observation 

made by Dodge in 1900 describes this effect quite clearly: 

`chanced on the observation that when the head was held perfectly still we could never catch our own eye 

moving in a mirror. One may watch one's eyes as closely as possible, even with the aid of a concave 

reflector, whether one looks from one eye to the other, or from some more distant object to one's own 

eyes, the eyes may be seen now in one position and now in another, but never in motion'' (Dodge, 1900, p. 

456). 

Understanding saccadic suppression has key relevance when the use of saccadic eye 

movements for interaction purposes is considered. Without saccadic suppression information 

could be given throughout an entire viewing session. 

Eye movements are rotations of the eye ball. These are supported by six muscles called the 

extraocular muscles, which can be divided into two groups, the rectus and the oblique muscles. 
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The four rectus muscles account for movement in the horizontal and vertical planes relative to 

the scene being viewed. The oblique muscles rotate the eyeball around the visual axis in order 

to compensate for head movements, figure 5 (Land & B. W Tatler, 2009). 

 

Figure 5: The Muscles of the Eye3. 
 

Eye movements can be classified as either conjunctive or vergence eye movements. Here, the 

term conjunctive infers the fact that the eyes move in conjunction, which means that the eyes 

move to the same degree in the same direction, when looking left or right. The consequence of 

this is that when looking left the medial rectus muscle of the right eye contracts along with the 

lateral rectus muscle of the left eye, the opposite is true for the right eyes lateral rectus muscle 

and the left eyes medial rectus muscles, which must both relax. The term vergence in eye 

movements covers situations in which the eyes move in opposite directions of each other, for 

instance inward (Sekuler & Blake, 1994). A good way of illustrating this effect is by looking at 

a finger held out at arm’s length and then slowly moving it towards your nose without taking 

your eyes off it. By the time it reaches your nose your eyes will have verged and have turned 

inward. 

The muscles surrounding the eye ball are incredibly durable and remarkably seem to be 

greatly spared in degenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) where 

the individual is otherwise completely paralyzed (Ahmadi et al., 2010). In other instances 

                                                        
3 http://www.cs.txstate.edu/~uj1001/pictures/eye_muscles.gif 

http://www.cs.txstate.edu/~uj1001/pictures/eye_muscles.gif
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where the state of Locked-in-Syndrome (LIS) is caused by brainstem lesions, the ability to 

move one’s eyes is often also retained to some extent. Furthermore, it also plays an important 

role in diagnosing the level of cognition and subsequently communication with the individuals 

(Laureys et al., 2005). 

2.2 EYE MOVEMENTS 

There are only a limited number of ways the eyes can move and these are fundamentally the 

same for most human beings (Land & B. W Tatler, 2009). The three basic definitions used to 

describe eye movements are saccades, smooth pursuits, and fixations. However, other concepts 

regarding eye movements will also be described here. 

2.2.1 FIXATIONS 

The fundamental understanding of how our eyes work has been of interest and described in 

many different ways for centuries. An early understanding of fixations was given by Brown in 

1895: 

`We have before us not a moving panorama, but a series of fixed pictures of the same fixed things, which 

succeed one another rapidly'' (Brown 1895, page 5) 

Today there is a greater understanding, but by no means complete, of the concepts of 

fixations, a term that covers the temporal state in which the eye is relatively still and ‘fixed’ on 

a feature of interest. The use of the phrase ‘relatively still’ comes from the fact that the eye is 

constantly moving. The movements that occur during fixations are called micro-saccades, 

tremors and drifts (Carpenter, 1991) and they scatter around 1˚ of the visual angle (Young & 

Sheena, 1975). These movements ensure that the eyes are constantly moving and this in turn 

ensures that new information constantly passes through the retina. Experiments made with 

stabilized retinal images show that objects appear to fade or disappear entirely if the retina is 

held still: 

‘For optimal working conditions of the human visual system, some degree of constant (interrupted or 

uninterrupted) movement of the retinal image is essential. If a test field (of any size, color, and 

luminance) becomes and remains strictly constant and stationary relative to the retina, it will become 

and remain an empty field within 1-3 sec. (Yarbus, 1973) 
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This effect can be experienced by focusing on the central dot in the fuzzy grey field below 

(Figure 6). If gaze is fixed the boundary of the fuzzy field should disappear. 

 

Figure 6: Fixation point, a prolonged fixation will cause outer detail to disappear, illustrating decreased visual input 
when the retina is held still4. 

 
 

During fixations highly detailed information from our central vision is processed in the visual 

cortex. However, one of the main challenges of eye movement detection and analysis is being 

able to threshold when fixations begin and end (Salvucci & Anderson, 2000). Generally, 

fixations are considered to last no less than 100ms and often between 200-400ms at which 

time the velocity of the eye is considered to be lower than 20˚/s (Salvucci & J. H. Goldberg, 

2000). 

Where fixations occur and how long they remain at a specific point is usually an unconscious 

decision, based on visual stimuli and objects of interest (Land, Mennie, & Rusted, 1999). In 

other words point of gaze is generally directed by interest and the need for detailed 

information. However, when designing for gaze interaction a cognitive barrier must be 

broken, as movement of the eyes needs to be a conscious and deliberate action. 

2.2.2 SACCADES 

Earlier a fixation was described as a ‘relatively still’ eye movement separated by saccades. 

Reciprocally saccades are the ‘very fast’ eye movements that are separated by fixations. 

Saccades are not simply any movements of the eye, for several reasons. First of all, the term 

                                                        
4 http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/retina/retina.html 

http://www.cns.nyu.edu/~david/courses/perception/lecturenotes/retina/retina.html
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eye movements usually cover any motion or lack thereof by the eye. Secondly, as mentioned 

micro-movements occur during fixations and the eye is therefore never completely still, and 

finally the eye can also move with a moving object, such as smooth pursuits, which will be 

subsequently described. So saccades are a very specific type of eye movement. A description 

of saccades before the term was coined can be found in Tscherning’s ‘Physiologic Optics: 

Dioptrics of the Eye’ from 1900: 

``…If, in a railroad train which is going quite fast, we fix a point on the window, the landscape appears 

confused, the images of its different parts succeeding one another too quickly on the retina to be 

perceived distinctly. Observing the eyes of any one who is looking at the landscape, we see that they move 

by jerks. The eyes of the person observed make alternately a rapid movement in the direction of the train 

to catch the object, and a slower movement in the opposite direction to keep the image of the object on 

the fovea...'' (B. W Tatler & Wade, 2003; Tscherning, 1900) 

Saccades appear to be ballistic in nature. A reason for this is that the motion-path is 

predetermined and is generally a straight line (although curved saccades are possible) from 

one point to the next (Zeki & Marg, 1993). As mentioned, saccadic suppression occurs during 

these rapid eye movements and no (or very little) visual information is retrieved. Even though 

the world is only seen in increments, it is perceived as a smooth visual input. Saccadic 

suppression is a consequence of the brain not being able to cope with a constant stream of 

high definition visual input. 

Saccades are reactions, forced or unforced, to visual stimuli perceived in areas of lower 

resolution than that of the fovea; physiologically this is the eyes’ way of making up for not 

being entirely composed of cone cells. 

Saccades can last between 30-120ms, and can reach speeds of up to 700˚/s for large 

amplitudes (Carpenter, 1988). The larger the amplitude the longer but also faster the saccade, 

one approximation of saccade duration in terms of degrees is 30ms for 5˚ of visual angle and 

100ms for 40˚ (D. A. Robinson, 1964). Another approximation is 30ms for a 5˚ visual angle and 

then an additional 2ms per additional angle (Carpenter, 1988). The main problem with a strict 

definition of saccadic speed and amplitude is that it is very dependent on the equipment and 

protocol used to measure it (Duchowski, 2007). For the purpose of this research the latter 
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approximation is used. The overall visual angle of saccades is between 5˚ and 40˚ and the head 

will start rotating for eye movements covering more than a 30˚ angle (Young & Sheena, 1975). 

2.2.3 SMOOTH PURSUIT 

Where saccades move the eye from fixation point to fixation point – smooth pursuits can be 

described as a fixation-in-motion and occur when the eyes are following a target. The 

previous example from Tscherning (B. W Tatler & Wade, 2003; Tscherning, 1900)(B. W Tatler 

& Wade, 2003; Tscherning, 1900), regarding saccades when looking through a train window, 

can also be said to describe a smooth pursuit motion. The distinction is that a smooth pursuit 

is a continuous motion, where the eye rotates to follow a target. The reason for this is to avoid 

blur or saccadic suppression that would otherwise compromise visual perception. 

‘Under normal conditions, no smooth pursuit movements are possible without the presence of an object 

moving in the field of vision. Smooth pursuit can begin when objects move at speeds equal to those of the 

drift of the eye arising during fixation. Satisfactory conditions of perception are possible when the speed 

of the object does not exceed 100-200 deg/sec.’ (Yarbus et al., 1973) 

Smooth pursuits require a moving target and following requires a combination of both 

saccadic and smooth eye movements; the smooth motion stabilizes the object on the retina in 

order to retrieve stabile information, the saccadic movements perform minor corrections 

(Rashbass, 1961). For a long time it has been considered that saccades and smooth pursuits 

had very little to do with one another in the visual cortex. However, recent studies have 

shown that there are many overlapping features between the two processes (Richard J. 

Krauzlis, 2004). Usually smooth pursuits are split into two stages. First there is the open loop 

pursuit which is the initial motion to the target, this is saccade-like and usually lasts less than 

100ms. After this comes the closed loop pursuit where the visual system is constantly trying to 

adjust the velocity of the retinal movement to that of the moving target (Duchowski, 2007; R. 

J. Krauzlis & Lisberger, 1994) 

Fixations, saccades and smooth pursuits are for the purpose of this research the main 

distinctions between eye movements. How they relate to each other can be seen in figure 7 

where an approximation of the eye movement velocities is shown relative to one another (San 

Agustin, 2009). 
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Figure 7: An approximation of the relative speed between fixation, saccades and smooth pursuits (San Agustin, 

2009) 

2.2.4 OTHER EYE MOVEMENT RELATED ISSUES 

Other than these basic temporal states of eye movements, there are several issues regarding 

eye movements that are relevant when designing for gaze interaction. These are covered in 

the following section. 

THE VESTIBULO-OCULAR REFLEX (VOR) 

The vestibulo-ocular reflex (VOR) is a mechanism that has the primary function of turning the 

eye ball in the opposite direction to where the head is moving. The movement of the eye 

should be made with approximately the same velocity as the head movement; this is done to 

limit the movement of the world view image by keeping the direction of gaze into space 

approximately constant. In other words the position of gaze is made independent of head 

movement (Laurutis & D. A. Robinson, 1986). The importance of this understanding in regard 

to the research presented here is that the direction of gaze is independent of head 

movements. 

NYSTAGMUS 

Nystagmus is an involuntary eye movement where a smooth pursuit or fixation is broken by a 

involuntary saccadic action in the opposite direction; it is the vestibulo-ocular reflex 

attempting to regain image stabilization. The concept of nystagmus was originally defined in 

the context of involuntary eye movements which can be provoked by body rotation (i.e., 

spinning on a chair) (B. W Tatler & Wade, 2003). 

There are many different types of nystagmus that can be a cause of, and therefore used to 

diagnose, various different types of conditions and diseases. Some of the conditions which can 
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have pathological nystagmus as a symptom are: Head Trauma, Stroke, Multiple Sclerosis, 

Brain Tumors5 etc.. Many of the people who could benefit from gaze interaction have 

nystagmus as a symptom and it is therefore important to consider this irregular type of eye 

movements when designing interactive solutions. 

ANTI-SACCADE 

The anti-saccade is very different in comparison with the other eye movements described 

here, in that it is not naturally induced either by a healthy or damaged visual system, but 

requires conscious and deliberate effort. Saccades are, as mentioned, considered ballistic in 

nature, which means they follow a predetermined path in order to accommodate the brain 

with specific detailed information – in certain research traditions this type of saccade is also 

known as a pro-saccade. A different approach that has recently been studied in the field of 

cognitive psychology is the concept of the anti-saccade (Huckauf et al., 2005; Kristjansson et 

al., 2004). The premise is that the eyes can be forced to move in the opposite direction from 

where a visual stimulus is presented. The anti-saccade requires a counter intuitive action to 

be taken. This particular ‘eye-movement’ has mainly been explored as an interactive selection 

method that will be presented again in chapter 3. 

2.3 EYE TRACKING 

The process of tracking eye movements has been and can still be a very intrusive procedure 

employing mechanical objects being placed directly on the cornea (Figure 8). Quite often a 

trade-off needs to be made between the cost of the eye tracker, the precision of gaze 

estimation and the intrusiveness of the equipment. 

                                                        
5For a full comprehensive list of diseases http://en.wikipedia.org/wiki/Pathologic_nystagmus 
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Figure 8. The instruments used in Yarbus’s research a. small suction cups placed on the eye 
 
 

Eye trackers are expensive because they require specialized lenses and specialized software. 

There is yet to be found a mainstream application for eye tracking which would propel it into 

the realm of main-stream production costs. As a consequence the price is, as mentioned, at 

least £6000-7000 and not everyone who needs an eye tracker necessarily has the means 

available to access one – the tradeoffs are between robustness, precision, cost and availability. 

A precise, robust, system can be developed at high cost, which is then only available to a few 

people (San Agustin, 2009). There is a great deal of interest in developing low cost eye 

trackers with off-the-shelf components (Hansen et al., 2004; San Agustin et al., 2010). This is 

doable; however, the tradeoffs in this case are between robustness, precision, comfort and 

price. A system can be developed which is cheap enough for most people to buy, but not 

precise, robust or comfortable. There are also trade-offs between intrusiveness and precision, 

by placing different lenses or suction device on the actual cornea – or by placing electrodes 

around the eyes – very precise reading of eye movements can be made (Young & Sheena, 

1975). However, these systems are generally viewed as being too intrusive for everyday use. 
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Before the invention of eye tracking equipment, one of the earliest methods for examining eye 

movements was by means of an afterimage (Dodge, 1907; Helmholtz, 1925; B. W Tatler & 

Wade, 2003). A strong afterimage could for instance be induced by a short bright flash, which 

would leave a clear mark in a fixed position on the retina that could then be observed by the 

subject (Yarbus, 1973). Other early studies of eye movements were also done simply by visual 

observation. A participant would be asked to do a task while placed in front of a mirror. The 

researcher would then stand behind the subject and observe the movements of the eyes 

(Newhall, 1928; B. W Tatler & Wade, 2003; Yarbus, 1973). 

The modern approach to eye tracking can be split into three: electro-oculography (EOG), 

contact lenses and video-oculography (VOG). The first, EOG, determines the direction of gaze 

based on movements of the muscles surrounding the eye. Electrodes are placed around the 

eye to detect muscle contraction and release. It is a relatively stable system which is invariant 

to head movements; because the electrodes are fixed to the head and therefore move with it. 

However, this same fact also means that these systems are viewed as being relatively 

intrusive (Young & Sheena, 1975). 

Special contact lenses are still used in eye tracking research, somewhat similar to the Yarbus 

system. However, the lenses are usually connected to wires, making this approach very 

uncomfortable and intrusive to use; although newer versions can be wireless. This gaze 

tracking method is generally confined to laboratory setting (Roberts, Shelhamer, & Wong, 

2008). 

In video-oculography (VOG) a camera is used to record the eye movements of the user. Several 

different features can then be extracted and used to determine gaze direction. It is the least 

intrusive of the methods mentioned here. Gaze tracking systems for interactive puposes are 

generally based on VOG technology. It is this type of eye tracking equipment that has been 

used in the experimental setup of this research. 

There are various different approaches to VOG eye movement detection. One is based on 

shape recognition. A geometric model of the eye and a similarity measure are used to detect 

the direction of the eye. The main descriptor features, which the pre-existing models build 

upon, are the pupil, the iris or the corners of the eyes (Figure 9) (Tian et al., 2000). 
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Figure 9: Feature point tracking using the iris and shape of eyes (Tian et al., 2000) 
 

Another approach to VOG gaze detection is appearance based. In this technique a model of the 

eye or regions of the eye are built in real-time. A template of a feature can be created from 

hundreds of images; the method then seeks to match the template to the feature. There are 

also hybrid methods, where both shape and appearance features are used in combination in 

order to create a robust detection. Such combinations could be: Shape and intensity or colours 

and shape (Hansen & Ji, 2009). 

Finally, many eye tracking systems use reflections of infrared light (IR) to detect and track eye 

features and to estimate gaze. IR light with a wavelength of 780-880 nm can be detected by 

specialized cameras. The reflection differs depending on where infrared light sources are 

placed in regard to the optical axis of the camera. The optical axis conjoins the different lenses. 

A light source located close to the optical axis of the camera is called on-axis light. The 

captured image shows a bright pupil since most of the light reflects back to the camera. This 

effect is similar to the previously mentioned red-eye effect that can occur when a flash is used 

on a camera. Reciprocally, when a light source is located away from the optical axis of the 

camera, which is called off-axis, the image retrieved shows a dark pupil (Figure 10). Detecting 

these features by employing thresholds is a common way of gaze detection (Ebisawa et al., 

1989; D. W. Hansen & Ji, 2009; C. H. Morimoto et al., 2000). 
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Figure 10: Dark and Bright pupil images (Hansen & Ji, 2009) 
 

VOG is the least invasive method of gaze estimation and is therefore, as mentioned; also the 

most frequently used in gaze interaction research and commercial systems. Attempts are 

being made to make eye trackers based on VOG as accessible as possible. Low resolution gaze 

trackers have been created using standard digital video cameras (Hansen et al., 2004). These 

systems are not as robust as the commercially produced ones. However, if the accompanying 

software applications are designed to tolerate noisier input, then the systems work 

reasonably well (San Agustin, 2009; San Agustin et al., 2010). 

The understanding that gaze selection strategies must be able to cope with noisy input, which 

can come from both the user and the eye tracking equipment, is important if the goal is to 

make gaze interaction accessible both from a practical and economical point of view. 

2.4 EYE MOVEMENTS IN CONTEXT 

Most of this chapter has concerned itself with the basic building blocks of the eye, eye 

movements and eye tracking. The potential combinations of eye movements are more or less 

endless. However, these have only been explored in a limited number of contexts such as 

scene viewing, reading and, only relatively recently, in action handling in a natural setting. 

This has been mainly due to the technological limitations that are only now being overcome. 

What is known is that eye movement patterns can be very different depending on viewing 

intent and context. A seminal piece of eye tracking research was done by Yarbus in the 1970’s 

and illustrates this point well. The participants of the study were asked to look at the same 

picture with different intentions (Figure 11): 
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Figure 11: Eye tracking analysis performed on ‘Repin’s unexpected visitor’ (Yarbus, 1973). 

 

Not only are there great differences in the scan paths of searches with different intents, 

Yarbus went so far as to conclude that people who think differently also physically see the 

world differently to a certain degree. 

‘It may be concluded that individual observers differ in the way they think and, therefore, differ also to 

some extent in the way they look at things.’(Yarbus, 1973) 

A task that has been substantially explored using eye tracking is reading patterns (Reilly & 

O'Regan, 1998; Starr & Rayner, 2002; Tinker, 1936). Generally fixations occur at every word 

although small function words are often skipped and saccade size depends on the specific 

nature task at hand (Kowler & Anton, 1987). In chess, it has been shown that advanced 

players chunk fixations and saccades together differently from novices, but how the 

information is being processed is not known (Chase & Simon, 1973). This further 

substantiates that cognition affects the way scenes are viewed or vice versa. More recently 

analyses of eye movements during motor-tasks in natural settings, such as driving or playing 

sports, have been explored (Hayhoe & Ballard, 2005; Land et al., 1999; Land & B. W Tatler, 

2009). Each case uncovers an aspect of the intricate role which eye movements have in 
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cognitive functions, both in guiding when and where to fixate and in guiding body movements. 

One example of this is a study on eye movements during the process of making tea by Land et 

al. (Land et al., 1999) (Figure 12). 

Tea making is meant to represent an automated routine activity. The conclusions are that 

even during habitual actions there is a high level of continuous visual monitoring that the 

subjects themselves were not aware of. Figure 12 shows the eye movements of three different 

people in the process of making tea. It shows that clustering of fixations are similar, however 

the saccade lengths and paths vary. 

 

Figure 12: Eye movements during the routine process of making tea from (Land et al., 1999) 
 

The experiment done by Yarbus revealed that saccadic eye movements reflect cognitive 

processes. Scan-path research has shown that not only do gaze patterns reflect decision-

making processes – the complexity of the distribution of fixation points depends on the 

individual intent, context and situation. This is in stark contrast to the relative simplicity of 

the building blocks that these patterns are made of (i.e., the three temporal states). Generally, 
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it is the manipulation of the building blocks that constitute the starting point in interactive 

gaze research. However, the awareness that people see the world differently not just 

depending on what they are seeing but how they are thinking about what they are seeing is a 

useful perspective. Interactive gaze control constitutes a fundamental shift in the way the eyes 

are used and therefore it must also affect the cognitive and physiological processes of how and 

what is being seen. It is a challenge when designing gaze control to be able to find solutions to 

gaze actions that not only are physiologically possible to complete, but that also make 

cognitive sense. 

There are two prevalent approaches in eye tracking research: diagnostic and interactive. 

Diagnostic is the registration and analysis of eye movements. The interactive implementation 

is a relatively recent addition that has developed as a consequence of the previously 

mentioned advances in technology. 

2.4.1 DIAGNOSTIC GAZE TRACKING RESEARCH 

Diagnostic eye tracking has had profound impact on how research has and is being conducted 

in the fields of cognitive psychology, developmental psychology, experimental psychology, 

media psychology and industrial design, HCI and usability research, neuropsychology, mental 

health disorders and ophthalmology. In this research gaze tracking is used as a means to an 

end, rather than being the end itself. 

Yarbus’ research showed sequential viewing patterns over specific parts of an image; where 

the participants focused on different aspects depending on intent. The main challenge in 

analytical eye tracking is interpreting the recordings of eye movements, because a correct 

interpretation relies on a neuro-cognitive understanding of the visual cortex, which must 

currently be considered incomplete at best (Zeki & Marg, 1993). 

Around the same time as Yarbus presented his theory on contextual viewing, Noton and Stark 

developed the scan-path hypothesis, where they presented similar observations to Yarbus, but 

with a somewhat different interpretation. They claimed that the sequence of eye movements 

depended on the visual pattern being viewed. Furthermore, they proposed that the visual 

memory for this pattern also depended on the sequence of fixations with which it was viewed, 

so that the same sequence would be repeated next time the same or similar pattern was 
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viewed. Especially, this second postulate has been questioned. The fact that fixations tend to 

fall on or near important details of images is coherent with Yarbus. However, they also 

showed that even without specific guiding questions, identifiable regions of interest are still 

fixated upon. More recently the term scan-path has become a frequently used generalized 

term, without the theoretical notions implied by Noton and Stark (Noton & Stark, 1971a, 

1971b). Whether vision is based on gaze directed by intention, pattern recognition and/or 

memory is beyond the scope of this present research. It speaks to the fundamentals of what, 

how and where of vision – in this regard Aristotle presented the following postulate: 

‘assuming, as is natural, that of two movements the stronger always tends to extrude the weaker, is it 

possible or not that one should be able to perceive two objects simultaneously in the same individual 

time?’ (Hatfield, 1998) 

According to Yarbus, and Noton and Stark the answer to this question must be no; it is not 

possible to perceive two objects simultaneously at the same individual time. However, the 

speed with which our eyes moves and our brain’s interpretation of visual input create the 

impression of viewing multiple objects simultaneously. Even though much insight into the 

behaviour of gaze has been gained – the correct interpretation is still elusive. 

The fundamental understanding of where and what people are looking at taps into thousands 

of years of philosophical reflection. This curiosity has been instrumental in the development 

of gaze tracking equipment for diagnostic use. 

2.4.2 INTERACTIVE GAZE TRACKING 

The technological advance in eye tracking has not only benefitted the field of diagnostic gaze 

tracking in human sciences. Since the beginning of the 1980’s gaze interaction has been a 

subject for visionaries in human computer interaction; using the technology as a real time 

input device. Bolt (1981, 1982) was one of the first who began to conceptualize how the use of 

eye-tracking equipment could be implemented in real time (Figure 14). In 1981 he wrote: 

‘While the current application of eyes at the interface is in a sense a special case, eyes-as-output has a 

promising future in interactive graphics, especially where the graphics contemplates the possibilities 

arising out of the orchestrated use of videodiscs.’ (Bolt, 1981) 
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Figure 14: Gaze-Orchestrated Dynamic Windows,( Bolt 1981) 
 
 

As mentioned previously, gaze as input has the problem of only having one mode; the eye 

tracker recognizes that someone is looking at the screen but not the intention behind the gaze. 

In other words the eyes are input that is always ‘on’ (Midas Touch problem). This creates the 

risk of conflicting and unintentional selections, because the system cannot differentiate 

between the intentions of the user: 

“Everywhere you look, another command is activated; you cannot look anywhere without issuing a 

command. The challenge in building a useful eye-tracker interface is to avoid this Midas Touch problem.” 

(Jacob, 1991a) 

Another problem in using the eyes as both an input modality and a receiver for feedback from 

the system is that these constitute two conflicting information streams crossing each other 

(Bates & Istance, 2002). In this case the potential problem is that it is difficult for the user to 

differentiate between receiving and giving information to the system. This fact needs to be 

taken into consideration in the design process. 

Finally, two major problems with gaze in navigation and pointing are that users are not used 

to having objects, on-screen or otherwise, react to sight and that precision control of the eyes, 

which is required for gaze selection and navigation, is rarely used in the context of viewing a 

scene (Jacob, 1991a). 
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The need for robust, flexible, easily repeatable and sustainable gaze-based target selection 

remains, as do the difficulties of interactive gaze. The main solution to the issues surrounding 

eye tracking as input have been dwell-time selection; e.g. by dwelling or fixating on a specific 

object that the system can recognize and that is an intended action by the user(Bates & 

Istance, 2002). In the following chapter previous work performed in the field of selection 

strategies will be presented in a taxonomy, which has been derived from an analysis of 

existing methods. 
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3 GAZE INTERACTION 

Gaze interaction deals with using the direction of gaze to navigate and/or make selections in 

information spaces. In the following chapter, various aspects of gaze interaction are explored; 

specifically the focus is on how gaze as input can be interpreted. In order to contextualize this 

some considerations on how input can be interpreted generally in the field of Human 

Computer Interaction (HCI) will be presented. 

Distinctions and definitions of parameters which constitute gaze interaction will be presented 

throughout this chapter. This is intended to serve as a contribution to a general 

understanding; as well as to establish why the subsequent experimental work has been done. 

One of the main distinctions made in this research is between gaze interaction as an addition 

to existing input modalities and gaze interaction as sole input. The reason for this distinction 

is that the design parameters and applicability of these two input strategies are very different. 

Gaze as an addition mainly deals with the enhancement of navigation processes. Gaze as sole 

input needs to be able to handle navigation and selection processes. 

Current gaze selection strategies for sole input can be divided into two main approaches; 

dwell-time activation and gaze gestures, both of which seek to circumvent accidental 

selections. Dwell-time activation consists of prolonged fixations on on-screen targets. Gaze 

gestures consist of recognisable and repeatable eye movement patterns that can be 

distinguished from natural search patterns. A taxonomy for dwell and gaze gesture 

interaction will be proposed in the course of this chapter. 

3.1 HCI AND GAZE INTERACTION 

HCI has conventionally relied on the motor-skills that our hands and fingers provide. Input 

devices such as keyboards, the mouse, joysticks, gamepads, touch-screens, etc. have 

dominated the field (Plaisant et al., 1995). However, as technology, tasks and data structures 

become more complex and ubiquitous in nature, the need and interest for alternative input 

increases. 
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‘We can view the basic task of human-computer interaction as moving information between the brain of 

the user and the computer. Our goal is to increase the useful bandwidth across that interface with faster, 

more natural, and more convenient communication mechanisms’. (Jacob & Karn 2003) 

There are many situations where conventional input devices are inadequate or inappropriate 

and alternative inputs can be necessary. When researching interaction techniques several 

parameters affect each other and should be taken into consideration when determining the 

most appropriate input, selection strategy and visualization. The three basic parameters that 

can be considered are task, user context, and feedback. 

In regard to tasks different approaches need be employed when dealing with search-tasks in 

graphic data representation as compared to searches in purely textual data, or 2D 

environments versus 3D environments. The user context determines not only the necessity for 

an alternative input device, but also what type is applicable. Physical impairment constitutes a 

context in which the choice of input device can be a life changing necessity. In other cases, the 

user might simply be dextrally limited while retaining the need to interact with a system, as 

mentioned earlier, a doctor performing surgery or a soldier managing weapons. In these cases 

alternative input can constitute an appropriate choice rather than a necessity. Finally, system 

feedback determines what type of input could be used. There is a vast difference between a 

user working with the small screen of a mobile device or a large digital whiteboard. Feedback 

can also be auditory, visual, or tactile which each have a set of affordances and constraints that 

need to be considered. 

There are numerous types of alternative input devices and as many uses. The focus has been 

on mapping and aiding the natural interaction and communication between human-to-human 

and from human-to-computer. Several research fields contribute in this regard: ergonomics, 

HCI, Interaction design and CSCW (Computer supported collaborative work) (Smidth & 

Bannon, 1992). Overall, the aim has been to broaden the gateway of communication from man 

to machine so that pervasive and ubiquitous computing can be supported through, e.g., voice 

recognition, head movement controls, eye-tracking, etc. 

As previously mentioned gaze interaction has some inherent issues that entail the need to 

make a system aware of the intentions behind gaze. In a gaze-controlled interface additional 

information is needed to inform the system whether our eye movements are an indication of 
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us wanting to select something or simply observe. The question of selection in gaze-controlled 

interfaces has, as mentioned, been discussed as far back as in 1981 by Bolt when describing 

the implementation of the “World of Windows”-display technique: 

‘ There are at least two competing philosophies about what should cause you to be “zoomed-in” upon 

some window you are looking at: 1) zoom-in automatically, based upon some timing-out of how long you 

look at (“stare at”) some certain window; 2) zoom-in upon the window you are eye-addressing contingent 

upon a deliberate action via an independent modality (e.g., joystick action; or a word spoken to the 

system)’ (Bolt, 1981). 

Recurring themes in the field of ergonomics and HCI are the concepts of intuitive or natural 

and whether they apply to a given interaction modality or interface solution. Although both 

terms seem self-explanatory care needs to be taken when using them. In his book, The 

Humane Interface, Raskin discusses these terms, and proposes using familiar or easily learned 

instead: 

‘Many interface requirements specify that the resulting product be intuitive, or natural. However, there is 

no human faculty of intuition, as the word is ordinarily meant; that is, knowledge acquired without prior 

exposure to the concept, without having to go through a learning process, and without having to use 

rational thought‘ (Raskin, 2000) 

The concern with naturalness of interaction, while interesting and useful as a design 

parameter, might simply be overrated. Interaction with a mouse is often considered a natural 

form of interaction. 

The assumption is that everyone innately knows how to use the mouse. Raskin tells a story of 

a Finnish scientist and her first encounter with a mechanical mouse. She begins by turning the 

object on its head and rolling the ball around, as with a track ball. This has no effect, as the ball 

is pushing down on all the detectors, thereby cancelling the effect. She discovers this and 

turns the mechanical mouse the right way up, but instead of placing it on a surface she 

continues to control the mouse manually, moving the ball with her fingers. When shown how 

to use the mouse she quickly understood the mapping – easy, but not natural (Raskin, 2000). 

In the case of using gaze to gather information the concept of natural could very well be 

applied, but any attempts at using gaze direction for navigation or activation can at best be 

described as easily learned or drawing on a familiar analogy. In fact, only between humans 
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does a ‘natural activation’ occur; as looking at someone is a way of conveying interest and 

often warrants a response. While it is natural to look at objects of interest before and during 

interaction, in nature inanimate objects do not respond to gaze. 

3.1.1 GAZE AS AN ADDITION TO EXISTING INPUT MODALITIES 

An example of exploiting gaze in the context of human-to-human interaction was done by 

Vertegaal et al. They looked at multiparty mediated communication and collaboration, in 

other words on-line conference systems. Gaze direction was used as a visual cue to detect who 

was talking and listening to whom. They concluded that gaze directed cues can ease some of 

the user ambiguities that exist in these systems (Vertegaal 1999)(Figure 15). 

 

Figure 15: Conference system that rotates depending on gaze direction (Vertegaal 1999). 
 

The limitations of gaze interaction have been the foundation for a sub-field of research within 

gaze interaction, which regards gaze as an addition to an existing input rather than as a sole 

input. This was the focus of a study completed by Zhai et al. (1999) in which the possibilities 

for using the eye tracker as a supplement to the mouse, rather than a substitute, were 

examined. The concept of MAGIC (Manual and gaze input cascaded) pointing was 

implemented. The basic idea was to maintain selection and detailed targeting as motor-

controlled tasks, only using gaze indirectly by allowing the cursor to follow the point of 

interest (gaze), so that the cursor would be close to an intended target before the selection 

process was initiated. 
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They implemented two different interface and interaction designs, one liberal and one 

conservative (Figure 16). In tasks, subjects were asked to point and click on targets, which 

randomly appeared on the screen. The liberal pointer placed the cursor within the vicinity of 

every object looked at by the user; the user could then decide to select or ignore the target 

and move on to the next. In contrast, the conservative pointer would not move to the target 

until the manual input device (a miniature pointing stick as used in laptops) had been set into 

motion. 

 

Figure 16: The MAGIC pointer: the liberal MAGIC pointer (left) the conservative MAGIC pointer (right)(Zhai, C. 
Morimoto, & Ihde, 1999). 

 

The results showed that the liberal pointer was slightly faster than the completely manual 

input, and the conservative pointer slightly slower than the manual input. Overall, the 

conclusion was that gaze pointing as a supplement to manual control showed potential. 

The advantage of using gaze in navigation is that it extends existing behaviour of orientation 

and location of area of interest. As presented in chapter 2, the muscles that control the eyes 

offer near fatigue-free pointing (Bates, 2002). Gaze interaction could therefore potentially be 

of assistance to people who suffer from repetitive strain injuries (Zhai et al., 1999). 

Qvarfordt et al. (2005) based their gaze interaction research on observations of eye-gaze 

patterns in human-to-human dialogue over spatial content. They envisioned that gaze could 

be an important contributing channel of input in future of multimodal HCI systems. Their 

iTourist system provided users with information for city trip planning, based solely or 

primarily on gaze patterns. The system could manage its visual and audio (speech) output and 

help users to plan an entire trip to a city, including finding hotels and restaurants, only based 
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on eye movement patterns, most of the time. They reported on erroneous selections and 

overlaps, but concluded that eye movements combined with speech input could solve these 

issues (Qvarfordt & Zhai, 2005)(Figure 17). 

 

Figure 17: The Iturist system, the image depicts a user navigating a city map with gaze(Qvarfordt & Zhai, 2005) 
 

Another familiar way of mapping vision to interface control has been by combining gaze with 

zoom/pan navigation. Bederson et al. describe the motivation behind the zoomable interface 

of Pad++ as: “tapping into people’s natural spatial abilities” (Bederson et al., 2000). The idea 

of coupling gaze with zooming actions has been explored since eye tracking was first 

conceived of as a real time input device (Bolt, 1981). 

Zoom permits the user to access any level of detail directly from a global view, without the 

need for entering sub-menus. The geometric integrity of zoom means that proportions within 

the information space are upheld. The familiarity of visually approaching an object by 

zooming extends well to gaze interaction. The argument is that the way navigation naturally 

occurs is by gaining perspective and subsequently focusing in on targets of interest. This 

therefore makes zooming a familiar mapping of natural navigational. 

‘In natural scenes, new objects rarely appear abruptly; they are more likely to appear by progressive 

disocclusion from behind other surfaces (J. J. Gibson et al., 1969).’ (Franconeri & Simons, 2003) 

When coupled with panning another potential weakness is avoided. Zoom without pan does 

not enable the user to explore the immediate context of an equally scaled detailed area 
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without leaving the particular scale level and zooming out and in again. Pan can be defined as 

planar movements, allowing navigation both horizontally and vertically in the information 

space. Panning is a well-known form of navigation in information spaces, in regard to its most 

common implementations (Plaisant et al., 1995) 

GaZIR is an example of a gaze interface that allows browsing and searching for images based 

on implicit feedback. In this system the images that are predicted to be of most relevance are 

brought out when the user zooms in (Kozma et al., 2009)(Figure 18). 

 
 

Figure 18: GaZir Image retrival interface, images are presented in consecutive circles (Kozma et al., 2009) 
 
 

‘Implicit feedback should not suffer from the same problem— the intent is not that the user controls the 

system with eyes, but instead that information is extracted from natural eye movements.’ (Kozma et al., 

2009) 

This issue of directing zoom based on gaze direction, taking advantage of natural search 

patterns, was also the topic of the author’s MSc Thesis. In this work, search tasks were 

conducted in a multilayered information space using pan and zoom (Mollenbach et al., 2008). 

It was found that by allowing pan and zoom direction to be controlled by gaze users could 

successfully navigate through thousands of nodes and find the designated target (Figure 19). 
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Figure 19: A Zoomable Gaze Interface. The image to the left depicts the overview of nodes. The image to the right 
shows the process of zooming in on different information layers (Mollenbach et al., 2008) 

 

The research undertaken in the area of gaze as additional input gives insight into both 

benefits and problems. The main benefit of using gaze in navigational tasks is that it can tap 

into an existing process. Visual search already occurs as a fundamental part of interaction 

with visual information spaces. Establishing a visual link between the system and the user 

therefore broadens the pathway of information flow. 

In the examples shown, gaze can be used explicitly to manipulate information spaces. 

However, research also needs to be done on how gaze direction could be used implicitly to 

direct information without conscious user involvement, for instance in computer games and 

web interfaces. Another benefit of gaze as an addition to other input modalities is that it can 

be implemented as a discrete control. This means that gaze control can be switched on and off 

depending on context of use and the problems regarding gaze always being ‘on’ are avoided. 

The challenge of gaze as additional input is that, in order to gain the full advantage of 

employing search patterns, new ways of visualizing and structuring information are 

necessary. Most existing information structures and layouts are built to accommodate existing 

input. By changing the construct of input, the relying structures must also change. The 

incentive to do this will not exist until gaze tracking becomes a mainstream input modality, so 

currently much of the potential of gaze in conventional HCI is still unexplored. 

Gaze input as an addition to existing input devices constitutes a related but ultimately 

different area of research to the one at the foundation for the empirical experiments that will 

be presented in subsequent chapters. Gaze as sole input is, as mentioned, a different premise, 
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from gaze as an addition, and entails the main distinction of especially requiring selections 

while still allowing navigation and perception to occur through the same channel. However, 

understanding the parameters of task, context and feedback are the same. Likewise, 

considering ways of creating gaze selection that build on the mapping of familiar actions also 

applies. 

3.2 GAZE SELECTION STRATEGIES 

On a basic level there are three things that need to be taken into consideration when 

designing for gaze navigation and selection. Most existing implementations cater to one or 

more of these uses and are: intention, action, and perception. 

Intention is, in this case, defined as the perceived interest of the user. When used implicitly it 

can afford cognitive relief and emergent interaction. In this case it is not necessarily based on 

directional pointing and also the user feedback comes in the form of subtle output. An 

example of this could be a webpage that tracks where the user is looking and presents an ad 

or application data directly within the visual field. When applied explicitly it enables 

application control, as the intention of the user can be translated into action. 

Action is an explicit use of the intention of the user to map the point of gaze to a direction or 

selection; for example panning based on gaze direction, dwell-time selection or gaze gesture 

selection. Implementing these actions should always address the Midas touch problem for 

dwell- time selection and accidental gesture completion, which is the gaze gesture equivalent 

of the Midas touch problem and will be elaborated upon later. 

In this context perception speaks to the user’s ability to perceive on-screen information. This 

entails that large quantities of information should be made available if necessary for the task 

at hand. The user should be able to navigate and perceive the information without any sense 

of urgency. 

One way of accommodating intention, action and perception in gaze-only interfaces is by 

employing dwell-time selection. 
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3.3 DWELL-TIME ACTIVATION 

The Midas touch problem has traditionally been solved by implementing dwell-buttons on the 

screen. These function by having the user maintain a fixation in a certain area for a prolonged 

period of time in order to complete a selection. Fixation activations can be set to last 

anywhere from 200ms (milliseconds) to 1000ms (Ware & Mikaelian, 1986; Jacob, 1991b; 

Majaranta et al., 2009) or more, depending on the abilities and preferences of the user. To 

compensate for the inaccuracy of micro-movements, tremors, potential nystagmus and gaze 

tracking equipment, these on-screen buttons usually, as mentioned, take up quite a lot of 

screen space. This is a disadvantage as it limits the amount of information that can be 

displayed in applications. Also dwell selection sets a time limit on both the user’s ability to 

inspect/navigate an interface and on the speed with which selections can be made. 

One of the first evaluations of eye tracking and dwell-time came from Ware in 1986. Three 

types of on-screen selection techniques were tested. First of all dwell-time selection, where 

the target was selected by having the user fixate on it: “After experimentation, we adopted a 

dwell-time of 0.4 seconds.” (Ware & Mikaelian, 1986). Secondly, the subjects could make 

selections by looking from an object of interest to an on-screen area that functioned as a 

button, thereby requiring multiple fixations. Finally, the subjects could complete a selection 

by fixating on an object while pressing a physical button. Two experiments were conducted; 

in the first test a structure resembling a menu was employed, while in the second one the 

subjects were asked to select targets of different sizes. The results of the first experiment 

showed that dwell-time selection was equal to hardware selection in terms of speed and with 

lower error rates in the dwell- time condition. The second experiment proved the hardware 

button to be faster, but dwell-time selection was more consistent and had lower error rates. 

The on-screen button was by far the most ineffective in both tests. The overall conclusion of 

this test was that eye tracking showed definite potential. 

Jacob presented a study in 1991 where dwell-time was compared with eye pointing and 

button selection. The test bed was intended to resemble icons on a desktop that the 

participant then had to select. Mainly findings and observations were presented and a 

somewhat fast dwell selection time was proposed: ‘150– 250 milliseconds dwell time gives 

excellent results’ (Jacob, 1993)(Figure 20). Statements in this paper name dwell-time as the 
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‘natural’ eye movement equivalent of a button-press and has greatly influenced the past two 

decades of gaze-related interface and interaction design. 

The point of view taken in this thesis is that the term ‘natural’ should not be used in 

conjunction with dwell-time activation or gaze interaction in general, even though this has 

been described as one of the main advantages (Bates, 2002). The reason for this has 

previously been stated and the appropriate terms used in conjunction with gaze interaction 

should be familiar or easily learnt. 

 
 

Figure 20: Each boat on the figure represents a target which could be selected by gaze (Jacob,1991) 
 

Regardless of the preliminary findings of Jacob the time range of dwell-time is usually 

anywhere from 450-1000ms (Qvarfordt & Zhai, 2005), because shorter dwell-times in 

complex interfaces cause conflict between intention and action (Midas touch); as a 

consequence these long fixations can become tiring for users. 

The experiments presented above represent some of the fundamental research that 

constitutes the original methodological approach taken in investigating gaze interaction. The 

methodology has evolved somewhat from this fundamental approach to being more 

application driven. Gaze interaction research has in more recent years generally been done in 

conjunction with solutions to specific tasks, such as type-to-talk applications (Hansen, 2006; 

Majaranta & K. J Räihä, 2002), environmental control (Shi et al., 2006b, 2006a) and games 

control (Istance et al. 2008; 2009a; 2010). This has been a consequence of the fact that people 
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with motor impairments are the main beneficiaries of breakthroughs in this technology, and 

the intention has been to provide usable software wherever possible. The approach taken in 

the research presented here is, however, more reminiscent of the fundamental approach. The 

reason behind this is that as activation strategies evolve there is still a need for a fundamental 

understanding of these basic building blocks. In the subsequent sections, selection strategies 

will be presented in conjunction with the applications with which they have been developed. 

Figure 21, sums up some of the principles that have been used to implement dwell-time 

selection. A mixture of the principles is generally used when implementing dwell-time. These 

main principles are selection complexity, visual feedback and activation duration. 

 

Figure 21: Principles used in the implementation of dwell-time activation 
 

The major advantage of dwell-time buttons is the fact that they rely on the button metaphor 

that familiarly maps a known form of interaction and visualization. As a consequence 

recognizable information structures can be created. Dwell-time selection has been used to 

control applications such as gaze typing systems, computer games, environmental controls, 

and music programs (Hansen et al., 2006; Shi et al., 2006b, 2006a; Istance et al., 2010; Ward et 

al., 2000). 

Selection complexity speaks to whether a single fixation or multiple fixations are required to 

complete a selection. Visual feedback deals with how the dwell duration is relayed to the user. 

This can either be displayed on a dwell-button or the dwell duration can affect the entire 
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interface, by shifting it towards the target (i.e., zoom). Activation duration is a fundamental 

aspect of dwell-time selection. The speed with which a target can be selected and how this 

speed can be adjusted are intricate parts of implementations. 

As new ways of implementing dwell-time are still being developed, it is intended that this 

taxonomy could be expanded upon. This taxonomy has been created by analysing existing 

implementations of dwell-time selection. In the following each of the principles will be further 

elaborated upon using practical examples. 

3.3.1 SELECTION COMPLEXITY 

Selection complexity of dwell-time selection speaks to whether activation occurs on the initial 

fixation or whether multiple fixations must occur. 

One type-to-talk system that has been influential and is being used by many end-users is 

called GazeTalk (Hansen et al., 2006)(Figure 22). This application was specifically developed 

for people with severe motor impairments and was designed for and with a group of ALS 

patients in Denmark. The previously mentioned ALS patient Arne Lykke Larsen, who is still 

working after more than 10 years with ALS, uses this system with a speech synthesis to 

supervise students, give talks and generally conduct conversations with whomever he wishes. 

 

Figure 22: The GazeTalk interface, the image shows the user choosing the predicted word ‘selection’ in the mid-left 
side of the screen to complete the sentence that is displayed in the top-left field (Hansen et al., 2006) 
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GazeTalk is an example of a system built on single fixation selections. The system allows users 

to communicate by spelling out each word. Letters are initially selected in stages. Firstly, 

groups of letters are displayed in a grid of dwell-buttons. When one of these buttons is 

selected the individual letters of the particular group are displayed in a grid of dwell-buttons. 

The intended letter can then be selected. After this the user can select another letter from the 

same group or return to the main screen and select a new group of letters. Word prediction, 

which is displayed on a dwell-button of its own, allows for speedy completion of words. 

Dwell-time can be adjusted, however not in real time. It was found that: 

‘Most users start with a dwell time setting at more than one second, but some experienced users can 

control dwell time settings that are less than half a second. Most users like to have longer dwell times 

when they are tired in order to avoid unintended selections.’(Hansen et al., 2006) 

An example of a multiple fixation activation process was given in NeoVisus (Tall, 2008) 

(Figure 23). At the initial fixation an expansion of the target would reveal a second target, 

which had to be subsequently fixated upon in order to complete a selection. The intention of 

this was to limit potential erroneous activations by not allowing any selection to occur on 

initial fixation. If the user looks away from the dwell-button in all other directions than that of 

the ‘rolled-out’ second dwell- button, the system was reset and the second dwell point is 

retracted. 

 
 
 

Figure 23: Adapted from NeoVisus, gaze selection components. A short dwell duration leads to the expansion of a 
second target. By dwelling on the second target the selection can be completed (Tall, 2008) 
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Whether single or multiple fixations are appropriate depends on what task is being 

performed, what context the user is in, and the feedback opportunities that the system can 

provide. The duration of single or multiple fixations end up as being approximately the same; 

shorter durations can be applied when using multiple fixations, but then more of them have to 

be made. If the buttons are of a significant size, single fixations require less precision from the 

system and possibly they also represent a lower cognitive load for the user. However, the 

single fixation activation does not solve the Midas touch problem, it simply delays it. The 

multiple fixation activation circumvents this issue, in that a combination of fixations is 

required, rendering the initial fixation of no consequence. 

Selection complexity can be surmised as the difference between one action having one 

consequence and several actions having one consequence. As mentioned the empirical work 

done in the context of this thesis concerns itself with single stroke gaze gesture (SSGG) which 

can be compared to the single dwell duration, as they both represent one action with one 

consequence. The discussion on selection complexity is also very much present in the area of 

gaze gesture interaction and will be explored shortly. 

3.3.2 VISUAL FEEDBACK 

Visual feedback is concerned with how the activation process is presented to the user. For 

instance, sometimes the visualization is fixed to the target, other times the entire interface 

moves towards the target by zoom, which can in turn be discrete or continuous. 

In the GazeTalk system (Hansen et al., 2006), which was introduced earlier, the visualization 

of dwell occurs on the target itself: a light shaded border appears around the target that is 

being viewed and begins to contract from the border towards the centre of the target. A 

selection is completed when the lighter shade fills out the entire target6. If at any time the 

subject looks away from the target, the selection process is discontinued and either the same 

or a new target can be selected. This feedback allows the user to be aware of what he or she is 

potentially selecting. Variations on this type of target-based feedback are used in many 

                                                        
6 http://www.youtube.com/watch?v=uu5r_HVJT_w 

http://www.youtube.com/watch?v=uu5r_HVJT_w
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applications and systems. For instance most of the applications for the Tobii Communicator 

system, which is a commercial eye tracking system, use this type of feedback (figure 24)7. 

 

Figure 24: Windows Adapted from the Tobii communicator. The target ‘5’ is dwelled upon and a red circle begins to 
expand as shown in the bottom sequence. When the circle is full the selection process is completed. 

 

As mentioned earlier, directing zoom by gaze has been explored as an approach that combines 

natural search patterns with other inputs from the mouse or keyboard. However, this 

principle has also been explored in gaze selection. Here the dwell visualization does not occur 

on the target, but affects the entire interface by shifting it towards the target or by magnifying 

the area surrounding the target. 

Both continuous and discreet approaches to zoom have been explored. An example of a 

continuous zoom selection interface is StarGazer (Hansen et al., 2008) (Figure 25). Pan and 

zoom were used to navigate the interface. The idea was to allow the user to navigate through 

graph structured data; in this case a gaze typing system was implemented. The inaccuracy of 

both eye movements and eye tracking systems were compensated by having target size 

increase to a level where there was no doubt that a selection by the user was intended. This 

approach was especially beneficial when employed with low-resolution eye trackers or on 

small-size displays, since it allows more selectable objects to be displayed on the screen than 

the accuracy of the gaze trackers would otherwise permit. 

                                                        
7 http://www.tobii.com/assistive_technology/products/vs_communicatior.aspx 

http://www.tobii.com/assistive_technology/products/vs_communicatior.aspx
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Figure 25: The Stargazer Interface, the cursor indicates the direction of gaze. The interface continuously zooms 
towards the user in the direction of gaze. In the images shown above the process of selecting the letter ‘S’ is depicted. 

(Hansen et al., 2008) 
 

The disadvantage of a continuous zoom interface is that the constant movement of the 

interface in its entirety makes it difficult for the user to orientate where to go next, as any 

perceptive action causes the interface to start shifting. 

Discreet target-based magnification where only a part of the interface is affected has also been 

explored. The advantage of this selection type compared with continuous zoom is that it 

allows the user to magnify only the surrounding area of the target (Skovsgaard et al., 

2008)(Figure 26). 

In this work, it was found that the two-step magnification had a much higher hit rate with 

small targets than conventional dwell-time selection. This argues for the technique’s ability to 

handle larger amount of data being displayed on the screen, thus avoiding the traditional 

issue of dwell-time activation where the size of the targets limits the amount of on-screen 

information available. Visual feedback not only affects how the user can interact and perceive 

information on the screen, but also how the information is structured. Two-step magnification 

can be useful if the intention is to deal with the existing windows, icon and menu structure 
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known from current layouts of desktop environments and text editing. However, gaze specific 

applications that incorporate a static or dynamic visualizations are often developed to take 

full advantage of gaze, by not only providing feedback to the user in a gaze appropriate way 

but also by designing the underlying information structure in a way that makes it readily 

accessible to gaze input. 

 
 

Figure 26: Two-step magnification technique. The square represents the area which will be magnified by using 
dwell. (Skovsgaard et al., 2008). 

 

The examples above illustrate how the selection process of dwell can be visualized. This 

constitutes one of the main challenges in most gaze selection strategies. Because not only does 

the feedback to the user entail content, but the process of selecting that content also must be 

visualized. One of the experimental parameters that has been experimentally explored and 

will be presented in Chapter 8 is completing the selection process without visual feedback to 

the user. 

3.3.3 ACTIVATION DURATION 

In most of the applications that have been presented so far a dwell-time of approximately 

400-500ms has been employed as a standard, but quite often it needs to be much higher for 

people with nystagmus, large jitter and/or tremors. In the settings of most gaze applications 

the dwell-time duration can be adjusted. This is a relatively cumbersome process that is 

usually handled by the carers in the case of an impaired individual. 
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However, many users who are dependent on gaze tracking become expert users and could 

most probably reduce the activation completion time required to perform a selection as they 

become acquainted with an application. Also there is a difference in the abilities of users with 

complex needs from day to day, sometimes even hour to hour. Therefore, there is a need to 

implement a dwell activation time that can be adjusted by the user during their use of the 

application. 

In a recent study conducted by Majaranta et al. (2009) participants used a system that 

allowed them to dynamically change the activation time while typing on an on-screen 

keyboard. This was done repeatedly over 10 sessions. Activation times went from an initial 

average of 876ms to an average of 287ms (Majaranta et al., 2009). 

However, there might also be situations where tasks, context and feedback require a fixed 

dwell-time. Such a task situation could be a gaze based computer game in which the objective 

was to fixate for longer durations of time. A user with cognitive impairments could also 

accidentally readjust the dwell-time to a point where it inhibited his or her use of the system. 

If the feedback was from a multiuser interface, having standard settings that apply to all users 

is useful. 

Activation duration is of importance in dwell interfaces because it greatly affects the user 

experience. One aspect of gaze gesture interaction is that these actions can be completed 

without fixed completion times. 

As mentioned, the previously presented taxonomy of dwell-time interaction was derived from 

analysing existing selection methods. Creating new implementations of dwell could happen by 

adjusting and/or altering any of the three principles: selection complexity, visual feedback 

and activation duration. 

Whatever principles are used to implement dwell activation, be it single or multiple fixations, 

static or dynamic visualizations, with fixed or adjustable activation duration speeds, dwell 

selection has and will be a fundamental part of gaze interaction. However, dwell activation 

has a set of constraints which make it an insufficient tool to solve all of the complex tasks that 

could be of interest for users to be able to complete. These constraints have to do with the 

basic principles in the presented taxonomy. Single and complex dwell selections have each 
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their constraints. Single dwell requires a relatively long dwell duration and only limited 

number of targets can be visualized on the screen. Complex dwell also has the constraint of 

being limited by screen space, and requires a high level of precision pointing by the user. The 

visual feedback of the selection process constrains the amount and type of information which 

can be displayed on the screen, whether it is target or interface based. And activation duration 

constrains the time with which a task can be completed. Because of these constraints the field 

of gaze interaction has sought to find alternatives to dwell time selection. The other gaze 

interaction principle which has been explored is gaze gestures. 

3.4 GAZE GESTURES 

Gaze gestures are a more recent addition to the interaction vocabulary of gaze and many 

possible implementations of gaze gestures have been and need to be explored. Strokes are the 

foundations of gaze gestures. A stroke is the motion between two intended fixations; it is not 

necessarily the same as a saccade, which is the eye movement between any two fixations. A 

stroke can be completed even if jitter causes small saccades to take place between the two 

intended fixation points. Potentially, gaze gestures hold many advantages as a selection 

method: 

1. Speed: gaze gestures can potentially be very fast. As presented in chapter 2 saccades 

can cover a 1° and 40° visual angle and last between 30-120ms (Duchowski, 2007). 

This is substantially faster than a standard dwell-time duration of approximately 300-

500ms (Majaranta et al., 2009). 

 

2. Screen real estate: gaze gestures need not take up much screen space. The initiation 

and completion fields of the gaze gestures could be transparent, allowing for more on-

screen information that is unaffected by gaze. However, as will be shown in the 

subsequent sections, gaze gestures have mainly been implemented with semi-

transparent or opaque fix-points, which still infringe on the issue of screen real estate. 

A fix-point is a visual point on the screen, which functions as a navigational target. 

either opaque or semi-transparent (Istance et al., 2009; Istance et al., 1996; Vickers et 

al. 2008; Istance et al., 2010; Istance et al. 2009b; Wobbrock et al., 2008). 
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3. No Midas touch problem: if gaze gestures are implemented in a way that they are easily 

distinguishable from navigational eye movements, the initial point of gaze is of no 

consequence, which means the Midas touch problem is avoided. 

However, gaze gestures have their own set of innate problems. The main issue being 

accidental gesture completion: a potential overlap between natural search patterns and the 

eye movement patterns needed to complete a given gaze gesture. Accidental gesture 

completion is the equivalent of the Midas touch problem for dwell activation. Another issue 

with gaze gestures is the cognitive load that they might induce. Dwell activation is generally a 

direct response to information presented on the screen, whereas gaze gestures often rely on 

the user to be able to remember specific eye movement patterns and their consequence with 

no immediate feedback. It will be shown that purely visualization-based gestures are also 

possible. However, these can only be used in conjunction with specialized software. The 

diversity of gaze gesture applicability is only just being uncovered and in the following section 

considerations regarding existing implementations will be presented. 

3.4.1 THE GENERAL CONCEPT OF GESTURES IN HCI 

A useful definition of gestures in general comes from Raskin’s ‘The Humane Interface’: 

‘a gesture is a sequence of human actions completed automatically once set in motion’ (Raskin, 2000, 

p.37) 

As a consequence of this definition a gesture can consist of any repeatable and recognizable 

bodily motion that can be robustly recognized as separate from normal physical action. 

Stylus based text entry is an area where gestures have been greatly explored. The main 

similarity between gaze and stylus based interaction is that they both consist of one pointer 

connecting with the interface. Unistrokes (Goldberg & Richardson, 1993) was a gesture 

alphabet designed for the stylus. It was based on (Figure 27)( a.) five basic shapes that could 

be (b.) rotated in four directions and (c.) completed from different directions. Other examples 

of this type of stylus alphabets are Cirrin (Mankoff & Abowd, 1998) and Grafitti 

(Blinkenstorfer, 1995). 
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Figure 27: (a.) The basic Unistroke shapes, (b.) one shape rotated, (c.) one shape completed in two different 
directions (Goldberg & Richardson, 1993). 

 

Unsurprisingly, stylus based text entry has served as an inspiration for gaze gesture based 

text entry. Perlin’s QuickWrtiting (Figure 28) has done this to a great extent and there are two 

reasons for this. In this implementation the stylus does not need to be lifted from the screen 

and the motions used are continuous. These two characteristics of the system mirror the 

requirements for a gaze-only input (Perlin, 1998). 

 

Figure 28: Stylus gestures in Quickwriting (Perlin, 1998) 
 

The system was designed so that characters could be selected by moving from the centre of 

the layout to different zones around the edge. The simplest gesture consisted of moving from 

the resting zone in the middle of the layout directly to an outer zone and then back again. In 

this way the middle letter of a group could be selected, in the presented layout (figure 29) ‘a’, 

’n’, ’t’, ’i’, ’o’, ’e’ can be selected by simple centre-to-zone gestures. If a ‘q’ were to be selected 
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(Figure 29), a gesture would be formed by moving from (a) the centre resting area to (b) the 

zone twice removed to the left of the group with the ‘q’ in it, then from here to (c) the zone 

which actually contains the letter ‘q’ and then (d) back to the centre again. 

 
 

Figure 29: The Sequence of selecting a Quickwriting letter, in this case the letter ‘q’. Adapted from Perlin (1998) 
 

Gestures have recently become a mainstream interaction principle with the introduction of 

multi touch finger gestures for mobile devices, laptops and pads. Some of the most common 

finger gestures are (a) tapping, (b) swiping and (c) pinching (Figure 30)8. Tapping resembles a 

button press and as with mouse interaction both single and double taps mean different things. 

Swiping is often used to instigate a scrolling action and converse/inverse pinching allows the 

user to zoom in and out of the interface. 

 

Figure 30: Tapping, swiping and pinching gestures on a touch sensitive surface 
 

Various types of physical gestures have also been explored when considering users with 

motor-skill impairments because they allow for individually adapted interaction. For example, 

                                                        
8 http://www.danrodney.com/mac/multitouch.html 

http://www.danrodney.com/mac/multitouch.html
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head gestures consisting of simple horizontal and vertical motions have been used as switch 

control gestures (Keates & P. Robinson, 1998). 

3.4.2 GAZE GESTURE INTERACTION 

Gaze gestures have a shorter history than dwell-time but a similar range of principles have 

already been applied in various applications. Istance et al. (2010) have proposed a definition 

of gaze gestures that also applies in this research and does not conflict with the general 

definition of gestures presented by Raskin: 

A definable pattern of eye movements performed within a limited time period, which may or may not be 

constrained to a particular range or area, which can be identified in real time, and used to signify a 

particular command or intent. (Istance et al., 2010) 

A similar taxonomy to dwell-time activation can be applied to gaze gesture selection (Figure 

31). The main difference is mainly fixation duration, as gesture selection implementations 

only use very ‘short’ dwell-time duration, if any. The basic principles used to define gaze 

gestures in the context of this work are finite gaze gestures, continuous gaze gestures and 

complexity of strokes. 

 

Figure 31: The principles used in implementing gaze gestures 
 

Stroke complexity is mainly a concern for finite gestures where multiple or single strokes are 

used to initiate activation. However, specific strokes can also be incorporated into continuous 
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gestures where these signify explicit actions. Finite gestures represent eye movement patterns 

in which a defined shape is completed. These can be based on abstract shapes in which the 

eye movements follow a discernable shape, but one with no innate meaning, these are defined 

as path based gestures. Symbol based gestures also follow a specific shape; however these 

either have an intrinsic meaning or representation. Continuous gestures are not based on 

specific shape, but are derived through a response to either a dynamic or static visualization. 

This taxonomy has been derived by examining existing implementations of gaze gestures. In 

the following section each of the principles described in Figure 31, will be explained by 

exploring practical examples. 

3.4.3 STROKE COMPLEXITY 

Strokes are the foundations of many types of gaze gestures. Earlier a stroke was defined as the 

motion between two intended fixations. The reason why intended fixation points are 

interesting for gaze gestures, despite fixations not necessarily being a direct function in gaze 

gestures, is that they ensure a distinction between inspection eye movements and selection 

eye movements. In other words, even a very short fixation on a specific initiation area can be 

an important way of avoiding accidental gesture completion. 

A single stroke gaze gesture (SSGG) is the simplest form of finite gesture and is defined as the 

motion between two intended fixation points to complete a selection. A complex gaze gesture 

is the motion between three or more intended fixation points. SSGG are the main focus of the 

experimental research conducted and subsequently presented in this thesis. The main 

assumption of this type of gesture is that there will be a high likelihood of accidental gesture 

completion. 

Complex gaze gestures have the advantage of increasing the interaction ‘vocabulary’ of gaze 

greatly. However, this brings with it both cognitive and physiological difficulties. Cognitively it 

is difficult to remember a large number of gestures and physiologically it is difficult to create 

and complete them. There is a need for determining a complexity threshold for the number of 

finite shapes and the number of strokes they can contain; that can be both remembered and 

repeated in a sustainable way. 

3.4.4 FINITE GAZE GESTURES 
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The shape of gestures is mainly relevant when discussing complex gestures. There are many 

different principles under which gaze gesture patterns can be created. The two which have 

been explored so far are symbolic and path based patterns. Naturally, symbolic gestures also 

require the user to follow a path. However, the distinction lies in the definition of a symbol: 

‘[Symbol] – something that stands for or suggests something else by reason of relationship, association, 

convention, or accidental resemblance’ (www.merriam-webster.com)’ 

A path based gesture is simply a form which can be completed by gaze – abstract or 

otherwise; it could be the eyes covering the pattern of a line, a triangle, a square, circle, etc. 

These are simply paths that have no innate meaning inferred onto their completion. A symbol 

is a representation of a meaning. In the area of gaze gestures the most obvious example of this 

is that of gesture patterns resembling a character in an alphabet. Much of the innovation in 

gaze interaction has happened in the field of text input and this has also already been the case 

in the research done into gaze gesture selection. 

In 2000, Isokoski et al. presented the MDITIM text input system, which was based on gestures 

being completed between large off-screen targets, Figure 32. 

 

Figure 32: Example of MDITIM gaze gestures, characters were completed by completing the patters shown above 
between off-screen targets (Isokoski, 2000) 

 

This was compared to Morse code, a gaze controlled version of QuickWriting and a Cirrin 

circular keyboard layout (Mankoff & Abowd, 1998). One of the main observations was the 

distinction between having few targets that require many activations per character, and 

having many targets that require fewer activations per character (Isokoski, 2000). This 

exemplifies one of the issues concerning implementation of gaze gestures. Simple gestures are 
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easy to repeat, but there are only a limited number (similar to few targets). Complex gestures 

(similar to many targets) are plentiful and can describe an entire alphabet. However, they 

require more precision when being completed and increase the cognitive load. Furthermore, 

at present they have only been implemented with on-screen visualization that is not 

conducive if the goal is to minimize the on-screen real estate of selection strategies and 

potentially incorporate other selection capabilities. 

Woobrock et al. (2008) presented EyeWrite, a gaze controlled text-input system, based on a 

text input system for PDAs called EdgeWrite, Figure 33. The user could map out letters by 

combining the four corners of a square in various ways. Their results showed that the 

complexity of the alphabet proved very difficult. In their study they compared EyeWrite to an 

on-screen keyboard. The average input speed for the on-screen keyboard was approximately 

6 wpm (words per minute) and for EyeWrite it was only around 2 wpm. EyeWrite was also 

more error prone, which most likely has to do with the complex nature and high number of 

gestures (Wobbrock et al., 2008). 

 

Figure 33: Gaze gesture in the EyeWrite System, characters were completed by glancing at fix-points in different 
sequences (Wobbrock et al. 2008) 

 

Porta and Turina. (2008) developed the EyeS system, which had users enter letters by fixating 

on fix-points in various sequences. Here the gaze patterns were designed to be symbolic by 

having them resemble the shape of the character that was being completed, Figure 34. They 

reported a 6.8 wpm average for experienced users and show that there was a significant 

difference between novice and experienced users. Of relevance to the research presented here 
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they also made suggestions of using these types of gaze gestures for shortcuts in a windows 

interface (Porta & Turina, 2008a). 

 
 

Figure 34: Example of gestures in the EyeS system, again selections were completed by gesture completion based on 
fix-points (Porta & Turina, 2008a) 

 

These all are examples of symbol based gaze gesture solutions. The main advantage of this 

principle is that a larger number of gaze gestures could become easier to remember because 

they have become contextualized and build on familiar representations (the alphabet). The 

disadvantage is the higher cognitive load, which could overwhelm some users. 

Path based gestures have also been explored on several occasions. Heikkilä and Räihä (2009) 

presented research regarding how gaze gestures could potentially be used in a drawing 

programme. This represents one of the first examinations of how gaze behaves in situations 

where the user follows an intended shape path with the eyes. The overall conclusion of the 

research was that there was not a significant difference between the time it took to complete 

the path of large shapes compared to the time it took to complete the path of smaller shapes. 

This was found to be because the eye movements of participants would reach higher speeds 

when completing the contours of the larger shapes. Overall they found that it was very 

difficult for users to follow the paths properly, especially curved ones, Figure 35 (Heikkilä & 

Kari-Jouko Räihä, 2009). 
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Figure 35: The gaze paths of a slow but accurate users following the contour of a shape (Heikkilä & Kari-Jouko Räihä, 
2009) 

 

Another example of abstract path based gestures is the research done by Drewes and Schmidt 

(Drewes & Schmidt, 2007)(Figure 36). One of their main motivations for researching gaze 

gestures was the deduction that accuracy becomes less of an issue in this type of selection 

strategy, because gaze is not used for pointing and the completion of a gesture is, in this case, 

relative to the eye movements rather than on-screen fix-points. 

 

Figure 36: The three gestures used in the experiment (Drewes & Schmidt, 2007) 
 

A set of gaze gestures was developed based on a combination of existing set of mouse gestures 

available for the Firefox browser9 and the gestures in EdgeWrite (Wobbrock et al., 2003), 

which was presented earlier in this Section. Figure 36 shows the three gestures that were 

used in the experiment. A short dwell-time was implemented to help differentiate between 

eye movements. 

They asked participants to complete the gestures on different backgrounds and found that on 

backgrounds with text, tables or web pages, even complex gaze gestures could be completed 

reliably. They also found that neither background nor the complexity of the gesture had a 

                                                        
9 http://optimoz.mozdev.org/gestures/ 

http://optimoz.mozdev.org/gestures/
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significant impact on the completion time. Gesture completion time only depended on the 

number of segments, in other words the number of strokes that needed to be completed. They 

recorded an average stroke completion time of between 550-600ms and also found that only 

the right-left-right-left-right-left (RLRLRL) gestures had a risk of causing accidental gesture 

completion during the natural search patterns of web browsing. 

In 2008, Istance et al. proposed a novel approach to gaze selection, called snap clutch. This 

method was implemented as a modal interface that allowed the user to control a character in 

the computer game ‘Second Life’. The initial trials compared mouse control, dwell and the 

snap clutch principle. Snap clutch was implemented so that the user could move between four 

different modes by looking off- screen in four directions. The results showed that selection 

times almost reached that of the mouse and had fewer errors compared to dwell- time 

(Istance et al., 2008; Vickers et al., 2008). An important element of the work undertaken by 

this group is the research done on task-analysis, the concept of modes and mode changes in 

gaze-only interfaces (Istance et al., 2008), which contributes to the overall understanding of 

when and how different gaze selection strategies should be implemented. 

In another project regarding the computer game ‘World of Warcraft’, Istance et al. (2009) 

compared a series of tasks performed with mouse/keyboard and gaze respectively. The 

preliminary results show surprisingly small differences between the two input modalities 

(Istance et al., 2009b). 

Based on this research and inspired by Perlin’s Quickwriting setup, Istance et al. (Istance et 

al., 2010) have set about using abstract path based gaze gestures to enable game control in the 

setting of the online massive multiplayer game ‘World of Warcraft’. Their main motivation is 

to allow users with severe motor impairments to be able to participate in online communities 

on equal footing with other players. In the most recent implementation of gaze gestures for 

game control they researched the innate qualities of their design both separately and in the 

game of World of Warcraft. 

Initially they examined 12 individually recognizable gaze gestures, which were to be 

completed by looking from the centre of the screen to the different fields in various 2- and 3-

stroked combinations, Figure 37. 
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Figure 37: 2 and 3 stroked gestures for game control in WOW (Istance et al., 2010) 
 

The centre of the screen was chosen as a starting point, because the player’s avatar in World 

of Warcraft is always placed there. This meant that the player could continue to monitor their 

avatar in the game, while making selections. This has in turn been one of the main arguments 

for using gaze gestures in this type of gaming situation and not dwell-time activation, e.g. 

dwell-buttons would force the user to look away from their avatar for a prolonged period of 

time, which is not ideal in a real time multi-player game, where monitoring the avatar in a, for 

instance, a multiplayer combat situation is required. All gestures had to begin and be 

completed at the centre of the screen within a 2 second time period in order to be deemed 

valid. The experiment looked at 2 and 3 stroked gestures, horizontal/vertical versus oblique 

selection patters and initiation stroke (i.e., whether a left or right eye movement started the 

gesture.) (Figure 38). 

 
 

Figure 38: Horizontal/Vertical gestures and Oblique gestures (Istance et al., 2010) 
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They found that there was a significant difference between the completion time of 2 and 3 

stroked gestures. Two-stroke gestures on average took 490ms, which is comparable to the 

usual dwell activation time. Three-stroke gestures took much longer, 880ms. Whether the 

initial stroke was horizontal/vertical or oblique only had a small effect on 2 stroke gestures 

and no effect on 3 stroked gestures. For 2 and 3 stroke gestures they found that there was a 

general effect of gaze gestures starting with a leftward move being faster than those starting 

with a movement to the right. However, this effect was mainly derived from 3 stroke gestures, 

as there was virtually no effect from the 2 stroke gestures. 

In a subsequent experiment these gaze gesture types were implemented in World of Warcraft. 

Four 2 stroked gestures were chosen to represent the ‘w’,’a’,’s’, and ’d’ keys often responsible 

for forward, left, backward and right movement in 3D environments. Three-stroke gestures 

were implemented as controls for various attack- and spell commands (Figure 39). They 

found that all 12 participants, who participated in the study, could use gestures to navigate 

and perform actions in the game. However, locomotion proved quite difficult during attacks, 

but easier during long movement. Gaze gestures also functioned well for discreet spell casting 

and only 2 stroke gestures were completed accidentally. 

Overall they reported a stroke time of 247ms/stroke for 2 stroke gestures and 293ms/stroke 

for the 3 stroke gestures. One of their main conclusions (which is completely coherent with 

the overall conclusion of the research conducted here) was that gaze gestures are a valid gaze 

selection method, but that its true potential lies in combining it with other gaze interaction 

techniques. 
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Figure 39: The diamond shaped gaze gesture layout implemented into World of Warcraft. 
 

The single stroke gaze gesture (SSGG) that will be explored experimentally in chapter 5-9 is in 

the context of this research defined as a finite gesture. However, these simple gaze gestures 

can also be used as part of continuous gesture patterns. This principle will be subsequently 

presented. 

3.4.5 CONTINUOUS GAZE GESTURES 

Much of the research on gaze gestures deals with strokes being tied to some kind of 

visualization on the screen. In the EyeS system (Porta & Turina, 2008b) and in the World of 

Warcraft implementation (Istance et al., 2010) just described, gestures are completed by 

focusing on various combinations of semi-transparent fix-points on the screen. 

Another type of gesture is not based on predefined finite shapes. This gaze gesture is defined 

and shaped by the visual layout of information, dynamic or otherwise, on the screen. This will 

be referred to as continuous gaze gestures. Path-based gestures are often finite patterns, 

whereas continuous gestures rely on continuous eye movements. 

The most classic example of this is Dasher (Ward et al., 2000)(Figure 40), which is also one of 

the first gaze gesture interfaces. As with other gaze contingent interfaces, Dasher uses 

magnification as feedback to indicate which letter is being selected. Initially 27 characters are 

placed in a column to the right of the screen. To select the letter ‘t’ the user looks at the letter 
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‘t’ in the right column. The size of the letter begins to increase and move towards the left. Once 

the letter crosses the line dividing the screen, it is ‘selected’. The user can reverse and 

‘deselect’ a chosen letter at any time by looking at the left side of the centre line. Other than 

being a continuous magnification based gaze contingent typing application, Dasher is known 

for having a very well integrated letter probability prediction. This probability is visualized by 

increasing the size of the most probable subsequent letters. If ‘t’ is the first selected letter, 

then the letter ‘h’ is presented as the closest and one of the largest subsequent letters. After 

that ‘e’ becomes the most prominent letter and so forth10. 

 
 

Figure 40: The Dasher Interface (Ward et al., 2000) 
 

Dasher is not based on fixation as with other zoom interfaces such as StarGazer (Hansen et al., 

2008). StarGazer requires the user to focus on one target, until this target encompasses most 

of the screen. In Dasher, the targets are always moving. In this type of interface stroke speed is 

not interesting because the continuous motion means that there is a constant mix of fixations, 

saccades and smooth pursuits. In their research Ward et al. (2000) show that despite an initial 

steep learning curve, Dasher has the potential of being an extremely fast text input method. 

They refer to one subject who used Dasher for a prolonged period of time and reached text 

entry speeds of 34 wpm (Ward et al., 2000). As a comparison, research of typing speeds on an 

on-screen QWERTY keyboard show average typing speeds of approximately 22 wpm 

                                                        
10 http://www.inference.phy.cam.ac.uk/dasher/TryJavaDasherNow.html 

http://www.inference.phy.cam.ac.uk/dasher/TryJavaDasherNow.html
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(Mackenzie et al., 1994). However, typing speeds on a regular keyboard can for professional 

typists reach as much as 60-70 wpm, when copying text (Brown 1999). 

Another example of visualization based gestures is presented by Bee et al. (2008). Again, 

inspired by Perlin’s QuickWriting, they explore a form of continuous writing and argue that 

this is the best suited text entry method for gaze. The user looks at the centre of the 

visualization, where there are several groups of letters and characters. By looking at one of 

these, the letters and characters contained in that group become highlighted and an individual 

character can be selected. They make the distinction between typing, gesturing and continuous 

writing (Bee & André, 2008) (Figure 41). 

 

Figure 41: Example of a gesture in the gaze adapted QuickWriting, (Bee & André, 2008) 
 

As mentioned earlier, in the current research, the distinction is made between finite gestures, 

continuous gaze gestures and complexity of strokes. These researchers compared their gaze 

adapted version of QuickWriting (which achieved 5 wpm) with an on-screen keyboard (which 

achieved 7.8 wpm). With practice users could achieve up to 9.5 wpm (Bee & André, 2008). 

Gaze gestures have been a way of creating gaze selection that is not necessarily dependent on 

dwell-time activation. This idea of dwell-free interfaces was explored in three different 

applications by Urbina & Huckauf (2007). The gestures used in their work are all continuous 

and tied to the changing visualizations on the screen and not individual character shapes or 

sequences explicitly. In the pEYEdit interface the principle of expanding menus was explored. 

Each slice contained a group of letters – when selected, by crossing the outer border of the 



68 
 

slice, the group would expand into a new pie where each slice had only one letter, which could 

then be selected based on the same selection principle (Figure 42a). 

 

Figure 42: a. The pEYEdit interface; b. The IWrite Interface; c. The StarWrite Interface (Urbina & Huckauf, 2007) 
 

In IWrite the characters were placed in a frame on the screen and selection was facilitated by 

short strokes from the intended character to the outer frame, which functioned as an on-

screen button but without dwell (Figure 42b). 

And finally, StarWrite allowed the user to drag letters from a half-circle onto a text-field 

(Figure 42c). These three selection methods were compared to a QWERTY on-screen 

keyboard and Dasher without character prediction (Ward et al., 2000). They had both novice 

and advanced users test all the systems. The advanced users had the following results: 

QWERTY 15,8 wpm; Dasher (without prediction) approx. 6,5 wpm; pEYEdit 10,9 wpm; IWrite 

11.4 wpm and with StarWrite 8,4 wpm (Urbina & Huckauf, 2007). 

In a more recent study, Urbina et al. (2010) presented a modified version of the pEYE system. 

A dwell-controlled version of the interface was compared to the border crossing gesture 

based original. And also a third pie expansion was added, which provided users with the most 

probable next letters (Figure 43). They found that participants preferred to use the gesture 

based selection method, as this was faster than the dwell selection method. 8.06 wpm was 

achieved with gesture selection borders and 4.71 wpm with dwell-time. Also, the letter 
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predictive method when adding the third pie allowed an increase in typing speed, with an 

average of 13 wpm and the fastest speed towards 17.2 wpm. 

 

Figure 43: The modified pEYE interface with third predictive expansion. (Urbina & Huckauf, 2010) 
 

A final example of this type of continuous gestures was the typing interface developed by 

Morimoto and Amir. (2010) (Figure 44). Two complete QWERTY keyboards where presented 

on the screen. Two different eye movements where used to focus and select a target. A short 

dwell duration (150ms) informed the system of which target was in focus and a saccade 

across the opposite keyboard completed the selection. They called this selection strategy 

context switching. Their results show varying text entry speeds and error rates. However, 

their fastest subject reached an average of 20 wpm with an error rate of less than 2% on the 

last of eight sessions. 

 

Figure 44: Context switching keyboard, selections are made by switching between the two keyboards( Morimoto & 
Amir, 2010) 
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Continuous gaze gestures use eye movements to guide the user through the interface by 

giving visual feedback that corresponds to the consequence of a given action. The 

disadvantage of these techniques is that they are very task and application specific. In other 

words there is no way to extract any general approach from these techniques because they 

cannot be applied to existing software such as games, text entry programs or environmental 

control system, developed by a third party. This does not mean that it is the opinion of the 

author that these methods are not useful. On the contrary, the research done into this field is 

important to understand how gaze-only applications can and should be designed. 

As with the taxonomy of dwell selection, each of the principles in this gaze gesture taxonomy 

has its own set of constraints. Again, single and complex gaze gestures each have their own set 

of constraints. Single gaze gestures have the constraint of being limited in the number of 

possible completion-directions; also it is constrained by having a possible high number of 

accidental gesture completions, as large saccades could potentially be mistaken for intended 

gestures. Complex gestures have a cognitive and physiological constraint; a threshold for this 

needs to be set. Finite gaze gestures that are symbol based have the constraint of requiring a 

high level of cognition from users, as well as, precision pointing. Pat based finite gestures have 

the constraint of not having a familiar mapping between action and consequence. Finally, all 

continuous gestures have the constraint of requiring specialized software. However, gaze 

gestures afford a new dimension in gaze interaction, the affects of which are still to be seen. 

3.4.6 CONCLUSION 

In this chapter a taxonomy regarding the two main gaze selection strategies (dwell and gaze 

gestures) has been proposed. The foundation for this taxonomy has been previous work done 

in the field of gaze interaction. The concentric circles used in figures 21 and 31 were intended 

to indicate that each of the elements in the subcategories affect each other. It is to be 

considered a dynamic taxonomy, which will hopefully expand as more gaze selection 

strategies come to light. However, the goal was to surmise the existing fundamentals of each 

selection strategy. For dwell-time implementations these basic principles were deemed to be: 

selection complexity, fixations duration and visual feedback. For gaze gestures they were 

considered: stroke complexity, continuous gestures and finite gestures. 
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Both dwell-time activation and gaze gestures have innate affordances and constraints. Future 

research could concern itself with the implementation of both explicit dwell activation and 

gaze gestures. The combination of the two could create multi-modal interactions for mono-

modal input; a concept which will be revisited again in the concluding chapter. 

There are three factors which have not been uncovered in the previous work regarding gaze 

interaction and it is the three factors which form the foundation for the experimental research 

which has been conducted. 

The first is the concept of the single stroke gaze gesture (SSGG). This has not previously been 

explored despite it being a fundamental building block of both finite and continuous gaze 

gestures. The second is gaze selection without visual selection feedback. As mentioned, 

selection process feedback is a constraint of gaze interaction. An experiment was design to 

discover whether or not a gaze selection principle could be completed without feedback. 

Finally, there is a need to determine what the upper and lower boundaries of selection 

complexity are in regard to gaze gestures. These are the three overall issues which have been 

explored experimentally and will be presented in Chapter 5 through 9. 

However, before experimental empirical evidence is presented the end-user will be 

introduced along with the presentation of some ‘no-tech’/lo-tech approaches to gaze 

communication. 
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4  THE END-USER 

Assistive Technologies are becoming increasingly commonplace, serving to enhance the 

quality of life for users by providing a wide range of environmental controls. However, smart 

homes, which are truly ubiquitous, require complex systems to be managed by the user. This 

in turn creates the challenge of providing adequate and appropriate user-centric interfaces; 

which is particularly important when the user is either elderly or suffers from physical and/or 

cognitive impairments which restrict their limb movements and/or ability to interact and 

control applications. 

Understanding the needs and capabilities of the end-user is important when designing for 

gaze-only input; as those who can benefit the most from such strategies have very diverse 

needs and capabilities. A basic grasp of the design principles which have been applied to other 

input devices and communication strategies is useful. Low- or no-tech solutions have been, 

and are being, used to a great extent by individuals with motor impairments. In regard to the 

research presented in this thesis, acquiring an understanding of these approaches was 

intended to ensure the design of sustainable gaze selection strategies. 

In a report developed for the COGAIN (Communication by Gaze Interaction) network of 

excellence an estimated 571,250 people in Europe could benefit from gaze interaction (Level, 

2004). Not all of these potential users would choose eye tracking as there are many different 

types of assistive technologies, but according to the market report: 

‘A market share on 5 – 10 percent might be realistic, meaning the market size in EU should be about 

28,000 – 57,000 persons.’ (Level, 2004) 

Until now the term ‘users with motor impairments’ has been used without further definition. 

It covers a range of people who all have in common, that eye movements are their only or 

strongest means of interaction. The input capabilities of the end-user and how they relate to 

gaze as input can be viewed as a spectrum. At one end of the spectrum there are people 

suffering from complete Locked-In-Syndrome (LIS); in this context eye movements are often 

their only controllable form of interaction. At the other end are people who could benefit from 

gaze interaction, but for whom it is not an absolute necessity. 
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4.1 PHYSIOLOGICAL CONDITIONS AND GAZE MODALITY 

The spectrum mentioned above forms the foundation for a useful classification of conditions 

and input modalities. The requirements regarding gaze interaction can be categorized 

depending on the end-users’ ability to provide sole or multiple inputs to the system. As a 

design classification, gaze input can be grouped into three: 

First of all, gaze interaction can be implemented based on a mono-modal input principle, as 

sole input. Users who require this design consideration can generally solely convey reliable 

input to a system by the use of eye movements. 

Secondly, gaze can be implemented as a bi-modal input, where gaze interaction can be done in 

conjunction with another input such as a switch control of some kind. Users who require 

these types of designs might have a controllable finger twitch or have some reliable head 

movements. 

And thirdly, gaze can be viewed in the context of several inputs, where the design premise 

becomes multi-modal. In this context users might have complete or mildly restricted 

physiological input control. This user group will only use gaze if it provides a substantial 

benefit compared to other inputs for certain tasks, as it is not strictly necessary. Figure 45 

relates all of these conditions to the three part classification above. 

 

Figure 45: Modality classification of gaze for various user groups. Physiological conditions have been ordered in the 
end-users ability to interact with gaze as mono-, bi- and multi-modal input. 

4.1.1 GAZE AS SOLE INPUT 
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Motor Neuron Disease (MND) and Amyotrophic Lateral Sclerosis (ALS) are two types of 

diseases which cause almost complete paralyses and cerebral palsy often causes spastic 

paralysis, where gaze interaction can represent the only motor control which does not elevate 

spasms (Buchholz & Holmqvist, 2009). 

Motor Neuron Disease is an overall term for a group of diseases which selectively affect the 

motor neurons in the body. The motor neurons are a type of cell which conveys information 

regarding voluntary muscle activity throughout the body. A disease in these cells can cause 

varying levels of paralyses, affecting the ability to speak, walk, breathe, swallow and limb 

control. Some of the symptoms are: spasticity, muscle atrophy and potential cognitive changes. 

The disease often fluctuates between periods of rapid degeneration and plateaus of relatively 

stable symptoms. 50 % of patients die within 14 months of diagnosis, after which the survival 

rate becomes significantly skewed and people can live for decades with the diseases. Most 

famous is probably Stephen Hawking who has lived with MND for 40 years11. 

ALS is a form of MND. There is slight confusion even within medical circles as to when to use 

MND or ALS, as these are sometimes used synonymously. However, there are many types of 

MND of which ALS is one. People with ALS are often spared cognitive changes although these 

can rarely occur. Overall, muscle atrophy gradually affects the motor system and eventually 

the individual will need both breathing and feeding aids. Of relevance to the research 

conducted here is that the ocular motor system is generally spared in much of the disease 

progression. However, long time sufferers also experience reduced ocular function (Distal et 

al., 2008). 

The term Cerebral Palsy covers different non-progressive motor impairment disorders. The 

disorder is a permanent state which affects the development of movement. There are several 

classifications of the disorder. Spastic cerebral palsy is the main characterization of this is lack 

of control of bodily movements. A less prevalent type is ataxic cerebral palsy in which the 

main symptoms are tremors and reduced muscle strength. Athetoid cerebral palsy affects the 

muscle tone – controlling movement requires a lot of focus and concentration and involuntary 

movements also occur. Hypotonic cerebral palsy causes the individual to appear limp and 

                                                        
11http://www.hawking.org.uk/index.php?option=com_content&view=article&id=51&Itemid=55 

http://www.hawking.org.uk/index.php?option=com_content&view=article&id=51&Itemid=55
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capable of little if any movement. Varying levels of cognition can accompany the different 

types (Krigger 2006). 

For people who suffer from MND, ALS and cerebral palsy, eye movements will most likely at 

some point become their sole source of physiological output; either to another human being 

or to a digital system which can interpret these eye movements. For this reason they have 

been placed on the far left of the spectrum in figure 45. 

The natures of these diseases are progressive and/or episodic. This means that the 

requirements of the end-users are not constant. It would be of benefit to the design of gaze 

attentive systems that those who implement them began considering ways of creating gaze 

systems which can adapt to multi-, bi- and mono-modal input. In this way the end-user can 

become familiar with the system, before requiring gaze as mono-modal input. 

4.1.2 GAZE IN COMBINATION WITH OTHER INPUT MODALITIES 

The diseases and conditions which affect motor skills are many and can present themselves in 

a multitude of ways. The implications of the conditions, in regard to human computer 

interaction, are difficult to classify because each individual end-user differs in progression of 

disease and presentation of symptoms. In the following sections several conditions will be 

described and most of them fall into two and sometimes all three of the modality groups 

depending on progression and the severity, or lack thereof, of the condition. 

A brain aneurysm is caused by the wall of an artery being weak, in which case a dilation of 

blood can cause a ballooning effect from the artery, it is not until it potentially ruptures that it 

usually has any effect. A small unchanging aneurysm has very few if any symptoms. However, 

if a large aneurysm ruptures it can cause death or permanent disability. Physiologically 

varying degrees of paralysis can occur, as well as cognitive impairments (Asari & Ohmoto, 

1993). 

Spinal cord injury is usually a consequence of accidents, tumours or various diseases. It affects 

the brain’s ability to transmit signals through the spinal cord. The consequences range from 

complete motor impairment to relative control of motor function depending on the severity of 

the injury. Many people can recover to varying degrees (Bracken et al., 1997). This is another 

situation where gaze attentive systems should be able to move from one to multiple 
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modalities. That way as the recovery process occurs other inputs could be added to the same 

system. 

Multiple sclerosis is a disease which affects the brain’s ability to send signals through the 

spinal cord. Some of the symptoms for MS are: muscle weakness and spasms, problems with 

coordination or balance, problems with speech and/or swallowing, visual problems including 

potential nystagmus. While there is no cure for MS, there are treatments which slow its 

progression. In the initial phases of the disease the symptoms occur in episodes, these 

episodes increase in length and strength as the disease progresses (Chandler et al., 1997; 

Sadovnick & Ebers, 1993). 

Depending on the severity and nature of the conditions above, end-users can require any of 

the modality types presented in figure 45. 

At the far right of the spectrum in figure 45 are the conditions which could potentially benefit 

from gaze input. Included in this group is a category called main stream. Main stream gaze 

interaction is, as mentioned in chapter 3, a design field unto itself, where the main focus is to 

use eye tracking to enhance the existing input stream. However, there are also contexts in 

which gaze interaction should be applied, not because it is the only form of input, but because 

it is the best input to alleviate strain. Arthritis and repetitive strain injury are two of such 

conditions. 

There are many different types of arthritis which affect the joints of the body, mainly as a 

consequence of age. One of the symptoms may be loss of dextral function and pain 

(Verstappen et al., 2004). Repetitive strain injury is a condition which affects both muscular 

ability and the nervous system and is often caused by the continued repetition of a task. 

Symptoms include non-particular pain in hand, arm, shoulder and back. These conditions 

could potentially be aided by the introduction of gaze interaction in mainstream computing. 

However, this is beyond the scope of the research which will be presented here. 
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4.2 END-USER RESEARCH 

The focus of this research has been on gaze as mono-modal input, mainly because the need for 

innovation in this area would not just be beneficial, it is necessary. The overall aim has been to 

develop designs which not only support the end-user directly by allowing a higher degree of 

autonomous control; but also to enables individuals in the immediate environment. 

Not only has the research criterion been based on mono-modal input, it dealt specifically with 

individuals who are cognitively acute. The design approach has been to attempt to understand 

the entire context of the end-user’s environment and subsequently take this context into 

account in the design process. 

To determine what types of gaze interactions, systems, and applications are important and 

possible for end-users to engage with, several end-users investigations were undertaken. 

Other than observing and engaging with users at conferences, three distinct end-user sessions 

have influenced the course of this research and are described in the following section. 

4.2.1 1ST USER 

The first and most influential interview and observation session was done in February 2007 

with an individual who will be referred to as MC. At the COGAIN conference in 2006 MC gave a 

presentation using a set of pre-typed phrases which he could initiate by eye control and were 

conveyed through speech synthesis to the conference audience. 

He had suffered a brain aneurysm, which had caused almost total paralysis. This made it 

necessary for him to have care around the clock. In the previously presented classification he 

was able to use bi-modal input. He still had the ability to move one hand slightly and thereby 

control a switch. He also had slight head movement control and facial expressiveness, 

although these were not used as input because they were not reliable. Additionally, the 

aneurysm had caused him to have some uncontrollable head movements, severe jitter and 

nystagmus, which all made it very difficult for him to focus on on-screen targets. 

He used a myTobii eye tracker to cover part of his communication, particularly writing e-

mails and so was familiar with eye tracking and the need to first be calibrated for a particular 

eye tracking system. During the visit several attempts were made to complete the calibration 
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process with him, with only relative success, as although it was possible with considerable 

effort to complete a calibration; soon after he would move and the calibration would be lost 

necessitating re-calibrating. A calibration positions the cursor on the screen. This is done in 

regard to the placement of the user and eye tracker. 

He had a myTobii 1750 available for use, which had been bought with charitable funds raised 

by friends who had skydived on his behalf. However, even this top of the line system had 

issues with head-pose invariance (i.e., being able to track the movements of the eye 

independently from head movements and positioning). 

As a consequence of there being problems with the calibration, on the day in question, a low 

tech communication aid was used which allowed him to communicate. Discussions and 

conversation where conducted using an E-tran communication system (Figure 46). 

 

Figure 46: Adapted version of The E-tran communication system 
 

There are many different versions of this type of communication device. Generally it is a 

board made from Plexiglas or cardboard, and allows for communication to occur between two 

people: the person holding the board and the person communicating. This is done via eye 

movements. A cut-out in the centre allows the ‘holder’ to look through the board from the 
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back and see the eye movement direction of the ‘communicator’. Depending on the cognitive 

abilities of the person using the system and the general context, any manner of items can be 

placed on the board, in various ranges of complexity. In its simplest form ‘yes’ or ‘no’, or icons 

of happy or sad smiley faces can be used. In this case letters and numbers were placed in 

groups around the board (an adapted version of this is shown in the figure 46). Words were 

spelt out by selecting individual letters. These were selected by looking at a group of letters. In 

each group there was one letter which could be selected at first glance. In figure 46 these 

letters are portrayed with a black box around them, e.g. the letter ‘A’. This representation was 

applied to the most frequently used letters. Other letters were selected by looking at a group 

of letters and then subsequently looking to the corner which matched the colour of the letter. 

An example of the character selection process is shown in figure 47 where the sequence 

which is needed to spell the word ‘dog’ is shown. To select the letter ‘D’ the user looks at the 

top middle group and then to the green corner. To select the ‘O’ the user looks to the bottom 

right corner and dwells there. The letter ‘G’ is selected by looking at the group in the top right 

and then to the yellow corner. 

 

Figure 47: Spelling the word dog on an E-tran system. 
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The potential ambiguity which could occur if this were a digital system is cancelled by the fact 

that the interpreter of information is another human being. Issues which are of great concern 

in gaze communication system development, such as word and sentence prediction are 

completely overruled by the human-to-human mutual ability to infer meaning from very little 

information. 

During the conversation with MC the carer, who was familiar with him, could understand and 

predict context and meaning before he completed any sentence. As a consequence, this was a 

very efficient way of conducting gaze based communication between a user and someone who 

was familiar with the user’s needs and likely conversations. 

However, as MC mentioned, he still appreciated the autonomy and control which the myTobii 

system afforded him. During one of the conversations he coined the concepts of local and 

global communication. He stated that the needs are different for local communication where 

the user would be talking to carers and family members compared to global communication 

where the user would be communicating long distance through email or chat to others 

including strangers unfamiliar with his communication difficulties 

The most important observation was that of his eye movement patterns in general. One of the 

main problems which MC had was with fixation; as mentioned he had occasional nystagmus 

and large eye jitter. This greatly inspired the idea of using simple large eye movements, which 

would not be affected by jitter, for gaze interaction. In other words single stroke gaze gestures 

which could be completed in spite of jitter and nystagmus. 

4.2.2 2ND USER 

The second visit was with an individual who will be referred to as BBJ. He has had ALS for 12 

years and was in the later stages of the disease. This meant that his eye movements had 

become more restricted. In the previously proposed classification he could only use mono-

modal gaze input. He has written a book, called: Is it better in heaven? (Jeppesen, 1999) as 

well as several articles using gaze interaction. He was on a ventilator, was fed through a tube 

and needed 24 hour care provided by several carers. He used a QuickGlance eye tracking 

system primarily for written communication, which he tired from quickly. Just as MC, he used 

a human-to-human gaze based communication system. 
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This system, however, purely relied on memory. It required that both he and the person he 

was communicating with could memorize a grid of letters. This spelling grid consisted of 

grouped letters in rows (Figure 48). 

 
 

Figure 48: A possible visualization of a spelling grid and BBJ using the spelling grid with one of his carers 
 

The person he wanted to communicate with identified the intended character by first listing 

the numbers of the groups allowing him to select a row (i.e., 1,2,3). The selection was made by 

completing a clear and distinct upward eye movement. Then the carer proceeded to go 

through the individual characters of that group until the preferred one was found – after 

which the process was repeated in order to select the next character, and so on. 

This way the ‘interpreter’ and the ‘communicator’ spelled out each word. Again a large part of 

the communication was based on the interpreter’s ability to predict meaning and finish 

sentences. This approach was very reminiscent of the scanning techniques used in some 

switch controlled interfaces (Shein et al., 1991; Istance et al., 1996). 

The reason for the visit to BBJ was part of another project in which a low cost eye tracker was 

to be tested (San Agustin et al., 2010). The low cost eye tracker was set up in the participant’s 

living room. The screen image was projected onto a smooth wall and the camera was placed in 

close proximity to the participant’s eye and held in place on a fixed adjustable arm. The main 

focus of the trial was the calibration process and the participant’s ability to interact with a 

gaze controlled application (in this case GazeTalk) (Figure 49). 
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Figure 49: BBJ using the low cost ITU gaze tracker. 
 

Several calibration tests were conducted, which revealed useful information regarding the 

ITU gaze tracker and about the user’s ability to interact with the system. The trial showed that 

completing a calibration was consistently achievable and subsequently it was shown that, 

even with a poor calibration, the participant was able to interact with the software 

application. However, a few attempts at using the application were needed before the right 

settings were found. The participant spent 20 minutes using the system adjusting, writing and 

correcting missed selections. After this he was too tired to continue. 

During the trial he also kept communication going through the helper which allowed him to 

comment while he was using the system. His main comments regarding the system were that 

it would be an excellent solution for people with limited funds. 

Two main observations were relevant in regard to the present work. At one point he 

commented that he believed that the difficulties he had calibrating could have been due to the 

fact that his eyes moved slower and lacked the precision they once had. This was an effect of 

late stage ALS, and emphasized the fact that systems and selection strategies created for 

people with motor impairments, especially those with degenerative conditions, need to be 

able to adapt to the changing capabilities of the end-user. A direct quote from BBJ as 

interpreted by his carer was: ‘Det kunne bruges den gang mine øjne var gode’ – ‘ It could have 

been used when my eyes were good’ 
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The other observation of interest was given by his wife and was in regard to the set-up of the 

system rather than the system itself. The wall projected image made it possible for everyone 

in the room to follow what BBJ was saying, without the need for having it go through speech 

synthesis. She believed that this setup could be useful in social circumstances, such as 

Christmas or Birthday celebrations. It was quite clear that for interpersonal conversations the 

memorised grid alphabet was still preferred. 

Just as MC had made a distinction between global and local communication; the distinction 

which was made here was between social and interpersonal communication. 

4.2.3 3RD USER 

Arne Lykke Larsen, who presented himself in the introduction, has had ALS for approximately 

10 years. In the classification used here he is mainly a user of mono-modal input. He could also 

be a bi-modal user as he also to a certain extent had control over various facial expressions 

and slight head movements, as of last time we spoke. However, these potential physiological 

inputs were not used. 

Arne had a breathing apparatus and was fed through a tube in his stomach. When asked if the 

introduction of his book could be used in the beginning of this thesis he wrote back and said: 

‘but that was written so many years ago; probably in 2004. Subsequently I have got much 

worse than described there, and also much better!’ He was asked what eye tracking meant to 

him in his everyday life, this is his reply written in GazeTalk (Hansen et al., 2006): 

‘Eye tracking and gaze interaction means everything for me in my daily life. I am completely 

paralyzed by ALS/MND and cannot speak, so I use gaze interaction, in average, 10 hours a day. 

Gaze interaction and speech synthesis means that I can go to work every day, as associate 

professor in theoretical physics at the University of Southern Denmark, I can give talks at the 

university and at international conferences, I can speak with my secretary, with colleagues and 

students, I can discuss with other physicists, I can do computations and write scientific papers, I 

can write emails to my foreign collaborators and I can have an almost normal working life. 

At home, it means that I can speak with my personal assistants, I can speak with family and 

friends, I can speak with the therapists that come to my home and I can live an almost normal 
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life. Last year, I had a book published about my life with ALS/MND; most of the book was written 

using gaze interaction. So gaze interaction means everything for me!’ 

An interview was conducted with Arne in October 2009. In preparation for this many wrong 

assumptions about how to conduct such an interview were made. Some large boards were 

created, one with 48 words which were believed to be relevant to the topic which was to be 

discussed, namely present and future implementation of gaze interaction technology. The 

other board had 28 images depicting different functions which were thought to potentially 

relate to future applications of gaze interaction (Figure 50). These sets of information were 

created with the intention of fulfilling two functions. 

Primarily, the function was that of mind maps (T. Buzan & B. Buzan, 2006) which were 

intended to guide and inspire the conversation. The reasoning was to refer to numbers on one 

of the mind maps and then use the numbers system to group and prioritize the different 

elements. On the day of the interview each item was detachable from a board and could 

therefore be physically grouped. 

The second function was to ease the burden of conversation. This was inspired by the work 

done by Buchholz et. al. (Buchholz & Holmqvist, 2009) in which they have developed some 

tools for assessing and communicating with people with complex needs. 

Regardless of the intention, this turned out to be the completely wrong way of approaching 

the interview situation with this particular individual. A large part of the autonomy which 

Arne still has is based on his ability to maintain a conversation, in which he can freely respond 

and initiate topics. 



86 
 

 

Figure 50: The two mind maps intended to be used in the interview session with Arne Lykke Larsen. 
 

It became clear that Arne had no interest in playing the mind map ‘game’ which was 

presented and with very good reason. First of all the work which inspired this approach 

(Buchholz & Holmqvist, 2009) dealt with people who suffered from both physiological and 

cognitive difficulties. Arne has all of his cognitive capabilities intact. 

The second reason was that when he uses the eye tracker and GazeTalk with speech synthesis 

his language flows quite easily and it was in his interest to keep the conversation flowing 

without it being tied to the framework of mind maps. The most important lesson in regard to 

interview technique, which was made during this visit, was how not to be tied down by 

assumptions. The assumption made here, was that an interview was to be conducted with an 

individual with complex needs and the preparation was done accordingly. 

In actual fact the interview was with a highly intelligent theoretical physicist, who did not see 

the point in tedious mind maps. However, a four hour conversation regarding the future of 

eye tracking was conducted and it was clear from this conversation that a few distinct wishes 

were important in regard to future implementations. The two main wishes from an ALS 

patient using an eye tracker daily were: 

Removal of the screen: Even though he had the ability to carry on a conversation, the screen 

posed a divide between him and the person with which he was speaking. This was something 
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which was very inconvenient especially in social circumstances with more than one person, 

where the direction of gaze is usually used to signify attention and interest to a specific 

individual. 

Mobility: Being able to control the wheelchair using gaze in a fluent and safe way. Arne had 

switches at the back of his head with which he could control the wheelchair, as he still had 

slight movement of his head. However, the strain of moving his head was much greater than 

that of moving his eyes, so gaze controlled mobility was of interest. The issue of removing the 

screen still applied, for instance – he did not see any point in being able to control a 

wheelchair when going through a park, if he was not able to actually look at the surrounding 

environment at the same time. 

4.2.4 PRACTITIONERS 

Other people who have greatly influenced the direction taken in this work have been the 

experts who work with the end-users on a daily basis, assessing, developing and evaluating 

systems as the technology evolves. Two institutions have in particular played a role. Primarily 

the ACE Centre in Oxford which is dedicated to dealing with individuals with complex needs, 

and has a great deal of experience in the field. Several discussion sessions were held with 

Mick Donegan at the ACE Centre among other places, over the past few years. At the time he 

was affiliated with the ACE centre and was one of the leading international practitioners in 

eye tracking and disabilities. These conversations dealt with four main topics: diversity of 

needs, feedback, sustainability, and mobility. 

Diversity of needs had to do with the many different types of end-users which he had worked 

with over the years who could benefit from eye tracking. The acknowledgement that an 

individual with cerebral palsy, which would often be accompanied by varying degrees of 

spasticity and cognitive ability, has different capabilities and needs to those of an individual 

who has suffered a high spinal cord injury, which often constitutes a prolonged, but stable 

condition and which rarely affects cognitive ability. In turn the needs of individuals with 

spinal cord injuries are different from those of people with degenerative diseases such as ALS, 

where their capabilities change at varying points during the progression of the disease. When 

gaze controlled selection strategies and applications are developed they should ideally be able 

to cater to all of these situations. 
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The discussions on feedback dealt with supporting general navigation and conveying to the 

user where he/she was at any given point in the application. It is also important to convey 

what the consequences of a given activation could be and how to reverse that activation. If 

gaze was the primary source of input for a user it should be the main focus of any design to 

minimize ambiguity, to ensure smooth navigation and system response. 

Sustainability was discussed as an issue of vital importance. Much of the research done in the 

area of gaze interaction focuses on selection speeds and optimizing processes (including the 

research which will subsequently be presented). This has been done mainly because matrices 

such as selection speed, task completion time, words per minute and error rate are quantifiable 

and measurable, which make them easy to analyze and draw conclusions from. A concept such 

as sustainability is more diffuse and requires a different set of matrices which can be 

subjective and must be observed over a period of continued use. Fatigue, perceived ambiguity 

of actions and consistent repeatability could be some of the future measurements of gaze 

interaction. 

Finally, mobility was discussed on various occasions. For chronic wheelchair users there is a 

great need to be able to control movement. With users for whom gaze is the primary input, 

this is however a difficult task, due to the previously mentioned inaccuracy of gaze trackers 

and the nature of eye movements, which can be erratic. Any form of ambiguous instruction 

given to the system, can in the case of mobility have dire consequences. 

The other institution which was visited was the West Midlands Rehabilitation Centre; where a 

meeting was held with Dr. Clive Thursfield who is a Consultant Clinical Scientist and an expert 

in electronic assistive technology. This discussion dealt with a range of existing technologies 

and possibilities for future implementation. The main points which were derived from this 

conversation was again the existence of diversity and the need for input devices to be able to 

be combined in order to create flexible solutions. 

A discussion regarding the many possibilities for alternative inputs was held. Many of the 

existing technologies such as switch control, gaze control, blink control, speech recognition, 

EEG and EMG input, facial recognition, breath input etc. constitute separate research fields – 

with good reason, as the technology in many cases is still being developed. But from a 

practitioner perspective the real need was to be able to combine these different input 
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modalities to fit the capabilities of the individual. In other words, if a user has eye movement 

control as well as facial expressiveness, a combination of gaze control, facial recognition and 

EMG switches could provide the user with the kind of flexible input which could allow for 

control of complex systems. In regard to the previously stated taxonomy, the focus should be 

more on bi-modal and multi-modal gaze interaction. 

4.2.5 GENERAL REFLECTIONS ON END USER NEEDS 

These visits with end-users and experts, along with participation in conferences which have 

dealt with various topics regarding assistive technology, has given a perspective on not only 

what considerations must be taken into account when designing for users with special needs, 

but also what their goals and wishes are which allows the work which has been conducted 

here to be put into a larger context. 

The information acquired during the visits and conversations with experts have resulted in an 

overall understanding of what the needs of end-users with Locked-in-Syndrome can be. 

Overall six key areas need addressing when developing for assistive technology and gaze 

interaction for people in a locked in state: 

1. The ability to point at objects of interest in the user’s environment. 

2. The ability to interact with objects in the environment. 

3. The desire to control a multitude of applications. 

4. Taking special considerations when design peer-to-peer communication systems 

5. Facilitating easy digital communication 

6. Creating gaze controlled wheelchair control (Figure 51). 
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Figure 51: The 6 key areas which must be considered when developing gaze interaction. 
 

Pointing at inanimate objects in the environment is a useful and simple way of inferring 

meaning on to inanimate objects or to guide the hand and sight of someone else. Pointing to a 

glass of water can infer the meaning of being thirsty. Pointing to a shelf in a bookcase can 

guide the hand of someone to pick up a specific book or CD. Eye tracking systems which place 

the gaze direction of the user in their direct environment, such as the ART system, could 

facilitate direct object eye pointing (Shi et al., 2006a). If every item in the user’s environment 

could be recognised by image recognition the user could simply eye point (look) at an item of 

interest and the system could convey this interest to the user’s surroundings. This form of 

interaction could also translate into environmental control tasks, such as turning on the TV or 

a lamp simply by looking at the object. 

Communication facilitated with gaze, such as the earlier mentioned ‘Type-to-talk’ – systems, 

allow users to communicate solely by gaze. These systems all interpret the intention of the 
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user and some use speech synthesis to convey this intention to the user’s surroundings. 

However, a need was expressed to make peer-to-peer interaction not as dependent on a 

screen and also the low-tech version of gaze communication had some definite advantages, 

such as the human prediction abilities, which have yet not been matched digitally. The users 

also expressed an interest in being able to use a multitude of applications, mainly work-

related applications which would allow them to continue their jobs; as well as the wish for 

entertainment in the form of computer games and web-browsing. Finally, there was an 

interest in being able to control a wheelchair, but particularly without it infringing on the 

user’s view of the environment in front of, and around, them. 

In order to accommodate all of these wishes, gaze interaction must become more flexible, 

sustainable and reliable. The reliability is down to the technological advances in the field of 

developing eye trackers and beyond the scope of this work. 

However, increasing the vocabulary of gaze selection strategies can allow a higher level of 

complexity in applications and provide more flexible interaction and, therefore, a wider 

audience assisting with the cost factors mentioned earlier. 

The intention has been to develop selection strategies which could be integrated with dwell 

time to enable sustainable gaze interaction solutions. 

The research which will subsequently be presented is in regard to the concept of single stroke 

gaze gestures (SSGG) for activation control. They could be used for various global commands, 

e.g. controlling zoom interfaces, flicking through websites etc. If gesture based interaction is 

to be implemented successfully, the way information is structured and visualized needs to be 

rethought. 

Research presented in this chapter has been published: 

Mollenbach, E., A. G Gale, and J. P Hansen. “The Assistive Eye: An inclusive design approach.” Contemporary 

Ergonomics (2008). 

Mollenbach, E., J. P Hansen, and A. G Gale. “From On-screen Navigation to Real World Interaction,” The 

Scandinavian Workshop on Applied Eye-Tracking, 2008. 
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San Agustin, J., H. Skovsgaard, E. Mollenbach, M. Barret, M. Tall, D. W Hansen, and J. P Hansen. “Evaluation of a 

low-cost open-source gaze tracker.” In Proceedings of the 2010 Symposium on Eye-Tracking Research & 

Applications, 77–80, 2010. 
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5 PILOT STUDIES ON SINGLE GAZE GESTURES 

In Chapter 3 strokes were established as the basic building block of gaze gestures. A further 

distinction that needs to be made is between: single stroke gaze gestures (SSGG) and complex 

gaze gesture (Figure 52). A SSGG is defined here as the motion between two intended fixations 

to complete activation. The complex gaze gesture is in this context defined as the motion 

between three or more intended fixation points. Earlier the three main principles of gaze 

gestures were defined as being stroke complexity, finite, and continuous gaze gestures. Figure 

53 shows examples of finite SSGG and finite complex gaze gestures. 

 

 

Figure 52: Illustration of single stroke gaze gestures and finite complex gestures. 
 

Complex gaze gestures have the advantage of greatly increasing the interaction vocabulary of 

gaze. However, this brings with it both cognitive and physiological difficulties. Cognitively it is 

difficult to remember a large number of gestures and physiologically it is difficult to create 

and complete them (Porta & Turina, 2008a). SSGG have the disadvantage of being ‘single’; like 

dwell selection, they represent one action. The great advantage of the SSGG is that it is easily 

learnt and sustained; both cognitively and physiologically it requires less of its user than both 

dwell selection and complex gaze gestures. 
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Continuous visualization-based gaze gestures are often a combination between fixations, 

saccades and smooth pursuits, and could therefore be construed as complex in nature. 

However, SSGG can be an intricate part of the selection process used to signify specific 

actions; by having the SSGG occur at specific places in the layout. The pEYE’s system is the 

clearest example of this, where a SSGG across the border of a pie instigates an expansion of 

the system. The same activation is used in the IWrite interface, where a SSGG across the outer 

rim confirms the selection (Urbina & Huckauf, 2007) and this is also the case for the 

contextual switching presented by Morimoto and Amir (Morimoto & Amir, 2010). 

Stroke gestures on mobile devices, such as finger-strokes in different directions, have become 

extremely popular because they are easily achieved and sustained even in the relatively noisy 

context of mobile use. Translating the principle of stroke gestures into a gaze selection 

method has been the focus of this research. 

Single stroke gaze gestures could be used for overall navigation (i.e., switching from a 

communication application to an environmental control application). This would be 

equivalent to toggling in Windows that is performed by the ‘Ctrl+tab’ function or the ‘Spaces’ 

functionality on the Mac that allows users to switch between various desktop environments. 

SSGG could also be implemented as various forms of modal commands; such as simulating the 

Enter-key or spacebar, whose designated action depends on which mode the system is in 

(Raskin, 2000). An example of a mode dependant command is the spacebar causing either a 

gap between words in text editing applications or a ‘jump’ action in some avatar based 

computer games (e.g. World of Warcraft). 

In the field of finite gaze gesture research no one has looked at SSGG as a selection method, 

even though single stroke gaze gestures are the basic components of all finite gaze gestures. 

The main reason for the lack of research is, most likely, the assumption that they are too 

error-prone. There could be a high correlation between natural search patterns and the single 

point-to-point gaze gesture. This correlation between natural visual search patterns and gaze 

gesture activation is the equivalent of the Midas touch issue for dwell selection, as explained 

in chapter 2 and 3. This potential overlap is referred to as accidental gesture completion. 

Accidental gesture completion is defined as the potential correlation between perception and 

selection eye movements, which can result in faulty selections. For gaze interaction purposes 
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it is desirable to have a low level of accidental gesture completion thereby minimizing the 

number of erroneous selections. 

In subsequent sections research on the SSGG will be presented. This will contribute to the 

understanding of whether or not SSGG can be employed as a selection method and what the 

innate properties of this interaction element are. In Chapter 3 the potential advantages of gaze 

gestures were presented as being: Speed, freeing up on-screen real-estate, and avoiding the 

Midas touch problem. 

5.1 INITIAL PILOT STUDY 

5.1.1 DESIGN CONSIDERATIONS 

The goal of this pilot study was to investigate whether SSGG represented a feasible selection 

strategy, what kind of feedback the user might need, and to examine whether selection times 

could be comparable to standard dwell selection completion times (i.e., 450-1000ms). Two 

pilot studies were conducted in this regard; the first is presented in this section. 

Two main design decisions regarding the layout of the interface were made. First of all the 

centre of the screen was unaffected by gaze. Secondly, the initial point of gaze in itself should 

have no effect on the system. The solution became to have only a rim around the edge of the 

screen that was affected by gaze. This idea was further substantiated in research done by 

Tatler who found a bias tendency to fixate at the centre of the screen, regardless of saliency 

patterns (Tatler, 2007). In other words, when viewing images on a screen the periphery is 

rarely inspected, even with high saliency objects placed there. As a consequence, using the 

periphery of the screen, particularly in a sequence of multiple fixations, can potentially 

decrease the amount of accidental selections, because fixations rarely occur there. 

Furthermore, search patterns rarely initiate from there, thereby decreasing the risk of 

accidental gesture completion. 

Most of the initial design considerations in the pilot studies were in regard to feedback; how 

to provide feedback to the user as to what was being selected. Initially, different rim designs 

were considered, and in particular rim complexity was of interest. The idea was that several 
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fields could exist on each side of the frame and that combining these fields in various ways 

could result in different activations (Figure 53) 

 

Figure 53: (a.) shows an example of a rim design that had four fields on each side. (b.) an example of a two field rim 
design. (c.) the single rim design 

 

The basic concept was that a selection could be initiated in any field. Depending on the 

subsequent completion field the consequences of the SSGG would differ. 

One of the main challenges, in regard to feedback, was to provide navigational information to 

the user both in both the central and peripheral vision, so that the user would be clear on the 

consequences of a given action. In other words, because the selection was to be completed by 

looking from one edge of the screen to another, it was important for the user to be aware at 

the initial point of gaze what the consequences of a given gesture would be. In order to 

facilitate this, a local indicator that was intended to afford a small local overview of possible 

selections was designed. 

Figure 54 shows the local indicator design visualized in the initial layout. (a.) The full interface 

is shown with the red circle indicating where the user is looking. The arrows show that from 

this initial selection field three potential activations are possible: yellow, red and blue. (b.) 

Shows the local indicator, which skates along the border of whatever field was being viewed. 

This is intended to grant a central vision overview. (c.) A stationary indicator was also present 

at the potential completion field, to provide the user with a peripheral mark to follow. 
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Figure 54: Visualization of initial design considerations: a. is the complete interface; b. is the local indicator; c. is the 
peripheral indicator. 

 

These were some of the initial ideas; however, not all of them made their way into the 

experimental implementation. The design of multiple initiation fields, with multiple completion 

fields was abandoned; as it would move the focus of the investigation from exploration of an 

interaction principle to the design of a particular layout. It was therefore decided to keep the 

design as simple as possible. Only one initiation field per side and only one completion field 

per initiation field (directly opposite) was used. 

5.1.2 DESIGN IMPLEMENTATION 

The actual test environment consisted of the unaffected centre of the screen in which tasks 

were to be displayed, and four single initiation and completion fields at the edge of the screen. 

Three feedback principles were implemented: the permanent initiation indicator, the central 

vision indicator and the peripheral vision indicator (Figure 55). 
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Figure 55: Three feedback indicators used: Permanent initiation feedback, central vision feedback, peripheral vision 
feedback. 

 
 

The permanent initiation indicator showed which colour could be selected from that initiation 

point. In other words, the first step to select the colour red was to look into the left field, to 

select green an initial glance in the top field was required, blue was initiated to the right and 

yellow in the bottom field. 

When an initiation field was glanced at two other feedback processes would occur. First, a 

central vision indicator would appear and skate along the border of the selection field. Even 

though the idea of multiple completion points had been abandoned, the design of the local 

indicator was the same. It indicated what side of the screen should be looked at and what 

selection the particular SSGG would complete. The second feedback was the peripheral vision 

indicator. When an initiation field was glanced upon a matching coloured square would 

appear at the opposite side of the screen, and would remain there until the selection was 

either completed or cancelled. This was intended to provide a peripheral directional guide. 

There are two reasons why colour selection was at the foundation of these tasks. Colours are 

abstract and carry very little intrinsic symbolism. The distinction between the early abstract 

research done (Ware & Mikaelian, 1986; Jacob, 1991a) and the more contextual, application 

driven approaches seen in recent research (Istance et al., 2010; Hansen et al., 2006; Majaranta 

& K. J Räihä, 2002) was introduced in Chapter 3. There are advantages to both approaches; 

viewing a selection strategy derived of any known context minimizes the amount of 

confounding variables. However, by not viewing the selection strategy in a well-known 

context it becomes very difficult to make comparisons with existing methods. Because the 

selection strategy was new the approach taken was more fundamental. Therefore an abstract 
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exploratory design approach was taken in this research, where the focus remained primarily 

on the selection strategy itself rather than on finding task-specific solutions. 

The nature of the task in this experiment was, as mentioned, abstract. Four different colours 

could be selected by the four different SSGG. An eye movement from the left to right side of 

the screen caused the colour red to be selected. Moving the eyes from top to bottom resulted 

in a green selection; from right to left the colour blue would be selected and from bottom to 

top selected the colour yellow. Figure 56 shows the initial task screen, where 8 different 

coloured boxes were presented to the participant. Selections were made in the sequence in 

which the coloured boxes were presented. 

 

Figure 56: The initial task screen and a visualization of the selection process of the colour green 
 

A visualization of the selection process of the colour green is also shown: 

- Step 1: the user looks at the green initiation field, the central vision indicator and the 

peripheral indicator were both on. 

- Step 2: gaze would move out of the initiation field and the central vision indicator 

would be turned off. An initiated action was set to be completed within 1000ms. At this 

point 3 possible actions could be taken: 
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o The first was to simply remain in the centre of the screen until the 1000ms 

timer ran out. The peripheral indicator was visible while the timer was running, 

so the participant could know when the timer had run out and the selection was 

cancelled. 

o The second course of action was to enter one of the adjacent fields or re-enter 

the green field, in which case the timer would be reset, the peripheral indicator 

turned off and the current activation would be cancelled. 

o The third and final option was to complete the selection within the 1000ms by 

looking to the opposite selection field. 

- Step 3, if the selection was completed and it corresponded to the colour in sequence a 

small box appeared under the just selected colour. 

Another visualization of this is shown in figure 57, where the colour red is selected as the 5th 

selection. 

 

Figure 57: Selecting the colour red as the fifth selection. 

5.1.3 EXPERIMENTAL DESIGN AND RESULTS 

The task was to select eight colours in the same sequence. The application was written in Java 

using the Eclipse editor. The experiment was conducted using a QuickGlance 3 eye tracker 

with a 13 inch monitor and a screen-resolution of 1024x768 running at 20 frames/sec. Two 

participants completed the initial pilot study in which they selected the sequence of 8 colours 

10 times. Each direction was completed twice for every eight selections. Making a grand total 

of n=160 observations and n=40 per selection direction. Selection completion times were 

registered as the time which elapsed between exiting a selection field and entering a 

completion field. The boundaries of the selection fields were defined by coordinates. So in 
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other words selection completion times could be described as lasting from the last gaze 

coordinates of an initiation field to the registration of the first gaze coordinates in the 

completion field. A timer event was fired when the boundary of an initiation field was crossed 

and ended when gaze moved across the boundary of the completion field, the elapsed time 

was registered (Figure 58). 

 

Figure 58: The timer event for selection completion time. 
 

If a gaze gesture was initiated and the subject subsequently looked at an adjacent field, the 

selection process would be cancelled and the system reset. If after initiation the subject 

simply looked at the centre of the screen for more than 1000ms the selection was cancelled 

and the system reset (Figure 59). 

 

Figure 59: The process of selection cancelation. 
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The two null hypotheses were: 

1. There was no difference between selection completion times for SSGG in four different 

directions (Right/Left; Left/Right; Top/Bottom; Bottom/Top). 

2. There was no difference between overall horizontal and vertical SSGG. It was also of 

interest to see how the grand mean of this type of selection would compare to an 

assumed dwell selection time of 400ms. 

A factorial analysis was conducted. The independent variable was selection direction with four 

levels (Left/Right; Right/Left, Top/Bottom, Bottom/Top). Selection completion time was the 

dependent variable measured in milliseconds (ms). 

The data were then examined to see whether or not the distribution was normal. A 

Kolmogorov-Smirnov test showed that the data was negatively skewed and significantly 

deviated from a normal distribution. Logarithmic-, squared- and reciprocal transformations 

were attempted but the assumption for normal distribution which is (among others) required 

when using parametric statistics was violated. Also Maucley’s test showed that sphericity 

could not be assumed and this was further substantiated by the Greenhouse-Geisser test 

where ε = 0.543 (this is a measure between 0 and 1, the further from 1 it is the more likely 

that sphericity cannot be assumed, even with a corrected F-ratio). For these reasons a non-

parametric analysis was chosen instead12. 

OVERALL DIRECTIONAL EFFECT 

After ranking the original scores, Friedman’s non-parametric ANOVA for repeated measures 

was used to evaluate the differences in selection completion time depending on selection 

direction (Figure 60). The four mean values based on n=40 observations were (Table 1): 

                                                        
12 This is the statistical methodological approach which will be used to analyse all data in this 

thesis: The data will be explored and the appropriate statistical methods applied. However, 

the description of the process will not always be as elaborate as it will be for these initial 

studies. Also all plots will be based on mean values, with error bars representing standard 

error of mean. 
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Right / Left Left /Right Top /Bottom Bottom/Top 

333ms 349ms 224ms 330ms 

 
Table 1: Overall directional mean values of selection completion times. 

 
 

There was an overall significant effect between 

selection completion times in the four different 

directions of left/right; top/bottom; right/left 

and bottom/top.    
  60,791 (3, n=40), p < 

0.01. A Bonferonni adjusted post hoc analysis 

revealed that only the top/down motion was 

significantly faster than the other directions.  

 

 
Figure 60: Analyses of selection completion time based on selection direction. Error bars represent standard error 

of mean 
 
 

HORIZONTAL AND VERTICAL EFFECT 
After ranking, the Wilcoxon signed-ranks test was used. Overall horizontal and vertical 

selection direction observations were compared based on selection completion time measured 

in ms (Figure 61). 

The two mean observations were based on n = 80 observations per result were: 

Horizontal = 341ms and Vertical = 277ms.  

There was a significant difference between 

the overall horizontal and vertical conditions 

Z = -5, 049; p <.001. The horizontal SSGG 

were significantly slower than the vertical 

SSGG. 

 

Figure 61: Analysis of overall Horizontal and Vertical gaze gestures based on Selection completion time. Error bars 
represent standard error of mean 
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The selection times were considered in regard to an estimated 450ms dwell selection 

threshold. The grand mean was 309ms with a median value of 266ms. These both fall below 

the 450ms threshold. The 25th percentile was 204ms and the 75th percentile was 344ms. 

DISCUSSION 
Both null hypotheses were rejected, as there was a significant difference in directional 

selection completion times, both within the four different directions and within horizontal and 

vertical selections. The first observation was that completing a gesture from the top to the 

bottom of the screen was significantly faster than any other SSGG. Whether this trend would 

be systemically significant would require a larger scaled study. Determining which directions 

of gestures are most effective has potential implications on how gaze gestures and their 

related interfaces should be implemented. 

The second observation made was in regard to general direction. These initial results showed 

a significant difference between vertical and horizontal gestures, in favour of the vertical eye 

movements. This was a carryover effect from the top/down gaze gesture being so fast. 

However, it could also have been the result of the difference in distance needing to be 

covered: the screen-resolution was 1024x768, which meant that horizontal movements were 

longer than vertical ones. 

Finally, the general result of 310ms was interesting for two reasons. First of all it was 

relatively fast compared to an existing dwell-time selection standard of approximately 

400ms-1000ms, and there were several indications that the selection time could improve 

further. The fastest selection was 125ms and the slowest was 734ms. Because of these 

outliers it was relevant to also look at the median value instead, which was 266ms. Also, in the 

context of saccadic eye movements, using approximately 300ms to move from one side of the 

screen to the other, within 10˚ of visual angle, was a very long time. There could be several 

reasons for this; the relatively low frame-rate of the QuickGlance system (20 frames/sec) 

could be a factor. The program was using a Windows timer to register timer events and this 

could be causing a delay in the registration of entry and exit points. Also participants could be 

making multiple saccades during the course of completing activation. 

Even though it was only a small, preliminary study, the conclusion was that there were 

enough issues of interest to warrant further investigation. 
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5.2 EXTENDED PILOT STUDY 

The next step was to conduct a larger scaled experiment in the same test environment, in 

order to investigate whether or not the initial trends found in the pilot could be substantiated. 

Also a larger scaled experiment could give insight into whether or not this experimental 

design was the most appropriate way of assessing SSGG. 

5.2.1 EXPERIMENTAL DESIGN AND RESULTS 

12 participants (5 female) participated in the study. The task was to complete eight SSGG 

selections in a specific order repeatedly; the order of the sequence was the same for each 

repetition. Initially, the task was completed 5 times for practice after which it was completed 

10 times. This resulted in n=80 observations per participant and N = 960 for the total dataset. 

The experiment was conducted using the same QuickGlance 3 eye tracker with 13 inch 

monitor and a screen-resolution of 1024x768, running at 20 frames/sec. After the experiment 

the users were asked which activation direction they preferred. 

The two null hypotheses were: 

1. There was no difference in selection completion time for the four directions of SSGG. 

2. There was no overall difference between horizontal and vertical SSGG. Again it was of 

interest to see if SSGG would be faster than an assumed dwell time selection of 450ms. 

A factorial analysis similar to the previous experiment was carried out.  

  

 
Figure 62: Distributions of scores of selection completion times. To the left, a histogram of scores, with a distribution 

curve. To the right, a box plot with the median displayed as the black line and outliers at the top. 
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A Kolmogorov-Smirnov test confirmed what was already apparent from the histogram and 

box plot above (Figure 62); which was that the data were negatively skewed and significantly 

deviated from a normal distribution. Logarithmic-, squared- and reciprocal transformations 

were attempted but the assumption for normal distribution was violated. Sphericity could 

also not be assumed as Mauchley’s test was p <.05. However, the Greenhouse-Geisser 

correction was ε = 0.955 which means that a corrected F-ratio could have been used, if the 

data had been normally distributed. Due to these circumstances non-parametric tests were 

also used to analyse these data. 

OVERALL DIRECTIONAL COMPARISONS 
The data were analyzed in regard to selection directions after ranking, Friedman’s non-

parametric repeated measured ANOVA with a Bonforonni adjusted post hoc comparison was 

used; selection direction was the main factor and selection completion time the dependent 

variable measured in milliseconds (Figure 63). 

The four mean values based on n=240 observations were (Table 2):  

Right / Left: Left /Right Top /Bottom Bottom/Top 

337ms 330ms 355ms 312ms 

 
Table 2: Mean selection completion time base on selection direction. 

 

There was an overall significant effect 

between selection completion times in 

the four different selection directions. 

   
  31,455 (3, n=240), p < 0.01. A 

Bonferonni adjusted post hoc analysis 

revealed that the top/down motion 

was significantly faster than the 

bottom/top activation. There was no 

significant difference between any of 

the other selection directions.   

Figure 63: Analyses of selection completion time based on selection direction. Error bars represent standard error of 
mean. 
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HORIZONTAL AND VERTICAL COMPARISON 
The data were again ranked and analysed using the Wilcoxon signed-ranks test to compare 

the overall selection completion times of horizontal and vertical SSGG (Figure 64). 

The two observations over mean values based on n = 480 observations per were: 

Horizontal = 334, 07ms and vertical = 334, 02ms.  

There was no significant difference between the 

overall horizontal and vertical conditions Z = -

0,778; p = 0.437. 

 

Figure 64: Analysis of overall Horizontal and Vertical gaze gestures based on Selection completion time. Error bars 
represent standard error of mean 

 

PREFERENCES 

The participants were presented with questionnaires and asked about their preference of 

direction. They were asked which selection direction was their least and most preferred 

(Figure 65). 

 

Of the 12 participants who took part in this 

experiment, none preferred the Bottom/Top 

motion or the Right/Left motion either. They 

were split down the middle with regard to 

whether they preferred the Top/Bottom or 

Left/Right gestures. 

Figure 65: User preferences based on selection direction. 
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Selection completion times were evaluated in regard to an estimated 450ms dwell time 

threshold. The mean (µ) value was 334ms with a median value of 267ms which both fell 

below the 450ms threshold. The 25th percentile was 250ms and the 75th percentile was 

391ms. Overall, 83% of all selection times fell below the chosen 450ms threshold. 

5.3 DISCUSSION 

The first null hypothesis was rejected as there was a significant difference in directional 

activation completion times within the four different directions, with the difference occurring 

mainly in regard to top/bottom gesture. 

The second null hypothesis is retained as there was no significant difference between overall 

horizontal and vertical selections. 

The first observation was that the top to bottom SSGG was significantly faster than the other 

directions. This mirrored the results found in the initial pilot study and could indicate that this 

activation could be assigned to actions which require rapid repetition. Half of the participants 

also identified this as their preferred gaze gesture direction; which was indicative of this 

potentially being an effective gesture direction. 

The second observation was that there was no overall significant difference between 

horizontal and vertical SSGG. This indicates that there might not be any real benefits in 

implementing particular actions to different directions depending on frequency of use. 

The preferences found here reflect the reading directions in western culture. It could be 

interesting to examine the preferences of Chinese or Arabic users as these could be different. 

At least there is some indication that there might be an attention bias based on lateralized 

brain functions. In other words certain gaze patterns could be preferred based on conditional 

responses that are either culturally or physiologically induced. 

The grand mean for all SSGG was 334ms and the median was 267ms. both these results 

indicate that as a gaze selection strategy then SSGG can match dwell selection speeds of 

450ms. However, the question still remains from a physiological point of view: why were they 

not faster? 
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There are some issues with the experimental design that need to be taken into account when 

understanding the results above and also in understanding the design of the subsequent 

experiments. What was learnt during the two pilot studies was first and foremost an 

understanding of how to design, conduct and analyse this type of scientific experiment. 

Because of the learning curve involved, the validity of the actual results should be questioned, 

as some of the choices regarding especially the design of the experimental test-bed were 

erroneous to begin with. 

5.3.1 PROBLEMS CONCERNING THE EXPERIMENTAL DESIGN 

There were several design issues that will subsequently be described and that formed the 

foundation of the next iteration of experiments. 

A main concern in regard to the experimental design was that the gaze gesture selection had 

not been compared directly with dwell-time selection within the same task framework. In 

other words the results of this experiment were compared to an estimated dwell-time average 

of 450ms, which was derived from literary references and practitioners’ advice. However, this 

could be viewed as an unfair comparison as a faster dwell-time might have been sufficient in 

this task. How to compare dwell-time and gaze gesture selection in a meaningful way is a 

general question throughout this research. 

Another experimental design issue was that the order of selections was the same each time 

the user repeated the task, this could have caused a bias towards certain selection patterns, as 

these could have been based on memory rather than discovery and some selection patterns 

could have been easier to remember and complete than others. It was impossible to conclude 

whether the initial significant effect found in regard to the Top/Bottom gestures was real or 

whether it was due to the placement of the target in the sequence. Also, any abstract 

comparison to real world tasks is difficult, as most applications require more navigation and 

discovery, for instance looking at documents, websites, using a word processing application, 

game etc. 

The decision to leave out dynamics in the task, in other words nothing moved or required the 

user to explore the entire screen, meant that the SSGG activations were done with virtually no 

interference from natural exploratory eye movements. Again, most real world tasks have 
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elements of orientation and navigation unless the user is working in a very well known 

interface. 

Some design choices turned out to be unnecessary and created more confusion than clarity. 

The local indicator that was implemented to give people an indication of potential moves 

within their central field of vision was unnecessary as the actions are simple. Also the fact that 

the target zone lit up to indicate when and where selections were possible (peripheral 

indicator) seem needless again because of the simplicity of the actions. 

 

The major advantage of SSGG was their simplicity; creating an overly complicated interface 

defeats the purpose. Also, a critical interface mistake was made in allowing the cursor to be 

visible. This would occasionally cause the user to follow the cursor rather than focus on the 

intended fixation point. Furthermore, the initiation and completion fields were of equal 

thickness but as mentioned earlier the resolution was 1024x768 requiring longer strokes for 

the horizontal selections as the distance covered was longer. 

There was no error measure in this initial design. This made it impossible to examine how 

often faulty selections occurred due to accidental gesture completion. As this is the equivalent 

of the Midas touch problem for gaze gestures, this must be included in any thorough 

examination of gaze gestures. 

There were also technical difficulties. The eye tracker used had a frame-rate of approximately 

20 frames per sec, which was relatively low by modern standards. Also, there was quite a lot 

of difficulty in calibrating people, calibration was attempted with 20 people, but only 12 

actually managed to complete the experiment. 

Other experiments will be presented which have sought to address the issues presented in 

this last section. Even though these reflections indicate that the results presented in this 

chapter are not sufficiently supported by the experimental design; the experience of 

conducting the experiment, yielded a great deal of information both qualitatively and 

quantitatively, which have benefitted future designs which are described in subsequent 

chapters. 
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Elements of the research presented in this chapter were published in: 

Mollenbach, E., J. P Hansen, M. Lillholm, and A. G Gale. “Single stroke gaze gestures.” In 

Proceedings of the 27th international CHI conference on Human factors in computing systems, 

4555–4560, 2009. 
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6 SINGLE STROKE GESTURES AND DWELL TIME SELECTION 

This experiment was designed to facilitate a direct comparison between two types of single 

stroke gaze gesture (short and long), and dwell selection. 

6.1 EXPERIMENTAL DESIGN CHANGES 

The main intention was to develop an experimental test environment which took into 

consideration the previously mentioned shortcomings of the initial design. The elements 

which needed correcting were: 

- Simplifying the interface and removing the cursor 

- Introducing dynamics in the selection process to force more elaborate visual search 

patterns 

- Presenting targets in a random order 

- Creating a direct comparison to dwell time selection 

- Making sure the distance covered was equal for both horizontal and vertical actions 

- Introducing longer and shorter SSGG 

- Introducing multiple measures 

The abstract nature of the task was retained. This was done because the intention was to be 

able to investigate the fundamentals of SSGG. 

6.1.1 SIMPLIFYING THE INTERFACE 

As mentioned the focus of the design of the pilot experimental test environment was feedback 

and ensuring that the interface supported navigation. However, while conducting the 

experiment it quickly became clear that all of the extra navigational tools were unnecessary, 

because of the simplicity of the actions. So both the central and peripheral indicators were 

removed from the interface and the permanent indicators were exchanged with outlines of the 

initiation areas. In other words the initiation field for the colour red, which could be selected 

by looking from left to right, had a red outline and likewise for the other initiation colours 

(Figure 66). 
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Figure 66: Simplified single gesture interface. To the left the user is looking at the centre of the screen and no 

feedback is given. To the right the user is looking at an initiation field, which switches to light grey as feedback. 
 

In the pilot design the cursor had been visible in order to provide feedback. This also turned 

out to be more confusing than beneficial as participants occasionally would start following the 

cursor rather than look at their next target. When looking at the centre of the screen (a) no 

feedback would be given and the only dynamic feedback given to the user was that (b) a field 

would shift to a light grey both when it was used as an initiation point and as a completion 

point. 

6.1.2 INTRODUCING RANDOMNESS AND DYNAMICS 

The targets in the pilot design were static in respect to how they were situated on the screen 

and the sequence in which they had to be selected. In this iteration of the experimental design 

the targets were introduced randomly at the top of the screen after which they proceeded to 

descend down the screen at a constant speed. The object of the task was to select the target 

which had fallen the furthest before it disappeared at the bottom of the screen (Figure 67). 

There were two main reasons for implementing this type of task. First of all it introduced a 

time pressure incentive, so that participants would complete the selections as quickly as 

possible. Secondly, the intention was to explore whether this selection strategy would work in 

an environment with dynamic content. 
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Figure 67: Dynamic and random presentation of the targets in the new tasks. The arrow represents the direction in 
which the targets are falling. The circle around the green target indicates that this is the target up for selection. 

6.1.3 DESIGNING A COMPARISON TO DWELL 

In the pilot studies the grand means were simply considered in regard to a standard dwell 

selection time of 450ms. However, recent research has shown that if users are allowed to 

dynamically adjust their dwell selection time they could go from an average of 876ms to 

282ms per activation in a typing application (Majaranta et al., 2009). It was therefore 

imperative to try and create a test environment in which SSGG and dwell selection of varying 

selection completion times could be compared. Four dwell-buttons were placed at the bottom 

of the screen on the dwell interface. The task was the same for both selection methods (Figure 

68). 

 

Figure 68: The basic layout of the dwell selection interface and the task 
 

Targets were selected by fixating on the dwell-button which corresponded in colour to the 

current target. Feedback regarding the selection process was provided on the dwell-button. 

When a dwell-button was fixated upon then a small white circle would appear at the centre 

and proceed to expand for the duration of the dwell period; when the circle ‘filled out’ the 
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dwell-button the selection was complete (Figure 69). Looking away from the target at any 

point would break the activation process, which then needed to be started again, if the 

selection was to be completed. Dwelling longer on a target than the dwell period would 

initiate a new selection, if maintained then a new selection would be completed. 

 

Figure 69: The dwell time activation feedback. By maintaining a fixation on the target the white feedback circle 
would increase in size until it filled out the entire dwell button. 

 

Several different dwell selection times were implemented in order to determine what the ideal 

threshold for dwell selection would be in this particular interface. 

6.1.4 EQUAL LENGTH OF GESTURES AND INTRODUCING LONG AND SHORT GESTURES 

The horizontal selection fields were made larger to ensure that there was an equal distance to 

cover when completing horizontal and vertical SSGG. 

To establish whether it had actually made a difference in the first place, gesture selection 

fields of different sizes were implemented. Long SSGG required the user to cover 70% of the 

screen and short SSGG only required movements to cover 40%. This resulted in another 

experimental factor which was the potential difference between long (Figure 70a) and short 

SSGG (Figure 70b). 

 

Figure 70: Illustration of long (to the left) and short (to the right) gaze gestures. 
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6.1.5 INTRODUCING TEST MULTIPLE VARIABLES: 

Finally, a major change in the design was the introduction of several more dependent 

variables. 

Selection completion time was still measured, for the gaze gesture conditions, by recording the 

time of exit from an initiation field to the point of entry in a completion field. Also this action 

still had to be completed within a 1000ms timeframe or the activation would be cancelled. 

Dwell-time selections were fixed at 100ms, 300ms, 400ms, 500ms, 600ms, and 1000ms. 

Task completion time was a measure of the elapsed time between successful activations, which 

could include erroneous selections and missed targets. 

Two types of error measurements were introduced and applied to both gaze gesture and 

dwell selection. The first error type was wrong selections, referred to in future as selection 

error. This measured how often the user completed a selection which did not match that of the 

current selection task; in other words if the task was to complete a green selection, then any 

other selection except a green selection was considered an error. Selection error was intended 

to be an indication of the level of accidental gesture completion. 

The second error type was the number of targets which were missed, referred to in future as 

target error. As mentioned the object of the task was to select a target before it disappeared at 

the bottom of the screen. If, however, the target was not selected then it was considered a 

target error. This was intended to be an indication of how well the selection method worked 

in regard to the inherent time pressure in the task as well as being indicative of ease of use. 

6.2 COMPARISON OF DWELL, LONG AND SHORT GAZE GESTURES 

The purpose of this experiment was to compare dwell selection and SSGG of different lengths 

to each other. 

The participants were introduced to the test environment and task framework before 

beginning the experiment proper. Twelve participants took part (6 female). The experiment 

was conducted on a Quick Glance 3 eye- tracker with a sampling of 20 frames/sec. The 

application was written in Java and developed on the open source Eclipse editor. Each 

participant was calibrated successfully and none of them were colour-blind. Before each trial 
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the participants were allowed to practice with the interaction methods for approximately 10-

15 minutes. 

The experiment was balanced based on two overall parameters: selection methods (Dwell 

selection [D], long SSGG [LG] and short SSGG [SG]) and whether or not dwell selection started at 

100ms and then proceeded to 1000ms or vice versa. The order of the various tests was 

conducted as shown in table 3. This was done in order to examine whether there was a 

potential learning effect.  

Participant  1. Activation Strategy  2. Activation Strategy  3. Activation Strategy  Dwell Time Starting 
point  

1  LG  D  SG  100ms  

2 
 

SG  LG  D  1000ms  

3 
 

D  SG  LG  100ms  

4 

 

LG  D  SG  1000ms  

5 
 

SG  LG  D  100ms  

6 
 

D  SG  LG  1000ms  

7 

 

LG  D  SG  100ms  

8 
 

SG  LG  D  1000ms  

9 
 

D  SG  LG  100ms  

10 

 

LG  D  SG  1000ms  

11 
 

SG  LG  D  100ms  

12 
 

D  SG  LG  1000ms  

 
Table 3: The balanced design of the experiment 

 

Each participant completed 20 selections for long SSGG, short SSGG and for each of the fixed 

dwell selection completion times of which there were 6; this meant that each participant 

completed 160 selections. Therefore overall there were n=1600 observations. 

The independent variable in this experiment was selection method, which had eight levels: 

Long SSGG, short SSGG and six dwell-time activation levels (100ms, 300ms, 400ms, 500ms, 

600ms, 1000ms). 

The dependent variables were selection completion time, task completion time, selection error 

and target error. 
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The null hypotheses which this experiment sought to reject or retain were: 

- Null 1: There was no difference between the activation completion times of long SSGG 

and short SSGG. 

- Null 2: There is no learning effect, in terms of activation completion, associated with 

beginning the trial with long SSGG or short SSGG. 

- Null 3: There was no difference between the task completion times of any of the eight 

conditions. 

- Null 4: There was no difference in the amount of selection errors which have occurred 

during any of the conditions. 

- Null 5: There was no learning effect, in regard to selection errors, associated with 

beginning the trial with long SSGG or short SSGG. 

- Null 6: There was no learning effect, in regard to selection errors, associated with 

beginning the experiment with 100ms and then progressing up to 1000ms or starting 

with 1000ms and progressing down to 100ms 

- Null 7: There was no difference in the amounts of target errors which occurred in the 

various conditions. 

- Null 8: Combining selection completion time and selection error into a new measure 

would show that there was no difference in the augmented selection times between the 

various conditions. 

6.2.1 SELECTION COMPLETION TIME EFFECTS 

The direct comparison of selection completion times was only relevant when looking at the 

SSGG conditions, as the selection completion time was fixed in the dwell selection conditions. 

Before statistical methods were chosen the data were explored to determine the appropriate 

course of action. First of all the data were examined to determine the distribution.  
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Figure 71: Normal distribution and box plot of activation completion time for long and short gestures 
 

A Kolmogorov-Smirnov test confirmed what was already apparent from the histogram and 

box plot above (Figure 71); which was that the data were negatively skewed and significantly 

deviated from a normal distribution. Transformations of the data were done, but with no 

significant results. Maucley’s test was also significant which meant that sphericity could not 

be assumed. Because these assumptions were not met non-parametric analyses were chosen 

instead. 

After ranking the scores, the Wilcoxon signed-ranks test was used to compare the means 

(Figure 72). Selection method was the independent variable with two selected levels (short 

SSGG and long SSGG) and selection completion time was the dependent variable measured in 

ms (milliseconds). The mean values of the two conditions were based on n = 200 observations 

per result. The grand mean for both selection methods = 245ms; for Long SSGG = 301ms and 

Short SSGG = 190ms.  

There was a significant difference between long 

and short SSGG Z = -8, 020; p <.001. Short SSGG 

were significantly faster than the Long SSGG.  

 

Figure 72: Mean of activation completion times for long and short gaze gestures. Error bars represent standard error 
of mean 
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6.2.2 LEARNING EFFECT IN REGARD TO SELECTION COMPLETION TIMES 

Some of the participants started the experiment with short SSGG and some started with long 

SSGG. The scores were grouped depending on first and last selection method (Figure 73). The 

data were the same as for the analyses above and did not comply with the requirements for 

applying parametric statistics. Two Wilcoxon signed ranks tests were applied based on overall 

n = 100 observations per result. 

There was no significant effect between 

activation completion times for 

participants who started with the long 

SSGG, compared to those who had long 

SSGG as their second selection method. 

Z = -0,362; p = 0,717. There was a 

significant difference between those 

who had short SSGG as their first and 

second selection method. Z= -2,884, p= 

0.004. Those who had short as their 

second SSGG condition had significantly 

faster selection completion times. 

 

 

 Figure 73: Learning effects based on activation completion times for long and short gaze gestures 

6.2.3 TASK COMPLETION TIMES 

Task completion time was the elapsed time between two successfully completed selections. 

These were accumulated for each selection method. The analysis was therefore based on one 

observation per selection strategy per person, in other words n=10 observations per result 

(Figure 74). 

The assumptions required to conduct a parametric statistical analysis were not met, so non-

parametric methods were used. Friedman’s non-parametric ANOVA was used for the overall 

analysis and multiple paired Wilcoxon signed rank test for post hoc analysis.  
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There was an overall significant effect 

between the task times    
  48,683 (7, 

n=10), p < 0.01. Overall long SSGG took 

significantly longer than all other 

conditions, except short SSGG. Also short 

SSGG took significantly longer than most 

of the dwell selection conditions except 

600ms and 1000ms. There was no 

significant difference in task completion 

time between 100-500ms or between 

500-600ms dwell. 100-400ms was 

significantly faster than 600-1000ms and 

500ms was significantly faster than 

1000ms dwell activation.  

 

Figure 74: Task completion times for all conditions. Error bars represent standard error of mean 

6.2.4 SELECTION ERRORS 

The selection error was a completed selection which did not correspond to the action required 

to select the target. These were accumulated in each selection condition and the analysis 

conducted was based on these accumulated scores which consisted overall of n=10 

observations per result (Figure 75). 

The skewed distribution of the data, along with not complying with the assumption of 

sphericity meant that non-parametric methods of analysis had to be employed. Friedman’s 

non-parametric ANOVA was used to determine the overall effect. Multiple Wilcoxon signed 

rank tests were used to establish where the significance was. The average selection errors for 

all of the conditions were (Table 4):  

Dwell 

100 

Dwell 

300 

Dwell 

400 

Dwell 

500 

Dwell 

600 

Dwell 

1000 

Long 

SSGG 

Short 

SSGG 

 

49.7 

 

19.7 

 

13.3 

 

12.6 

 

6.9 

 

0.7 

 

10.4 

 

4.8 

 
Table 4: Average number of selection errors for all conditions 
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There was an overall significant 

effect between the number of 

selection errors    
  41,370 (7, 

n=10), p < 0.01. 100ms had 

significantly more selection 

errors compared with all other 

conditions. 1000ms has 

significantly fewer selection 

errors compared to all other 

conditions. The rest of the 

differences were non- 

significant.  
 

Figure 75: Mean selection errors for all conditions. Error bars represent standard error of mean 

6.2.5 LEARNING EFFECT BASED ON SELECTION ERRORS FOR GAZE GESTURES 

The data were divided to see whether or not it had made a difference in the number of 

selection errors whether the participant started with long SSGG or short SSGG. Because the 

number of errors was accumulated the analyses below was based on n=5 observations per 

result (Figure 76). The data did not comply with the assumptions required for the use of 

parametric statistics, so Friedman’s non-parametric ANOVA was used.  

There was no significant overall effect 

between the selection error rates of the 

various conditions.    
  1,00 (3, n=5), 

p = 0,807. 

 

Figure 76: Error based learning effect for long and short gestures. 
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6.2.6 LEARNING EFFECT BASED ON SELECTION ERRORS FOR DWELL TIME ACTIVATION 

This test was done to indicate whether there was a potential increase or decrease in the 

number of selection errors depending on which dwells selection condition began the trial. 

The data were divided based on which participants started with 100ms and those which 

started with 1000ms. Because the measure was accumulated the analyses below were based 

on overall n = 5 observations per result (Figure 77). The data did not comply with the 

assumptions required for parametric statistics so non-parametric methods were used. 

Multiple Wilcoxon signed rank tests were used to determine whether there was a significant 

difference between pairs of selection errors. In other words 100ms, was compared between 

those who started with 100ms and those started with 1000ms.  

None of the Wilcoxon signed rank showed any 

significant difference in learning effect based 

on the number of selection errors between the 

conditions which started with 100ms and 

those which started with 1000ms. p> 0.05 for 

all cases.  

 

Figure 77: Error based learning effect for dwell time activation. Error bars represent standard error of mean 

6.2.7 MISSED TARGET ERROR 

The target error was a measure of how many targets crossed the screen without being 

selected. This number was accumulated for each selection condition and the analysis was 

based on n= 10 observations per result (Figure 78). The distribution of data was skewed and 

sphericity could not be assumed, therefore non-parametric methods of analysis were used. 

Friedman’s non-parametric ANOVA was used and multiple Wilcoxons signed rank tests were 

performed.  
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There was an overall significant effect 

between the number of target errors    
  

37,216 (7, n=9), p < 0.01. There were a 

significantly higher number of target errors 

in the long SSGG condition, compared to all 

other conditions except the short SSGG. 

There was no significant correlation 

between any other conditions.  

 

Figure 78: Missed target error for all conditions. 

6.2.8 COMBINED ACTIVATION COMPLETION TIME AND SELECTION ERROR 

Both selection completion time and selection error were insufficient in establishing a 

comparative foundation between dwell selection and SSGG. Therefore, a combination measure 

of the two was created to express selection errors and selection completion times in a single 

measure. The premise for this single measure was to convert selection errors into milliseconds 

(ms) which could then be added to the average selection completion times of the various 

selection strategies. An augmented selection time consisting of combined selection error and 

selection completion times would thereby be created. 

The amount of time (ms) which a selection error would add was dependent on selection 

method. Each selection error would add the equivalent of an average selection completion time. 

In other words, when using the dwell selection condition of 100ms each average selection error 

would add 100ms. In the 600ms condition 600ms per average selection error would be added 

and in the long SSGG condition the average selection completion time would be added for each 

average selection error etc. The penalty represented the average time it would have taken to 

complete the erroneous activation. 

Combining selection error and selection completion time was intended to reveal how much 

time the participant at a minimum had to spend when completing both successful and 

unsuccessful selections. This augmented selection completion time makes SSGG and dwell 

selection comparable. Equation 1 is a generic expression of this. 
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Equation 1: A generic expression of the combined activation completion time and selection error measure 
 
 

The result of this equation was an augmented selection completion time which is represented 

by ‘ ̂ ’. The original average, which was fixed for dwell-time selection and estimated for gaze 

gestures, is represented by ‘  ’. This is then multiplied by the average number of errors ‘ ’. 

The ‘+1’ represents the successful selection required. 

The augmented selection completion time was calculated for all instances and the analysis was 

therefore based on n = 200 observations per result (Figure 79). The distribution of data was 

skewed and sphericity could not be assumed, Therefore non-parametric methods of analysis 

were used. Friedman’s non-parametric ANOVA was used and multiple Wilcoxon signed rank 

tests were performed.  

There was an overall significant 

effect between the augmented 

averages    
  1289,698 (7, 

n=200), p < 0.01. All of the 

conditions were significantly 

different from one another. The 

augmented selection completion 

time for short SSGG was the 

fastest condition, followed by 

1000ms dwell time condition 

and then long SSGG.  
 

Figure 79: Augmented mean values for all conditions, error bars represent standard deviation. The reason that there 
are no error bars in the dwell conditions is because the calculations where based on a fixed dwell time and a fixed 

average error rate, which meant that there was no deviation. 
 

It was found that this measure was only relevant for selection strategies which had a number 

of selection errors which was less than, the number of selections which needed to be 

completed. A generalized expression of this is (Equation 2): 

 

)1(ˆ  



126 
 

 

 
 
 

Equation 2: A generic expression of the threshold for a usable selection method 
 
 

Where ‘ ’ is again the average number of errors. ‘S’ is the total number of selections and ‘α’ 

is threshold for whether or not an augmented completion time should be calculated. In other 

words, if ‘α’ is bigger than 1, it means that for every successful selection made, the likelihood 

of making an error is more than one. This basically means that the selection method should be 

discarded for practical puposes. 

The calculations of α-levels for the eight conditions are as follows (Table 5):  

Dwell 

100 

Dwell 

300 

Dwell 

400 

Dwell 

500 

Dwell 

600 

Dwell 

1000 

Long 

SSGG 

Short 

SSGG 

2,535 1,035  0,715 0,68 0,395 0,085 0,57 0,29 

 
Table 5: α levels for each of the conditions. 

6.3 DISCUSSION OF THE DWELL, LONG AND SHORT GESTURE EXPERIMENT 

The results which have just been presented answer the null hypotheses which were presented 

earlier in the chapter. In the following each of the results will be discussed in accordance with 

its original null hypothesis. 

6.3.1 NULL 1: THERE WAS NO DIFFERENCE BETWEEN THE SELECTION COMPLETION TIMES OF 
LONG SSGG AND SHORT SSGG. 

This null hypothesis was rejected as there was a significant difference in the activation 

completion time between long SSGG and short SSGG. 

This was not expected for two reasons. First of all there is no immediate physiological reason 

for this finding – on the contrary longer saccades reach higher velocities than shorter ones, 

see Chapter 2. Secondly, a screen at normal viewing distance only represents 10˚ of visual 

angle, which means that the actual difference in length was very small. A general observation 

was that there seems to be a difference between naturally occurring eye movements and 

intentional eye movements used for activation. 

1
S
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During the experiment it was observed that when participants found gaze gesture interaction 

difficult, they became tense and tried to ‘force’ the selections by starring hard at the screen. 

This was the case for both long SSGG and short SSGG, however for the latter the distance being 

forced was shorter. It could potentially be interesting to see if an experienced user’s ability to 

relax would decrease selection completion time and selection error rate. 

The difference in selection completion times could be a consequence of the interface design. 

Even though the distance between horizontal and vertical activations had been adjusted for, 

the adjustment had caused the horizontal fields to be larger than the vertical fields. This could 

have an effect as the targets were easier to hit. 

The grand mean for all gaze gestures was 245ms. Theoretically, these selection completion 

times could have been much faster. As mentioned earlier they can cover between a 1° and 40° 

visual angle and last between 30-120ms (Duchowski, 2007). One of the reasons for this could 

be found in the eye tracking equipment. The experiment was conducted on an eye tracker 

which had a frame rate of 20 frames/sec. The main consequence of the low frame rate was 

that it caused a delay in the registration of the gaze point. This affected both the user 

experience and the data collection. 

The user’s experience was affected by experiencing a delay in the system’s response time. In 

other words the user would look at something but the system did not register it. This could 

have caused frustration because the user had to repeat an already completed selection. 

The system delay was not so much a problem for the dwell-time interface because the length 

of fixation covered several frame grabs. The observation was that for registering fast saccadic 

motion low frame rate was potentially a huge problem. 

Another technical issue with the QuickGlance eye tracker was the smoothing factor. A 

smoothing factor means that the gaze tracking software takes ‘x’ number of frames and 

estimates the gaze position as an average of the estimated gaze positions in the frames. 

Smoothing was applied to the system by default. This was done in order to avoid the system 

registering every jitter and renders a smooth output to the user, again very conducive to dwell 

selection interaction. As a consequence the system had difficulty in registering fast 
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movements across the screen, because the cursor placement could potentially end up 

somewhere in the centre. 

As mentioned, some participants found that they tired quickly because they felt that they had 

to ‘force’ the selections, this could of course also have been an effect of the before mentioned 

hardware issues, but the unfamiliarity of the interaction method could also have played a part. 

Dwell-time selection has the advantage of mapping the existing metaphor of on-screen 

buttons. 

6.3.2 NULL 2: THERE IS NO LEARNING EFFECT, IN TERMS OF SELECTION COMPLETION TIMES, 
ASSOCIATED WITH BEGINNING THE TRIAL WITH LONG SSGG OR SHORT SSGG. 

This null hypothesis was both accepted and rejected in a sense. There was no learning effect 

in the long SSGG condition between those who started and finished with long SSGG. However, 

there was a difference between those who started and ended with short SSGG as selection 

completion times were significantly faster for those who had short SSGG as their second 

gesture strategy. 

Essentially this meant that those who went from long SSGG to short SSGG had faster selection 

times. This makes sense as it generally seemed to be easier to complete the short SSGG. 

Perhaps having become used to completing long SSGG first, it was easier to adjust ‘down’ to 

short SSGG. 

The possibility that SSGG becomes faster as an individual becomes more relaxed and trained 

in the selection method, is very likely. However, to fundamentally establish those types of 

potential benefits a longitudal study should be conducted. 

6.3.3 NULL 3: THERE WAS NO DIFFERENCE BETWEEN THE TASK COMPLETION TIMES OF ANY OF 
THE EIGHT CONDITIONS. 

This null hypothesis was rejected as there was an overall significant difference in task times. 

Long SSGG had the longest task completion times after which came short SSGG and 1000ms. 

These task completion times were indicative and a consequence of several different things. 

First of all the long task completion time of long SSGG makes sense if target error was also 

taken into consideration. More targets were missed in this condition than in any other. The 

main reason for this was the previously described system delay, which hugely affected the 
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rate of successful completions. Participants were very often forced to repeat intended 

selections multiple times in order to complete a successful activation. The targets 

continuously moved down the screen at a predetermined speed. Therefore, targets would 

often be missed not because the action was not being completed correctly, but because the 

system was not registering it. Once a target had been lost it was very difficult to ‘get back in 

the game’ as the subsequent target was right after and could easily be lost. This created a 

stressful experience for the participant, which only made it even more difficult to complete 

selections. This was also the case only to a lesser degree for short SSGG. The length of selection 

completion time in the 1000ms dwell-time condition was the main reason for the prolonged 

task time as very few errors of any kind were made during this type of activation. 

The combination of a higher number of target errors and prolonged task completion times 

could be indicative of SSGG being less effective than dwell selection. However, it could also 

simply mean that SSGG are not appropriate for time pressured tasks. Or that there might be a 

substantial advantage to be found in eye tracking equipment which has been designed for 

saccade based interaction, rather than fixation based interaction. 

6.3.4 NULL 4: THERE WAS NO DIFFERENCE IN THE AMOUNT OF SELECTION ERRORS WHICH HAVE 
OCCURRED DURING ANY OF THE CONDITIONS. 

This null hypothesis was rejected as there was an overall significant difference in the amount 

of selection errors which occurred in the different conditions. 100ms had significantly more 

selection errors compared with all other conditions. 1000ms had significantly fewer selection 

errors compared to all other conditions. 

Even though the 1000ms dwell condition had an average error rate of 0.7 it was an 

impractical selection method because it was strenuous to sustain lengthy fixations. The long 

selection completion time was also reflected in the before mentioned task completion times. 

In terms of selection completion time the 100ms dwell condition was innately the fastest of the 

selection methods. However, it would be useless in most applications due to the high number 

of selection errors. The average selection error for the 20 selections was 49.7. This meant that 

for every successful selection – 2.5 errors are made. If this was hypothetically transferred to 

the selection of characters in a typing application nothing would ever be written, because for 
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every successful character entry 2.5 corrections would need to be made and for every 

correction needed to be made 2.5 corrections would need to be made and so on. 

A general observation which was made, but which was difficult to support statistically, other 

than the fact that it was based on statistical insignificance, was that there seemed to be a 

plateau of selection errors between the 400ms-500ms dwell-time condition. This was 

interesting in regard to the use of a standard dwell selection time of 450ms that was often 

employed (Qvarfordt & Zhai, 2005). For practical purposes there seems to be an assessment 

that states that this was the range where the efficiency of selection completion times and the 

disadvantage of selection error rates balance each other out. 

6.3.5 NULL 5: THERE WAS NO LEARNING EFFECT, IN REGARD TO SELECTION ERRORS, 
ASSOCIATED WITH BEGINNING THE TRIAL WITH LONG OR SHORT GAZE GESTURES. 

This null hypothesis was retained as there was no selection error based learning effect 

associated with initiating or ending the trial with long SSGG or short SSGG. 

6.3.6 NULL 6: THERE WAS NO LEARNING EFFECT, IN REGARD TO SELECTION ERRORS, 
ASSOCIATED WITH BEGINNING THE EXPERIMENT WITH 100MS AND THEN PROGRESSING 
UP TO 1000MS OR STARTING WITH 1000MS AND PROGRESSING DOWN TO 100MS 

This null hypothesis was retained as there was no selection error based learning effect within 

the conditions, regardless of whether the trial had been initiated with 100ms or 1000ms. 

6.3.7 NULL 7: THERE WAS NO DIFFERENCE IN THE AMOUNTS OF TARGET ERRORS WHICH 
OCCURRED IN THE VARIOUS CONDITIONS. 

This null hypothesis was rejected as there was a significant difference in the number of 

targets lost depending on condition. There were a significantly higher number of target errors 

in the long SSGG condition, compared to all other conditions except the short SSGG. There was 

no significant correlation between any other conditions. 

The only condition which really caused users to miss targets was long SSGG. As explained 

earlier there was a time pressure element to the task caused by the dynamics of the falling 

squares. A consequence of this was that once participants had missed a target they had very 

little time to select the next target. 
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Closer examination of the data revealed that there were no problems during the first five 

selections and showed that once the participants had ‘lost’ a target, they would subsequently 

‘lose’ multiple targets while trying to regain control. 

As previously explained there are various issues regarding long SSGG; among others the 

system set-up. 

6.3.8 NULL 8: COMBINING SELECTION COMPLETION TIME AND SELECTION ERROR INTO A NEW 
MEASURE WOULD SHOW THAT THERE WAS NO DIFFERENCE IN THE AUGMENTED 
SELECTION TIMES BETWEEN THE VARIOUS CONDITIONS. 

This null hypothesis was rejected as there was an overall significant difference between the 

augmented selection completion time scores. All of the conditions were significantly different 

from one another. Considering both selection completion speed and selection errors – short 

SSGG was the fastest condition, followed by 1000ms dwell-time condition and then long SSGG. 

There are a few things which can be observed in regard to these results. Within the dwell 

conditions there was an augmented selection time plateau around 500ms-600ms, this was a 

shift from the selection error distribution where the plateau was around 400ms-500ms. This 

could be viewed as further support of the practically applied 450ms as a dwell-time standard, 

as it falls below the point where the cost of an error becomes too high in regard to the number 

of errors which were completed. The 1000ms condition was, as expected, proven to be the 

most lengthy selection method; even though this condition had the lowest selection error rate 

by far. Put in other terms, the cost of making an error in the 1000ms dwell activation condition 

was higher than the benefit of rarely making one. 

The α-levels of this experiment show, that 100ms and 300ms dwell should be discarded as 

practical selection methods in the context of this experiment, because the number of errors 

made per successful selection was more than one. 

The best overall selection type was the short SSGG, which meant that the combined cost of 

making successful and erroneous selections was the lowest of all the conditions. 

  



132 
 

6.4 GENERAL DISCUSSION OF THE DWELL, LONG AND SHORT GESTURE EXPERIMENT 

Surprisingly, there was a significant difference between long SSGG and short SSGG which was 

not expected. The expectation was also that dwell selection would have far fewer selection 

errors than SSGG, because it built on familiar mapping, which was not the case. 

The main error of interest was the selection error, because this error dealt with the two main 

design issues regarding both dwell and gaze gesture selection. Selection errors in dwell-time 

selection speak to how well the implementation deals with the Midas touch problem. In other 

words a high number of selection error, meant a high level of unintentional selections (i.e., a 

high degree of Midas touch). The same principle applied in the gaze gesture selection methods 

where selection errors reflect how much accidental gesture completion there was between 

search patterns and gesture patterns. It was expected that the number of accidental gesture 

completions would be very high for SSGG, as their simplicity might easily correlate with 

navigational search patterns. However, there was no significant difference in number of 

selection errors between the SSGG and the dwell selection conditions between 300-600ms. As 

this is the range in which dwell selection is generally implemented this is also the range which 

was the most relevant to compare with. In this experiment there was not a significant 

difference between the level of Midas touch and accidental gesture completion. 

In order to determine whether or not the frame rate and smoothing factor had an effect on 

selection completion times the next experiment compares different eye tracking systems; more 

specifically eye tracking systems with higher sampling frequencies. This was done by 

conducting the gaze gesture part of the previous experiment on the QuickGlance 3 eye tracker 

(20 frames/sec) and on a Tobii T50 (50 frames/sec). The smoothing factor on the Tobii 

systems was implemented differently. They use a fixation detector to predict when to apply 

smoothing, so smoothing should only occur while the user was fixating. The following 

experiment will examine these points. The experimental design is essentially the same as the 

experiment just presented, with only a few minor modifications. 
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7 SINGLE STROKE GAZE GESTURES ON DIFFERENT EYE TRACKERS 

This was the second SSGG experiment which was inspired by the pilot studies and the dwell, 

long SSGG and short SSGG experiment. The focus was to compare SSGG on different eye 

trackers in order to determine what kind of affect this might have on selection completion 

times and overall error rates. 

7.1 EXPERIMENTAL DESIGN 

In the previous experiment the focus was on comparing SSGG with dwell selection. Selection 

direction was not one of the independent variables, which was examined. However, the pilot 

studies showed that there could potentially be a difference in selection completion time or 

selection error depending on direction. Whether or not this was the case it could influence the 

way gaze gestures (single, complex and continuous) should be implemented in future designs. 

The experimental setup was the same as previously described. 

The participants were introduced to the test environment and task framework before 

beginning the experiment. Nine participants took part in the study (four female) all of which 

had normal or corrected to normal vision. None of them were colour-blind. Five had previous 

experience with eye tracking. The application was written in Java and testing was completed 

on the same QuickGlance 3 as previous, using a 13 inch monitor (20 frames/sec) system, and 

a Tobii 1750 using a 17 inch monitor (50 frames/sec). 

The independent variables were: 

Input device with two levels: QuickGlance3 and Tobii 1750 

Selection method with two levels: long SSGG and short SSGG. 

Selection Direction with four levels: Left to Right, Right to Left, Top to Bottom and Bottom to 

Top. 

Each participant had to complete 20 successful selections 3 times in each condition: 

QuickGlance long SSGG, Quickglance short SSGG, Tobii long SSGG and Tobii short SSGG. 
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The dependent variables were: 

Selection Time: the time from when the user exits the initiation field and enters the opposite 

field. These results should not be viewed as saccade times, but as selection times. 

Selection Error: A full completed selection which does not respond to the current target. 

Target Error: Targets which descent the screen and pass through the other side without being 

selected. 

The experiment was designed to explore the following null-hypotheses: 

7.1.1 FACTOR 1, INPUT DEVICE: 

- Null 1: There was no overall difference in selection completion time on either input 

device. 

- Null 2: There was no significant difference in selection completion times for selection 

direction on either input device. 

- Null 3: There was no difference in selection completion time for selection method on 

either input device. 

- Null 4: The different capabilities of various input device had no effect on the number of 

selection errors. 

- Null 5: There was no difference in the number of target errors on either input device. 

7.1.2 FACTOR 2, SELECTION METHOD 

- Null 6: There was no significant difference in selection completion times of selection 

methods based on results from both input devices. 

- Null 7: There was no difference in selection errors for selection method based on results 

from both input devices. 

- Null 8: There was no difference in target error depending on selection method. 

7.1.3 FACTOR 3, SELECTION DIRECTION 

- Null 9: There was no overall difference in selection completion time for selection 

direction including results from both input devices. 
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- Null 10: There was no difference in selection completion time for overall horizontal and 

vertical selections based on results from both input devices. 

- Null 11: There was no difference in number of selection errors based on selection 

direction with results from both input devices. 

There are more combinations of independent and dependent variables which could possibly 

form the foundation for other null hypotheses. However, the above mentioned were 

considered the most interesting. 

7.1.4 FACTOR 1: INPUT DEVICE 

OVERALL SELECTION COMPLETION TIME BASED ON INPUT DEVICE 

Overall it was of interest to see if there were significant differences in selection completion 

time between the two input devices. 

The data were grouped overall depending on input device. The results below were based on 

n = 1080 observations per result. 

Maucley’s test of sphericity was insignificant which meant that sphericity could be assumed. 

By logarithmically transforming the data, a normal distribution was achieved based on the 

Tukey method; so parametric statistics could be used for this analysis (Figure 80).  

  

Figure 80: Distribution of activation completion times on both eye trackers. To the left, the original scores. To the 
right, the logarithmically transformed scores. 
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A t-test was used to compare selection completion times on both input devices (Figure 81). The 

grand mean for all gesture selection completion times was 160ms. 

The mean gesture selection completion time on the QG was 216ms and on the Tobii it was 

105ms.  

There was a significant difference in 

selection completion time between the 

QuickGlance and the Tobii, t 

(1079) = 23,457; p<0.01. Selection 

completion times were significantly 

faster on the Tobii compared with the 

Quickglance.  

 
Figure 81: Overall selection completion times on the two input devices. Error bars represent standard error of mean 

 
SELECTION COMPLETION TIME OF SELECTION DIRECTION BASED ON INPUT 
Selection direction effects on either eye tracker were analysed in two ways. First, each of the 

four directions was compared to its counterpart on either eye tracker, to establish if one 

particular direction was faster on one system or another. Secondly, the four directions were 

compared within the same eye tracking system, to establish whether there was a similar 

pattern of selection direction completion times on both machines. 

The data were grouped depending on selection direction and input device. The random entry of 

targets in the task meant that there was a slight difference in the number of observations; 

therefore some observations were left out. Overall, the analyses below were based on n=240 

observations per result. The assumptions required to conduct parametric statistics were met, 

as the sphericity measure was insignificant and normal distribution could be achieved with a 

logarithmic transformation. To analyze the selection completion times for the four different 

selection directions across the two input devices, four repeated measures t-tests were 

conducted (Figure 82). The grand mean for all gesture selection completion times was 160ms. 

For the individual conditions their means were (Table 6): 
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Input Bottom to top: Left to right: Right to left: Top to bottom: 

QG 249ms 185ms 179ms 244ms 

Tobii 119ms 88ms 85ms 129ms 

 
Table 6: Mean directional completion time on both eye trackers 

 
 

 

There was a significant difference 

between all of the selection completion 

times in each condition on both 

machines. Bottom to top: t 

(239) = 12,071; p<0.01. Left to right: t 

(239) = 10,589; p<0.01. Right to left: t 

(239) = 11,325; p<0.01. Top to bottom: 

t (239) = 9,090; p<0.01. All of the 

selection completion times on the Tobii 

eye tracker were significantly faster 

than on the QuickGlance 3 eye tracker. 

Figure 82: Differences in activation completion time depending on selection direction across the two eye tracking 
systems, error bars represent standard error of mean 

 

To analyze the difference in selection completion time based on selection direction within each 

of the input devices two repeated measures ANOVAs were conducted (Figure 83). A 

Bonforonni adjusted pair-wise analysis was used to determine where any potential 

differences were. 

The grand mean for SSGG on the QuickGlance was 214, 781ms, the individual means were 

(Table 7): 

Bottom/top Left/right Right/left Top/bottom 

249ms 185ms 179ms 244ms 

 
Table 7: Mean directional selection completion times for the Quickglance 

 

The grand mean for the SSGG on the Tobii 1750 was 105ms, the individual means were (Table 

8): 
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Bottom/top  Left/right Right/left Top/bottom 

119ms 88ms 85ms 129ms 

 
Table 8: Mean directional selection completion times for the Quickglance 

 

There was a significant difference in 

selection completion time based on 

selection direction within the 

QuickGlance eye tracker condition F (1, 

3) = 22,017; p < 0.01. Left/right and 

right/left were significantly faster than 

top/bottom and bottom/top SSGG. 

There was a significant difference in 

selection completion time based on 

selection direction within the Tobii 1750 

eye tracker condition (1, 3) = 12,736; p < 

0.01. Again left/right and right/left were 

significantly faster than top/bottom and 

bottom/top.  

 

 

 
Figure 83: Differences in activation completion time depending on selection direction within the two eye tracking 

systems, error bars represent standard error of mean 
 

SELECTION COMPLETION TIME FOR LGG AND SGG BASED ON INPUT DEVICE 
As with the analysis of selection direction, the potential differences in the selection completion 

time of long and short SSGG (input method) depending on input device was analyzed in two 

ways. 

First the difference in selection activation time across the two input devices was analysed and 

subsequently the difference in selection activation time was analysed within the two input 

devices. The data were grouped depending on selection method and input device. Some of the 

observations were left out, overall the analyses below was based on n = 480 observations per 

result. 
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Maucley’s test of sphericity was again insignificant which meant that sphericity could be 

assumed. By logarithmically transforming the data a normal distribution was achieved; so 

parametric statistics could be used for this analysis. 

To analyze the difference in selection completion time depending on selection method across 

the two input devices two repeated measures t-tests were done (Figure 84). 

The means for long SSGG were: QuickGlance 272ms and Tobii 131ms. 

The means for short SSGG were QuickGlance 156ms and Tobii 80ms.  

 

There was a significant difference in 

long SSGG on the QuickGlance and Tobii 

respectively, t (479) = 17,875; p<0.01. 

Long SSGG on the Tobii were 

significantly faster than on the 

QuickGlance system. There was also a 

significant difference between short 

SSGG on the two eye tracking systems 

respectively, t (479) = 11,974; p<0.01. 

Short SSGG were significantly faster on 

the Tobii gaze tracker than on the 

QuickGlance.  

Figure 84: Differences in activation completion time depending on selection method across the two eye tracking 
systems, error bars represent standard error on mean 

 
 

In order to analyze the difference in selection completion times for selection method within 

each of the input devices; two repeated measures t – tests were conducted (Figure 85). 

The means for the QuickGlance eye tracker were: Long SSGG 272ms and short SSGG 156ms 

The means for the Tobii 1750 eye tracker were: Long SSGG 131ms. and short SSGG Tobii 

80ms.  
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There was a significant difference between 

long SSGG and short SSGG on the QuickGlance t 

(479) = -14,872; p<0.01. Short SSGG were 

significantly faster compared to long SSGG. 

There was also a significant difference between 

long SSGG and short SSGG on the Tobii 1750, t 

(479) = -8,080; p<0.01. Short SSGG were 

significantly faster than long SSGG.  

 

Figure 85: Differences in activation completion time depending on selection method within the two eye tracking 
systems, error bars represent standard error on mean 

 
 

OVERALL SELECTION ERRORS BASED ON INPUT DEVICE 
The number of selection errors was the number of times a participant completed a selection 

which did not match the target. 

Maucley’s test of sphericity was insignificant which meant that sphericity could be assumed. 

By logarithmically transforming the data a normal distribution was achieved; so parametric 

statistics could be used for this analysis (Figure 86).  

  

Figure 86: Original and logarithmically transformed distributions of selection errors on the two eye trackers 
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The results were analyzed using a repeated measures 2-tailed t-test with input device as the 

independent variable and selection error as the dependent variable measured in accumulated 

observations (Figure 87). 

The mean values for the two conditions were based on n = 54 accumulated observations per 

result. The overall mean value for selection errors on the QuickGlance was 8,61 and the overall 

mean for the Tobii was 5.31.  

There was a significant difference 

between the numbers of selection 

errors on the QuickGlance compared 

with the Tobii. t (53) = 3,271; p<0.01. 

There were significantly fewer selection 

errors on the Tobii.  

 

Figure 87: Overall selection errors on the two eye tracking systems, error bars represent standard deviation. 
 
 

OVERALL TARGET ERRORS BASED ON INPUT DEVICE 
Target error was the number of targets which crossed the screen without being selected. 

The data were explored and did not fit the assumptions required to complete parametric 

analyses. After ranking the scores a Wilcoxon signed-ranks tests was used where input device 

was the independent variable with two levels (QuickGlance and Tobii 1750) and target error 

was the dependent variable (Figure 88). 

The mean values of the two conditions were based on n = 54 observations per result and 

were: Mean target error on the QuickGlance = 4,44 and on the Tobii = 0,11.  
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There was a significant difference 

between the numbers of target errors on 

the QuickGlance compared with the Tobii. 

Z = -3,104, p<0.01. There were 

significantly fewer target errors on the 

Tobii. 

 

Figure 88: Overall missed target errors on the two eye tracking systems, error bars represent standard deviation. 

7.1.5 FACTOR 2: SELECTION METHOD 

OVERALL SELECTION COMPLETION TIME FOR LGG AND SGG 
This analysis was done to substantiate the significant difference in selection completion time 

which was found in the dwell, long SSGG and short SSGG experiment. 

Maucley’s test of sphericity was insignificant which meant that sphericity could be assumed. 

By logarithmically transforming the data a normal distribution was achieved; so parametric 

statistics could be used for this analysis (Figure 89).  

  

Figure 89: Original and logarithmically transformed distributions of selection completion times 
 

The results were analyzed using a repeated measures 2-tailed t-test with selection method as 

the independent variable and selection completion time as the dependent variable measured in 

ms (Figure 90). 
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The mean values for the two conditions were based on n = 960 observations per result. The 

overall mean value for short SSGG was 118ms and the overall mean for long SSGG was 202ms.  

There was an overall significant 

difference between short SSGG and long 

SSGG in all four directions on both 

machines t (959) = -16,299; p<0.01. Short 

SSGG were significantly faster than long 

SSGG.  

 

Figure 90: Overall difference in activation completion times based on selection method. Error bars represent 
standard error of mean. 

 

OVERALL SELECTION ERROR BASED ON LGG AND SGG 
In the dwell, long SSGG and short SSGG experiment there was no significant difference in the 

number of selection errors based on long SSGG and short SSGG. It was of interest to see 

whether this was also the case here. 

Maucley’s test of sphericity was insignificant which meant that sphericity could be assumed. 

By logarithmically transforming the data a normal distribution was achieved; so parametric 

statistics could be used for this analysis (Figure 91).  

  

Figure 91: Original and logarithmically transformed distributions of selection errors 
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The results were analyzed using a repeated measures 2-tailed t-test with selection method as 

the independent variable and selection error as the dependent variable measured in 

accumulated observations (Figure 92). 

The mean values for the two conditions were based on n = 54 accumulated observations per 

result. The overall mean value for selection errors in short SSGG was 7,43 and the overall mean 

for long SSGG was 6,48.  

There was no overall significant 

difference in the number of selection 

errors produced using long SSGG and 

short SSGG in all four direction on both 

machines t (53) = 0,941; p = 0,351.  

 

Figure 92: Overall differences in number of selection errors based on selection method, error bars represent 
standard error of mean. 

 

MISSED TARGET ERROR BASED ON LGG AND SGG 
The number of target errors was the number of targets which crossed the screen without 

being selected. 

The data were explored and did not fit the assumptions required to complete parametric 

analyses. After ranking the scores a Wilcoxon signed-ranks tests was used where selection 

method was the independent variable with two levels (long SSGG and short SSGG) and target 

error was the dependent variable (Figure 93). 

The mean values for the two conditions were based on n = 54 accumulated observations per 

result. The overall mean number of target errors for short SSGG was 1,17 and the overall mean 

for long SSGG was 3,39.  
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There was no overall significant 

difference in the number of target errors 

based on selection method. Z = -1,084, 

p = 0,279.  

 

Figure 93: Overall differences in missed target errors based on selection method, error bars represent standard 
error of mean. 

7.1.6 FACTOR 3: SELECTION DIRECTION 

OVERALL SELECTION COMPLETION TIME BASED ON SELECTION DIRECTION 
It was of interest to see whether there was an overall difference in selection completion time 

based on the four directions across both input device and selection method. 

The data set was explored and Maucley’s test of sphericity was insignificant which meant that 

sphericity could be assumed. By logarithmically transforming the data a normal distribution 

was achieved; so parametric statistics could be used for this analysis. 

A one way ANOVA was conducted with selection direction as the independent variable with 

four levels (Left/Right; Right/Left; Top/Bottom; Bottom/Top) and selection completion time 

as the dependent variable measured in ms (Figure 94). 

The mean values were based on n = 480 observations per result. The overall mean values 

were (Table 9):  

Left /right  Right /left Top /bottom  Bottom/top  

137ms 132ms 187ms 184ms 

 
Table 9: Mean directional selection completion times 
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There was an overall significant 

difference in selection completion time 

depending on the four directions. F (1, 

3) = 34m163; p < 0.01. Right/left and left/ 

right were significantly faster than 

top/bottom and bottom/ top.  

 

Figure 94: overall selection time based on selection direction. Error bars represent standard error of mean. 
 
 

OVERALL SELECTION COMPLETION TIME FOR HORIZONTAL AND VERTICAL 
As a consequence of the results presented above there seemed to be an interesting 

observation to be made in examining the overall horizontal and vertical selection completion 

times. 

As it was the same dataset as the one used above, it was known that the assumptions for 

parametric statistics were upheld. 

A t-test was used to examine the results of the overall horizontal and vertical selection 

completion times. Selection direction was the independent variable (horizontal and vertical) 

and selection completion time was the dependent variable measured in ms (Figure 95). 

The mean values were based on n = 1024 observations per result. The overall mean 

horizontal activation completion time = 137ms and the overall mean vertical activation 

completion time was 184ms.  
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There was an overall significant 

difference in selection completion time 

depending on horizontal or vertical 

gestures t (1023) = -9,390; p < 0.01. 

Horizontal SSGG were significantly faster 

than vertical SSGG.  

 

Figure 95: Overall selection times based on horizontal and vertical selections. Error bars represent standard error of 
mean. 

 

SELECTION ERROR BASED ON FOUR DIRECTIONS 
The selection error has until now been an accumulated measure for either input device or 

selection method. However, when analysing directional selection error the accumulated values 

are split up according to direction. Therefore the number of selection errors will at first glance 

appear smaller, than those previously presented. 

The data were explored and did not fit the assumptions required to complete parametric 

analyses. After ranking the scores Friedman’s non-parametric ANOVA was used where 

selection direction was the independent variable with four levels (Left/right; Top/Bottom; 

Right/ Left; Bottom/ Top) and selection error was the dependent variable (Figure 96). 

The mean values were based on n = 108 observations per result. The four mean values for 

selection errors were: Left to right = 1,5; Top to Bottom = 1,55; Right to Left =1,78; Bottom to 

Top = 2,10. 
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There was no overall difference in 

selection error depending on the four 

different directions of selection    
  7, 

605 (3, n=108), p = 0.055. 

 

Figure 96: Selection error based on selection direction. Error bars represent standard error of mean. 

7.2 DISCUSSION OF THE SINGLE GAZE GESTURES AND DIFFERENT INPUT 

There were many other combinations of data which could have been examined. However, the 

above presented results represent those correlations which are considered of most relevance 

to gaze interaction design. As with the discussion section in the dwell, long SSGG and short 

SSGG experiment, each of the null hypotheses will be discussed. 

7.2.1 FACTOR 1, INPUT DEVICE: 

NULL 1: THERE WAS NO OVERALL DIFFERENCE IN SELECTION COMPLETION TIME ON 

EITHER INPUT DEVICE. 

This null hypothesis was rejected, as there was a significant difference in selection completion 

times based on the two input devices. SSGG on the Tobii tracker were significantly faster than 

on the Quickglance. 

This was both expected and unexpected. It was expected due to the higher frame rate and 

more appropriate smoothing algorithm of the Tobii. A consequence of this finding is the 

acknowledgement that saccade based gaze interaction might require different technological 

considerations than fixation based interaction. However, it was also slightly unexpected 

because the Tobii had a 17 inch monitor and the QuickGlance was only using a 13 inch 

monitor. This difference in size was thought to compensate slightly for the higher frame rate 

of the Tobii, however, this was not the case. 



149 
 

The mean SSGG selection completion time on the Tobii, which was 105ms, reflects more clearly 

the high speed potential of this type of selection strategy. 

NULL 2: THERE WAS NO SIGNIFICANT DIFFERENCE IN SELECTION COMPLETION TIMES FOR 

SELECTION DIRECTION ON EITHER INPUT DEVICE. 

This null hypothesis was rejected in two ways. Each of the four selection directions were 

compared to their counterparts on either machine. In this case the results showed that all of 

the selection completion times for each selection direction individually were faster on the Tobii 

than on the QuickGlance. This further substantiated that there was an overall significant 

difference between selection completion times on the Tobii and QuickGlance. 

The other way in which this null hypothesis was rejected was by looking at the selection 

completion times within each input device to see whether there were any mutual differences 

on in selection direction. 

Here it was established, which will also be substantiated later, that left/right and right/left 

movements were faster than top/bottom and bottom/top movements. This was an 

unexpected result. 

In the pilot study it was found that top/bottom selection completion times were significantly 

faster. The exact opposite was shown in this experiment, where there seems to be a trend 

towards horizontal SSGG being faster than vertical ones. One of the reasons for this could be 

the difference in static and dynamic targets as well as the random target introduction in this 

second iteration of the experimental design. The static targets in the pilot study could have 

presented the top/down action with an unfair advantage due to placement in the selection 

sequence. In other words it might have been easier and faster to complete that specific gesture 

based on the preceding gesture. Another reason could have been the difference in length 

between horizontal and vertical gestures in the pilot study, as results indicate that gesture 

length makes a significant difference in selection completion time. 

This observation will be further substantiated and elaborated upon later in this section. 

NULL 3: THERE WAS NO DIFFERENCE IN SELECTION COMPLETION TIME FOR SELECTION 

METHOD ON EITHER INPUT DEVICE. 
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This null hypothesis was rejected in two ways. First there was a significant difference in 

selection completion times based on selection method. When comparing short SSGG on the 

Tobii and QuickGlance, they were significantly faster on the Tobii and the same was true for 

long SSGG. This was expected and further substantiates the initial observation that SSGG were 

faster of the Tobii than on the QuickGlance. 

Secondly, there was a significant difference between long and short SSGG on each input device. 

On both systems short SSGG were significantly faster than long SSGG. This was not expected, 

but it substantiated the observations made in the dwell, long SSGG and short SSGG experiment. 

However, the assumption was that the significant difference in long and short SSGG on the 

QuickGlance, were mainly due to the technological restrictions of the system, such as the low 

frame rate and the automatic smoothing. It had therefore been expected that when the same 

experiment was conducted on a Tobii tracker, this pattern would not be present. However, it 

was – this was an indication that there might be a physiological reason which has to do with 

altered eye movement behaviour when dealing with interactive content, compared with eye 

movement patterns in perception. 

NULL 4: THE DIFFERENT CAPABILITIES OF VARIOUS INPUT DEVICE HAD NO EFFECT ON 

SELECTION ERRORS. 

This null hypothesis was rejected, as there was a significant difference in the number of 

selection errors on either input device. There were far fewer selection errors on the Tobii. 

There are at least two possible reasons for this. 

First of all the higher frame rate and different smoothing algorithm on the Tobii made 

selections easier, so it was not so necessary for the participants to repeat SSGG in order to 

repeat selections. This implies that some of the selection errors on the QuickGlance were 

caused in the process of repeating. 

The second reason could be due to the difference in monitor size. As mentioned the Tobii used 

a 17 inch monitor, compared to the 13 inch monitor of the QuickGlance. The longer distance 

on the Tobii could mean that accidental selections were less likely to occur. 

NULL 5: THERE WAS NO DIFFERENCE IN TARGET ERRORS ON EITHER INPUT DEVICE. 



151 
 

This null hypothesis was also rejected, as there was a significant difference between the 

number of target errors on the two input devices. There were far fewer missed targets on the 

Tobii than on the QuickGlance. 

The main reasons for this have already inadvertently been expressed. The faster response 

time of the Tobii made gaze gestures much easier to complete. In the dwell, long and short 

SSGG experiment, participant would often get slightly lost in the selection process, in the 

sense that when they started losing targets and they found it very difficult to ‘catch up’ again. 

This also occurred a few time in this experiment on the QuickGlance, however, no one had 

that experience with the Tobii tracker. The few incidents where targets were lost were mainly 

due to the participant having looked away, and they found it relatively easy to ‘catch up’ with 

the targets again. 

7.2.2 FACTOR 2, SELECTION METHOD: 

NULL 6: THERE WAS NO SIGNIFICANT DIFFERENCE IN SELECTION COMPLETION TIMES OF 

SELECTION METHODS BASED ON RESULTS FROM BOTH INPUT DEVICES. 

This null hypothesis was rejected. As there was a significant difference between long and 

short SSGG based on all the results for all selection directions on both input devices. 

This was of course expected, as the selection methods had already been examined based on 

input device. However, it was of interest to see how great the difference was in the overall 

means. For short SSGG it was 118ms and the overall mean for long SSGG was 202ms. This is a 

substantial difference and further emphasizes that there is the potential to use long and short 

SSGG to alternate between tasks in specially designed interfaces. 

NULL 7: THERE WAS NO DIFFERENCE IN SELECTION ERRORS FOR SELECTION METHOD 

BASED ON RESULTS FROM BOTH INPUT DEVICES. 

This null hypothesis was retained as there was no significant difference between the amounts 

of selection errors for long or short SSGG respectively. This corresponded with the results 

found in the dwell, long SSGG and short SSGG experiment. 

However, this result was not expected. It was expected that there would be a higher number 

of selection errors associated with completing shorter SSGG. The reason for this was the 

general assumption that the smaller, simpler and more centralized a gesture was on the 
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screen, the more likely it was to cause accidental gesture completion and therefore a higher 

number of selection errors. 

The number in this case was only slightly higher for short SSGG and not enough to be 

significant. 

NULL 8: THERE WAS NO DIFFERENCE IN TARGET ERROR DEPENDING ON SELECTION 

METHOD. 

This null hypothesis was retained as there was no significant difference between the number 

of target errors between the long and short SSGG conditions. This was also mirrored from the 

dwell, long SSGG and short SSGG experiment and was therefore expected. 

7.2.3 FACTOR 3, SELECTION DIRECTION 

NULL 9: THERE WAS NO OVERALL DIFFERENCE IN SELECTION COMPLETION TIME FOR 

SELECTION DIRECTION INCLUDING RESULTS FROM BOTH INPUT DEVICES. 

This null hypothesis was rejected as there was a significant difference between selection 

completion times based on selection direction. There was a significant difference between the 

two horizontal conditions left/right and right/left and the two vertical conditions top/bottom 

and bottom/top. There was no significant difference within those two groups. 

As mentioned earlier this was an unexpected result. In the pilot study it was speculated that 

one of the reasons that the top/bottom condition was significantly faster than the horizontal 

conditions, was that the distance between the vertical fields were closer to each other, 

compared with the horizontal ones. This speculation was most probably correct as a trend has 

been revealed that there was a significant difference in selection completion time depending 

on lengths of gesture. Therefore, having the horizontal selection fields further apart than the 

vertical ones would have made a difference in the initial pilot study. Another consideration, in 

regard to the top/down significance in the pilot study, which caused a change in the 

experimental design was the static targets and fixed nature of the pilot study. This could, as 

previously mentioned, very well have unfairly benefitted the top/bottom SSGG. 

These arguments support the validity of this current experimental design. The horizontal 

trend could therefore indicate systemic eye movement behaviour. Whether this difference has 
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to do with cultural reading patterns or whether horizontal eye movements are fundamentally 

faster requires further investigation. 

NULL 10: THERE WAS NO DIFFERENCE IN SELECTION COMPLETION TIME FOR OVERALL 

HORIZONTAL AND VERTICAL SELECTIONS BASED ON RESULTS FROM BOTH INPUT DEVICES. 

This null hypothesis was rejected, as mentioned above. As horizontal SSGG were significantly 

faster than vertical ones. The mean selection completion time was for horizontal 

gestures = 137ms and for vertical gestures it was 184ms. It could be argued that even though 

this is a significant difference in a statistical sense, it might have smaller implications for 

practical application. 

However, if horizontal gestures are systemically faster than vertical gestures this principle 

could influence the way interfaces for single, complex and continuous gestures should be 

designed. 

NULL 11: THERE WAS NO DIFFERENCE IN NUMBER OF SELECTION ERRORS BASED ON 

SELECTION DIRECTION WITH RESULTS FROM BOTH INPUT DEVICES. 

This null hypothesis was retained, as there was no significant difference between the numbers 

of selection errors depending on selection direction. Overall, the lack of significant difference in 

selection error was mainly an indication that the experiment and the selection patterns in the 

experiment were well balanced. 

There was an expectation of a bias towards vertical gaze gestures being more error prone. A 

reason for this assumption was that the targets were descending from top to bottom. This 

could potentially have forced a higher number of vertical searches; which could, in turn, have 

caused accidental gesture completion and therefore a higher number of selection errors. 

However, this was not the case. 

  



154 
 

7.3 GENERAL DISCUSSION OF SINGLE GAZE GESTURES AND DIFFERENT INPUT 

There are three main observations which can be derived from this experiment. First of all 

there was a systematic overall difference between the two input devices. Secondly, the results 

regarding long SSGG and short SSGG substantiated the results found in the dwell, long SSGG 

and short SSGG experiment. And finally, the most surprising, and therefore most interesting, 

results were the seemingly systematic difference between horizontal and vertical SSGG. 

The overall significant difference between the systems (QuickGlance, Tobii) led to the 

observation that system set-up does have an effect on the selection completion speed and 

selection error rates of SSGG selections. This is a natural consequence of gaze gestures being 

based on saccades. Eye trackers, particularly those designed for gaze interactions, have as 

mentioned been focussed on reliable solutions for fixation based interaction. However, as a 

consequence of these findings it was clear that consideration should be taken from a technical 

perspective to support saccadic interaction to a greater degree. 

The findings regarding long and short SSGG support the findings in the dwell, long SSGG and 

short SSGG experiment. This was not surprising, as both experiments were conducted in the 

same test environment. However, if this principle of interaction were to be further 

substantiated and explored in other contexts, it could make a useful addition to the gaze 

interaction design toolbox. As mentioned in the discussion of the previous experiment various 

zones of interaction depending on gesture length, could be implemented. 

The findings regarding the selection completion times based on direction were the most 

interesting. In the pilot study top/bottom SSGG had been significantly faster. The exact 

opposite was shown in the experiment with the two eye trackers; horizontal gaze gestures 

were faster than vertical ones. There can be several reasons for this. First of all, as the 

sequence of targets was repeated in the same order; the top/down action might have had an 

unfair advantage. It might have been easier and faster to complete the top/down gesture 

based on the preceding action in that order. As a consequence of this, a second observation 

can be presented. This was that eye movements may behave differently depending on static or 

dynamic content being visualized on screen. If Yarbus (Yarbus et al., 1973) stated that 

people’s eye movements behaved differently dependent on intent, the same could be applied 



155 
 

in reverse, namely that eye movements behave differently depending on the dynamics of the 

content being presented. 

Finally, this leads to a general consideration which applies to all of the observations made in 

the course of these experiments – very little is known about the way eye movements behave 

during interactive tasks. Eye movement research has focussed on dealing with perception eye 

movements on images, in actions, while reading etc.. If the vocabulary of gaze is to be 

increased with sustainable actions, it could be useful to know how gaze behaves during these 

actions. 

It is important to point out that the selection completion time measurement in these 

experiments should not be viewed as an attempt to model saccadic eye movements. Neither of 

the eye tracking systems used here are precise enough. The results represent patterns of 

selection completion times, task times, selection errors and target errors. And in understanding 

these patterns there are several issues which require addressing, some of them regarding the 

experimental design. The simplification of the interface compared with the pilot study was a 

definite improvement in the sense that it was more easily explained and understood by the 

participants. However, the choice to show the initiation colours as the contours of the 

selection fields was in hindsight probably not the best representation. The contour represents 

the edges of the selection fields this meant that quite often the participant would be looking at 

the edge of the selection field; in order to navigate. This in turn implies that natural jitter and 

any form of skewed calibration could have effected whether or not the selection field would 

be activated. 

The most interesting result, which concerned direction of gestures, might also be the most 

uncertain. The results indicate that direction does affect eye movements. However, this could 

simply be a consequence of the experimental design having slightly larger horizontal selection 

fields. The horizontal fields were increased so that the distance between vertical and 

horizontal selection fields was the same as a consequence the horizontal selection fields were 

slightly bigger. In the next experiment this was remedied. 

Research in this chapter was published in: Mollenbach, E., M. Lillholm, A. Gale, and J. P Hansen. 

“Single gaze gestures.” In ETRA Proceedings of the 2010 Symposium on Eye-Tracking Research 

& Applications, 177–180, 2010. 
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8 SINGLE STROKE GESTURES WITH AND WITHOUT VISUALIZATION 

This experiment was designed to explore aspects of single stroke gaze gestures (SSGG) which 

relate to potential future implementation of this gaze selection strategy. 

One of the ideas for future implementations of SSGG was to be able to complete them without 

any visual feedback, thereby freeing up screen real-estate to be used for something else. 

Potentially, this could also be a layout principle which allowed dwell and gaze gestures to be 

implemented simultaneously in the same interface; having dwell-buttons in the centre of the 

screen and transparent gesture selection fields around the rim. As a consequence, the main 

focus of this experiment was to investigate transparent initiation and completion fields. 

However, this was also a repetition of the dwell, long and short SSGG experiment, with some 

adjustments. These adjustments were intended to highlight some of the issues which have 

already been explored, as well as creating an opening for new aspects of potential gaze 

gesture implementations. 

8.1 DESIGN CONSIDERATIONS 

The first design feature which was reconsidered was the size of initiation fields. The fact that 

the initiation and completion fields for the horizontal SSGG were larger than those in the 

vertical direction could have biased the results towards faster horizontal selection completion 

times. As a consequence the fields for both long and short SSGG were implemented with equal 

size; as well as maintaining the principle of equal distance between horizontal and vertical 

selections (Figure 97). 

 

Figure 97: The new implementation of short (left) and long (right) SSGG with equal size initiation and completion 
fields. 
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Secondly, in the previous experimental design the targets in the task appeared all along the 

horizontal axis at the top of the screen (Figure 98). This was initially done in order to force 

perception, inspection and navigational eye movements to occur any place on the screen. 

However, this type of task interface layout might not be the best way of visualizing 

information for this type of selection strategy. It could potentially be more beneficial to 

present information away from the activation fields, in other words only in the centre of the 

screen. 

 

Figure 98: Full screen information visualization vs. Centre of screen information visualization. 
 

There were two reasons for this. First of all Tatler (Tatler, 2007) expressed that there is a bias 

towards looking at the centre of the screen, regardless of saliency. It therefore makes sense to 

display information visualization in the centre. 

Secondly, presenting targets all over the screen might cause unnecessary accidental gesture 

completion, by having targets in selection fields, and therefore an overinflated number of 

selection errors. Because of this the task area was limited to the centre part of the screen. 

Targets were presented at the top of the centre field and disappeared at the bottom (Figure 

99). This infringes on the concept of freeing up screen real-estate. However, the previous 

experiments have already shown that SSGG can be completed while utilizing the entire screen. 

This experiment sought to establish a potential ideal condition, especially for gestures without 

visual feedback. 
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Figure 99: Centre visualization field were targets were presented at the top and disappeared at the bottom. 
 

The targets in the previous tasks had coloured squares which descended the screen. These 

were abstract and there was no innate mapping between the gesture action and the target. In 

other words there was no connection between the colour yellow and a top/bottom SSGG. In 

order to create this connection between target and action the coloured squares were 

exchanged with arrows pointing in one of the four SSGG directions. An arrow in the gesture 

interfaces represented a ‘full’ gaze gesture; the SSGG should start at the beginning of the 

arrow and end at the arrow point. In other words an arrow pointing to the left meant a SSGG 

action from right/left (Figure 100). The task was again to select the target which was furthest 

in its decent down the screen. 

 

Figure 100: New target design. Each target symbolising a complete gesture action 
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The experiment was designed to explore two overall selection strategies again, SSGG and 

dwell selection. 

The SSGG part of the experiment was split into four selection strategy tasks: long SSGG with 

visualization, long SSGG without visualization, short SSGG with visualization and short SSGG 

without visualization (Figure 101). The arrow shaped targets afforded the transparent 

initiation and completion fields as all of the required task information was implied in the 

target shape. 

 

Figure 101: The SSGG tasks with and without visualization. 
 

The dwell selection part of the experiment was also implemented slightly differently compared 

to the previous experiments. The change of target visualization from colours to arrows meant 

that the original layout of the dwell buttons at the bottom of the screen was inappropriate, 

because of the implied directional information of the arrow targets. In other words the 

cognitive load of finding the right arrow button without any visual mapping would be too 

great compared to the mapping which would occur in the SSGG conditions. 

Because of this the dwell-buttons were placed in a circle around the centre of the screen, 

where they matched the direction in which their target arrow was pointing. In other words an 

arrow pointing to the left meant selecting the dwell-button to the left. The selection feedback 

to the user was again given on the dwell-button (Figure 102). Dwell selection was 

implemented with five selection completion times: 25ms, 50ms, 100ms, 200ms, 400ms; these 

fixation times were chosen to explore a range of dwell selection completion times which were 

more comparable with SSGG. 
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Figure 102: The dwell selection implementation. Targets were pointing to their matching buttons and feedback was 
given on the buttons. The red circle represent the feedback which was given to the user. It increased in size as the 

user was fixating on the target. 

8.2 EXPERIMENTAL DESIGN AND RESULTS 

This experiment sought to examine the difference between SSGG with and without 

visualizations; as well as further elaborating on the comparison between SSGG and dwell 

selection. 

The task was to select targets as they descended the screen. The targets were arrows which 

indicated which gesture should be completed in the SSGG conditions and which dwell button 

should be fixated upon in the dwell conditions. 

SSGG were completed by looking from an initiation field on one side of the screen to the 

completion field on the opposite side of the screen, this was to be done within a 1000ms 

timeframe. If a selection was not completed within that timeframe the system would reset. 

The feedback was given to the user in three ways depending on three overall conditions. 

Firstly, selection field feedback was given in the SSGG conditions where visualization was on. 

The selection fields were visible and shifted to a light grey colour when looked upon. 

Secondly, in the no- visualization SSGG conditions, the only feedback given to the user was that 
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the target would disappear when it had been selected. Finally, in the dwell selection condition 

the feedback was given on the dwell button as shown in figure 102. 

Short SSGG required the user to cover 30% of the screen and long SSGG required the user to 

cover 60% of the screen. These were shorter than the distances in the previous experiment. 

The reason for this change was twofold. First it was of interest to see if the difference in 

completion times of gesture lengths was still significant with relatively shorter distances. The 

second reason was that these distances suited the target area which was implemented. 

Participants were introduced to the test environment and had the opportunity to try SSGG 

and dwell selection before the actual experiment was conducted. Eighteen participants (9 

female) completed the experiment. Seven had used an eye tracker before. The application was 

written in Java and the experiment was completed on a LC technologies eye follower system 

running at 120 frames per second. Once again the experiment was completed on yet a 

different eye tracker, with an even higher frame-rate. The question is whether there is an 

upper boundary where a higher frame-rate no longer effects the selection completion time. 

The experiment was balanced by having participants complete the three overall conditions 

(long SSGG, short SSGG and dwell selection) in different order. Furthermore the dwell selection 

condition altered between beginning with 25ms and beginning with 400ms. All of the SSGG 

conditions started by having visualization on and subsequently off. This was based on the 

notion that gaze gestures without feedback need to be learnt. 

The independent variables were: 

Selection method: Overall there were nine different selection methods, based on four separate 

parameters; first, the overall selection methods of SSGG and dwell selection; secondly, for SSGG, 

selection length (long and short SSGG); thirdly, for SSGG, with and without visualization and 

finally, for dwell selection, five increments of fixation duration time. 

The nine levels of selection method were therefore: Long SSGG with visualization, long SSGG 

without visualization, short SSGG with visualization, short SSGG without visualization and dwell 

selection: 25ms, 50ms, 100ms, 200ms and 400ms. 

Each participant had to complete 20 successful selections per level of selection method. 
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Selection direction was the other independent variable with four levels: left/right; right/left; 

top/bottom; bottom/top. 

The dependent variables were: 

Selection Time: the time from when the user exits the initiation field and enters the opposite 

field measured in milliseconds (ms) 

Task completion Time: the time elapsed between each successful selection. Both accumulated 

and individual task times were recorded and measure in milliseconds (ms). 

Selection Error: A full completed selection which does not respond to the current target. 

Target Error: Targets which descent the screen and pass through the other side without being 

selected. 

The null-hypotheses which this experiment seeks to reject or retain are as follows. 

Factor 1, Long and Short SSGG: 

Null 1: There was no difference between the selection completion time for long and 

short SSGG. 

Null 2: There was no significant difference between task completion times of long and 

short SSGG. 

Null 3: There was no difference in the number of selection errors between long and 

short SSGG. 

Null 4: There was no difference in the number of target errors between long and short 

SSGG. 

Factor 2, Visualization: 

Null 5: There was no overall significant difference between selection completion times 

of SSGG with or with visual feedback. 

Null 6: There was no overall significant difference between task completion times of 

SSGG with or without visual feedback. 

Null 7: There was no overall significant difference between number of selection errors 

for SSGG with or without visual feedback. 
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Null 8: There was no overall significant difference in the number of target errors for 

SSGG with or without visual feedback. 

Factor 3, Dwell Selection: 

Null 9: There was no overall significant difference between the task completion times 

between the different dwell conditions. 

Null 10: There was no overall difference in number of selection errors for the different 

dwell conditions. 

Null 11: There was no overall difference in the number of target errors for the different 

dwell conditions. 

Factor 4, Overall and Combined measure: 

Null 12: There was no overall difference in task completion time between any of the 

conditions. 

Null 13: When using the combined measure on all of the nine selection method 

conditions there will be no significant difference between calculations. 

8.2.1 LONG AND SHORT SSGG 

SELECTION COMPLETION TIME FOR LONG AND SHORT SSGG 

As with the previous experiments it was only relevant to compare selection completion times 

for the SSGG conditions. This first analysis was based on long and short SSGG both with and 

without visualization. 

The data were explored and Levene’s test for homogeneity of variance was found to be 

significant, so the variance between the long and short SSGG datasets respectively was too 

great to employ parametric statistics. Also the data were not normally distributed. 

After ranking the scores a Wilcoxon signed ranks test was used to compare the means. 

Selection length was the independent variable with two levels long and short SSGG and 

selection completion time was the dependent variable measured in ms (Figure 103). The mean 

values were based on n=720 observations per result. The grand mean for the two selection 

methods was 152ms. For long SSGG = 186ms and short SSGG = 118ms.  
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There was a significant difference between 

long and short SSGG Z = -12,915; p <.001. 

The selection completion time for Short 

SSGG was significantly faster than for long 

SSGG. 

 

Figure 103: Mean of selection completion times for long and short gaze gestures. Error bars represent standard 
error of mean 

 

TASK COMPLETION TIME FOR LONG AND SHORT SSGG 

Task completion time was the elapsed time between two successful selections. In the previous 

experiments this had been a cumulative measure. However, in this experimental design task 

completion times were recorded for each selection separately. 

The data were explored and neither the assumptions of homogeneity of variance or normal 

distribution were met, so a non-parametric analysis was conducted. 

After ranking a Wilcoxon signed ranks test was used to compare the means. Selection length 

was the independent variable and task completion time was the dependent variable measured 

in ms (Figure 104). The mean values were based on n=720 observations per result. The grand 

mean for both conditions was 1949ms. For long SSGG the mean was 2151ms and for short 

SSGG the mean was 1747ms.  
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There was a significant difference in task 

completion time between long and short 

SSGG Z = -3,671; p <.001. Task completion 

times were significantly faster for short 

SSGG than for long SSGG.  

 

Figure 104: Mean of task completion times for long and short gaze gestures. Error bars represent standard error of 
mean 

 

SELECTION ERROR FOR LONG AND SHORT SSGG 

Selection error was the number of times a selection was completed which did not correspond 

to the current target. This was seen as an indication of accidental gesture completion. 

The data were explored and neither the assumptions of homogeneity of variance or normal 

distribution were met, so a non parametric analysis was conducted. 

A Wilcoxon signed rank test was completed to compare the selection error means of the two 

conditions. Selection error was measured as both an accumulated number and for selection 

independently. In this case the means were based on the accumulated value (Figure 105). The 

number of observations is therefore n=36 per result. The grand mean was 4,31 selection 

errors. For long SSGG the mean was 4,72 and for short SSGG it was 3,89. 

There was a no significant difference 

between the number of selection errors 

for long and short SSGG Z = -0,306; 

p = 0,759.  

 

Figure 105: Mean of selection errors for long and short gaze gestures. Error bars represent standard error of mean 
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TARGET ERROR FOR LONG AND SHORT SSGG 

Target error was the number of targets which crossed the target field without being selected. 

The data were explore and outliers were removed (± 3 standard deviation) based on a linear 

regression. The reason for this was that a qualitative inspection of the data indicated that 

there was one outlier, which deviated greatly from the rest of the data. Levene’s test of 

homogeneity of variance was significant and the data was not normally distributed, so non-

parametric methods had to be applied. 

A Wilcoxon signed ranks test was used to compare the two means, which were based on n=34 

observations per result (Figure 106). The grand mean for both long and short SSGG was 0.08 

target errors. The mean for long SSGG was 0,19 and for short SSGG it was 0,0.  

There was a no significant difference 

between the number of target errors 

for long and short SSGG Z = -1,633; 

p = 0,102.  

 

Figure 106: Mean of target errors for long and short gaze gestures. Error bars represent standard error of mean 

8.2.2 VISUALIZATION 

SELECTION COMPLETION TIMES WITH AND WITHOUT VISUALIZATION 

As previously explained it was the main focus of this experiment to explore what effect 

removing the visual feedback for the SSGG would have. 

The data were explored and the assumptions for the use of parametric statistics were not met, 

so a Wilcoxon signed ranks test was used to compare the means (Figure 107). The grand 

mean for both types of visual feedback was the same as the grand mean for short and long 

SSGG 152ms. With visualization the mean was 190ms and without visualization 115ms.  
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There was a significant difference 

between the selection completion times 

for SSGG with and without 

visualization Z = -11,401; p < 0,001. 

SSGG without visualization were 

significantly faster than SSGG with 

visual feedback. 

 

Figure 107: Mean of selection completion times for gestures with and without visual feedback. Error bars represent 
standard error of mean 

 

TASK COMPLETION TIMES WITH AND WITHOUT VISUALIZATION 

Task completion time was a combined measure of the selection action itself; as well as any 

faulty selections and the time spent on navigational search 

The data were explored. Levene’s test for homogeneity of variance was found to be 

insignificant p = 0,145. By squaring the data a normal distribution was achieved (Figure 108). 

Therefore parametric statistics could be used to analyze the data. 

  

Figure 108: Original and square rooted distributions of task completion times. 
 

A two-tailed repeated measures t-test was used to analyse the data (Figure 109). Each of the 

mean results was based on n=720 observations. The grand mean for task completion time with 
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and without visualization was 1949ms. For SSGG with visualization the mean was 1940ms and 

for SSGG without visualization the mean was 1958ms.  

There was no significant difference in 

task completion time for SSGG with or 

without visual feedback. t (719) = -

0,199; p = 0,843.  

 

Figure 109: Mean of task completion times for gestures with and without visual feedback. Error bars represent 
standard error of mean 

 

SELECTION ERROR WITH OR WITHOUT VISUALIZATION 

It was of interest to see whether the removal of the visual feedback would have an effect on 

the number of selection errors and thereby the amount of accidental gesture completion which 

would occur. 

The data were explored and Levene's test for homogeneity of variance was found to be 

insignificant p = 0,602. After logarithmically transforming the data a normal distribution was 

achieved and parametric statistics could therefore be preformed (Figure 110).  

  

Figure 110: Original and logarithmically transformed distributions of selection errors. 
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A two tailed repeated measures t-test was used to compare the means (Figure 111). The mean 

values were based on n = 36 observations per result. The grand mean for selection errors of 

both types of visual feedback was 4, 31. For SSGG with visualization it was 4,03 and for SSGG 

without visualization it was 4,58.  

There was no significant difference in 

the number of selection errors for SSGG 

with or without visual feedback. t 

(35) = -0,626; p = 0,535.  

 

Figure 111: Mean of selection errors for gestures with and without visual feedback. Error bars represent standard 
error of mean 

 
 

TARGET ERROR WITH OR WITHOUT VISUALIZATION 

This analysis was based on the number of targets which were not selected. 

The data were explored and some outliers were removed (± 3 standard deviation) based on 

linear regression. Even though Levene’s test for homogeneity of variance was insignificant 

p = 0,063, a normal distribution could not be achieved so non-parametric statistics were used. 

A Wilcoxon signed ranks test was used to compare the means. Each of the mean results was 

based on n=35 observations (Figure 112). The grand mean for number of target errors for 

both types of visualizations was 0,08. The mean for SSGG with visualization was 0,63 and for 

SSGG without visualization it was 0,97.  
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There was no significant difference 

between the number of target errors 

for SSGG with and without visualization 

Z = -0,542; p = 0,588.  

 

 Figure 112: Mean of target errors for gestures with and without visual feedback. Error bars represent standard 
error of mean 

8.2.3 DWELL SELECTION 

TASK COMPLETION TIMES FOR DWELL SELECTION 

There was no point in comparing selection completion times for the dwell conditions because 

the fixation durations were fixed. It was however of interest to see what affect fixation 

duration would have on the overall task completion times. 

The data were explored. Mauchly’s test of sphericity was significant and the data were 

skewed, so the assumptions which need to be fulfilled in order to conduct parametric 

statistics were not met. 

Friedman’s non-parametric ANOVA was used to compare the means and a post hoc analysis 

was used to determine were the differences were (Figure 113). Each mean was based on 

n=360 observations. The grand mean for task completion time for all dwell conditions was 

1750ms. 

The individual means were as follows (Table 10): 

25ms 50ms 100ms 200ms 400ms 

1550,39ms 1547,26ms 1538,45ms 1584,12ms 2532,30ms 

 
Table 10: Mean task completion times for dwell selection conditions. 
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There was an overall significant effect between 

the task completion times    
  24,141 (4, 

n=360), p < 0.01. The 400ms dwell condition 

had significantly longer task completion times 

compared to all other dwell conditions, there 

was no significant difference between any of 

the other conditions.  

 

Figure 113: Mean of task completion time for all dwell conditions. Error bars represent standard error of mean 
 

SELECTION ERRORS FOR DWELL SELECTION 

Selection errors were the number of times a dwell-click was completed which did not 

correspond to the target being presented. 

The data were explored. Sphericity could be assumed as Mauchly’s test was significant 

p = 0,038. However, a normal distribution could not be achieved so non parametric methods 

were used. 

Friedman’s non parametric ANOVA was used to find an overall significant difference between 

the mean selection error values of the various dwell conditions (Figure 114). The mean were 

based on n=15 observations. The grand mean was 6,01. 

The individual means for each selection errors for the dwell conditions were as follows (Table 

11):  

25ms 50ms 100ms 200ms 400ms 

16,18 11,94 8,53 4,00 5,88 

 
Table 11: Mean number of selection errors for the dwell selection conditions. 
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There was no overall significant 

effect between the number of 

selection errors for all of the dwell 

conditions    
  6,349 (4, n=18), p < 

0,175.  

 

 
Figure 114: Mean number of selection errors time for dwell conditions. Error bars represent standard error of mean 

 

TARGET ERRORS FOR DWELL SELECTION 

This was an analysis of the number of targets which were allowed to cross the target area 

without being selected. 

The data were explored and outliers removed (± 3 standard deviation) based on linear 

regression. This was done because a qualitative analysis of the data revealed that one subject 

fell greatly outside the norm. Sphericity and normal distribution could not be assumed so non 

parametric statistical methods were used. 

Friedman’s non-paramentric ANOVA was used to determine an overall significant difference 

(Figure 115). The mean values were based on n = 16 values. The grand mean for target errors 

was 0,18. The individual means are as follows (Table 12); 

25ms 50ms 100ms 200ms 400ms 

0,0  0,0  0,0 0,0 0,94 

 
Table 12: Mean number of target errors for the dwell selection conditions. 
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There was an overall significant effect between 

the number of target errors for all of the dwell 

conditions    
  12,000 (4, n=16), p < 0,01. 

There were a significantly higher number of 

target errors in the 400ms dwell condition. 

There were no target errors in any of the other 

dwell conditions.  

 

Figure 115: Mean number of target errors time for dwell conditions. Error bars represent standard error of mean 

8.2.4 COMBINED MEASURE 

OVERALL COMPARISON OF TASK TIMES 

Seeing as the task was the same for all conditions, comparing task completion times between 

all conditions was of interest. 

The data were explored. Sphericity could not be assumed so non parametric statistics were 

used. Friedman’s non parametric ANOVA was used to compare the means, where selection 

method was the independent variable with nine levels (short SSGG with visualization, short 

SSGG without visualization, long SSGG with visualization, long SSGG without visualization, 25ms 

dwell, 50ms dwell, 100ms dwell, 200ms dwell, 400ms dwell). Task completion time was the 

dependent variable measured in ms (Figure 116). Post hoc analysis was used to determine 

where potential differences lay. 

The means are based on n=360 observations per result. The grand mean for task completion 

time was 1838ms. The means for the individual conditions were as follows (Table 13): 

Short 

With Vis 

Short 

Without 

Vis 

Long 

With Vis 

Long 

Without 

Vis 

25ms 50ms 100ms 200ms 400ms 

1739ms 1754ms 2141ms 2161ms 1550ms 1547ms 1538ms 1584ms 2532ms 

 
Table 13: Mean number of task completion times for all conditions. 
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There was an overall significant effect 

between the task completion times for all 

the conditions    
  43,568 (8, n=360), p 

< 0,01. 400ms dwell was significantly 

slower than all conditions, except both 

the long SSGG condition. The long SSGG 

conditions had significantly longer task 

times than all conditions except the 

400ms dwell and the short SSGG without 

visual feedback. None of the other 

conditions were significantly different to 

one another.  

 

Figure 116: Mean task completion times for all conditions. Error bars represent standard error of mean 
 

COMPARISON OF COMBINED MEASURES FOR ALL CONDITIONS 

As with the dwell, long and short SSGG experiment it was necessary to use the combined 

measure from earlier in order to better compare the different methods of selections. 

The augmented selection completion time, which was introduced earlier (Chapter 6, p. 125), 

was also applied here. The two main parameters of this equation are average selection 

completion time and average selection error. 

The average selection completion times for the different conditions were (Table 14): 

Short 

With Vis 

Short 

Without 

Vis 

Long 

With Vis 

Long 

Without 

Vis 

25ms 50ms 100ms 200ms 400ms 

154ms 83ms 225ms 147ms 25ms 50ms 100ms 200ms 400ms 

 
Table 14: Mean selection completion times for all conditions. 

 

Friedman’s non-parametric ANOVA was used to compare selection errors for all of the 

conditions. The average selection errors for each of the nine conditions were (Table 15): 
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Short 

With Vis 

Short 

Without 

Vis 

Long 

With Vis 

Long 

Without 

Vis 

25ms 50ms 100ms 200ms 400ms 

3,82 4,06 4,18 5,12 16,18 11,94 8,53 4,00 5,88 

 
Table 15: Mean number of selection errors for all conditions. 

 

There was no overall significant effect 

between the number of selection error 

for any of the conditions    
  11,712 (8, 

n=17), p = 0,165.  

 

Figure 117: Mean selection error for all conditions. Error bars represent standard error of mean 
 

After recalculating into the augmented completion time the data were explored. Levene’s test 

of homogeneity of variance was significant and the data were skewed so parametric statistics 

could not be used. 

Friedman’s non-parametric ANOVA was used to compare the means (Figure 118). Each mean 

result was based on n=360 observations. The grand mean for augmented selection completion 

time was 842.43ms 

The individual augmented selection completion times were (Table 16): 

Short 

With Vis 

Short 

Without 

Vis 

Long 

With Vis 

Long 

Without 

Vis 

25ms 50ms 100ms 200ms 400ms 

588,6ms 336,7ms 943,7ms 752,8ms 404,0ms 597,0ms 858,7ms 800,0ms 2352,0ms 

 
Table 16: Mean number of selection errors for all conditions. 
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There was an overall significant 

effect between the augmented 

selection completion times for all 

the conditions    
  1769,164 

(8, n=360), p < 0, 01. 

 

 

 
Figure 118: Mean augmented selection completion times for all conditions. Error bars represent standard error of 

mean 
 

The fastest augmented selection completion time was for short SSGG NO-VIS, the only 

condition this was not significantly faster than was the 25ms dwell. These two conditions were 

significantly faster than all other conditions. 

The second fastest pair of conditions were short SSGG VIS and 50ms dwell. These were faster 

than all other conditions (except short SSGG no vis and 25ms dwell). There was no significant 

difference between long SSGG vis, long SSGG no-vis, 100ms dwell and 200ms dwell. 400ms 

dwell had a significantly higher augmented selection completion time than all other conditions. 

The α-level calculation (Chapter 6, page 126) is an indication of how many errors are made 

per selection; thereby indicating whether or not a selection strategy is usable for practical 

purposes. For the nine conditions the α-levels were (Table 17), so all of the selection methods 

were usable:  

Short 

With Vis 

Short 

Without 

Vis 

Long 

With Vis 

Long 

Without 

Vis 

25ms 50ms 100ms 200ms 400ms 

0,191 0,203 0,209 0,256 0,809 0,597 0,426 0,2 0,294 

 
Table 17: α-levels for all nine conditions. 
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8.3 DISCUSSION 

In the following the results just presented will be discussed in regard to their initial null-

hypotheses. 

8.3.1 FACTOR 1, LONG AND SHORT SSGG: 

NULL 1: THERE WAS NO DIFFERENCE BETWEEN THE SELECTION COMPLETION TIME FOR 

LONG AND SHORT SSGG. 

This hypothesis was rejected as there was a significant difference between selection 

completion times for long and short SSGG. The selection completion time for Short SSGG was 

significantly faster than for long SSGG. 

This result substantiated the observations which were made in the original dwell, long and 

short SSGG experiment. And it therefore also substantiates that potentially SSGG of different 

length can be applied to different tasks. 

Further research should be done into what the ideal lengths of SSGG would be if the goal is 

both to avoid accidental gesture completion and make a distinction between long and short 

SSGG in the same interface. 

Overall this observation holds interesting promise not only for SSGG, but also for future 

implementations of both complex and continuous gaze gestures. This point will be revisited in 

the final discussion chapter of this thesis. 

NULL2: THERE WAS NO SIGNIFICANT DIFFERENCE BETWEEN TASK COMPLETION TIMES OF 

LONG AND SHORT SSGG. 

This null hypothesis was rejected as there was a significant difference between the task 

completion times for long and short SSGG. Short SSGG had significantly faster selection 

completion times. 

Even though there was not a significant difference between task completion times in the dwell, 

long and short SSGG experiment. There was still a substantial difference in favour of short 

SSGG, so some difference was expected; however, not necessarily a significant difference. 
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This might not seem surprising seeing as there was already a significant difference in selection 

completion times in the two conditions. However, the difference between the two mean 

selection completion times was 67ms and the difference between the two task completion times 

was 404. This means that there are 336,34ms of mean extra task time which cannot be 

accounted for by the faster selection completion time. 

This could be a consequence of the navigation process being less time consuming for more 

centralized gestures. In other words the short SSGG activation fields were closer to the area in 

which the targets were being presented at the centre of the screens. 

These findings regarding long and short gaze gestures on the screen require further 

investigation, because seemingly small changes in distances on the screen have a relatively 

large affect on the registration time of these eye movements. 

NULL 3: THERE WAS NO DIFFERENCE IN THE NUMBER OF SELECTION ERRORS BETWEEN 

LONG AND SHORT SSGG. 

This null hypothesis was retained as there was no significant difference in the number of 

selection errors between long and short SSGG. 

This result again substantiated the observations found in the dwell, long and short SSGG 

experiment, where there also was no significant difference and the result was still surprising. 

It was expected that there might be a higher degree of accidental gesture completion in the 

short SSGG condition, especially in this experiment where the distance between the selection 

completion fields was even shorter (only covering 30 % of the screen). 

However, the target area was also more centralized which meant that there was little reason 

to make navigational search patterns which would cause faulty selections. There seems to be 

an intricate relationship between gaze gesture completion, accidental gesture completion and 

information visualization. 

NULL 4: THERE WAS NO DIFFERENCE IN THE NUMBER OF TARGET ERRORS BETWEEN LONG 

AND SHORT SSGG. 

This null hypothesis was also retained as there was no significant difference in the number of 

target errors between long and short SSGG. This was the opposite of what was found in the 

initial dwell, long and short SSGG experiment. Where there were a significantly higher number 
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of target errors in the long SSGG condition. In the discussion regarding those results it was 

speculated that the main reason for the high number of target errors had to do with the delay 

in system response time on the QuickGlance, which was experienced by participants. In other 

words the system sometimes required users to repeat a selection process several times before 

a successful selection was made. This would cause a higher number of selection errors and 

create a backlog of targets which had already begun descending the screen. In turn this would 

cause a number of target errors to occur before the participant could ‘catch up’. 

The current experiment was completed on a system with very fast response time. 

Consequently it was shown that there was no significant difference in the number of target 

errors. This supports the earlier stated conclusion that the previous high number of target 

errors was a consequence mainly of system set-up. 

8.3.2 FACTOR 2, VISUALIZATION: 

NULL 5: THERE WAS NO OVERALL SIGNIFICANT DIFFERENCE BETWEEN SELECTION 

COMPLETION TIMES OF SSGG WITH OR WITH VISUAL FEEDBACK. 

This null hypothesis was rejected as there was a significant difference in selection completion 

time between SSGG with and without visualization. SSGG without visualization was 

significantly faster than with visualization. 

This result was not expected. It was expected that the lack of visual feedback to the user 

would cause selections to be made from one edge of the screen to the other, in other words 

using the edges of the screen as anchor points; thereby making longer and subsequently more 

time consuming gestures. This was not the case. Surprisingly, the gestures without visual 

feedback were faster. 

The fact that SSGG without visual feedback can be completed and that selection completion 

times were even more efficient than with visualization indicates that it could be possible to 

implement SSGG as a transparent overlay in certain contexts. This will be explored further in 

the overall discussion. 
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NULL 6: THERE WAS NO OVERALL SIGNIFICANT DIFFERENCE BETWEEN TASK COMPLETION 

TIMES OF SSGG WITH OR WITHOUT VISUAL FEEDBACK. 

This null hypothesis was retained as there was no difference in task completion times for SSGG 

with or without visualization. 

Seeing as the selection completion times for SSGG without visualizations were faster, it might 

have been expected that this would have affected task completion times. The fact that they did 

not seem to affect each other can have a cause and effect as follows: 

The cause could be that more navigation was required by the participants in the without visual 

feedback condition, because ‘imaginary’ fix-points had to be set. 

The consequence of this and therefore the effect of this were longer task completion times. 

However, not longer than they can be comparable with the task completion times required for 

SSGG with visualization. In other words this observation was not enough to dismiss the use of 

SSGG without visual feedback. 

NULL 7: THERE WAS NO OVERALL SIGNIFICANT DIFFERENCE BETWEEN NUMBER OF 

SELECTION ERRORS FOR SSGG WITH OR WITHOUT VISUAL FEEDBACK. 

This null hypothesis was retained as there was no significant difference between the number 

of selection errors with or without visualization. 

Again this went against the expectation that there would have been a higher number of 

selection errors in the condition which did not have visualization. The fact that this was not the 

case supports the potential use of SSGG without visual feedback. 

NULL 8: THERE WAS NO OVERALL SIGNIFICANT DIFFERENCE IN THE NUMBER OF TARGET 

ERRORS FOR SSGG WITH OR WITHOUT VISUAL FEEDBACK. 

This null hypothesis was also retained as there was no significant difference between the 

numbers of target errors in either condition. This metric is mainly relevant in regard to this 

specific task and therefore does not count that much either way in regard to how and when 

single SSGGs with and without visualizations should be implemented, 
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8.3.3 FACTOR 3, DWELL SELECTION: 

NULL 9: THERE WAS NO OVERALL SIGNIFICANT DIFFERENCE BETWEEN THE TASK 

COMPLETION TIMES BETWEEN THE DIFFERENT DWELL CONDITIONS. 

This null hypothesis was rejected as there was an overall difference in task completion times 

for the different dwell conditions. The task completion time for the 400ms dwell condition was 

significantly longer. 

What was interesting about this result was not the fact that the 400ms dwell condition 

produced longer task completion times, as this was expected. What was really interesting was 

the fact that there was no significant difference between the task completion times of any of 

the dwell conditions from 200ms and downwards. Not only that, there was no more than 50ms 

between the highest and lowest mean task completion time in that group, which was very 

little. 

The main reason that this was interesting was that it indicates that there would potentially be 

no real benefit in implementing a dwell duration lower than 200ms. This number could even 

be higher, such as 250 or 275ms. However, these fixation duration times were not tested, 

which could therefore be the subject of a future study. The reason this was particularly 

interesting should be seen in correlation to the findings of Majaranta (2009) where trained 

users would adjust dwell fixation durations down towards an average of 282ms. In other 

words there might be a innate lower boundary for dwell fixation completion time. And users 

might implement this boundary if they were always able to adjust their activation speed as 

they gain experience. 

NULL 10: THERE WAS NO OVERALL DIFFERENCE IN NUMBER OF SELECTION ERRORS FOR 

THE DIFFERENT DWELL CONDITIONS. 

This null hypothesis was retained as there was no significant difference in the number of 

selection errors depending on dwell conditions. 

This result was very surprising. In the initial dwell, long and short experiment the 100ms 

dwell condition had a much higher selection error rate than the other dwell conditions. From a 

practical perspective it was known that no-one generally uses a dwell completion time lower 

than 250ms because it causes too many selection errors. So why is there so little difference in 
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the number of selection errors for this experiment? – There are two reasons, which could be 

quite interesting for future implementations of dwell selection. 

The first has to do with placement of the dwell-buttons in regard to the task-area on the 

screen. The second has to do with the task-targets and their visualization in regard to the 

dwell-buttons. 

The fact that the dwell-buttons were placed around the field in which targets were presented 

meant that there was no overlap between task navigation (where the task was being 

perceived) and selection navigation (where the correct button was being selected). 

The second and most important fact was that the targets themselves pointed to the dwell-

button which was required in order to select them. This further emphasized the difference 

between navigation and selection; as the participants actually navigated by looking at the 

targets themselves and then subsequently completing a selection. In other words, the 

participants did not need to look at the dwell-buttons in order to know which selection to 

complete; they already knew before a selection was initiated what the result of that particular 

dwell action would be. 

This could be implemented as a design feature that navigation and perception occur in 

separate visual spaces compared to selection. This will be explored further in the final 

discussion chapter. 

NULL 11: THERE WAS NO OVERALL DIFFERENCE IN THE NUMBER OF TARGET ERRORS FOR 

THE DIFFERENT DWELL CONDITIONS. 

This null hypothesis was rejected as there were a significantly different number of target 

errors depending on dwell condition. The only condition which experienced target errors was 

the 400ms dwell condition. The main reason for this was to be found in the balance of the 

experiment. Some participants were started with 25ms as their first selection condition and 

some started with 400ms dwell. The three people who ended up having target errors all 

started with the 25ms conditions. Indicating that in the context of this experiment it was more 

difficult when selection speed was increased compared to when it was decreased. It also 

indicates that there might be a tipping point for dwell activation time around the 200ms (or a 

bit higher) mark. 
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8.3.4 FACTOR 4, OVERALL AND COMBINED MEASURE: 

NULL 12: THERE WAS NO OVERALL DIFFERENCE IN TASK COMPLETION TIME BETWEEN ANY 

OF THE DWELL CONDITIONS. 

This null hypothesis was rejected as there was a significant overall difference in the task 

completion times between the dwell conditions. 400ms dwell and both the long SSGG 

conditions were in one group that had significantly slower task completion times. Short SSGG 

and the 25-200ms dwell conditions were in another group which had significantly faster task 

completion times. 

The issues regarding task completion times have already been discussed for the SSGG and 

dwell conditions separately. This overall comparison was simply done in order to examine 

whether one of the overall selection strategies, dwell or SSGG, stood out, which they did not. 

This was a further indication that SSGG and dwell are not that far apart in terms of being 

effective strategies for solving similar tasks. 

NULL 13: WHEN USING THE COMBINED MEASURE ON ALL OF THE NINE SELECTION 

METHOD CONDITIONS THERE WILL BE NO SIGNIFICANT DIFFERENCE BETWEEN 

CALCULATIONS. 

This null hypothesis was rejected as there was significant difference between the augmented 

selection completion times. 

Surprisingly the α-levels showed that all of the selection strategies presented in this context 

could potentially be usable. 

The two fastest conditions for the augmented selection completion times was the short SSGG 

without visualization and the 25ms dwell. The main reason for the short SSGG without 

visualization being so effective in this calculation was the combination of having a low 

selection completion time and having a relatively low selection error rate as well. The 25ms 

dwell condition was, however, mainly benefitting from the low selection completion time as 

this meant that the ‘penalty’ for erroneous selection was also very low. So even though this 

condition had the highest number of selection errors it still fared relatively well. This was 

probably also mainly due to the previously mentioned visual layout, which was very 

conducive with short dwell time activations. 
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The second fastest pair of conditions was short SSGG with visualization and 50ms dwell. The 

same reasons as presented above can explain their relative efficiency within this augmented 

measure. 

There was no significant difference between long SSGG with visualization, long SSGG without 

visualization, 100ms dwell and 200ms dwell. The main conclusion which can be drawn from 

this observation was that the overall SSGG and relatively low selection completion times are 

quite comparable; even in an interface layout and task which attempts to use the strengths of 

either selection method. These strengths being easy navigation in both designs, as the task 

targets provided the navigational information required to efficiently complete selections. 

400ms dwell had a significantly higher augmented selection completion time than all other 

conditions. This indicates that the cost of a higher dwell completion time might not be 

outweighed by the presumed lower number of selection errors which should occur. 

The goal of this research was not to compare dwell selection and SSGG to a point where one 

was better than the other, which also was not supported by the empirical evidence. The point 

was to justify whether or not SSGG with or with-out visualization could be an equally valid 

gaze selection strategy, which could supplement existing input. This was supported by the 

empirical evidence. The goal now becomes to determine when to use what selection strategy 

in order to create flexible gaze contingent applications. 

To further explore the potential future toolbox of gaze selection strategies a final experiment 

was developed which was quite different to the previously presented experiments in both its 

intent and design. 
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9 COMPLEXITY THRESHHOLD OF GAZE GESTURES 

The research presented in the previous chapters has inspired further investigation into the 

overall area of gaze gestures. This chapter describes a pilot study which is intended to inspire 

future research. 

9.1 COMPLEXITY THRESHOLD 

The research previously presented in this thesis resulted in the interest of pursuing certain 

aspects of gaze gesture interaction, specifically the affordances and constraints regarding 

single stroke gaze gestures (SSGG). The concept of complex finite gestures was defined in 

chapter 3, as finite shape based gestures. 

An experiment regarding these types of gaze gestures was designed, implemented and a small 

study was conducted. The data collected presented challenges, which have helped establish 

some of the issues regarding further exploration of complexity in gaze gestures. The idea was 

that if SSGG could be completed without visual fix-points, perhaps more complex gaze 

gestures could also be completed without fix-points. Not only that, but complex gaze gestures 

could potentially be recognized purely based on shape completion, rather than relying on 

initiation and completion fields. This concept is called free gaze gestures and could, after 

further exploration, be added to the gaze gesture taxonomy presented in chapter 3. To explore 

the upper and lower boundaries of free gaze gestures a new experiment was designed. Initial 

observations are presented, along with considerations in regard to design as a full analysis of 

this research lies beyond the scope of this thesis. 

There were three main areas which this experiment was designed to explore: 

(1) The first was discovering whether or not there was a threshold for the potential 

complexity level of finite gestures while still retaining the ability of being sustainably 

repeated. There are two reasons for wanting to be able to implement complex finite gestures. 

The first is the increase in the vocabulary of gaze selection strategies. The rationale was that 

the more selection methods are available the better applications could potentially become, 

because diversity of selections strategies means that the mono-modal nature of gaze as sole 

input can still achieve multi-modal interaction capabilities. Another issue related to exploring 
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complex finite gestures, was accidental gesture completion. In certain situations for certain 

users SSGG will potentially be subject to high levels of accidental gesture completion, due to 

nystagmus, making complex finite gestures a potential alternative. 

(2) The second focus which was explored in this experiment was inspired by the SSGG 

experiment with and without visualization presented in chapter 8. One thing was to be able to 

complete SSGG without on-screen fix-points; another would be to be able to complete 

complex finite gestures without feedback. This has not been explored in the field of gaze 

interaction. The idea is that a free gaze gesture could be completed anywhere on the screen as 

long as the shape being completed would be systematically recognizable. Figure 119 shows 

the difference between completing complex finite gestures based on fix-points and completing 

them freely. 

 

Figure 119: Complex finite gaze gestures with and without fix-points 
 

All of the experiments on complex finite gestures (Wobbrock, 2003, Porta & Turina, 2008a, 

Drewes & Schmidt, 2007, Istance et al., 2009; Vickers et al., 2008; Istance et al., 2010; Istance 

et al., 2009) have been done using fix-points of some kind. Being able to implement complex 

finite gestures freely and without visualization relies on whether or not users are capable of 

completing recognizable patterns when they do not have fix-points on the screen. It was in 

that regard of interest to establish whether there would be an upper threshold for how 
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complex such gaze gestures could be, while still retaining the ability to be remembered and 

completed by the user. As well as a lower threshold for how simple such gaze gestures can be 

without causing too many accidental gesture completions. 

(3) Finally, an experimental interest was exploring how on-screen visual interference would 

affect the completion of free single and complex finite gaze gestures; in order to develop 

guidelines for how these should be implemented appropriately in applications. One 

implementation of particular interest was to further develop gaze controlled driving, for 

instance to enable a disabled user control their wheelchair, as well as looking at direct object 

interaction as the foundation of environmental control. Mock ups of design implementations 

of these functions will be presented in the next chapter. However, this was the reason why it 

was deemed necessary to explore how visual noise (i.e., objects and people entering and 

exiting the screen beyond the user’s control) affects the completion of free single and complex 

finite gaze gestures. 

9.1.1 EXPERIMENTAL DESIGN 

An alphabet of gaze gestures was created. The main consideration was whether or not the 

complex finite gaze gestures should have semantic meaning or not. In some of the 

experiments where these types of gaze gestures have been used in typing interfaces, the 

shapes which need to be completed were designed to resemble characters in the alphabet 

(Wobbrock et al., 2008). The gaze gestures in the experiment presented here were based on 

three basic geometric shapes: lines, triangles and squares; without any semantic meaning. 

Another consideration was how to increase complexity gradually, in order to discover tipping 

points for the upper and lower boundaries. The gaze gestures were therefore implemented 

with one, two, three, four and five strokes respectively. Finally, the shape, size, and whether or 

not the figure was skewed was considered; in order to uncover whether these factors affected 

the completion process. The final gesture alphabet used can be seen in figure 120. 
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Figure 120: The gaze gesture alphabet as designed for this experiment. The red arrow symbolizes the first stroke of 
the gesture. 

 

In order to determine how visual noise affected the completion of different types of gaze 

gestures; four different types of visual information were implemented. Gaze gestures were to 

be completed on (1) a black background as seen above (Figure 120). The other types of visual 

information were (2) a still image background, (3) a moving background without people and 

(4) a moving background with people. The intention with the moving backgrounds was to 

simulate a wheelchair control situation where an individual was moving down a hall. The 

reason for having images with and without people in them was to explore whether this type of 

interference was more or less likely to affect the successful completion of gaze gestures. 

To build on the previous experiment where gaze gestures were completed with and without 

visualizations; a sequence of gaze gestures would be completed first with fix-points and then 

repeated without fix-points. This approach is also inspired by the research done in the context 

of other path based gestures that have attempted to define the boundaries of how this type of 

interaction could be implemented (Heikkilä &  Räihä, 2009).  
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9.1.2 STUDY 

4 participants (1 female) completed the study. All had previous experience with eye trackers. 

Participants were asked to complete the 20 gaze gestures of varying complexity with and 

without fix-points and four different backgrounds: Black background; still image background; 

moving image background without people and moving image background with people. 

Both gaze gesture type and background were presented randomly. However, the sequence of 

presentation was the same. First the gaze gesture was presented with fix-points and then 

without. 

Analysis has been done on the gaze gestures with and without fix-points on black 

backgrounds, in order to develop a baseline method of analysis for this type of gaze 

experiment. Preliminary observations are reported which indicate that this is an interesting 

but complex area of research. 

Figure 121, is an example of an overview of the preliminary recordings completed on a LC 

Technology Eye Follower system and plotted by the Nyan gaze diagnostics tool13. Nyan is a 

piece of software which allows experimental setups regarding analyzing eye movement 

patterns in various contexts such as scene viewing of dynamic content. It also provides direct 

access to the raw tracking data, as well as offering a full fixation and saccade analysis of the 

data based on the system’s gaze analysis algorithm. This full analysis can then be plotted 

visually. What it does not provide is an ability to conduct a full analysis of eye movements in 

interactive applications. This is an area which needs further development. 

The gaze gestures in this experiment were not interactive, but simply displayed on the screen. 

Participants were then asked to trace the gesture presented with fix-points and then repeat 

the pattern without fix-points. Figure 121 consists of 20 gesture sequences (the full 

vocabulary of this experiment). First the gesture is shown in each sequence; the red arrow 

indicating the first stroke. After this is the recording of the gaze gesture being completed with 

fix-points, and then the gaze gesture being completed without fix-points. 

                                                        
13 http://www.interactive-minds.com/ 

http://www.interactive-minds.com/
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Figure 121: Preliminary recordings of eye movements while completing gestures with and without visualization. 
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There are four observations which can be derived from these preliminary recordings. First of 

all completing complex gaze gestures with fix-points create easily recognizable patterns 

(Figure 122). 

 

Figure 122: A five stroke gesture repeated with fixation points. 
 

There does not seem to be an upper physiological threshold for how complex a gaze gesture 

can be. However the question still remains in regard to a potential cognitive threshold. Overall 

the findings indicate that complex finite gaze gestures are a valid solution if on-screen 

visualization is incorporated in the design. A design proposition, which incorporates the 

ability to complete complex gaze gestures, while removing the cognitive difficulties of 

remembering them and their consequences, has come from this and could be defined as gaze 

tracing. In this experimental design the gaze pattern was shown in its entirety, the subjects 

were therefore essentially tracing the pattern with the eyes. Tracing could become a selection 

strategy on its own; for instance, in situations where the user is to make a discrete choice 

where the outcome is of great consequence. In other words, for situations where the potential 

consequence of a selection error caused by a prolonged fixation (for a dwell- button) or a 

stray fixation (for a SSGG) – would be too great. An example of implementing gaze tracing as a 

selection strategy is shown in figure 123. 



192 
 

 

Figure 123: An example of implementing tracing as a selection strategy 
 

The second observation which can be made was that there was a vast difference between 

completing free SSGG and free complex finite gaze gestures without fix-points; even though 

the gaze gesture shape had been shown right before the free complex finite gaze gesture was 

completed (Figure 124). 

 

Figure 124: On the left the gesture image, the middle image is the gesture completed with fix-points and on the right 
the gestures completed without fix points. 
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This further substantiates that SSGG can indeed be completed successfully without visual fix-

points. This infers that this type of gaze selection strategy would be useful in situations where 

it was of interest not to have gaze-related visual feedback presented on the screen. 

The two final observations have to do with analyzing the results of this experiment 

quantitatively, but also have implications for future implementations of gaze gestures. If 

complex finite gaze gestures were to be implemented without visual feedback it would most 

likely require that there was an indication as to when a gaze gesture was started. In this 

design, it was difficult to distinguish which fixations were part of the gaze gesture and which 

were part of the visual inspection and this was on a black background with no noise. 

Potentially, start and stop fields could be implemented which informed the system when a 

gaze gesture was initialized and considered completed by the user (Figure 125). The system 

would then know what data to analyze for pattern recognition. 

 

Figure 125: Start and stop fields regarding the initiation and completion of complex finite gaze gestures. 
 
 

This leads to the final observation in regard to this experiment. In order to successfully 

analyze the data acquired in this experiment, an algorithm for fix-point-free shape recognition 

needed to be developed, which could recognize gaze gesture shapes even though they were 

scaled, skewed and angled slightly differently from the ideal gaze gesture which they were 
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intended to resemble. Only with such a system in place can free complex finite gaze gestures 

of varying degrees be tested and potentially implemented. 

This research has uncovered that there are four sub-categories of complex finite gaze gestures 

(Figure 126). 

(1)They can be based on the gaze tracing principle, where the shape which needs to be 

completed is presented on the screen. This method can cope with very complex gaze gestures 

as the cognitive load is very low, because the user does not have to remember the right order 

of the strokes or the potential outcome of a gaze gesture. However, this method is limited by 

the need for a relatively large visualization on screen. Therefore it would most likely be most 

appropriate in situations where discrete selections need to be made. 

 

Figure 126: Sub-categorization of complex finite gaze gestures 
 

(2)Complex finite gestures can also be implemented as gaze gestures which can be completed 

based on fix-points on the screen. This has been successfully examined on several occasions 

(Istance et al., 2009; Istance et al., 1996; Vickers et al., 2008; Istance et al., 2010; Istance et al., 

2009b; Wobbrock et al., 2008). The limitation of this is that there needs to be fix-points on the 

screen, either opaque or semi-transparent. Also the cognitive load is potentially high as the 
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user has to remember both the combination of strokes and the consequence of each 

combination. 

(3, 4) Finally, gaze gestures can be implemented as free or semi-free gestures (i.e., a start and 

stop feature implemented). Both of these gaze gesture types have a potential high cognitive 

load as the user has to remember stroke combinations and consequences. However, the lack 

of on-screen visualization might make them appropriate in applications which require the full 

use of the on-screen real-estate. There might possibly be a lower boundary when it comes to 

free gaze gestures. In other words single stroke gaze gestures might cause too many 

accidental gesture completions, as each individual saccade could be erroneously registered. 

Further exploration of this area of research is considered, in the context of this research, to be 

an essential next step in the future development of gaze interaction. However, fully exploring 

the above mentioned aspects was beyond the scope and timeframe of this research. In the 

following chapter the main contributions will be reflected upon. There will also be a 

presentation of some designs which have been derived from this work. 
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10 DISCUSSION 

In this chapter the main contributions of this research will be presented, along with design 

suggestions regarding potential implementations of the various aspects presented in this 

thesis and suggestions for future research. 

The overall approach taken in this research has dealt with four main aspects regarding the 

exploration of gaze selection strategies. Firstly, the fundamentals of eye movements have 

been explored with the intent of using these as the foundation for further development and 

understanding of gaze selection strategies. The second aspect dealt with identifying existing 

gaze selection strategies, so that application designers have a tool to asses and choose 

between the different gaze selection strategies and apply them appropriately. Thirdly, the 

focus has been on the end-users who will benefit from this type of interaction and have 

specific needs both physiologically and in terms of application requirements. The exploration 

of gaze selection strategies has attempted to take both into account. And finally, the simplest 

form of gaze gesture selection was explored to uncover the potential benefits and limitations. 

10.1 RECAP IN THE CONTEXT OF THE ORIGINAL RESEARCH QUESTIONS 

10.1.1 AFFORDANCES AND CONSTRAINTS OF THE EYE AS INPUT 

The first original hypothesis and research questions regarding the understanding of eye 

movements stated: 

Gaze as input has specific interaction design features. 

What are these features? 

What considerations are important when designing gaze selection strategies? 

Understanding the nature of eye movements is essential when designing gaze selection strategies. 

The features of eye movements can be split into affordances and constraints. 
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The main affordances of gaze as sole input are: 

1. The two main temporal states, saccades and fixations. The reason that these should be 

viewed as an affordance is the fact, that being able to systematically make a distinction 

between the two, is the foundation for interactive gaze. 

2. The physiology of the eyes; this is both durable and sustainable, and is therefore an 

affordance which makes gaze well suited as an input modality. 

The main constraints of eye movements as sole input are: 

The eyes are always ‘on’, which means that the distinction between perception and 

interaction eye movements is the constraint. 

1. For fixation based interaction the issue is the Midas touch problem, where everything 

can potentially be selected by viewing. 

2. For saccade based interaction the issue is accidental gesture completion, where 

inspection and navigation patterns might accidentally complete unintended selections. 

10.1.2 TAXONOMY OF GAZE INTERACTION PRINCIPLES 

The second original hypothesis was regarding existing selection strategies in gaze interaction 

and stated: 

There are many different types of gaze selection strategies. 

What are these strategies? 

When and how are they best used? 

The main contribution, in regard to the above presented research questions, was the gaze 

selection strategy framework created and presented in chapter 3. Here an overview of 

existing selection strategies was given. The main distinction was again made between fixation 

based (dwell) and saccade based (gaze gestures) selection strategies. 

Next implementation principles were defined and presented for each gaze selection strategy. 

These are intended to be used as tools when considering what and how gaze selection 

strategies should be implemented. For dwell the implementation principles were selection 

complexity, visual feedback and fixation duration. For gaze gestures the implementation 
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principles were stroke complexity, finite and continuous gestures. These principles were 

subcategorized and can and should be further developed. Free gaze gestures were introduced 

as a concept which could further expand the existing taxonomy. However, these need to be 

explored further to establish how this type of gesture relates to the taxonomy. The reason for 

defining these principles was in order to contribute to the overall understanding of gaze 

selection strategies. If the goal is to develop flexible gaze contingent applications for mono-

modal input; multi-modal interaction strategies should be employed. 

The ‘when and how’ selection strategies should be implemented is dependent on both system 

specifications (application, task and visualization) and the end-user (capabilities, requirements 

and wants). 

10.1.3 A DECLARATION OF END-USER NEEDS 

The third set of research questions that dealt with the end-user, their capabilities, requirements, and 

wants stated: 

Users with severe motor impairments have special needs. 

What are these needs? 

How can these be assessed from a design perspective? 

How do these affect design of gaze based applications and selection strategy? 

The main contribution to these questions can be found in chapter 4. The overall needs of users with 

severe motor impairments were to gain as much autonomy as possible in the areas of 

communication, environmental control, and mobility. This should be done by developing gaze 

contingent applications which take into account the physiological capabilities of the user. The most 

important aspect is to make sure that applications can adapt to changes in the user’s circumstances, 

which can occur either as a consequence of degenerative conditions or in the process of 

rehabilitation. 

From a design perspective the main approach is the design applications and application control 

which can cater to the following areas: 

  



200 
 

1) The ability to point at objects of interest in the user’s environment. 

2) The ability to interact with objects in the environment. 

3) The desire to control a multitude of applications. 

4) Taking special considerations when design peer-to-peer communication systems. 

5) Facilitating easy digital communication. 

6) Creating gaze controlled wheelchair control. 

The design of these applications should be approached from three perspectives: Task analysis, 

information visualization and selection strategy. These perspectives should in turn be viewed and 

assessed in regard to the user context, which entails cognitive and physiological affordances. 

Suggestions on how some of the end-user needs can be catered for by using a selection strategy 

such as the single stroke gaze gestures will be presented in the general discussion section. 

10.1.4 FUNDAMENTAL OBSERVATIONS REGARDING SINGLE STROKE GAZE GESTURES 

The final research questions dealt with the selection strategy of gaze gestures and stated: 

Gaze Gestures constitute a selection strategy. 

What is the simplest form of gaze gesture? 

What are some of the basic characteristics of simple gaze gestures? 

How could these characteristics affect the way gaze gestures are implemented? 

The simplest form of gaze gesture was deemed the single stroke gaze gesture, which consisted 

of one stroke. The immediate assumption regarding this selection strategy was that it would 

potentially be too error prone, by causing a high number of accidental gesture completions. 

However, the research presented in the thesis has shown that by using the edges of the 

screen, this single stroke gaze gestures can be successfully compared to dwell time selection; 

exceeding this in terms of selection completion times, and overall not having a substantially 

higher number of selection errors or significantly prolonged task completion times. 

The main affordances of the single stroke gaze gesture are a low physiological and cognitive 

load, low selection completion time and the possibility of being implemented without visual 

feedback. 
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The main constraints are that single stroke gaze gestures only constitute a limited number of 

interactions and that there is a risk of accidental gesture completion, which accompanies all 

gaze gesture selection strategies. 

The final research question deals with how single stroke gaze gestures could be implemented. 

Suggestions to this extent will be presented in the subsequent section. 

10.2 GENERAL DISCUSSION 

During the course of this research experiments have been made using approximately 60 

participants and some observations go beyond the quantifiable nature of the experiments. 

One such observation is that people approach eye tracking very differently. Some people 

would concentrate so hard on the screen that they would get a headache after a very short 

period of time– while others find it to be the easiest thing in the world. The intention and 

preconception which participants have to the task at hand greatly affects the outcome which 

they produce. 

This is meaningful as seen in light of the work which Yarbus (Yarbus et al., 1973) conducted 

on eye movements where he concluded that the pattern of eye movements differed depending 

on the intention and cognitive ability of the person viewing the scene (Chapter 2). The same 

could very well be true for interactive eye tracking – the implications of this are, however, 

very hard to identify. This constitutes one of the challenges in the field of gaze research, as 

gaze can function as a direct reflection of what is going on cognitively. How to interpret and 

ultimately design for this is a subject for future research. 

The second observation is that there is a need to move beyond the idea of mono-modal 

interaction for mono-modal input. Initially, the approach taken in this research was to show 

that single stroke gaze gestures were a better concept for gaze interaction than dwell-time 

selection and while selection completion times for SSGG might be significantly faster, the point 

that there is a need to develop selection strategies which supplement each other has become 

clear. The goal should therefore be to gain a sense of when to use dwell, single stroke gaze 

gestures, complex gestures, zoom selection etc. in a meaningful and appropriate way. 



202 
 

The main challenge facing the field of gaze interaction is not the technology, as most people 

believe, or the lack of a ‘main-stream’ application, such as computer games – although these 

would both be nice to have. The main challenge is still to design sustainably and appropriately 

for the affordances of gaze, along with an understanding of the task and subsequent 

information visualization of a given application. If meaningful ways of using gaze as input are 

developed; meaningful applications will follow. Most of the gaze selection strategies which 

have been developed so far have focussed entirely on the limitations of eye movements rather 

than the possibilities, because the limitations are so obvious. The most important research 

result in regard to gaze interaction that has come from this work is to break through the 

barrier of assuming that a mono-modal input can only lead to a monotypic selection strategy. 

However, empirically a monotypic gaze selection strategy has been developed and explored. 

The main findings of the empirical research can be split into two overall interrelated areas of 

discovery, the first being findings regarding gaze selection strategies and the second 

regarding visual feedback. 

10.2.1 FINDINGS REGARDING GAZE SELECTION STRATEGIES 

THE GRAND MEAN 

The grand mean for single stroke gaze gestures on the LC technologies system was 152ms and 

on the Tobii 1750 it was 105ms; these are substantially faster than a standard dwell selection 

time of approximately 400ms, which shows the potential of this gaze selection strategy as a 

very fast option; while still being comfortable, because it can be completed in the user’s own 

time. 

However, it is also a substantially faster finding compared with stroke completion times in 

other experiments. Istance et al. (Istance et al., 2010) showed an average stroke time of 

247ms/stroke for 2 stroke gestures and 293ms/stroke for the 3 stroke gestures and 

Wobbrock (Wobbrock et al., 2003) showed an average stroke completion time of between 

550-600ms. 

There are two potential reasons for this. The first has to do with potential different 

approaches to measuring stroke completion times. The second has to do with the potential 

nature of complex gaze gesture versus single gaze gestures. In the previous discussion it was 
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stated that very little is known about how eye movements behave during interactive tasks. 

The difference in the stroke completion times could indicate that different processes occur 

during the completion of complex gaze gestures, compared with single gaze gestures. What 

these are is a subject for future research. 

SINGLE STROKE GAZE GESTURES ARE NOT MORE ERROR PRONE THAN A STANDARD 

DWELL-TIME ACTIVATION. 

In the gaze gesture and dwell experiment presented in chapter 6, there was no significant 

difference between the levels of accidental gesture completion in the single stroke gaze 

gesture conditions and the dwell conditions between 300ms and 1000ms. As mentioned in 

the discussion this was a surprise. The same was true in the single stroke gaze gesture 

experiment with and without visualization, Chapter 8. 

This indicates that single stroke gaze gesture can indeed be used as a gaze selection method. 

The question is how they can be used appropriately in applications. Suggestions to this effect 

will be presented. But future research is also required to fully understand what the potential 

implications of this gaze selection strategy are. 

THE AUGMENTED SELECTION COMPLETION TIME 

In the augmented selection completion time the single stroke gaze gesture selections did very 

well, both in the gaze gesture and dwell experiment (chapter 6) and in the single stroke gaze 

gestures with and without visual feedback experiment (chapter 8). This further substantiates 

single stroke gaze gestures as a valid selection strategy. 

However, there were a few surprises in this calculation. In chapter 5, the augmented 

calculation showed that the 500ms dwell condition was the least effective. This was very 

surprising seeing as this is generally considered a standard dwell time. The question is 

whether this standard has mainly been set based on the requirements of novice users, as 

could be suggested by the findings in (Majaranta et al., 2009). If this finding is combined with 

those presented in this research, it might suggest that the standard dwell completion time 

suggested by Jacob of 150- 250ms (Jacob, 1993) might ultimately be more appropriate. The 

key is to find a balance between the costs of making an error with the likelihood of making 

one. 
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It would be very interesting to explore what the results of this augmented completion time 

would be for other applications. It is proposed as a measure which can potentially allow for a 

comparison between different gaze selection strategies. 

The α-level calculation was intended to show whether or not a selection strategy would even 

make sense. As mentioned the idea was that if there was a higher likelihood of making an 

error than making a successful selection, the method should be discarded. This was the case 

for the 100ms and 300ms dwell conditions in the dwell and gaze gesture experiment in 

chapter 6. Surprisingly all of the dwell conditions in the single stroke gaze gesture experiment 

with and without visualization in chapter 8 were usable. This was explained as being the 

consequence of the layout of information in this experiment being so conducive to dwell 

selection. 

The question is if the threshold of requiring that there is less than one error per successful 

selection is low enough. A potential future investigation should explore what the appropriate 

α-level should be for practical purposes. 

DWELL SELECTION TIMES BELOW 200MS AND TASK COMPLETION TIMES. 

Even though the main focus of this research was not dwell-time selection a few observations 

of interest were inadvertently made regarding this gaze selection strategy. 

One of these was the fact that dwell completion times below 200ms did not have any effect on 

the overall task completion time. This indicates that there might be a lower boundary for dwell 

at which point it might not be relevant, in terms of task completion times, to lower dwell-time 

any further. Whether this is the case for dwell in other applications could also be an issue for 

future studies. 

THERE IS A DIFFERENCE BETWEEN LONG AND SHORT GAZE GESTURES 

Some of the findings regarding gaze selection strategies can have direct design implications 

regarding how future applications and interface layouts should be developed. The potential of 

a real difference in long SSGG and short SSGG is one of these findings. 

One way of using this in an interface is by defining different ‘zones’ of activation, where long 

SSGG and short SSGG could be applied depending on frequency of selection an example of a 

possible implementation is shown in figure 127. 
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Figure 127: Potential implementation of high and low frequency gaze gestures. High frequency gestures are 
completed with short SSGG (left) and low frequency selections are completed with long SSGG (right). 

 

Future research should deal with what should be the perfect balance between gesture length 

and selection error, to establish a threshold for accidental gesture completion based on single 

stroke gesture completion of different lengths. 

HORIZONTAL SINGLE STROKE GAZE GESTURES ARE FASTER THAN VERTICAL SINGLE STROKE 

GAZE GESTURES. 

The fact that there seems to be a systematic difference between horizontal and vertical single 

stroke gaze gesture can also have implications for how information on the screen should be 

presented. 

An example of this could be to explore and further develop a system such as the one 

presented by Morimoto and Amir (2010). Here they presented a typing application which had 

two ‘qwerty’ keyboards placed on top of each other; selections were made by switching 

between the two with vertical eye movements. The findings in the present research indicate 

that there might be an advantage to be found, by placing the two keyboards next to each 
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other, causing selections to occur by horizontal eye movements instead. This could be another 

topic for future research. 

SINGLE GAZE GESTURES CAN BE COMPLETED WITHOUT VISUALIZATION. 

The fact that single stroke gaze gestures could be completed without visual feedback on the 

screen makes it a very useful and yet unheard of type of gaze selection strategy. A context in 

which this principle could be useful is when implemented gaze controls for watching movies 

on a PC or television, where it is of interest for the user to have control without there being 

large dwell-buttons or semi-transparent selection fields on the screen (Figure 128). This type 

of selection strategy could also be used in general for flicking through channels on the TV. 

 

Figure 128: A potential implementation of movie controls based on SSGG 
 

In that regard the completion of the final experiment on gaze gestures with different levels of 

noise in the background would have been useful. It needs to be uncovered what the chances 

are for accidental gesture completion to occur while watching a movie or other types of noisy 

visual input. 

COMPLEX GAZE GESTURES 

Investigating complex gaze gestures, based on the three principles presented in chapter 9 (i.e., 

tracing, free, semi-free and fix-point based) would be of great value in terms of understanding 

how multi-modal interactions for gaze as mono-modal input can be implemented. As 

mentioned in chapter 2, one of the main challenges of gaze detection is being able to threshold 

when fixations begin and end (Salvucci & Anderson, 2000). The same is especially true for the 

implementation of free complex gaze gestures, where a neural-network would need to be 
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developed which had the ability to adapt so as to better interpret a user’s selection patterns. 

Tracing would also be a useful supplement for gaze interaction, because it affords a low 

cognitive load and the high complexity with which they can be created decreases the risk for 

accidental gesture completion. 

10.2.2 VISUAL FEEDBACK 

SEPARATING INSPECTION AND NAVIGATION FROM THE SELECTION PROCESS 

The results in chapter 8, showed that even dwell-times of 25ms could be used without a 

significantly higher number of selection errors; most likely due to the layout and visualization 

of the information on the screen. 

Very short dwell selection times can as a consequence potentially be applied if the 

visualization supports dwell free inspection and navigation. The same is probably true for very 

short single gaze gestures. These considerations can also be supported theoretically. As 

presented in chapter 2, there is evidence that we do not look at multiple objects 

simultaneously (Yarbus et al., 1973; Noton & Stark, 1971a) this is therefore probably also the 

case in screen-viewing. If inspection/navigation occurs separately from selection in terms of 

visual representation on the screen, the problems stemming from the interference between 

these types of eye movements can be avoided. In other words, by separating inspection 

/navigation from selection, the user will already know where to make a selection and what 

the consequence of that selection will be before the process has been initiated. 

An example of this is given in figure 129. This is an illustration of how a typing interface could 

be implemented either by using very short dwell-time selections or very short SSGG. 

The navigational space in the centre of the screen is not affected by gaze, so the user can 

navigate without urgency. When the letter of interest is located a selection can be made by 

looking at the outer rim. Whether it would be most appropriate to complete selections based 

on short dwell-times or simply short single stroke gestures would be a subject for future 

research. One concern with this design if it were implemented with SSGG would be whether 

accidental selections would occur if the user looked at the screen for other purposes or simply 

wanted to ponder while writing, rendering eye movements of no purpose. Addressing these 

types of design issues is a field of research for the future. 
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Figure 129: Inspection/navigation separated from selection. Selections occurring based on short dwell-time or short 
SSGG 

 

This illustration is merely intended to visualize the concept. What the consequences of 

separating inspection/navigation from the selection process are, is also a subject for future 

research. 

PRESENTING INFORMATION ON- AND OFF-TARGETS 

Overall the experiments presented in this thesis have dealt with feedback on three different 

levels multiple source feedback, single source feedback and no feedback. In the initial pilot 

studies the user feedback was overcomplicated (multiple source feedback) and many of the 

design choices were redundant. In the gaze gesture and dwell experiment in chapter 6 and in 

parts of the experiment in chapter 8, single source feedback was used; in other words the 

feedback given to the user only came from the initiation and completion fields and only when 

viewed. Finally, no feedback was used as a condition in Chapter 8. 
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Other observations in regard to feedback have also been made. The first was in regard to how 

to implement target and action feedback. The distinction made here is between a target, 

which has an on-screen visualization and an action, which does not. An example of a target 

would be a dwell-button. An action could be initiating panning or scrolling based on dwell, but 

without a visual representation. 

Interaction with computers is generally intended to cause a reliable relationship between a 

user-action and the subsequent system-response. The whole notion of feedback is to ensure 

that the consequences of a user-action are understood before the action is completed. This 

relationship can be implemented in gaze contingent interfaces based on three visualization 

principles: on-target, off-target (Figure 130) and no-target (Figure 131). 

 

Figure 130: Illustration of the on-(left) and off- target (right) visualization principles. 
 

Both on and off – target visualizations have on-screen representation. On-target visualization 

means that the user-action (in this case the SSGG) and system-response (activating any one of 

the applications) are displayed on the same target. Off-target visualizations mean that the 

user-action is implied in the design layout and therefore off the target, however, the system 

response is still visualized. Both of these principles can be applied to targets where the 

system-response is devoid of familiar mapping. In other words, there is no innate familiar 

mapping between a bottom/top SSGG and opening an email client. 

No-target feedback requires an element of familiar mapping or easily learnt consequences. In 

the previously presented example panning and scrolling build on familiar mapping. An 

example of this could be reading a text on screen, and the text scrolling up when the eyes 

reach the bottom of the page. An example of easily learnt consequences could be the 
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previously presented example of controlling a film viewing session by using single stroke gaze 

gesture. Here there is a mix of familiar mapping with easily learnt consequences. The fast- 

forward and backward actions of looking from left/right and right/left respectively hold some 

familiar mapping; because these actions mirror the visual direction of the icons for these 

actions which are familiar to most people. However, looking from top/bottom to start a film 

and from bottom/top to pause it, holds no immediate familiar mapping, but might possibly be 

quite easily learnt. 

Another example of the no-target visualization principle is shown in figure 131. While 

navigating in a 3D environment the diagonal SSGG from top-left/bottom-right has been 

applied to the ‘zoom in’ action and the SSGG from bottom-left/top-right has been applied to 

the ‘zoom out’ action. 

This idea is the foundation for a potential environmental control system, which could be used 

by the end-user. The environment of the end-user should be displayed on a screen, by 

integrating dwell and gaze gestures camera control could be achieved. Dwell could be used for 

panning actions and gaze gestures for zoom. This then allows the user 360° of visual freedom, 

in their home environment. By zooming and panning the user can then ‘point’ to objects of 

interest in their surroundings. These objects of interest can either be inanimate, in which case 

they would be of most relevance to carers or other individuals in the user’s environment. This 

could, for instance, aid in situations where the user wants to watch a specific DVD and selects 

it by ‘pointing’ to it or pointing to a book, or any other choice which involves inanimate 

objects. However, the user could potentially also zoom in on objects which could be 

subsequently controlled by themselves. An example of this could a TV, by zooming in to a 

certain level on the TV the system will recognize that this is an object which the user is 

interested in interacting with, and the controls for the TV will then be displayed on the user’s 

monitor. Rather than having to search through elaborate menu structures, the user can 

essentially point to the object in their environment which they want to control (figure 131). 
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Figure 131: An example of an integrated version of dwell and gaze gesture selection 
 

The key element of implementing gaze selection strategies is to ensure that they build on 

either familiar mapping or are easily learnt; this should be the overall goal for future gaze 

application design and development. 

The main conclusion of this research, in regard to gaze selection strategies, is that large single 

stroke gaze gestures would be fundamentally well suited for simple change-of-context tasks 

and that they are a useful addition to the toolbox being developed for gaze interaction. 
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10.3 FINAL THOUGHTS 

The path taken through this research has been exploratory and can be seen in figure 132. 

 

Figure 132: The path of research taken. 
 

Through this work I have attempted to contribute to the understanding of gaze interaction in 

two ways; through exploring the application of a previously untested selection strategy and 

by conceptualizing a toolbox of selection strategies. Even though the work has been 

conducted from the top to the bottom of the diagram in figure 132, understanding the 

contribution of this work can be done by viewing it from the bottom up. At the bottom level 

(figure 132) are the five key findings which the experimental research conducted in this PhD 

has yielded. The first main finding is that single stroke gaze gestures are not significantly 

more error prone than dwell time selection. The second key finding is that different eye 

tracking equipment greatly affects the completion of gestures, both in terms of completion 

time and error. The third surprising finding is that horizontal single stroke gestures were 

completed faster than vertical ones. The fourth finding was that there was a significant 

difference in the completion time between short and long single stroke gaze gestures, short 

being significantly faster. The final finding was that single stroke gaze gestures can be 

completed without requiring visual fix-points on the screen. It is this final finding that in 

particular represents the strength of single stroke gaze gestures, as no other examples of this 

have currently been investigated to the author’s knowledge. This fundamental research has 
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contributed to the understanding of single stroke gaze gestures, which in turn sheds light on 

the overall concept of stroke complexity in gaze gestures. Moving up through the diagram the 

conceptual contribution is next. 

Conceptually the contribution has been made through the identification of a toolbox of 

principles that should enable designers of gaze contingent application to understand the 

choice of selection strategy which is available to them (figure 133). 

 

Figure 133: Toolbox of principles which should be used when designing for gaze interaction.  
 

The principles of selection complexity, activation and visual feedback should be considered 

when designing dwell time activation (chapter 3, page 44) and deciding between finite gaze 

gesture, continuous gaze gestures and level of stroke complexity should be considered when 

implementing gaze gestures (chapter 3, page 57). These concepts are intended to affect the 

understanding of mono-modal input. 

Deciding which is the right selection strategy or combination of selection strategies is 

dependent on the context of use. The intention of the research presented here has been, as 

previously stated, to break the idea that mono-modal input, must result in mono-modal 

interaction. The future research direction in field of gaze interaction should therefore be 

exploring multi-modal gaze interactions for mono-modal input. It is through these 

considerations that this work seeks to contribute to the overall field of human computer 

interaction.  

More than anything else the end-users in this field are the inspiration and motivation for 

continued research, and they know what it means to need to break free from assumed 

constraints. On that note, the final thought in this thesis will be given by Arne Lykke Larsen, 

who was first presented in the introduction: 

‘If by a miracle I should find an Aladdin’s lamp (such a thing naturally doesn’t exist, at least not 

scientifically!) and the genie inside (which also doesn’t exist!) would grant me one wish; what 

would I choose? […]Would I choose to be able to eat and drink again? I love exotic food, 

especially from the Far East: Chinese soups, an Indonesian banquet with 26 little dishes, Indian 
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Tandoori Chicken etc. Or would I choose to walk again? – I love walking in nature: Hiking in the 

Rocky Mountains, wandering on the Great Plains in Alaska or just a little trip to the local forest 

or marsh. Would I choose to get the use of my arms and hands back? – I love doing mathematical 

computations on paper, and I would be able to do it 100 times faster than on the computer, and 

10 times faster than my secretary does them on the black board. Or would I choose to get my 

speech back? – Then I could start lecturing at the University again, which I really miss. Maybe I 

would choose to get my ability to breathe back? – wouldn’t that be wonderful just to be able to 

breathe freely and effortlessly again! No, if I really could have one single physical wish granted, 

then I would wish that I could fly like the birds…. ‘ 
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