

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Hierarchical TCP Network Traffic Classification
with Adaptive Optimisation

by

Xiaoming Wang

A Doctoral Thesis

Submitted in partial fulfilment
of the requirements for the award of

Doctor of Philosophy
of

Loughborough University

3rd November 2010

c© by Xiaoming Wang 2010

Thesis Access Form

Copy No…………...…………………….Location………………………………………………….……………...…

Author…………...………………………………………………………………………………………………..…….

Title……..

Status of access OPEN / RESTRICTED / CONFIDENTIAL

Moratorium Period:…………………………………years,ending…………../…………200……………………….

Conditions of access approved by (CAPITALS):……………………………………………………………………

Director of Research (Signature)………………………………………………...…………………………………...

Department of……………………………………………………………………...…………………………………

Author's Declaration: I agree the following conditions:

OPEN access work shall be made available (in the University and externally) and reproduced as necessary at the

discretion of the University Librarian or Head of Department. It may also be copied by the British Library in

microfilm or other form for supply to requesting libraries or individuals, subject to an indication of intended use for

non-publishing purposes in the following form, placed on the copy and on any covering document or label.

The statement itself shall apply to ALL copies:

This copy has been supplied on the understanding that it is copyright material and that no quotation from the

thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any photocopying shall be strictly subject to written permission from

the University Head of Department and any external sponsor, if any.

Author's signature……………………………………….Date…………………………………...…………...……...

users declaration: for signature during any Moratorium period (Not Open work):

I undertake to uphold the above conditions:

Date Name (CAPITALS) Signature Address

Research Student Office, Academic Registry
Loughborough University, Leicestershire, LE11 3TU, UK
Switchboard: +44 (0)1509 263171 Fax: +44 (0)1509 223938

Certificate of Originality

This is to certify that I am responsible for the work submitted in this thesis,
that the original work is my own except as specified in acknowledgements or in
footnotes, and that neither the thesis nor the original work contained therein has
been submitted to this or any other institution for a higher degree.

. .

Xiaoming Wang

3rd November 2010

Dedicated to my parents

Acknowledgements

First of all, I would like to thank my supervisor, Prof. David Parish, for his
encouragement, guidance and inspiration. This work could not have been accom-
plished without his support and vital advice. More importantly, besides specific
knowledge, my research ability has been greatly enhanced thanks to David.

I am grateful to my colleagues, Dr. Shiru De Silva, Dr. John Whitley, Dr.
Konstantinos Kyriakopoulos and all other researchers in the High Speed Networks
Group. Shiru gave invaluable input at the beginning of my research, and great
support on Linux and Perl. Thanks to John for sharing his vast knowledge of
networking and Linux. I also thank John and Konstantinos for their useful ideas,
opinions and advice on this work.

I would like to acknowledge Martin Sykora for sharing his experience of data
mining with me. Although we were working on completely different research fields,
he provided lots of suggestions and support on data mining experiments.

I thank my friend Robert Archer for reviewing the manuscript and his ex-
tremely valuable comments.

Special thanks go to Yusi Liu from Alpari UK Limited and Dr. Jingbo Wang
from Skyworks Solutions, Inc. for their constant encouragement and continued
support.

i

Abstract

Nowadays, with the increasing deployment of modern packet-switching networks,
traffic classification is playing an important role in network administration. To
identify what kinds of traffic transmitting across networks can improve network
management in various ways, such as traffic shaping, differential services, enhanced
security, etc. By applying different policies to different kinds of traffic, Quality
of Service (QoS) can be achieved and the granularity can be as fine as flow-level.
Since illegal traffic can be identified and filtered, network security can be enhanced
by employing advanced traffic classification.

There are various traditional techniques for traffic classification. However,
some of them cannot handle traffic generated by applications using non-registered
ports or forged ports, some of them cannot deal with encrypted traffic and some
techniques require too much computational resources. The newly proposed tech-
nique by other researchers, which uses statistical methods, gives an alternative
approach. It requires less resources, does not rely on ports and can deal with en-
crypted traffic. Nevertheless, the performance of the classification using statistical
methods can be further improved.

In this thesis, we are aiming for optimising network traffic classification based
on the statistical approach. Because of the popularity of the TCP protocol, and
the difficulties for classification introduced by TCP traffic controls, our work is
focusing on classifying network traffic based on TCP protocol. An architecture has
been proposed for improving the classification performance, in terms of accuracy
and response time. Experiments have been taken and results have been evaluated
for proving the improved performance of the proposed optimised classifier.

In our work, network packets are reassembled into TCP flows. Then, the
statistical characteristics of flows are extracted. Finally the classes of input flows
can be determined by comparing them with the profiled samples. Instead of using

ii

Abstract iii

only one algorithm for classifying all traffic flows, our proposed system employs
a series of binary classifiers, which use optimised algorithms to detect different
traffic classes separately. There is a decision making mechanism for dealing with
controversial results from the binary classifiers. Machining learning algorithms
including k-nearest neighbour, decision trees and artificial neural networks have
been taken into consideration together with a kind of non-parametric statistical
algorithm — Kolmogorov-Smirnov test. Besides algorithms, some parameters are
also optimised locally, such as detection windows, acceptance thresholds. This
hierarchical architecture gives traffic classifier more flexibility, higher accuracy
and less response time.

Keywords: traffic classification, traffic identification, application detection,
traffic characteristic, traffic feature, machine learning, data mining, artificial in-
telligence.

Contents

Glossary xii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2

1.2.1 Network Performance Management 2
1.2.1.1 Quality of Service 2
1.2.1.2 QoS in TCP/IP . 3

1.2.2 Network Security . 5
1.2.2.1 Firewall . 6
1.2.2.2 Intrusion Detection Systems 6

1.2.3 Network Authorisation and Accounting 8
1.3 Contribution Highlights . 8
1.4 Chapter Outlines . 9

2 Traffic Classification Techniques 11
2.1 Packet Encapsulation . 11
2.2 TCP/IP Protocol Stack Overview 13

2.2.1 IPv4 . 13
2.2.2 TCP . 14

2.2.2.1 Flow Control . 16
2.2.2.2 Nagle’s Algorithm 17

2.2.3 UDP . 17
2.3 Current Classification Methods . 18

2.3.1 Port Number . 18
2.3.2 Packet Classification . 20

iv

Contents v

2.3.3 Stateful Inspection . 21
2.3.4 Deep Packet Inspection . 22

2.4 Statistical Classification Methods 23
2.4.1 Parametric Classification . 24
2.4.2 Non-parametric Distribution Test 25

2.5 Summary . 26

3 Algorithms for Statistical Classification 27
3.1 Attributes for Parametric Classification 27
3.2 Algorithms for Parametric Classification 28

3.2.1 k-Nearest Neighbour . 29
3.2.2 Decision Trees . 31
3.2.3 Artificial Neural Networks 33

3.3 Distributions for Non-parametric Tests 35
3.4 Comparison Algorithm for Non-parametric Tests 36
3.5 Summary . 39

4 Datasets & Preliminary Tests 40
4.1 Data for Preliminary Evaluation . 40

4.1.1 Acquisition of Raw TCP Data 40
4.1.2 TCP Flow Reconstruction 42
4.1.3 Discriminator Calculation 45

4.2 Preliminary Tests for Different Algorithms 46
4.3 Preliminary Tests for Different Detection Windows 55
4.4 Summary . 58

5 Hierarchical Classification 59
5.1 System Architecture . 59

5.1.1 Overview . 59
5.1.2 Parallel Classifier . 61
5.1.3 Acceptance Thresholds for K-S 63
5.1.4 Decision Making Mechanism 65

5.2 Training, Validating & Testing . 66
5.3 Datasets for Optimisation Evaluations 68
5.4 Implementation of the Proposed System 69
5.5 Summary . 73

6 Result Evaluations 74
6.1 Optimised Parameters . 74

6.1.1 Parameter Selection . 75

Contents vi

6.1.2 Optimised Parameters for Parametric Classifications 77
6.1.3 Optimised Parameters for Non-parametric Classifications . . 85
6.1.4 Overall Optimised Parameters 93

6.2 Classification Results . 94
6.2.1 Final Decision Making . 94
6.2.2 Classification Results of Optimised Parametric Classifier . . 95
6.2.3 Classification Results of Optimised Non-parametric Classifier 96
6.2.4 Classification Results of Overall Optimised Classifier 97

6.3 Summary . 99

7 Performance Comparison 100
7.1 Controlled Experiments . 100

7.1.1 Datasets for Controlled Experiments 101
7.1.2 Single Algorithm Classifiers with Full Traffic Flows 101
7.1.3 Single Algorithm Classifiers with Optimised Detection Win-

dows . 103
7.2 Overall Performance Comparison 104
7.3 Summary . 105

8 Conclusions & Future Work 106
8.1 Conclusions . 106
8.2 Future Work . 109

References 111

A Classification Recall Rates for Different Detection Windows Us-
ing Single Classifier 119

B Classification Precision for Different Detection Windows Using
Single Classifier 125

C Key Source Code 131
C.1 build_connection.pl . 131
C.2 matrix.pl . 137
C.3 len_dist.pl . 143
C.4 change_class.pl . 145
C.5 classify_ks.pl . 146
C.6 stats_para.pl . 147
C.7 stats_ks.pl . 149

D Publications 153

List of Figures

1.1 OSI and TCP/IP Reference Models and Protocol Stack 4
1.2 A Typical Campus Network with IDS 6

2.1 Captured Frame Structure . 12
2.2 IP Packet Header . 13
2.3 TCP Packet Header . 15
2.4 UDP Packet Header . 18

3.1 An Example of k-NN Classification 30
3.2 An Example of Decision Tree Construction 32
3.3 A Neural Node . 33
3.4 A Neural Network . 34
3.5 Packet Size Distribution of a Telnet Flow 35
3.6 Packet Size Distribution of an IMAPS Flow 36
3.7 A Frequency Distribution . 36
3.8 Distance Between Two Cumulative Distributions 37
3.9 Cumulative Distributions of a Telnet and an IMAPS Flow 38
3.10 Cumulative Distributions of IMAPS Flows with Different MSS . . . 39

4.1 System Architecture for Collecting Data 41
4.2 Packet Size Distribution of a Full HTTP Flow 52
4.3 Packet Size Distribution of a Full POP3 Flow 53
4.4 Accuracies of Classifications vs Detection Windows 56
4.5 Packet Size Distribution of a HTTP Flow (20 Packets) 57
4.6 Packet Size Distribution of a POP3 Flow (20 Packets) 58

5.1 An Overview of the System Architecture 60

vii

List of Figures viii

5.2 A Detector in the Proposed Parallel Classifier 62
5.3 Acceptance Threshold in K-S Detector 64
5.4 Validating and Testing Phases . 67
5.5 Implementation of Validating Phase 71
5.6 Implementation of Testing Phase 72

6.1 Accuracies of Parametric FTP Detectors with Different Algorithms
vs Detection Windows . 77

6.2 Accuracies of Parametric FTP-Data Detectors with Different Al-
gorithms vs Detection Windows . 78

6.3 Accuracies of Parametric IMAPS Detectors with Different Algorithms
vs Detection Windows . 78

6.4 Accuracies of Parametric IRC Detectors with Different Algorithms
vs Detection Windows . 79

6.5 Accuracies of Parametric MS-RDP Detectors with Different Al-
gorithms vs Detection Windows . 79

6.6 Accuracies of Parametric POP3 Detectors with Different Algorithms
vs Detection Windows . 80

6.7 Accuracies of Parametric RTSP Detectors with Different Algorithms
vs Detection Windows . 80

6.8 Accuracies of Parametric SMTP Detectors with Different Algorithms
vs Detection Windows . 81

6.9 Accuracies of Parametric SSH Detectors with Different Algorithms
vs Detection Windows . 81

6.10 Accuracies of Parametric Telnet Detectors with Different Algorithms
vs Detection Windows . 82

6.11 Smoothed Accuracies of Parametric SMTP Detectors with Different
Algorithms vs Detection Windows 84

6.12 Accuracies of K-S FTP Detectors with Different Acceptance Thresholds
vs Detection Windows . 86

6.13 Accuracies of K-S FTP-Data Detectors with Different Acceptance
Thresholds vs Detection Windows 87

6.14 Accuracies of K-S IMAPS Detectors with Different Acceptance Thresholds
vs Detection Windows . 87

6.15 Accuracies of K-S IRC Detectors with Different Acceptance Thresholds
vs Detection Windows . 88

6.16 Accuracies of K-S MS-RDP Detectors with Different Acceptance
Thresholds vs Detection Windows 88

List of Figures ix

6.17 Accuracies of K-S POP3 Detectors with Different Acceptance Thresholds
vs Detection Windows . 89

6.18 Accuracies of K-S RTSP Detectors with Different Acceptance Thresholds
vs Detection Windows . 89

6.19 Accuracies of K-S SMTP Detectors with Different Acceptance Thresholds
vs Detection Windows . 90

6.20 Accuracies of K-S SSH Detectors with Different Acceptance Thresholds
vs Detection Windows . 90

6.21 Accuracies of K-S Telnet Detectors with Different Acceptance Thresholds
vs Detection Windows . 91

A.1 Classification Recall Rates for FTP-DATA vs Detection Windows
Using Single Classifier . 119

A.2 Classification Recall Rates for FTP vs Detection Windows Using
Single Classifier . 120

A.3 Classification Recall Rates for IMAPS vs Detection Windows Using
Single Classifier . 120

A.4 Classification Recall Rates for IRC vs Detection Windows Using
Single Classifier . 121

A.5 Classification Recall Rates for MS-RDP vs Detection Windows Us-
ing Single Classifier . 121

A.6 Classification Recall Rates for POP3 vs Detection Windows Using
Single Classifier . 122

A.7 Classification Recall Rates for RTSP vs Detection Windows Using
Single Classifier . 122

A.8 Classification Recall Rates for SMTP vs Detection Windows Using
Single Classifier . 123

A.9 Classification Recall Rates for SSH vs Detection Windows Using
Single Classifier . 123

A.10 Classification Recall Rates for Telnet vs Detection Windows Using
Single Classifier . 124

B.1 Classification Precisions for FTP-DATA vs Detection Windows Us-
ing Single Classifier . 125

B.2 Classification Precisions for FTP vs DetectionWindows Using Single
Classifier . 126

B.3 Classification Precisions for IMAPS vs Detection Windows Using
Single Classifier . 126

B.4 Classification Precisions for IRC vs DetectionWindows Using Single
Classifier . 127

List of Figures x

B.5 Classification Precisions for MS-RDP vs Detection Windows Using
Single Classifier . 127

B.6 Classification Precisions for POP3 vs Detection Windows Using
Single Classifier . 128

B.7 Classification Precisions for RTSP vs Detection Windows Using
Single Classifier . 128

B.8 Classification Precisions for SMTP vs Detection Windows Using
Single Classifier . 129

B.9 Classification Precisions for SSH vs DetectionWindows Using Single
Classifier . 129

B.10 Classification Precisions for Telnet vs Detection Windows Using
Single Classifier . 130

List of Tables

2.1 IANA Port Assignments . 19

3.1 Attributes Used in Parametric Classification 29

4.1 Traffic Classes and Used Applications 43
4.2 Overall Classification Accuracies for Different Algorithms (Full Flow) 47
4.3 Confusion Matrix for k-NN Classifier (Full Flow) 47
4.4 Confusion Matrix for Decision Tree Classifier (Full Flow) 48
4.5 Confusion Matrix for ANN Classifier (Full Flow) 48
4.6 Confusion Matrix for K-S Classifier (Full Flow) 49
4.7 Classification Recall Rates for Different Algorithms (Full Flow) . . . 50
4.8 Classification Precisions for Different Algorithms (Full Flow) 51
4.9 Parametric Values of a HTTP and a POP3 Flow (Full Flow) 54

6.1 Optimised Parameters for Parametric Detectors 85
6.2 Optimised Parameters for K-S Detectors 93
6.3 Overall Optimised Parameters . 93
6.4 Confusion Matrix for Optimised Parametric Classifier 96
6.5 Confusion Matrix for Optimised Non-parametric Classifier 97
6.6 Confusion Matrix for Overall Optimised Classifier 98
6.7 Performance Comparison among Optimised Classifiers 98

7.1 Performance of Single Algorithm Classifiers (Full Flows) 102
7.2 Confusion Matrix for K-S Single Algorithm Classifiers (Full Flows) . 103
7.3 Performance of Single Algorithm Classifiers (Optimised Windows) . 104
7.4 Performance Comparison . 104

xi

Glossary

A

ACK Acknowledgment.

ANN Artificial Neural Network.

ATM Asynchronous Transfer Mode.

C

CRC Cyclic Redundancy Check.

CSMA/CD Carrier Sense Multiple Access with Collision Detection.

CSV Comma-Separated Values.

CWR Congestion Window Reduced.

D

DDoS Distributed Denial-of-Service.

DiffServ Differentiated Services.

DMZ Demilitarized Zone.

DNS Domain Name System.

DoS Denial-of-Service.

DPI Deep Packet Inspection.

xii

Glossary xiii

E

ECE ECN (Explicit Congestion Notification) -Echo indicates.

F

FCS Frame Check Sequence.

FIN Finish.

FP False Positive.

FTP File Transfer Protocol.

G

GoS Grade of Service.

GUI Graphical User Interface.

H

HPC High Performance Computing service in Loughborough University.

HTML Hyper Text Markup Language.

HTTP Hypertext Transfer Protocol.

I

IANA Internet Assigned Numbers Authority.

ICMP Internet Control Message Protocol.

IDS Intrusion Detection System.

IETF Internet Engineering Task Force.

IMAPS Internet Message Access Protocol.

IntServ Integrated Services.

IP Internet Protocol.

IPS Intrusion Prevention System.

IPv4 Internet Protocol version 4.

Glossary xiv

IRC Internet Relay Chat.

ISP Internet Service Provider.

K

k-NN k-Nearest Neighbour.

K-S Kolmogorov-Smirnov.

M

MAC Media Access Control.

MS-RDP Microsoft Remote Desktop Protocol.

MSN Microsoft Network.

MSS Maximum Segment Size.

MTU Maximum Transmission Unit.

N

NAT Network Address Translation.

O

OS Operating System.

OSI Open System Interconnection.

P

P2P Peer-to-Peer.

POP3 Post Office Protocol version 3.

PSH Push.

PSTN Public Switched Telephone Network.

Q

QoS Quality of Service.

Glossary xv

R

RFC Request For Comments.

RST Reset.

RSVP Resource Reservation Protocol.

RTSP Real Time Streaming Protocol.

S

SMTP Simple Mail Transfer Protocol.

SNMP Simple Network Management Protocol.

SSH Secure Shell.

SVM Support Vector Machine.

SYN Synchronise.

T

TCP Transmission Control Protocol.

TCP/IP Transmission Control Protocol and Internet Protocol.

ToS Type of Service.

TP True Positive.

TTL Time To Live.

U

UDP User Datagram Protocol.

URG Urgent.

V

VoIP Voice over Internet Protocol.

W

WAN Wide Area Network.

CHAPTER 1

Introduction

1.1 Background

With the continuous development of information and communication technologies
in the last few decades, computer networks have made a tremendous impact on our
society. The Internet, which interconnects enormous computer networks, brings
us a new way of living. We rely on it for business, education, entertainment, social
activities, etc. As a result, efficiency and security of the Internet are critical not
only for the industry itself, but also for the benefits of our whole society.

According to Moore’s law, the processing speed of digital electronic devices grows
exponentially, as well as computing performance per unit cost and network ca-
pacity [Moo65]. Nielsen argued that the bandwidth of the Internet available to
end-users grows by 50% annually [Nie98]. The Internet industry is booming due
to the low cost of communication and computing power. It has been reported that
Internet traffic doubled every year in the past decade [MIN09]. At the same time,
more applications and services have been introduced into this thriving market,
which are demanding more network resources. In short, the amount of traffic and

1

Chapter 1. Introduction 2

number of applications delivered on the Internet is increasing every minute.

Although the bandwidth of networks is restricted by the network infrastructures
and the development of semiconductor technologies, managing the expanding
traffic more effectively could noticeably improve network performance. Since
traffic classification could provide vital information for network management,
building an accurate and efficient traffic classifier becomes our main objective.
In addition, network traffic classification could also help improve network secur-
ity, authorisation and accounting. In the following section, the motivation of
developing traffic classifiers will be stated in detail.

1.2 Motivation

Network management covers management functions of configuration, fault toler-
ance, performance, security and accounting, which make networks more reliable,
efficient and secure [Ram98]. Traffic classification could greatly assist network
management in terms of performance, security, authorisation and accounting, all
of which will be discussed in the following subsections.

1.2.1 Network Performance Management

1.2.1.1 Quality of Service

Traditional Public Switched Telephone Networks (PSTN) utilise circuit-switching
networks, whose performance is called Grade of Service (GoS) and measured by
rejected calls, noise, echo and so on. Since dedicated communication channels
are allocated to users, the performance of the PSTN is independent among users.
Due to the low bandwidth provided, normally only a single service runs on a
PSTN connection, like voice or fax. As a result, it is rare to see multiplexing in
a PSTN channel [LGW99] [ID06]. Packet-switching used in computer networks
multiplexes the network traffic at the packet level, which provides variable band-
width and efficiency of transmitting digital signals. However, the resources of
packet-switching networks available to a single application could be affected by
the usage of other applications running on the same network due to the nature
of packet-level bandwidth sharing. It is very difficult to measure the general per-

Chapter 1. Introduction 3

formance of computer networks based on user experience. Besides the subjective
attitudes, the experience of different applications cannot easily be quantified and
compared. Therefore, we measure the network performance from the perspective
of applications. The term ‘Quality of Service’ (QoS) is used for referring to the
network performance related to the application requirements and the technologies
that enable the network resources to be reserved for achieving the performance.
The parameters normally used in QoS for measuring network performance are
shown below:

Throughput
This is the average rate of messages successfully delivered over a communic-
ation channel, usually measured in bits per second (bit/s or bps).

Delay
This is the time taken for a bit of data to travel across the network between
two endpoints.

Jitter
This is expressed as the packet delay variation.

Packet Loss Rate
This is the rate of packet loss occurring during transmission.

Packet Error Rate
This is the rate of incorrect data packets transferred.

1.2.1.2 QoS in TCP/IP

Unfortunately, the commonly used TCP/IP protocol suite, known for providing
best-effort services, which is dominant in computer networks and the Internet,
does not have strong support for QoS. The Open System Interconnection (OSI)
seven-layer reference model, the TCP/IP reference model, and the corresponding
protocols are shown in Figure 1.1 [ITU94] [Bra89].

Chapter 1. Introduction 4

Application
Application

Presentation
Presentation

Session
Session

Transport
Transport

Network
Network

Data Link
Data Link

Physical
Physical

Application
Application

Transport
Transport

Internet
Internet

Link
Link

HTTP, SMTP,
FTP, SSH, etc.

HTTP, SMTP,
FTP, SSH, etc.

TCP, UDP
TCP, UDP

IP
IP

Ethernet, ATM, etc.
Ethernet, ATM, etc.

OSI Model TCP/IP Model
TCP/IP

Protocol Stack

Figure 1.1: OSI and TCP/IP Reference Models and Protocol Stack

The transport layer protocols TCP and UDP do not provide strong QoS to the
application layer. Although there is a Type of Service (ToS) field in the IP header,
this field is not in common use [LGW99]. Recently, the IETF redefined the ToS
field for supporting Differentiated Services (DiffServ) in RFC 2474. However, only
coarse-grained traffic management based on traffic classes is provided in DiffServ
[BBCD98], which cannot guarantee QoS for single applications. For the link layer,
the Asynchronous Transfer Mode (ATM) only supports QoS at the virtual circuit
level, which also cannot ensure network performance unless a virtual circuit is
allocated to a special application stream [Bla98]. In addition, compared to Eth-
ernet, high cost and lack of standardisation caused the slow deployment of ATM
[Cla98]. On the other side, as a widely deployed link layer protocol, Ethernet
employs Carrier Sense Multiple Access with Collision Detection (CSMA/CD) as
the medium sharing scheme, which allows the hosts to send frames as soon as the
medium is free. As a result, by using CSMA/CD, Ethernet cannot give fair access,
let alone guarantee performance.

There is an approach defined in RFC 1633 for performing QoS on networks, which
is called Integrated Services (IntServ). Unlike DiffServ, IntServ can support flow-
level fine-grained QoS [BCS94]. It uses the RSVP protocol for sending the noti-
fication of resource reservation to network nodes. Network nodes residing in the
flow transfer path could reserve network resources for providing guaranteed QoS
as requested. However, not all routers support RSVP, and as an application layer

Chapter 1. Introduction 5

protocol, it also needs the support of application programmes.

Traffic shaping could be employed in network nodes for controlling the network
traffic in order to manage network performance [BBCD98]. More specifically, at
network nodes such as routers and gateways, traffic shaping takes some actions,
such as delay or drop, on groups of packets for optimising network performance
[IT04]. Traffic classification is needed when applying traffic shaping at the ap-
plication level, which allows traffic shaping mechanisms to treat different kinds of
traffic flows with different policies for optimising the QoS of applications [FH98].
After determining which classes the traffic flows belong to, network nodes process
the different classes of traffic flows based on pre-defined profiles. For example,
traffic flows belonging to real-time applications like VoIP or on-line games could
obtain a higher processing priority than normal application flows when travelling
through the network nodes.

Therefore, identifying the type of traffic flows is important for networks which
provide differential services to applications. If the type of traffic flows can be
determined, we can map the flows into different classes for providing different
grades of service with DiffServ. Mapping traffic flows into ATM virtual channels
could also achieve application level QoS. Traffic shaping based on applications can
be implemented as well.

1.2.2 Network Security

The Internet has to face different kinds of threats with different purposes all around
the world. A recent example of a high profile attack is that of a breached security
system allowing access to details of approximately 5.6 million Visa and Mastercard
accounts [Kat03]. This event shows that hackers have already got the ability to
break into networked financial systems. It is not difficult to imagine that other
financial organisations would be targeted by hackers as well, and our identities
and monetary possessions are no longer safe. In addition, network attacks have
been used as weapons by terrorists and hostile countries [PM04]. This could
cause great economic loss, and even damage to national infrastructures such as
communications, power supply, military command systems and so on. Therefore,
great attention must be paid to the security of networks in order to protect us
from cyber criminals.

Chapter 1. Introduction 6

1.2.2.1 Firewall

Firewalls are used in campus networks as standard for blocking unauthorised access
to internal networks. The first generation firewall, known as a packet filters, was
developed in 1988 [Mog89]. It filters packets based on a combination of source ad-
dress, destination address, transport layer protocol and port number. The second
generation firewall, known as a stateful filter, keeps track of the connection states
of traffic flows, which could help prevent Denial-of-Service (DoS) attacks and at-
tacks related to the TCP/IP stack [JC98]. The third generation firewall, known
as an application layer firewall, could understand some protocols (such as DNS,
FTP, etc.) based on packet contents [RSS01].

However, firewalls cannot guarantee network security. Packet filters can not handle
IP spoofing or port spoofing. Although application layer firewalls can identify
some applications based on packet contents, network performance is degraded
by the inspection process [SHHP00]. Moreover, sometimes there is no signific-
ant signature in attacking packets, because the exploits used in the attacks may
be system defects, network or OS misconfigurations, in which case a legitimate
packet is indistinguishable from a malicious packet. In addition, networks may be
compromised before firewall rules are updated.

1.2.2.2 Intrusion Detection Systems

Internet Internal
Network

Internet

Router Firewall

DMZ

Web Server

FTP Server

IDS

Figure 1.2: A Typical Campus Network with IDS

Chapter 1. Introduction 7

The Intrusion Detection System (IDS) has been invented for monitoring suspicious
network and/or system activities [Den87]. A typical campus network with IDS is
shown in Figure 1.2. The servers reside in the Demilitarized Zone (DMZ), which
are treated with different policies to internal networks by firewalls. The hosts in the
DMZ should be able to accept connections from the Internet for providing services
like HTTP, FTP, and normally only necessary ports required by these services are
opened for the DMZ. For internal networks, the firewall rules are more complex.
Connections launched from outside should be examined in order to ensure only
trusted connections are accepted. Due to different kinds of applications running
on internal networks, connections launched by internal hosts should be allowed
except in the cases of malicious ones. The port number does not help so much in
this situation, as we cannot ensure the actual services are running with registered
port numbers. For example, if an employee requests accepting SSH from outside
to his hosts, then we create a firewall rule for opening port 22. However, he
could use this port to accept connections from his friends for on-line gaming. The
problem becomes more serious when dealing with outgoing connections. Although
application layer firewalls could identify some types of traffic packets, encrypted
traffic or unprofiled traffic creates difficulties.

As shown in Figure 1.2, IDSs are normally deployed in internal networks and
are well protected, or they are configured as passive sniffers. Unlike firewalls,
IDSs do not need to make on-line decisions of allow or deny for each packet or
connection1. They mainly focus on analysing suspicious activities, which are found
by the relationships between traffic flows, packets and system logs. IDSs can give
further protection as intrusion activities can sometimes only be detected when
combining these elements. They also have the ability to give administrators clues
related to unknown system weaknesses [SM07].

IDSs being widely used today can reconstruct TCP flows, and examine the con-
tents of flows more accurately than application layer firewalls, which are based
on packet contents [Pax99] [Roe99] [Sou]. Since IDSs do not have responsibility
for making real-time decisions, network performance is not affected. However, ex-
amining contents of flows will bring forth some issues related to privacy. Addition-
ally, reconstructing TCP flows has high computational complexity and memory
consumption. Advanced traffic classification could provide information about the
traffic flows to the IDS. Ideally, traffic should be classified without examining the
data fields. Consequently, the users’ privacy will be protected and processing

1Intrusion Prevention System (IPS) is considered an extension of IDS, which can co-operate
with firewalls to control access when predefined suspicious activities are detected [ZLZ04].

Chapter 1. Introduction 8

speed will be much faster.

1.2.3 Network Authorisation and Accounting

Since the type of traffic cannot be determined efficiently and accurately, network
abuse always exists. For example, illegal traffic such as the downloading of copy-
righted material in a company’s network or the use of P2P software without the
ISP’s permission cannot be fully blocked due to port spoofing or encryption used
for traffic masking. These kinds of traffic are normally resource-hungry. They not
only break the organisation’s policies, but also downgrade the network perform-
ance. As a result, network resources that are supposed to be reserved for business
purposes are wasted, and the illegal traffic also confuses the network adminis-
trators’ understanding of the network’s capacity that is truly required by legal
usage. Some ISPs are trying to throttle P2P file-sharing traffic because of its high
bandwidth consumption [Bra08]. However, before applying differential policies to
applications, they need to be identified.

Traffic classification can be applied for implementing accurate network authorisa-
tion based on applications, which only blocks illegal traffic flows including flows
using port spoofing or encryption. It can also be used for fine grade traffic ac-
counting at the flow level. Currently, network traffic is analysed and accounted
based on port numbers, which is recognised as not being accurate enough. By
using traffic classification engines, a true image of network usage can be obtained,
which can be used as a consideration in upgrading network hardware, revising
usage policies, market analysis, etc.

1.3 Contribution Highlights

Traditional network classifications are either based on layer 3 addresses and layer 4
ports in packet headers or contents transmitted in packets. However, information
about addresses and ports can be easily forged, which means classification results
become unreliable. On the other hand, TCP flows must be rebuilt before matching
the contents with profiled traffic samples. This process needs a relatively high
computational complexity and memory consumption. Moreover, the privacy of
network users is threatened and encrypted traffic cannot be handled.

Chapter 1. Introduction 9

Recently, classifications based on statistical characteristics of traffic flows have
been proposed by researchers. This work has explored the factors that affect per-
formance of statistical classifications in terms of classification accuracy and speed.
It has been proved that, classification methods, algorithms, detection windows
and acceptance thresholds have the relations with classification performance.

A hierarchical system based on statistical classification has been proposed by this
thesis, which is consisted by a series of parallel detectors for detecting different
traffic classes separately and a mechanism for making final decisions. The sys-
tem has been optimised by using different algorithms and parameters. Since the
parallel detectors are independent with each other, they are optimised locally. A
validating dataset is used for searching the optimised algorithms and paramet-
ers for detecting each kind of traffic. Then, our optimised model is tested by an
unseen testing dataset.

Performance comparisons have been performed by testing the our proposed system
and unoptimised classifiers proposed by other researchers. Since the datasets
used for comparing the performances are identical, the performances are fully
comparable. The results show that our optimised classifier has higher accuracy
and less response time.

This work illustrates a practical approach of integrating different machine learning
and statistical test algorithms into a single classifier. The independent parallel de-
tectors enable classifier to take advantages of different algorithms and parameters
when detecting different traffic classes. More flexibilities for deploying in the real
world can be obtained due to the hierarchical architecture of the proposed system.

In summary, the work in this thesis provides a way of classifying network traffic
with multiple optimised statistical algorithms and configurations, which has better
performance than using only single global algorithms and configurations.

1.4 Chapter Outlines

This thesis is organised as follows.

Chapter 2 introduces the background of TCP/IP, which is related to traffic clas-
sification. Potential fields in the protocol stacks which can be used for traffic

Chapter 1. Introduction 10

classification are investigated. The methods of traffic classification are described,
including current widely deployed methods and statistical methods. The pros and
cons of these methods are also included in this chapter.

Chapter 3 describes the algorithms used in this work for statistical classification
in details. Both parametric and non-parametric algorithms are considered. The
details of feature extraction and similarity comparison are covered.

Chapter 4 covers the acquisition of datasets and preliminary tests, which includes
the processes of obtaining the datasets from our test bed and some experimental
preliminary tests for researching the performance of different algorithms and para-
meters.

Chapter 5 illustrates the architecture of proposed novice hierarchical classification.
The processes of training, validating and testing are demonstrated, where the
optimisation of algorithms and parameters are included. The implementation of
the proposed system is also described.

Chapter 6 shows the result evaluations of the proposed system. The process
of obtaining the optimised algorithms and parameters for detecting each traffic
class are illustrated and the final classification results are listed. The process of
optimisation is divided by two steps: firstly both parametric and non-parametric
algorithms are considered separately; then overall optimisation is performed by
selecting the best algorithms and parameters. The evaluations are also based on
parametric optimisation, non-parametric optimisation and overall optimisation.

Chapter 7 illustrates the performance improvements of our proposed system com-
pared to controlled experiments. Classifiers using a single algorithm and parameter
are used as control classifiers for performance comparison.

Chapter 8 provides a summary of conclusions of this work and recommendations
for future work.

CHAPTER 2

Traffic Classification Techniques

In this chapter, packet encapsulation and an overview of the TCP/IP protocol
stack will be given initially. They will show which kinds of information contained
in the network traffic are available for traffic classification. Different methods of
traffic classification that have been implemented practically, together with their
advantages and disadvantages, will be described in Section 2.3. Statistical traffic
classification, which we mainly focus on, will be introduced in Section 2.4, where
classifying traffic using statistical parametric values and non-parametric distribu-
tion tests will be discussed.

2.1 Packet Encapsulation

Referring to the TCP/IP reference model shown in Figure 1.1, information trans-
mitted on networks using the TCP/IP protocol stack is encapsulated in three
layers before being put on physical wires, which are the transport layer (OSI layer
4), internet layer (OSI layer 3) and link layer (OSI layer 2). TCP and UDP
are transport layer protocols that are used to encapsulate the application layer
(OSI layer 5–7) payload into TCP/UDP packets. IP, which acts as an internet

11

Chapter 2. Traffic Classification Techniques 12

layer protocol, encapsulates TCP/UDP packets into IP packets and IP packets
are encapsulated by link layer protocols. Link layer segments, commonly known
as frames, can be captured entirely from networks for traffic classification. The
encapsulation structure of a link layer frame, which can be captured from the wire,
is illustrated in Figure 2.1.

Timestamp
Timestamp Link Layer

Header

Link Layer
Header IP

Header

IP
Header TCP/UDP

Header

TCP/UDP
Header Payload

Payload
FCS

FCS

Figure 2.1: Captured Frame Structure

Normally, there is an additional time-stamp field added on by packet capturing
software, which keeps records of the time when the packets were captured. Al-
though this field of information is not actually generated by hosts and not being
transmitted on the networks, it could be used for calculating packet inter-arrival
time, which is highly related to the activities of applications [MZ05a] [CDGS07b]
[TTNC02].

The link layer header contains the Media Access Control (MAC) address of the
next network node that the packet travels to, and some controlling information
related to the link layer. This information is irrelevant to applications, and it is
changed step by step by network devices in the transfer path, as well as the link
layer footer normally recognised as the FCS or CRC, which is used for verifying
the data.

The IP and TCP/UDP headers contain much information for implementing traffic
classification. Some fields are related to applications, such as port numbers, and
some are useful for reconstructing flows. The issues related to IP and TCP/UDP
protocols and their header fields will be discussed in the following subsections.

Chapter 2. Traffic Classification Techniques 13

2.2 TCP/IP Protocol Stack Overview

2.2.1 IPv4

The internet layer uses the IP protocol to exchange packets, which provides host-
to-host connectivity. Some header fields in IP packets may be changed when
passing through OSI layer 3 devices, such as routers, gateways, etc. The structure
of the IPv41 packet header is shown in Figure 2.2.

bit
offset

bit
offset

0

0

32

32

64

64

96

96

128

128

160

160

160
or

192+

160
or

192+

0 - 3

0 - 3

4 - 7

4 - 7

8 - 15

8 - 15

16 - 18

16 - 18

19 - 31

19 - 31

Version

Version

Header Length

Header Length

Differentiated Services

Differentiated Services

Total Length

Total Length

Identification

Identification

Flags

Flags

Fragment Offset

Fragment Offset

Time to Live

Time to Live

Protocol

Protocol

Header Checksum

Header Checksum

Source Address

Source Address

Destination Address

Destination Address

Options (if Header Length > 5)

Options (if Header Length > 5)

Data

Data

Figure 2.2: IP Packet Header

The Version field is fixed based on the version of the IP stack used by the host’s
operating systems, which is 4 for IPv4. The Header Length and Total Length are
quite useful for traffic classification, and can be used to calculate the length of the
application layer payload. It is recognised that there are relations between the
type of applications and the payload length, which will be discussed in detail in
Section 2.4 [PBL+03] [MZ05a] [CDGS07b] [TTNC02]. The Differentiated Services
field is defined in [BBCD98]. These bits can be used for indicating the types
of the traffic or the priorities of the traffic. However, it is tagged by operating
systems rather than applications. Besides the lack of bits for representing the
applications, it can be easily forged by malicious users. Consequently, we do
not take it into consideration for traffic classification. The Identification, Flags
and Fragment Offset fields are used for the fragmentation and reassembly of IP
packets. Fragmentation and reassembly occur when the packet size is larger than
the Maximum Transmission Unit (MTU) of the physical networks that the packets
are travelling to. Ethernet is widely deployed for end-users’ access, which uses an

1IP refers to IP version 4 in this thesis if not stated otherwise.

Chapter 2. Traffic Classification Techniques 14

MTU of 1500 bytes, and is supported by most physical networks. In addition,
fragmentation can downgrade network performance. As a result, it is rare to
see fragmentation used nowadays, and is not our concern. The Time to Live
(TTL) field contains a number which indicates how many hops the packet has
been travelled through, which is changed by each router. The header checksum is
changed as well. Except for identifying Distributed Denial-of-Service (DDoS) with
TTL, these two fields are not useful for traffic classification. The Protocol field
indicates the transport layer protocols used by the packets, such as TCP, UDP,
ICMP, etc. It can be used for further analysis of the packets. The Source Address
and Destination Address are IP addresses of the packets’ source and destination.
Although they may be changed due to NAT, they are kept the same on public
networks before entering firewalls, and they may provide information about the
applications. This will be discussed in Section 2.3.2 and Section 2.3.3. IP addresses
are part of TCP sockets, which are used for distinguishing traffic flows. Therefore,
they must be used for reassembling packets into traffic flows. The variable length
of the Options field contains some optional information related to routing, which
is not taken into consideration for traffic classification either.

To sum up, Header Length and Total Length are useful for payload length cal-
culation, the Protocol field is needed for further decapsulation and analysis, and
Source Address & Destination Address may provide some information about the
traffic and they must be used for reassembling packets into traffic flows.

2.2.2 TCP

As a transport layer protocol, Transmission Control Protocol (TCP) provides
connectivity between two processes. Reliable and ordered transmission of data
streams can be guaranteed by using TCP, which is known as a connection-oriented
protocol. The structure of the TCP header is shown in Figure 2.3. The fields of
the header will be discussed briefly, followed by some mechanisms of flow control
that are related to traffic classification.

Chapter 2. Traffic Classification Techniques 15

bit
offset

bit
offset

0

0

32

32

64

64

96

96

128

128

0 - 3

0 - 3

E
C
E

E
C
E

C
W
R

C
W
R

4 - 7

4 - 7

8 - 15

8 - 15

Source Port

Source Port

160

160

16 - 31

16 - 31

Destination Port

Destination Port

Sequence Number

Sequence Number

Acknowledgment Number

Acknowledgment Number

Data Offset

Data Offset

Reserved

Reserved C
W
R

C
W
R

E
C
E

E
C
E

U
R
G

U
R
G

A
C
K

A
C
K

P
S
H

P
S
H

R
S
T

R
S
T

S
Y
N

S
Y
N

F
I
N

F
I
N Window Size

Window Size

Checksum

Checksum

Urgent Pointer

Urgent Pointer

Options (if Data Offset > 5)

Options (if Data Offset > 5)

160
or

192+

160
or

192+ Data

Data

Figure 2.3: TCP Packet Header

Hosts for transferring and receiving network traffic distinguish different flows based
on port numbers, and pass flows to proper processes according to port numbers.
A combination of a Source Port, a Destination Port, a Source IP Address and
a Destination IP Address is called a socket pair, which is a unique identification
of a traffic flow in a network. Due to applications sometimes using special port
numbers, traffic may be identified based on port numbers, which will be discussed
more specifically in Section 2.3.1. In order to ensure reliability and the correct
ordering of data, Sequence Number is used for identifying each transferring byte
of data, and the Acknowledgment Number for acknowledging each successfully-
received byte. These two 32-bit fields are needed when reassembling traffic flows.
Because of the variable length of the Options field, Data Offset is needed for
indicating the boundary of the packet header and application payload, which is
required for calculating the length of application payload.

Following the Reserved field are eight one-bit flags, some of which are used for
maintaining the connections and some of which are used for flow control. As
a connection-oriented protocol, TCP establishes a connection before transferring
data and terminates the connection when transferring is completed. It uses a three-
way handshake to establish a connection, and a four-way handshake or three-way
handshake to terminate a connection. The SYN and FIN flags are for handshaking
when establishing and terminating a connection. The RST flag indicates to the
remote host to disconnect a connection immediately without a handshake. PSH
tells the recipient host to pass the content of packets to applications as soon as
possible. ACK indicates that there is a valid acknowledgment carried in the field of
Acknowledgment Number. URG together with Urgent Pointer allow applications

Chapter 2. Traffic Classification Techniques 16

to send out-of-band data. It has been argued that PSH and URG can be used for
traffic classification [MZ05a]. However, although applications request the setting
of PSH, different OSs use different ways for dealing with the flag. Some imple-
mentations of the TCP stack ignore the applications’ requests, some of them set
the bit based on their buffer [Mic] [IBM]. Consequently, we do not do traffic clas-
sification with PSH flag. Because applications rarely use out-of-band data [GY08]
[Tan03], it is meaningless to take URG into consideration for traffic classification
as well. CWR, ECE and Window Size are used for traffic control, and their set-
tings are depending on the implementation of the TCP stack and the OS’s buffer
management. The optional field of Options, which includes timestamp, maximum
segment size, window scale, etc. for extra functionality or enhancing performance
is also dependent on the implementation of the TCP stack.

The fields mentioned above related to OS or TCP implementation could be used
as a fingerprint for determining the type of operation systems [Fyo98], but they
cannot be used for application layer traffic classification. The TCP mechanisms
of flow control and Nagle’s algorithm may alter some parameters discussed above,
which may affect the traffic classification. They will be considered in the following
subsections.

2.2.2.1 Flow Control

TCP controls traffic flow using a sliding-window mechanism. For the purposes of
preventing host buffer overflows, hosts advertise the window size in packets, which
indicates how many bytes can be sent by the remote host without acknowledg-
ment. Delayed acknowledgment as defined in [Bra89] allows the receiver to send
piggyback ACKs, which includes ACKs in normal data packets instead of sending
separate ACK packets. This mechanism prevents receivers sending ACKs imme-
diately after receiving a packet. If the receiver has no data to send, it will send an
ACK after 500 ms. Besides the hosts’ buffer sizes, TCP window size also depends
on the buffer sizes of intermediate network nodes, the capacity of the links and
the traffic load of the links. In order to fully utilise the bandwidth, slow-start,
congestion avoidance, fast retransmit and fast recovery algorithms are employed
in modern TCP implementations, which maintain a congestion window [Ste97].
The actual amount of data allowed for sending without acknowledgment depends
on the received window size and congestion window, which is given by

allowed_window = min(received_window, congestion_window)

Chapter 2. Traffic Classification Techniques 17

When a connection is established, slow-start increases the congestion window ex-
ponentially until a predefined threshold is reached, and then congestion avoidance
increases the congestion window linearly until a packet loss is detected. Fast
recovery adjusts the congestion window when a loss of packets is detected. Fast
retransmit lets the sender retransmit a packet if the acknowlegment is not received
in an estimated round-trip time.

2.2.2.2 Nagle’s Algorithm

Nagle’s algorithm, named after its creator John Nagle, is a mechanism for improv-
ing TCP efficiency by coalescing a number of small buffered messages [Nag84].
Some applications repeatedly emit data in small chunks, sometimes 1 byte in
size, which wastes network resources due to a large proportion of packet overhead
(4000%). For transferring 1 byte of useful information in a packet, at least 40
bytes of header is needed (20 bytes for IPv4, 20 bytes for TCP), which yields only
2.4% efficiency. In addition, lots of small packets in transit at the same time may
cause intermediate network nodes to be overloaded by processing, reordering or
dropping. Nagle coined the term ‘congestive collapse’ for this phenomenon.

The algorithm works by coalescing small outgoing messages, and sending them all
at once. More specifically, the sender keeps buffering messages until the messages
can be encapsulated into a full packet, which is worth sending at once. Addition-
ally, the buffering time is restricted to 200 ms for keeping a reasonable response
time.

Nagle’s algorithm can increase TCP efficiency when applications generate lots of
small message chunks, such as Telnet sessions. However, it increases the response
time. Coalescing messages also mask the original message length, which adds
difficulty in terms of identifying traffic flows when classifying traffic based on
packet size.

2.2.3 UDP

Unlike TCP protocol, the User Datagram Protocol (UDP) is a stateless transport
layer protocol, which transfers data without establishing a connection. Hence,
there are no hand-shaking dialogues for establishing or terminating a transmission

Chapter 2. Traffic Classification Techniques 18

process. UDP does not guarantee reliability, ordering or integrity. The data
carried by UDP may be corrupted, out of order, duplicated or may even go missing
without notice. However, UDP packets have a smaller overhead, which increases
network efficiency. Because there are no traffic control or congestion avoidance
algorithms, UDP has lower latency than TCP due to simpler processing. The
structure of a UDP header is shown in Figure 2.4.

bit
offset

bit
offset

0

0

32

32

64

64

0 - 15

0 - 15

16 - 31

16 - 31

Source Port

Source Port

Destination Port

Destination Port

Total Length

Total Length

Checksum

Checksum

Data

Data

Figure 2.4: UDP Packet Header

Like TCP, Source Port and Destination Port may be used for traffic classification,
as well as packet size and packet inter-arrival time. Some researchers have shown
that, distributions or statistics of packet size and packet inter-arrival time could
be used for UDP traffic classification [HP08] [CLW03] [PBL+03]. Since there is
no traffic control and no Nagle’s algorithm in UDP, packet size and packet inter-
arrival time correspond with applications’ actual behaviour, which has not been
affected by traffic control algorithms. Hence, classifying UDP traffic is easier than
classifying TCP traffic. Considering TCP traffic consumes more than 80% of the
WAN resources [ARZ09], this thesis mainly focuses on classifying TCP traffic.

2.3 Current Classification Methods

2.3.1 Port Number

As we discussed in the last section, both TCP and UDP have 16-bit integer fields
for source port and destination port. Servers run different services on different
ports. Both servers and clients distinguish traffic flows by socket pairs, which are
a combination of source port, destination port, source IP address and destination
IP address. Therefore, clients must know the servers’ port of a specific service
before establishing a connection with TCP or starting to exchange data with UDP.

Chapter 2. Traffic Classification Techniques 19

Fortunately, the Internet Assigned Numbers Authority (IANA) is responsible for
assigning port numbers to applications. Then, clients can connect to servers with
specific ports, which belong to desired applications. As a result, port numbers
can be used for identifying applications [GM01]. The IANA port assignments are
divided into three ranges, which are listed in Table 2.1 [IAN10].

Table 2.1: IANA Port Assignments

Range Port Numbers

Well Known Ports 0 – 1023
Registered Ports 1024 – 49151
Dynamic and/or Private Ports 49151 – 65535

The Well Known Ports are assigned to commonly used services, such as Telnet
(port 23), SMTP (port 25) and HTTP (port 80). On most operating systems, this
range of ports can only be used by system (or root) processes or processes executed
by privileged users. For the purpose of ensuring the access of basic services, ports
in this range are not normally used for purposes other than IANA’s definition.
Therefore, identifying traffic based on Well Known Ports has a relatively high
rate of precision. However, a service could still be configured to use a different
port than that which it is assigned to. For example, the HTTP service could be
configured using port 8080 instead of port 80. In addition, unused Well Known
Ports in local hosts may be allocated to some applications, that use dynamic
ports [RP94]. Furthermore, malicious traffic can be intentionally masked easily
by port spoofing. Consequently, identifying traffic with Well Known Ports cannot
guarantee accurate results.

The Registered Ports, ranging from 1024–49151, are normally configured to be
used by ordinary processes or programmes on most operating systems. Compan-
ies register port numbers for their programmes with IANA for dedicated use. As
a result, numerous programmes can communicate on the Internet straight away
with their registered ports. However, registering ports with IANA is only for
the convenience of the community, which is not forced. Therefore, unregistered
programmes may arbitrarily use ports within this range, or they may use ran-
dom ports which lie in this range. In addition, even port numbers of registered
programmes can be changed by users. For example, TCP port 1993 has been
assigned to Cisco SNMP. A TCP flow communicating with port 1993 cannot be
100% confirmed as being a Cisco SNMP flow, because other programmes may be

Chapter 2. Traffic Classification Techniques 20

manually configured to use this port or use that port by random selection. We
cannot also assume that all Cisco SNMP traffic uses TCP port 1993, due to it
being configurable.

It is impractical for every programme to be assigned a port number, because of
the limited number of ports and the increasing large number of applications. Ad-
ditionally, some programmes require dynamic port allocation. These programmes
only use port numbers temporarily for the duration of a single connection. After
the communication session has finished, the ports can be reused. Therefore, IANA
reserves some port numbers as Dynamic and/or Private Ports, which range from
49151–65535. These ports could be used by unregistered programmes without
conflicting with well known services or registered services. They could be used by
programmes that need ephemeral ports.

Although it has been reported that classification accuracy can reach around 70%
based on port numbers [KBB+04], applications using reconfigurable port numbers,
unregistered port numbers and dynamic port allocation still exist. Moreover,
intentional port spoofing is commonly used by malicious traffic. Therefore, traffic
classification based on port numbers is not reliable, especially for classifying illegal
traffic.

2.3.2 Packet Classification

Besides source and destination port numbers from the transport layer, some other
information in the packet header has been used for filtering network packets, in-
cluding source and destination IP addresses and TCP flags. Practically, a list of
rules are applied for packets in order to employ different access policies to different
sorts of packets. This technique cannot be considered as traffic classification, but it
can be used for detecting malicious packets. The first generation firewalls, packet
filters, mentioned in Section 1.2.2 benefit from packet classification [Cis02]. For
example, SSH connections from outside networks should not be present on a Web
server, else there is probably an attack occurring. Therefore, a rule that blocks
packets with destination port 22 from outside IP addresses to the Web server can
be set in firewalls in order to filter potentially malicious packets.

Packet classification could be employed for providing address based QoS to some
degree. Due to fast processing speeds, nowadays it is normally deployed in network

Chapter 2. Traffic Classification Techniques 21

cores. It groups packets based on the range of IP addresses, then applies different
policies [MF01].

Additional information of IP addresses may help for identifying some applications.
For example, packets with the destination address of Google.com and TCP port
80 have a high confidence of being HTTP traffic. For identifying other traffic, the
same issues as with using port numbers are present.

2.3.3 Stateful Inspection

By grouping TCP packets based on sockets and examining the TCP flags, TCP
traffic flows can be rebuilt. More specifically, TCP flags SYN and FIN used for
handshaking are tracked. Hence, inspection systems have the awareness of estab-
lishment and termination of TCP connections. Although UDP is a connectionless
protocol, UDP traffic flows can be rebuilt as well based on UDP sockets. However,
stateful inspection does not reorder TCP packets or deal with duplicated packets.

After traffic flows are obtained, the payload of the application layer can be ex-
amined. Services following the standard document normally have well-known dis-
tinct signatures that are used for identifying applications. Through protocol ana-
lysis, undocumented proprietary applications or protocols can also be identified
as long as distinct patterns could be found in the packets. Lots of traffic could be
classified with this approach, because protocols always use some magic numbers to
identify themselves. Take HTTP version 1.1 as an example, the string HTTP/1.1
is always included in the first response packet from the server.

Stateful inspection has the ability to examine the information retrieved from pack-
ets at OSI layer 3–7, which gives a high rate of accuracy [Raj05]. However, the
application payload cannot be examined beyond packet boundaries, because the
packets are not reordered, and duplicated packets may exist. In addition, match-
ing packet contents with the database of application signatures has high compu-
tational complexity. Furthermore, it cannot handle encrypted traffic flows, and
there may be privacy issues involved.

Chapter 2. Traffic Classification Techniques 22

2.3.4 Deep Packet Inspection

Deep Packet Inspection (DPI) is currently used widely by numerous enterprises,
ISPs and governments in a variety of applications [Ben09], which enables network
equipment to perform full content inspections. Instead of examining on a packet
by packet basis, DPI can inspect TCP flows as a whole by reassembling TCP
packets into flows with the consideration of out-of-order packets, error packets
and duplicated packets.

The first step is the same as for stateful inspection. DPI tracks TCP flows with
the help of TCP flags and sockets. Secondly, packets are sent to a reorder engine
for sorting packets into their original order based on sequence numbers in the TCP
header. Then, the whole contents of two flows can be obtained, which are the flow
of client to server and the flow of server to client. Flow contents could be matched
with the signature database, and different policies could be applied for matched
flows.

The matching processes have higher precision than only using packets contents,
because signatures contained in the flows could be matched even if they are split
by packets. Signatures longer than packet size can be used, which would also
increase accuracy. The patterns used by the L7-filter for matching FTP traffic
using regular expressions are shown below [l7p09]. From the documents of the
software, using longer patterns for matching with more packets could obtain higher
precision [l7h09].

FTP Matching Pattern for 1 Packet:
^220[\x09-\x0d -~]*ftp

FTP Matching Pattern for 2 Packets:
^220[\x09-\x0d -~]*\x0d\x0aUSER[\x09-\x0d -~]*\x0d\x0a

FTP Matching Pattern for 3 Packets:
^220[\x09-\x0d -~]*\x0d\x0aUSER[\x09-\x0d -~]*\x0d\x0a331

Many applications can be detected by DPI. Currently 112 applications are sup-
ported by the L7-filter2, including traditional services such as FTP, DNS, HTTP,

2L7-filter is a open source DPI tool.

Chapter 2. Traffic Classification Techniques 23

etc. and newly released applications like games, VoIP, etc. [l7p09] Additional
application support can be added by customising the patterns.

However, the processing speed is slowed by reordering packets and longer match-
ing patterns. This not only increases the computational complexity, but also in-
creases memory consumption [PL06]. Additionally, analysing protocols manually
for getting the matching patterns is recognised as being difficult. Overmatching
and undermatching still exist even when using relatively long patterns. As with
stateful inspection, DPI also has issues related to privacy and encrypted traffic.

2.4 Statistical Classification Methods

The current traffic classification methods discussed in Section 2.3 have their ad-
vantages. Content based classification methods have high accuracy, and packet
header based classification methods have fast processing speed. However, classi-
fying traffic using the contents of packets or flows requires high computing power
and lots of memory for on-line examination. Profiling traffic into matching pat-
terns is also difficult, and encrypted traffic cannot be classified. Moreover, in some
circumstances, inspecting the payload of the application layer is prohibited due to
privacy issues. For packet header based classification methods, port spoofing and
IP spoofing decrease the accuracy, and packet headers normally do not provide
enough information.

The central idea of statistical classification is identifying traffic flows using their
statistical characteristics instead of examining the application layer contents. Hence,
tunnelled or encrypted traffic may be identified [CDGS07a]. Since reordering pack-
ets are not needed and the matching process is simpler, statistical methods have
a higher processing speed than DPI. It does not depend on port numbers or IP
addresses, which could be forged. Moreover, profiling sample traffic flows is much
easier. As a result, the work of this thesis has focused on statistical classification
methods, and the optimisation related to them.

There are two approaches which identify traffic with different statistical features
and algorithms. An overview of these two approaches will be given in the following
subsections.

Chapter 2. Traffic Classification Techniques 24

2.4.1 Parametric Classification

Parametric classification groups packets into flows based on TCP flags and TCP
sockets. It might not reorder the packets and not consider duplicated packets,
because out-of-order or duplicated packets do not greatly change the statistical
characteristics of traffic flows. This could increase the processing speed and re-
quire less memory. A series of statistical values can be extracted from each flow.
Therefore, flows could be classified based on training samples using a variety of
algorithms. There are two things that we need to be concerned with: one is what
kinds of parametric values should be used to discriminate the traffic flows; the
other is the classification algorithms.

The parameters, known as ‘attributes’ in data mining, are normally calculated
based on the information in the packet headers, which avoids breaking the privacy
of network users. Moore et al. have proposed a list of 249 possible attributes,
which could be used as discriminators for flow-based classification [MZ05a]. Some
of them are extracted from the information of the data link layer, such as mean
number of bytes in Ethernet frames. Some of them are calculated from the data
highly depending on TCP/IP implementations, such as the count of the packets
with PSH, average advertised window size, etc. As discussed in Section 2.2, these
kinds of attributes are not actually dependant upon the classes of applications,
but they may increase the classification accuracy. For example, the accuracy of
detecting some games may be increased with the help of these attributes, because
some games are probably only published on specific OSs, and these attributes
include the fingerprint of OSs. In this thesis, for calculating the attributes, we
only use the information directly related to applications, which are derived from
packet size and packet inter-arrival time. The attributes we used will be described
in Section 3.1.

The period for calculating the statistical values should also be considered; referred
to as the detection window in this work. It will be shown that higher accuracy
is not definitely brought about by a longer detecting period in Section 4.3, and a
small detection window could give quicker classification speed. Therefore, optim-
ising the detection window will become one of our main objectives.

After the attributes have been determined, every flow can be described by a multi-
dimensional vector with a class name. As a result, the candidate flows could be
classified based on a training set. This is a generic supervised classification problem

Chapter 2. Traffic Classification Techniques 25

in the field of data mining. Different machine learning algorithms have been pro-
posed for performing this job, such as Bayesian networks [MZ05b], k-nearest neigh-
bours [SSM07], decision trees [WY08] [LM07], artificial neural networks [TC97]
[NSV06] and SVMs [Zho08]. In this thesis, several algorithms are employed, which
will be described in Section 3.2.

For content-based traffic classification, matching patterns should be discovered in
advance through manual protocol analysis. Whereas, for parametric statistical
classification, the training set consists of sample instances, which could be gener-
ated by sample traffic easily. A sample instance consists of a vector and a known
class name, and a testing instance has the vector only.

2.4.2 Non-parametric Distribution Test

The other approach is distinguishing the traffic flows by non-parametric distri-
butions instead of using numeric values in the parametric classification method.
Parish et al. have argued that packet size distributions are distinct among dif-
ferent applications using UDP, and they can be used for identifying UDP traffic
flows [PBL+03]. This approach has also been implemented for TCP traffic with
the consideration of the effects caused by Nagle’s algorithm by Bo Li in his Ph.D.
thesis [Li07].

A packet size distribution can be built for each flow, which represents the frequency
spectrum of the packet payload sizes appearing in the flow. The possible packet
sizes are divided into bins, and the numbers of packets whose sizes fall into these
bins are counted. Then, a normalised packet size distribution can be calculated for
matching with a database, which is expressed as packet size bins versus normalised
possibilities. The bin size is a factor which may affect the identification accuracy.
Larger sized bins have a higher tolerance for distribution changes within classes,
and smaller sized bins could distinguish more classes but have a lower tolerance.
For example, the first few packets of HTTP flows may be similar, because software
should follow the standard of the HTTP protocol. The sizes of these packets
are probably not identical, due to the different implementations of the HTTP
protocol by different software. Increased bin size may have higher tolerance of
these differences, but eliminate some statistical characteristics. For simplicity, we
use the smallest unit (one byte) per bin in our experiments. However, a genetic
algorithm has been proposed, which has been proven to optimise the bin sizes

Chapter 2. Traffic Classification Techniques 26

[SSM07].

Comparing the candidate distribution with distribution profiles in the database is
another issue. There are some statistical algorithms which could be used. Correl-
ation coefficient, the nearest neighbour with Euclidean distance and Chi-square
test have been employed and tested in [PBL+03]. All of them could fulfil the task
of identifying the packet size distributions very well, and have similar performance
in terms of accuracy. As a result, we do not pay too much attention to the dis-
tribution comparison algorithms. The Kolmogorov-Smirnov (K-S) test has been
used in the work of this thesis, which will be described in Section 3.4.

However, some network traffic generated by different applications may share the
same distribution patterns, which are not distinguishable by this approach. By
using distributions, it also eliminates the information of the flows in the time
domain, which may help traffic classification. Moreover, since the similarities
between candidate distributions and all distributions in the database must be
calculated one by one, the comparison process needs more computational power
than some algorithms using parametric values, which only process the classification
once with a trained model. Nagle’s algorithm may alter the distribution patterns
by coalescing small packets [Li07]. Also, the same issue of detection window
as parametric classification still exists, the number of packets for building the
distribution would affect the classification accuracy. Optimising the detection
window will increase the processing speed and may increase the accuracy, which
will be discussed in Section 4.3.

2.5 Summary

In this chapter, packet encapsulation has been presented for the purpose of finding
out what kind of information can be retrieved from the captured packets. Then
an overview of TCP/IP has been presented, which includes the analysis of the
relationships between application behaviours and packet contents. Finally, current
traffic classification methods and statistical traffic classification methods have been
discussed briefly.

Since optimising the statistical traffic classification is our main concern, the fea-
tures and algorithms we used in this work will be presented in more depth in the
next chapter.

CHAPTER 3

Algorithms for Statistical Classification

Optimising traffic classification using statistical methods is our main objective,
which includes employing multiple algorithms. Therefore, this chapter covers the
fundamentals of the classification algorithms that we used in this work. The
attributes and the classification algorithms used by parametric classification will be
presented, followed by the distributions and the distribution comparison algorithm
used by non-parametric classification.

3.1 Attributes for Parametric Classification

As we discussed in Section 2.4.1, the statistics of each flow can be represented by a
multi-dimensional vector. The dimensions of the vector are called attributes in the
field of data mining. The attributes related to traffic classes should be discovered
for classification.

Redundant attributes can be removed using data mining techniques. Some at-
tributes are not directly related to application behaviour, which differs between
OSs, protocol stacks etc., which may increase classification accuracy. Hence, using

27

Chapter 3. Algorithms for Statistical Classification 28

more attributes, better classification performance might be obtained in practice.
Although 249 statistical attributes for traffic classification have been proposed in
[MZ05a], most of them are not directly related to the behaviours of specific traffic
classes. Some statistical attributes described in [MZ05a] are calculated from layer
2 frame sizes, IP and TCP options, TCP flags, TCP window sizes, etc. As we dis-
cussed in Section 2.1 and Section 2.2, these kinds of information comes from layer
2 hardware or TCP/IP implementations instead of applications. Considering this
work does not involve optimising the attributes, only 26 attributes that are dir-
ectly related to application behaviour are used in our research, which are derived
from packet size and packet inter-arrival time as discussed in Section 2.4.1. This
will give us a experiments faster, easier evaluation and more constant classification
performance.

Referring to Section 2.2, although TCP traffic control and Nagle’s algorithm may
alter the packet inter-arrival time and packet size, they are still claimed as hav-
ing strong relations with the application activities by many researchers [DO01]
[PBL+03] [MZ05a] [Li07]. Therefore, the attributes used for parametric classifica-
tion are calculated based on these two parameters, which are shown in Table 3.1.

TCP flows can be split into two directions, which are defined as client→server
and server→client. Since we do not actually know who is the client or server, the
host who initiates the connection is arbitrarily defined as client in this work. The
first two attributes, pc_ratio and bc_ratio, stand for the ratio of packet count
and byte count between these directions. The remaining attributes can be divided
into three parts, where eight statistics retrieved from each direction or both are
included. Packet size and packet inter-arrival time are used for calculating these
statistical attributes.

Every TCP flow can be described by a vector with these 26 dimensions, together
with a class name. Sampling flows with known class names are used as training
data. Then, network traffic classification can be turned into supervised classifica-
tion of these vectors in a hyper-space.

3.2 Algorithms for Parametric Classification

For the purpose of classifying the vectors that stand for traffic flows, the follow-
ing supervised classification algorithms are used in this work — k-nearest neigh-

Chapter 3. Algorithms for Statistical Classification 29

Table 3.1: Attributes Used in Parametric Classification
Short Long Direction
pc_ratio Ratio of packet count between two directions n/abc_ratio Ratio of byte count between two directions

ps_min Minimum packet size

both

ps_max Maximum packet size
ps_avg Average packet size
ps_var Variance of packet size
it_min Minimum packet inter-arrival time
it_max Maximum packet inter-arrival time
it_avg Average packet inter-arrival time
it_var Variance of packet inter-arrival time

ps_cs_min Minimum packet size

client→server

ps_cs_max Maximum packet size
ps_cs_avg Average packet size
ps_cs_var Variance of packet size
it_cs_min Minimum packet inter-arrival time
it_cs_max Maximum packet inter-arrival time
it_cs_avg Average packet inter-arrival time
it_cs_var Variance of packet inter-arrival time

ps_sc_min Minimum packet size

server→client

ps_sc_max Maximum packet size
ps_sc_avg Average packet size
ps_sc_var Variance of packet size
it_sc_min Minimum packet inter-arrival time
it_sc_max Maximum packet inter-arrival time
it_sc_avg Average packet inter-arrival time
it_sc_var Variance of packet inter-arrival time

bour, decision trees and artificial neural networks. The reason of selecting these
three algorithms is because k-nearest neighbour is the simplest machine learning
algorithm, artificial neural networks is the most sophisticated algorithm and de-
cision trees is proposed by many other researchers used for classifying network
traffic. They will be described briefly in the following subsections.

3.2.1 k-Nearest Neighbour

A kind of instance-based classifier has been defined, named k-Nearest Neighbour
(k-NN), which classifies vectors based on the closest training examples in the
attribute space. Firstly, the k-NN selects k cases from the examples, which are

Chapter 3. Algorithms for Statistical Classification 30

the closest to the target case in terms of vector distance. Usually, Euclidean
distance is used as the measurement of the distance between vectors, given by
Equation 3.1.

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (3.1)

Then, a vote is made among these k cases. Finally, the solution to the target
case is given by the result from the voting. An example of k-NN dealing with a
two-dimensional classification is illustrated in Figure 3.1.

A

A

A

A

B
?

B
B

B

B

k=3

k=5

Figure 3.1: An Example of k-NN Classification

To determine the class of the case in the centre, k is chosen first. In the case shown
in Figure 3.1, while k = 3, three previous cases are selected. As a consequence, the
target case will be tagged with class A, since there are two class A cases among
the selected three nearest neighbours. The situation changes when five closest
cases are chosen, as circled by the dashed line in the figure, where class B is the
output. It is not difficult to work out that large k reduces the noise but makes
class boundaries less distinct and vice versa.

A k-NN classifier can operate without an actual training process, but it still relies
on a stored training set for classification. Since a distance between the candidate
vector and every sample in the training set must be calculated, the real-time
classification speed is not very fast, especially when the training set is large.

Chapter 3. Algorithms for Statistical Classification 31

3.2.2 Decision Trees

The process of constructing a decision tree for classification can be expressed
recursively. First, an attribute is selected to be placed at the root node and
branches for each possible value range. The training set is split into subsets,
one for each possible value range of the attribute. Then, the process is repeated
recursively for each branch, using only the instances that reach the branch. If all
instances at a node have the same class, the developing process is stopped at that
node [WF05a].

For numeric attributes, it is common to set the split points at the halfway between
the values that delimit the boundaries of two classes. For recursively building the
nodes and branches for efficient decision trees, we must determine which attributes
should be selected as nodes, and which split points should be used as branches.
Entropy impurity has been defined in Equation 3.2 for exhaustive searching of the
nodes and split points, where n is the number of classes and Pi is the probability
of ith class.

i = −
n∑

i=1

Pi log2 Pi (bits) (3.2)

The process of constructing a tree can be demonstrated in Figure 3.2, where the
dataset has six samples of A, five samples of B and there are 2 dimensions for each
instance — x1 & x2. The entropy impurity of the initial dataset can be calculated
by

i0[6, 5] = −(
6

11
× log2

6

11
+

5

11
× log2

5

11
) = 0.9940 bits

In Figure 3.2 (a), x1 has been selected as the root node and 0.3 has been selected
as split point. The entropy impurity of each leaf can be calculated by

ia1[3, 1] = −(
3

4
× log2

3

4
+

1

4
× log2

1

4
) = 0.8113 bits

ia2[3, 4] = −(
3

7
× log2

3

7
+

4

7
× log2

4

7
) = 0.9852 bits

Then, the average of these two leaves can be calculated by

ia([3, 1][3, 4]) =
4

11
× ia1[3, 1] +

7

11
× ia2[3, 4] = 0.9220 bits

Chapter 3. Algorithms for Statistical Classification 32

A
A
A
B

A
A
A
B
B
B
B

x10.3

T F

A
A
A

A
A
A
B
B
B
B
B

x10.5

T F

A
A
A
B
B

A
A
A
B
B
B

x20.9

T F

(a) (b) (c)

Figure 3.2: An Example of Decision Tree Construction

The information gain of this tree can be found by

ga = i0 − ia = 0.0721 bits

The way forward is clear. The information gain of different attributes and split
points can be calculated. In the situations of (b) and (c) in Figure 3.2, the gains
are

gb = 0.2999 bits

gc = 0.0072 bits

Since the tree in (b) mostly reduces the impurity, or has the highest information
gain, x1 is selected as the root node and 0.5 is selected as its split point. We
continue recursively on each leaf until all subsets cannot be split further.

Practically, a pruning mechanism is involved in commonly used C4.5 decision
trees1. It prunes sub-trees or raises sub-trees to higher nodes for keeping trees
simpler and preventing over-fitting to the training set [WF05b] [DHS01].

After a decision tree has been constructed based on training samples, it can be
used for classification. Target vectors are input from the root node, and they
follow the branches until they reach the end leaves, where their classes can be

1C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan [Qui92].

Chapter 3. Algorithms for Statistical Classification 33

obtained.

3.2.3 Artificial Neural Networks

The central concept of Artificial Neural Networks (ANNs) is modelling the re-
lationships between inputs and outputs with a group of interconnected artificial
neurons. For classification, ANNs approach functions that can separate the train-
ing vectors. This process is called training. Therefore, trained ANNs can be used
for classifying unknown vectors.

From a biological viewpoint, billions of neurons make up a brain and enable the
ability of thinking. Like a brain, an ANN is comprised of a number of nodes that
are interconnected and each connection has a numeric value, called a weight. As
in a brain, these nodes could incept information from the outside world or from
other nodes, and they have outputs to excite other nodes. For each node, the
operations are simple, which are illustrated in Figure 3.3.

∑ φ.
.
.

x0

x1

xm

w k0

w k1

w km
Activation
Function

yk
Weighted

Sum

Figure 3.3: A Neural Node

Firstly, the weighted sum of all the inputs is calculated. Secondly, a non-linear
activation function is used to produce an output value. Finally, the output value
is exported to other nodes. This process can be expressed by Equation 3.3, where
yk is the output of the node k, ϕ is the activation function, wkj is the weight for
jth input of the node k and xj is the jth input.

yk = ϕ(
m∑
j=0

wkjxj) (3.3)

Chapter 3. Algorithms for Statistical Classification 34

In order to interconnect the artificial neural nodes, a feed-forward structure is
normally used even though there are rampant back-connections in real brains
[RN95]. In the feed-forward structure, the neural nodes are arranged in layers,
and the propagation is one way from the input layer to the output layer, which
is shown in Figure 3.4. It has been proved that an ANN without a hidden layer
could represent any linear function; with one hidden layer, it could represent any
continuous function; with two hidden layers, even discontinuous functions could
be represented [RN95] [MP88]. For classifying multiple classes, multiple nodes of
the output layer can be employed for each class, and the output of each node in
output layer y is the confidence for the corresponding class. The input vector can
be determined as the class with the highest confidence.

hidden
node 0

x0 x1 xm

hidden
node 1

hidden
node k

output
node

…

…

w km

w k

y0 y1 yk

y

Input Layer

Hidden Layer

Output Layer

Figure 3.4: A Neural Network

For training the ANN, a back-propagation learning mechanism is used for determ-
ining the weights w, which was demonstrated by Rumelhart et al. in [RHW86].
Training samples with known classes are input into the ANN, and the errors in the
output nodes are calculated from the output layer to the input layer. Then, the
back-propagation algorithm revises the weights in order to minimise these errors.

As soon as an ANN is trained, the candidate vectors with unknown classes can be
input to the model for classification.

Chapter 3. Algorithms for Statistical Classification 35

3.3 Distributions for Non-parametric Tests

As discussed in Section 2.4.2, using distributions of packet size and packet inter-
arrival time as traffic discriminators have been proposed by researchers. Traffic
types can be identified, because applications generate packets with patterns. How-
ever, packet inter-arrival time is affected greatly by network conditions. Jitter,
retransmission and packet loss change the inter-arrival time in some degree, which
masks the original behaviours of applications. In our research, packet size dis-
tributions are used, because they are more stable than distributions of packet
inter-arrival time.

Although bin sizes of distributions may affect the classification accuracy, one byte
per bin is used in our research for simplicity. Figure 3.5 and Figure 3.6 illustrate
the packet size distributions of a Telnet flow and an IMAPS flow respectively,
where the frequencies have been normalised.

1 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bins (1 byte / bin)

R
el

at
iv

e
 F

re
q

ue
nc

y

Figure 3.5: Packet Size Distribution of a Telnet Flow

In the figures, the x axes are bins that indicate the amount of bytes in packet
payloads, and the y axes are the normalised frequency count for a given bin. Ob-
viously, these two discrete distributions from different applications have different
patterns. In order to compare distributions, an algorithm for quantifying the
similarities among distribution patterns is needed.

Chapter 3. Algorithms for Statistical Classification 36

Bins (1 byte / bin)

150 300 450 600 750 900 1050 1200 1350

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
el

at
iv

e
 F

re
q

ue
nc

y

1

Figure 3.6: Packet Size Distribution of an IMAPS Flow

3.4 Comparison Algorithm for Non-parametric

Tests

The Kolmogorov-Smirnov (K-S) test has been used in this work for calculating
the similarity between two distributions, assuming there are two normalised prob-
ability distributions P (x) and P ′(x), which are given in Figure 3.7.

0 100 200 300 400 500 600 700 800 900 1000

0

0

0

0.01

0.01

0.01

0.01

x

Pr

P x P ' x

Figure 3.7: A Frequency Distribution

Chapter 3. Algorithms for Statistical Classification 37

The normalised cumulative distributions can be calculated by Equation 3.4.

F (x) =
∫ x

−∞
P (x)dx (3.4)

Therefore, the dissimilarity of these two distribution patterns is defined by the
maximum distance between their cumulative distributions, which can be expressed
by Equation 3.5 and is shown in Figure 3.8 [CLR67]. The sup(S) is defined to be
the smallest real number that is greater than or equal to every number in S.

Dmax = sup
x
(|F (x)− F ′(x)|) (3.5)

It is not difficult to discover that the dissimilarity Dmax is in the range of [0, 1],
which can easily be used for searching the most similar distribution in the database.

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

x

F

F x F ' x

Dmax

Figure 3.8: Distance Between Two Cumulative Distributions

Since packet size distributions are discrete, the cumulative distributions of packet
size are shown in Equation 3.6

F (x) =
x∑
1

P (x) (3.6)

Considering the two examples of a Telnet flow and an IMAPS flow given in the

Chapter 3. Algorithms for Statistical Classification 38

previous subsection, their cumulative distributions and the dissimilarity can be
calculated, which are illustrated in Figure 3.9.

0 200 400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

F

F telnet F imaps

Dmax

1

Figure 3.9: Cumulative Distributions of a Telnet and an IMAPS Flow

From the figure, there are a large proportion of packets with 1380 bytes in the
IMAPS flow. This is caused by bulk data transfer, which tries to transmit as many
bytes as possible per packet. Although normally the MTU of Ethernet is fixed
at 1500 bytes, the Maximum Segment Size (MSS) of the application layer may
change, because the TCP and IP header have option fields with variable length
as discussed in Section 2.2. More specifically, in the case of the IMAPS flow, the
operating system encapsulates the application payload with 20-byte IP headers
without options, and 100-byte TCP headers, where there are 80-byte TCP options.
As a result, only 1380 bytes of the payload are transmitted in a packet. This can
greatly affect the distribution comparison, because the same application running
on two different operating systems or TCP/IP implementations may generate
distributions with a large distance. For example, in Figure 3.10, Fimaps is generated
by the flow with an MSS of 1380 bytes and F ′imaps is generated by the flow with
the MSS of 1460 bytes, which is the largest possible MSS. Although both of the
flows are generated from IMAPS and the distribution patters are quite similar,
they have a large distance Dmax because of the different MSSes.

Because a large proportion of packets with MSS exist in TCP traffic flows for
bulk data transfer, a mechanism has been developed in our work for overcoming
this problem. Basically, the mechanism treats MSS as a special bin. MSS packets
from different flows should be counted in this bin. Practically, for each traffic flow,

Chapter 3. Algorithms for Statistical Classification 39

0 200 400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

F

F imaps F ' imaps

Dmax

1

Figure 3.10: Cumulative Distributions of IMAPS Flows with Different MSS

the MSS is recorded, and then the sizes of packets with this MSS are arbitrarily
counted as 1460 bytes.

3.5 Summary

In this chapter, an introduction to the algorithms to be used in this work has been
given, which includes algorithms for parametric classification and comparison al-
gorithms for distribution classification. Attributes used for parametric classifica-
tion and distributions used for non-parametric tests are also described.

In the next chapter, the preliminary test will be presented. The limitations of
using a single algorithm will be covered together with the introduction to the
optimisation.

CHAPTER 4

Datasets & Preliminary Tests

At the beginning of this chapter, generating the traffic data and post-processing
are discussed. After data for evaluation are prepared, preliminary tests are taken,
where the classification performance of different algorithms is examined. Perform-
ance of different detection windows is also explored.

4.1 Data for Preliminary Evaluation

4.1.1 Acquisition of Raw TCP Data

The data used for evaluation and testing must be obtained carefully. For classifying
network traffic, the classes of the traffic in the evaluation data must be correctly
known; otherwise the optimisation and evaluation are misleading. Taking into
consideration the fact that the traffic classes of flows are not included in any
public datasets, we have captured traffic data for evaluation with a test bed; this
ensures that the classes of traffic are recorded correctly.

40

Chapter 4. Datasets & Preliminary Tests 41

InternetInternet

Router

FTP Server

Mail Server

SnifferClient

.

.

.

Figure 4.1: System Architecture for Collecting Data

The logical experimental architecture for collecting data is illustrated in Figure 4.1.
The data is produced by the client communicating with servers. The sniffer is
used to capture and record all the traffic between the client and the servers. The
servers located inside the internal network should be set up with various software
for simulating a practical environment. By visiting sites on the Internet, the
conditions of networks can be taken into consideration. In practice, the sniffer
was deployed in the same machine as client and some servers were also share
machines. Therefore, when client using Linux platform, Tcpdump powered by pcap
library was used for capturing the packets in the test bed, where Ethernet with
1500 MTU was deployed. As discussed in Section 2.1, a captured raw packet
includes a MAC layer header, an IP header, a TCP header and payload data. A
time-stamp is added automatically in front of the packet and stored in pcap files by
Tcpdump for recording the time of capture. Since the information of payload is not
required in statistical traffic classification, only headers of packets were captured
and stored into pcap files by using the following command in a Linux environment,
which sniffed TCP packets on eth0 and stored them to filename.pcap [tcp09].

tcpdump -i eth0 tcp -w filename.pcap

Although there are IP and TCP options with variable lengths, Tcpdump can auto-
matically adjust the capturing length for storing the packet headers only. For the

Chapter 4. Datasets & Preliminary Tests 42

applications running under Windows, Wireshark is used by the sniffer for capturing
the packets. Wireshark is a GUI protocol analyser software, which can capture
network traffic and produce pcap files as well [wir].

Because certain applications have to follow the specified protocol standards, in
term of traffic content, there are only minor differences among applications which
implement the same protocol. This makes it almost impossible to determine the
exact applications. Therefore, network traffic was classed based on protocols.
In total, ten classes were considered, including FTP1, FTP-data2, IMAPS, IRC,
MS-RDP, POP3, RTSP, SMTP, SSH and Telnet. An extra class called ‘Others’
was also generated, which consisted of various traffic of other protocols including
HTTP.

For the purpose of generating these traffic streams, servers were set up in the
test bed, and clients with different software were used. In order to simulate a
realistic environment, different kinds of user behaviour were employed, such as
attaching files in E-mail, different screen resolutions in remote desktop, browsing
directories with FTP, etc. In addition, considering the real network situations,
we also captured some traffic by visiting sites on the Internet, which may have
included traffic generated by different server side software. They could also include
the influences of network conditions such as delay, jitter, retransmission, etc.,
which may affect the traffic statistical characteristics by TCP traffic control and
Nagle’s algorithm. The traffic classes, client software and servers we used are listed
in Table 4.1.

4.1.2 TCP Flow Reconstruction

As we were classifying network traffic at the flow level, TCP flows should be re-
constructed with captured packets. A Perl script was developed for the purpose of
this task. We did not mind the script language having a relatively slow processing
speed, for the experimental stage. As off-line classification was evaluated in our
research, the reconstructed TCP flows were stored in plain text files for our tests.

The script named build_connection.pl listed in Appendix C uses the Net::Pcap
module, which provides an interface to the pcap library [AT]. The module provides

1FTP stands for FTP control traffic.
2FTP-data stands for data traffic of FTP.

Chapter 4. Datasets & Preliminary Tests 43

Table 4.1: Traffic Classes and Used Applications
Traffic Class Client Agent Server

FTP Linux Built-in vsftpdCuteFtp

FTP-data Linux Built-in vsftpdCuteFtp

IMAPS

postfix
Thunderbird googlemail.com
Evolution hotmail.com

lboro.ac.uk

IRC xchat ircd-irc2
mIRC Various Internet Sites

MS-RDP Windows Built-in Windows Built-inrdesktop

POP3

postfix
Thunderbird googlemail.com
Evolution hotmail.com

lboro.ac.uk

RTSP
totem Helix Server
RealPlayer Various Internet Sites
Windows Media Player

SMTP

postfix
Thunderbird googlemail.com
Evolution hotmail.com

lboro.ac.uk

SSH openssh-client openssh-serverPuTTY

Telnet Linux Built-in Linux Built-inPuTTY

Others (inc. HTTP) Various Various

HTTP
Google Chrome apache2
Firefox Various Internet Sites
Internet Explorer

scripts which have the ability to conveniently read packets in binary pcap files,
which are generated by Tcpdump or Wireshark. The NetPacket module is also
employed for decoding the Ethernet, IP, TCP headers and time-stamps of packets,
which are stored in binary format [PWC].

The script creates a file when a packet with SYN flag is detected. Then, the

Chapter 4. Datasets & Preliminary Tests 44

information from packets with the same socket or reverse socket3 is stored in that
file. Flows are determined to be terminated as soon as an RST or FIN flag is
detected. In addition, there are two thresholds in the script. One is max_idle for
terminating the flows when no packets have been detected after a period of time;
the other one is max_time for limiting the whole TCP flows in a certain period of
time. These two thresholds restrict the flows to a reasonable size, and also make
the process of reconstruction faster. In our work, max_idle is set to 600 seconds,
which is proposed by Dunigan and Ostrouchov in [DO01], and max_time is set
to 3600 seconds. The following is an example of a plain text file in CSV format,
where information of TCP flows is stored.

@,10.0.0.101,4121,10.0.0.102,3389,9701286,11787,120.236094,ms-rdp
0.000705,C-S,19
0.107169,S-C,11
0.107909,C-S,428
0.108485,S-C,333
0.108548,C-S,12
0.108581,C-S,8
0.108773,S-C,11
0.108829,C-S,12
0.109015,S-C,15
0.109078,C-S,12
0.109302,S-C,15
0.109351,C-S,12
0.109506,S-C,15
...

The first field in the summary line — @ is the delimitation for the flow, and
the following four fields are a socket pair consisted of source IP address, source
TCP port, destination IP address and destination port, which is based on the
first packet with a SYN flag. The sixth field is the total counted bytes of the
payloads, the seventh is the total packets processed and the eighth is the total
duration. The final field is the class of this flow. Because port spoofing is not
used when generating the traffic, the class can be determined by TCP destination
port. The following lines are details of packets in the flow, which start with a
relative time-stamp, followed by direction and payload length. Only packets with
an application layer payload are recorded. Packets for TCP handshaking, or only

3If a TCP socket is srcIP : srcPort → dstIP : dstPort, the reverse socket is defined as dstIP
: dstPort → srcIP : srcPort.

Chapter 4. Datasets & Preliminary Tests 45

for acknowledgment are not included. As we mentioned before, the first direction
of the first packet with SYN is defined as client to server. Therefore, the direction
of packets with reversed socket is server to client. The payload length is given by

payload_len = ip_len− ip_hlen− tcp_hlen

where ip_len stands for total length of IP packet, ip_hlen and tcp_hlen are IP
header length and TCP header length respectively. Referring to the structures
of the IP packet header and the TCP packet header shown in Figure 2.2 and
Figure 2.3, ip_len is given by the field of Total Length in the IP header, ip_hlen

is given by the field of Header Length in the IP header and tcp_hlen is given by
the field of Data Offset in the TCP header. Since the IP and TCP header length
are counted in words, they are multiplied by 4 when calculating the payload length
in bytes.

4.1.3 Discriminator Calculation

After the TCP flows have been built, the CSV files are sent into another two Perl
scripts, which are listed in Appendix C, one called matrix.pl for calculating the
attributes matrix for parametric classification, and the other called len_dist.pl for
building the normalised cumulative packet size distributions for non-parametric
classification. The principles of these discriminators have been discussed in Sec-
tion 3.3 and Section 3.4, and the calculation processes are straight forward with
the application of simple mathematics. The output files are in CSV format, in
which each TCP flow is represented by a line of attribute values or a series of
distribution values followed by a class name.

Besides CSV files containing TCP flows, another parameter is input into these two
scripts, called ‘detection window’, which specifies how many packets are taken into
consideration for discriminator calculation. This parameter will be optimised for
better classification performance in Section 6.1.2 and Section 6.1.3.

For the purpose of preventing bias in classifiers and easy evaluation, the number
of traffic flows among classes should be equal [BBM03]. We balanced the flow
instances by a method of random undersampling, which randomly picked 30 TCP
flows for each traffic class. The exception to this was the ‘Others’ class, which was
treated specially, with 900 traffic flows.

Chapter 4. Datasets & Preliminary Tests 46

4.2 Preliminary Tests for Different Algorithms

Initially, some preliminary tests with different algorithms based on the processed
data were performed. As mentioned before, many machine learning algorithms
have been proven to classify network traffic. Therefore, we focused on the per-
formance of different algorithms for detecting different classes, which could help
to optimise classification with multiple algorithms.

First, the data was randomly split into two parts, which were the training dataset
and the testing dataset. The percentage of the training dataset was 33% of the
total. Then the files containing the flows were sent into the scripts for generating
discriminators. Since the detection window was not considered at this stage, at-
tributes or distributions were calculated based on full TCP flows. For the training
dataset, the class names were given to classifiers, and class names were set to
‘unknown’ for the testing dataset. Finally, the training dataset and the testing
dataset were input into classifiers for evaluation.

As discussed in Section 3.2, k-NN, decision tree and ANN were employed in our
work. Weka has been used for implementing these algorithms, which is an open-
source data mining tool in Java [wek]. In order to undertake automatic classi-
fication, a Bash script has been written for reading input files, executing Java
classes and writing output files. The parameters for these algorithms were also
specified in this Bash script. Since optimising the parameters for these algorithms
was not our concern here, recommended values were used. For k-NN, one nearest
neighbour was used, which was the simplest way. For decision tree, a pruned tree
with minimum 2 instances per leaf was used for preventing over-fitting. For ANN,
the parameters were (attributes+ classes)/2 hidden layers, 0.3 learning rate, 0.2
momentum and 500 epochs training time.

For non-parametric classification, the K-S test was employed as was described in
Section 2.4.2. Another Perl script called classify_ks.pl was developed in order
to fulfil this task, which is listed in Appendix C. For every input, the distances
between the incoming distribution and all distributions in the training dataset
were calculated. Then the distribution in the training dataset with the smallest
distance was selected as a match, and the input distribution was marked as the
same class as the matched one.

The classification accuracies for different algorithms are given in Table 4.2, which

Chapter 4. Datasets & Preliminary Tests 47

are calculated by Equation 4.1

A =

∑
i TPi∑

i(TPi + FPi)
(4.1)

where TP i means True Positive for the ith class, FP i means False Positive for the
ith class and accuracy is the ratio of correctly classified instances to all instances
among all classes.

Table 4.2: Overall Classification Accuracies for Different Algorithms (Full Flow)

Class Parametric Classification Distribution
k-NN Decision Tree ANN K-S Test

Overall 0.91 0.95 0.91 0.86

The algorithms of parametric classifications have similar performance, because
they use the the same attributes as discriminators. The performance of K-S clas-
sification using packet size distributions has a lower level of accuracy, so further
research of the confusion matrix is needed for finding out the underlying reasons.
Also, in order to gain a better understanding of the classification performance
for different classes, the classification confusion matrices of different algorithms
have been investigated, which are shown in Table 4.3, Table 4.4, Table 4.5 and
Table 4.6, where the actual class is the row and the predicted class is the column.

Table 4.3: Confusion Matrix for k-NN Classifier (Full Flow)

Classified as→ a b c d e f g h i j k

a=MS-RDP 16 0 1 0 1 0 2 0 0 0 0
b=RTSP 0 19 0 0 0 0 0 0 0 0 1
c=POP3 1 0 11 0 0 0 1 0 7 0 0
d=SMTP 0 0 0 19 0 1 0 0 0 0 0
e=SSH 0 0 0 0 17 0 3 0 0 0 0
f=FTP 0 0 0 0 0 17 3 0 0 0 0
g=IMAPS 1 0 4 0 1 0 7 3 4 0 0
h=IRC 0 4 0 0 0 0 3 13 0 0 0
i=Telnet 0 0 1 0 0 0 4 0 15 0 0
j=FTP-data 0 0 0 0 0 0 0 0 0 10 10
k=Others 1 2 1 5 1 0 1 3 0 4 582

Chapter 4. Datasets & Preliminary Tests 48

Table 4.4: Confusion Matrix for Decision Tree Classifier (Full Flow)

Classified as→ a b c d e f g h i j k

a=MS-RDP 16 0 0 0 0 0 2 0 0 0 2
b=RTSP 0 19 0 0 0 0 0 0 0 0 1
c=POP3 0 0 19 0 0 0 0 1 0 0 0
d=SMTP 0 0 0 19 0 0 1 0 0 0 0
e=SSH 0 0 0 0 20 0 0 0 0 0 0
f=FTP 0 0 0 0 0 20 0 0 0 0 0
g=IMAPS 0 0 0 0 0 0 15 0 0 0 5
h=IRC 0 0 4 0 0 0 0 16 0 0 0
i=Telnet 0 0 0 0 0 0 0 0 20 0 0
j=FTP-data 0 0 0 0 0 0 0 0 0 13 7
k=Others 1 3 1 0 2 3 2 2 0 2 584

Table 4.5: Confusion Matrix for ANN Classifier (Full Flow)

Classified as→ a b c d e f g h i j k

a=MS-RDP 16 0 0 0 2 0 1 0 0 0 1
b=RTSP 0 18 0 0 0 0 0 0 0 0 2
c=POP3 0 0 6 0 3 0 10 0 1 0 0
d=SMTP 0 0 0 18 0 0 0 0 0 0 2
e=SSH 0 0 0 0 19 0 1 0 0 0 0
f=FTP 0 0 0 0 0 9 0 2 0 0 9
g=IMAPS 0 0 0 0 0 0 17 3 0 0 0
h=IRC 0 0 0 0 0 0 1 19 0 0 0
i=Telnet 0 0 1 0 0 2 1 0 16 0 0
j=FTP-data 0 0 0 0 0 0 2 0 3 0 15
k=Others 0 2 0 5 1 0 0 0 1 0 591

Chapter 4. Datasets & Preliminary Tests 49

Table 4.6: Confusion Matrix for K-S Classifier (Full Flow)

Classified as→ a b c d e f g h i j k

a=MS-RDP 13 1 0 4 0 0 0 1 0 0 1
b=RTSP 0 15 0 1 0 0 0 0 0 2 2
c=POP3 0 3 6 5 0 0 2 3 0 0 1
d=SMTP 0 0 4 12 0 0 0 2 0 2 0
e=SSH 1 0 0 0 19 0 0 0 0 0 0
f=FTP 0 0 0 0 0 20 0 0 0 0 0
g=IMAPS 1 0 0 0 0 0 17 0 0 0 2
h=IRC 0 0 0 0 0 1 1 16 0 0 2
i=Telnet 0 0 1 0 0 0 0 0 19 0 0
j=FTP-data 0 0 1 0 0 0 0 0 0 9 10
k=Others 16 14 5 8 0 0 4 7 2 1 543

From the tables above, the reason of the K-S classification having lower accuracy
is caused by some traffic flows that should belong to the ‘Others’ class being
misclassified. Further analysis of the distributions will be presented later in this
subsection. Before investigating the distributions, we summarise the confusion
matrices. Two concepts of evaluating the errors of classification have been defined
in the data mining field; these are recall rate and precision.

For each class i, the recall rate is defined by correctly classified instances divided
by actual instances, which can be expressed by Equation 4.2, where FNi means
False Negative for the ith class.

Ri =
TPi

TPi + FNi

(4.2)

From the confusion matrices, a recall rate for a class is calculated by the instances
in the diagonal line divided by all the instances in that row.

The precision is defined by correctly classified instances divided by all instances
classified as that class, which is given by Equation 4.3.

Chapter 4. Datasets & Preliminary Tests 50

Pi =
TPi

TPi + FPi

(4.3)

From the confusion matrices, a precision for a class is calculated by the instances
in the diagonal line divided by all the instances in that column.

Recall rate indicates the percentage of a classifier detecting the instances of a
specific class out of all actual instances of that class. Precision is the percentage
of correctly detected instances of specific class out of all predicted instances of that
class, which is actually the classification confidence. The recall rates and precisions
of different classifiers among classes are listed in Table 4.7 and Table 4.8.

Table 4.7: Classification Recall Rates for Different Algorithms (Full Flow)

Class
Parametric Classification Distribution

k-NN Decision Tree ANN K-S Test

MS-RDP 0.80 0.80 0.80 0.65
RTSP 0.95 0.95 0.90 0.75
POP3 0.55 0.95 0.30 0.30
SMTP 0.95 0.95 0.90 0.60
SSH 0.85 1.00 0.95 0.95
FTP 0.85 1.00 0.45 1.00

IMAPS 0.35 0.75 0.85 0.85
IRC 0.65 0.80 0.95 0.80
Telnet 0.75 1.00 0.80 0.95

FTP-data 0.50 0.65 0.00 0.45
Others 0.97 0.97 0.99 0.91

Chapter 4. Datasets & Preliminary Tests 51

Table 4.8: Classification Precisions for Different Algorithms (Full Flow)

Class
Parametric Classification Distribution

k-NN Decision Tree ANN K-S Test

MS-RDP 0.84 0.94 1.00 0.42
RTSP 0.76 0.86 0.90 0.45
POP3 0.61 0.79 0.86 0.35
SMTP 0.79 1.00 0.78 0.40
SSH 0.85 0.91 0.76 1.00
FTP 0.94 0.87 0.82 0.95

IMAPS 0.29 0.75 0.52 0.71
IRC 0.68 0.84 0.79 0.55
Telnet 0.57 1.00 0.76 0.90

FTP-data 0.71 0.87 0.00 0.64
Others 0.98 0.98 0.95 0.97

Because some instances from the class ‘Others’ are misclassified to other classes,
the K-S classifications have a relatively low precision rate. We can take a misclas-
sified sample for further investigation. The packet size distribution of a HTTP
flow shown in Figure 4.2 has been classified as POP3, which should belong to ‘Oth-
ers’. This HTTP flow has an overwhelming amount of packets with MTU size,
which produces a fairly long bar at 1460 in the distribution chart. The reason is
that HTTP traffic is actually comprised of transferring files of HTML, graphics,
Flash, etc., except initial requests and handshakes. For the transferring of files
with batch bytes, TCP implementations always encapsulate packets with MTU
size. Therefore, the packet size distribution pattern contains little information
entropy caused by the dominant number of MTU packets in the flow.

Chapter 4. Datasets & Preliminary Tests 52

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins (1 byte / bin)

R
el

at
iv

e
 F

re
q

ue
nc

y

1

Figure 4.2: Packet Size Distribution of a Full HTTP Flow

Comparing the HTTP flow with one of the traffic flows in the POP3 class shown
in Figure 4.3, they have similar patterns of packet size distributions. This POP3
traffic flow also has a large proportion of packets with MTU sizes because transfer-
ring files, which are attached in the E-mail, are involved. Although there are some
packets in the POP3 flows laid in the frequencies of smaller sizes, the percentage is
so small that they may be covered by noise. Consequently, the K-S classification
may match the HTTP flow with this POP3 flow due to the small distance between
them, and thus make a wrong classification.

Chapter 4. Datasets & Preliminary Tests 53

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bins (1 byte / bin)

R
el

at
iv

e
 F

re
q

ue
nc

y

1

Figure 4.3: Packet Size Distribution of a Full POP3 Flow

The parametric values for these two flows, then, can be checked to see if parametric
classification can help for distinguishing them. The values are listed in Table 4.9,
where values are rounded to two decimal places; the unit of packet size is byte,
and the unit of inter-arrival time is ms.

Since the two flows are generated by applications without human interventions,
the values related to packet inter-arrival time are very small and similar. Although
the maximum packet sizes and the maximum packet sizes of server to client are
similar, the minimum packet sizes, the minimum packet sizes of server to client
and packet size variations are distinct due to the different handshaking processes
of HTTP and POP3. The average packet sizes in both directions and in the
direction of server to client are similar, due to the large number of MTU packets,
but the average packet sizes of client to server show significant differences because
of the different requests sent by different protocols. As a result, the parametric
classification could distinguish these two flows.

The different levels of accuracy produced by different parametric classification
algorithms are caused by different methods of splitting the vectors in multi-
dimensional space. K-NN can only split the hyperspace with one-dimensional
linear functions, decision tree can use two-dimensional linear functions and ANN
can use multi-dimensional non-linear functions. From their recall rates and preci-
sions, there is no one best algorithm for classifying all the classes.

Chapter 4. Datasets & Preliminary Tests 54

Table 4.9: Parametric Values of a HTTP and a POP3 Flow (Full Flow)

Attributes HTTP (2 decimals) POP3 (2 decimals)

ps_max 1460 1460
ps_min 234 3
ps_avg 1451.91 1352.97
ps_var 7871.69 131451.46
it_max 14.23 30.39
it_min 0 0
it_avg 0.02 0.04
it_var 0.27 0.07
ps_cs_max 452 28
ps_cs_min 347 6
ps_cs_avg 392.83 9.85
ps_cs_var 1619.81 1.17
it_cs_max 14.34 30.65
it_cs_min 0.01 0.38
it_cs_avg 6.77 1.5
it_cs_var 35.47 9.43
ps_sc_max 1460 1460
ps_sc_min 234 3
ps_sc_avg 1456.29 1385.42
ps_sc_var 3233.87 89985.11
it_sc_max 14.23 30.39
it_sc_min 0 0
it_sc_avg 0.02 0.04
it_sc_var 0.27 0.07
pc_ratio 0 0.02
bc_ratio 0 0

The K-S classification has relatively high recall rates and precision for SSH, FTP
and Telnet as these protocols normally generate small packets by keystrokes or
commands, which have distinct packet size distribution patterns. That is a similar
situation as classifying traffic generated by games, which has been proposed by
[PBL+03].

In conclusion, some applications may share packet size distribution, which makes

Chapter 4. Datasets & Preliminary Tests 55

them hard to classify. Besides HTTP and protocols related to E-mail, other classes
of traffic may contain batch byte transfer as well, such as SSH, FTP-data, etc.
This decreases the accuracy of traffic classification with packet size distribution.
On the other hand, packet size distributions could describe some network flows
better than when using absolute parametric values, such as FTP control traffic,
SSH, Telnet, etc. Moreover, different parametric classification algorithms produce
different recall rates and precisions for different traffic classes. Consequently, it is
worth trying to optimise the network traffic classifier with multiple classification
algorithms and methods.

4.3 Preliminary Tests for Different Detection

Windows

Besides algorithms, different detection windows may affect the classification ac-
curacy. Wang et al. argued that using only a few initial packets in TCP flows
could increase classification accuracy and speed, because the handshaking pro-
cedures of applications are distinct [WY08]. From this research, using the first 7
packets at the beginning of TCP flows produces the highest accuracy. However,
only one single global detection window for all classes is considered in their re-
search. In this subsection, the effects of detection windows for different classes
and algorithms will be presented.

For the purposes of parametric classification, the relationship of classification ac-
curacies versus detection windows is illustrated in Figure 4.4, where detection
windows from 1 to 500 packets are considered. Among the three algorithms, the
accuracies reach the peaks when only a few packets are taken into consideration
for calculating the flow attributes, which matches the results shown in [WY08].

Chapter 4. Datasets & Preliminary Tests 56

0 50 100 150 200 250 300 350 400 450 500

0.75

0.8

0.85

0.9

0.95

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 4.4: Accuracies of Classifications vs Detection Windows

Instead of one single global detection window, the classification performance of
different classes versus detection windows can be figured out. As we discussed
in the previous subsection, for each class, the classification performance can be
expressed by the recall rate and precision. The recall rates specify the detection
abilities of classes, and precisions give the confidence of predicted true positives.
Since the class ‘Others’ contains varieties of traffic flows, its performance is not
taken into consideration due to the existence of different characteristics. The
recall rates versus detection windows among classes are shown in Appendix A,
and precisions are shown in Appendix B.

From the diagrams shown in the appendices, different classifications have different
performance in terms of recall rates and precisions. For instance, the ANN has a
low recall rate and precision among all detection windows for FTP-DATA flows.
However, the decision tree has a higher recall rate and the K-S has higher precision.
The diagrams also indicate that the detection windows have a different manner of
effects to classification performance. Flows like SSH, Telnet and FTP controls have
better classification performance when detection windows are increased because
the statistical characteristics of these kinds of flows remain stable, which generates
more accurate discriminators when more packets are taken into consideration. For
other classes, the detection windows affect the classification performance in terms
of both recall rates and precisions. In the charts, some curves reach their peaks
at few packets, some of them at hundreds of packets. For a single class, different

Chapter 4. Datasets & Preliminary Tests 57

classification algorithms have different shapes.

For the example used in the previous subsection shown in Figure 4.2 and Fig-
ure 4.3, the packet size distributions of reduced detection window for K-S classi-
fication can be examined. The Figure 4.5 and Figure 4.6 illustrate the packet size
distributions of the HTTP flow and POP3 flow respectively, where only first 20
packets are taken into account. The distribution patterns are more distinct com-
pared with Figure 4.2 and Figure 4.3, where all packets are taken into account. By
getting rid of the overwhelming amount of MSS packets, the K-S distance is in-
creased from 0.08 to 0.65. However, the price of reducing the sampling period must
be paid. A shorter sampling period could mean the statistics are more sensitive
to packet retransmissions.

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bins (1 byte / bin)

R
el

at
iv

e
 F

re
q

ue
nc

y

1

Figure 4.5: Packet Size Distribution of a HTTP Flow (20 Packets)

Chapter 4. Datasets & Preliminary Tests 58

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bins (1 byte / bin)

R
el

at
iv

e
 F

re
q

ue
nc

y

1

Figure 4.6: Packet Size Distribution of a POP3 Flow (20 Packets)

4.4 Summary

In this chapter, the steps of generating the data for evaluation are described, as
well as the post-processing of the captured packets, which describes TCP flow
reconstruction and discriminators calculation in detail.

The following subsection presents the preliminary tests of classification perform-
ance versus different algorithms. In the previous subsection, the concept of the de-
tection window was introduced, which means the number of packets that are taken
into account when calculating the discriminators. Then, the relationship between
classification performance and detection windows among different algorithms was
explored.

Within these tests, two indicators of performance are used, which are recall rate —
representing the ability to detect specified classes, and precision — representing
the confidence of predicted positives. The performance is evaluated by classes
separately, which could be used for further optimisation.

CHAPTER 5

Hierarchical Classification

In this chapter, an architecture for a hierarchical traffic classifier will be proposed
for detecting traffic classes differently. Then, the optimisation for traffic classi-
fication with different algorithms and detection windows will be presented. The
datasets used for evaluating its performance are also covered in this chapter. In
addition, practical implementation will be illustrated.

5.1 System Architecture

5.1.1 Overview

From the results of the preliminary tests in the previous chapter and the prelim-
inary results shown in Appendix A and Appendix B, it has been shown that dif-
ferent algorithms and detection windows have different classification performance
for traffic classes in terms of precisions and recall rates. In order to optimise the
overall classification performance, instead of using only single algorithm and de-
tection window, different ones can be applied for detecting different traffic classes.

59

Chapter 5. Hierarchical Classification 60

That turns the classification system into a series of application detectors1. An
overview of the proposed system architecture is illustrated in Figure 5.1.

Parallel Classifier

Raw Traffic

Ethernet

TCP Flow
Reconstruction

Packet Headers
in pcap Format

Detector 1 Detector 2 Detector i

Decision Making

...

Database
for Storing

Parameters

Outcome: Class of Flows

Flow Summaries

Accept / Reject

Precisions of Detectors

Tcpdump / Wireshark

Figure 5.1: An Overview of the System Architecture

At the beginning, the same steps as those we used in the preliminary test are
applied, the packet headers of raw data are captured from the Ethernet by Tcp-
dump or Wireshark, and they are reconstructed into TCP flows. As we discussed
before, because only packet length, time-stamps and packet directions are needed
for statistical classification, this information is extracted from packet headers and
kept as TCP flow summaries for further processing. As a result, for each TCP
flow, a summary containing size, time-stamps and directions of all packets can be
obtained.

The flow summaries are then sent into a parallel classifier, which consists of a
1In this thesis, a detector refers to a binary classifier for separating instances of target class

for the rest of instances.

Chapter 5. Hierarchical Classification 61

series of detectors. Each detector distinguishes one class of traffic from the others.
For classifying network traffic of i known classes, i detectors are required, and each
flow summary is fed into them separately. There is a special class called ‘Others’,
which indicates unknown traffic class or uninteresting traffic classes and it is not
counted in the i. For the output of each detector, a binary result of Accept / Reject
is produced. The parallel classifier can employ different classification techniques
or configurations for detecting the required traffic classes differentially. It can also
benefit from parallel computing for high processing speed. In addition, instead
of profiling all possible traffic classes on networks, only interesting traffic classes
need to be profiled. If all of the detectors output a reject, the input TCP flow will
be classified as ‘Others’.

Since different algorithms and detection windows used by detectors, and the para-
meters of the detectors may vary after retraining, a database has been employed
for storing the related configurations for detectors. Detection widows and the
traffic samples for K-S classification are stored in the database. There is an addi-
tional parameter used for K-S classification, called ‘acceptance threshold’; this is
also stored in the database, which will be explained later.

The binary outputs for the detectors are fed into a decision making mechanism,
which produces the final results of the classification. Because of the binary outputs
generated by independent detectors, there is no doubt that controversial outputs
might be obtained. There are some rules or simple calculations involved in the
decision making mechanism based on the previous performance of the detectors,
which is also stored in the database.

5.1.2 Parallel Classifier

In order to employ different algorithms and configurations for classification, a
parallel classifier is applied, which consists of detectors for each traffic class. As
a result, totally i detectors are needed when recognising i traffic classes, and
unrecognised traffic is classified as an additional special class called ‘Others’. The
details of a detector is shown in Figure 5.2.

Chapter 5. Hierarchical Classification 62

Detector i

Pre-Processing
(Attributes Calculation for Parametric Classification)

(Distribution Construction for K-S Classification)

Flow Summaries

Accept / Reject

Parametric Classification

Chop the Flows Using Detection Window
Detection Window for Class i

Acceptance Threshold for Class i
& Profiled Distributions

K-S Classification

Database

Figure 5.2: A Detector in the Proposed Parallel Classifier

Because only statistical information related to packet size and packet inter-arrival
time is used in this work, the input flow summaries only contain the size, time-
stamp and direction for each packet in the TCP flows. The summaries are then
chopped based on the detection windows stored in the database, which only keeps a
certain number of packets at the beginning of the TCP flows for further processing.
Next, the chopped flow summaries are input into the pre-processing module, which
extracts statistical characteristics. As we discussed in Section 3.1, for detecting
traffic with parametric classification, the attributes of the flows must be calculated,
which are represented as a numerical array of 26 elements for each TCP flow. The
definitions of the elements have been shown in Table 3.1. For non-parametric
classification, which is the K-S test used in this work, the normalised packet size
distributions for traffic flows are constructed at this stage as shown in Section 3.3.
Depending on which kinds of traffic classes to be detected, parametric classification
or K-S non-parametric test is used, which produces a binary result of Accept /
Reject. That means that the input TCP flow, whether it belongs to the traffic

Chapter 5. Hierarchical Classification 63

class i or not. For parametric classifications, because the models are built at the
training stage, no extra parameters or profiled samples are needed when classifying
incoming flows. On the other hand, as a non-parametric test, K-S needs profiled
distribution samples when classifying incoming flows. In addition, acceptance
thresholds are introduced as critical values for acceptance. This information is
also stored in the database.

There are i detectors working in parallel to form the parallel classifier for classifying
i traffic classes. This architecture could help us to apply different algorithms and
detection windows independently for detecting traffic classes. Although, a few
algorithms are used in this work, adding new algorithms or changing them are easy,
as well as adding new traffic classes. The increased computational complexity can
be solved by employing distributed computing or parallel computing by hardware
[SSB05]. DPI can be used as a separate detector for detecting traffic classes that do
not have distinct statistical characteristics, and implemented by parallel hardware
computing [DKSL04] [SGO+09]. As a result, the parallel classifier, which detects
traffic classes independently, has great flexibility.

5.1.3 Acceptance Thresholds for K-S

In preliminary testing, classification algorithms classify the testing dataset into
several traffic classes at one time. In contrast, in the proposed system, each
detector has the responsibility of detecting only one class of traffic. In other
words, each detector splits only one kind of traffic flows with all others. For
parametric algorithms, we can change the class names of input training flows for
building binary classifiers, which means we only keep class names that correspond
to each detector and change the rest of class names to ‘Others’. For non-parametric
classification, for which K-S test is used in this work, besides changing the class
names, acceptance thresholds are introduced for preventing acceptance with great
dissimilarities.

In Figure 5.3, the flow chart of a K-S detector with an acceptance threshold is
illustrated. The incoming distributions are compared with the profiled samples
using the algorithm stated in Section 3.4. The sample having the least dissimilarity
with the incoming distribution is picked as a match. For the i th detector, incoming
distributions are only classified as the i th class or ‘Others’, which is represented
as an Accept or a Reject outcome. If the matched sample belongs to ‘Others’, an

Chapter 5. Hierarchical Classification 64

output of Reject is produced. If the matched sample belongs to the i th class,
before outputting an Accept, the dissimilarity between the matched sample and
incoming distribution is compared with the acceptance threshold. An Accept is
output only if this dissimilarity is smaller than the threshold, otherwise a Reject
is produced.

Incoming Distribution

Compare with Profiled Samples for
Matching the Sample with the Least Dissimilarity

Compare with Profiled Samples for
Matching the Sample with the Least Dissimilarity

If the Matched Sample
Belongs to 'Others'

If the Matched Sample
Belongs to 'Others'

If the Dissimilarity is
Bigger Than the Threshold

If the Dissimilarity is
Bigger Than the Threshold

 Accept Reject

Y

Y

N

N

Figure 5.3: Acceptance Threshold in K-S Detector

Since acceptance thresholds determine the dissimilarity tolerance of outputting
positives, there is no doubt that higher acceptance thresholds cause a higher num-
bers of false positives, and lower thresholds cause a higher number of false neg-
atives. In addition, different classes of network traffic have different variations of
packet size distribution. Therefore, an optimised acceptance threshold should be
determined for each K-S detector. Because the dissimilarities produced by K-S

Chapter 5. Hierarchical Classification 65

comparison range from 0 to 1, the acceptance thresholds should also range from 0
to 1. In order to reduce the computational complexity of searching the optimised
values, the acceptance thresholds are tried in 0.1 intervals. Considering 0 and 1
are meaningless, nine acceptance thresholds in total are considered in this work.

Applying acceptance thresholds might prevent detectors outputting a false positive
when unknown network traffic is encountered. For instance, if a flow produced
by MSN Messenger is input into the system and this kind of traffic has not been
profiled as a specified traffic class or unspecified traffic class in ‘Others’, there is a
possibility that this flow may be matched with a sample, which belongs to other
traffic classes instead of samples in the class of ‘Others’. Therefore, a false positive
is produced. By introducing acceptance thresholds, the matched samples need to
be similar enough with the incoming flows to produce positives, which could solve
this problem.

5.1.4 Decision Making Mechanism

In order to keep all detectors working independently in parallel, the results ob-
tained from these detectors only accept or reject the hypothesis that the incoming
traffic flows belong to corresponding classes. As a result, controversial results
might obtained, as caused by multiple acceptances. The decision making mech-
anism is designed for solving this problem.

The simplest way is only outputting the class generated by the detector with
the highest confidence. The confidences of the detectors are expressed by the
classification precisions as we discussed in Section 4.2. The precisions stand for the
rates of the true positives out of all predicted positives. Therefore, the detector
with the highest precision gives acceptance with the highest confidence. The
precisions are counted by previous classifications and stored in the database.

Although, normally only a single class name should be the final output for a
incoming flow, outputting all possible classes may be useful in some situations.
For network intrusion detection, all possible potential threats should be examined
carefully. For example, if a flow is accepted by two detectors, and the traffic
classifier is deployed within an internal network for security purposes, it is better
to output both acceptances for further inspection even if the unsuspicious traffic
class has higher confidence. On the other hand, the combination of multiple

Chapter 5. Hierarchical Classification 66

acceptances may provide extra information for determining the traffic classes.
Further processing algorithms, such as Bayesian networks, can be employed for
higher accuracy. Due to uncertain usages of the classifier and the small amount of
data, the decision making mechanism only outputs the final result with the highest
confidence in this work. However, using multiple acceptances will be discussed
when evaluating the performance.

5.2 Training, Validating & Testing

As was addressed in the previous section, there are some parameters that should
be investigated before putting the whole system into practice. First of all, the
best classification methods or algorithms for detecting each traffic class should be
determined. Secondly, the best detection window for each class should be found.
For detecting classes using the K-S distribution test, acceptance thresholds should
also be found. In order to make a final decision, the precision of each detector
need to be determined for use as detection confidences.

All of the parameters mentioned above should be worked out and stored in the
database before testing the system performance with the actual dataset. Because
these parameters are influenced by a variety of factors, which are not easy to
determine analytically, they were determined empirically by an extra validating
dataset.

Firstly, each detector is trained with a training dataset with all possible com-
binations of parameters. The detectors are configured with different algorithms
including k-NN, decision tree, ANN and K-S. Different detection windows ranges
from 1 packet to 500 packets are taken into account. For K-S classification, differ-
ent acceptance thresholds from 0.1 to 0.9 with 0.1 intervals are considered. Then,
trained detectors are tested with the validating dataset in order to find the op-
timised parameters. The classification performance of the validating dataset with
optimised parameters can be obtained and stored in the database for decision mak-
ing. Next, the detectors are retrained with the training dataset and the validating
dataset. Finally, an unseen testing dataset is used for evaluating the performance
of the optimised system. This process can be expressed by Figure 5.4.

Chapter 5. Hierarchical Classification 67

Used For TestingUsed For Training

Training Dataset Validating Dataset Testing Dataset

Validating Phase

Used For TestingUsed For Training

Training Dataset Validating Dataset Testing Dataset

Testing Phase

Figure 5.4: Validating and Testing Phases

In the validating phase, the detectors are trained with different detection windows.
Therefore, the flow summaries are chopped into 1 to 500 packets before calculating
the attributes or distributions. For training the parametric detection models, the
calculated attributes for each flow are fed into the detectors. As we presented in
Section 3.2, k-NN simply stores the samples and their classes, decision tree builds
a series of decision rules based on attribute values and ANN adjusts the weights
in the neural network. As we discussed in Section 3.3 and Section 3.4, for training
non-parametric detectors, the distributions of the samples and their classes are
constructed and stored in the database together with their classes. After training,
detectors with different parameters are obtained. In order to get the optimised
parameters, the validating dataset is tested with different trained models, and
for each detector, the parameters with the best performance are selected. The
input flows are chopped into sub-flows as the same detection windows as the
trained models, then attributes or distributions are calculated, and they are fed
into the detectors for testing. As stated in Section 4.2, there are two measurements
for performance, which are recall rates and precisions. Recall rates indicate the
detector abilities for detecting positives, and the precisions are the confidence of
the detected positives. As a result, selecting the parameters based on recall rates
or precisions may affect the overall performance of the whole system. This issue
will be addressed more deeply in Section 6.1.

In the testing phase, for evaluating the performance of the proposed system, an
additional testing dataset is used, which is totally unseen by the system. The

Chapter 5. Hierarchical Classification 68

detectors are retrained with the training dataset and the validating dataset using
optimised parameters. Then, the flows in the testing dataset are chopped with the
optimised detection windows for each detector; then the attributes or distributions
are calculated depending on the optimised algorithms. Next, they are sent to
detectors, and binary results are produced. The optimised acceptance thresholds
are used for producing the binary results when using K-S classification. Finally, the
binary results for each flow are fed into the decision making mechanism, where
final output is produced with the help of detectors’ precisions obtained in the
validating phase. Therefore, the overall performance of the proposed system can
be evaluated by comparing the final outputs with the known answers.

5.3 Datasets for Optimisation Evaluations

As stated in Section 5.2, apart from the training dataset and the testing dataset,
an extra validating dataset is required for determining the parameters. These
three datasets should be sampled independently, which means TCP flows in the
datasets should be generated by different operational behaviours, different net-
work environments, different software, etc. Otherwise, the trained classification
models and validated parameters would lose their generalities. In other words, the
detecting models might be over-fitted with the training dataset and the optimised
parameters might be over-fitted with the validating dataset.

The traffic data used for the evaluation is the same as we used in the preliminary
test. Some of the traffic is captured in a test bed with different software, some of
the traffic is captured on the Internet. Referring to Table 4.1, 10 different specified
traffic classes are considered and one special class called ‘Others’ contains various
unspecified traffic classes. Instead of splitting the dataset into two parts in the
preliminary test, we randomly sampled the dataset equally into three parts as
the training dataset, the validating dataset and the testing dataset. As a result,
for each dataset, every specified traffic class has 10 TCP flows and there are 300
TCP flows in the unspecified class of ‘Others’, which are undersampled from a
population that contains around 3000 TCP traffic flows. Random undersampling
could ensure the independence of the datasets.

For building the binary traffic detectors, modifications are needed for the training
dataset. After the TCP flows are reconstructed, the classes of flows are changed
based on the detectors. For example, for training an IRC detector, 10 IRC samples

Chapter 5. Hierarchical Classification 69

together with 300 flows of ‘Others’ are used as input, and the rest of 90 samples
belong to other specified classes are changed to ‘Others’ before inputting to the
detector. As a result, the IRC detector are trained with 10 IRC sample flows and
390 flows belong to all other kinds of traffic. Therefore, each trained detector only
has the ability of detecting single specified traffic. For the validating phase, the
class of all flows is simply marked as ‘Unknown’ and sent to detectors constructed
by different parameters. By comparing the outputs of the detectors with the
original classes of the flows, the parameters showing the best performance can
be determined. For the purpose of testing the model, the classes of input flows
are modified to ‘Unknown’ as well. Then, they go through the optimised parallel
classifier and the decision making mechanism. Therefore, the performance of the
proposed system can be evaluated by comparing the outputs with the original
classes of the testing flows.

5.4 Implementation of the Proposed System

Although some parts of the system implementation have been briefly presented
in the preliminary test, each step of implementing the proposed system will be
presented more deeply in this section, including coding the programmes, flow
charts of the programmes, and the steps of training, validating and testing.

Since only off-line classification is applied in this experimental system, and the
datasets are relatively small, the datasets are stored in pcap files and the database
is simply implemented by several plain text files, which are easy for accessing and
maintenance. For actual implementation, exhaustive searching for the optimised
parameters was used. Initially, we trained the detectors with a combination of
parameters and different algorithms, then tested the detectors with the validating
dataset and recorded the performance. This process was repeated until all para-
meters were tried. Then, the optimised parameters were selected based on the
performance. Therefore, detectors were retrained with the training dataset and
the validating dataset using optimised parameters. Finally, the testing dataset
was input into the detectors and final results were produced by the decision mak-
ing mechanism. A training and validating loop is shown in Figure 5.5, where only
one detector is considered. The implementation of the testing process is shown in
Figure 5.6. Most of the programmes are coded using Perl script, which are ended
with .pl and listed in Appendix C. For building and testing parametric models,
Weka was used, which is a Java based toolbox for data mining. Bash scripts were

Chapter 5. Hierarchical Classification 70

used for calling the Java functions of Weka in command line, which makes it easy
to embedded in our automatic system.

In Figure 5.5, only one detector is considered for training and validating. The
parametric and non-parametric algorithms are both applied. Detection windows
from 1 to 500 and acceptance thresholds from 0.1 to 0.9 with 0.1 intervals were
considered. Therefore, for each parametric algorithm, 500 models with different
detection windows were built and tested; for K-S classification, 4500 models with
different detection windows and acceptance thresholds were built and tested. All
of the results were stored in the performance.csv. Since 10 classes of traffic are
considered in this work, 10 detectors have been built and this process was repeated
for each detector.

For the testing phase shown in Figure 5.6, the parameters with the best per-
formance were used for retraining the detectors with the training dataset and
the validating dataset, including classification algorithm, detection window and
acceptance threshold if the non-parametric algorithm is selected. The perform-
ance of the optimised parameters was also retrieved for decision making purposes.
Then, the detectors were tested with testing dataset, and the decision making
mechanism outputted the final results for evaluation.

Chapter 5. Hierarchical Classification 71

Detector i
Non-parametric

Detector i
Parametric

TCP Flow Reconstruction
build_connection.pl

Training & Validating Datasets
Packet Headers in pcap Format Files
(Filenames Indicate Traffic Classes)

Chop Using Detection Window (1-500)
& Calculate the Attributes

matrix.pl

Chop Using Detection Window (1-500)
& Calculate the Packet Size Distributions

len_dist.pl

Summary Files for TCP Flows
(Incl. Time-stamp, Payload Size and Direction of Each Packet & Class of the Flow)

Change the Classes into Binary
(Class i / Others)
change_class.pl

Train k-NN, Decision Tree & ANN
with Training Dataset

Using Weka
&

Test the Model with Validating Dataset
Using Weka

Called by
train_validate.sh

Calculate the Performance
(Recall Rates & Precisions)

stats_para.pl

train_para.csv
validate_para.csv
(One Flow Each Line)

Change the Classes into Binary
(Class i / Others)
change_class.pl

Classify the Validating Dataset with
Training Dataset

with Consideration of
Acceptance Thresholds (0.1-0.9)

classify_ks.pl

Calculate the Performance
(Recall Rates & Precisions)

stats_ks.pl

train_ks.csv
validate_ks.csv
(One Flow Each Line)

Save the Performance to
performance.csv

Figure 5.5: Implementation of Validating Phase

Chapter 5. Hierarchical Classification 72

Detector i
Non-parametric

Detector i
Parametric

TCP Flow Reconstruction
build_connection.pl

Training, Validating & Testing Datasets

Chop Using Optimised Detection Window
& Calculate the Discriminators

matrix.pl

Chop Using Optimised Detection Window
& Calculate the Packet Size Distributions

len_dist.pl

Change Testing Instances
into “Unknown”

change_class.pl

Retrain the Model with
Training and Validating Datasets

with Optimised Algorithm Using Weka
&

Test the Model with Testing Dataset
Using Weka

Called by
train_test.sh

train_para.csv
test_para.csv
(One Flow Each Line)

Change Testing Instances
into “Unknown”

change_class.pl

Classify the Testing Dataset with
Training and Validating Datasets Using
Optimised Acceptance and Threshold

classify_ks.pl

train_ks.csv
test_ks.csv
(One Flow Each Line)

Saved Performance of
Different Parameters
performance.csv

Decision Making with Previous Performance
decision.pl

Accept / Reject
For Class i

Binary Output
Form Other Detectors

Pick the Parameters with
Best Performance

parameter.pl

Optimised Algorithm
For Detecting Class i

Best Algorithm for
Detecting Class i

Parametric

Non-parametric

Previous Optimised Performance

Optimised Detection Window

Optimised
Detection Window

&
Acceptance Threshold

Final Output

Figure 5.6: Implementation of Testing Phase

Chapter 5. Hierarchical Classification 73

5.5 Summary

In this chapter, the architecture of the proposed hierarchical network classifier has
been discussed, including the principles of parallel classifier and the decision mak-
ing mechanism. By using detectors for dealing with different classes separately,
different algorithms and parameters could be applied for detecting different traffic
classes. The methodology of optimising these parameters is presented, together
with the datasets used in the experiments. In the last part of this chapter, the
practical implementation of training, validating and testing processes are illus-
trated.

In the next chapter, some experimental results will be evaluated and compared
with single algorithm classification and unoptimised classification.

CHAPTER 6

Result Evaluations

In this chapter, the results obtained from the system presented in the previous
chapter will be evaluated, including the optimised parameters produced by the
validating phase and the classification results produced by the testing phase. In
addition, the performance of the proposed system will be justified.

6.1 Optimised Parameters

As was previously stated, besides the best classification algorithm, the detec-
tion windows for both parametric classifications and non-parametric classifications
should be optimised. Additionally, for non-parametric classifications, acceptance
thresholds should be optimised. Then, for detecting each traffic class, the al-
gorithm and the combination of parameters with best performance are selected as
optimised parameters. In the following subsections, how to select the parameters
is covered, and the optimisation of parametric classifications and non-parametric
classifications will be discussed separately followed by overall optimisation among
all algorithms and parameters.

74

Chapter 6. Result Evaluations 75

6.1.1 Parameter Selection

As discussed in Chapter 4, in order to evaluate the performance, recall rates and
precisions can be considered. In addition, because every detector is recognised
as a binary classifier, recall rates and precisions for target traffic class and the
class of ‘Others’ can be considered separately. Referring to Equation 4.2, for each
individual detector, the recall rates for target class and the class of ‘Others’ can
be defined more specifically in Equation 6.1 and Equation 6.2 respectively,

Rt =
TPt

TPt + FNt

(6.1)

Ro =
TPo

TPo + FNo

(6.2)

where TP is the detected true positives, FN is the detected false negatives and
TP+FN is the all correct classified instances in the dataset with the correspondent
class. Therefore, the recall rates stand for the ability of detecting correct instances
among all positives for specific classes.

On the other hand, referring to Equation 4.3, the precisions for the target class
and the class of ‘Others’ can be defined more specifically in Equation 6.3 and
Equation 6.4 respectively,

Pt =
TPt

TPt + FPt

(6.3)

Po =
TPo

TPo + FPo

(6.4)

where TP+FP is all the detected positives. Therefore, the precisions are the ratio
of the correct detections to the total positives among all the detected positives,
which can be considered as the confidence of outputting a positive for the specific
class.

There is another measurement for presenting the general performance of detectors,

Chapter 6. Result Evaluations 76

which is called accuracy and is shown in Equation 4.1. It stands for the overall
correct classified instances out of all instances among all classes. More specifically,
for our binary detectors, it can be defined by Equation 6.5.

Ab =
TPt + TPo

TPt + FPt + TPo + FPo

(6.5)

It is not easy to discover that using overall accuracies to evaluate the performance
of detectors are affected by the number of instances in traffic classes. Fortunately,
as we presented in Section 5.3, in each dataset, there are 300 instances initially
tagged as ‘Others’, and 10 instances each for 10 of the traffic classes. Therefore,
after changing the classes for feeding into the binary detectors, there are 10 in-
stances for the target class and 390 for the class of ‘Others’. Then, the calculation
of accuracy for each detector is simplified by

Ab =
TPt + TPo

400

As a result, there is no bias when using the accuracies to measure the performance
among the 10 detectors and accuracies could represent the general performance of
the detectors.

Because the input instances for each binary detector are classified as either target
class or ‘Others’, and we normally only care about the recall rates and precisions
for the positives instead of rejected instances for the whole system, Rt and Pt can
be used for effectively evaluating the recall rates and precisions for the detectors,
which contribute the recall rates and precisions for the whole system. Therefore,
by optimising the Rt and Pt, the recall rates or precisions of specific classes for
the whole system can be optimised. For the same reasons, by optimising the
accuracies of the detectors, which is Ab, the overall accuracy of the whole system
can be optimised.

In this chapter, the evaluations mainly focus on the classification accuracy with the
assumption that there is no requirement of recall rates or precisions for detecting
specific traffic classes. Consequently, by selecting the algorithms and combinations
of parameters with the highest accuracy for each binary detector, the accuracy of
the whole system may be optimised.

Chapter 6. Result Evaluations 77

6.1.2 Optimised Parameters for Parametric Classifications

There are three algorithms considered for parametric classifications, which are k-
NN, decision tree and ANN. Referring to the previous chapter, 10 detectors are
used for detecting 10 traffic classes. For each parametric algorithm and traffic
class, detection windows from 1 to 500 were tried in the validating phase. The
accuracies versus detection windows of the 10 parametric detectors are shown in
Figure 6.1 – Figure 6.10. The consistency of the results is shown in my published
paper [WP10a], where multiple experiments are performed.

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.1: Accuracies of Parametric FTP Detectors with Different Algorithms vs
Detection Windows

Chapter 6. Result Evaluations 78

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.2: Accuracies of Parametric FTP-Data Detectors with Different Al-
gorithms vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.95

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.3: Accuracies of Parametric IMAPS Detectors with Different Algorithms
vs Detection Windows

Chapter 6. Result Evaluations 79

0 50 100 150 200 250 300 350 400 450 500

0.95

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.4: Accuracies of Parametric IRC Detectors with Different Algorithms vs
Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.5: Accuracies of Parametric MS-RDP Detectors with Different Al-
gorithms vs Detection Windows

Chapter 6. Result Evaluations 80

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.6: Accuracies of Parametric POP3 Detectors with Different Algorithms
vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.95

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.7: Accuracies of Parametric RTSP Detectors with Different Algorithms
vs Detection Windows

Chapter 6. Result Evaluations 81

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.8: Accuracies of Parametric SMTP Detectors with Different Algorithms
vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.9: Accuracies of Parametric SSH Detectors with Different Algorithms vs
Detection Windows

Chapter 6. Result Evaluations 82

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.98

0.99

1

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.10: Accuracies of Parametric Telnet Detectors with Different Algorithms
vs Detection Windows

In the figures shown above, the accuracies are quite high, and are normally above
96%. That is caused by 390 negative instances out of 400 in the validating dataset
and the testing dataset. Therefore, the classifiers have very high performance
when detecting them. However, the errors will add up after the binary results are
fed to the decision making mechanism. The optimisation process for parametric
classification selects the algorithm and detecting window with the highest accuracy
for each detector.

From the figures, as we may have expected, different algorithms have different per-
formance in some situations. The ANN does not perform very well compared with
other two algorithms, especially when detecting the traffic of FTP, IMAPS, IRC,
POP3 and SSH. This may be caused by the small number of training instances.
Although ANN is supposed to have better regression ability than the other two
algorithms, it needs more training instances to adjust the randomly generated
neural nodes. The detection windows affect the accuracies as well. The figures
show that using only several packets at the beginning of the flows could increase
the classification accuracies as we discussed in Section 4.3.

In order to select the best algorithms and detection windows, accuracies should be
the first concern, followed by detection speed. In other words, the combinations
of algorithms and detection windows should make the detectors at the highest ac-

Chapter 6. Result Evaluations 83

curacies, and thereafter shorter detection windows are preferred. From the figures,
the accuracies are not stable, and sometimes they fluctuate significantly. This hap-
pens more frequently when the detection windows are small, because one extra
packet may alter the statistical characteristics dramatically when the considered
number of packets is small. Therefore, instead of considering the single point
of detection windows with the highest accuracy, the average values of accuracies
are considered, which means the accuracy curves are smoothed before selecting
the detection windows. A smoothing factor f was introduced for this job, which
smooths the curves in the following way as shown in Equation 6.6.

SAn =

∑f
i=−f An+i

2f + 1
(6.6)

SAn is the averaged accuracy for detection window n, which averages 2f+1 of the
original accuracies ranging from [n − f, n + f]. Therefore selecting the detection
windows with the highest SAn can produce values that are more stable. By
using the averaged accuracies may eliminate some effects caused by retransmission,
because only detection windows with the highest accuracy among several packets
could be selected, which is less likely to be affected by a few retransmissions within
the detection windows. In our experiments, f is arbitrarily set to 1 packet. Take
SMTP for example, the original data in Figure 6.8 shows that detection accuracy
reaches 100% when using 3 packets for the detection window and k-NN algorithm,
but the accuracy is not very stable around the third packet. If the peak is caused
by retransmissions in the training or validating datasets, the accuracy may drop
dramatically when the testing dataset is applied. On the other hand, if there are
retransmissions in the testing dataset instead of the training or validating dataset,
the accuracy may also drop dramatically. However, considering the smoothed
curve shown in Figure 6.11, using 90 packets as the detection window is preferred,
which is much more stable.

Chapter 6. Result Evaluations 84

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1.00

k-NN Decision Tree ANN

Detection Window (Packets)

A
cc

u
ra

cy

2

Figure 6.11: Smoothed Accuracies of Parametric SMTP Detectors with Different
Algorithms vs Detection Windows

The optimised algorithm and detection window for each detector could, then,
be determined with the averaged accuracies. Because a smoothing factor of 1
is used arbitrarily in this work, the optimised detection windows can be chosen
from 2 – 499. There is a possibility that multiple algorithms might have the same
averaged accuracies when using certain detection windows. For instance, when
determining the parameters of the FTP-DATA detector, both k-NN and decision
tree reach the maximum accuracy at 2 packets. Therefore, the average accuracy
among all detection windows from 2 to 499 packets are considered. Because the
k-NN has a higher average accuracy than the decision tree, using the k-NN with
2 packets detection window is selected. The parameters selected for all detectors
are shown in Table 6.1, where the accuracy is the averaged accuracy values of
selected parameters and the confidence is the classification precision for the target
classes with selected parameters. Then using these values obtained from validating
phase, detectors could be built for testing with optimised algorithms and detection
windows, and confidence can be used for final decision making.

We noticed that the classification confidence for FTP-Data is relatively low. By
investigating the confusion matrix, there are some false positives produced, which
is caused by FTP-Data traffic sharing the statistical characteristics with the traffic
made by attaching files in E-mail, copying files with SSH, transferring files with
HTTP, etc. Because these traffic is consisted of a very small proportion of packets

Chapter 6. Result Evaluations 85

for hand shaking and an overwhelming number of MTU packets for transferring
batch bytes.

Table 6.1: Optimised Parameters for Parametric Detectors

Detector Algorithm Window Accuracy Confidence

FTP k-NN 7 100% 100%
FTP-Data k-NN 2 98.25% 62.50%
IMAPS k-NN 4 100% 100%
IRC Decision Tree 6 99.58% 71.40%
MS-RDP k-NN 8 100% 100%
POP3 k-NN 10 99.83% 100%
RTSP Decision Tree 22 99.75% 90.90%
SMTP k-NN 90 100% 100%
SSH Decision Tree 2 100% 100%
Telnet k-NN 17 99.92% 100%

6.1.3 Optimised Parameters for Non-parametric

Classifications

As only K-S classification is used as the non-parametric algorithm for the de-
tectors, the optimisation process is searching for the best parameters for the K-S
detectors, which are detection windows and acceptance thresholds. Acceptance
thresholds influence the accuracies of the detectors, because with the increase
of the thresholds, the instances tend to be classified as false positives, and the
possibilities of classified as false negatives increase with the decrease of the ac-
ceptance thresholds. The optimised acceptance threshold for detecting a specific
traffic class is dependent on the distribution variance of the specific traffic class.
In addition, the distributions of instances other than the specific target class affect
the optimised acceptance threshold of the target class as well. More specifically,
if the distribution variance of a target class is relatively large, increasing the ac-
ceptance threshold may help in reducing the false negatives. On the other hand, if
some instances other than the target class have similar distributions with the in-
stances belonging to the target class, a smaller acceptance threshold could reduce
the false positives. Therefore, as for the detection windows, optimised acceptance
thresholds for the detectors can be only found out by searching empirically, which
is fulfilled by the validating phase in this work. If there are new types of classes to

Chapter 6. Result Evaluations 86

be taken into consideration or new instances are added into the existing training
dataset, revalidation is required.

Since exhaustive searching was used, detection windows from 1 to 500 packets and
acceptance thresholds from 0.1 to 0.9 with 0.1 intervals were tried for each detector.
In total 4500 combinations of these two parameters were used for validating the
detectors. The High Performance Computing (HPC) service at Loughborough
University, accelerated the validating process by parallel computing. The scripts
were split for validating each acceptance threshold in a single thread. As a result,
for 10 detectors and 9 considered acceptance thresholds for each detector, 90 jobs
were submitted to HPC for calculating simultaneously.

As for selecting optimised parameters for parametric algorithms, the performance
of each detector for each combination of parameters was measured by classifica-
tion accuracy. The accuracies of the 10 detectors using different combinations of
parameters are illustrated in Figure 6.12 – Figure 6.21. The consistency of the
results is shown in my published paper [WP10a], where multiple experiments are
performed.

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.12: Accuracies of K-S FTP Detectors with Different Acceptance
Thresholds vs Detection Windows

Chapter 6. Result Evaluations 87

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.13: Accuracies of K-S FTP-Data Detectors with Different Acceptance
Thresholds vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.14: Accuracies of K-S IMAPS Detectors with Different Acceptance
Thresholds vs Detection Windows

Chapter 6. Result Evaluations 88

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.15: Accuracies of K-S IRC Detectors with Different Acceptance
Thresholds vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.16: Accuracies of K-S MS-RDP Detectors with Different Acceptance
Thresholds vs Detection Windows

Chapter 6. Result Evaluations 89

Detection Window (Packets)

A
cc

u
ra

cy

10 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Figure 6.17: Accuracies of K-S POP3 Detectors with Different Acceptance
Thresholds vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.18: Accuracies of K-S RTSP Detectors with Different Acceptance
Thresholds vs Detection Windows

Chapter 6. Result Evaluations 90

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.19: Accuracies of K-S SMTP Detectors with Different Acceptance
Thresholds vs Detection Windows

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.20: Accuracies of K-S SSH Detectors with Different Acceptance
Thresholds vs Detection Windows

Chapter 6. Result Evaluations 91

0 50 100 150 200 250 300 350 400 450 500

0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1

Threshold=0.1 Threshold=0.2 Threshold=0.3 Threshold=0.4 Threshold=0.5
Threshold=0.6 Threshold=0.7 Threshold=0.8 Threshold=0.9

Detection Window (Packets)

A
cc

u
ra

cy

1

Figure 6.21: Accuracies of K-S Telnet Detectors with Different Acceptance
Thresholds vs Detection Windows

As we expected, different acceptance thresholds of detectors shift the detecting
accuracies except for the FTP-Data detector. This may be caused be by the
low distribution variance of the FTP-Data traffic, because only batch bytes are
transferred with MTU sized packets in FTP-Data flows, which cause the packet
size distributions to appear identical. The uniqueness of the FTP-Data distri-
butions prevents the other instances being classified as false positives even when
the acceptance threshold is large. The acceptance thresholds for other detectors
generally shift the curves of accuracies versus detection windows.

There is a similar problem as dealing with parameter selection for parametric
classifications, which is that the curves are not very stable for easily selecting the
optimised values. Therefore, the same algorithm for smoothing the curves must be
applied as we used for parametric classifications. This is expressed in Equation 6.6.
The smoothing factor f is also arbitrarily chosen to be 1 here.

For most of the detectors, we have multiple choices of acceptance thresholds for
obtaining the maximised accuracies. The detection windows also have multiple
choices for obtaining the maximised accuracies. These are caused by the limited
number of flows in the datasets, and the limited number of traffic classes con-
sidered. However, parameters can still be optimised by applying several rules,
which might increase detection accuracies and detection speed. For each de-

Chapter 6. Result Evaluations 92

tector with detection window w and the acceptance threshold t, the smoothed
accuracy of this detector can be expressed as SAwt, where w ∈ [2, 3, 4...499] and
t ∈ [0.1, 0.2, 0.3...0.9]. The rules for selecting the best combination of w and t can
be expressed as follows.

1. Select the w and t pair(s) with the highest SAwt.

2. Select the w and t pair(s) with the smallest w.

3. Select the w and t pair(s) with the t, which gives the highest
∑499

i=2 SAwt.

4. Select the w and t pair with the preference of t at the median value among
selected pairs.

These rules are applied one by one until only one w and t pair is left. The first step
ensures that the pair(s) producing the highest smoothed accuracies are selected.
Then, from the selected pairs, the one(s) with the lowest detection window w

are selected for faster detection. If there are still more than one pair, the average
smoothed accuracies among all detection windows are considered in the third step,
where the pair(s) with the t producing the highest average smoothed accuracies
are preferred. If there are still some pairs available after the third step, we do not
have enough information to determine the w and t for optimising the accuracy or
classification speed. However, because we are focusing on the general classification
performance and smaller t are more conservative for outputting an Accept and vice
versa, the t at the median value among existing pairs is preferred at the final step,
which balances the possibilities of outputting false positives and false negatives.

Finally, the optimised parameters, which are detection windows wi and acceptance
thresholds ti, for the ith K-S detector can be determined, which are listed in
Table 6.2. In the table, the optimised detection windows and acceptance thresholds
are listed in the columns of Window and Threshold respectively. The columns of
Accuracy and Confidence give the smoothed accuracies and precisions respectively,
which are produced by the validating dataset using detectors with optimised wi

and ti.

Chapter 6. Result Evaluations 93

Table 6.2: Optimised Parameters for K-S Detectors

Detector Window Threshold Accuracy Confidence

FTP 4 0.6 100% 100%
FTP-Data 2 0.1 98.33% 80.00%
IMAPS 12 0.2 100% 100%
IRC 24 0.2 99.17% 81.82%
MS-RDP 2 0.1 100% 100%
POP3 10 0.4 100% 100%
RTSP 12 0.2 100% 100%
SMTP 6 0.3 100% 100%
SSH 3 0.2 100% 100%
Telnet 6 0.3 100% 100%

6.1.4 Overall Optimised Parameters

By combining the selected parameters for parametric classifications and non-
parametric classifications shown in Table 6.2 and Table 6.1, overall optimised
parameters can be obtained, which are shown in Table 6.3.

Table 6.3: Overall Optimised Parameters

Detector Algorithm Window Threshold Accuracy Confidence

FTP K-S 4 0.6 100% 100%
FTP-Data K-S 2 0.1 98.33% 80.00%
IMAPS k-NN 4 N/A 100% 100%
IRC Decision Tree 6 N/A 99.58% 71.40%
MS-RDP K-S 2 0.1 100% 100%
POP3 K-S 10 0.4 100% 100%
RTSP K-S 12 0.2 100% 100%
SMTP K-S 6 0.3 100% 100%
SSH Decision Tree 2 N/A 100% 100%
Telnet K-S 6 0.3 100% 100%

For each traffic class, the classification configuration with higher accuracy is pre-

Chapter 6. Result Evaluations 94

ferred in the first place. Then, detection windows are considered. If two configur-
ations have the same accuracy, a shorter detection window is preferred.

6.2 Classification Results

In the previous section, the optimised parameters for parametric classifications
and non-parametric classifications have been obtained from the validating phase.
In addition, the overall optimised parameters are also found. Then, detectors can
be built, and the testing phase can be preformed as discussed in Section 5.2. The
detectors are retrained with the training dataset and the validating dataset with
optimised parameters, then the detectors are tested with the unseen testing data-
set. In the following subsections, the issues around the decision making process
will be covered and the final testing results will be illustrated, including optim-
ised parametric classification, optimised non-parametric classification and overall
optimised classification.

6.2.1 Final Decision Making

As discussed in Section 5.1.4, there is a decision making mechanism for dealing
with controversial binary results output from the detectors. Essentially, the mech-
anism is based on the classification confidences of the detectors, which means the
acceptance obtained from the detector with the highest confidence is preferred.

Because of the small amount of traffic flows considered in this work, many detectors
have a confidence of 100% as shown in Table 6.1, Table 6.2 and Table 6.3. If
more than one acceptance is produced by detectors with equal confidence, both
acceptance are output to users due to the lack of information. However, in our
experiments, this did not happen. Only one instance was accepted by both FTP
and IRC detectors. Because the optimised FTP detector has higher confidence
than the optimised IRC detector, the instance is classified as FTP flow.

Chapter 6. Result Evaluations 95

6.2.2 Classification Results of Optimised Parametric

Classifier

By applying the configurations listed in Table 6.1, binary detectors using only
optimised parametric algorithms can be built and evaluated. The detectors are
optimised in terms of different parametric classification algorithms and detection
windows.

The general performance of optimised parametric classifier using the unseen testing
dataset is listed as follows and the classification confusion matrix is shown in
Table 6.4.

Correct Classified Instance:

∑
i

(TPi + TNi) = 392

Incorrect Classified Instance:

∑
i

(FPi + FNi) = 8

Classification Accuracy:

∑
i(TPi + TNi)∑

i(TPi + TNi + FPi + FNi)
= 98%

Chapter 6. Result Evaluations 96

Table 6.4: Confusion Matrix for Optimised Parametric Classifier

Classified as→ a b c d e f g h i j k

a=MS-RDP 10 0 0 0 0 0 0 0 0 0 0
b=RTSP 0 9 0 0 0 0 0 0 0 0 1
c=POP3 0 0 10 0 0 0 0 0 0 0 0
d=SMTP 0 0 0 9 0 0 0 0 0 0 1
e=SSH 0 0 0 0 10 0 0 0 0 0 0
f=FTP 0 0 0 0 0 10 0 0 0 0 0
g=IMAPS 0 0 0 0 0 0 10 0 0 0 0
h=IRC 0 0 0 0 0 0 0 8 0 0 2
i=Telnet 0 0 0 0 0 0 0 0 9 0 1
j=FTP-data 0 0 0 0 0 0 0 0 0 9 1
k=Others 0 0 0 1 0 0 1 0 0 0 298

6.2.3 Classification Results of Optimised Non-parametric

Classifier

By applying the configurations listed in Table 6.2, binary detectors using only non-
parametric algorithm, which is K-S in this work, can be built and evaluated. The
detectors are optimised in terms of detection windows and acceptance thresholds.

The general performance of optimised non-parametric classifier using the unseen
testing dataset is listed as follows and the classification confusion matrix is shown
in Table 6.5.

Correct Classified Instance:

∑
i

(TPi + TNi) = 388

Incorrect Classified Instance:

∑
i

(FPi + FNi) = 12

Chapter 6. Result Evaluations 97

Classification Accuracy:

∑
i(TPi + TNi)∑

i(TPi + TNi + FPi + FNi)
= 97%

Table 6.5: Confusion Matrix for Optimised Non-parametric Classifier

Classified as→ a b c d e f g h i j k

a=MS-RDP 9 0 0 0 0 0 0 0 0 0 1
b=RTSP 0 10 0 0 0 0 0 0 0 0 0
c=POP3 0 0 10 0 0 0 0 0 0 0 0
d=SMTP 0 0 0 10 0 0 0 0 0 0 0
e=SSH 0 0 0 0 10 0 0 0 0 0 0
f=FTP 0 0 0 0 0 9 0 0 0 0 1
g=IMAPS 0 0 0 0 0 0 10 0 0 0 0
h=IRC 0 0 0 0 0 0 1 7 0 0 2
i=Telnet 0 0 0 0 0 0 0 0 10 0 0
j=FTP-data 0 0 0 0 0 0 0 0 0 5 5
k=Others 0 0 0 0 0 0 0 2 0 0 298

6.2.4 Classification Results of Overall Optimised Classifier

Finally, the overall optimised detectors can be built by applying the configura-
tions listed in Table 6.3, where both parametric and non-parametric classification
algorithms are considered. The detectors use the algorithms with the highest
accuracies and smallest detection windows, and acceptance thresholds are also
optimised when the K-S algorithm is used.

The general performance of the overall optimised classifier using the unseen testing
dataset is listed as follows and the classification confusion matrix is shown in
Table 6.6.

Correct Classified Instance:

∑
i

(TPi + TNi) = 390

Chapter 6. Result Evaluations 98

Incorrect Classified Instance:

∑
i

(FPi + FNi) = 10

Classification Accuracy:

∑
i(TPi + TNi)∑

i(TPi + TNi + FPi + FNi)
= 97.5%

Table 6.6: Confusion Matrix for Overall Optimised Classifier

Classified as→ a b c d e f g h i j k

a=MS-RDP 9 0 0 0 0 0 0 0 0 0 1
b=RTSP 0 10 0 0 0 0 0 0 0 0 0
c=POP3 0 0 10 0 0 0 0 0 0 0 0
d=SMTP 0 0 0 10 0 0 0 0 0 0 0
e=SSH 0 0 0 0 10 0 0 0 0 0 0
f=FTP 0 0 0 0 0 9 0 0 0 0 1
g=IMAPS 0 0 0 0 0 0 10 0 0 0 0
h=IRC 0 0 0 0 0 0 0 8 0 0 2
i=Telnet 0 0 0 0 0 0 0 0 10 0 0
j=FTP-data 0 0 0 0 0 0 0 0 0 5 5
k=Others 0 0 0 0 0 0 1 0 0 0 299

From the performance shown above, taking into account both parametric and
non-parametric algorithms does not provide higher classification accuracy. On the
contrary, the accuracy is slightly decreased by 0.5%. The performance comparison
among optimised classifiers can be analysed further, which is listed in Table 6.7.

Table 6.7: Performance Comparison among Optimised Classifiers

Optimisations Accuracy Max Window Avg. Window

Only Parametric 98.00% 90 16.8
Only Non-parametric 97.00% 24 8.1
Overall Optimised 97.50% 12 5.4

From the table, the optimised parametric classifier has a slightly higher accuracy

Chapter 6. Result Evaluations 99

than the optimised non-parametric classifier. On the other hand, the optimised
parametric classifier requires bigger detection windows in terms of the maximum
window and average window, which means it needs to examine more packets be-
fore decisions can be made. The overall optimised classifier uses detectors with
high accuracies and small detection windows among both parametric and non-
parametric algorithms. Although the accuracy of the overall optimised classifier
can not go higher, the maximum detection window and average detection windows
are reduced compared to using optimised parametric and non-parametric classifi-
ers. Because the maximum detection window is the number of packets required for
making decisions by all detectors based on the 10 classes of network traffic flows,
the reduction of maximum detection window can help the classifier to detect net-
work traffic flows faster, as computational complexity and memory consumption
can be reduced. The reduction of the average detection window is also an advant-
age, which indicates that fewer packets might be required when new traffic classes
are taken into consideration. In conclusion, despite only little accuracy decrease,
the overall optimised classifier can classify network traffic flows much faster than
if considering only parametric algorithms or only non-parametric algorithm.

6.3 Summary

In this chapter, the method of selecting optimised parameters for the detectors
from the results of validating is covered, and the selected optimised parameters
for parametric algorithms and non-parametric algorithm are listed. In addition,
by considering both the optimised parameters of parametric and non-parametric
algorithms, the overall optimised configuration for detectors has been obtained.

The performance of the optimised classifiers was obtained by testing, which shows
that using only optimised parametric classification has the highest accuracy and
using only optimised non-parametric gives lower accuracy but shorter detection
windows. The overall optimised classifier gives the shortest detection windows
without losing too much accuracy. In conclusion, by combining parametric clas-
sification and non-parametric classification, better performance can be obtained
in terms of classification speed, and the classification accuracy remains relatively
high. In the next chapter, the performance comparison of optimised classifier and
unoptimised classifiers proposed by other researchers will be considered.

CHAPTER 7

Performance Comparison

The performance comparison of the proposed optimised classifier and other un-
optimised classifiers proposed by other researchers will be demonstrated in this
chapter. At the beginning of this chapter, performing the controlled experiments
is discussed in order to ensure the same datasets are used, and the proper method-
ology is applied, which means that the results produced are comparable with our
proposed system. Then, the classification results obtained from proposed classifier
and the control classifiers are compared and analysed.

7.1 Controlled Experiments

In this section, two kinds of classifiers other than the proposed one will be con-
sidered for the purpose of performance comparison. One is a single algorithm
classifier with full traffic flows, the other one is single algorithm classifier with a
optimised detection window. Before discussing these classifiers, the datasets used
for controlled experiments will be covered.

100

Chapter 7. Performance Comparison 101

7.1.1 Datasets for Controlled Experiments

The datasets used for the controlled experiments should be similar to the ones used
for our proposed system in terms of the number of instances and the percentages
used for training, validating and testing.

There are three datasets that have been used in our proposed system: the training
dataset, the validating dataset and the testing dataset. Referring to Figure 5.4, in
the validating phase, the training dataset is used for training the detectors and the
validating dataset is used for testing different possible parameters. In the testing
phase, detectors are retrained with the training dataset and the validating dataset,
and the detectors are tested with the testing dataset. In summary, the training
dataset and the validating dataset are used for building our proposed classifier.
The instances and their classes in these two datasets are known by the classifier.
The testing dataset is totally unseen by the proposed classifier before evaluating.

In order to keep the same percentage of seen and unseen instances, the same
datasets can be used for the controlled experiments. In summary, the training
and the validating datasets used before are used again as seen data for building
the control classifiers, and the testing dataset used before is used again as unseen
data for evaluating the performance of the control classifiers. Since the control
classifiers are built and tested with the exact same data as our proposed classifier,
the performance of the classification is comparable.

7.1.2 Single Algorithm Classifiers with Full Traffic Flows

These kind of control classifiers use only one statistical algorithm to classify all
kinds of traffic as proposed by other researchers [SSM07] [WY08] [HCL+09] [LM07]
[TC97] [NSV06] [PBL+03] [Li07] [FZS08]. The parametric algorithms including
k-NN [HCL+09], decision tree [WY08] [LM07] and ANN [NSV06] [TC97] are con-
sidered, and a non-parametric algorithm, which is K-S [FZS08], is also considered.
The attributes used for parametric algorithms are the same as for our proposed
system; these are shown in Table 3.1, and the way of constructing the distribu-
tions for K-S classification is also the same as for our proposed system, which is
described in Section 3.3.

Because the algorithms are predetermined and full traffic flows are used for cal-

Chapter 7. Performance Comparison 102

culating the discriminators, the validating phase is not needed when building the
classifiers. The process is simple, the classifiers are trained and tested with dif-
ferent datasets. As stated in the previous subsection, we used both the training
dataset and the validating dataset for building our proposed system, and retrained
our proposed system with both training and validating datasets. Therefore, both
training and validating datasets should be used for training these kinds of control
classifiers. Consequently, the same testing dataset can be applied for obtaining
the performance.

Because optimised acceptance thresholds are not used in this kind of classifiers
when applying the K-S algorithm, the incoming testing instances are simply clas-
sified as the same classes as the matched instances in the database with the smallest
distances.

The performance of these classifiers in terms of classification accuracies is listed
in Table 7.1.

Table 7.1: Performance of Single Algorithm Classifiers (Full Flows)

Algorithm Classification Accuracy

k-NN 94.00%
Decision Tree 95.25%

ANN 91.75%
K-S 90.50%

As stated earlier, when an unprofiled flow is input into this kind of K-S classifier,
it may be classified as a false positive as there is no maximum acceptance distance
employed. This can be discovered by investigating the confusion matrix, which is
shown in Table 7.2.

Chapter 7. Performance Comparison 103

Table 7.2: Confusion Matrix for K-S Single Algorithm Classifiers (Full Flows)

Classified as→ a b c d e f g h i j k

a=MS-RDP 7 0 1 0 0 0 0 1 0 0 1
b=RTSP 0 9 0 0 0 0 0 0 0 0 1
c=POP3 0 1 7 1 0 0 0 0 0 0 1
d=SMTP 0 0 1 9 0 0 0 0 0 0 0
e=SSH 1 0 0 0 9 0 0 0 0 0 0
f=FTP 0 0 0 0 0 10 0 0 0 0 0
g=IMAPS 1 0 1 0 0 0 8 0 0 0 0
h=IRC 1 0 0 0 0 0 1 7 0 0 1
i=Telnet 0 0 1 0 0 0 0 0 9 0 0
j=FTP-data 0 0 0 0 0 0 0 0 0 5 5
k=Others 6 3 2 3 1 0 1 2 0 0 282

There are 18 instances from the class ‘Others’, which are misclassified as other
profiled classes. This number is more than our optimised K-S classifiers using
the optimised acceptance thresholds, which is shown in Table 6.5, where only 2
instances from ‘Others’ are misclassified.

7.1.3 Single Algorithm Classifiers with Optimised

Detection Windows

Additional controlled experiments have been performed by optimising the detec-
tion windows as described in [WY08]. Because only one algorithm is used in each
classifier, there is only a single global detection window applied in each classifier
for classifying all traffic flows. In order to optimise the global detection window,
the same validating phase as we used in our proposed system is involved. We
trained the classifiers with the training dataset, and tested them with the validat-
ing dataset. Then, the optimised detection windows can be obtained. Next, the
classifiers were retained with both the training dataset and the validating dataset,
and tested with the unseen testing dataset. The classification performance of the
classifiers are shown in Table 7.3, where the optimised detection windows are also
listed.

Chapter 7. Performance Comparison 104

Table 7.3: Performance of Single Algorithm Classifiers (Optimised Windows)

Algorithm Optimised Window Classification Accuracy

k-NN 14 97.00%
Decision Tree 186 93.25%

ANN 31 89.50%
K-S 6 95.50%

Comparing the results with the classifiers using full traffic flows discussed in the
previous subsection, the accuracies still remain high when only several packets are
taken into consideration, which makes the classification process faster. However,
the decision tree and ANN still need much more packets than our proposed system.
When using K-S or k-NN algorithms, relatively higher accuracies can be obtained,
and a small amount of packets are required.

7.2 Overall Performance Comparison

The overall performance comparison of our proposed classifier and the control
classifiers can be obtained, which is listed in Table 7.4,

Table 7.4: Performance Comparison

Algorithm Detection Window Classification Accuracy

Proposed Optimised 2–12 97.50%

k-NN Full Flow 94.00%
Decision Tree Full Flow 95.25%

ANN Full Flow 91.75%
K-S Full Flow 90.50%

k-NN 14 97.00%
Decision Tree 186 93.25%

ANN 31 89.50%
K-S 6 95.50%

Chapter 7. Performance Comparison 105

From the table, our proposed classifier has the highest accuracy among all the
other control classifiers. Instead of using the statistical characteristics of full traffic
flows, using several packets at the beginning can increase the classification speed
without losing much accuracy. In our proposed classifier, by employing different
algorithms and different parameters, the accuracy goes higher [WP10b]. Although
the k-NN and K-S classifiers with optimised detection windows give high levels
of accuracy and require less packets, our proposed system still has the following
advantages.

Firstly, the localised detection windows in our system can produce some output
very quickly. Referring to Table 6.3, only 10 and 12 packets are needed when
detecting the POP3 and RTSP traffic respectively, because of the high confidence
of the detectors, the rest of the traffic classes can be determined using 6 packets.
Secondly, because the detectors are independent to each other, further algorithms
or detectors can be added easily, which gives more flexibility when deploying the
system in different practical environments. Finally, by using independent detect-
ors a rule-based decision making mechanism could output all possible classes for
ambiguous input instances, which gives users more information for taking further
action. In addition, the proposed classifier can benefit from parallel computing as
each detector can be trained, validated and deployed independently.

7.3 Summary

In this chapter, some control classifiers have been built for performance com-
parison, including single algorithm classifiers with full traffic flows and single
algorithm classifiers with optimised detection windows. The performance com-
parison between these classifiers and our proposed optimised classifier has been
listed at the end of this chapter, which proves our system has the highest accuracy
and produces results quicker.

CHAPTER 8

Conclusions & Future Work

In this chapter, the conclusions of this work will be presented, and the results
produced by the experiments will be summarised. Finally, the recommendations
for future research related to this work will be discussed.

8.1 Conclusions

To understand what kinds of traffic are in operation across packet-switching com-
munication networks is always attractive to network administrators. This inform-
ation can contribute to network performance management, security enhancement,
authorisation and accounting, etc. Although some current network protocols have
the ability of providing differential service levels, however, flow-level QoS cannot
be provided unless types of traffic are correctly classified. For applying differ-
ent policies to different flows, the traffic type of each flow should be identified.
Therefore, traffic classification plays an important role in network performance
management. Network security can also be enhanced with advanced traffic classi-
fication, because illegal traffic can be identified and filtered preciously at an early
stage. A finer authorisation and accounting can be provided with the help of

106

Chapter 8. Conclusions & Future Work 107

flow-level traffic classification.

Traditional network traffic classification techniques are based on information con-
tained in the layer 3 and layer 4 packet headers. For widely deployed TCP/IP
protocol stack, port numbers and IP addresses are normally used. Although some
applications have designated port numbers, many applications use random port
numbers or the port numbers configured by users. Furthermore, the employments
of port forwarding and proxy change the port numbers when packets are trans-
mitted across networks. Therefore, classifying traffic based on port numbers is
not reliable, especially for intentional masked traffic, where the designated port
numbers are normally not used. Although, using layer 3 address together with
port numbers could increase classification accuracy by providing additional in-
formation about hosts, the classification is still unreliable due to the utilisation of
address forging, proxy, etc. The recently developed technique — DPI, has a very
high classification accuracy by matching the contents of packets or flows with a
database. However, it has a slow processing speed, and encrypted traffic cannot
be identified. Because the information of the application layer has been examined,
the deployment of the DPI may breach the privacy of network users.

Statistical approaches are newly proposed for network traffic classification, which
use statistical characteristics of flows to identify traffic types. Currently, two kinds
of statistical discriminators and various algorithms have been proposed by re-
searchers. One is using absolute statistical values to identify traffic types, which is
named parametric classifications in this work. The other one is using distributions,
which is named non-parametric classifications. In terms of algorithms, parametric
classifications use machine learning or artificial intelligence algorithms, and non-
parametric classifications use statistical tests. However, parametric classifications
and non-parametric classifications have pros and cons for detecting different traffic
types. Different algorithms also show different performances for detecting traffic
types.

In this work, the main objective is optimising the statistical traffic classifiers.
Because the TCP flow controls, which includes Nagel’s algorithm, alter the stat-
istical characteristics of traffic flows in some degrees, classifying TCP traffic is
more difficult than classifying UDP traffic with statistical approach. Therefore,
the optimisation focuses on TCP traffic classification.

Data used for experiments had been collected and some preliminary experiments
had been preformed at the beginning of this work. As expected, classification

Chapter 8. Conclusions & Future Work 108

techniques and algorithms gave different classification performance for different
traffic classes. The classification performance also changed with different detec-
tion windows. For non-parametric classification, introduced acceptance thresholds
affected classification performance as well. Therefore, the optimisation process in-
cluded searching the best classification techniques, algorithms, detection windows
and acceptance thresholds for detecting different traffic types.

A hierarchical architecture had been proposed in this thesis, which employs a
series of binary detectors for detecting different traffic types and a mechanism for
making final decisions. Because each detector is only responsible for detecting
one kind of traffic, different configurations can be applied to the detectors. The
final decision making mechanism produces final outputs when controversial results
are obtained from the binary detectors. In our experiments, the mechanism only
outputs the results from the detectors with the highest confidence.

In order to optimise the configurations of the detectors and obtain the confid-
ence of the optimised detectors, a validating phase had been performed before
testing the proposed system. An exhaustive search was undertaken for search-
ing these parameters. During the searching, both parametric and non-parametric
techniques were considered. In terms of algorithms, k-NN, decision tree and ANN
for parametric classification, and K-S for non-parametric classification were taking
into consideration. For each algorithm, the detection windows ranging from 1 to
500 packets were tried. For K-S, the acceptance thresholds ranging from 0.1 to 0.9
with 0.1 intervals were tried. All the combinations had been tested with the val-
idating dataset for obtaining the best configurations for the detectors. Then, the
confidence of the detectors could be obtained for the decision making mechanism.

After all the optimised parameters had been found, the optimised detectors could
be constructed. Finally, a testing phase had been performed followed by a per-
formance comparison. Two kinds of control classifiers had been considered for
performance comparison. One is using full TCP flows for calculating the discrim-
inators and using single classification algorithm. The other one is using an optim-
ised global detection window for calculating the discriminators and using single
classification algorithm. Because of the small amount of data, the accuracies from
all the classifiers are very high. However, the results still shows that our proposed
system has the highest accuracy. The classification speed is another indicator of
classification performance. Since the the binary detectors treat traffic classes indi-
vidually, the detection speed varies. Although, final decisions should not be made
before all the results are obtained from the detectors, some decisions can still be

Chapter 8. Conclusions & Future Work 109

made if the output detectors have high confidence. In some situations, positives
are preferred, such as detecting illegal traffic. Therefore, possible outcomes can be
output as soon as positives are obtained from the detectors. Referring to Table 7.4,
the proposed system also has the advantage in term of classification speed among
all control classifiers.

Compared to the control classifiers, the proposed system has flexible architecture.
Due to the distributed binary detectors, traffic classes and algorithms can be added
easily. By employing parallel computing, detectors can be distributed for faster
processing speed. Although the system was optimised based on overall accuracy in
this work, optimising the system based on precisions and recall rates for detecting
different traffic classes can be achieved with the same process. By slightly changing
the decision making mechanism, all the possible classes for incoming flows can be
output in the order of confidence. In summary, traffic policies can be applied in a
more flexible way if integrated with the proposed hierarchical traffic classifier.

8.2 Future Work

In future work, a greater variety of traffic classes and more samples can be added
for testing the performance of the proposed system. In the performance com-
parison part of this work, the classification performance is quite high and similar
among all the considered classifiers. This is because the number of samples and
traffic classes used in the experiments is small. By increasing the size of the data-
set, more realistic tests can be performed in order to evaluate the performance of
the proposed system in a more practical environment.

More classification algorithms can be considered for both parametric and non-
parametric classifications. As proposed by other researchers, besides k-NN, de-
cision tree and ANN, SVM can be used for parametric classification. For non-
parametric classification, Chi-square test and correlation coefficient can be taken
into consideration in the future.

In this work, the exhaustive search was employed for the purpose of optimising
the parameters for the detectors. Although the size of the datasets is small, it
is still a time consuming job. After adding more algorithms and increasing the
size of the datasets, it is probably impossible for optimising by exhaustive search.
Therefore, greedy search or genetic algorithms are recommended for employment

Chapter 8. Conclusions & Future Work 110

in future work.

The aim of the optimisation was based on the overall accuracy in this work. Be-
cause of the hierarchical architecture of the proposed system, the optimisation can
be based on the precisions or recall rates of the detectors. For example, for strictly
detecting illegal FTP traffic inside an internal network, the FTP detector may be
optimised based on recall rates, in which situation, outputting positives are pre-
ferred. On the other hand, the detectors can be optimised based on precisions if
the bias of outputting negatives is required.

The final decision making mechanism can be improved by advanced algorithms,
such as machine learning algorithms or statistical probabilities. This requires more
training samples for building the model. In practice, instead of only outputting the
results with the highest confidence, multiple possible results can be output together
with their confidence. This gives more flexibility to other systems connected to
the classifier. In summary, the interface between the proposed classifier and traffic
shapers, traffic accountants, security systems, etc. can be investigated further.

References

[ARZ09] T. A. Al-Radaei and Z. A. Zukarnain. Comparison Study of Trans-
mission Control Protocol and User Datagram Protocol Behavior over
Multi-Protocol Label Switching Networks in Case of Failures. Journal
of Computer Science, 5(12):1042–1047, 2009.

[AT] S. Aperghis-Tramoni. Net::Pcap Module for Perl. http://search.

cpan.org/~saper/Net-Pcap-0.16/Pcap.pm. Retrieved 14-Feb-2010.

[BBCD98] S. Blake, D. L. Black, M. A. Carlson, and E. Davies. An Architecture
for Differentiated Services, 12 1998. RFC 2475.

[BBM03] G. E. A. P. A. Batista, A. L. C. Bazzan, and M. C. Monard. Balancing
Training Data for Automated Annotation of Keywords: a Case Study.
In WOB, pages 10–18, 2003.

[BCS94] B. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: an Overview, 6 1994. RFC 1633.

[Ben09] R. Bendrath. Global technology trends and national regula-
tion: Explaining Variation in the Governance of Deep Packet
Inspection. http://userpage.fu-berlin.de/~bendrath/Paper_

Ralf-Bendrath_DPI_v1-5.pdf, 3 2009. Retrieved 4-Feb-2010.

[Bla98] U. Black. ATM: Internetworking with ATM. Prentice Hall, 1998.

111

http://search.cpan.org/~saper/Net-Pcap-0.16/Pcap.pm
http://search.cpan.org/~saper/Net-Pcap-0.16/Pcap.pm
http://userpage.fu-berlin.de/~bendrath/Paper_Ralf-Bendrath_DPI_v1-5.pdf
http://userpage.fu-berlin.de/~bendrath/Paper_Ralf-Bendrath_DPI_v1-5.pdf

References 112

[Bra89] R. Braden. Requirements for Internet Hosts – Communication Layers,
10 1989. RFC 1122.

[Bra08] D. Bradley. Throttled by Your ISP. http://www.sciencetext.com/
throttled-by-your-isp.html, 5 2008. Retrieved 27-Jan-2010.

[CDGS07a] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Detecting HTTP
Tunnels with Statistical Mechanisms. In ICC, pages 6162–6168. IEEE,
2007.

[CDGS07b] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Traffic classification
through simple statistical fingerprinting. Computer Communication
Review, 37(1):5–16, 2007.

[Cis02] Cisco Systems. Evolution of the Firewall Industry. http:

//www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/

user/scf4ch3.htm, 9 2002. Retrieved 4-Feb-2010.

[Cla98] D. Clark. Are ATM, Gigabit Ethernet ready for prime time. Com-
puter, 31(5):11–13, May 1998.

[CLR67] I. M. Chakravarti, R. G. Laha, and J. Roy. Handbook of Methods of
Applied Statistics, volume 1, pages 392–394. John Wiley and Sons,
1967.

[CLW03] M. Claypool, D. LaPoint, and J. Winslow. Network analysis of
Counter-strike and Starcraft. In Performance, Computing, and Com-
munications Conference, 2003. Conference Proceedings of the 2003
IEEE International, pages 261–268, April 2003.

[Den87] D. E. Denning. An Intrusion-Detection Model. IEEE Transactions
on Software Engineering, 13(2):222–232, February 1987.

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification,
pages 394–413. John Wiley & Sons, second edition, 2001.

[DKSL04] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lock-
wood. Deep Packet Inspection using Parallel Bloom Filters. IEEE
Micro, 24(1):52–61, 2004.

[DO01] T. Dunigan and G. Ostrouchov. FLOW CHARACTERIZATION
FOR INTRUSION DETECTION. Technical report, Oak Ridge Na-
tional Laboratory, 7 2001.

http://www.sciencetext.com/throttled-by-your-isp.html
http://www.sciencetext.com/throttled-by-your-isp.html
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ch3.htm
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ch3.htm
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ch3.htm

References 113

[FH98] P. Ferguson and G. Huston. Quality of Service: Delivering QoS on
the Internet and in Corporate Networks. Wiley & Sons, New York,
USA, January 1998.

[Fyo98] Fyodor. Remote OS detection via TCP/IP Stack FingerPrint-
ing. http://nmap.org/nmap-fingerprinting-article.txt, 10
1998. Retrieved 2-Feb-2010.

[FZS08] E.P. Freire, A. Ziviani, and R.M. Salles. Detecting VoIP calls hidden
in web traffic. Network and Service Management, IEEE Transactions
on, 5(4):204–214, December 2008.

[GM01] P. Gupta and N. McKeown. Algorithms for packet classification. Net-
work, IEEE, 15(2):24–32, Mar/Apr 2001.

[GY08] F. Gont and A. Yourtchenko. On the implementation of
TCP urgent data. http://www.gont.com.ar/talks/IETF73/

ietf73-tcpm-urgent-data.ppt, 11 2008. Retrieved 2-Feb-2010.

[HCL+09] S. Huang, K. Chen, C. Liu, A. Liang, and H. Guan. A statistical-
feature-based approach to internet traffic classification using Machine
Learning. In Ultra Modern Telecommunications & Workshops, 2009.
ICUMT ’09. International Conference on, pages 1–6, October 2009.

[HP08] Y.-T. Han and H.-S. Park. UDP based P2P game traffic classification
with transport layer behaviors. In Communications, 2008. APCC
2008. 14th Asia-Pacific Conference on, pages 1–5, Oct. 2008.

[IAN10] IANA. PORT NUMBERS. http://www.iana.org/assignments/

port-numbers, 2 2010. Retrieved 3-Feb-2010.

[IBM] IBM. Allow TCP push (PSH) flag to be set in last packet. http:

//www-01.ibm.com/support/docview.wss?uid=swg1PJ29832. Re-
trieved 2-Feb-2010.

[ID06] ITU-D. Teletraffic Engineering Handbook. http://www.com.dtu.

dk/teletraffic/handbook/telenook.pdf, 7 2006. Retrieved 24-
Jan-2010.

[IT04] ITU-T. ITU-T I.371 : Traffic control and congestion control in B-
ISDN Section. http://www.itu.int/rec/T-REC-I.371-200403-I/

en, 3 2004. Retrieved 25-Jan-2010.

http://nmap.org/nmap-fingerprinting-article.txt
http://www.gont.com.ar/talks/IETF73/ietf73-tcpm-urgent-data.ppt
http://www.gont.com.ar/talks/IETF73/ietf73-tcpm-urgent-data.ppt
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www-01.ibm.com/support/docview.wss?uid=swg1PJ29832
http://www-01.ibm.com/support/docview.wss?uid=swg1PJ29832
http://www.com.dtu.dk/teletraffic/handbook/telenook.pdf
http://www.com.dtu.dk/teletraffic/handbook/telenook.pdf
http://www.itu.int/rec/T-REC-I.371-200403-I/en
http://www.itu.int/rec/T-REC-I.371-200403-I/en

References 114

[ITU94] ITU. X.200 : Information technology - Open Systems Interconnection
- Basic Reference Model: The basic model. http://www.itu.int/

rec/T-REC-X.200-199407-I/en, 7 1994. Retrieved 25-Jan-2010.

[JC98] H. Julkunen and C. E. Chow. Enhance Network Security with Dy-
namic Packet Filter. In ICCCN, pages 268–275. IEEE, 1998.

[Kat03] F. Katayama. Hacker accesses 5.6 million credit cards. http://www.
cnn.com/2003/TECH/02/17/creditcard.hack/, 2 2003. Retrieved
27-Jan-2010.

[KBB+04] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, and M. Falout-
sos. Is P2P dying or just hiding? In Proceedings of the GLOBECOM
2004 Conference, Dallas, Texas, November 2004. IEEE Computer So-
ciety Press.

[l7h09] L7-filter – Application Layer Packet Classifier for Linux. http://

l7-filter.sourceforge.net/, 1 2009. Retrieved 4-Feb-2010.

[l7p09] L7-filter – Supported Protocols. http://l7-filter.sourceforge.

net/protocols, 1 2009. Retrieved 4-Feb-2010.

[LGW99] A. Leon-Garcia and I. Widjaja. Communication Networks: Funda-
mental Concepts and Key Architectures. McGraw-Hill, New York,
NY, December 1999.

[Li07] B. Li. Detect TCP-Based Applications Using Packet Size Distribu-
tions. PhD thesis, Loughborough University, 8 2007.

[LM07] W. Li and Andrew W. Moore. A Machine Learning Approach for
Efficient Traffic Classification. In MASCOTS, pages 310–317. IEEE
Computer Society, 2007.

[MF01] C. Macian and R. Finthammer. An evaluation of the key design
criteria to achieve high update rates in packet classifiers. Network,
IEEE, 15(6):24–29, Nov/Dec 2001.

[Mic] Microsoft. How the TCP Push Bit Was Changed for Windows NT 3.5.
http://support.microsoft.com/kb/123749. Retrieved 2-Feb-2010.

[MIN09] MINTS. Minnesota Internet Traffic Studies. http://www.dtc.umn.

edu/mints/home.php, 11 2009. Retrieved 23-Jan-2010.

[Mog89] J Mogul. Simple and Flexible Daragram Access Controls for Unix
based Gateways. DEC WRL, Res Rep 89/4, 1989.

http://www.itu.int/rec/T-REC-X.200-199407-I/en
http://www.itu.int/rec/T-REC-X.200-199407-I/en
http://www.cnn.com/2003/TECH/02/17/creditcard.hack/
http://www.cnn.com/2003/TECH/02/17/creditcard.hack/
http://l7-filter.sourceforge.net/
http://l7-filter.sourceforge.net/
http://l7-filter.sourceforge.net/protocols
http://l7-filter.sourceforge.net/protocols
http://support.microsoft.com/kb/123749
http://www.dtc.umn.edu/mints/home.php
http://www.dtc.umn.edu/mints/home.php

References 115

[Moo65] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), 1965.

[MP88] M. Minsky and S. Papert. Perceptrons: An Introduction to Compu-
tational Geometry. MIT Press, Cambridge, MA, expanded edition,
1988.

[MZ05a] A. Moore and D. Zuev. Discriminators for use in flow-based classific-
ation. Technical report, Intel Research and Cambridge, 2005.

[MZ05b] A. W. Moore and D. Zuev. Internet traffic classification using bayesian
analysis techniques. In Derek L. Eager, Carey L. Williamson, Sem C.
Borst, and John C. S. Lui, editors, SIGMETRICS, pages 50–60. ACM,
2005.

[Nag84] J. Nagle. Congestion Control in IP/TCP Internetworks, 1 1984. RFC
896.

[Nie98] J. Nielsen. Nielsen’s Law of Internet Bandwidth. http://www.useit.
com/alertbox/980405.html, 4 1998. Retrieved 23-Jan-2010.

[NSV06] A. Nogueira, P. Salvador, and R. Valadas. Detecting Internet Applic-
ations using Neural Networks. In ICNS, page 95. IEEE Computer
Society, 2006.

[Pax99] V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23-24):2435–2463, 1999.

[PBL+03] D.J. Parish, K. Bharadia, A. Larkum, I.W. Phillips, and M.A. Oliver.
Using packet size distributions to identify real-time networked ap-
plications. Communications, IEE Proceedings-, 150(4):221–227, Aug.
2003.

[PL06] P. Piyachon and Y. Luo. Efficient memory utilization on network
processors for deep packet inspection. In Laxmi N. Bhuyan, Michel
Dubois, and Will Eatherton, editors, ANCS, pages 71–80. ACM, 2006.

[PM04] J. J. Prichard and L. E. MacDonald. Cyber Terrorism: A Study
of the Extent of Coverage in Computer Science Textbooks. JITE,
3:279–289, 2004.

[PWC] T. Potter, S. Wehner, and Y. Champoux. NetPacket Module for
Perl. http://search.cpan.org/~yanick/NetPacket-0.41.1/lib/

NetPacket.pm. Retrieved 14-Feb-2010.

http://www.useit.com/alertbox/980405.html
http://www.useit.com/alertbox/980405.html
http://search.cpan.org/~yanick/NetPacket-0.41.1/lib/NetPacket.pm
http://search.cpan.org/~yanick/NetPacket-0.41.1/lib/NetPacket.pm

References 116

[Qui92] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1st edition, October 1992.

[Raj05] S. Raja. Why "Always On" Stateful Inspection and Deep Packet Ana-
lysis are Essential to Deliver Non-Stop Protection. Technical report,
Top Layer Networks, Inc., 2005.

[Ram98] L. Raman. OSI systems and network management. Communications
Magazine, IEEE, 36(3):46–53, Mar 1998.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning in-
ternal representations by error propagation. In D. E. Rumelhart,
J. L. McClelland, and PDP Research Group, editors, Parallel dis-
tributed processing: explorations in the microstructure of cognition,
volume 1: foundations, pages 318–362. MIT Press, Cambridge, MA,
USA, 1986.

[RN95] S. J. Russell and P. Norving. Artificial Intelligence: A Modern Ap-
proach, pages 570–571. Prentice-Hall, Upper Saddle River, New Jer-
sey, 1995.

[Roe99] M. Roesch. Snort: Lightweight Intrusion Detection for Networks. In
LISA, pages 229–238. USENIX, 1999.

[RP94] J. Reynolds and J. Postel. Assigned Numbers, 10 1994. RFC 1700.

[RSS01] P. Rodriguez, S. Sibal, and O. Spatscheck. TPOT: translucent proxy-
ing of TCP. Computer Communications, 24(2):249–255, 2001.

[SGO+09] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan.
Evaluating GPUs for network packet signature matching. In ISPASS,
pages 175–184. IEEE, 2009.

[SHHP00] O. Spatscheck, J. S. Hansen, J. H. Hartman, and L. L. Peterson.
Optimizing TCP forwarder performance. IEEE/ACM Trans. Netw.,
8(2):146–157, 2000.

[SM07] K. Scarfone and P. Mell. Guide to Intrusion Detection and Prevention
Systems (IDPS). National Institute of Standards and Technology, 2
2007. Special Publication 800-94.

[Sou] Sourcefire. Snort – the de facto standard for intrusion detection and
prevention. http://www.snort.org. Retrieved 28-Jan-2010.

http://www.snort.org

References 117

[SSB05] D. Steinkrau, P. Y. Simard, and I. Buck. Using GPUs for Machine
Learning Algorithms. In ICDAR, pages 1115–1119. IEEE Computer
Society, 2005.

[SSM07] M. Shevertalov, E. Stehle, and S. Mancoridis. A genetic algorithm for
solving the binning problem in networked applications detection. In
IEEE Congress on Evolutionary Computation, pages 713–720. IEEE,
2007.

[Ste97] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms, 1 1997. RFC 2001.

[Tan03] A. S. Tanenbaum. Computer Networks. Prentice Hall, 4 edition, 3
2003.

[TC97] K. M. C. Tan and B. R. Collie. Detection and Classification of
TCP/IP Network Services. In ACSAC, pages 99–107. IEEE Com-
puter Society, 1997.

[tcp09] tcpdump workers. tcpdump/libpcap. http://www.tcpdump.org/, 1
2009. Retrieved 13-Feb-2010.

[TTNC02] C. Trivedi, H. J. Trussel, A. Nilsson, and M-Y. Chow. Implicit Traffic
Classification for Service Differentiation. Technical report, ITC Spe-
cialist Seminar, Wurzburg, Germany, 7 2002.

[wek] Weka 3: Data Mining Software in Java. http://www.cs.waikato.

ac.nz/ml/weka/. Retrieved 15-Feb-2010.

[WF05a] I. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques, page 97. Morgan Kaufmann, San Fransisco,
CA, USA, 2nd edition, 2005.

[WF05b] I. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques, pages 192–196. Morgan Kaufmann, San Fran-
sisco, CA, USA, 2nd edition, 2005.

[wir] Wireshark. http://www.wireshark.org/. Retrieved 17-Apr-2010.

[WP10a] X. Wang and D. J. Parish. Optimised Multi-stage TCP Traffic Clas-
sifier Based on Packet Size Distributions. In 2010 Third Interna-
tional Conference on Communication Theory, Reliability, and Quality
of Service, pages 98–103, June 2010.

http://www.tcpdump.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.wireshark.org/

References 118

[WP10b] X. Wang and D. J. Parish. Optimised TCP Traffic Classification
with Multiple Statistical Algorithms. In Information Networking and
Automation (ICINA), 2010 International Conference on, pages 261–
265, October 2010.

[WY08] Y. Wang and S.-Z. Yu. Move Statistics-Based Traffic Classifiers On-
line. In CSSE (4), pages 721–725. IEEE Computer Society, 2008.

[Zho08] X. Zhou. A P2P Traffic Classification Method Based on SVM. In
ISCSCT (2), pages 53–57. IEEE Computer Society, 2008.

[ZLZ04] X. Zhang, C. Li, and W. Zheng. Intrusion Prevention System Design.
In CIT, pages 386–390. IEEE Computer Society, 2004.

APPENDIX A

Classification Recall Rates for Different Detection Windows

Using Single Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.1: Classification Recall Rates for FTP-DATA vs Detection Windows
Using Single Classifier

119

Appendix A. Classification Recall Rates for Different Detection
Windows Using Single Classifier 120

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.2: Classification Recall Rates for FTP vs Detection Windows Using
Single Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.3: Classification Recall Rates for IMAPS vs Detection Windows Using
Single Classifier

Appendix A. Classification Recall Rates for Different Detection
Windows Using Single Classifier 121

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.4: Classification Recall Rates for IRC vs Detection Windows Using Single
Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.5: Classification Recall Rates for MS-RDP vs Detection Windows Using
Single Classifier

Appendix A. Classification Recall Rates for Different Detection
Windows Using Single Classifier 122

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.6: Classification Recall Rates for POP3 vs Detection Windows Using
Single Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.7: Classification Recall Rates for RTSP vs Detection Windows Using
Single Classifier

Appendix A. Classification Recall Rates for Different Detection
Windows Using Single Classifier 123

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.8: Classification Recall Rates for SMTP vs Detection Windows Using
Single Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.9: Classification Recall Rates for SSH vs DetectionWindows Using Single
Classifier

Appendix A. Classification Recall Rates for Different Detection
Windows Using Single Classifier 124

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

R
ec

al
l R

at
e

1

Figure A.10: Classification Recall Rates for Telnet vs Detection Windows Using
Single Classifier

APPENDIX B

Classification Precision for Different Detection Windows

Using Single Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.1: Classification Precisions for FTP-DATA vs Detection Windows Using
Single Classifier

125

Appendix B. Classification Precision for Different Detection
Windows Using Single Classifier 126

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.2: Classification Precisions for FTP vs Detection Windows Using Single
Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.3: Classification Precisions for IMAPS vs Detection Windows Using
Single Classifier

Appendix B. Classification Precision for Different Detection
Windows Using Single Classifier 127

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.4: Classification Precisions for IRC vs Detection Windows Using Single
Classifier

0 50 100 150 200 250 300 350 400 450 500

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.5: Classification Precisions for MS-RDP vs Detection Windows Using
Single Classifier

Appendix B. Classification Precision for Different Detection
Windows Using Single Classifier 128

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.6: Classification Precisions for POP3 vs Detection Windows Using Single
Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.7: Classification Precisions for RTSP vs Detection Windows Using Single
Classifier

Appendix B. Classification Precision for Different Detection
Windows Using Single Classifier 129

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.8: Classification Precisions for SMTP vs Detection Windows Using Single
Classifier

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.9: Classification Precisions for SSH vs Detection Windows Using Single
Classifier

Appendix B. Classification Precision for Different Detection
Windows Using Single Classifier 130

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k-NN Decision Tree ANN K-S

Detection Window (Packets)

P
re

ci
si

o
n

1

Figure B.10: Classification Precisions for Telnet vs Detection Windows Using
Single Classifier

APPENDIX C

Key Source Code

C.1 build_connection.pl

#! /usr / b in / p e r l −w
Reconstruct packe t s in t o f l ows
Written by Xiaoming Wang
ARGV[0]= input pcap f i l e
ARGV[1]= output f i l e
ARGV[2]=max_conn (max connect ion shou ld be p r in t ed)
ARGV[3]= pr i n t c l a s s (which s e r v i c e shou ld be p r i n t based on por t)

use Cwd;
use IO : : Handle ;
use Net : : Pcap ;
use NetPacket : : Ethernet ;
use NetPacket : : IP ;
use NetPacket : : IP qw(IP_PROTO_TCP) ;
use NetPacket : :TCP;
use s t r i c t ;

my $MAX_IDLE_TIMEOUT=600;
my $MAX_TIMEOUT=600;

131

Appendix C. Key Source Code 132

my $e r r ;
my ($user_data , $header , $packet) ;
my $ether_data ;
my $ ip ;
my $tcp ;
my $time_sec ;
my $time_usec ;
my $src_ip ;
my $src_port ;
my $dest_ip ;
my $dest_port ;
my $ip_len ;
my $ip_hlen ;
my $tcp_hlen ;
my $payload_len ;
my $flag_U ;
my $flag_A ;
my $flag_P ;
my $flag_R ;
my $flag_S ;
my $flag_F ;
my %connect ion_f i l ename ;
my %connect ion_in i t t ime_sec ;
my %connect ion_initt ime_usec ;
my %connect ion_bytes ;
my %connect ion_lastt ime_sec ;
my %connect ion_lastt ime_usec ;
my %connection_pkts ;
my %connect ion_c las s ;
my $packetNo=0;
my $connectionNo=0;
my $ i n p u t f i l e=$ARGV[0] ;
my $ ou t pu t f i l e = $ARGV[1] ;
my $max_connection=$ARGV[2] ;
my $pr in t_c la s s=$ARGV[3] ;
my $datapath = ’ . / ’ . $ i n p u t f i l e . ’_tmp/ ’ ;

Make working d i r
mkdir(’ . / ’ . $ i n p u t f i l e . ’_tmp ’ ,0777) | | die "Cannot␣make␣data␣ d i r " ;

Create packe t capture o b j e c t on dev i c e
my $ob j e c t ;
$ob j e c t = Net : : Pcap : : open_of f l i n e ($ i n pu t f i l e , \ $e r r) ;
unless (defined $ob j e c t) {

die ’ Unable␣ to ␣ c r ea t e ␣ packet ␣ capture ␣on␣ f i l e ␣ ’ , $ i n pu t f i l e , ’ ␣−␣ ’
, $ e r r ;

}

Appendix C. Key Source Code 133

Set up connect ion summary f i l e ;
open SUMMARY, ">>$ou tpu t f i l e " . ’ . csv ’ ;

Set curren t d i r to tmp working path
chdir $datapath | | die "Cannot␣change␣ d i r " ;

Set c a l l b a c k func t i on and i n i t i a t e packe t capture loop
Net : : Pcap : : loop ($object , −1, \&packets_process ing , ’ ’) ;

Close Object
Net : : Pcap : : close ($ob j e c t) ;
&clean_end () ;

Cal l back func t i on
sub packets_process ing {

$packetNo++;
($user_data , $header , $packet) = @_;
St r i p e t h e rne t encapsu la t i on o f captured packe t
$ether_data = NetPacket : : Ethernet : : s t r i p ($packet) ;
Decode con ten t s o f TCP/IP packe t conta ined wi th in captured

e t h e rne t packe t
$ ip = NetPacket : : IP−>decode ($ether_data) ;
i f ($ip−>{proto } == IP_PROTO_TCP){

$tcp = NetPacket : :TCP−>decode ($ip−>{ ’ data ’ }) ;
$time_sec=$header−>{ ’ tv_sec ’ } ;
$time_usec=$header−>{ ’ tv_usec ’ } ;
$src_ip=$ip−>{ ’ src_ip ’ } ;
$src_port=$tcp−>{ ’ src_port ’ } ;
$dest_ip=$ip−>{ ’ dest_ip ’ } ;
$dest_port=$tcp−>{ ’ dest_port ’ } ;
$ip_len=$ip−>{ ’ l en ’ } ;
$ip_hlen=$ip−>{ ’ hlen ’ }∗4 ;
$tcp_hlen=$tcp−>{ ’ hlen ’ }∗4 ;
$payload_len=$ip_len−$ip_hlen−$tcp_hlen ;
$flag_U=($tcp−>{ ’ f l a g s ’ } & 32) >>5;
$flag_A=($tcp−>{ ’ f l a g s ’ } & 16) >>4;
$flag_P=($tcp−>{ ’ f l a g s ’ } & 8) >>3;
$flag_R=($tcp−>{ ’ f l a g s ’ } & 4) >>2;
$flag_S=($tcp−>{ ’ f l a g s ’ } & 2) >>1;
$flag_F=$tcp−>{ ’ f l a g s ’ } & 1 ;
&add_packet () ;

}
}

sub add_packet{
my $connect ion=$src_ip . ’ , ’ . $src_port . ’ , ’ . $dest_ip . ’ , ’ . $dest_port ;

Appendix C. Key Source Code 134

my $connection_r=$dest_ip . ’ , ’ . $dest_port . ’ , ’ . $src_ip . ’ , ’ .
$src_port ;

my $ r e l a t i v e t ime ;
New connect ion
i f ((! (exists $connect ion_f i lename { $connect ion }))&&(!(exists

$connect ion_f i lename { $connection_r }))&&$flag_S==1){
$connect ion_f i lename { $connect ion}=$connect ion . ’@ ’ . $time_sec . ’

. ’ . $time_usec . ’ . csv ’ ;
$connect ion_in i t t ime_sec { $connect ion}=$time_sec ;
$connect ion_initt ime_usec { $connect ion}=$time_usec ;
$connect ion_bytes { $connect ion }=0;
$connect ion_lastt ime_sec { $connect ion}=$time_sec ;
$connect ion_lastt ime_usec { $connect ion}=$time_usec ;
$connection_pkts { $connect ion }=0;
$connect ion_c las s { $connect ion}=&port_c las s ($dest_port ,

$src_port) ;
}
Exs i t i n g connect ion same d i r
i f (exists $connect ion_f i lename { $connect ion }) {

f i n i s h connect ion by Fin or Reset
i f ($flag_F==1|| $flag_R==1){

$connect ion_lastt ime_sec { $connect ion}=$time_sec ;
$connect ion_lastt ime_usec { $connect ion}=$time_usec ;
&del_connect ion ($connect ion) ;

}
Normal pk t
i f ($payload_len !=0 && $flag_F==0 && $flag_R==0){

$ r e l a t i v e t ime=$time_sec−$connect ion_in i t t ime_sec {
$connect ion }+($time_usec−$connect ion_initt ime_usec {
$connect ion }) ∗0 .000001 ;

$connect ion_bytes { $connect ion}+=$payload_len ;
$connect ion_lastt ime_sec { $connect ion}=$time_sec ;
$connect ion_lastt ime_usec { $connect ion}=$time_usec ;
$connection_pkts { $connect ion}++;
Write to tmp conn . f i l e
open TOFILE, ">>$connect ion_f i lename { $connect ion }" ;
printf TOFILE ("%.6 f " , $ r e l a t i v e t ime) ;
print TOFILE " ,C−S , $payload_len\n" ;
close TOFILE;

}
}
Exs i t i n g connect ion r e v e r s e d i r
i f (exists $connect ion_f i lename { $connection_r }) {

i f ($flag_F==1|| $flag_R==1){
$connect ion_lastt ime_sec { $connection_r}=$time_sec ;
$connect ion_lastt ime_usec { $connection_r}=$time_usec ;
&del_connect ion ($connection_r) ;

Appendix C. Key Source Code 135

}
Normal pk t
i f ($payload_len !=0 && $flag_F==0 && $flag_R==0){

$ r e l a t i v e t ime=$time_sec−$connect ion_in i t t ime_sec {
$connection_r}+($time_usec−$connect ion_initt ime_usec {
$connection_r }) ∗0 .000001 ;

$connect ion_bytes { $connection_r}+=$payload_len ;
$connect ion_lastt ime_sec { $connection_r}=$time_sec ;
$connect ion_lastt ime_usec { $connection_r}=$time_usec ;
$connection_pkts { $connection_r}++;
Write to tmp conn . f i l e
open TOFILE, ">>$connect ion_f i lename { $connection_r }" ;
printf TOFILE ("%.6 f " , $ r e l a t i v e t ime) ;
print TOFILE " ,S−C, $payload_len\n" ;
close TOFILE;

}
}
&check_timeout ;

}

Return the c l a s s e s based on the d s t por t
sub port_c las s {

return " ftp−data" i f $_[0]==20 | | $_[1]==20;
return " f tp " i f $_[0]==21;
return " ssh " i f $_[0]==22;
return " t e l n e t " i f $_[0]==23;
return "smtp" i f $_[0]==25;
return "http " i f $_[0]==80;
return "pop3" i f $_[0]==110;
return "imap" i f $_[0]==143;
return " imaps" i f $_[0]==993;
return " r t sp " i f $_[0]==554;
return "ms−rdp" i f $_[0]==3389;
return " i r c " i f $_[0]==6667;
return " othe r s " ;

}

Check time out ;
sub check_timeout{

my $key ;
my $ id l e t ime ;
my $durat ion ;
foreach $key (keys %connect ion_f i l ename) {

$ id l e t ime=($time_sec−$connect ion_lastt ime_sec {$key })+(
$time_usec−$connect ion_lastt ime_usec {$key }) ∗0 .000001 ;

$durat ion=($time_sec−$connect ion_in i t t ime_sec {$key })+(
$time_usec−$connect ion_initt ime_usec {$key }) ∗0 .000001 ;

Appendix C. Key Source Code 136

i f ($ id l e t ime>$MAX_IDLE_TIMEOUT| | $durat ion>$MAX_TIMEOUT){
&del_connect ion ($key) ;

}
}

}

Del conn . from temp & wr i t e to f i l e
sub del_connect ion {

Compute whole dura t ion f o r conn .
my $durat ion=($connect ion_lastt ime_sec {$_[0]}−

$connect ion_in i t t ime_sec {$_ [0] }) +($connect ion_lastt ime_usec {$_
[0]}− $connect ion_initt ime_usec {$_ [0] }) ∗0 .000001 ;

Print v a l i d connec t ions on ly
i f ($connect ion_bytes {$_[0]} >0 && $connect ion_c las s {$_ [0] } eq

$pr in t_c la s s) {
Res t r i c t p r i n t no .
i f ($connectionNo>$max_connection) {

&clean_end () ;
exit 0 ;

}
Print summary l i n e
print SUMMARY ’@, ’ . " $connect ion_in i t t ime_sec {$_ [0] } ,

$connect ion_initt ime_usec {$_ [0] } , $_ [0] , $connect ion_bytes {
$_ [0] } , $connect ion_pkts {$_ [0] } , $duration , $connect ion_c las s
{$_[0] } \ n" ;

Read from temp f i l e and wr i t e to summary f i l e
open SINGLE, "<$connect ion_f i lename {$_ [0] } " ;
while(<SINGLE>){

print SUMMARY $_;
}
$connectionNo++;

}
close SINGLE;
system ("rm␣−f ␣ $connect ion_f i lename {$_ [0] } ") ;
delete $connect ion_f i lename {$_ [0] } ;
delete $connect ion_in i t t ime_sec {$_ [0] } ;
delete $connect ion_initt ime_usec {$_ [0] } ;
delete $connect ion_bytes {$_ [0] } ;
delete $connect ion_lastt ime_sec {$_ [0] } ;
delete $connect ion_lastt ime_usec {$_ [0] } ;
delete $connection_pkts {$_ [0] } ;
delete $connect ion_c las s {$_ [0] } ;

}

Clean temp
sub clean_end{

close SUMMARY;

Appendix C. Key Source Code 137

chdir " . . / " ;
system ("rm␣−r f ␣ $ i n p u t f i l e " . ’_tmp ’) ;
print STDOUT "\n" , getcwd () , "/" , $ i n pu t f i l e , "\n" ;
print STDOUT $packetNo , "␣Packets ␣Processed . \ n" ;
print STDOUT $connectionNo , "␣Connections ␣Processed . \ n" ;

}

C.2 matrix.pl

#! /usr / b in / p e r l −w
Bui ld f e a t u r e matrix
Written by Xiaoming Wang
ARGV[0]= input f i l ename
ARGV[1]= output f i l ename
ARGV[2]= format (csv or a r f f)
ARGV[3 . .]= per iod s (time)

use IO : : Handle ;
use S t a t i s t i c s : : Bas ic qw(: a l l) ;
use s t r i c t ;

my $ input f i l ename = sh i f t @ARGV;
my $output f i l ename = sh i f t @ARGV;
my $format = sh i f t @ARGV;
my @periods = @ARGV;

Set f o r cu l . p e r i od s
for (my $ i =1; $i<=$#per i od s ; $ i++){

$per i ods [$ i]= $per i ods [$ i]+ $per i ods [$i −1] ;
}
open OUTPUT, ">$output f i l ename " ;
open SUMMARY, "<$ input f i l ename " ;

Print format header
i f ($format eq " a r f f ") {

print OUTPUT ’ @re la t i on ␣ ’ . $output f i l ename . "\n\n" ;
for (my $ i =0; $i<=$#per i od s ; $ i++){

print OUTPUT ’ @attr ibute ␣ ’ . "PS_MAX_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "PS_MIN_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "PS_AVE_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "PS_VAR_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "IT_MAX_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "IT_MIN_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "IT_AVE_$i" . "␣numeric \n" ;
print OUTPUT ’ @attr ibute ␣ ’ . "IT_VAR_$i" . "␣numeric \n" ;

Appendix C. Key Source Code 138

print OUTPUT ’ @attr ibute ␣ ’ . "PS_MAX_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_MIN_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_AVE_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_VAR_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_MAX_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_MIN_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_AVE_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_VAR_CS_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_MAX_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_MIN_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_AVE_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PS_VAR_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_MAX_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_MIN_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_AVE_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "IT_VAR_SC_$i" . "␣numeric \n
" ;

print OUTPUT ’ @attr ibute ␣ ’ . "PC_Ratio_$i" . "␣numeric \n"
;

print OUTPUT ’ @attr ibute ␣ ’ . "BC_Ratio_$i" . "␣numeric \n"
;

}
print OUTPUT ’ @attr ibute ␣CLASS␣{ ftp , f tp−data , http , imaps , i r c ,

ms−rdp , pop3 , rtsp , smtp , ssh , t e l n e t } ’ ;
print OUTPUT "\n\n" ;
print OUTPUT ’@data ’ ;
print OUTPUT "\n" ;

}
e l s i f ($format eq " csv ") {

for (my $ i =0; $i<=$#per i od s ; $ i++){
print OUTPUT "PS_MAX_$i,PS_MIN_$i ,PS_AVE_$i,PS_VAR_$i

, " ;

Appendix C. Key Source Code 139

print OUTPUT "IT_MAX_$i, IT_MIN_$i , IT_AVE_$i , IT_VAR_$i
, " ;

print OUTPUT "PS_MAX_CS_$i,PS_MIN_CS_$i,PS_AVE_CS_$i,
PS_VAR_CS_$i, " ;

print OUTPUT "IT_MAX_CS_$i, IT_MIN_CS_$i , IT_AVE_CS_$i,
IT_VAR_CS_$i, " ;

print OUTPUT "PS_MAX_SC_$i,PS_MIN_SC_$i,PS_AVE_SC_$i,
PS_VAR_SC_$i, " ;

print OUTPUT "IT_MAX_SC_$i, IT_MIN_SC_$i , IT_AVE_SC_$i,
IT_VAR_SC_$i, " ;

print OUTPUT "PC_Ratio_$i , BC_Ratio_$i , " ;
}
print OUTPUT "CLASS" ;
print OUTPUT "\n" ;

}

Main loop
my $summaryLine ;
my @summaryLine ;
while (defined ($summaryLine=<SUMMARY>)) {

chomp($summaryLine) ;
@summaryLine=sp l i t / ,/ , $summaryLine ;
i f ($summaryLine [0] eq ’@’) {

&write_connect ion ($summaryLine [8] , $summaryLine [1 0]) ;
}

}
close SUMMARY;
close OUTPUT;

Function f o r each conn . (packetNo , c l a s s)
sub write_connect ion {

my $packetLine ;
my @packetLine ;
my @currentPer iods=@periods ;
my $periodsNo=$#per i od s +1;
my $ca l cu l a t edPe r i od s =0;
my $ i t_current ;
my $last_time=0;
my $last_CS_time=0;
my $last_SC_time=0;
my @ps_both=() ;
my @ps_CS=() ;
my @ps_SC=() ;
my @it_both=() ;
my @it_CS=() ;
my @it_SC=() ;
my @tempPrint=() ;

Appendix C. Key Source Code 140

my $pc_both ;
my $bc_both ;
my $pc_CS ;
my $bc_CS ;
my $pc_SC ;
my $bc_SC ;
for (my $ i =0; $i<$_ [0] ; $ i++){

$packetLine=<SUMMARY>;
chomp($packetLine) ;
@packetLine=sp l i t / ,/ , $packetLine ;

Print per iod s t a t & r e s e t array
i f ($packetLine [0]>= $cur rentPer i ods [0]) {

@tempPrint=&states_ps (@ps_both) ;
$pc_both=sh i f t @tempPrint ;
$bc_both=sh i f t @tempPrint ;
printf OUTPUT ("%d,%d ,%.6 f ,%.6 f , " , @tempPrint)

;
printf OUTPUT ("%.6 f ,%.6 f ,%.6 f ,%.6 f , " , &

s t a t e s_ i t (@it_both)) ;
@tempPrint=&states_ps (@ps_CS) ;
$pc_CS=sh i f t @tempPrint ;
$bc_CS=sh i f t @tempPrint ;
printf OUTPUT ("%d,%d ,%.6 f ,%.6 f , " , @tempPrint

) ;
printf OUTPUT ("%.6 f ,%.6 f ,%.6 f ,%.6 f , " , &

s t a t e s_ i t (@it_CS)) ;
@tempPrint=&states_ps (@ps_SC) ;
$pc_SC=sh i f t @tempPrint ;
$bc_SC=sh i f t @tempPrint ;
printf OUTPUT ("%d,%d ,%.6 f ,%.6 f , " , @tempPrint

) ;
printf OUTPUT ("%.6 f ,%.6 f ,%.6 f ,%.6 f , " , &

s t a t e s_ i t (@it_SC)) ;
printf OUTPUT ("%.6 f ,%.6 f , " , ($pc_CS+1)/(

$pc_SC+1) , ($bc_CS+1)/($bc_SC+1)) ;
$ c a l cu l a t edPe r i od s++;
@ps_both=() ;
@ps_CS=() ;
@ps_SC=() ;
@it_both=() ;
@it_CS=() ;
@it_SC=() ;
sh i f t @currentPer iods ;

Print b lank per iod gap
while (defined $cur r entPer i ods [0] &&

Appendix C. Key Source Code 141

$packetLine [0]>= $cur r entPer i ods [0]) {
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , ") ;
$ c a l cu l a t edPe r i od s++;
sh i f t @currentPer iods ;

}
last i f (! defined $cur r entPer i ods [0]) ;

}
i f ($packetLine [0] < $cur rentPer i ods [0]) {

push (@ps_both , $packetLine [2]) ;
$ i t_current =0;
$ i t_current=abs ($packetLine [0]− $last_time) i f

$last_time >0;
push (@it_both , $ i t_current) i f $it_current

>0;
$ last_time=$packetLine [0] ;
i f ($packetLine [1] eq "C−S") {

push (@ps_CS, $packetLine [2]) ;
$ i t_current =0;
$ i t_current=abs ($packetLine [0]−

$last_CS_time) i f $last_CS_time>0;
push (@it_CS , $ i t_current) i f

$it_current >0;
$last_CS_time=$packetLine [0] ;

}
i f ($packetLine [1] eq "S−C") {

push (@ps_SC, $packetLine [2]) ;
$ i t_current =0;
$ i t_current=abs ($packetLine [0]−

$last_SC_time) i f $last_SC_time>0;
push (@it_SC , $ i t_current) i f

$it_current >0;
$last_SC_time=$packetLine [0] ;

}
}

}
Print l a s t p o s s i b l e per iod
i f (defined $ps_both [0]) {

@tempPrint=&states_ps (@ps_both) ;
$pc_both=sh i f t @tempPrint ;
$bc_both=sh i f t @tempPrint ;
printf OUTPUT ("%d,%d ,%.6 f ,%.6 f , " , @tempPrint) ;

Appendix C. Key Source Code 142

printf OUTPUT ("%.6 f ,%.6 f ,%.6 f ,%.6 f , " , &s t a t e s_ i t (
@it_both)) ;

@tempPrint=&states_ps (@ps_CS) ;
$pc_CS=sh i f t @tempPrint ;
$bc_CS=sh i f t @tempPrint ;
printf OUTPUT ("%d,%d ,%.6 f ,%.6 f , " , @tempPrint) ;
printf OUTPUT ("%.6 f ,%.6 f ,%.6 f ,%.6 f , " , &s t a t e s_ i t (

@it_CS)) ;
@tempPrint=&states_ps (@ps_SC) ;
$pc_SC=sh i f t @tempPrint ;
$bc_SC=sh i f t @tempPrint ;
printf OUTPUT ("%d,%d ,%.6 f ,%.6 f , " , @tempPrint) ;
printf OUTPUT ("%.6 f ,%.6 f ,%.6 f ,%.6 f , " , &s t a t e s_ i t (

@it_SC)) ;
printf OUTPUT ("%.6 f ,%.6 f , " , ($pc_CS+1)/($pc_SC+1) , (

$bc_CS+1)/($bc_SC+1)) ;
$ c a l cu l a t edPe r i od s++;

}
Print remining b lank per i od s
for (my $ i=$ca l cu l a t edPe r i od s ; $i<$periodsNo ; $ i++){

printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , 0 , 0 , ") ;
printf OUTPUT (" 0 ,0 , ") ;

}

Print c l a s s
print OUTPUT "$_ [1] " ;
print OUTPUT "\n" ;

}

Function f o r packe t s s i z e s t a t s
sub states_ps {

my $pc=0;
my $bc=0;
my $ps_max=0;
my $ps_min=0;
my $ps_ave=0;
my $ps_var=0;
my $temp=0;
$pc=$#_+1 i f defined $#_;
foreach $temp (@_){

$bc+=$temp ;
$ps_max=$temp i f $ps_max==0 | | $temp>$ps_max ;

Appendix C. Key Source Code 143

$ps_min=$temp i f $ps_min==0 | | $temp<$ps_min ;
}
$ps_ave=$bc/$pc i f $pc>0;
$ps_var=var iance (@_) i f $pc>0;
return ($pc , $bc , $ps_max , $ps_min , $ps_ave , $ps_var) ;

}

Function f o r packe t s i n t e r v a l s t a t s
sub s t a t e s_ i t {

my $it_max=0;
my $it_min=0;
my $it_ave=0;
my $it_var=0;
my $it_no=0;
my $temp=0;
my $temp_sum=0;
$it_no=$#_+1 i f defined $#_;
foreach $temp (@_){

$temp_sum+=$temp ;
$it_max=$temp i f $it_max==0 | | $temp>$it_max ;
$it_min=$temp i f $it_min==0 | | $temp<$it_min ;

}
$it_ave=$temp_sum/$it_no i f $it_no >0;
$it_var=var iance (@_) i f $it_no >0;
return ($it_max , $it_min , $it_ave , $it_var) ;

}

C.3 len_dist.pl

#! /usr / b in / p e r l −w
Bui ld packe t s l en s d i s t r i b u t i o n s
Written by Xiaoming Wang
ARGV[0]= input f i l ename
ARGV[1]= output f i l ename
ARGV[3]=max packe t No .
ARGV[4]= i n c l . c l a s s

use IO : : Handle ;
use s t r i c t ;

my $ input f i l ename = sh i f t @ARGV;
my $output f i l ename = sh i f t @ARGV;
my $maxpackets = sh i f t @ARGV;
my @includeClass=@ARGV;

Appendix C. Key Source Code 144

open OUTPUT, ">$output f i l ename " ;
open SUMMARY, "<$ input f i l ename " ;

Main loop
my $summaryLine ;
my @summaryLine ;
print OUTPUT "Class , Total_packets , Counted_packets , D i s t r i bu t i on . . . \ n" ;
while (defined ($summaryLine=<SUMMARY>)) {

chomp($summaryLine) ;
@summaryLine=sp l i t / ,/ , $summaryLine ;
i f ($summaryLine [0] eq ’@’ && &ex i s t s_ar ray ($summaryLine [1 0] ,

@inc ludeClass)==1){
&write_connect ion ($summaryLine [8] , $summaryLine [1 0]) ;

}
}
close SUMMARY;
close OUTPUT;

Function f o r s i n g l e conn . (packetNo , c l a s s)
sub write_connect ion {

my @dist ;
my @packetLine ;
my $packetLine ;
my $counted=0;
In i t d i s t r i b u t i o n array
for (my $ i =0; $i <=1600; $ i++){

$d i s t [$ i]=0;
}
for (my $ i =1; $i<=$_ [0] ; $ i++){

$packetLine=<SUMMARY>;
chomp($packetLine) ;
@packetLine=sp l i t / ,/ , $packetLine ;
i f ($i<=$maxpackets) {

$d i s t [$packetLine [2]]++;
$counted++;

}
}
print OUTPUT "$_ [1] , $_ [0] , $counted" ;
Compute accumulated d i s t r i b u t i o n
for (my $ i =1; $i <=1600; $ i++){

$d i s t [$ i]= $d i s t [$ i]+ $d i s t [$ i −1] ;
}
Normalise & pr i n t the d i s t r i b u t i o n
for (my $ i =1; $i <=1600; $ i++){

$d i s t [$ i]= $d i s t [$ i] / $counted ;
print OUTPUT " , $d i s t [$ i] " ;

Appendix C. Key Source Code 145

}
print OUTPUT "\n" ;

}

Sub f o r check whether a s c a l a r in a array (sca lar , array)
sub ex i s t s_ar ray {

my @array=@_;
my $ s c a l a r=sh i f t (@array) ;
foreach (@array) {

return 1 i f ($ s c a l a r eq $_) ;
}
return 0 ;

}

C.4 change_class.pl

#! /usr / b in / p e r l −w
change the c l a s s name o f da t a s e t
Written by Xiaoming Wang
ARGV[0]= input f i l ename
ARGV[1]= output f i l ename
ARGV[2 . .]= names change to o the r s

use IO : : Handle ;
use s t r i c t ;

my $ input f i l ename = sh i f t @ARGV;
my $output f i l ename = sh i f t @ARGV;
my @others = @ARGV;

open OUTPUT, ">$output f i l ename " ;
open INPUT, "<$ input f i l ename " ;

my $Line ;
while (defined ($Line=<INPUT>)) {

for (my $ i =0; $i<=$#othe r s ; $ i++){
$Line=~s / , $other s [$ i] \ n/ , o the r s \n / ;

}
print OUTPUT ($Line) ;

}
close INPUT;
close OUTPUT;

Appendix C. Key Source Code 146

C.5 classify_ks.pl

#! /usr / b in / p e r l −w
C l a s s i f y the d i s t r i b u t i o n wi th ks
Written by Xiaoming Wang
ARGV[0]= t r a i n f i l ename
ARGV[1]= t e s t f i l ename
ARGV[2]= t h r e s h o l d
ARGV[3]= c l a s s i f y C l a s s
ARGV[4]= error output

use IO : : Handle ;
use s t r i c t ;

my $ t r a i n f i l e name = sh i f t @ARGV;
my $ t e s t f i l e n ame = sh i f t @ARGV;
my $thre sho ld=sh i f t @ARGV;
my $ c l a s s i f yC l a s s=sh i f t @ARGV;
my $ e r r o r f i l e name = sh i f t @ARGV;

open TEST, "<$ t e s t f i l e n ame " ;
open ERROR, ">$e r r o r f i l e name " ;

Main loop
my $ t e s tL ine ;
my @testLine ;
my $ r e s u l t ;
my $caseNo=0;
my $ co r r e c t =0;
print ERROR "Class , C l a s s i f i e d_as " , "\n" ;
$ t e s tL in e=<TEST>;
while (defined ($ t e s tL in e=<TEST>)) {

$caseNo++;
chomp($ t e s tL in e) ;
@testLine=sp l i t / ,/ , $ t e s tL in e ;
$ r e s u l t=&c l a s s i f y (@testLine) ;
print ERROR $te s tL ine [0] , ’ , ’ , $ r e su l t , "\n" ;

}
close TEST;
close ERROR;

Sub f o r c l a s s i f y each t e s t i n g case
sub c l a s s i f y {

my $ t ra inL ine ;
my @trainLine ;
my $tempD ;
my $minD=2; # Set d e f a u l t min D l a r g e r than 1

Appendix C. Key Source Code 147

my $ c l a s s="none" ;
open TRAIN, "<$t r a i n f i l e name " ;
$ t ra inL ine=<TRAIN>;
while (defined ($ t ra inL ine=<TRAIN>)) {

chomp($ t ra inL ine) ;
@trainLine=sp l i t / ,/ , $ t ra inL ine ;
$tempD=0;
For each t ra inn ing case f i nd b i g g e s t D
for (my $ i =1; $i <=1600; $ i++){

i f (abs ($ t ra inL ine [$ i+2]−$_[$ i +2])>=$tempD){
$tempD=abs ($ t ra inL ine [$ i+2]−$_[$ i +2])

;
}

}
Find the sma l l e s t D among a l l cases
i f ($tempD<=$minD) {

$minD=$tempD ;
$ c l a s s=$t ra inL ine [0] ;

}
}
Rejec t the r e s u l t i f do not reach the t h r ea sho l d
i f ($minD>$thre sho ld) {

$ c l a s s=" othe r s " ;
$ c l a s s=" re j e c t ed_by_$c l a s s i f yC la s s " ;

}
close TRAIN;
return $ c l a s s ;

}

C.6 stats_para.pl

#! /usr / b in / p e r l −w
S t a t i s t i c s f o r para
Written by Xiaoming Wang
ARGV[0]= input f i l ename
ARGV[1]= output f i l ename

use IO : : Handle ;
use s t r i c t ;

my $ input f i l ename = sh i f t @ARGV;
my $output f i l ename = sh i f t @ARGV;

open INPUT, "<$ input f i l ename " ;
open OUTPUT, ">$output f i l ename " ;

Appendix C. Key Source Code 148

my $tmp ;
my @tmp;
my $tmp2 ;
my @tmp2 ;
my $sum_a ;
my $sum_p ;
my $ co r r e c t ;
my $sum ;
my @a;
my @p;
For matrix_p csv output
my @className=("ms−rdp" , " r t sp " , "pop3" , "smtp" , " ssh " , " f tp " , " imaps" , " i r c

" , " t e l n e t " , " ftp−data" , " o the r s ") ;
print OUTPUT " cor r e c t , a l l , percent " ;
for (my $ i =0; $i<=$#className ; $ i++){

print OUTPUT " , " , $className [$ i] , "_a" ;

}
print OUTPUT " ,weighted_ave_a , ave_a" ;
for (my $ i =0; $i<=$#className ; $ i++){

print OUTPUT " , " , $className [$ i] , "_p" ;

}
print OUTPUT " ,weighted_ave_p , ave_p , \ n" ;

Get data from weka output
while (defined ($tmp=<INPUT>)) {

chomp($tmp) ;
i f ($tmp=~/Error on t e s t data /) {

$tmp2=<INPUT>;
$tmp2=<INPUT>;
chomp($tmp2) ;
@tmp2=sp l i t /\ s+/, $tmp2 ;
$ c o r r e c t=$tmp2 [3] ;
$sum=$tmp2 [3] ;
$tmp2=<INPUT>;
chomp($tmp2) ;
@tmp2=sp l i t /\ s+/, $tmp2 ;
$sum+=$tmp2 [3] ;
print OUTPUT $cor r ec t , " , " ,$sum , " , " , $ c o r r e c t /$sum , " , " ;

}
i f ($tmp=~/Deta i l ed Accuracy By Class /) {

$tmp=<INPUT>;
$tmp=<INPUT>;
$sum_a=0;
$sum_p=0;

Appendix C. Key Source Code 149

@a=() ;
@p=() ;
for (my $ i =0; $i <11; $ i++){

$tmp=<INPUT>;
chomp($tmp) ;
@tmp=sp l i t /\ s+/, $tmp ;
$sum_a+=$tmp [1] ;
$sum_p+=$tmp [3] ;
push @a, $tmp [1] ;
push @p, $tmp [3] ;

}
$tmp=<INPUT>;
chomp($tmp) ;
@tmp=sp l i t /\ s+/, $tmp ;
foreach (@a) {print OUTPUT ($_, " , ") ; }
print OUTPUT ($tmp [2] , " , " ,$sum_a/($#className+1) , " , ")

;
foreach (@p) {print OUTPUT ($_, " , ") ; }
print OUTPUT ($tmp [4] , " , " ,$sum_p/($#className+1) , "\n"

) ;
}

}

close INPUT;
close OUTPUT;

C.7 stats_ks.pl

#! /usr / b in / p e r l −w
S t a t i s t i c s f o r ks
Written by Xiaoming Wang
ARGV[0]= input f i l ename
ARGV[1]= output f i l ename

use IO : : Handle ;
use s t r i c t ;

my $ input f i l ename = sh i f t @ARGV;
my $output f i l ename = sh i f t @ARGV;
The input shou ld be in (c l a s s , c l a s s i f i e d as) csv format
open INPUT, "<$ input f i l ename " ;

my $tmp ;
my @tmp;
my @className=(" f tp " , " ftp−data" , " o the r s " , " imaps" , " i r c " , "ms−rdp" , "pop3

Appendix C. Key Source Code 150

" , " r t sp " , "smtp" , " ssh " , " t e l n e t ") ;
no . o f c l a s s e s
my $va l i dC l a s s =0;
no . o f c l a s s i f e d as
my $ v a l i dC l a s s i f i e d =0;
my %c l a s s ;
my %c l a s s i f i e d ;
TP
my %co r r e c t ;
In i t f o r hash
for (my $ i =0; $i<=$#className ; $ i++){

$ c l a s s {$className [$ i]}=0;
$ c l a s s i f i e d {$className [$ i]}=0;
$ c o r r e c t {$className [$ i]}=0;

}
my @a;
my @p;
my $a_w=0;
my $p_w=0;
my $a_a ;
my $p_a ;
my $ co r r e c t =0;
my $sum=0;

Input the data
$tmp=<INPUT>;
while (defined ($tmp=<INPUT>)) {

chomp($tmp) ;
@tmp=sp l i t / ,/ , $tmp ;
$ c l a s s {$tmp[0]}++;
$ c l a s s i f i e d {$tmp[1]}++;
$sum++;
i f ($tmp [0] eq $tmp [1]) {

$ c o r r e c t {$tmp[0]}++;
$ co r r e c t++;

}
i f ($tmp[1]=~/ r e j e c t e d / && $tmp [1] ! ~ / $tmp [0] /) {

$ co r r e c t++;
}

}
close INPUT;

Print the f i l e head i f output f i l e do not e x i s t s
i f (!− e $output f i l ename) {

open OUTPUT, ">>$output f i l ename " ;
print OUTPUT " cor r e c t , a l l , percent " ;
for (my $ i =0; $i<=$#className ; $ i++){

Appendix C. Key Source Code 151

print OUTPUT " , " , $className [$ i] , "_a" ;

}
print OUTPUT " ,weighted_ave_a , ave_a" ;

for (my $ i =0; $i<=$#className ; $ i++){
print OUTPUT " , " , $className [$ i] , "_p" ;

}
print OUTPUT " ,weighted_ave_p , ave_p\n" ;

} else {
open OUTPUT, ">>$output f i l ename " ;

}

Print o v e r a l l
print OUTPUT $cor rec t , " , " ,$sum , " , " , $ c o r r e c t /$sum ;
Print the accuracy
for (my $ i =0; $i<=$#className ; $ i++){

i f ($ c l a s s {$className [$ i]}==0){
print OUTPUT " , " , "0" ;
push @a, "0" ;

} else {
print OUTPUT " , " , $ c o r r e c t {$className [$ i] }/ $ c l a s s {

$className [$ i] } ;
push @a, $ co r r e c t {$className [$ i] }/ $ c l a s s {$className [$ i

] } ;
$va l i dC l a s s++;

}

}
print OUTPUT " , " ;

Print weigh ted and average accuracy
for (my $ i =0; $i<=$#className ; $ i++){

$tmp=sh i f t @a;
$a_w+=$tmp∗ $ c l a s s {$className [$ i] }/ $sum ;
$a_a+=$tmp ;

}
print OUTPUT $a_w, " , " , $a_a/ $va l i dC l a s s ;

Print the preces ion
for (my $ i =0; $i<=$#className ; $ i++){

i f ($ c l a s s i f i e d {$className [$ i]}==0){
print OUTPUT " , " , "0" ;
push @p, "0" ;

} else {
print OUTPUT " , " , $ c o r r e c t {$className [$ i] }/ $ c l a s s i f i e d

{$className [$ i] } ;

Appendix C. Key Source Code 152

push @p, $ co r r e c t {$className [$ i] }/ $ c l a s s i f i e d {
$className [$ i] } ;

$ v a l i dC l a s s i f i e d++;
}

}

Print weigh ted and average p r e c i s i on
for (my $ i =0; $i<=$#className ; $ i++){

$tmp=sh i f t @p;
$p_w+=$tmp∗ $ c l a s s {$className [$ i] }/ $sum ;
$p_a+=$tmp ;

}
i f ($ v a l i dC l a s s i f i e d !=0){

print OUTPUT " , " ,$p_w, " , " ,$p_a/ $ v a l i dC l a s s i f i e d ;
}
else {

print OUTPUT " , " ,$p_w, " , " , "0" ;
}
print OUTPUT "\n" ;

close OUTPUT;

APPENDIX D

Publications

Xiaoming Wang and David J. Parish, "Optimised TCP Traffic Classification with
Multiple Statistical Algorithms," in Proceedings of International Conference on
Information, Networking and Automation, IEEE, 2010, vol. 1, pp. 261–265.

Xiaoming Wang and David J. Parish, "Optimised Multi-stage TCP Traffic Classi-
fier Based on Packet Size Distributions," in Proceedings of the Third International
Conference on Communication Theory, Reliability, and Quality of Service, IEEE,
2010, pp. 98–103.

Xiaoming Wang, Martin D. Sykora, Robert Archer, David Parish and Helmut E.
Bez, "Case Based Reasoning Approach for Transaction Outcomes Prediction on
Currency Markets," in Proceedings of the Third International Workshop on Soft
Computing Applications, IEEE, 2009, pp. 91–96.

X. Wang, M. S. De-Silva and D. J. Parish, "Analyzing the Behavior of Network
Attacks at a High Level using Case-based Reasoning," in Proceedings of the Eighth
Annual PostGraduate Symposium on The Convergence of Telecommunications,
Networking and Broadcasting, 2007, pp. 397–400.

153

	Glossary
	Introduction
	Background
	Motivation
	Network Performance Management
	Quality of Service
	QoS in TCP/IP

	Network Security
	Firewall
	Intrusion Detection Systems

	Network Authorisation and Accounting

	Contribution Highlights
	Chapter Outlines

	Traffic Classification Techniques
	Packet Encapsulation
	TCP/IP Protocol Stack Overview
	IPv4
	TCP
	Flow Control
	Nagle's Algorithm

	UDP

	Current Classification Methods
	Port Number
	Packet Classification
	Stateful Inspection
	Deep Packet Inspection

	Statistical Classification Methods
	Parametric Classification
	Non-parametric Distribution Test

	Summary

	Algorithms for Statistical Classification
	Attributes for Parametric Classification
	Algorithms for Parametric Classification
	k-Nearest Neighbour
	Decision Trees
	Artificial Neural Networks

	Distributions for Non-parametric Tests
	Comparison Algorithm for Non-parametric Tests
	Summary

	Datasets & Preliminary Tests
	Data for Preliminary Evaluation
	Acquisition of Raw TCP Data
	TCP Flow Reconstruction
	Discriminator Calculation

	Preliminary Tests for Different Algorithms
	Preliminary Tests for Different Detection Windows
	Summary

	Hierarchical Classification
	System Architecture
	Overview
	Parallel Classifier
	Acceptance Thresholds for K-S
	Decision Making Mechanism

	Training, Validating & Testing
	Datasets for Optimisation Evaluations
	Implementation of the Proposed System
	Summary

	Result Evaluations
	Optimised Parameters
	Parameter Selection
	Optimised Parameters for Parametric Classifications
	Optimised Parameters for Non-parametric Classifications
	Overall Optimised Parameters

	Classification Results
	Final Decision Making
	Classification Results of Optimised Parametric Classifier
	Classification Results of Optimised Non-parametric Classifier
	Classification Results of Overall Optimised Classifier

	Summary

	Performance Comparison
	Controlled Experiments
	Datasets for Controlled Experiments
	Single Algorithm Classifiers with Full Traffic Flows
	Single Algorithm Classifiers with Optimised Detection Windows

	Overall Performance Comparison
	Summary

	Conclusions & Future Work
	Conclusions
	Future Work

	References
	Classification Recall Rates for Different Detection Windows Using Single Classifier
	Classification Precision for Different Detection Windows Using Single Classifier
	Key Source Code
	build_connection.pl
	matrix.pl
	len_dist.pl
	change_class.pl
	classify_ks.pl
	stats_para.pl
	stats_ks.pl

	Publications

