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Abstract 

 

The fluid catalytic cracking (FCC) unit is of great importance in petroleum refining 

industries as it treats heavy fractions from various process units to produce light ends (valuable 

products). The FCC unit feedstock consists of heavy hydrocarbon with high sulphur contents and 

the catalyst in use is zeolite impregnated with rare earth metals i.e. lanthanum and cerium oxides. 

The catalytic cracking reaction is endothermic and takes place at elevated temperature in a 

fluidised bed reactor generating sulphur-contaminated coke on the catalyst. In the regenerator, 

coke is completely burnt producing SO2, particulate matter emissions. The impact of the FCC 

unit is assessed in the immediate neighborhood of the refinery. Emission inventories for years 

2008 and 2009 for both SO2 and PM have been calculated based on real operational data. 

Comprehensive meteorological data for years 2005 – 2009 are obtained and preprocessed to 

generate planetary boundary layer parameters using Aermet (Aermod preprocessor). Aermod 

(US EPA approved dispersion model) is applied to predict ground level concentrations of both 

pollutants in the selected study area. Model output is validated with the corresponding measured 

values at discrete receptors. The highest hourly SO2 predicted concentrations for both years 2008 

and 2009 exceeded the corresponding Kuwait EPA ambient air standard, mainly due to elevated 

emission rates and the prevailing calm and other meteorological conditions. The highest daily 

SO2 predicted concentrations also exceeded the Kuwait EPA allowable limit due to high 

emission rates, while meteorological parameters influence is dampened. Hourly average 

predicted PM concentrations showed similar variation into SO2 in different location. The daily 

average predicted PM concentrations are lower than US EPA specified limit.  

An extensive parametric study has been conducted using three scenarios, stack diameter, 

stack height and emission rates. It is noticed that stack diameter has no effect on ground level 

concentration, as stack exit velocity is a function of the square of stack diameter. With the 

increase in stack height, the predicted concentrations decrease showing an inverse relation. The 

influence of the emission rate is linearly related to the computed ground level concentrations 

SOx additives are tested for SO2 emissions reduction. In the year 2008, reduction of SO2 

annual total emission by 43 % results in full compliance with Kuwait EPA hourly specified limit, 
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using an appropriate amount of additives. Similarly, 57 % reduction of SO2 annual total emission 

leads to no exceedance in predicted concentrations for the year 2009.  

The application of the state of the art technology, ESP has reduced about 90 % of PM emissions 

for the year 2009. 
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Introduction 

 

Fluid catalytic cracking (FCC) of heavy ends into high value liquid fuels is a key process in 

the petroleum refining industry. It gained a great importance since 1942 when there was high 

demand of fuels for military vehicles and equipments during the World War II. After the war, 

FCC process development took place to increase the yield, which allowed refineries to utilize 

their crude oil resources more efficiently, to produce more valuable products. This unit converts 

high boiling petroleum fractions, namely gasoil to high value products i.e. high-octane gasoline 

(about 45% of all gasoline produced), LPG and heating oil. Its heavy feedstock (vacuum gas oil, 

coker gas oil, unconverted oil and waxy distillate), coming from vacuum rerun unit, delayed 

coker unit and crude distillation units respectively is catalytically cracked into lighter products 

(liquefied petroleum gas, gasoline, diesel and fuel oils). 

  

Environmental concerns about this process have increased, during the last decade due to its 

great contribution of sulphur oxides and particulate matter emissions, which have adverse impact 

on the immediate neighborhoods of the refinery. Sulphur oxides emission is mainly depend on 

the elemental sulphur contents in the feedstock and coke. These emissions are generated as a 

result of the combustion of coke during the spent catalyst reactivation process. Particulate matter 

emissions are produced due to the attrition of the catalyst resulted from particle erosion and 

fracture during the process and the thermal shock of the fresh makeup catalyst addition, forming 

fines, Whitcombe et al., (2003).     

 

In the present work, comprehensive emission inventories from FCC unit in an oil refinery 

have been prepared based on real operational data. These inventories are calculated based on 

complete combustion of sulphur and coke impregnated on the catalyst in the regenerator. Mainly 

for both SO2 and particulate matter (PM), emission rates are calculated accurately using material 

balance for years 2008 and 2009, considering seasonal variations in the operation of the process 

unit. These results reflect the variation of sulphur in feedstock that comes from various refinery 

units. These emission inventories are used in dispersion model to assess their impact on the 

immediate surroundings of the refinery. 
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The US Environmental Protection Agency (US EPA) most advanced dispersion model 

Aermod has been selected for prediction of ground level concentration of SO2 and PM. The 

selection is based on the accurate calculation of the planetary boundary layer parameters through 

both surface and mixed layer scaling. Aermod is capable to construct vertical profiles of required 

meteorological variables based on measurements and extrapolations of those measurements 

using similarity (scaling) relationships. It also applies Gaussian plume treatment horizontally and 

vertically for stable conditions and non-Gaussian probability density function for unstable 

conditions. Aermod provides reliable predicted concentrations if turbulent wind velocity 

measurements are used to estimate plume dispersion, Venkatram et al., (2004). 

 

The meteorological data for years 2005 -2009 are obtained and used in preprocessor Aermet 

to generate planetary boundary layer parameters. These generated data are used in Aermod for 

years 2008 and 2009 emissions. Aermod is used to predict daily SO2 ground level concentration 

and the output is compared with the corresponding recorded values from Kuwait Environmental 

Public Authority (K-EPA) monitoring stations for the model validation process.  

 

Aermod is applied using year 2008 and 2009 emissions inventories to predict SO2 and PM 

ground level concentrations, considering the monthly emission variations (emission factors). 

Sensitivity study is conducted to investigate the influence of grid size, stack height, stack 

diameter and emission rates. 

 

Mitigation methods are tested using Aermod for both years 2008 and 2009.  SO2 emissions 

are controlled by the addition of SOx transfer additives. PM emissions are minimised by the 

installation of electrostatic precipitator, (ESP). Both methods have shown high reduction in both 

pollutants‟ emission rates. Consequently, the predicted ground level concentrations of these 

pollutants have substantially decreased.   

 

Chapter one describes detailed introduction of fluid catalytic cracking, (FCC) process in 

petroleum refining industries and the associated environmental aspects and its impact on the 

surroundings of refinery with mitigation methods. 
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Chapter two illustrates comprehensive views of previous research work conducted on fluid 

catalytic cracking process, emissions mainly SO2 and PM. Application of air dispersion models 

for assessing the environmental impact of different emission‟s sources and pollution abating 

methodologies have been extensively reviewed.  

 

Chapter three describes the process details of FCC unit in typical petroleum refining 

complex, feedstock components, chemical catalytic reactions, catalyst characteristics and FCC 

process operational parameters. 

 

Chapter four compares various air dispersion models, their theories, applications, advantages 

and limitations. US EPA approved dispersion model, Aermod is selected for the present work.In 

chapter five, and emission inventories calculations for years 2008 and 2009 are presented. 

Material balance over the FCC unit is applied using real operational data.   

 

Chapter five presents monthly emission inventories and their calculations methods for both 

years 2008 and 2009.  Monthly emission factors for both years are also computed in this chapter. 

 

Chapter six describes the application of Aermod and its preprocessor, Aermet with all 

required input parameters including meteorological data for years 2005 – 2009 and source 

characteristics. 

 

Chapter seven discusses the model output for various practical scenarios, year 2008 emission 

rate for SO2 and PM, year 2009 emission rate both pollutants, sensitivity study of stack height 

and diameter and different emission rates. 

 

Chapter eight summarises all the work the contribution and salient conclusions with the 

recommendations and future research ideas.   
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2.1  Introduction 

 

A literature review is an account of what has been published on a topic by accredited 

fluidized catalytic cracking unit under different aspects. Occasionally it is divided into three 

different segments, i) Generally about FCC unit, ii) SO2 emissions and iii) PM emissions. The 

purpose is to convey knowledge and ideas have been established and illuminate the strength of 

FCC unit.  

 

With respect to the growing environmental concerns, legislators are aiming at stern 

regulations in order to curtail the pollution levels. This can be considered as the sole entity that 

has driven industrialists and researchers alike into drawing up novel ideas in order to design FCC 

process satisfying the prevailing norms. The attempts include innovative design, improved 

operation, catalyst development, selective operating conditions, feedstock conditions, additives 

to reduce emissions, etc. There are several publications that elaborate the different endeavors. 

 

2.2  Fluidized Catalytic Cracking Unit / Technology 

 

Kikkinides et al., (2002) examined the problem of FCC catalyst reaction-deactivation, which 

is treated using a direct approach, and with the modification of the structural properties of the 

FCC catalysts to achieve better process performance. In the present study an attempt is made to 

relate the FCC process performance with the structural properties of the catalyst pellet. It is done 

through the development of 3D stochastic network models employed to represent the porous 

structure by matching N2 adsorption–desorption isotherms at 77 K. A comparison between 

experimental and simulation isotherms during catalyst deactivation showed excellent agreement 

between model and experiment. It is observed that with continuous deposition of coke on the 

pore surface, the morphology of the pore space is continuously modified, giving rise to a 

deviation in the diffusion path of the reactants in these spaces. Catalysts with high accessibility 

maximize the cracking of large molecule and minimizing secondary reactions like gasoline over-

cracking.  
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Whitcombe et al., (2003) showed the formation of fines in a fluidized catalytic cracker unit 

(FCCU) due to catalyst attrition and fracture as a major source of catalyst loss. The petroleum 

industry employs fluid catalytic cracking units (FCCUs) as the major tool to produce gasoline 

from crude oil. At the centre of this unit is regenerator which is used to burn coke from the 

surface of the spent catalyst. As the regeneration process is very turbulent, a large amount of 

catalyst material is discharge to the atmosphere. In addition to the fine particles present in the 

catalyst, the turbulent conditions inside the FCC alter the particle size distribution of the catalyst 

generating fine particles and significant amount of aerosols, which has been identified in the 

stack emission of FCCUs 

 

Chen (2006) described the recent scientific progress in fluid catalytic cracking (FCC) process 

by bridging the gap between process science and innovation in engineering practices. About 45% 

of worldwide gasoline production comes either directly from FCC units or indirectly from 

combination with downstream units, such as alkylation.  Modern FCC units can take a wide 

variety of feedstock and can adjust operating conditions to maximize production of gasoline, 

middle distillate (LCO) or light olefins to meet different market demands. The new regulations 

also require reduction in SOx and NOx emissions, which can be accomplished by the use of 

catalyst additives and selective catalytic reduction processes. The engineering innovations 

include shorter reaction time achieved with the help of highly active zeolite FCC catalyst, 

increased regenerator temperature to ensure complete catalyst regeneration, and control of 

thermal cracking by a modified feed injection system which cools off the lower riser quicker by 

fast mixing and vaporization of the feed. As the recent environmental regulations became more 

stringent, further reduction of the particulates emission is required, and can be achieved by viable 

technologies including the use of electrostatic precipitator (ESP), wet scrubber and new cyclonic 

technology.  

 

McMillan et al., (2007) described some industrial applications, to control the size distribution 

of the particles in a fluidized bed, which is extremely important in order to avoid poor 

fluidization. One method to control the size of the particles in the bed is to use attrition nozzles, 

which inject high velocity gas jets into the bed creating high shear regions and grinding particles 

together. The objective of this study is to test different high velocity attrition nozzles and 
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operating conditions in order to determine the effects of fluidisation velocity, nozzle size and 

geometry, bed material and attrition gas properties on the grinding efficiency. Therefore different 

high velocity attrition nozzles are tested. An empirical correlation is developed for nozzles 

operating at sonic conditions and is able to accurately predict the grinding efficiencies using 

experimental data. It is analysed that larger the diameter of the nozzles with an expansion region 

at the tip, operating at high flow rates using lower density gases with higher equivalent speeds of 

sound, resulted in the highest grinding efficiencies. Moreover gas properties such as speed of 

sound and density had a significant impact on the grinding efficiency. 

 

Zhu et al., (2008) reported to improve the understanding of the complex hydrodynamic 

characteristics in the bottom region of catalyst fluidised bed (CFB) riser over a wide range of 

operating conditions. The results included radial solids concentrations correspondence to the 

radial profiles of standard deviation, particle velocity profiles and probability density 

distributions. Comparisons are made between the flow structures in the riser bottom region, 

bubbling and turbulent fluidized beds. According to the cross-sectional average solids 

concentration (εs), two kinds of the riser bottom regions are identified: dilute bottom region with 

εs < 0.1 (non-S-shaped axial solids concentration profile) and dense bottom region with εs > 0.1 

(S-shaped axial solids concentration profile). For the dilute bottom region, the flow structure 

belongs to homogenous dilute phase flow. For the dense bottom region, a core–annulus flow 

structure with a uniform dilute core region surrounded by a dense-annular zone appears. 

However, the average down flowing particle velocity changes little with radial positions, 

suggesting that in the bottom region, the downward movement of particles is dominated by 

particle–particle interactions. 

 

2.3  Sulphur Dioxide (SO2) Emissions 

 

Palomares et al., (1999) discussed the recent findings where metals containing hydrotalcites 

used as promoter for SOx and NOx removal. The metal oxides display redox properties; Cobalt 

(Co) in this case, helps in the reduction of NO, while the addition of an oxidant like cerium oxide 

is imperative for the removal of SO2. The results showed that Co-Al-Mg oxides derived from 

hydrotalcites are catalysts with high surface area than the Cu-Mg-Al catalyst. The copper catalyst 
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is observed to perform better with respect to SO2 oxidation as compared to the cobalt catalyst 

and its regeneration is also better than that of the cobalt catalyst. It is noticed that the addition of 

cerium oxide has no significant impact on overall conversion in case of copper impregnated 

catalyst. 

 

Abdul Wahab et al., (2002) studied the impact of SO2 emissions from a petroleum refinery 

on the ambient air quality in Mina Al-Fahal, Oman. Dispersion model ISCST is used to predict 

SO2 ground level concentration. The study is performed over a period of 21 days. Computed SO2 

concentrations are compared with the measured values of SO2 for maximum hourly average 

concentration, maximum daily concentration and total period average concentration. It is noted 

that the model output under-predicted the SO2 concentration for all the three cases due to 

unavailability of background concentrations and the presence of more dominant sources. Based 

on the maximum daily average concentration and the total period maximum concentration, the 

model under-predicted the average measured concentration by 31.77 % and 41.8 % respectively. 

The model performed slightly better based on maximum hourly average concentration and 

under-predicted by 10.5 %.      

 

Vallaa et al., (2004) investigated the effects of various types of fluid catalytic cracking (FCC) 

feed-stocks (VGO, FCC gasoline and FCC gasoline cuts) on sulphur compounds distribution in 

the gasoline produced from FCC process. Hydrogen transfer reactions played an important role 

on gasoline sulphur and cracking temperature, it could effects gasoline sulphur removal. The 

cracking of various FCC gasoline cuts enriched specific sulphur compounds that used to indicate 

reaction networks through which these compounds can de-sulphurised in the FCC environment. 

It is suggested that this occurs due to the refractory nature of the sulphur compounds in hydro-

treated feeds to be decomposed for the saturated hydrocarbon environment of hydro-treated feeds 

which enforces the hydrogen transfer reactions and the reduced catalyst to oil ratio needed to 

achieve the desired conversion. 

 

Yescas et al., (2004) discussed the importance of fluidised-bed catalytic cracking (FCC) unit 

in the oil refining industry. During the last 60-year , fluid catalytic cracking (FCC) is considered 

to be one of the most important refining processes, involving the conversion of heavy oil 
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feedstock into gasoline and other valuable products such as gasoline and C3–C4 olefins. In this 

process pollutant compounds, such as sulphur in feedstock, are redistributed into products and 

emissions. In this study, sulfur balance is performed around an industrial FCC unit considering 

riser and regenerator as coupled reactors. Also kinetic model is used that is tuned using industrial 

data and solved to predict operating regions of the industrial units at different conditions. It also 

considers explicitly the formation of hydrogen sulfide during the catalytic cracking of the 

feedstock. Simulation results indicate the portion of sulfur in the feedstock that goes to fuels and 

the portion that is lost as emissions from the processes. It is also observed that the sour gas 

production is directly proportional to the catalyst to oil ratio. Finally in the end it is noted that the 

operation at middle catalyst to oil ratios yields to gasoline with lowest sulfur levels and leads to 

maximum profit. 

 

Barth et al., (2004) studied the use of materials containing mixed oxides MCM-36 mixed 

with alkaline earth aluminium oxide pillars, which are highly active additives for the reduction of 

NO with CO under reaction conditions similar to the oxygen depleted zone of the FCC 

regenerator. The high-temperature flue gas stream at the exit of a regenerator contains O2, N2, 

CO, CO2, H2O, SOx, and NOx. The NOx emissions from the regenerator of a FCC can contribute 

up to 50% of the total NOx emissions in a refinery and consist mainly of NO, which is formed in 

the regenerator, while NO2 is formed only after NO is being released to the air. N2 and N2O are 

formed by the reaction of isocyanates with NO. The reduction of NO by CO over MCM-36-type 

materials is explained by involving a two-step process as the formation of nitrous oxide as an 

intermediate. The additives show a reduction of NOx emissions simulating during the 

regeneration of industrial coked FCC catalysts in a fluidized-bed reactor but lower the 

concentration of NOx released in the flue gases. It is noted that high NO conversions yields N2, 

under oxygen deficient conditions and the performance of these pillared materials are greater 

than the non-pillared ones.  

 

Yassaa et al., (2005) determined the absolute contents and relative distributions of organic 

aerosols (n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic 

hydrocarbons (PAH)) in flare gases emitted during the crude oil extraction and in the free 

atmosphere of the Hassi-Messaoud city (Algeria). PAH are usually present at low concentrations 
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in the emission and the relative PAH, seemed to be unable to be driven over long distances 

through the atmosphere, before being decomposed. The pattern of the non-polar fraction released 

by the torches at Hassi-Messaoud presented sets of branched alkanes and a strong predominance 

along the whole carbon number range (C16–C34) versus odd homologues. It is found that n-

Alkanes also abundant both in the direct emission (from 460 to 632 ng m
-3

) and city atmosphere 

(0.462 μg m
-3

). Saturated and unsaturated mono-carboxylic acids, accounted for the major 

fraction of the total particulate organic matter identified both in torch exhaust and atmospheric 

particulate. The incomplete thermal combustion of torched crude oil is very likely the main 

source of these particle-bound organic constituents in the city and its surrounding region.  

 

Babich et al., (2005) explained the mechanism of NOx formation in the FCC process as an 

attempt to find ways to reduce it. Nitrogen oxides (NOx) emission during the regeneration of 

coked fluid catalytic cracking (FCC) catalysts is an environmental problem that‟s why the 

reduction of NOx levels in the exhaust gases is an essential part of the technology for a green 

refinery. Through this study it is possible to follow the reaction pathways of N present in FCC 

feed, as heterocyclic compounds. Presence of Nitrogen in the FCC feed is incorporated as poly-

aromatic compounds in the coke deposited on the catalyst during cracking. Decomposition of the 

coke has been monitored by gas chromatography (GC) and mass spectroscopy (MS) during the 

catalyst regeneration (temperature programmed oxidation (TPO) and isothermal oxidation. The 

pyrrolic- and pyridinic-type N specie present more in the outer coke layers, which are oxidized 

under the conditions when still large amount of C or CO is available from coke to reduced NOx 

formed to N2. Quaternary - nitrogen (Q-N) type species are present in the inner layer, strongly 

adsorbed on the acid sites on the catalyst. Most of the coke is already combusted at this point, 

lack of reducing agents (C, CO, etc.) results in the presence of NOx in the tail gas.  

 

Lopez et al., (2005) assessed the impact of natural gas and fuel oil consumption on the air 

quality in an Industrial Corridor, Mexico to determine the optimal NG and fuel oil required to 

reduce SO2 concentration. Air dispersion model Aermod is used to compute ground level 

concentration of SO2. Model output is then validated against SO2 field measurements. Different 

hypothetical emission scenarios are performed to examine the impact of NG and fuel oil mixture. 

The obtained results in this work indicate that dispersion model Aermod presented good 



12 
 

correlation with the measured concentrations. It is also concluded that increasing 40 % of NG 

consumption will reduce SO2 concentration by 90 %.  

Long et al., (2005) investigated effects of vanadium on the desulfurization performance of 

FCC catalysts having different oxidation numbers. Among the existing desulfurization solutions, 

FCC has greater significance in economical applications; desulfurization catalyst and additives. 

Molecular modelling studies showed how vanadium with low oxidation number could affect the 

chemical conversion of sulfur compounds. It is proved with electron paramagnetic resonance 

(EPR) and temperature programmed reduction (TPR) that vanadium oxidation number decreased 

when the catalyst is activated. The desulfurization performances of activated equilibrium 

catalysts are better than that of the un-activated catalysts.  

 

Polato et al., (2005) recent years, many refineries had taken measures to reduce SOx 

emissions. The hydrotalcite-derived Mg, Al-mixed oxides (MO) with variable Mg/Al ratios (3, 1, 

1/3), which impregnated with 17 wt % of CeO2 is use to evaluate SOx removal the under 

conditions of FCC units. Thus, the evolution of SO2 upon reduction decreases as the importance 

of the spinel-phase in the mixed oxides increases. The sulphates formed from the spinel-phase 

are more easily reduced than those from the periclase phase. The growth of the sulphate phase in 

the early stages of sulphation destroys the small meso-pores of the mixed oxide. Role of ceria 

(CeO2) derived from its basic / redox character enhances the oxidation of SO2 to SO3 under FCC 

regeneration conditions by reacting with SO2 to get sub stoichiometric cerium oxide, which is re-

oxidized with oxygen. Results showed the regeneration of the sulfated additives that the 

composition of the reductive stream influenced the regeneration profiles, the total quantity of 

sulfur released, and the reduction products distribution for each sample. These results could be 

related to the nature of the reducing agent and to the fact that the thermal stability and the 

reducibility of the sulphates are significantly affected by the metal with redox properties present 

in the additive. 

 

Siddiqui et al., (2006) showed use of additives to reduce the sulphur compounds in gasoline. 

Many countries worldwide are introducing regulations to reduce sulphur levels in gasoline to less 

than 30 ppm within the coming few years. To meet this regulation, refiners are considering 

various options to reduce sulphur in gasoline. Sulphur in gasoline increases SOx emissions in 
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combustion gases, reduces the activity of vehicle catalytic converters, and promotes corrosion of 

engine parts. Among the various available options for the reduction of gasoline sulfphur in fluid 

catalytic cracking (FCC), a viable option would be the use of FCC catalyst additives. Alumina 

supported zinc, titanium and gallium additives are prepared, mixed with Y-zeolite based FCC 

catalyst. It has been discussed that the sulfur reduction ability of Ga/alumina is better than 

Zn/alumina and Ti/alumina. The catalyst-additive mixture is evaluated for their sulphur reduction 

ability in micro-activity test unit (MAT). The Ga/alumina additive is able to reduce sulfur 

content of FCC gasoline fraction (221
o
C) by about 31%. It is highlighted that additives slightly 

reduced catalyst‟s cracking activity with no change in coke yield namely thiophene, tetra-

hydrothiophene, alkyl-thiophenes, and benzo-thiophenes are basic in nature, and the additive 

requires acidic nature.  

 

Centi et al., (2007) observed SOx trap showed enhanced performances with the Cu/Mg/Al 

ternary (HT) derived materials with respect to binary Cu/Al HT-derived materials. Their 

perrformances depend on the feed composition and type of experiments. However, a similar 

ranking of the SOx trap performances is observed for the different configurations. Cu/Mg/Al = 

1:1:2 showed the best performance and also improved hydrothermal stability with respect to 

Cu/Al binary samples. Therefore, it is an important element to improve the performance of SOx 

traps using Cu/Mg/Al ternary materials either to protecting NOx traps in auto exhaust uses for 

FCC applications. 

 

Mizutani et al., (2007) showed automobile exhaust gas can cause serious environmental 

issues, which are against the regulations, therefore demand for ultra low sulphur gasoline and 

diesel fuel is increasing in the petroleum refining industry. It is necessary to develop a process 

that could effectively convert the heavy oil into clean transportation fuels. Atmospheric residue 

(AR) is now de-sulphurised before fluid catalytic cracking (FCC) to produce low sulphur 

gasoline. Therefore desulphurisation either before or after FCC needs to be improved by 

converting the saturate and aromatic fractions in hydro-sulphurised atmospheric residue to the 

gasoline, regardless of their presence in vacuum gas oil (VGO) and vacuum residue (VR). The 

gasoline produced from HDS-AR contained tetra-hydrothiophene and C2-thiophene as well as 



14 
 

those in the gasoline from HDS-VGO while the contents of the former species is much larger 

than those in the gasoline from HDS-VGO.  

 

Polato et al., (2008) noted Mg, Al- mixed oxides derived from hydrotalcite like compounds 

with an M
3+

/ (M
2+

 + M
3+

), which are partially replaced by Cu, Co, Cr or Fe with Mg or Al. They 

are used as precursors for different mixed oxides (MO): Cu–MO, Co–MO, Cr–MO or Fe - MO. 

These compounds are more active for SOx pick up than the Mg.Al mixed oxide. These materials 

are evaluated for SOx removal under conditions similar to those found in the fluid catalytic 

cracking (FCC) regenerator. The following order of catalytic activity for SOx uptake is observed: 

Cu–MO > Co–MO > Fe–MO > Cr–MO. The regeneration of the sulphated additives is also 

studied and the results showed that the composition of the reductive stream influenced the 

regeneration profiles, the total quantity of sulfur released, and the reduction products 

distribution, in a specific way. The study of the influence of the composition of the reductive 

stream on catalytic performance indicated that propane is a less efficient reductive agent than 

hydrogen, as evidenced by the lower regeneration levels and by the higher temperatures for 

sulphur release.  

 

2.4 Particulate Matter (PM) 

 

Akeredolu (1989) discussed the air pollution sources in Nigeria. It is found the particulate 

matter (PM) constitutes the major atmospheric pollution problems. Atmospheric environment 

problems such as air pollution and thermal stress are growing in many tropical countries partly 

on account of their rapid rate of industrialization. The potential for air pollution generation has 

been overlooked and being predicted solely on the basis of indicators of industrialization / 

urbanization which outpaces the urban planning process. Both anthropogenic and non-

anthropogenic sources of particulate matter are found to be important. Particulate matter is 

shown to constitute the most abundant air pollutants and its impact as well those of gaseous 

pollutants shown to manifest in measurable urban heat island effects. Biomass/solid waste 

burning and road surface dust mobilization are the major non-anthropogenic sources of ambient 

particles. The Harmattan dust haze remobilization resulting from fugitive emissions from open 

surfaces and biomass burning are the major non-anthropogenic sources of particulate matter to 
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exist in Nigeria. Also industries generate and emit particulate as well as gaseous pollutants, 

which have manifested significant negative impact at local levels. Combustion-derived pollution 

is seen to be increasing. The annual atmospheric particle loading for the country is estimated at 

2.75 x l0
9
 kg with the following source contributions:  bush burning (31.7%), fugitive dust from 

roads (29.1%), fuel wood burning (21.3%), Harmattan dust (13.8%), solid waste incineration 

(2.1%), stationary sources (1.6%), automobile exhaust lead (0.2%) and gas flares (0.1%). 

 

Boerefijn et al., (2000) reviewed catalyst particles used for fluid catalytic cracking (FCC) in 

oil refineries could undergo attrition, and continuous deactivation, which can contribute to the 

production of fines. Therefore a methodology for evaluation and selection of optimum catalyst 

and additives for operating FCC units presented. The level of attrition in an FCC unit is a 

function of particle properties, structure and the hydrodynamic regimes prevailing in the unit. It 

is necessary to ensure that the catalyst is sufficiently attrition resistant. Thus the performance of 

the fresh FCC catalyst is not representative by the performance of the circulating catalyst 

inventory or equilibrated catalyst (e-cat) in FCC unit. Fresh catalyst gives high conversion, coke 

and gas yields as compared to e-cat. Surface area of the e-cat is typically about 50–60% of the 

fresh catalyst and the catalyst activity is typically ten units lower compared to fresh catalyst. 

 

The latter depends on the geometry, solids concentration, flow rates and other operating 

conditions. It is also includes the fluidized state as well as dense and lean phase flows and impact 

of particle flows on stationary surfaces. Attrition of catalyst powder in FCC units can lead to 

considerable loss of material. Therefore a number of test methods exist, which had proven to be 

very useful in tackling design issues so that a relative assessment of the attrition propensity of the 

particles can be made quickly. On the other hand, single-particle impact testing provides an 

unambiguous method for assessing the attrition propensity of particulate solids. The approach 

based on single-particle testing, coupled with the hydrodynamic models, is more fundamental 

and hence generally more reliable.  

 

Bosco et al., (2005) discussed how the refinery and traffic related sources could affect the 

chemical composition of airborne particulate matter over the town of Gela using pine needles 

and urban road dust as the means of survey. Factor analysis identified three main sources of 
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metals: soil, traffic, and industrial emissions. The petrochemical plant appears to be associated 

with raised levels of As, Mo, Ni, S, Se, V, and Zn. Similarly, enhanced Cu, Pb, Pt, Pd, Sb, and 

partly Zn concentrations are closely associated with traffic. In addition urban and industrial areas 

are mainly affected by such emissions e.g. Re-suspension by wind of crustal material and 

volcanic activity, suspended solid particles are due to coal and oil combustion, motor vehicle 

exhaust fumes, the construction industry, metal working industries, and other anthropogenic 

sources, which may present a potential of local hazard to the population. According to the results 

of this study, a continuous environmental monitoring of the chemical composition of the finest 

fraction of airborne particulate matter is strongly recommended. 

 

Kulkarni et al. (2007) determined the impact of FCC unit PM2.5 emission events released 

from a local refinery in the Houston, TX. PM2.5 levels are measured at four different continuous 

ambient monitoring air-sampling stations. The rare earth elements (REE‟s) emissions are 

quantitatively tracked using elemental markers such as lanthanum and lanthanides across the 

Houston region as they are major constituents of FCC catalyst. REE‟s including La, Ce, Pr, Nd, 

Sm, Gd and Dy have adverse impact on human health including central nervous system, liver, 

kidney and increase of atherosclerosis at the fundus of the eyes. It is noticed that FCC lost 

catalyst is responsible for elevated PM2.5 emissions i.e. REE‟s emissions from the refinery. It is 

observed that during regional haze episode, PM2.5 concentrations are high at the areas located 

upwind direction from the source i.e. Deer Park and Galveston. FCC catalyst emission represents 

12 % of the total PM2.5 at the neighboring downwind site from the refinery.  Therefore, it is 

concluded that PM2.5 in the vicinity of petroleum refineries needs to be measured continuously in 

order to evaluate the human exposure to REE‟s emitted mainly from FCC unit and assess the 

adverse health effect. 

 

Kesarkar et al., (2007) studied the spatial variation of PM10 concentration from various 

sources over Pune, India. Guassian air pollutant dispersion model Aermod is used to predict the -

concentration of PM10. Weather research and forecasting (WRF) model is used to furnish 

Aermod with planetary boundary layer and surface layer parameters required for simulation. 

Emission inventory has been developed and field-monitoring campaign is conducted under Pune 

air quality management program of the ministry of Environment and Forests. This inventory is 
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used in Aermod to predict PM10. A comparison between simulated and observed PM10 

concentration showed that the model underestimated the PM10 concentration over Pune. 

However, this work is conducted over a short period of time, which is not sufficient to conclude 

on adequacy of regionally averaged meteorological parameters for driving Gaussian models such 

as Aermod. 

 

Pang et al., (2007) studied the modification effects of different chemical elements on ultra 

stable Y zeolite (USY), the resulting catalysts are evaluated in a micro-activity test unit (MAT) 

and confined fluidized bed (CFB) reactor. The acidity of catalytically active component, e.g., 

ultra stable Y zeolite (USY), plays an important role in determining their cracking activity and 

selectivity. So the relation between the acidity of the zeolite and the conversion of sulphur 

compounds as well as FCC product distribution are studied. To develop advanced sulfur 

reduction catalytic cracking catalysts, different type of elements are used to modify USY and the 

resulting catalysts are evaluated in a confined fluidized bed reactor and a micro-activity testing 

unit. The assessment results indicated that the USY modified with Cu gave rise to serious coke 

deposition on the catalyst owing to its high dehydrogenation ability, while the USY zeolites 

modified with Zn and V only slightly increased coke yield, and the V-modified zeolite reduced 

the sulfur contents obviously. An optimum catalyst is obtained by the combined rare earth and V 

modification, over which the sulfur content in FCC gasoline can be decreased and the selectivity 

for the target products can be improved, with the sulfur content reduced by 30 m% and the 

selectivity to coke even decreased by 0.20 m% at a comparable conversion level of the base 

catalyst.  

 

Cerqueira et al., (2008) discussed catalyst deactivation occurred both ways reversibly and 

irreversibly over the course of the commercial fluid catalytic cracking (FCC). The typical FCC 

catalyst consists of a mixture of an inert matrix (kaolin), an active matrix (alumina), a binder i.e. 

(silica or silica–alumina) and Y zeolite. During the FCC process, a significant portion of the 

feedstock is converted into coke. This coke temporarily deactivates the active sites of the catalyst 

by poisoning, pore blockage or both resulting in an important activity loss. It happened due to 

contaminants present in the feedstock or to the de-alumination of the zeolite catalyst component. 

Aspects related to the various causes of FCC catalysts (and additives) deactivation under 
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industrial conditions are also recapitulated. The recent advancement in studies related to FCC 

catalyst additives deactivation proven that this field will continue to deserve attention. 

 

Moreno et al., (2008) derived ambient PM10 and PM2.5 at Puertollano (central Spain) mostly 

from local industrial emissions (including a refinery and power stations) and mineral (crustal) 

aerosols from fugitive dusts and African intrusions. Research demonstrate how the 

concentrations of V and lanthanoid elements in atmospheric PM can be used to identify transient 

pollution events specifically linked to refinery emissions, even with in areas with high 

concentrations of other industrial emissions and natural mineral dusts. The total lanthanoid 

content of PM is controlled primarily by the amount of coarse crustal material present, with the 

highest values being recorded in PM10 during an African dust intrusion (13 ng m
-3

). In contrast 

La/Ce and La/Sm ratios are controlled by the refinery emissions, rising above natural crustal 

averages due to the release of La from fluid catalytic converters (FCC). Crustal La/Ce ratios are 

least common, and La anomalies most common, in PM2.5 measured during local pollution events.  

 

Ravichander et al., (2009) discussed industrial development in the FCC process and the 

methodology for evaluation and selection of optimum catalyst and additives for operating FCC 

units. Fluid catalytic cracking (FCC) unit has significant impact on refinery economics 

producing valuable products like gasoline and light olefins. Mandatory environmental 

regulations have imposed stringent quality limits on refinery products, especially on gasoline and 

diesel fuels. The selection of suitable catalysts and additives involve both technical and 

commercial aspects. The catalyst residence time in the unit is several days depending on the 

catalyst addition rate and circulating catalyst inventory. Study elaborates the laboratory 

evaluation methodology adopted; modeling techniques used for making yield predictions and 

presents case studies of successful catalyst and additive selection and use in a commercial FCC 

unit. 

 

2.5 Dispersion Models 

 

The changes in the thermal behavior of the regional weather and consequently climate due to 

urbanization and industrialization are well studied and documented. Air pollution has become a 
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problem of major concern all over the globe. The continuing expansions of existing industries, 

the development of new technologies and products with population growth, especially in large 

urban areas, are introducing a variety of pollutants in large quantities into the atmosphere. 

Special importance has been given to the possible population risks due to atmospheric dispersion 

of contaminants from different kinds of hazardous sources (nuclear installations, petrochemical 

plants, etc.) There are several sources of air pollution, viz., industrial, power generation, 

transportation, agricultural, and natural sources.  

 

The past ten years has seen the development of several dispersion models that attempt to 

incorporate current understanding of micrometeorology and dispersion. Regulatory health risk 

assessment requires estimating pollutant concentrations at source receptor distances of a few 

metres. This scale is especially important for assessing the risk posed by sources in urban areas 

such as gasoline stations and dry cleaners, where human receptors may be located within metres 

from the sources. In principle, several models, such as Aermod are applicable to such sources 

because they are designed to treat the effects of buildings on near source dispersion. Moreover 

the atmosphere is described by similarity scaling relationships using only a single measurement 

of surface wind speed, direction and temperature to predict vertical profiles of wind speed, 

direction, temperature, turbulence and temperature gradient. Aermod can also designed to model 

particle dispersion and currently only been used to investigate gas phase dispersion.  

 

Degrazia et al., (2000) presented a turbulence parameterization for dispersion models in all 

stability conditions, excluding the very stable conditions. New sets of turbulence 

parameterizations can be use in atmospheric dispersion models, with the current knowledge of 

the planetary boundary layer (PBL) structure and characteristics. The present turbulence 

parameterisation is based on Taylor's statistical diffusion theory, in which the shear buoyancy 

PBL spectra are modeled by means of a linear combination of the convective and mechanical 

turbulent energy. The validation of the present parameterisation applied in a Lagrangian particle 

model. As a consequence, a parameterisation scheme, able to deal contemporary with neutral and 

slightly convective condition. Results obtained are quite encouraging. Therefore, the new 

turbulent parameters may be suitable for applications in regulatory air pollution modelling. In 

addition, these parameterizations gave continuous values for the PBL at all elevations (zo ≤ z ≤ h, 
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zi) and all stability conditions from unstable to stable, where h and zi are the turbulent heights in 

stable or neutral and convective PBL respectively and is the Monin-Obukhov length. It is the aim 

of this work to present the general derivations of these expressions to show how they compare to 

previous results. 

 

Venkatram et al., (2001) suggested an approach for the development of an air quality model 

designed for regulatory applications. The model is not designed to describe the spatial and 

temporal distribution of concentrations. Rather, it is designed to meet a more limited objective, 

which is to simulate concentration frequency distributions observed under a variety of 

conditions. This approach to model development allows us to neglect model features that might 

be important in estimating concentrations at specific locations and times. The model is designed 

to provide estimates of concentration distributions and is thus primarily suitable for regulatory 

applications. The model assumes that the concentration at a receptor is a combination of 

concentrations caused by two asymptotic states: the plume remains horizontal and the plume 

climbs over the hill. The factor that weights the two states is a function of the fractional mass of 

the plume above the dividing streamline height. The model had been evaluated against data from 

four complex terrain sites.  

 

Caputo et al., (2003) conducted an inter-comparison between Gaussian, Gaussian segmented 

plumes and Lagrangian codes. Gaseous emissions are simulated under real meteorological 

conditions for dispersion models Aermod, HPDM, PCCOSYMA and HYSPLIT. The Aermod 

and HPDM meteorological preprocessors results are analyzed and the main differences found are 

in the sensible heat flux (SHTF) and u* (friction velocity) computation, which have direct effect 

on the Monin–Obukov length and mixing height calculation. Gaussian models (Aermod, HPDM) 

computed the dispersion parameters by using the similarity relationships, whereas Gaussian 

segmented model (PCCOSYMA) used P-G stability class to evaluate these parameters. 

Lagrangian transport model (HYSPLIT) advected the puff and calculated its growth rate with 

local mixing coefficients. Meteorological parameters have great effect on the performance of air 

dispersion models. Therefore, Aermod and HPDM have developed effective and sophisticated 

meteorological parameters preprocessors. It is noticed that HPDM computed the most stable 

condition and the lowest mixing height. The comparison also showed a significant discrepancy 
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between HPDM and other Gaussian models. The maximum ground level concentration predicted 

by Aermod, HPDM and PCCOSYMA are similar.   

Sax et al., (2003) established uncertainty analytical approach to elaborate a universal method 

for the estimation of unpredictability and uncertainty in Gaussian air pollutant dispersion 

modeling system. Uncertainty is propagated for different components of both models (ISCT3 

and Aermod) using Monte Carlo statistical techniques. In this case Aermod predicted a greater 

range of pollutant concentrations than ISCST3 for low-level sources. Practically uncertainty is 

very important parameter to record at receptors with highest predicted concentrations that‟s why 

indicated results are not 100 % agreed, where the emissions are the dominant source of 

uncertainty. As Gaussian models are sensitive for the location of emissions release, meteorology, 

and model parameters, therefore these inputs are well described to minimise uncertainty in the 

model results. Aermod applications are sufficiently reliable to ensure consistent risk management 

decisions. If Aermod is to be applied on a regulatory basis in the future, it will be easy to 

improve to minimize uncertainty within the model parameters by using consistently applied 

modelling approaches.  

 

Mehdizadeh et al., (2004) showed the emissions from elevated point sources, travel at high 

altitudes and contribute to regional air pollution. Emissions from industrial stacks are regulated 

to protect human and environmental health. Thus, industrial facilities are required permits to 

emit into the atmosphere and to demonstrate their compliance with regulations. That„s why 

emission data is required to evaluate how urban and industrial plumes travelling at high altitudes 

impact on background plumes. In the process dispersion models are generally used to assess the 

impact of point source emissions at ground level. So dispersion models, SCREEN and Industrial 

Source Complex (ISC) are considered to evaluate the importance of individual point source 

plumes at high altitude. The study mainly considered power plant plumes and developed a 

general methodology for evaluating their impact on regional air quality.  

 

This study is aimed at determining whether simple dispersion models at high altitudes can be 

used as a screening tool to evaluate the impact of individual plumes from point sources on 

regional air quality. The main objective is to determine whether a simplistic approach, using a 

representative set of meteorological parameters, would accurately predict the prevailing 
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atmospheric condition. The study also sought to develop a procedure that is less time, data and 

cost intensive to estimate individual plume impact on air quality. It is noted that crosswind shear 

effects at high altitudes are not considered in this work. Therefore using the modified ISC model, 

plumes (mostly for unstable cases) are examined from four power plants, located in eastern 

Texas. Air quality data collected by the Baylor aircraft from the Baylor Sampling Project are 

used for calibration and validation. Emissions of SO2 are considered since SO2 acts as a non-

reactant species in the atmosphere when evaluated over flight times used by the aircraft. User 

defined meteorological parameters are used instead of the more common annual or probabilistic 

meteorological data. Results demonstrated that on a typical day, using the most occurring 

stability class, average wind speed and average mixing height the modified ISC accurately 

predicted the peak concentrations about 80% of the time. The modified ISC also correctly 

projected plume width within 70% of the actual spread, at least 60% of the time.  

 

Venkatram et al., (2004) described the evaluation and improvement of dispersion models for 

estimating ground-level concentrations in the vicinity of small sources located in urban areas.  

The objective of the study is to identify potential improvements to near-field modeling in urban 

areas. The models are evaluated with observations from a tracer study conducted at the 

University of California, Riverside. Experiment simulated a non-buoyant release from the top of 

a small source in an urban area. Several receptors are located upwind of the dominant westerly 

wind direction. Model estimates from ISC-PRIME and Aermod-PRIME are evaluated with 

hourly observed concentrations. These models overestimated the computed highest 

concentrations. At the same time, the lower range of concentrations is underestimated. 

 

A diagnostic study with a simple Gaussian dispersion model that incorporated site specific 

meteorology indicated that these problems can be corrected by accounting for wind direction 

meandering in the vicinity of a source, caused by increased horizontal turbulence in urban areas. 

While Aermod incorporates lateral meandering, it switches it off in the near field affected by 

PRIME estimates. However analysis indicates that the PRIME algorithm, which is used to 

calculate dispersion in the wake cavity, neglects wind meandering and overestimates pollutant 

concentrations the near field. These concentration estimates might be improved by combining 

upwind meandering with the PRIME algorithm in Aermod. Because PRIME is designed for 
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buoyant power plant releases, it might not overestimate concentrations when buoyancy allows 

the plume to „„escape‟‟ dispersion in the near field. This study demonstrates that Aermod can 

provide reliable near-field concentration estimates from urban emission sources if turbulent 

velocity measurements close to a source are used to estimate plume dispersion. 

 

Rama Krishna et al., (2004) examined the assimilative capacity and the dispersion of 

pollutants resulted from various industrial sources in the Visakhapatnam bowl area, which is 

situated in coastal Andhra Pradesh, India. Two different air dispersion models (Gaussian plume 

model, GPM and ISCST-3) are used to predict ground level concentrations of sulphur dioxide 

and oxides of nitrogen and assimilative capacity of the Visakhapatnam bowl area‟s atmosphere 

for two seasons, namely, summer and winter. The computed 8-hr averaged concentrations of the 

two pollutants obtained from the GPM and ISCST-3 are compared with those monitored 

concentrations at different receptors in both seasons and the validation carried out through Q-Q 

plots. Both models outputs showed similar trend with the observed values from the monitoring 

stations.  The GPM output showed over-prediction, whereas the ISCST-3 showed under-

prediction in comparison with the observed concentrations. Terrain features and land/sea breeze 

influences are not considered in this study, which strongly affected the models outputs.  

 

Venkatram et al., (2004) evaluated dispersion models for estimating ground level 

concentrations in the vicinity of emission sources in the urban area of university of California, 

Riverside. Aermod-PRIME and ISC-PRIME dispersion models are used to predict SF6 at 

different receptors, where SF6 is used as tracer in a simulated non-buoyant release from a small 

source in urban area. Both models output are compared with hourly-observed concentrations. 

The comparison showed that both models overestimate the highest concentrations, whereas 

lower range of concentrations is underestimated. It is concluded that Aermod can predict reliable 

concentrations if turbulent velocity measurements are used to estimate plume dispersion.  

 

Alrashidi et al., (2005) studied the locations of Kuwait Environmental Public Authority (K-

EPA) monitoring station, which measure SO2 concentrations, emitted from the power stations in 

the state of Kuwait. The major sources of SO2 emissions in Kuwait are from west Doha, east 

Doha, Shuwaikh, Shuaiba, and Az-Zour power stations. Therefore, SO2 inventory is prepared for 



24 
 

the entire power stations based on fuel consumption as it is highly contaminated with sulphur. 

The Industrial Source Complex Short Term (ISCST3) dispersion model is used to predict SO2 

ground level concentrations over residential areas. Yearlong meteorological data are obtained 

from Kuwait International Airport and used in the simulation of the dispersion model. Different 

discrete receptors in the residential areas are selected. 

 

50 highest predicted and measured daily average concentrations of SO2 at each monitoring 

stations are used to carry out the statistical analysis and evaluate the model performance. It is 

observed that the weather pattern in Kuwait, specially the prevailing wind direction, has strong 

influence on the ground level concentration of SO2 in the residential areas located downwind of 

the both east and west Doha stations. The comparison between the predicted and the measured 

concentrations of SO2 from the monitoring stations located at the major populated areas showed 

that most of these monitoring stations locations are not adequate to measure SO2 concentrations 

emitted from the power stations. Therefore, relocation of the monitoring stations is highly 

recommended to accurately record the highest ground level concentrations of SO2 emitted from 

the power stations in Kuwait.  

 

Mandujano et al., (2005) studied extended use of fuels with high sulfur content (fuel oil) in 

the electric power industry represents one of the biggest concerns on air quality currently in 

Mexico. The organic sulfur compounds in the fuel oil oxidized as SOx during combustion, 

causing high concentration at the surface level near the releasing point. Shifting towards cleaner 

energy is crucial, however natural gas (NG) production is currently scarce and substantial 

investment is required to assure the NG supply to replace the fuel oil. Large investments should 

be made by the public and private sectors to replace heavy fuel oil use by NG. On the contrary, 

small increments of the heavy fuel oil cause greater negative effects in the environment. In order 

to support decision takers, this work assess the air quality impact due to cleaner energy use and 

determine the optimal NG and fuel oil mixture required to reduce substantially the SO2 

concentration. The dispersion model is applied to compare, against a base case, a set of artificial 

emissions scenarios based on different fuel oil and NG mixtures. The model is previously 

validated against SO2 field measurements performed at an Industrial Corridor, Mexico. The 

results showed that increasing 40% the NG consumption, the SO2, concentration in the air is 
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reduced in 90 % therefore not further NG increasing is needed. The results obtained in this work 

indicate that the use of the simulation of the dispersion of contaminants with the model Aermod 

presents a good correlation between the experimental measurements of the concentration of the 

sulfur dioxide in different sites, with this inventory of emissions for the sulfur dioxide is well 

calculated. These results can be quantified the positive effects in the air quality by the use of the 

NG for different levels of employment in the industry.  

 

Rama Krishna et al., (2005) discussed the Industrial Source Complex Short Term (ISCST-3) 

model that been used to study the impact of an industrial complex, located at Jeedimetla of 

Hyderabad city, India, on the ambient air quality. Studies reveal the importance of application of 

mathematical models for air quality management studies due to different sources in urban areas. 

The emissions data of 38 elevated point sources and 11 area sources for SO2 had been 

considered, along with the meteorological data for 2 months (April and May 2000) representing 

the summer season and for 1 month (January 2001) representing the winter season have been 

used for computing the ground level concentrations of SO2. The 8 and 24 hour averaged model-

predicted concentrations had been compared with corresponding observed concentrations at three 

receptors in April 2000 and at three receptors in May 2000 where ambient air quality is 

monitored during the study period. A total of 90 pairs of the predicted and observed 

concentrations had been used for model validation by computing different statistical errors and 

through Quantile-Quantile (Q-Q) plot. It is observed that the ISCST-3 model predicted pollutant 

concentrations are in good agreements with relatively close to those observed values and the 

model performance are found to be satisfactory.  

 

Abdul Wahab (2006) developed the correlation for the prediction of maximum SO2 values 

and their locations around the vicinity of a refinery. The proposed correlations are capable of 

estimating the hourly maximum SO2 concentrations from meteorological conditions. Correlation 

parameters are calculated by multiple regression analysis, using maximum SO2 concentration as 

dependent variable and the meteorological parameters as independent variables. The SO2 data 

used for the development of these correlations are generated from the industrial source complex 

short-term (ISCST) model. It is found that wind speed and atmospheric stability class had the 

most effect on the predicted SO2 concentration whereas neither mixing height, nor wind 
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direction, nor temperature had an influence on the maximum SO2 concentration. Therefore, the 

suggested correlations require only knowledge of the wind speed and stability class parameters. 

On the other hand, the developed correlations for estimating the locations of these maximum 

values of SO2 concentrations contained only one term that describes the dependence of the 

locations on wind direction. The derived correlations are shown to be statistically significant.  

 

Holmes et al., (2006) described the detailed review of dispersion modelling packages with 

reference to the dispersion of particles in the atmosphere. Factors, which are critical to the 

selection of the model, included the complexity of the environment, the dimensions of the 

models, nature of the particles sources, the computing power. Finally the time required and 

accuracy of the desired calculated concentration. Also several major commercial and 

noncommercial particle dispersion packages are reviewed, which included their advantages and 

limitations to use for modelling of particle dispersion. Therefore considerable thought has to be 

given for the choice of the models for each application. The models reviewed included: Box 

models (AURORA, CPB and PBM), Gaussian models (CALINE4, HIWAY2, CAR-FMI, 

OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS and SCREEN3), Lagrangian / Eulerian 

Models (GRAL, TAPM, ARIA Regional), CFD models (ARIA Local, MISKAM, MICRO-

CALGRID) and models which include aerosol dynamics (GATOR, MONO32, UHMA, CIT, 

AERO, RPM, AEROFOR2, URM-1ATM, MADRID, CALGRID and UNI-AERO).  

 

Isakov et al., (2007) examined the usefulness of prognostic models output for meteorological 

observations. These models outputs are used for dispersion applications to construct model 

inputs. Dispersion model Aermod is used to simulate observed tracer concentrations from Tracer 

Field Study conducted in Wilmington, California in 2004. Different meteorological observations 

sources are used i.e. onsite measurements, National Weather Services (NWS), forecast model 

output from ETA model and readily available and more spatially resolved forecast model from 

MM5 prognostic model. It is noted that MM5 with higher grid resolution than ETA performed 

better in describing sea breeze related to flow patterns observed and provided adequate estimates 

of maximum mixed layer heights observed at the site. It is concluded that MM5 and ETA 

prognostic models provided reliable meteorological inputs for dispersion models such as 

Aermod, because wind direction estimates from forecast models are not reliable in coastal areas 
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and complex terrain. Therefore, comprehensive prognostic meteorological models can replace 

onsite observations or NWS observations. 

 

Sabatino et al., (2007) described recent urban air quality modelling based on operational 

models of an integral nature. The use of computational fluid dynamics (CFD) models to address 

the same problems is increasing rapidly. Operational models e.g. OSPM, Aermod, ADMS-Urban 

have many comprehensive evaluations in the urban air quality context where as CFD models do 

not have such an evaluation record. Applications for both approaches to common problem are 

studied under the work. Particularly pollutant dispersion from point and line sources (in the 

simplest neutral atmospheric boundary layer and line sources) are placed within different regular 

building geometries which studied in the CFD code FLUENT and then compared with the 

atmospheric dispersion model ADMS-Urban. Overall CFD simulations with the appropriate 

choice of coefficients produce similar concentration fields to those predicted by the integral 

approach. However, some quantitative differences are observed. These differences could be 

explained by investigating the role of the Schmidt number in the CFD simulations. A further 

interpretation of the differences between the two approaches is given by quantifying the 

exchange velocities linked to the mass fluxes between the in-canopy and above-canopy layers. 

 

Kesarkar et al., (2007) discussed the prediction of spatial variation of the concentration of a 

pollutant governed by various sources and sinks is a complex problem. Gaussian air pollutant 

dispersion models such as Aermod can be used for this purpose. Aermod requires steady and 

horizontally homogeneous hourly surface and upper air meteorological observations. However, 

observations with such frequency are not easily available for most locations in India. To 

overcome this limitation, a preprocessor is developed for offline coupling of Weather Research 

and Forecasting (WRF) with Aermod. Using this system, the dispersion of reparable particulate 

matter (RSPM/PM10) over Pune, India has been simulated. Comparison between the simulated 

and observed temperature and wind fields shows that Weather Research and Forecasting (WRF) 

capable of generating reliable meteorological inputs for Aermod. The observed and simulated 

concentration of PM10 shows that the model generally underestimates the concentrations over the 

city.  
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Stein et al., (2007) illustrated air quality models are useful tools for assessing baseline 

ambient concentrations, analyzing the relative importance of various emission sources, and 

testing emission reduction strategies. These assessments typically involve the application of 

different models depending on program objectives, national, regional, urban, or local scale. Grid 

models, such as the Community Multi-scale Air Quality model CMAQ, are the best-suited tools 

to handle the regional features of these chemicals. However, these models are not designed to 

resolved pollutant concentration on local scales due to technical and computing time limitations. 

In this study, feasibility of developing an urban hybrid simulation system is tested. Therefore 

(CMAQ) provides the regional background concentrations, urban-scale photochemistry, and 

local models such as Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) 

and AMS/EPA Regulatory Model (Aermod) provide the more spatially resolved concentrations 

due to local emission sources.  

 

In the initial application, the HYSPLIT, Aermod, and CMAQ models are used in 

combination to calculate high-resolution benzene concentrations in the Houston area. The study 

period is from 18 August to 4 September of 2000. The Meso-scale Model 5 (MM5) is used to 

create meteorological fields with a horizontal resolution of 1 x 1 km
2
. Finally the ensemble mean 

concentrations determined by HYSPLIT plus the concentrations estimated by Aermod are added 

to the CMAQ calculated background to estimate the total mean benzene concentration. These 

estimated hourly mean concentrations are also compared with available field measurements. 

 

Simpson et al., (2007) demonstrated Aermet model, which is used to estimate hourly mixing 

heights during the Joint URBAN (2003) experiment in Oklahoma City, Oklahoma. Comparison 

of observed and estimated mixing heights show that Aermet is able to estimate the daily 

variations in mixing heights caused by changes in surface temperature, total cloud cover, and the 

lapse rate above the morning boundary layer. Aermet is the meteorological preprocessor for the 

Aermod dispersion model. Aermet is a two-dimensional diagnostic model that uses routine 

meteorological observations and an early morning atmospheric sounding to calculate the 

convective boundary layer (CBL) height.  
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Primary goals of Joint URBAN (2003) include measuring meteorological data at several 

scales of motion and collecting tracer data that resolves dispersion processes within an urban 

environment. Observed CBL heights are derived from profiler data using a peak signal-to-noise 

ratio method. Estimated mixing heights using Aermet show good agreement with observations 

on days of varying temperature and cloud cover whereas CBL heights of over 3000 m are 

observed in sounding data during the late afternoon.  

 

Touma et al., (2007) introduced the prospect of using prognostic model-generated 

meteorological output as input to steady-state dispersion model Aermod. An extensive 

comparison is carried out between the prognostic model generated meteorological output MM5 

and National Weather Service (NWS) data obtained from Philadelphia International Airport by 

using both of these outputs as input to Aermod to estimate hourly and annual average ground 

level concentrations of benzene over Philadelphia, PA. Aermod is developed by US/EPA to 

replace Industrial Source Complex (ISC) dispersion model as it is using more advanced 

representation of planetary boundary layer (PBL). Prognostic models such as MM5 have many 

advantages. It has an extensive history of use in photochemical grid air quality models. It also 

provides complete grid-averaged PBL parameters for any region with high grid scale resolution. 

Aermod is designed to calculate the concentrations of pollutants during calm conditions where 

wind speed is less than 1 m/s (unlike earlier models, such as ISC), MM5 can furnish Aermod 

with the unlimited required meteorological data that are not associated with instruments 

capabilities which NWS depend on. Aermod runs are performed using both MM5 and NWS 

separately to predict hourly and annual average ground level concentrations of benzene. The 

comparison between Aermod-MM% and Aermod-NWS outputs showed that predicted 

concentrations from Aermod-MM5 are higher than those from Aermod-NWS by factor of 2-3. 

These results are expected because, dilution velocities estimated from MM5-derived data are 

lower and consistent with high predicted annual average concentrations, whereas dilution 

velocities estimated from NWS data generally higher and during calm conditions cannot 

estimated, leading to under-prediction of benzene concentrations over the area of study.  

 

Princevac et al., (2007) compared the performance of three different methods to estimate the 

surface friction velocity and the Monin - Obukhov (MO) length in stable conditions. Estimations 
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from these methods are compared with measurements are made at two urban sites: the 

Wilmington site located in the middle of an urban area and the VTMX site located on a sloping, 

smooth area in Salt Lake City. Methods based on measurements of mean winds and 

temperatures, measured at one or two levels at a non-ideal urban site, can provide adequate 

estimates of the surface friction velocity and MO length during stable conditions. The methods 

perform better at the VTMX site than at the Wilmington site. The first method used the mean 

wind at a single height (Single U or SU), the second used the wind speed at a single level and the 

temperature difference between two levels (U delta T or UDT), and the third method used to 

show the two levels of wind speed and temperature (delta U delta T or DUDT). The performance 

of the SU and UDT methods in estimating surface friction velocity (u*) is comparable. The SU 

method yielded better estimates of the MO length than the UDT method does. The DUDT 

method performed poorly in estimating both u* and L. 

 

This study shows that a wind speed measured at one level can provides useful estimates of u* 

and L during stable conditions. Supplementing the wind speed with a single temperature 

difference between two heights does not always improve results; adding information on the 

difference in wind speeds between two levels can lead to deterioration of the estimates. Thus, the 

scope of this paper is limited to providing an empirical response to the question: do MO 

similarity methods that apply to flat terrain provide useful estimates of u* and L when the inputs 

are mean wind speeds and temperatures measured with a 10 m tower located in an urban area. 

 

Isakov (2007) et al., presented currently used dispersion models, such as the AMS/EPA 

Regulatory Model Aermod, posses routinely available meteorological observations to construct 

model inputs. Therefore research examines gridded outputs from comprehensive meteorological 

models can be used to construct meteorological inputs for dispersion models such as Aermod.  

Thus, model estimated concentrations depend upon the availability and quality of meteorological 

observations, as well as the specification of surface characteristics at the observing site. The 

values of these meteorological models outputs for air quality modeling is evaluated by first 

comparing them with onsite measurements made and then using them as inputs to a dispersion 

model and then comparing their performance to those based on the following inputs from a 

Tracer Field Study conducted in Wilmington, California in 2004 using four different sources of 
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inputs: (1) onsite measurements; (2) National Weather Service measurements from a nearby 

airport; (3) readily available forecast model outputs from the Eta Model; and (4) readily available 

and more spatially resolved forecast model outputs from the MM5 prognostic model. The 

comparison of the results from these simulations indicates that comprehensive models, such as 

MM5 and Eta, have the potential of providing adequate meteorological inputs for currently used 

short-range dispersion models such as Aermet. The results indicate that these meteorological 

models have difficulty in estimating wind direction at Wilmington, which is a coastal site. 

Therefore comprehensive models can simulate mixed layer heights, wind directions and speeds if 

the model resolution is consistent with the scale of the flow patterns of interest. 

 

Ainslie (2008) et al., developed a source-area model for estimating population exposure to air 

pollutants at the scale of a neighborhood. The model is based on very simple scaling level 

analyses of atmospheric dispersion. The model explicitly accounts for the first-order influence of 

atmospheric dispersion of emissions on surface concentrations with the idea of a source-area, 

captures the influence of wind speed, wind direction and stability on the dispersion and 

advection of emissions, with ABL depth in the dilution of pollutants. The source area model is 

compared against a fixed buffer model that ignores meteorological dispersion. The source area 

model captures the influence of wind speed, wind direction and stability on the dispersion and 

advection of emissions and thereby achieves modest improvement of performance over the fixed 

buffer model. The model is useful for the determination of personal exposures and health effects 

to local emissions. 

 

Zhang et al., (2008) established GIS (graphical information system) based urban-scale air 

borne pollution emission inventories of SO2, NOx, and PM10 from both fossil energy 

consumption and industrial production process. Aermod model is used to simulate pollutants 

concentration in the urban area of Hangzhou a typical Yangtse Delta city in south China. To 

examine the link between emission inventories and resulting long-term impacts on public health, 

it is necessary to simulate temporal and spatial distribution of the pollutants‟ concentration in the 

southern cities of China. It is come to know that results agreed reasonably by comparing 

simulated data of SO2 / NOx annual average concentrations with observed data at different 

quality-monitoring stations. Moreover the simulated data of PM10 annual average concentrations 
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are much lower than observed data of all monitoring stations because secondary PM10 data are 

not included in the simulation. The results are showing that, pollutants concentration is high in 

well-populated areas therefore the government should improve urban design and plan to separate 

the two zones to protect public health.  

 

Olvera et al., (2008) performed dispersion simulations of buoyant and neutral plume releases 

within the recirculation cavity behind a cubical building using a commercially available CFD 

code and the RNG k–e turbulence model. Study illustrate that Plume buoyancy could cause 

considerable flow disturbances inside the wake region, particularly, expanding the velocity 

defect to greater heights and changing the cavity size, shape and flow direction. Source 

momentum of a neutral plume release had similar effects on the flow structure and the cavity 

region to that caused by plume buoyancy. However, the effects of momentum on the 

concentration profiles are noticeably different from that caused by plume buoyancy. These 

effects in the downwash algorithms would improve the accuracy of modeling results for far-field 

concentration distributions and would be mandatory in accident assessments where accurate 

predictions of short-term are required. The results of this study provide insight into the 

interaction of plume buoyancy and the near-wake flow structure and concentration distributions.  

 

Britter et al., (2008) presented some mathematical techniques and algorithmic approaches 

that can make air quality estimate several orders of magnitude faster. In regulatory and public 

health contexts the long-term average pollutant concentration in the vicinity of a source is 

frequently of interest. Well-developed Gaussian plume models such as Aermod and ADMS are 

able to generate time-series air quality estimates of considerable accuracy, applying an up-to-

date understanding of atmospheric boundary layer behavior. However, these models acquire a 

considerable computational cost with runtimes of hours to days. These approaches are often 

suitable when considering a single industrial complex, but for general policy analyses the 

computational cost speedily becomes inflexible. It shows that the long-term average 

concentrations and lateral dispersion need not be accounted for explicitly. It is applied to a 

simple reference case of a ground-level point source in a neutral boundary layer. A scaling law 

of exceedance areas is also developed for a particular concentration threshold depends only on 

the average inverse wind speed, and not on the disturbance of wind directions.  
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Zeng et al., (2009) illustrated reductions in exposure to urban ambient air pollution that can 

contribute to significant and measurable improvements in life expectancy. The population 

exposure modeling system developed in this study indicates that population exposure modeling 

is more useful than air dispersion modeling. A population exposure modeling system introduced 

that integrates air dispersion modeling, Geographic Information Systems (GIS) and population 

exposure techniques to spatially characterize a source-specific exposure to ambient air pollution 

for an entire urban population at a fine geographical scale. Results based on these models 

showed that air quality assessments must incorporate more than industrial or vehicle polluting 

sources-based population exposure values alone, but should consider multiple sources. Also it 

will help to identifying larger areas of elevated exposure risk; they often don‟t differentiate the 

proportion of population exposure attributable towards different polluting sources (e.g. traffic or 

industrial). The purpose of this research is to develop a modeling system to spatially characterize 

a source-specific exposure to ambient air pollution across an entire urban population at a fine 

geographical scale by combing high-resolution air pollution concentration with population 

distribution.  

 

Zou et al., (2010) evaluated the performance of Aermod in predicting SO2 ground level 

concentration in Dallas and Ellis counties in Texas as these two counties are populous and air 

pollution has been a concern. Two emission sources are considered in this study i.e. point 

sources and on-road mobile sources. For the point emission sources, emission rates for 510 

sources in Dallas and 76 sources in Ellis are calculated for year 2002.  For on-road mobile 

sources, a method to proportionally allocate mobile emissions to different parts of road segment 

is used based on the width and the length of the road. Meteorological data are obtained from 

National Climate Data Center (NCDC). Aermet is used to calculate the hourly planetary 

boundary layer parameters such as Monin-Obikhov length, convective scale, temperature scale, 

mixing height and surface heat flux. Air quality observations for these two counties are obtained 

for year 2002 and three discrete receptors located at the measurement sites are selected. 

Dispersion model Aermod is used to simulate SO2 ground level concentration at different time 

scale i.e. 1hr, 3hr, 8hr, daily, monthly and annually for both counties separately. The results are 

validated with the observed concentrations. It is noticed that the 8 hr, daily, monthly and 
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annually simulated concentrations of SO2 intervals match with their respective observed 

concentrations better than the 1 hr and 3 hr simulated concentrations. The results showed that 

Aermod performed well at the 8 hr, daily, monthly and annual time scale when combined point 

and mobile emission sources are used in the simulation as model input. It is also noticed that 

Aermod is performed much better in simulating the high end of the spectrum of SO2 

concentrations at monthly scale than at time scales of I hr, 3 hr, 8 hr and daily.    

 

Lushi et al., (2010) developed a method for estimation of contaminants short-range emission 

rates (within 1000 m of the source), using measurements of particulate material deposited at 

ground level generated from several multiple point sources directed into the atmosphere. 

Gaussian plume type solution based approach is applied for the advection - diffusion equation 

with ground level deposition and given emission sources. The results are validated with 

measured deposition and meteorological data from a large lead - zinc-smelting operation in Trail, 

British Columbia. Whereas the solution referred to those problems which are incorporated into 

an inverse algorithm for estimating the emission rates of several contaminants from a smelting 

operation in British Columbia by means of a linear least squares approach.  
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3.1  Introduction 

 

An oil refinery is an industrial process plant where crude oil is processed and refined into 

more useful petroleum products, such as gasoline, diesel fuel, asphalt base, heating oil, kerosene, 

and liquefied petroleum gas. Oil refineries are typically large industrial complexes with 

extensive piping running throughout, carrying streams of fluids between large chemical 

processing units.    

 

Increasing demand on fossil fuel with industrial and economical progression and population 

growth forced to use the state of the art technologies in refining industries to provide maximum 

yield with the least environmental impact. This has influence on the refinery processing 

operations that place a burden on refinery construction in addition to the need to provide 

increased capacity for refining high sulphur and heavy crude oils. Each refinery has different 

processing scheme, which is determined by the process equipment available, crude oil 

characteristics, operating costs and product demand.  

 

Crude oil is having different hydrocarbons, which can be separated on different boiling 

points through distillation processes. Once these hydrocarbons are separated from contaminants 

and impurities then purified fuel or lubricant can be sold without any further processing. Smaller 

molecules such as isobutane and propylene or butylenes can be recombined to meet specific 

octane requirements through the processes such as alkylation. Octane number of gasoline can 

also be improved by catalytic reforming process. In this process, hydrogen strips out to produce 

aromatics, which is having much higher octane ratings. Intermediate products such as gas oils 

can even be reprocessed to break a heavy, long-chained ends into a lighter short-chained ends, by 

various types of cracking processes such as fluid catalytic cracking, thermal cracking, and hydro-

cracking. Figure 3.1 shows typical schematic process flow diagram of an oil refinery.  
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Fig. 3.1: Flow diagram of typical refinery  

(Source: http://en.eikipedia.org/wiki/Process_flow_diagram) 
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3.2 Fluidized Catalytic Cracking Unit (FCC) 

 

Fluid Catalytic Cracking unit (FCC) is one of the topping conversion processes since 1942 

where there was high demand of fuels for military vehicles and equipments during the World 

War II. After the war, FCC process development took place to increase the yield, which allowed 

refineries to utilise their crude oil resources more efficiently, to produce more valuable products. 

This unit is often the key to profitability of any refinery. The objective of this unit is to convert 

high boiling petroleum fractions, namely gas oil to high value products i.e. high-octane gasoline, 

LPG and heating oil. About 45% of all gasoline produced comes from the FCC and ancillary 

units, such as the alkylation and MTBE units. Its heavy feedstock (vacuum gas oil, coker gas oil, 

unconverted oil and waxy distillate), coming from vacuum rerun unit, delayed coker unit and 

crude distillation units respectively is catalytically cracked into lighter products (liquefied 

petroleum gas, gasoline, diesel and fuel oils). Environmental concerns about this process have 

increased, during the last decade due to its great contribution to the sulphur oxides and 

particulate matter emissions. Currently, FCC operates in constrained regions of medium to high 

conversion; using synthetic catalysts Fig. 3.2 shows a typical schematic flow diagram of FCC 

process. 

 

Fig. 3.2: Fluid catalytic cracking process  
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Fluid catalytic cracking reactions are endothermic and required energy, which is supplied by 

the regenerated catalyst preheated during re-activation (combustion) process. The operating 

temperature and pressure are from 725°-745° C and 200 kPa respectively. 

 

3.3 FCC Catalyst 

 

There are various types of catalyst formulations used in FCC unit. The particle size 

distribution (PSD), the sodium (Na), the rare earth (RE) and the surface area (SA) are some of 

the important properties of the fresh catalyst that need close consideration. The PSD is an 

important factor for the fluidized properties of the catalyst. Generally fluidisation improves as 

the particles fraction increased to 40 m. The surface area is determined by the amount of 

nitrogen adsorbed by the catalyst. 

 

Sodium contents always have unfavorable effect on the activity of the catalyst as it 

deactivates the zeolite and reduces the gasoline octane number. The sodium content is normally 

expressed as weight percentage of the catalyst. Rare earth metals are usually supplied as a 

mixture of oxides extracted from ores such as bastnaesite or monazite, which are the generic 

term for the metallic elements of the lanthanide series. Rare earth elements also improve the 

catalyst activity and hydrothermal stability.  

 

3.4 Catalyst Components 

 

FCC catalysts are in the form of fine powders with an average particle size diameter of 75 

m. There are four major components in the catalyst.  

 

D-Zeolite: It is the important component of the FCC catalyst, with well-defined lattice 

structure. Silica and alumina tetrahedral are its basic building blocks. Each tetrahedron consists 

of a silicon or aluminium atom at the center of the tetrahedron with oxygen atoms at the corners. 

The activity of the zeolite comes from its acid sites. The zeolites uses for the applications of the 

FCC unit are Type X and Type Y. Presently, all type of the catalysts used in FCC are of Type Y. 
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The properties of zeolite can play a major role in the overall performance of the catalyst. The 

reactor / regenerator environment causes significant changes in the chemical and structural 

composition of the zeolite e.g., in the regenerator; the zeolite is subjected to thermal and 

hydrothermal treatments. The zeolite retains crystalline structure against feedstock contaminants 

such as vanadium and sodium. The three important parameters, which govern the behavior of 

zeolite, are Unit Cell Size, rare earth elements level, Sodium content. 

 

The Unit Cell Size (UCS): UCS is a measurement of aluminium sites or the total potential of 

acidity per unit cell. The negatively charged aluminium atoms are sources of active sites in the 

zeolite. Silicon atoms do not acquire any activity.  

 

Rare earth elements: REE‟s play an important role to stabilize aluminium atoms in the 

zeolite structure. When the catalyst is exposed to high temperature steam in the regenerator, rare 

earth elements protect the aluminium atoms from separating from the zeolite lattice. The rare 

earth promotes zeolite activity and gasoline selectivity. The insertion of rare earth maintain acid 

sites, which promotes hydrogen transfer reactions. In addition, rare earth improves thermal and 

hydrothermal stability in the zeolite.  

 

Sodium Na: „Na‟ decreases the hydrothermal stability of the zeolite; it originates either from 

the zeolite or from the feedstock. It also reacts with the zeolite acid sites to reduce catalyst 

activity. In a de-aluminated zeolite, when the UCS is low, the sodium has an adverse effect on 

the octane of gasoline. It is attributed to the drop in the number of strong acid sites.  

 

Matrix: This refers to the components of the catalyst other than the zeolite. The term active 

matrix means the component of the catalyst other than the zeolite having catalytic activity. 

Alumina is the source for an active matrix. The active matrix contributes significantly to the 

overall performance of the FCC catalyst. The zeolite pores are not suitable for cracking of large 

hydrocarbon molecules. They are too small to allow diffusion of the large molecules to the 

cracking sites. An effective matrix must have a porous structure to allow diffusion of 

hydrocarbons into and out of the catalyst. The active matrix pre-cracks heavy feed molecules for 

further cracking at the internal zeolite sites. The result is a synergistic interaction between matrix 
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and zeolite in which the activity attained by their combined effects can be greater than the sum of 

the individual effects. An active matrix can also serve as a trap to catch some of the vanadium 

and basic nitrogen. The high boiling fraction of the FCC feed usually contains metals and basic 

nitrogen that poison the catalyst.  

 

Filler and binder: Filler is the type of clay which is incorporated into the catalyst to dilute its 

activity. Binder does not have catalytic activity. They serve as a glue to hold the zeolite, the 

matrix and the filler together. The functions of filler and binder are to provide physical integrity, 

a heat transfer medium and a fluidizing medium in which the more important and expensive 

zeolite component is incorporated. 

 

3.5 Process Description 

 

The fluid catalytic cracking (FCC) unit is very complex process. Fig 3.3 Shows the FCC unit 

configuration. In order to explain the unit operation, the process description is broken down into 

subsections as follows:  

 

a. Reactor feed preheating section 

b. Reactor-regenerator section 

c. Main fractionator section 

d. Gas concentration section 

e. Power recovery section 



42 
 

 

Fig. 3.3: A schematic flow diagram of FCC Unit used in petroleum refineries  

(Source: http://en.wikipedia.org/wiki/fluid_catalytic_cracking) 

 

3.5.1 Reactor Feed Preheating Section 

 

In reactor feed preheating section the heavy feed, i.e. raw oil, is brought to the required riser 

inlet temperature by heating it with the hot material leaving the main column, i.e. pump around 

and product streams. FCC feedstock is normally gas oil from the vacuum distillation unit. The 

other supplemental feedstocks are added to the gas oil and the combined material is sent to the 

surge drum, which provides a steady source of flow to the charge pumps. The material from the 

surge drum is heated to a temperature of about 230
o
C to 265

o
C utilising the heat from the main 

fractionator bottom and other pump around flows.  
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3.5.2 Reactor-Regenerator Section 

 

This is the heart of the FCC unit. In reactor feed reacts in presence of the catalyst and 

converted it into the products. The catalyst from the reactor, i.e. spent catalyst is regenerated in 

the regenerator by combustion reaction using about 10 % excess air.  

 

Virtually all of the reactions occur in the riser over a period of 2 to 4 seconds before the 

catalyst and the products are separated in the reactor. The feed enters the riser at its base where it 

comes into contact with the regenerated catalyst. The heat absorbed by the catalyst in the 

regenerator provides the energy to heat the feed to desired reactor temperature (520 – 530 
o
C). 

The feed is vapourised on coming into contact with the hot catalyst at a temperature of 730 
o
C 

and the cracking reactions start instantaneously.  

 

The ideal riser is like a plug flow reactor where the catalyst and vapour go up the riser with 

the same velocity and minimum back mixing. As a consequence of the cracking reactions, coke 

is deposited on the catalyst reducing its activity. The riser exit is connected to the reactor vessel, 

providing expansion, resulting into velocity drop, where the catalyst is separated from the 

hydrocarbon vapours and fines are captured by the cyclone assembly. The vapours are then sent 

through a set of multi-stage cyclones. The cyclones collect the catalyst and return it to the 

stripper. The product vapours exit the cyclones and flow to the main fractionator for recovery. 

Extended time of contact between the catalyst and vapours led to recracking of the desired 

products. The spent catalyst, along with some hydrocarbons falls into the reactor stripper where 

steam is used to strip these hydrocarbons off the catalyst. The entire hydrocarbon content of the 

catalyst is not removed in the stripper and part of it gets carried to the regenerator. This leads to 

loss of product, loss of throughput and loss of catalyst activity.  

 

The regenerator‟s main objective is to restore the catalyst activity and supply heat to crack 

the feed by burning off the coke (containing various contaminants, mainly sulphur) deposited on 

the spent catalyst. From the regenerator, the catalyst flows down the standpipe, which provides 

the necessary pressure head for maintaining proper catalyst circulation. SO2, NOx, CO, CO2 and 

PM are emitted from FCC stack as a result of coke combustion process. 
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3.5.3 Main Fractionator Section 

 

The main purpose of the fractionators is to de-superheat and recover liquid products from the 

reactor vapor. In main fractionator reactor product vapors are cooled and products such as HCO, 

LCO, distillate and heavy gasoline are separated. It accomplishes the fractionation by condensing 

and re-vapourising the hydrocarbon vapors as they flow upwards. The major function of bottom 

section of the column is to provide a heat transfer zone. The cooled pump also serves to wash 

down catalyst fines in the vapour. The quench flow is used to control the column bottom 

temperature and prevent chances of coking. The heat of the bottom circuit is used to preheat feed 

and steam generation and re-boiling in the gas concentration section.  Apart from the bottom 

product, which is called heavy cycle oil (HCO), the other products from the main column are 

light cycle oil (LCO), distillate, heavy gasoline and the overhead vapours, which are un 

stabilised gasoline and lighters. The side refluxes are used to remove heat from the column and 

to supply heat to the unsaturated gas con section. 

 

3.5.4 Gas Concentration Section 

 

In gas concentration section lighter products from the main fractionator overhead are 

separated into off-gases, LPG and light gasoline. So the role of the gas plant is to separate the un-

stabilized gases and light gases to fuel gas, C3 and C4 compounds and gasoline. The hydrocarbon 

vapours are sent to a wet gas compressor. The term “wet gas” refers to the condensable material 

in the gas at those operating conditions. The compressor is a two-stage steam turbine driven 

centrifugal compressor. The vapors from the 1st stage are partially condensed and flashed in an 

inter-stage drum. The second stage discharge is mixed with gas streams from the stripper 

overhead, the primary absorber bottoms and wash water. They are flashed in the HP separator.  

The vapors go through the primary absorber and the liquid is sent to the stripper. The absorber 

recovers the C3‟s and heavier fractions from the gas against lean oil. The liquid from the HP 

separator enters the stripper where the light ends are removed by providing an external re-boiler. 

An external re-boiler provides the heat for the column. The final product streams of heavy 

gasoline, light gasoline and LPG are further treated in amine treatment or merox units for 

removal of H2S and mercaptans. The deposited sulfur in the coke leaves the FCC process as flue 
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gas from the regenerator in the form of SO2 and SO3. SO2 typically accounts for 80 to 90% of 

total SOx in the FCC flue gases making it the major FCC unit air pollutant.  

 

3.5.5 Energy Recovery Section 

 

The energy recovery section, where the energy of the flue gases from the regenerator is 

recovered for the generation of power and steam. The energy recovery section has been provided 

as an overall efficiency-improving device of the entire unit. The purpose of this section is to 

utilize the thermal and mechanical energy of the regenerator flue gases. The recovered energy is 

used generate excess power over and above that required for driving the main air blower and 

generate high pressure steam. The section consists of the third stage separator, the energy 

recovery train comprising of the expander turbine, main air blower and motor generator, and the 

flue gas cooler. The operation of the energy recovery section depends on the condition of the 

regenerator. Any variation in the operating conditions of the regenerator, i.e. pressure, 

temperature, flow of air or catalyst content in the flue gas will alter the operation of the energy 

recovery section. 
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4.1 Introduction 

 

Dispersion modeling is developed in early 1930; it is extensively used to assess the 

environmental issues. It uses computer simulation that can predict air pollutant concentrations 

from different types of emission sources. In the last three decades, the strict environmental 

regulations have lead to massive growth in the use of mathematical models to predict the 

dispersion of air contaminants and pollutants. Dispersion model simply showed a picture of 

reality, which is not only containing all the features of the real system but also, contains the 

features of interest for the modifications of the regulations and their implementation. Dispersion 

model shows descriptive view of the system where different relationships are utilized using 

different mathematical equations. The model outputs are presented in the form of graphs and 

tables.  

 

Gaussian-plume models are the most commonly models used as a steady state dispersion 

models, based on mathematical approximation of plume and their behavior. They express the 

fundamental description of the dispersion process with some basic assumptions. These types of 

model can provide us logical results when used appropriately. The modern dispersion models are 

user friendly and use sophisticated approach to explain diffusion characteristics and dispersion 

using the elementary properties of the atmosphere rather than to rely on general mathematical 

approximation. This approach provides better way to treat more complicated situations e.g. 

complex terrain and long-distance transport. Figure 4.1 is explaining the execution of various 

steps with required information for computation of successful runs. 

 

Modern air dispersion models are programs those can compute the pollutants concentration 

downwind of source using information on:  

 

i. Pollutant emission rate  

ii. Properties of the emission source.  

iii. Local topography  

iv. Meteorological conditions for the area of interest.  

v. Background concentrations of pollutant.  
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Fig. 4.1: Overview of the air pollution modelling procedure 

(US EPA approved Good Practice Guide for Atmospheric Dispersion Modelling) 

 

4.2 Objectives of the Dispersion Models 

 

Air quality monitoring is the most important feature of the environmental assessment for 

both industrial and urban areas. This can be achieved with the dispersion model. The following 

are the benefits can be attain are: 

 

i. Stack designs that reflect the engineering perspective. 

ii. A continuous assessment of conformity with standards and guidelines. 

iii. The continuous interpretation to interpret environment impact assessment (EIA). 
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4.3 Key Features of the Dispersion Models 

 

Dispersion model are favorable to predict downwind concentrations of the contaminants for 

either long or short term. Particularly they are having unique importance to assess the impacts of 

emissions from various activities and to estimate changes due to the process modifications. 

Model results are used to: 

  

i. Assess compliance of emissions with air quality guidelines, criteria and standards. 

ii. Determine suitable stack heights and design ambient air monitoring networks. 

iii. Identify and control the major contributors to existing air pollution problems. 

iv. Evaluate the policies and mitigation strategies (e.g. the effect of emission standards). 

v. Forecasting pollution episodes and schedule new amenities. 

vi. Apply the risk assessment and planning to manage rare events such as hazardous 

substance releases accidentally. 

vii. Approximate the influence of geophysical factors on dispersion (e.g. terrain elevation, 

presence of water bodies and land use). 

viii. To reduce the monitoring cost. 

 

4.4 Constrains of Dispersion Models 

 

It is difficult to locate precise location, magnitude and timing of ground level concentration 

through most sophisticated atmospheric dispersion model with 100 % accuracy. The adequate 

(US EPA approved) model is capable of evaluating the process and generate reliable results. 

However dispersion models having some limitations to assess the effects of specific sources on 

particular locations are: 

  

i. Source should be well defined. 

ii. The most sensitive locations should be specified accurate and precise selection of 

sensitive locations. 

iii. Stringent meteorological condition (calm or unstable). 
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4.5 Gaussian-Plume Models  

 

Gaussian-plume models are widely used for atmospheric dispersion studies in particular for 

regulatory purpose. They are well understood and easy to apply. They are based on Gaussian 

distribution of the plume under steady state conditions for both vertical and horizontal directions. 

These models can calculate uniform concentration across the modelling domain from fixed or 

variable emission rate and metrological conditions for each hour. The Gaussian-plume dispersion 

models are not formulated to depend on time, although they do represent an ensemble time 

average. The meteorological conditions are assumed to be constant during the whole dispersion 

process from source to receptor. Model calculations in each hour are independent where as 

emissions and meteorological conditions vary continually. The Gaussian-plume models are those 

dispersion models that applied under certain conditions, whereas the Gaussian-plume formula 

provides a better projection for reality if conditions do not change quickly within the studied 

hour which is being to be modeled. 

 

Gaussian plume equation was developed through the following expression:  

The concentration of a pollutant is expressed by simple plume model as: 

C   =  
                  

                                     
                                                                            (4.1) 

Where, 

Mass emission rate is in g/s 

Wind speed is in m/s 

Area of the plume cone disk is in m
2 

 

Pollutant mass flow is not uniformly distributed within the plume volume. Therefore, 

Gaussian distribution occurs across the plume due to the change in wind direction over averaging 

time. In order to describe the distribution of the pollutant mass within the plume, transport of 

mass within a small control volume is considered. As x-axis is the time-averaged wind direction, 

y-axis is the crosswind direction and z-axis is vertical direction. 
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The rate of pollutant molecules transport across the y-axis depends on the concentration 

difference between the two sides and is equal to K dC/dx, where K is termed Eddy diffusivity 

(m
2
/sec). The magnitude of K depends on the magnitude of the eddy motions. Transport of mass 

in x direction depends on the average horizontal wind direction and its magnitude, whereas 

transport of mass in y and z directions depends on turbulent motions. 

 

The net rate of change in pollutant mass flow in x-direction is expressed as: 

 

Net rate of change of mass flow = mass flow rate in – mass flow rate out 

 

Where: 

 

Mass flow rate in = C u Ayz                                                                                                        (4.2) 

Mass flow rate out = C u Ayz + 
 

  
 (C u Ayz ) dx                                                                         (4.3) 

Net rate of change of mass flow = - 
 

  
 (C u Ayz ) dx = - 

 

  
 (C u) V                                          (4.4) 

V = Volume = Ayz dx = dydzdx 

u = wind speed in m/s 

Axy = dxdy 

Ayz = dydz 

Axz = dxdz 

The net rate of change in pollutant mass flow in z-direction is: 

Mass flow rate in = - Axy  
 

  
 (Kz C)                                                                                            (4.5)  

Mass flow rate out = -       
 

  
           

 

  
  

 

  
                                    

Net rate of change = 
 

  
 [

 

  
 (Kz C)] V                                                                                         (4.6) 

Similar result is obtained in the y-direction.  

Net rate of change in y-direction = 
 

  
 [

 

  
 (Ky C)] V 

Given that the net rate of change in the volume [= V (dC/dt)] is the change in all three directions. 

Advection diffusion equation: 
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 = u 

  

  
 + 

 

  
 [Ky 

  

  
 ] + 

 

  
 [Kz 

  

  
 ]                                                                        (4.7) 

 

Where:  

 

u 
  

  
 is the Advection transport by the mean wind speed, u. The change of concentration with 

respect to y and z directions represents the effect of turbulent “diffusion”, i.e., exchange of 

polluted air parcel with surrounding air parcels. If the surrounding air is cleaner, dC/dz & dC/dy 

are negative. K is the “eddy diffusivity” and represents the intensity of turbulent motions and 

varies with stability class. 

 

The Gaussian plume equation is a particular solution under the following assumptions: 

 

The Gaussian plume equation is a particular solution under the following assumptions: 

 

 Steady state conditions  
  

  
 = 0  

 Constant wind speed with height (u does not depend on z) 

 Constant eddy diffusivity (K does not depend on y or z) 

σ
2

z is defined as  
     

 
                                                                                                   (4.8)       

           σ
2

y is defined as  
      

 
                                                                                     (4.9) 

Total mass conserved is given as: 

 

           
 

  

 

  
 for x > 0                                                                                 (4.10) 

 

 

The solution of advection equation at steady state yields Gaussian plume equation: 
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Where: 

 

C = atmospheric concentration of pollutant in g/m
3
 

Q  = mass emission rate in g/s 

x = downwind distance, relative to the source location in m 

y = crosswind distance, relative to the plume centerline in m  

z = vertical distance, relative to ground in m 

h = effective release height, relative to ground in m, h = stack height (hs) + h 

y  = horizontal dispersion coefficient (function of x), representing the standard deviation    of 

the concentration distribution in the crosswind axis direction in metres 

z  = vertical dispersion coefficient (function of x), representing the standard deviation of the 

concentration distribution in the vertical axis direction in metres 

u = average wind speed in m/s 

 

Figure 4.2 shows the concentration distribution from a continuous point source of effective 

height h as predicted by the Gaussian plume equation. For unstable conditions (class), non-

Gaussian probability density function (Lagrangian) is implemented in dispersion model Aermod 

to determine concentration distribution from advection equation. The concentration of the 

pollutant from position x‟, t‟ to new location x, t can be expressed as: 

 

C(x,t) =                
 

  

 

  

 

  
               

+                 
 

  
 

 

  

 

  

 

  
                                                                                      (4.12) 

 

This is an additional inherited feature of Aermod over most of the published air dispersion 

models to provide accurate approximate ground level concentrations for unstable conditions 

(class). 
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Fig. 4.2: Concentration distribution from a continuous point source of effective height h. 

 

4.6 Features of Gaussian-Plume Models  

 

Certain characteristics that make of steady-state Gaussian models have following 

characteristics:  

 

i. Computer resources, like desktop facilitate the computation of model results in a 

reasonable time. 

ii. They provide user-friendly graphical interfaces with limited inputs variables. 

iii. The results can easily be comparable. 

 

4.7 Limitations of Gaussian-Plume Models  

 

Gaussian steady-state models assume that the atmosphere is uniform across the entire 

modeling domain. Existing transportation and dispersion conditions must remain unchanged for 

the material to reach from the source to the receptor e.g. convective conditions can‟t be treated 

with the plume model. Gaussian-plume models over estimate the cases during low wind speed or 

calm conditions, due to the inverse wind speed that is dependent on the steady-state plume 
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equation. Moreover Gaussian-plume models consider that the pollutants are transported in a 

straight line directly to receptors. In moderate terrain, these models overestimate the terrain 

impingement effects during stable conditions.  

 

4.8 ISCST3 

 

The Industrial Source Complex Short Term (ISCST3) model was developed in 1970, it is the 

one of the US EPA‟s approved regulatory model. The ISCST3 model is a steady-state Gaussian 

plume algorithm. It is applicable for estimating ground level concentration from point, area, and 

volume sources up to a distance of about 50 kilometers from the source. There are number of 

options available in this model, which includes the use of stack-tip downwash, buoyancy-

induced dispersion and final plume rise. 

 

4.9 ISC-PRIME 

 

ISC-PRIME is an improved version of ISCST3, which uses the Plume Rise Model 

Enhancements (PRIME) model, it integrates two important features of building downwash - 

enhanced plume dispersion coefficients that is due to turbulent wake and it could reduced plume 

rise. Other algorithms are similar to ISCST3 except the building effects. 

 

4.10 CTDMPLUS 

 

CTDMPLUS is one of the advanced forms of the Gaussian plume dispersion model. This 

model is designed to estimate hourly concentrations of a pollutant from elevated point sources to 

the receptors on or near to the isolated terrain. This model is able to assess stable and neutral 

atmospheric conditions as well as all those condition, which are unstable in daytime. It utilises 

the meteorological data and terrain information in a different ways from other regular models. 

During stable and neutral feature CTDMPLUS applies to a critical dividing-streamline height. 

This feature is used to separate the flow in the vicinity of a hill into the two separate layers. In 
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unstable or convective conditions the model relies on a probability density function (PDF), 

which describes the vertical velocities to estimate the vertical distribution of pollutants.  

 

4.11 AERMOD 

 

AERMIC (the American Meteorological Society / Environmental Protection Agency 

Regulatory Model Improvement Committee) is founded to introduce the concept of state-of-the 

modeling art. AERMIC's focused on a new period for regulatory steady-state plume modelling. 

This platform uses air dispersion fundamentals, which are based on planetary boundary layer 

turbulence structure and scaling concepts. Aermod can treat both surface and elevated sources in 

simple and complex terrain.  

 

Primarily Aermod was developed in 1995 and formally proposed by the US EPA as a 

replacement for ISCST3. It is equipped with a new simplistic approach following the current 

concepts about flow and dispersion in complex terrain. Aermod defines all the parameters of 

complex terrain that‟s to be handled in a consistent and continuous manner.  

 

US EPA describes this new model as an advanced dispersion model that incorporates state of 

the art boundary layer parameterisation technique, convective dispersion, plume rise 

formulations plume interactions in a complex terrain. It applies boundary-layer similarity theory 

to define turbulence and dispersion coefficients as a continuum rather than discrete set of 

stability classes. It is designed to run with a minimum of observed meteorological parameters. 

 

Aermod modeling system consists of two preprocessors. The Aermod mapping program 

(Aermap) is a terrain pre-processor, which is used to characterize terrain and generate receptor 

grids for Aermod. The other meteorological preprocessor (Aermet) provides planetary boundary 

layer parameters over a high altitude to yield accurate predicted concentration values for a given 

meteorological conditions. Meteorological preprocessor (Aermet) also provides all the 

information required to characterise the state of the surface, mixed layer and the vertical 

structure of the PBL.  Figure 4.3, illustrates successive steps in computation of Aermod model.  
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Fig. 4.3: Overview of the AERMOD modeling procedure 

(US EPA approved Good Practice Guide for Atmospheric Dispersion Modeling) 

 

Aermod contains advanced and improved algorithms for: 

(1) Dispersion in both the convective and stable boundary layers. 

(2) Plume rise and buoyancy. 

      (3) Estimation of vertical profiles of wind, turbulence, and temperature. 

      (4) Treatment of receptors on all types of terrain (complex and flat). 

(5) Treatment of building wake effects. 

(6) Characterisation of the boundary layer parameters.  
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Aermod is a steady state Gaussian plume model. It assumes the pollutant concentrations at all 

distances from the source during a modeled hour are controlled by the averaged meteorology. 

Aermod uses Gaussian distribution for stable conditions and non-Gaussian probability density 

function for unstable conditions. In the stable boundary layer, the dispersion process is governed 

mainly by the averaged hourly meteorology. The crosswind and vertical distributions (dispersion 

coefficients in y and z direction) are assumed to follow Gaussian distribution. 

 In the convective boundary layer (unstable conditions), the crosswind distribution is also 

assumed to follow Gaussian distribution, but due to the presence of the vertical mixing resulted 

from the turbulence in this layer, the vertical dispersion distribution is positively skewed and 

results in a non-Gaussian vertical concentration distribution described as a non-Gaussian 

probability density function.  The positive skewness is consistent with higher frequency of the 

occurrence of downdrafts than updrafts; for an elevated non-buoyant source the skewness also 

leads to the decent of the plume centerline. 

Surface type is very important factor in pollutants dispersion calculations. The modelling 

domain may contain water surface, urban and rural areas with different surface roughness, heat 

capacities and fluxes.  

Therefore, surface characteristics in the form of albedo, surface roughness, Bowen ratio and 

meteorological observations (wind speed, wind direction, temperature, and cloud coverage) are 

Aermet‟s input data.  Aermet then calculates the PBL parameters i.e. friction velocity, Monin-

Obukhov length, convective velocity scale, temperature scale, mixing height, and surface heat 

flux. These parameters are then passed to the interface (which is within Aermod) for the model 

execution.   

Aermap generates regular receptors (grid points) over a given terrain based on the modelling 

domain characteristics. Then, it uses gridded terrain data to calculate a representative terrain-

influence height. The terrain height scale hc, which is defined for each receptor location, is used 

to calculate the dividing plume streamline height.  Aermap passes the following information to 

Aermod: the receptor‟s location (x, y), its height above mean sea level, and the receptor specific 

terrain height scale (hc) for each receptor.  
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Further research may be necessary to ensure the model applications for non-continuous 

releases source i.e. puffs and fugitive gases. Updated Aermod code and supporting documents 

are available in the US EPA website (http://www.epa.gov/).  

Commercially easy-to-use interfaces that integrate all model tools are commonly used, so 

that the modeller does not have to waste time sorting out all of the various input files and 

executable requirements. These interfaces are compatible with most workstations and laptops 

operating systems.  

Lakes Environmental Company supplies graphical Windows-based interfaces of air 

dispersion modelling software. Its robust and user-friendly interfaces of air dispersion modelling 

software are used for research applications by consultancy companies, industries, governmental 

agencies and academia. Lakes Environmental offers a wide range of environmental software 

products, covering five major categories of air quality i.e. air dispersion modeling, compliance 

assurance, emergency release, emissions management and risk assessment. It developed 

interfaces for many air dispersion models including Aermod. 

Breeze Company is also supplies uniform graphical interfaces of air dispersion modelling 

software. Its developed software products are compatible with Microsoft/Windows operating 

systems and applications. Breeze products include an integrated Geographic Information System 

(GIS), an intuitive data analysis and visualisation interface tool, that enables modeled objects and 

results to interact and be displayed with a variety of geophysical data. 

 In the present work, Aermod system package is obtained from Lakes Environmental Company. 

 

4.12 Features of Aermod 

 

There are some special features of Aermod, which improve its ability, to deal with the 

vertical in-homogeneity of the planetary boundary layer, extraordinary treatment of surface 

releases and irregular shaped area sources. 

 

http://www.epa.gov/
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Dispersion options include the treatment of surge terrain with the help of stack-tip downwash 

and a routine for processing averages when calm winds or missing meteorological data occur. 

This includes on-default options for suppressing the use of stack-tip downwash and to disable the 

data checking for non-sequential meteorological data files.  

Aermod can handle multiple emission sources, including point, volume and area sources. 

Line sources may also be modeled as a string of volume sources or as elongated area sources. 

Several source groups may be specified in a single run with the source contributions combined 

for each group. The model contains algorithms for modeling the effects of aerodynamic 

downwash due to nearby buildings on point source emissions. Source emission rates treated 

constant throughout the modeling period or may be varied by month, season, hour-of-day, or 

other periods of variation. These variable emission rate factors may be specified for a single 

source or for a multiple sources.  

Aermod is designed to handle all types of terrain, flat or complex. Rather than to provide a 

separate file of terrain data for complex terrain applications, modeling of receptor in elevated or 

complex terrain requires solid information for surrounding terrain. Aermod includes a height 

scale and base elevation for each receptor in the run stream file. The terrain preprocessor, 

Aermap has considerable flexibility in the specification of receptor locations. It is developed to 

obtain the base elevation and height scale for a receptor. The receptors are specified in a manner 

identical to the Aermod dispersion model. Aermap allows the users to specify discrete receptors 

as well as Cartesian and Polar grid networks.  

Aermet is the meteorological preprocessor that serves to organise and processes the 

meteorological data to estimates the necessary boundary layer parameters for dispersion 

calculations in Aermod. Aermet runs in a three-stage process and operates on three types of data 

National Weather Service (NWS) hourly surface observations, NWS twice - daily upper air 

soundings, and data collected from an on-site measurement program. In the present work 

meteorological data are obtained for spatially resolved for cast model (MM5 prognostic model).  

The first stage extracts data and then assesses data quality. The second stage combines the 

available data for 24-hr periods and writes these data to an intermediate file. The third and final 

stage reads the merged data file and develops the necessary boundary layer parameters for 
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dispersion calculations by Aermod. These parameters are developed as two separate files - file of 

surface boundary layer parameters and a file of profile variables including wind speed, direction, 

and turbulence parameters.  

Aermod shows computed outputs mainly in form of top values, which are recorded by 

receptor for each averaging period and source group combination, and overall maximum value 

for each averaging period and source group combination. 

 

4.13 Advantages of Aermod Over ISCST3 

 

Aermod model has edges over ISCST3 as it is applicable to rural and urban areas, flat and 

complex terrain, surface and elevated releases with multiple sources (including, point, area and 

volume sources), where as ISCST3 is applicable for urban option either on or off with no other 

specification available. Moreover Aermod provides variable urban treatment as a function of city 

population and can selectively model sources as rural or urban. ISCST3 is one level data 

accepted model for Aermod any arbitrary large number of data level can be accumulated. 

 

One of the major improvements that Aermod has over other dispersion models is the ability 

to differentiate the PBL (pressure boundary layer) with both surface and mixed layer scaling. It 

constructs vertical profiles of required meteorological variables based on measurements and 

extrapolations of those measurements using similarity (scaling) relationships. Vertical profiles of 

wind speed, wind direction, turbulence, temperature and temperature gradient are estimated 

using all available meteorological observations. Aermod captures the effect of flow above and 

below the dividing streamline by weighting the plume concentration associated with two possible 

extreme states of the boundary layer (horizontal plume and terrain-following). 

 

ISCST3 can only work with Gaussian treatment in horizontal and in vertical for stable 

conditions; but Aermod can work with non-Gaussian probability density function in vertical for 

unstable conditions. Aermod‟s unstable treatment of vertical dispersion is a more accurate 

portrayal of actual conditions. 
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4.14 Applications of Aermod 

 

Aermod is extensive performance evaluation designed software. On the contractor to 

ISCST3, Aermod contains new oand improved algorithms. Aermod can estimate the 

concentrations in comparisons with a variety of independent databases and to assess the 

adequacy of the model for the use in regulatory decision-making, following points are discussed. 

 

i. Handle dispersion in both the convective and stable boundary layers. 

ii. Plume rise and buoyancy that can penetrate into elevated inversions. 

iii. Could deal with the treatment of elevated, near-surface, and surface level sources. 

iv. Computation of vertical profiles of wind, turbulence, and temperature easily achievable. 

v. Treatment of receptors on all types of terrain from the surface up to and above the plume 

height, (i.e., simple, intermediate, and complex terrain). 

 

4.15 Selection of Dispersion Model 

 

Selection of an appropriate model is the key element in assessing the scale of impact and 

complexity of particular emissions. The choice of models for different complexities is shown in 

Figure 4.4. The major factors affecting on the calculations and selection of dispersion models 

are: 

 

i. Emissions parameters e.g. as source location, source height, stack diameter, gas exit 

velocity, gas exit temperature and emission rate should be under reflection. 

ii. Terrain characteristics.  

iii. Dispersion models uses meteorological conditions, such as wind speed, wind direction, 

stability class, temperature and mixing height. 

iv. Building parameters, such as location, height and width need attention.  
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Fig. 4.4: Type of model applied according to the complexity of the problem 

(US EPA approved Good Practice Guide for Atmospheric Dispersion Modeling) 

 

4.16 Meteorological Data Sensitivity 

 

Ground-level concentrations of contaminants are primarily controlled by meteorological 

elements i.e. wind direction, speed (for transport), turbulence and mixing height of the lower 

boundary layer (for dispersion). Meteorological data are one of the most important inputs into air 

dispersion model. The meteorological data is processed in Aermet to generate. 

 

i. Boundary layer structure. 

ii. Atmospheric turbulence. 

iii. Modeling domain topography. 

iv. Meso-scale meteorology (air-pollution meteorology). 
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Table 4.1: Comparison of dispersion model features: Aermod vs. ISCST3 

(US EPA approved Good Practice Guide for Atmospheric Dispersion Modeling) 

Feature ISCST3 Aermod  Comments 

Types of sources modeled Point, area, and volume sources Same as ISCST3 Models are comparable 

Meteorological Data Input One level of data accepted 
An arbitrarily large number of data levels can be 

accommodated 

Aermod can adapt multiple levels data to various 

stack and plume heights 

Plume Dispersion: General 

Treatment 

Gaussian treatment in horizontal and 

vertical 

Gaussian treatment in horizontal and vertical for 

stable conditions; non-Gaussian probability 

density function in vertical for unstable conditions 

Aermod‟s unstable treatment of vertical dispersion is 

a more accurate portrayal of actual conditions 

Urban Treatment 

Urban option either on or off; no other 

specification available; all sources must be 

modeled either rural or urban 

Population is specified, so treatment can consider a 

variety of urban conditions; sources can 

individually be modeled rural or urban 

Aermod provides variable urban treatment as a 

function of city population, and can selectively 

model sources as rural or urban 

Characterization of Modeling 

Domain surface Characteristics 
Choice of rural or urban 

Selection by direction and month of roughness 

length, albedo, and Bowen ratio, providing user 

flexibility to vary surface characteristics 

Aermod provides the user with considerably more 

options in the selection of the surface characteristics 

Boundary Layer Parameters 
Wind speed, mixing height, and stability 

class 

Friction velocity, Monin-Obukhov length, 

convective velocity scale, mechanical and 

convective mixing height, sensible heat flux 

Aermod provides parameters required for use with 

up-to-date planetary boundary layer 

(PBL) parameters; while ISCST3 does not 

Mixed Layer Height 

Holzworth scheme; uses interpolation 

based upon maximum afternoon mixing 

height 

Has convective and mechanical mixed layer 

height; convective height based upon hourly 

accumulation of sensible heat flux 

Aermod‟s formulation is significantly more 

advanced than that of ISCST3, includes a 

mechanical component, and using hourly input data, 

which provide a more realistic sequence of the 

diurnal mixing height changes 
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5.1 Introduction 

 

In this work emission inventories from FCC unit in an oil refinery are calculated. Mainly 

both SO2 and particulate matters (PM) have been evaluated accurately for years 2008 and 2009 

independently, considering seasonal variations in the operational conditions of the FCC unit in a 

refinery.  

 

Hot feedstock is charged into the reactor through the riser where, it comes in contact with hot 

regenerated catalyst from the regenerator. The feedstock vapourises at a temperature of 730 
o
C 

and catalytically cracked in the reactor. The velocity of the vapor drops in the reactor, due to 

expansion from riser to the main reactor. The reaction takes place in fluidised bed reactor with 

uniform temperature. Products with the catalyst pass through a set of cyclones to separate the 

catalyst fines from the products. The spent catalyst from cyclones is returned to the reactor. The 

coke and sulphur impregnated catalyst is then sent to the regenerator to restore its activity. 

Excess air is fed to the regenerator for complete combustion of coke and sulphur in a fluidised 

process producing flue gas. The flue gas passes through cyclone to recover catalyst particles. 

Catalyst attrition takes place; producing fines. These fines are discharged with the exit gas. Flue 

gas consists of SO2, CO2, N2, O2 and fines. The activated catalyst at 730 
o
C is recharged to the 

reactor and makeup stream is added to compensate the catalyst loss in the flue gas. The products 

are sent to the fractionator for further separation.  
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5.2 Material Balance 

To evaluate each stream in FCC unit, overall material balance is established in mass flow rate 

(T/hr), Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

                               Fig. 5.1: Overall material balance around reactor and regenerator 

 

F + M + A = L + G + E                   (5.1) 

 

Where: 

 

F is the total feed consisting of heavy ends from various refining units M is makeup catalyst 

stream 

 

A is the air supplied to the regenerator 

 

G is a mixture of gaseous products (LPG and Off gas) 

 

L is liquid products   

 

E is the flue gas consisting of CO2, N2, SO2, O2 and particulate matters (PM). 
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To calculate the emissions, material balance of the i
th

 component around the FCCU is 

considered: 

For sulphur balance i = 1: 

 

F × xF1 = ∑ (Lj × x1j) + ∑ (Gj × y1j) + E × yE1                           (5.2) 

 

For PM balance i = 2:  

 

M = Lj × x2j + E × yE2                    (5.3) 

 

The operational data for 24
th

 of March 2008 are given as total feed equal to 255.1 t/hr, with 

sulphur composition (xF1) equal to 0.008. Total liquid and gaseous products are 173.6 and 62.3 

t/hr respectively. Air fed to the regenerator is calculated based on complete combustion of all 

coke and sulphur to produced SO2 and CO2 with 10% excess and is equal to 233. T/hr. Total 

emission is calculated using equation (1) with known amount of catalyst makeup stream 0.1 t/hr. 

 

E = 255.1 + 0.1 + 233.04 - 173.6 - 62.3 = 252.4 t/hr                    (5.4) 

 

Sulphur in flue gas, E (252.4 t/hr) is calculated using equation (5.2) 

 

EyE1 = (255.1 × 0.008) - 0.614 - 0.204 = 1.2 t/hr.                (5.5) 

 

SO2 emission is equal to      
  

   
 =2.4 t/hr  

 

Particulate Matter (PM) in flue gas, E (252.4 t/hr) is calculated using equation (5.3) 

 

EyE2 = 0.1042 – 0.0007 = 0.1035 t/hr                  (5.6) 
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5.3 Emission Inventories for Year 2008 

 

SO2 and PM emissions inventories during the period from December 2007 to November 

2008 are calculated for four different seasons. Kuwait is located in the north east of Arabian 

Peninsula and has four seasons, starting winter season from December till end of February, 

followed by spring season from March to May. Summer season starts from June till August, 

followed by autumn season from September to November. Figure 5.2 shows a regional map 

Kuwait and Figure 5.3 illustrates the seasonal temperature variation for the year 2008. In winter 

season, hourly minimum temperature is 6 
o
C recorded on 10

th
 of January at 00:00 hour and the 

hourly maximum temperature is 26.5 
o
C on 20 February at 12:00 hour. The average seasonal 

temperature in winter is 16 
o
C. The hourly minimum temperature for spring season is 14.5 

o
C 

measured on 3
rd

 of March at 6:00 hour and the hourly maximum temperature measured is 43 
o
C 

on 22
nd

 of May at 10:00 hour. The average seasonal temperature in spring is 25 
o
C. In the 

summer season, hourly minimum temperature is 32 
o
C observed on 4

th
 of August at 3:00 hour 

and the hourly maximum observed in the same season is 48 
o
C on 7

th
 of August at 14:00 hour. 

The average seasonal temperature in summer is 40 
o
C. The hourly minimum temperature 

recorded in autumn season is 9 
o
C on 24

th
 of November at 6:00 hour and the hourly maximum 

temperature recorded is 35.5 
o
C on 14

th
 of October at 12:00 hour. The average seasonal 

temperature in the autumn is 28 
o
C.  

 

Fig. 5.2: Regional map of Kuwait 
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Fig. 5.3: Hourly maximum, minimum and seasonal average temperatures in Kuwait 

 

Figures 5.4 to 5.7 show all the emission variation of SO2 for different seasons respectively. 

 

In winter season, the emission rates are evaluated from operational data for 11 weeks and the 

maximum value is 530 g/s on 2
nd

 of December 2007 and the minimum value is 376 g/s on 9
th

 of 

December 2007. The emission rate for the entire period is 480±2σ g/s, where standard deviation 

is equal to 46 g/s. SO2 emissions rates for spring season are observed providing maximum value 

of 680 g/s on 24
th

 of March 2008, which is higher than the winter maximum emission rate. The 

minimum calculated value is 356 g/s on 26
th

 of May 2008, which is lower than the winter 

minimum value. The emission rate for 13 weeks is 600±2σ g/s, where standard deviation is equal 

to 90 g/s. The maximum value for SO2 emissions rates is found to be 654 g/s on 2
nd

 of June 

2008, which is lower than the spring maximum value but higher than the winter maximum value. 

For the summer season, the minimum emission rate is 404 g/s same on 7
th

 of July and 21
Ist

 of 

August 2008, which is higher than both winter and spring minimum values. For summer season 

the emission rate calculated for 11 weeks is 458±2σ g/s, where standard deviation is equal to 77 

g/s. SO2 emissions rates for autumn season are evaluated for 12 weeks. The maximum value is 

653 g/s on 23
rd

 of September 2008, which is almost similar to maximum value during spring 
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season. The minimum computed value is 357 g/s on 5
th

 of October 2008 which is similar to the 

minimum value of spring season. The emission rate for whole autumn period is 540±2σ g/s, 

where standard deviation is equal to 91 g/s.  

 

In winter season emission rates are consistent with minimum fluctuation, while in spring 

season the emission rates are high in the beginning of the season then decreasing gradually. 

Whereas in summer season the emission rates are high at the start of the season and later become 

almost constant. Finally variation in emission rates is lower in beginning of the autumn season 

then increased.  The highest and the lowest emission rates in all seasons reflect the operational 

conditions, mainly sulphur contents in the feedstock and the total amount of heavy ends charged 

to the FCCU.   

 

 

 

Fig. 5.4: SO2 emissions rates (g/s) for winter season for year 2008 
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Fig. 5.5: SO2 emissions rates (g/s) for spring season for year 2008 

 

Fig. 5.6: SO2 emissions rates (g/s) for summer season for year 2008 
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Fig. 5.7: SO2 emissions rates (g/s) for autumn season for year 2008 

 

Similarly the PM emissions related to the process operating conditions. Figures 5.8 to 5.11 

show the behavior of PM emissions during different seasons. The maximum value is 40 g/s on 

13
th

 of January 2008 and the minimum value is 23 g/s on 23
rd

 of December 2007 for winter 

season. The emission rate in this season is 27±2σ g/s where standard deviation is 6 g/s. Similarly 

PM emission rates for spring season are calculated providing maximum value of 28 g/s on 17
th

 of 

March 2008, which is lower than winter maximum value. The minimum value is 24 g/s on two 

occasions, 12
th

 and 26
th

 of May 2008. The emission rate for 13 weeks is 25±2σ g/s, where 

standard deviation is equal to 2 g/s. the minimum calculated values for both winter and spring 

seasons are almost similar. For summer season the maximum value for PM emissions rates is 26 

g/s on three consecutive occasions, 2
nd

, 9
th

, and 16
th

 of June 2008. Whereas the minimum 

computed value is 18 g/s on 14
th

 of July and 14
th

 of August 2008. The emission rate calculated 

for 11 weeks is 21±2σ g/s, where standard deviation is equal to 3 g/s. Finally PM emissions rates 

for autumn season are evaluated for 12 weeks. The maximum value found to be 27 g/s on three 

consecutive occasions, 09
th

, 16
th 

and 23
rd

 September 2008. While the minimum computed value 

is 24 g/s on 5
th

 and 19
th

 of October 2008. The emission rate for whole autumn period is 25±2σ 

g/s, where standard deviation is equal to 1 g/s. The highest PM maximum value is in the winter 
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season and the lowest value is in the summer season, while minimum emission rate is similar to 

the maximum emission values, high in winter and low summer seasons.    

 

Fig. 5.8: Particulate Matter (PM) emissions rates (g/s) for winter season for year 2008 

 

Fig. 5.9: Particulate Matter (PM) emissions rates (g/s) for spring season for year 2008 
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Fig. 5.10: Particulate Matter (PM) emissions rates (g/s) for summer season for year 2008 

 

Fig. 5.11: Particulate Matter (PM) emissions rates (g/s) for autumn season for year 2008 
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5.4 Emission Inventories for Year 2009 

 

Emission inventories for year 2009 for SO2 and PM are prepared as the refinery increased the 

production rate of FCC unit due to the high local and international demands, mainly for energy 

production. 

 

Figures 5.12 to 5.15 show all the emission variation of SO2 for different seasons respectively. 

 

In winter season, the emission rates are calculated from operational data for 11 weeks and the 

highest value of SO2 is equal to 611 g/s on 3
rd

 of February 2009 and the lowest value is 422 g/s 

on 9
th

 of December 2008. The emission rate for the entire period is 534±2σ g/s, where standard 

deviation is equal to 52 g/s. SO2 emissions rates for spring season are computed providing 

highest value of 747 g/s of SO2 on 24
th

 of March 2009, which is higher than the winter maximum 

emission rate. The lowest calculated value is 392 g/s on 26
th

 of May 2009, which is lower than 

the winter minimum value. The emission rate for 13 weeks is 619±2σ g/s, where standard 

deviation is equal to 102. g/s. The maximum value for SO2 emissions rates for the summer 

season is found to be 733 g/s on 2
nd

 of June 2009, which is lower than the spring maximum value 

but higher than the winter maximum value. The minimum emission rate for the same season is 

equal to 444 g/s, observed on 7
th

 of July, which is higher than both winter and spring minimum 

values. For summer season, the emission rate calculated for 11 weeks is 510±2σ g/s, where 

standard deviation is equal to 88 g/s. SO2 emissions rates for autumn season are evaluated for 12 

weeks. The highest value of SO2 is 724 g/s on 28
th

 of November 2009. The minimum computed 

value is 400 g/s on 5
th

 of October 2009, which is almost similar to the minimum value of spring 

season. The emission rate for the entire autumn period is 597±2σ g/s, where standard deviation is 

equal to 98 g/s.  

 

In winter season emission rates are consistent with minimum fluctuation, while in spring 

season the emission rates are high in the beginning of the season then decreasing gradually. 

Whereas in summer season the emission rates are high at the start of the season and later become 

almost constant. Finally variation in emission rates is lower in beginning of the autumn season 

then increased.  
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Fig. 5.12: SO2 emissions rates (g/s) for winter season for year 2009 

Fig. 5.13: SO2 emissions rates (g/s) for spring season for year 2009 
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Fig. 5.14: SO2 emissions rates (g/s) for summer season for year 2009 

 

Fig. 5.15: SO2 emissions rates (g/s) for autumn season for year 2009 
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Figures 5.16 to 5.19 show PM emission rates for all the seasons of year 2009. The highest 

value of PM emission rates for the winter season is equal to 43 g/s, observed on 13
th

 of January 

2009 and the lowest value is 25 g/s, observed on 6
th

 and 27
th

 of January 2009. The emission rate 

in this season is 33±2σ g/s where standard deviation is 6 g/s. PM emission rates for spring season 

are calculated providing maximum value of 31 g/s on 17
th

 of March 2009, which is lower than 

winter maximum value. The minimum value is 26 g/s on two occasions, 12
th

 and 26
th

 of May 

2009. The emission rate for 13 weeks is 28±2σ g/s, where standard deviation is equal to 2 g/s. 

For summer season the maximum value for PM emissions rates is 30 g/s on three consecutive 

occasions, 2
nd

, 9
th

, and 16
th

 of June 2009. Whereas the minimum computed value is 20 g/s on 

14
th

 of August 2009. The emission rate calculated for 11 weeks is 24±2σ g/s, where standard 

deviation is equal to 4 g/sec. PM emissions rates for autumn season are evaluated for 12 weeks. 

The maximum value found to be 34 g/s on 7
th

 of November 2009, while the minimum computed 

value is 27 g/s on 2nd of September 2009. The emission rate for the entire autumn season is 

30±2σ g/s, where standard deviation is equal to 3 g/s. The highest PM maximum value is in the 

winter season and the lowest value is in the summer season, while minimum emission rate is 

similar to the maximum emission values, high in winter and low summer seasons.    

Fig. 5.16: Particulate Matter (PM) emissions rates (g/s) for winter season for year 2009 
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Fig. 5.17: Particulate Matter (PM) emissions rates (g/s) for spring season for year 2009 

 

 

Fig. 5.18: Particulate Matter (PM) emissions rates (g/s) for summer season for year 2009 
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Fig. 5.19: Particulate Matter (PM) emissions rates (g/s) for autumn season for year 2009 

 

Tables 5.1 to 5.4 show the emission factors for both pollutants for years 2008 and 2009. 

 

Table 5.1: SO2 monthly emission factors for year 2008 

January February March April May June 

0.077 0.083 0.096 0.1 0.077 0.088 

July August September October November December 

0.067 0.067 0.088 0.077 0.1 0.075 

 

Table 5.2: PM monthly emission factors for year 2008 

January February March April May June 

0.093 0.097 0.091 0.079 0.079 0.085 

July August September October November December 

0.064 0.063 0.085 0.079 0.079 0.1 
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Table 5.3: SO2 monthly emission factors for year 2009 

January February March April May June 

0.076 0.083 0.096 0.1 0.077 0.089 

July August September October November December 

0.067 0.068 0.087 0.077 0.1 0.075 

 

Table 5.4 PM monthly emission factors for year 2009 

January February March April May June 

0.093 0.098 0.09 0.08 0.078 0.086 

July August September October November December 

0.063 0.064 0.084 0.08 0.079 0.1 

 

FCC unit in a refinery is major contributor of SO2 and PM emissions those are responsible 

for adverse impact on the immediate neighborhood of the refinery. A complete comprehensive 

emission inventories for years 2008 and 2009 have been prepared for both SO2 and Particulate 

Matters. The refinery operations are not dependent on seasons but controlled by market driven 

conditions to maximize the profit. The seasonal impact on refinery emissions is minimal due to 

its operation at optimum capacity fulfilling the international and local market demand.  

SO2 emissions are high in spring while PM emissions are high in winter, mainly due to 

operational conditions that are dependent on feed rate, sulphur contents in the feed. PM 

emissions are mainly due to high attrition of cold makeup catalyst charge and operating 

conditions, vapor velocity, particle velocity, particle collision and particle degradation.  

These inventories are prepared based on real operational data of FCC unit obtained from the 

refinery. In the year 2009, the unit is operated at its maximum capacity to fulfil the market 

demand, leading to higher emission rates of both pollutants.  

These inventories are used in Aermod dispersion model to thoroughly investigate the impact 

of FCC unit emissions in the vicinity of the petroleum refinery, using five years comprehensive 

meteorological data of Kuwait to cover all expected meteorological events as FCC unit is 

operating at its maximum capacity for the coming years. In general, Kuwait meteorology does 



83 
 

not show significant variation and the obtained meteorological inputs will provide adequate 

information about the expected levels of pollution in the coming years. 
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CHAPTER SIX 

MODEL APPLICATIONS 
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 6.1 Introduction 

 

The application of Aermod dispersion model is more frequent than any other model for the 

evaluation of the ground level concentrations of the selected pollutants. The advantages 

associated with the use of Aermod include the calculation of the planetary boundary layer 

parameters through both surface and mixed layer scaling, the applicability to rural and urban 

areas, flat and complex terrain, surface and elevated releases with multiple sources (including, 

point, area and volume sources). Aermod can also construct vertical profiles of required 

meteorological variables based on measurements and extrapolations of those measurements 

using similarity (scaling) relationships. It applies Gaussian plume treatment horizontally and 

vertically for stable conditions and non-Gaussian probability density function for unstable 

conditions. Aermod provides reliable predicted concentrations if turbulent wind velocity 

measurements are used to estimate plume dispersion, Venkatram et al., (2004). 

 

6.2  Model Input Data 

 

Aermod dispersion model implementation requires three main input data. These are: 

 

1. Source information input: including pollutant emission rate (g/s), location coordinates in 

Universal Transverse Mercator (UTM) (m), base elevation from the sea level (m), stack 

height (m), exit stack inner diameter (m), exit stack gas velocity (m/s), and exit stack gas 

temperature (K). 

 

2. Meteorological information input: includes anemometer height (m), wind speed (m/s), 

wind direction (flow vector from which the wind is blowing) (in degrees clockwise from 

the north), ambient air temperature (
o
C), stability class at the hour of measurement 

(dimensionless) and hourly mixing height (m) for the region of interest (Ahmadi). 

 

3. Receptors information input: These are uniform Cartesian grid and discrete receptors 

which are specified by defining an optimum mesh size and selecting critical locations 

respectively to compute pollutants ground level concentrations.  
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The entire required source input data are obtained from FCC unit in the refinery. A stack of 

80 m height, an inner diameter of 2.3 m, with an average exit gas velocity of 20 m/s and exit gas 

temperature of 550 K are fed into the model. Monthly emission variation is considered with total 

SO2 emission rate of 6089 g/s for year 2008, 6758 g/s for year 2009 and total PM emission rate 

of 302 g/s for year 2008, 336 g/s for year 2009 as presented in detail, Yateem et al., (2010). 

 

6.3 Area of Study 

 

The area of study in this work covers portion of Ahmadi governorate in the state of Kuwait. 

Fahaheel area is adjacent to the petroleum refinery has one of the Kuwait EPA air quality 

monitoring station located at a polyclinic. Both areas Fahaheel and Ahmadi are surrounded by 

arid desert from the west side and bordered by the Gulf from the east. Figure 6.1 shows the area 

of study including the refinery and its vicinity map. 

 

 

Fig. 6.1: Map of the refinery and its vicinity 
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Two different types of receptor coordinates are used as input to the Aermod model to predict 

the ground level concentration of pollutants, these are: 

 

1. Discrete Cartesian receptors specified at the sensitive areas viz., a school, a shopping area 

and EPA monitoring stations in Fahaheel. A hospital and petroleum services companies‟ 

offices are selected in Ahmadi. 

 

2. Uniform Cartesian Grid receptors covering the entire area of study, where the FCC stack 

(emissions source) is located almost in the centre of the mesh grid. 

 

The grid sensitivity is examined by selecting 21 x 21 up to 72 x 72 grids for prediction of 

ground level concentrations of pollutants for specified emission rate. Figure 6.2 shows the 

percentage value with respect to 72 x 72 grid, reflecting the accuracy of predicted concentrations 

with grids variation.  The predicted concentrations are gradually decreased with selection of 

coarser grid. It is observed that the accuracy of the predicted values is above 99 % for 42 x 42 

grid and higher. Therefore, 42 x 42 grid is selected for the rest of the computational process.    

 

Fig. 6.2: Percent value Vs. mesh grid 

 

The receptors selected are based on the actual sites in a UTM location coordinate of the area 

of interest map. Table 6.1 shows the selected discrete receptors information. 
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The uniform grid of total 1764 receptors (42 x 42) is considered with (x = 350 m and y  

350 m) to cover about 12 x 10 km area of study. The optimum selection of the mesh size is based 

on the computational accuracy and time.   

 

Table 6.1: Selected discrete receptors information 

ID 

Number 
Discrete receptor identity X-coordinate Y-coordinate 

1 Fahaheel Polyclinic 219854.25 3219765.79 

2 Petroleum Services Offices in Ahmadi 216666.87 3220105.63 

3 Primary school in Fahaheel 220300.00 3219820.85 

4 Ahmadi Hospital 213458.86 3221523.64 

5 Shopping area in Fahaheel 219274.32 3219554.21 

 

6.4 Meteorological Data 

 

Five years long comprehensive metrological data are processed by Aermet to generate 

boundary layer parameters and to pass all meteorological observations to AERMOD. MM5 

prognostic meteorological input data for these five years of 2005 – 2009 at anemometer height of 

14 m and base elevation above Mean Sea Level (MSL) of 39 m are used in Aermet. These are 

consistent in describing sea breeze related to flow patterns, wind direction estimation for the 

coastal areas and provide adequate estimates of the maximum mixing layer heights, Isakov et al., 

(2007). 

 

A yearlong comprehensive metrological data is processed by Aermet to generate boundary 

layer parameters and to pass all meteorological observations to Aermod. Figure 6.3 shows wind 

direction and magnitude for a period of year 2008. It is observed that most of the time; the 

prevailing wind is from North West. There is strong influence of the neighboring Gulf as the 

refinery is located at the coast, resulting into strong sea breeze blowing from northeast and 

southeast direction. 
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Fig. 6.3: Wind rose for year 2008 

Figure 6.4 shows wind class frequency distribution for the entire year confirming 2 % calm 

conditions, while 39.8 % wind class is between 3.6 - 5.7 m/s. the highest wind class 8.8-11.1 m/s 

is less than 1%.  

 

Fig. 6.4: Wind class distribution for year 2008 
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Figures 6.5 and 6.6 shows wind direction and magnitude for a period of five years (2005 – 

2009). The prevalent wind is from northwest for the entire 5 years. Due to the location of the 

refinery at the coast, there is notable effect from the neighboring Gulf, resulting into strong sea 

breeze blowing from East direction. Wind class frequency distribution for the entire five years 

period confirming 1.3 % calm conditions, while 48.3 % is between 3.6 - 5.7 m/s. the highest 

wind class 8.8-11.1 m/s is less than 0.5%.  

 

Fig. 6.5: Wind rose for years (2005- 2009) 

 

Fig. 6.6: Wind class distribution for years (2005 – 2009)  
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6.5 Meteorological Effects 

 

In order to study the influence of yearly meteorological data on the prediction of the ground 

level concentrations of the pollutant, a model run is performed for fixed monthly SO2 emission 

rate of 500 g/s using 2008 meteorological data for each month separately. Figure 6.7 shows the 

monthly maximum hourly predicted SO2 ground level concentration for year 2008. 

  

 

Fig. 6.7: Maximum hourly predicted SO2 ground level concentration for each month for year 

2008. 

 

The highest hourly predicted SO2 ground level concentration is equal to 814 g/m
3
 for the 

month of February on 27
th

 day at 7:00 hours. The corresponding wind velocity is 0.8 m/s and the 

temperature is 15 
o
C. The second highest hourly predicted SO2 ground level concentration is 

equal to 660 g/m
3 
for the month of March on 8

th
 day at 8:00 hours. The respective wind velocity 

is 1 m/s and the temperature is 19 
o
C.  These two high values are due to the prevailing 

meteorological conditions i.e. low temperatures, low inversion layers, low convective currents 

transfer and planetary boundary layer parameters and sea breeze effect in the early morning 

hours, resulting into inadequate dispersion.  
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Figure 6.7 depicts the highest predicted ground level concentrations for the month of July 

and August are 406 g/m
3 

and 400 g/m
3
 respectively, being the lowest among the rest of the 

months in year 2008. These are hot summer months where temperature soars to 50‟s
 o

C with 

strong winds, which stimulate dust storms. As a consequence, results into high inversion layer 

and leading to high dispersion.  

A model run performed for actual monthly emission variation of year 2008 with total 

monthly SO2 emission rate of 6089 g/s using monthly emission factors for SO2 tabulated in 

Table 5.1 with the corresponding meteorological data. 

A discrete receptor is selected at Kuwait Environmental Public Authority monitoring station 

located at polyclinic in Fahaheel area as mentioned in Table 6.1. Concentrations of SO2, NOx, 

H2S, O3, CO, CO2, methane, non-methane hydrocarbon, benzene, toluene, o-m-p xylenes, 

ethylbenzene, total suspended particulates and meteorological parameters are continuously 

recorded on hourly basis.  

Hourly predicted ground level concentrations at specified discrete receptor showed large 

scatter due to variation in meteorological conditions and the recorded values influenced by the 

contribution of various emission sources has made the comparison erroneous. Therefore, daily 

measured concentrations of SO2 are compared with the daily-predicted concentrations to validate 

the model output. Figure 6.8 shows the plot between the predicted top 20 values to the 

corresponding measured values at the specified discrete receptor. 

 

                    Fig. 6.8: Predicted SO2 concentrations Vs. Measured SO2 concentrations 
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The slope of the trend line is equal to 0.7, reflecting high measured values compared to 

predicted values, depicting the contribution of other emission sources. The correlation coefficient 

is equal to 0.91.  

Venkatram (2004) studied the role of the metrological data on the dispersion. Air dispersion 

Aermod is used in this study.  The performance of the model is evaluated by comparing the 

observed values with the model-estimated values. The comparison indicated that the model is 

under predicted the ground level concentrations. The observed values are greater than the 

computed values. The model estimated values are within a factor of two of the observations. 

Isakov et al (2007) evaluated different meteorological inputs in air quality modelling 

applications. Most of the estimated concentrations are within a factor of two of the measured 

values when MM5 meteorological input is used. 

In the present work, the predicted values are almost within the factor of two of the measured 

values, reflecting an acceptable validation of the model‟s output. The observed values are higher 

due to the contribution of the line source emissions. EPA monitoring station is located in 

Fahaheel area. The additional SO2 levels are mainly due to heavy vehicles, busses and trucks, 

using sulphur-containing fuel viz., diesel.  

Sulphur hexafluoride SF6 is commonly used as tracer gas to assess the performance of air 

dispersion models. A known amount of SF6 can be released at fixed flow rate. Air dispersion 

model can be used to predict ground level concentration of the tracer gas using different 

meteorological inputs. And ambient air sample either at regular grid point or at discrete receptor 

can be sampled for estimation of SF6 ground level concentration. The performance of the 

dispersion model can be accurately evaluated and its output can be validated. 

Yuan et al. (2006) showed that a simple dispersion model that used onsite meteorological 

data i.e. mean wind and turbulence as an input predicted an adequate description of the ground 

level concentrations observed during the tracer (SF6) experiment. This model has the basic 

structure and input requirements similar to those of Aermod. 

  It is recommended to conduct a tracer gas study (SF6) to ascertain the performance of 

Aermod with greater confidence for future work. 
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7.1 Introduction 

 

The execution of Aermod dispersion model for total monthly emission rates of year 2008 the 

corresponding yearly meteorological data has shown top 300 hourly and daily ground level 

concentrations for both pollutants i.e. SO2 and PM considering monthly emission variations. The 

stack parameters are already mentioned in the previous chapter.  

Aermod is also applied to total monthly emission rates of year 2009 for both pollutants, SO2 

and PM with wider range of meteorological data (2005-2009), in order to thoroughly investigate 

the pattern of Kuwait weather variation for the said period and its impact on the prediction of the 

ground level concentrations.  

  

7.2 Simulation of Concentrations for Year 2008 

 

Sixteen sectors of spiral plot indicate the maximum and average hourly concentrations (top 

300 values) profiles for year 2008 computational results of total emission rate of 6089 g/s. Figure 

7.1 shows the maximum hourly concentration of SO2 equal to 838 μg/m
3
 in the northwest (NW) 

direction from the stack and the average hourly in the southwest south (SWS) direction from the 

stack is equal to 533 μg/m
3
, reflecting influence of eastern wind (sea breeze). This sea breeze is 

obviously drifting the pollutants towards the west direction affecting the areas located at 

downwind. The highest hourly concentration computed is on 8
th

 of March 8:00 hours and at a 

distance of 1.6 km from the stack at 311
o
 bearing north. The corresponding wind velocity is 1 

m/s and temperature is 19 
o
C. Similarly the second highest is 826 μg/m

3 
on 27

th
 of February 7:00 

hours at the distance of 1.8 km from the emission source at 303
o
 bearing north. 
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Fig. 7.1: Spiral plot shows top 300 hourly ground level concentration of SO2 for year 2008 

emission rate 

 

Daily maximum and average concentrations of SO2 (top 300 values) for year 2008 emission 

rate profiles are shown in sixteen sectors of spiral plot in Figure 7.2. 

 

The maximum concentration of SO2 is 341 μg/m
3
 from east to southeast south (SES) 

direction, reflecting influence of prevailing northwest wind. The average concentration of SO2 is 

equal to 157 μg/m
3
.  

 

The influence of the dominant northwestern wind is clearly shown in Figure 7.2, dispersing 

the pollutants toward southeast direction and affecting downwind area.      

 

The highest computed daily concentration of SO2 is on 9
th

 of November at the distance of 0.9 

km from the stack at 128
o
 bearing north. The second highest is equal to 267 μg/m

3 
on 17

th
 of 

November at the distance of 1.2 km from the emission source at 142
o
 bearing north. 
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Fig. 7.2: Spiral plot shows top 300 daily maximum and average ground level concentration of 

SO2 for year 2008 emission rate 

 

The maximum and average hourly ground level concentrations of SO2 (top 300 values) 

profiles for total emission rate of 6758 g/s  for year 2009, using 5 years meteorological data of 

Kuwait (2005 – 2009) are shown in Figure 7.3. 

 

The maximum predicted ground level concentration of SO2 is equal to 930 μg/m
3 

in the 

northwest (NW) direction. The application of the model for prediction of SO2 hourly ground 

level concentration,
 
using 5 years meteorological data of Kuwait showed the strong eastern wind 

(sea breeze) influence on the dispersion process. The highest predicted concentration is at a 

distance of 1.5 km from the stack at 311
o
 bearing north, corresponding to the meteorological 

conditions of 8
th

 of March 2008, at 8:00 hours. The corresponding wind velocity is 1 m/s and 

temperature is 19 
o
C. The average concentration is equal to 676 μg/m

3 
in the southeast direction 

from the emission source. The second highest is 917 μg/m
3
, corresponding to meteorological 

conditions of 27
th 

of February 2008, 8:00 hours at the distance of 1.9 km from the emission 

source at 304
o
 bearing north. 
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Fig. 7.3: Spiral plot shows top 300 hourly ground level concentration of SO2 for year 2009 

emission rate 

 

Daily maximum and average concentrations of SO2 (top 300 values) for year 2009 emission 

rate profiles are shown in sixteen sectors of spiral plot in Figure 7.4. 

 

The daily maximum concentration of SO2 is 379 μg/m
3
 in the southeast south (SE) direction 

and the average concentration of SO2 is equal to 200 μg/m
3
. The effect of the average daily 

northwestern wind of Kuwait meteorological data for 5 years is dominant, dispersing the 

pollutants toward southeast direction of the emission source. 
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Fig. 7.4: Spiral plot shows top 300 daily maximum and average ground level concentration of 

SO2 for year 2009 emission rate 

 

The highest computed daily concentration of SO2 is at the distance of 0.9 km from the stack 

at 128
o
 bearing north, corresponding to meteorological conditions of 9

th
 of November 2008. The 

second highest is equal to 297 μg/m
3 

corresponding to meteorological conditions 17
th

 of 

November 2008, at the distance of 1.2 km from the emission source at 141
o
 bearing north. 

 

7.3 Model Results for Year 2008 Emission Data 

 

The predicted hourly average ground level concentrations of SO2 for years 2008 emission 

rate, are compared with Kuwait-EPA Ambient Air Quality Standards (AAQS) at all of the 

selected receptors. The maximum allowable limit for the hourly average concentration of SO2, 

specified by Kuwait-EPA, is 444 µg/m
3
. Figure 7.5 shows the isopleths of the predicted hourly 

average ground level concentration of SO2 calculated at the selected uniform grid receptors. 
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Fig. 7.5: Isopleths plot of the predicted hourly average ground level concentration of SO2       for 

year 2008 

 

The isopleths indicate the predicted spatial variations of the ground level concentrations of 

SO2. The maximum predicted hourly average ground level concentration of SO2 in the vicinity of 

the refinery exceeded by as much as 400 μg/m
3
. The highest predicted concentration is equal to 

838 μg/m
3
, observed on the 8

th
 of March 2008 at 8:00 hour and about 1.6 km in the northwest 

direction from the FCC stack, and not far from Fahaheel and Ahmadi areas at the receptor 

coordinates of X = 218648, Y = 3219048. This high value of the predicted SO2 concentration is 

expected due to the elevated SO2 emission rate, which resulted from the high sulphur content in 

the FCC feedstock in this particular month and other operational conditions i.e. (reaction 

temperature, pressure, catalyst characteristics) and the prevailing meteorological conditions 

(ambient temperature, humidity, wind speed, wind direction, stability class, planetary boundary 

layer).  

 

A thorough inspection on Figure 7.5 indicates that predicted concentrations of SO2 exceed 

the allowable hourly limit at 6 % of the study area from northwest and southwest directions from 

the stack.  
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Similarly, the predicted daily average ground level concentration of SO2 is compared with 

Kuwait EPA ambient air quality standards at all receptors. The allowable limit for the daily 

average concentration of SO2 is 157 μg/m
3
. Figure 7.6 shows the isopleths of the predicted daily 

average ground level concentration of SO2 computed at the selected uniform grid receptors. 

 

 

Fig. 7.6: Isopleths plot of the predicted daily average ground level concentration of SO2 for year 

2008  

 

The isopleths indicate the daily predicted spatial variations of the ground level concentrations 

of SO2 in the area of study. The highest daily predicted concentration is equal to 341μg/m
3
, 

observed on the 9
th

 of November 2008 and about 0.9 km in the southeast direction from the 

stack, at a receptor coordinates of X = 220398, Y = 3217298 affecting the neighboring Shuaiba 

industrial area, Kuwait main industrial complex. This high value of the daily predicted SO2 

concentration exceeded the allowable level by 157 μg/m
3
 and obviously influenced by the 

prevailing meteorological conditions, especially the predominant northwest wind and other 

meteorological factors.  

 

Discrete receptor 2, is located at Petroleum services offices, has shown the highest SO2 

hourly concentration equal to 609 µg/m
3
 on 27th February at 8:00 hours. The hourly exceedance 
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occurred four times at this location throughout the study period. The highest daily concentration, 

which is below the Kuwait EPA allowable limit, at the same receptor is equal to 41 µg/m
3
 on 8

th
 

March. 

Discrete receptor 3, is located at primary school, has shown the highest SO2 hourly 

concentration equal to 279 µg/m
3 

on 2
nd

 March at 4:00 hours. The daily highest concentration is 

equal to 57 µg/m3 on 2nd March. The hourly and daily concentrations are below the 

corresponding Kuwait EPA standards. 

 

Discrete receptor 4, is located at Ahmadi hospital, has shown the highest SO2 hourly ground 

level concentration equal to 314 µg/m
3
 on 27

th
 February at 8:00 hours. This value is also below 

the specified hourly limit set by Kuwait EPA. The daily predicted concentration is equal to 26 

µg/m3 on 30th April.  

 

Discrete receptor 5, is located at shopping area, has shown the highest SO2 hourly ground 

level concentration is equal to 351 µg/m
3
 on 23

rd
 October at 8:00 hours. The daily predicted 

concentration is equal to 40 µg/m
3
 on 2

nd
 April. Both hourly and daily predicted values are below 

Kuwait EPA hourly and daily ambient air quality standards. 

 

Kulkarni et al., (2007) have reported that lanthanum and lanthanides are used as markers for 

particulate matters pollution as PM2.5 in petroleum refineries, mainly from FCC units. 

 

US EPA daily PM2.5 standard is 35 g/m
3
. In the present work, the application of Aermod to 

predict ground level concentration of PM is considered as PM2.5 for rare earth metals i.e. 

lanthanum and cerium. PM2.5 is inhalable and has adverse impact on public health causing 

cardiovascular diseases. Kuwait EPA has no standard for PM2.5 and has only specified daily and 

yearly standard for PM10. Figure 7.7 shows the isopleths of the predicted hourly average ground 

level concentration of PM calculated at the selected uniform grid receptors.  
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Fig. 7.7: Isopleths plot of the predicted hourly average ground level concentration of PM for year 

2008 

 

The isopleths indicate the hourly predicted spatial variations of the ground level 

concentrations of PM. The maximum hourly predicted average ground level concentration of PM 

is equal to 51 μg/m
3
, observed on the 27

th
 of February 2008 at 8:00 hour and about 1.85 km in 

the northwest direction from the FCC stack. The top value is predicted in the early morning 

confirming the strong influence of the sea breeze. The receptor coordinates are X = 218298, Y = 

3219048.  

 

Similarly, the predicted daily average ground level concentration of PM is compared with 

US EPA ambient air quality standards for PM2.5 at all receptors. Figure 7.8 shows the isopleths 

of the predicted daily average ground level concentration of PM computed at the selected 

uniform grid receptors. 
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Fig. 7.8: Isopleths plot of the predicted daily average ground level concentration of PM for year 

2008 

 

The isopleths indicate the daily average predicted spatial variations of the ground level 

concentrations of PM in the area of study. The highest daily predicted concentration is equal to 

16 μg/m
3
, observed on the 29

th
 of December 2008 and about 0.9 km in the southeast direction 

from the stack, at a receptor coordinates of X = 220748, Y = 3217298 due to the influence of the 

prevailing meteorological conditions, especially the predominant northwest wind and other 

meteorological factors. The predicted value is below the US EPA allowable 24 hours limit. This 

value is computed based on the assumption of zero background concentration, which can exceed 

the limit with a fair contribution of other local or far distant sources. 

 

7.4 Model Results for Year 2009 Emission Data 

 

The hourly predicted spatial variation of SO2 ground level concentration is shown in Figure 

7.9 using emission rate for year 2009 with 5 years meteorological data of Kuwait (2005 – 2009). 

The highest predicted concentration is equal to 930 μg/m
3
, observed corresponding to   8

th
 of 

March 2008 at 8:00 hour meteorological conditions and about 1.6 km in the northwest direction 

from the emission source, at the receptor coordinates of X = 218648, Y = 3219048. 
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Fig. 7.9: Isopleths plot of the predicted hourly average ground level concentration of SO2       for 

year 2009 

 

The high sulphur content in the feedstock, high FCC unit production rate and low sulphur 

products resulted from local and international market demands boosted SO2 emission rate, 

resulting into elevated SO2 ground level concentration. High emission rates of SO2 is also 

affected by the FCC unit operational conditions i.e. (reaction temperature, pressure, catalyst 

characteristics) and the prevailing meteorological conditions (ambient temperature, humidity, 

wind speed, wind direction, stability class, planetary boundary layer). The highest predicted SO2 

ground level concentration is exceeded the Kuwait EPA allowable limit by almost 500 μg/m
3
. 

The hourly SO2 ground level concentration isopleths indicate the influence of high SO2 emission 

rate on the ambient air quality of the neighboring areas of the refinery i.e. Fahaheel and Ahmadi.
 

Figure 7.9 also indicates that the predicted concentrations of SO2 exceed the allowable hourly 

limit at 31 % of the study area from western directions, influenced by strong sea breeze in the 

early morning hours.  

 

Figure 7.10 shows the isopleths of the predicted daily average ground level concentration of 

SO2 computed at the selected uniform grid receptors.  
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Fig. 7.10: Isopleths plot of the predicted daily average ground level concentration of SO2 for year 

2009  

 

The highest daily predicted concentration is equal to 379 μg/m
3
, observed corresponding to 

9
th

 of November 2008 and about 0.9 km in the southeast direction from the stack, at a receptor 

coordinates of X = 220398, Y = 3217298. This high value of the daily predicted SO2 

concentration is exceeded the allowable level by 157 μg/m
3
 and obviously influenced by the 

prevailing meteorological conditions, especially the predominant northwest wind and other 

meteorological factors. This high predicted ground concentration is also affecting the ambient air 

quality of Shuaiba, Kuwait main industrial area. 

 

Discrete receptor 2 showed the highest SO2 hourly concentration is equal to 676 µg/m
3
 

corresponding to meteorological condition of 27
th

 of February 2008, at 8:00 hours. The highest 

daily concentration, which is below the Kuwait EPA allowable limit, at the same receptor is 

equal to 47 µg/m
3
 corresponding to meteorological condition of 27

th
 of April 2006. 

 

Discrete receptor 3 showed the highest SO2 hourly concentration is equal to 347 µg/m
3 

corresponding to meteorological condition of 9
th

 of April 2006, at 3:00 hours. The daily highest 
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concentration is equal to 90 µg/m
3
 corresponding to meteorological condition of 29

th
 October 

2006. Both hourly and daily concentrations are below the corresponding Kuwait EPA standards. 

 

Discrete receptor 4, is located at Ahmadi hospital, has shown the highest SO2 hourly ground 

level concentration equal to 500 µg/m
3
 corresponding to meteorological condition of 30

th
 March 

2005, at 7:00 hours. This value is above the specified hourly limit set by Kuwait EPA. The daily 

predicted concentration is equal to 33 µg/m
3
 corresponding to meteorological condition of 25

th
 

March 2005.  

 

Discrete receptor 5, is located at shopping area, has shown the highest SO2 hourly ground 

level concentration is equal to 744 µg/m
3
 corresponding to meteorological condition of 16

th
 April 

2007, at 7:00 hours. The daily predicted concentration is equal to 80 µg/m
3
 on 10

th
 April 2007. 

The hourly predicted ground level concentration is exceeded Kuwait EPA hourly ambient air 

quality standard by almost 300 µg/m
3
. 

 

Figure 7.11 indicates the hourly predicted ground level concentrations of PM for year 2009 

emission rate. The highest hourly predicted average ground level concentration of PM  is equal to 

57 μg/m
3
, observed corresponding to meteorological conditions 27

th
 of February 2008, at 8:00 

hour and about 1.85 km in the northwest direction from the FCC stack. The receptor coordinates 

are X = 218298, Y = 3219048.  
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Fig. 7.11: Isopleths plot of the predicted hourly average ground level concentration of PM for 

year 2009 

Similarly, the predicted daily average ground level concentration of PM is compared with US 

EPA ambient air quality standards for PM2.5 at all receptors. Figure 7.12 shows the isopleths of 

the predicted daily average ground level concentration of PM computed at the selected uniform 

grid receptors. 

 

The isopleths indicate the daily average predicted spatial variations of the ground level 

concentrations of PM in the area of study. The highest daily predicted concentration is equal to 

17 μg/m
3
, observed corresponding to meteorological conditions of 29

th
 of December 2008 and 

about 0.9 km in the southeast direction from the stack, at a receptor coordinates of X = 220748, 

Y = 3217298 due to the influence of the prevailing meteorological conditions, especially the 

average northwest wind and other meteorological factors. The predicted concentration is also 

calculated based on the assumption of zero background concentration, which can exceed the 

limit with a fair contribution of other local or far distant sources. 
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Fig. 7.12: Isopleths plot of the predicted daily average ground level concentration of PM for year 

2009 

 

7.5 Parametric Sensitivity Study 

 

In order to observe the computational model sensitivity, another scenario run is performed 

adding two finer meshes consisting of 21 x 21 uniform receptor points, the first one covering 

hourly highest ground level concentration area, the other one covering daily highest predicted 

ground level concentration area. The output accuracy has improved for both pollutants due to 

application of interpolation using small values of x = 150 m, y = 110 m for the first mesh and 

x = 100 m, y = 100 m for the second mesh.  There is 0.7% increase in the hourly highest 

ground level concentration and 3% increase in the daily highest ground level concentration, 

which are insignificant. Therefore, the only parent mesh is used in the computational process for 

all the other scenarios considered in the parametric studies.  

FCC stack sensitivity analysis is performed on 3 scenarios (stack height, SO2 emission rate 

and stack diameter). 
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In scenario 1, analysis for stack heights 50 m, 80 m, 120 m, 160 m and 200 m is conducted 

while keeping all other parameters constant i.e. (emission rate, exit flue gas velocity, exit 

temperature, stack diameter). 

The computed concentrations for different stack heights are shown in figure 7.13. It is 

obvious from the figure that the highest predicted hourly and daily ground level concentrations 

of SO2 are reduced substantially as stack height is increased. The reduction in the highest 

computed hourly ground level concentration of SO2 is almost 50 % when stack height is doubled. 

The reduction in the evaluated hourly SO2 concentration as a function of stack height is given as 

an exponential expression C (µg/m
3
) = 1600       and r

2
 is 0.99, where h is the stack height (m). 

The hourly predicted concentration gradient dC/dh = 14.5       becomes insignificant at higher 

stack elevations (>200 m). The highest daily predicted ground level concentration as a function 

of stack height is given as C (µg/m
3
) = 1410        and r

2
 is 0.98. The daily highest predicted 

concentration gradient is dC/dh = 24       . The locations of hourly highest predicted 

concentrations of SO2 from the stack, as a function of stack height is shown in Figure 7.13 and 

related as D (km) = 0.6         and r
2 
is 0.98.
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Fig. 7.13: Hourly and daily predicted ground level concentrations of SO2 versus stack height  

 

In scenario 2, SO2 emission rate effect from FCC stack is tested at stack height of 80 m for 

different yearly emission rates of 3000 g/s, 4000 g/s, 5000 g/s, 6000 g/s, 7000 g/s and 8000 g/s, 

taking into consideration the monthly emission variations (by using emission factors, Table 5.1 

and fixing other stack parameters i.e. exit temperature, exit flue gas velocity and stack diameter. 

It is noticed from Fig. 7.14 that the highest predicted hourly and daily ground level 

concentration of SO2 is substantially decreased as SO2 emission rate is reduced. At 50% 

reduction in the emission rate, the highest hourly and daily ground level concentrations 

decreased by about 48%.  
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Fig. 7.14: Hourly and daily predicted SO2 ground level concentrations versus SO2 emission rate  

 

In scenario 3, FCC stack diameter effect is examined at stack height of 80 m for different 

diameters of 1.5 m, 2.3 m, 3 m and 4 m. The exit flue gas velocity is directly related to the square 

of the diameter for a fixed exit flue gas flow rate. It is observed that the dispersion and rise of the 

plume are not affected by diameter variation and the predicted ground level concentration of SO2 

remained almost unaltered. The hourly and daily predicted concentrations of SO2 are almost 

identical for all stack diameters calculations. 

In the convective boundary layer, Aermod estimates the plume rise using wind speed at the 

stack tip as the stack momentum and stack buoyant fluxes are influenced by turbulence in this 

layer.  In the stable boundary layer, Aermod calculates the plume rise and the effective height 

using stack momentum, stack buoyant fluxes and Brunt–Vaisala frequency at effective wind 

speed. These parameters are depending mainly on stack exit velocity, radius, temperature and 

potential temperature gradient. Both stack momentum and buoyant fluxes are directly 

proportional to stack exit velocity and radius. For fixed flue gas flow rate, the exit velocity is 
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changed with the change in stack diameter, compensating the effect of the stack diameter in the 

estimation of the plume rise and the effective height.   

 The plume rise, hs is calculated in Aermod using the following equation: 

 hs = 2.66   
  

      
 

   * ( 
     

   
    

    

 
        

    

 
  

 

                                             (7.1)                                               

Where the stack momentum flux, Fm and stack buoyant flux, Fb are calculated using: 

Fm = (T/Ts) ws
2 
rs

2
                                                                                       (7.2)                                                                        

Fb = (T/ Ts) g ws
 
rs

2
                                                                          (7.3)                                                                                                                

And Brunt–Vaisala frequency is calculated using: 

N = ( 
 

  
 
  

  
  

 

                                                                             (7.4) 

Where: 

N = 0.7 N                

x = 49    
 

                                                                                                                     (7.5)                                                                                                                        

The effective stack height = plume rise + actual stack height                                 (7.6)                                      

u is the wind speed at the maximum plume rise, m/s 

x is the distance to the final plume rise, metre. 

T is the ambient temperature, 
o
C. 

Ts is the exit flue gas temperature, 
o
C 

g is the gravitational acceleration, m/s 

Table 7.1 shows the values of effective stack height for different values of stack radius and 

plume rise. These values are based on the following assumed values: 

Flue gas flow rate = 50 m
3
/s   
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T = 20 
o
C 

Ts = 227 
o
C 

u = 10 m/s 

N = 0.018        

Table 7.1:  Effective stack heights for different of stack radius and plume rise 

Stack radius (m) Plume rise, hs  (m) Effective height, Heff (m) 

0.75 61.56 141.56 

1 61.53 141.53 

1.5 61.50 141.50 

2 61.50 141.50 

 

As shown in Table 7.1 the stack momentum flux, Fm changes significantly with the change of the 

stack radius. However, it is noticed that there is no significant change in the plume rise and the 

effective stack height with respect to the change in the stack radius. 

 

7.6 Mitigation Methods of Sulphur Oxides 

 

SO2 emissions are controlled by the introduction of SOx reduction additives in a typical FCC 

unit. These additives are mainly hydrotalcites based or mix oxides (Mg/Al/Fe/Cu). In the 

literature, Vierheilig et al., (2003) have reported that SO2 reduction of 20 – 60 % can be achieved 

by the use of additives, which is almost about 1-10 % of the total catalyst inventory. Mg, Fe and 

Cu oxides react with SO3 to produce respective sulphates, which are re-circulated with the 

catalyst into the riser. The sulphates are reduced to respective oxides and H2S is produced that is 

further reacted to generate elemental sulphur through Claus process.   

In the preceding section, the effect of SO2 emission rates on predicted ground level 

concentrations is thoroughly examined in scenario 2 of the parametric study. The hourly 

maximum predicted SO2 concentration for year 2008 can be reduced to 444 µg/m
3
, Kuwait EPA 
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specified limit for an equivalent total annual emission rate of 3500 g/s by reduction of 43% of 

total 6089 g/s. Similarly, total annual emission rate for year 2009 may also be reduced by 57% of 

total 6758 g/s to achieve SO2 concentration below the Kuwait EPA hourly standard. The 

reduction of SO2 emissions is proportional to the amount of SOx additive charged. There are 

different types of additives commercially available that have to be tested and economically 

evaluated for the selection of the appropriate type and quantity of additives. 

 

7.7 Particulates Emission Control 

 

Particulate fines are produced, mainly due to high attrition resulted from catalyst particle 

erosion and fracture during the process and of the thermal shock of the cold fresh catalyst charge 

(makeup) coming in contact with hot regenerated catalyst under operating conditions i.e. vapour 

velocity, particle velocity, particle collision and particle degradation.  

Among the various available mitigation techniques for of PM emissions, cyclones and 

electrostatic precipitator, (ESP) are integral parts of FCC process. ESP has recently been 

installed to reduce substantially PM emissions.  In the trail runs, 90 % reduction is observed, 

which has resulted into high reduction in ground level concentration in the vicinity of this unit. 

Total average annual emission of PM for year 2009 is 336 g/s before the installation of ESP and 

is reduced to almost 34 g/s after the commissioning of ESP. in lieu of this reduction; the highest 

daily predicted ground level concentration has decreased from 17µg/m
3
 to almost 2 µg/m

3
.  
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FCC unit in a refinery is major contributor of SO2 and PM emissions those are responsible 

for adverse impact on the immediate neighborhood of the refinery. A complete comprehensive 

emission inventories for years 2008 and 2009 have been prepared for both SO2 and Particulate 

Matters based on real operational data obtained from the refinery.  

SO2 emissions are high in spring while PM emissions are high in winter in both years 2008 

and 2009, mainly due to operational conditions that are dependent on feed rate and sulphur 

contents in the feed. PM emissions are mainly due to high attrition of cold makeup catalyst 

charge and operating conditions i.e. vapour velocity, particle velocity, particles collision and 

particles degradation. 

The comprehensive meteorological data for year 2008 has been tested for fixed monthly SO2 

emission rate of 500 g/s using Aermod. The highest hourly predicted ground level concentration 

of SO2 is equal to 814 g/m
3on 27

th
 of February at 7:00 hours. The corresponding wind velocity 

is 0.8 m/s and the temperature is 15 
o
C. The second highest hourly predicted SO2 ground level 

concentration is equal to 660 g/m
3 
for the month of March on 8

th
 day at 8:00 hours. These values 

are mainly due to the prevailing calm meteorological conditions, low temperature, low inversion 

layer, lower convective currents transfer and other planetary boundary layer parameters resulting 

into inadequate dispersion. The hourly highest predicted SO2 concentration for the month of 

August is equal to 400 g/m
3
, which is the minimum value among the months of year 2008. 

August is a hot and dry summer month where temperature crosses 45
 o
C with strong dusty winds, 

resulting into high inversion layer and leading to high dispersion. 

The mesh sensitivity is tested by selecting 21 x 21 up to 72 x 72 mesh size for the prediction 

of ground level concentrations of SO2 for fixed emission rate. The predicted concentrations are 

gradually increased with selection of finer mesh. It is observed that the accuracy of the predicted 

values is above 99 % for 42 x 42 mesh and higher. Therefore, 42 x 42 mesh size is selected for 

the rest of the computational process.    

A model runs performed for actual monthly emission variation with total SO2 emission rate 

of 6089 g/s for years 2008, taking into consideration monthly emission factors for SO2. The daily 

predicted ground level concentrations of SO2 are compared with the respective Kuwait EPA 
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monitoring station daily measured SO2 concentrations at the same discrete receptor and showed 

acceptable validation of the model output.  

 

Another run is performed for PM emission variation with total emission rate of 302 g/s for 

year 2008 using monthly PM emission factors. The highest hourly predicted concentration of 

SO2 for year 2008 is equal to 838 μg/m
3
. It is observed on the 8

th
 of March 2008 at 8:00 hour, 

due to elevated SO2 emission rate in this month and the prevailing meteorological conditions, 

especially sea breeze effect in the early morning hours. The highest daily predicted concentration 

is equal to 341 μg/m
3
. It is observed on the 9

th
 of November 2008, and obviously influenced by 

the predominant northwest wind. The maximum daily predicted concentration of PM  is equal to 

16 μg/m
3
. It is observed on the 29

th
 of December 2008. The predicted concentrations of SO2 

exceeded the allowable hourly limit at 6 % of the study area. 

Aermod is applied for year 2009 emission rates of both pollutants, using five years 

meteorological data (2005 – 2009). The highest hourly SO2 predicted concentration is equal to 

930 μg/m
3
, observed corresponding to   8

th
 of March 2008 at 8:00 hour, mainly due to elevated 

SO2 emission rate resulted from high products demand and the influence of the prevailing 

meteorological conditions. The highest daily SO2 predicted concentration is equal to 379 μg/m
3
, 

observed corresponding to 9
th

 of November 2008, influenced by the prevailing meteorological 

conditions, especially the predominant northwest wind. The maximum daily PM predicted 

concentration is equal to 17 μg/m
3
, observed corresponding to 29

th
 of December 2008. The 

predicted concentrations of SO2 exceeded the allowable hourly limit at 32 % of the study area. 

High hourly values of SO2 for both years are affecting the ambient air quality of Fahaheel 

and Ahmadi areas, while high daily values of SO2 concentration affects the air quality of 

Shuaiba, Kuwait main industrial area. 

The parametric sensitivity is explored by changing stack height, total emission rate and stack 

diameter independently. It is observed that the higher stack facilitated good dispersion, thus 

lowering the ground level average concentration of the pollutant up to 50% when the stack 

height is doubled.  

It is notice that the highest predicted hourly and daily ground level concentrations of SO2 
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are substantially decreased as SO2 emission rate is reduced. At 50% reduction in the emission 

rate, the highest hourly and daily ground level concentrations decreased by almost 48%.  

 

The influence of stack diameter inherently changed the exit flue gas velocity due to 

invariable flue gas flow rate. The plume rise and dispersion are related to the exit flue gas 

velocity, which decreased with the increase of stack diameter because of proportionality to the 

square of diameter. For a fixed load there is no noticeable change in the average hourly and daily 

predicted ground level concentrations of SO2. 

SO2 emissions are controlled by the introduction of SOx reduction additives in a typical FCC 

unit. The additives charge is about 1-10 % of the total catalyst inventory, depending on sulphur 

deposition during coke formation. The hourly maximum predicted SO2 concentration for year 

2008 can be decreased to Kuwait EPA specified limit by reduction of 43% of total annual 

emission rate. Similarly, total annual emission rate for year 2009 may also be reduced by 57% of 

total emission to achieve SO2 concentration below the Kuwait EPA hourly standard. The 

reduction of SO2 emissions is proportional to the amount of SOx additive charged. There are 

different types of additives commercially available that have to be tested and economically 

evaluated for the selection of the appropriate type and quantity of additives. 

Cyclones and electrostatic precipitator (ESP) are commonly used for PM emissions control. 

ESP has recently been installed and tested. The reduction in PM emissions is about 90 %, which 

has resulted into high reduction in ground level concentration in the vicinity of the refinery. As a 

result of this reduction; the daily highest predicted ground level concentration has decreased 

from 17 µg/m
3
 to almost 2 µg/m

3
.  

 

 

 

8.1 Recommendations and future work 

 

There are 101 stacks in the petroleum refinery emitting various pollutants with different 

rates. Comprehensive emission inventories shall be prepared and multi-pollutant dispersion 

model like Calpuff may be used to predicted various pollutant concentrations in a selected area, 
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considering interaction of different pollutants, photo-oxidation, dry and wet deposition. Model 

results shall be used for the evaluation of associated health risk to refinery employees as well as 

the residents of the neighboring area. Other potential emission sources like road vehicle, cottage 

industries, restaurants; fuel-dispensing stations etc shall be considered in ambient air quality 

assessments in neighboring urban and industrial localities.  

 

It is recommended to conduct a tracer gas study (SF6) to ascertain the performance of 

Aermod with greater confidence for future work. 

Further research may be necessary for Aermod to ensure the model applications for non-

continuous releases source i.e. puffs and fugitive gases. 
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Abstract Fluid catalytic cracking of heavy ends to
high-value liquid fuels is a common unit operation in
oil refineries. In this process, the heavy feedstock that
contains sulfur is cracked to light products. Sulphur
content is hence redistributed in the liquid and
gaseous products and coke of the catalyst used in
this process. The coke is later burnt in the regenerator
releasing sulfur into the discharged flue gas as SO2. In
the present work, comprehensive emission inventories
for a fluid catalytic cracking unit in a typical oil
refinery are prepared. These inventories are based on
calculations that assume complete combustion of
catalyst coke in the regenerator. Yearly, material
balances for both SO2 and particulate matters emis-
sions are carried out taking into account seasonal
variations in the operation of the process unit. The
results presented in this article reflect the variation of
sulfur in feedstock originating from various units in
the refinery. The refinery operations are not depen-
dant on seasons but controlled by market-driven
conditions to maximize the profit. The seasonal

impact on refinery emissions is minimal due to its
operation at optimum capacity fulfilling the interna-
tional market demand. The data presented and
analyzed here can be used to assess the hazardous
impact of SO2 and particulate matter emissions on
surrounding areas of the refinery.

Keywords Emissions inventory . Particulates . SO2
.

FCC .Material balance

Nomenclature
F feed (T/h)
L total liquid products (T/h)
G total gas products (T/h)
E total emission (T/h)
A total air feed (T/h)
M fresh catalyst (T/h)
L2 is heavy cycle oil
xF1 sulfur weight fraction in liquid feed
xj1 sulfur weight fraction in liquid products
xj2 PM weight fraction in HCO
yj1 sulfur weight fraction in gaseous products
yE1 sulfur weight fraction in flue gases
yE2 PM weight fraction in flue gases

1 Introduction

Ever-increasing demand for fossil fuels resulting from
industrial and economic growth in the modern world
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has forced the utilization of the state-of-the-art
technologies by petroleum refining industry to obtain
maximum yield. However, the environmental impact
of the unit operations used in this industry is an issue
that requires constant monitoring. In this respect, the
main operation to be considered is processing of
crude oil, which yields many valuable products such
as gasoline, diesel, aviation turbine kerosene, lique-
fied petroleum gas, and others. Fluid catalytic
cracking unit (FCC) has been one of the most
important conversion processes since 1942. This
process, which has developed considerably over the
years, allows refineries to utilize their crude oil
resources more efficiently.

Maya-Yescasa et al. (2004) described the FCC of
heavy ends as a common practice in the oil refining
industry, which produces highly valuable fuels. After
60 years of evolution, FCC has become one of the
most important oil refining processes (Fig. 1). Cur-
rently, FCC operates in constrained regions of
medium to high conversion, using synthetic catalysts.

The main objective of FCC unit is to upgrade the
low-value feedstock to more valuable products. Its
heavy feedstock (vacuum gas oil, coker gas oil,
unconverted oil, and waxy distillate), coming from
vacuum unit, delayed coker unit, and crude distilla-
tion units, respectively, is catalytically cracked into
lighter products (liquefied petroleum gas, gasoline,
diesel, and fuel oil). Environmental concerns about
this process have increased during the last 10 years,
because of its great contribution of sulfur oxides and
particulate matters (PMs) emissions.

Chen (2006) demonstrated the FCC process tech-
nology as a primary conversion unit in the most
refineries. It converts low-value heavy ends of the crude

oil into a variety of higher-value, light products. The
primary function of FCC units is to produce gasoline.
About 45% of worldwide gasoline production comes
either directly from FCC units or indirectly from
combination with downstream units, such as alkylation.

Venuto and Habib (1978) showed the most
common FCC feedstock as a blend of gas oils, from
vacuum and atmospheric distillation and delayed
coking. Due to the inherent desulfurization during
cracking reactions, that results of breaking of the C–S
bonds in the feedstock. Sulphur in the feedstock
distributes mainly to cyclic oils, gasoline, hydrogen
sulphide, and coke.

The major units in the FCC process are discussed
as a feed preheat section, reactor-regenerator section,
main fractionator, and gas concentration section.

In the reactor, the catalytic cracking endothermic
reaction takes place, and a catalyst is recovered from
all products by passing through a set of multistage
cyclones. The collected catalyst is sent to the
regenerator. The coke impregnated catalyst is reac-
tivated by combustion process producing SO2. This
process is exothermic and energy generated and
carried with the catalyst to the reactor to facilitate
the endothermic catalytic cracking reaction.

Mitchell et al. (1993) studied the deposition of
coke onto the catalyst particle during the oil cracking
process and the impurities such as metal compounds,
which are also deposited on the surface of the
catalyst. Nickel, iron, vanadium, and sodium are just
a few of the main contaminants that are deposited
onto the catalyst particle. These contaminant metals
lead to premature catalyst deactivation and the
propagation of undesirable reactions, which reduce
the quality of the product.

Fig. 1 FCC process
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Whitcombe et al. (2003) studied the formation of
fines in a fluidized catalytic cracker unit (FCCU) due
to catalyst attrition, and fracture is a major source of
catalyst loss. In addition to the generation of fine
particles, a significant amount of aerosols have been
identified in the stack emission of FCCUs. It was
found that major quantities of metal-rich aerosols
were generated by the thermal shock. This production
of fine particles and aerosols is a new phenomenon
that can help explain excessive catalyst emissions
from operating FCCUs. The addition of cold makeup
catalyst stream to the regenerated hot catalyst enhan-
ces attrition resulting into large quantity of fines that
result into the increase of PM emissions.

The high heat transfer coefficients for fluidized
systems are responsible for the temperatures uniformity
within the reactor and help to provide a proper control of
the system. The regenerator objective restores the
catalyst activity and supplies heat to the reactor by
burning off the coke deposited on the spent catalyst,
whereas the main purpose of the fractionators is to de-
superheat and recover liquid products from the products
vapor. It accomplishes the fractionation by condensing
and revaporizing the hydrocarbon vapors as they flow
upward. Apart from the bottom product, which is called
heavy cycle oil (HCO), the other products from the main
column are light cycle oil (LCO), distillate, heavy
gasoline, and the overhead vapors, which are unstabi-
lized gasoline and lighters. The deposited sulfur in the
coke leaves the FCC process as flue gas from the
regenerator in the form of SO2, whereas SO2 typically
accounts for 80% to 90% of total SO2.

Akeredolu (1989) discussed the air pollution
sources in Nigeria. PM constitutes the major atmo-
spheric pollution problem. Both anthropogenic and
nonanthropogenic sources of PM were found to be
important. The Harmattan dust haze constitutes the
largest anthropogenic source of PM. Severe visibility
reduction and increased incidence of respiratory and
chest congestion complaints are recorded during the
Harmattan season. Dust remobilization resulting from
vehicular traffic on unpaved as well as on unswept
paved roads and from fugitive emissions from open
surfaces and biomass burning are the major non-
anthropogenic sources of PM. Industries generate and
emit particulate as well as gaseous pollutants, which
have manifested significant negative impact at local
levels. Atmospheric environment problems such as air
pollution and thermal stress are growing in many

tropical countries partly on account of their rapid rate
of industrialization/urbanization which outpaces the
urban planning process.

2 Fluid Catalytic Cracking Process

In the present work, emission inventories from FCC
unit in an oil refinery are calculated. Mainly both SO2

and PMs have been evaluated accurately for a period
of 1 year considering seasonal variations in the
operational condition of the FCC unit in a refinery.

Hot feedstock is charged into the reactor through
riser where it comes in contact with hot regenerated
catalyst from regenerator. The feedstock vaporizes at a
temperature of 730°C and catalytically cracked in the
reactor. The velocity of the vapor drops in the reactor,
due to expansion from riser to the main reactor. The
reaction takes place in fluidized bed reactor with
uniform temperature. Products with catalyst pass
through a set of cyclones to separate the catalyst fines
from the products. The spent catalyst from cyclones is
returned to the reactor. The coke- and sulfur-
impregnated catalyst is then sent to a regenerator to
restore its activity. Excess air is fed to the regenerator
for complete combustion of coke and sulfur in a
fluidized process producing flue gas. The flue gas
passes through cyclone to recover catalyst particles.
Attired catalyst fines are discharged with the exit gas.
Flue gas consists of SO2, CO2, N2, O2, and fines. The
activated catalyst at 730°C is recharged to the reactor,
and makeup stream is added to compensate the
catalyst loss in the flue gas. The products are sent to
the fractionator for further separation.

3 Material Balance

To evaluate each stream in FCC unit, overall material
balance is established in mass flow rate (T/h; Fig. 2).

FþMþ A ¼ Lþ Gþ E ð1Þ

where F is the total feed consisting of heavy ends
from various refining units; M is makeup catalyst
stream; A is the air supplied to the regenerator; G is a
mixture of gaseous products (LPG and Off gas); L is a
liquid product; E is the flue gas consisting of CO2,
N2, SO2, O2, and PMs.
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To calculate the emissions, material balance of ith
component around the FCCU is considered:

For sulfur balance, i=1:

F� xF1 ¼
X

Lj � x1j
� �þ

X
Gj � y1j

� �
þ E� yE1

ð2Þ

For PM balance, i=2:

M ¼ Lj � x2j þ E� yE2 ð3Þ

The operational data for 24th of March 2007 are
given as total feed equal to 255.1 T/h, with sulfur
composition (xF1) equal to 0.008. Total liquid and
gaseous products are 173.6 and 62.3 T/h, respectively.

Air fed to the regenerator is calculated based on
complete combustion of all coke and sulfur to
produced SO2 and CO2 with 10% excess and is equal
to 233.04 T/h. Total emission is calculated using
Eq. 1, with known amount of catalyst makeup stream
of 0.1 T/h.

E ¼ 255:1þ 0:1þ 233:04� 173:6� 62:3

¼ 252:4T=h ð4Þ
Sulfur in flue gas, E (252.4 T/h) is calculated using

Eq. 2:

EyE1 ¼ 255:1� 0:008ð Þ � 0:614� 0:204

¼ 1:222T=h: ð5Þ
SO2 emission is equal to ¼ 1:222 64

32 ¼ 2:444 T=h
PMs in flue gas, E (252.4 T/h) is calculated using

Eq. 3:

EyE2 ¼ 0:1042� 0:0007 ¼ 0:1035T=h ð6Þ

4 Results and Discussion

SO2 and PM emissions inventories during the period
from December 2007 to November 2008 are calcu-
lated for four different seasons. Kuwait is located in
the north east of Arabian Peninsula and has four
seasons, starting winter season from December till
end of February, followed by spring season from
March to May. Summer season starts from June till
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August, followed by autumn season from September
to November. Figure 3 illustrates the seasonal
temperature variation for the year 2008. In winter
season, hourly minimum temperature is 6°C recorded
on 10th of January at 0000 hour and the hourly
maximum temperature is 26.5°C on 20 February at
1200 hour. The average seasonal temperature in
winter is 16°C. The hourly minimum temperature
for spring season is 14.5°C measured on 3rd of March
at 0600 hour, and the hourly maximum temperature
measured is 43°C on 22nd of May at 1000 hour. The
average seasonal temperature in spring is 25°C. In the
summer season, hourly minimum temperature is 32°C
observed on 4th of August at 0300 hour, and the
hourly maximum observed in the same season is 48°C
on 7th of August at 1400 hour. The average seasonal
temperature in summer is 40°C. The hourly minimum
temperature recorded in autumn season is 9°C on 24th

of November at 0600 hour, and the hourly maximum
temperature recorded is 35.5°C on 14th of October at
1200 hour. The average seasonal temperature in the
autumn is 28°C.

Figures 4, 5, 6, 7, 8, 9, 10, 11 show all the
emission variation of SO2 and PM for different
seasons respectively.

In winter season, the emission rates are evaluated
from operational data for 11 weeks; the maximum value
is 529.2 g/s on 2nd of December 2007, and the
minimum value is 376.4 g/s on 9th of December 2007.
The emission rate for the entire period is 479.3±2 σ g/s,
where standard deviation is equal to 45.9 g/s. SO2

emissions rates for spring season are observed provid-
ing maximum value of 679.17 g/s on 24th of March
2008, which is higher than the winter maximum
emission rate. The minimum calculated value is
356.39 g/s on 26th of May 2008, which is lower than

Fig. 5 SO2 emission rates
(in grams per second) for
spring season

Fig. 4 SO2 emission rates
(in grams per second) for
winter season
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the winter minimum value. The emission rate for
13 weeks is 559.1±2 σ g/s, where standard deviation is
equal to 90.42 g/s. The maximum value for SO2

emissions rates is found to be 654.17 g/s on 2nd of
June 2008, which is lower than the spring maximum
value but higher than the winter maximum value. For
the summer season, the minimum emission rate is
403.89 g/s same on 7th of July and 21Ist of August
2008, which is higher than both winter and spring
minimum values. For summer season, the emission
rate calculated for 11 weeks is 458.30±2 σ g/s, where
standard deviation is equal to 77.04 g/s. SO2 emissions
rates for autumn season are evaluated for 12 weeks.
The maximum value is 653.4 g/s on 23rd of September

2008, which is almost similar to maximum value
during spring season. The minimum computed value is
357.17 g/s on 5th of October 2008, which is similar to
the minimum value of spring season. The emission rate
for whole autumn period is 540.1±2 σ g/s, where
standard deviation is equal to 91.51 g/s.

In winter season, emission rates are consistent with
minimum fluctuation, while in spring season, the
emission rates are high in the beginning of the season
then decreasing gradually, whereas in summer season,
the emission rates are high at the start of the season and
later become almost constant. Finally, variation in
emission rates is lower in beginning of the autumn
season then increased. The highest and the lowest

Fig. 7 SO2 emission rates
(in grams per second) for
autumn season

Fig. 6 SO2 emission rates
(in grams per second) for
summer season
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emission rates in all seasons reflect the operational
conditions, mainly sulfur contents in the feedstock and
the total amount of heavy ends charged to the FCCU.

Similarly, the PM emissions related to the process
operating conditions. Figures 8, 9, 10, 11 show the
behavior of PM emissions during different seasons. The
maximum value is 39.17 g/s on 13th of January 2008
and the minimum value is 23.06 g/s on 23rd of
December 2007 for winter season. The emission rate
in this season is 26.6±2 σ g/s, where standard deviation
is 5.63 g/s. Similarly, PM emission rates for spring
season are calculated providing maximum value of
28.06 g/s on 17th of March 2008, which is lower than
winter maximum value. The minimum value is
23.89 g/s on two occasions, 12th and 26th of May

2008. The emission rate for 13 weeks is 25.45±2 σ g/s,
where standard deviation is equal to 1.79 g/s. the
minimum calculated values for both winter and spring
seasons are almost similar. For summer season, the
maximum value for PM emissions rates is 26.39 g/s on
three consecutive occasions, 2nd, 9th, and 16th of June
2008, whereas the minimum computed value is
18.06 g/s on 14th of July and 14th of August 2008.
The emission rate calculated for 11 weeks is 21.72±
2 σ g/s, where standard deviation is equal to 3.41 g/s.
Finally, PM emissions rates for autumn season are
evaluated for 12 weeks. The maximum value found to
be 26.7 g/s on three consecutive occasions, 09th, 16th,
and 23rd of September 2008, while the minimum
computed value is 23.5 g/s on 5th and 19th of October

Fig. 9 PM emissions rates
(in grams per second) for
spring season

Fig. 8 PM emissions rates
(in grams per second) for
winter season
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2008. The emission rate for whole autumn period is
24.68±2 σ g/s, where standard deviation is equal to
1.040 g/s. The highest PM maximum value is in the
winter season and the lowest value is in the summer
season, while minimum emission rate is similar to the
maximum emission values, high in winter and low
summer seasons.

5 Conclusions

FCC unit in a refinery is a major contributor of SO2 and
PM emissions, which are responsible for adverse
impact on the immediate neighborhood of the refinery.
A complete comprehensive emission inventories for a

yearlong period have been prepared for both SO2 and
PMs. The refinery operations are not dependant on
seasons but controlled by market-driven conditions to
maximize the profit. The seasonal impact on refinery
emissions is minimal due to its operation at optimum
capacity fulfilling the international market demand.

SO2 emissions are high in spring, while PM
emissions are high in winter, mainly due to opera-
tional conditions that are dependent on feed rate and
sulfur contents in the feed. PM emissions are mainly
due to high attrition of cold makeup catalyst charge
and operating conditions, vapor velocity particle
velocity, particle collision, and particle degradation.

These inventories will be used in air dispersion
model to thoroughly investigate the impact of FCC

Fig. 11 PM emissions rates
(in grams per second) for
autumn season

Fig. 10 PM emissions rates
(in grams per second) for
summer season
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Abstract Fluid catalytic cracking unit is of great
importance in petroleum refining industries as it treats
heavy fractions from various process units to produce
light ends (valuable products). FCC unit feedstock
consists of heavy hydrocarbon with high sulfur
contents, and the catalyst in use is zeolite impregnated
with rare earth metals, i.e., lanthanum and cerium.
Catalytic cracking reaction takes place at elevated
temperature in fluidized bed reactor generating sulfur-
contaminated coke on the catalyst with large quantity
of attrited catalyst fines. In the regenerator, coke is
completely burnt producing SO2, PM emissions. The
impact of the FCC unit is assessed in the immediate
neighborhood of the refinery. Year-long emission
inventories for both SO2 and PM have been prepared
for one of the major petroleum refining industry in
Kuwait. The corresponding comprehensive meteoro-
logical data are obtained and preprocessed using
Aermet (Aermod preprocessor). US EPA approved
dispersion model, Aermod, is used to predict ground
level concentrations of both pollutants in the selected

study area. Model output is validated with measured
values at discrete receptors, and an extensive para-
metric study has been conducted using three scenar-
ios, stack diameter, stack height, and emission rate. It
is noticed that stack diameter has no effect on ground
level concentration, as stack exit velocity is a function
of stack diameter. With the increase in stack height,
the predicted concentrations decrease showing an
inverse relation. The influence of the emission rate
is linearly related to the computed ground level
concentrations.

Keywords Dispersion model . Aermod . Emissions .

FCC . Pollutants exceedance

1 Introduction

Fluid catalytic cracking (FCC) of heavy ends into
high value liquid fuels is a common practice in the oil
refining industry. In this process the heavy feedstock
containing sulfur as a major contaminant is cracked to
light products. Sulfur is redistributed in the liquid and
gaseous products and coke on the catalyst. In the
regenerator coke with sulfur contamination is com-
pletely burnt and flue gas containing SO2 is dis-
charged. In the present work, a comprehensive
emission inventories from FCC unit in an oil refinery
have been prepared. These inventories are calculated
based on complete combustion of sulfur and coke
impregnated on the catalyst in the regenerator. Mainly

Water Air Soil Pollut
DOI 10.1007/s11270-010-0622-7

W. H. Yateem (*) :V. Nassehi
Department of Chemical Engineering,
Loughborough University,
Leicestershire LE11 3TU, UK
e-mail: w.yateem@lboro.ac.uk

A. R. Khan
Department of Environment Technology and Management,
College for Women, Kuwait University,
Kuwait, Kuwait



for both SO2 and particulate matters (PM) emission
rates are calculated accurately using material balance
for a year-long period considering seasonal variations
in the operation of the process unit in one of the main
refining industry in Kuwait (Yateem et al. 2010).
These results reflect the variation of sulfur in
feedstock that comes from various refinery units.
SO2 and PM emission inventories are completed and
used in dispersion model to assess their impact on the
immediate surroundings of the refinery.

The most advanced dispersion model Aermod has
been selected for prediction ground level concentra-
tion of SO2 and PM based on comprehensive year-
long emission inventories of FCC unit.

Aermod is a dispersion model that uses Gaussian
distribution for the stable conditions and non-
Gaussian probabilities density function for the unsta-
ble conditions. Aermod has two preprocessors;
Aermet that provides planetary boundary layer
parameters over a high altitude to yield accurate
predicted concentration values for a given meteoro-
logical conditions. It can accommodate large meteo-
rological data (multiple years). Aermap generates
regular receptors over a given terrain for the evalua-
tion of pollutants ground level concentrations.

The meteorological data for year 2008 are obtained
and are used in preprocessor Aermet to generate
planetary boundary layer parameters. These generated
data are used in Aermod for fixed emission rate to
assess the influence of prevailing meteorological
conditions at this particular site. Aermod has been
used for actual year-long inventories to predict ground
level concentrations and validate the model by
comparing the results against the recorded values
from Kuwait Environmental Public Authority (K-
EPA) monitoring stations.

2 Background

Heavy fractions from different refining units are
cracked in FCC unit to useful products, gener-
ating SO2 and PM emissions. SO2 emission
inventory is prepared from elemental sulphur
balance over the unit, Yateem et al. (2010).

Whitcombe et al. (2003) showed the formation of
fines in a fluidized catalytic cracker unit due to
catalyst attrition and fracture as a major source of

catalyst loss. The petroleum industry employs fluid
catalytic cracker units (FCCUs) as the major tool to
produce gasoline from crude oil. At the center of this
unit is regenerator which is used to burn coke from
the surface of the spend catalyst. As the regeneration
process is very turbulent, a large amount of catalyst
material is discharge to the atmosphere. In addition to
the fine particles present in the catalyst, the turbulent
conditions inside the FCC alter the particle size
distribution of the catalyst generating fine particles
and significant amount of aerosols, which has been
identified in the stack emission of FCCUs.

Caputo et al. (2003) conducted an inter-comparison
between Gaussian, Gaussian-segmented plumes, and
Lagrangian codes. Gaseous emissions are simulated
under real meteorological conditions for dispersion
models Aermod, HPDM, PCCOSYMA, and HYS-
PLIT. The Aermod and HPDM meteorological pre-
processors results are analyzed, and the main
differences found are in the sensible heat flux (SHTF)
and u* (friction velocity) computation, which have
direct effect on the Monin–Obukov length and mixing
height calculation. Gaussian models (Aermod, HPDM)
computed the dispersion parameters by using the
similarity relationships, whereas Gaussian-segmented
model (PCCOSYMA) used P–G stability class to
evaluate these parameters. Lagrangian transport model
(HYSPLIT) advected the puff and calculated its growth
rate with local mixing coefficients. Meteorological
parameters have great effect on the performance of
air dispersion models. Therefore, Aermod and HPDM
have developed effective and sophisticated meteoro-
logical parameters preprocessors. It is noticed that
HPDM computed the most stable condition and the
lowest mixing height. The comparison also showed a
significant discrepancy between HPDM and other
Gaussian models. The maximum ground level concen-
tration predicted by Aermod, HPDM, and PCCO-
SYMA are similar.

Rama Krishna et al. (2004) examined the assimi-
lative capacity and the dispersion of pollutants
resulted from various industrial sources in the
Visakhapatnam bowl area, which is situated in coastal
Andhra Pradesh, India. Two different air dispersion
models (Gaussian plume model, GPM, and ISCST-3)
are used to predict ground level concentrations of
sulfur dioxide and oxides of nitrogen and assimilative
capacity of the Visakhapatnam bowl area’s atmo-
sphere for two seasons, namely, summer and winter.
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The computed 8-h-averaged concentrations of the two
pollutants obtained from the GPM and ISCST-3 are
compared with those monitored concentrations at
different receptors in both seasons and the validation
carried out through Q–Q plots. Both model outputs
showed similar trend with the observed values from the
monitoring stations. The GPM output showed over-
prediction, whereas the ISCST-3 showed underpredic-
tion in comparison with the observed concentrations.
Terrain features and land/sea breeze influences are not
considered in this study, which strongly affected the
models outputs.

Venkatram et al. (2004) evaluated dispersion
models for estimating ground level concentrations in
the vicinity of emission sources in the urban area of
university of California, Riverside. Aermod-PRIME
and ISC-PRIME dispersion models are used to predict
SF6 at different receptors, where SF6 is used as tracer
in a simulated non-buoyant release from a small
source in urban area. Both models output are
compared with hourly observed concentrations. The
comparison showed that both models overestimate the
highest concentrations, whereas lower range of con-
centrations is underestimated. It is concluded that
Aermod can predict reliable concentrations if turbu-
lent velocity measurements are used to estimate
plume dispersion.

Lopez and Mandujano (2005) assessed the impact
of natural gas and fuel oil consumption on the air
quality in an Industrial Corridor, Mexico to determine
the optimal NG and fuel oil required to reduce SO2

concentration. Air dispersion model Aermod is used
to compute ground level concentration of SO2. Model
output is then validated against SO2 field measure-
ments. Different hypothetical emission scenarios are
performed to examine the impact of NG and fuel oil
mixture. The obtained results in this work indicate
that dispersion model Aermod presented good corre-
lation with the measured concentrations. It is also
concluded that increasing 40% of NG consumption
will reduce SO2 concentration by 90%.

Kesarkar et al. (2007) studied the spatial variation
of PM10 concentration from various sources over
Pune, India. Gaussian air pollutant dispersion model
Aermod is used to predict the concentration of PM10.
Weather research and forecasting model is used to
furnish Aermod with planetary boundary layer and
surface layer parameters required for simulation.
Emission inventory has been developed and field-

monitoring campaign is conducted under Pune air
quality management program of the ministry of
Environment and Forests. This inventory is used in
Aermod to predict PM10. A comparison between
simulated and observed PM10 concentration showed
that the model underestimated the PM10 concentration
over Pune. However, this work is conducted over a
short period of time, which is not sufficient to
conclude on adequacy of regionally averaged meteo-
rological parameters for driving Gaussian models
such as Aermod.

Isakov et al. (2007) examined the usefulness of
prognostic models output for meteorological observa-
tions. These model outputs are used for dispersion
applications to construct model inputs. Dispersion
model Aermod is used to simulated observed tracer
concentrations from Tracer Field Study conducted in
Wilmington, California in 2004. Different meteoro-
logical observation sources are used, i.e., onsite
measurements, National Weather Services (NWS),
forecast model output from ETA model, and readily
available and more spatially resolved forecast model
from MM5 prognostic model. It is noted that MM5
with higher grid resolution than ETA performed better
in describing sea breeze related to flow patterns
observed and provided adequate estimates of maxi-
mum mixed layer heights observed at the site. It is
concluded that MM5 and ETA prognostic models
provided reliable meteorological inputs for dispersion
models such as Aermod because wind direction
estimates from forecast models are not reliable in
coastal areas and complex terrain. Therefore, com-
prehensive prognostic meteorological models can
replace onsite observations or NWS observations.

Abdul Wahab et al. (2002) studied the impact of
SO2 emissions from a petroleum refinery on the
ambient air quality in Mina Al-Fahal, Oman. Disper-
sion model ISCST is used to predict SO2 ground level
concentration. The study is performed over a period
of 21 days. Computed SO2 concentrations are
compared with the measured values of SO2 for
maximum hourly average concentration, maximum
daily concentration, and total period average con-
centration. It is noted that the model output under-
predicted the SO2 concentration for all the three
cases due to unavailability of background concen-
trations and the presence of more dominant sources.
Based on the maximum daily average concentration
and the total period maximum concentration, the
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model underpredicted the average measured concen-
tration by 31.77% and 41.8%, respectively. The
model performed slightly better based on maximum
hourly average concentration and underpredicted by
10.5%.

Zou et al. (2010) evaluated the performance of
Aermod in predicting SO2 ground level concentration
in Dallas and Ellis counties in Texas as these two
counties are populous and air pollution has been a
concern. Two emission sources are considered in this
study, i.e., point sources and on-road mobile sources.
Aermet is used to calculate the hourly planetary
boundary layer parameters such as Monin–Obikhov
length, convective scale, temperature scale, mixing
height, and surface heat flux. Dispersion model
Aermod is used to simulate SO2 ground level
concentration at different time scale, i.e., 1, 3, and
8 h, daily, monthly, and annually for both counties
separately. The results are validated with the observed
concentrations. The results showed that Aermod
performed well at the 8 h, daily, monthly, and annual
time scale when combined point, and mobile emission
sources are used in the simulation as model input. It is
also noticed that Aermod is performed much better in
simulating the high end of the spectrum of SO2

concentrations at monthly scale than at time scales of
1, 3, and 8 h and daily.

Alrashidi et al. (2005) studied the locations of K-
EPA monitoring station, which measure SO2 concen-
trations emitted from the power stations in the state of
Kuwait. The major sources of SO2 emissions in
Kuwait are from west Doha, east Doha, Shuwaikh,
Shuaiba, and Az-Zour power stations. The Industrial
Source Complex Short Term dispersion model is used
to predict SO2 ground level concentrations over
residential areas. Year-long meteorological data are
obtained from Kuwait International Airport and used
in the simulation of the dispersion model. Different
discrete receptors in the residential areas are selected.
It is observed that the weather pattern in Kuwait,
specially the prevailing wind direction, has strong
influence on the ground level concentration of SO2 in
the residential areas located downwind of the both
east and west Doha stations. The comparison between
the predicted and the measured concentrations of SO2

from the monitoring stations located at the major
populated areas showed that most of these monitoring
stations locations are not adequate to measure SO2

concentrations emitted from the power stations.

Therefore, relocation of the monitoring stations is
highly recommended to accurately record the highest
ground level concentrations of SO2 emitted from the
power stations in Kuwait.

3 Model Application

3.1 Input Data

Aermod dispersion model implementation requires
three main input data. These are:

1. Source information: This includes pollutant emis-
sion rate (g/s), location coordinates in Universal
Transverse Mercator (UTM; m), base elevation
from the sea level (m), stack height (m), exit stack
inner diameter (m), exit stack gas velocity (m/s),
and exit stack gas temperature (°K).

2. Meteorological information for the region of
interest: This includes anemometer height (m),
wind speed (m/s), wind direction (flow vector
from which the wind is blowing; in degrees
clockwise from the north), ambient air temper-
ature (°C), stability class at the hour of
measurement (dimensionless), and hourly mix-
ing height (m).

3. Receptor information: This can be specified or
generated by the program to predict the pollu-
tants’ concentrations at the selected receptors.

The entire required source input data are
obtained from FCC unit in the refinery. A stack
of 80 m height, an inner diameter of 2.3 m, with an
average exit gas velocity of 20 m/s and exit gas
temperature of 550°K are fed into the model.
Monthly emission variation is considered with total
SO2 emission rate of 6,089.2 g/s and total PM
emission rate of 302 g/s as presented in detail
(Yateem et al. 2010).

3.2 Area of Study

The area of study in this work covers portion of
Ahmadi governorate in the state of Kuwait. Fahaheel
area is adjacent to the petroleum refinery has one of
the Kuwait EPA air quality monitoring station located
at a polyclinic. Both areas Fahaheel and Ahmadi are
surrounded by arid desert in the west side and
bordered by the Gulf from the east.
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Two different types of receptor coordinates are
used as input to the Aermod model to predict the
ground level concentration of SO2, these are:

1. Discrete Cartesian receptors specified at the
sensitive areas viz., a school, a shopping area,
and EPA monitoring stations in Fahaheel. A
hospital and petroleum services companies’ offi-
ces are selected in Ahmadi.

2. Uniform Cartesian grid receptors covering the
entire area of study where the FCC stack
(emissions source) is located almost in the center
of the mesh grid.

The receptors selected are based on the actual sites
in a UTM location coordinate of the area of interest
map. Table 1 shows the selected discrete receptors
information.

The uniform grid receptors of a total 1,764 (42×
42) were divided into (Δx=300 m×Δy=250 m) to
cover about 12×10 km area of study. The optimum
selection of the mesh size is based on the computa-
tional accuracy and time.

4 Results and Discussion

A year-long comprehensive meteorological data are
processed by Aermet to generate boundary layer
parameters and to pass all meteorological observa-
tions to Aermod.

Figure 1 shows wind direction and magnitude for a
period of year 2008. It is observed that most of the
time, the prevailing wind direction is from north west.
There is strong influence from the neighboring Gulf
as the refinery is located at the coast, resulting into
strong sea breeze blowing from east direction. Wind
class frequency distribution for the entire year con-
firming 2% calm conditions, while 39.8% is between
3.6 and 5.7 m/s. The highest wind class 8.8–11.1 m/s
is less than 1%.

A model run is performed for actual monthly
emission variation with total annual SO2 emission
rate of 6,089.2 g/s and total PM emission rate of
302 g/s independently. Monthly emission factors for
both pollutants are tabulated in Tables 2 and 3,
respectively.

A discrete receptor is selected at Kuwait Environ-
mental Public Authority monitoring station located at
polyclinic in Fahaheel area. Concentrations of SO2,
NOx, H2S, O3, CO, CO2, methane, non-methane
hydrocarbon, benzene, toluene, xylenes, ethylben-
zene, total suspended particulates, and meteorological
parameters are continuously recorded on hourly basis.

Hourly predicted ground level concentrations at
specified discrete receptor showed large scatter due to
variation in meteorological conditions and the
recorded values influenced by the contribution of
various emission sources, resulting into specific
background concentration that has made the compar-
ison impracticable. There is large fluctuation in the
background concentration, which is difficult to quan-
tify. Hence, zero background concentration has been
assumed to resolve this uncertainty. Therefore, daily
average measured concentrations of SO2 were com-
pared with the daily predicted concentrations to
validate the model output.

Figure 2 shows the plot between the measured top
20 daily average values vs. the daily predicted top 20
values at the discrete receptor, Kuwait EPA monitor-
ing station.

The slope is equal to 0.72, reflecting high
measured values compared to predicted values,
depicting the contribution of other emission sources.
The correlation coefficient is equal to 0.91 reflecting
an acceptable validation of the model output with
measured average daily SO2 concentrations.

The predicted hourly average ground level con-
centrations of SO2 are compared with Kuwait EPA
Ambient Air Quality Standards at all of the selected
receptors.

ID number Discrete receptor identity X coordinate Y coordinate

1 Fahaheel Polyclinic 219,854.25 3,219,765.79

2 Petroleum Services Offices in Ahmadi 216,666.87 3,220,105.63

3 School in Fahaheel 220,300.00 3,219,820.85

4 Ahmadi Hospital 213,458.86 3,221,523.64

5 Shopping area in Fahaheel 219,274.32 3,219,554.21

Table 1 The selected
discrete receptors
information
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The maximum allowable level for the hourly
average concentration of SO2, specified by Kuwait
EPA, is 444 μg/m3. Figure 3 shows the isopleths of
the predicted hourly average ground level concentra-
tion of SO2 calculated at the selected uniform grid
receptors.

The isopleths indicate the predicted spatial varia-
tions of the ground level concentrations of SO2. The
maximum predicted hourly average ground level
concentration of SO2 in the vicinity of the refinery
exceeded by as much as 300 μg/m3. The highest
predicted concentration is equal to 769 μg/m3, ob-
served on the 8 March 2008 at 0800 hours and about
1.713 km in the NW direction from the FCC stack, and
not far from the Fahaheel and Ahmadi areas at the
receptor coordinates of X=218,557.94, Y=3,219,169.
This high value of the predicted SO2 concentration is
expected due to the elevated SO2 emission rate, which
resulted from the high sulfur content in the FCC
feedstock and other operational conditions and the
prevailing meteorological conditions (temperature,
humidity, wind speed, wind direction, stability class,
and planetary boundary layer).

A thorough inspection on Fig. 3 indicates that
predicted concentrations of SO2 exceed the allowable
hourly limit at 5.3% of the study area from north west
and south west direction from the stack.

Similarly, the predicted daily average ground
level concentration of SO2 is compared with Kuwait
EPA ambient air quality standards at all receptors.
The allowable level for the daily average concentra-
tion of SO2 is 157 μg/m3. Figure 4 shows the
isopleths of the predicted daily average ground level
concentration of SO2 computed at the selected
uniform grid receptors.

The isopleths indicate the daily predicted spatial
variations of the ground level concentrations of SO2

in the area of study. The highest daily predicted
concentration is equal to 335 μg/m3, observed on the
9 November 2008 and about 0.75 km in the SE
direction from the stack, at a receptor coordinates of
X=220,357.94, Y=3,217,419 affecting the neighbor-
ing Shuaiba industrial area, Kuwait main industrial
complex. This high value of the daily predicted SO2

concentration is exceeded the allowable level by
157 μg/m3 and obviously influenced by the prevailing

Fig. 1 Wind rose for a
period of year 2008

Table 2 SO2 monthly emission factors

January February March April May June July August September October November December

0.077 0.083 0.096 0.1 0.077 0.088 0.067 0.067 0.088 0.077 0.1 0.075
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meteorological conditions, especially the predominant
north west wind and other meteorological factors.

Discrete receptor 2, located at Petroleum services
offices, has shown the highest SO2 hourly concentra-
tion equal to 544 μg/m3 on 27 February at 0800
hours. The hourly exceedance is occurred four times
at this location throughout the study period. The
highest daily concentration at the same receptor is
equal to 39 μg/m3 on 8 March.

Discrete receptor 3, located at school, has
shown the highest SO2 hourly concentration equal
to 279 μg/m3 on 2 March at 0400 hours. This
concentration is below the Kuwait EPA hourly stand-
ards. The daily highest concentration is equal to
57 μg/m3 on 2 March.

Discrete receptor 4, located at Ahmadi hospital,
has shown the highest SO2 hourly ground level
concentration equal to 288 μg/m3 on 27 February at
0800 hours. This value is also below the specified
hourly limit set by Kuwait EPA. The daily predicted
concentration is equal to 23 μg/m3 on 30 April.

Discrete receptor 5, located at shopping area, has
shown the highest SO2 hourly ground level concen-
tration is equal to 336 μg/m3 on 23 October at 0800
hours. The daily predicted concentration is equal to
45 μg/m3 on 22 April. Both hourly and daily
predicted values are below Kuwait EPA hourly and
daily ambient air quality standards.

Kulkarni et al. (2009) have reported that lanthanum
and lanthanides are used as markers for particulate
matters pollution as PM2.5 in petroleum refineries,
mainly from FCC units.

US EPA daily PM2.5 standard is 35 μg/m3. In the
present work, the application of Aermod to predict
ground level concentration of PM is considered as
PM2.5 for rare earth metals, i.e., lanthanum and
cerium. PM2.5 is inhalable and has adverse impact
on public health causing cardiovascular diseases.
Kuwait EPA has no standard for PM2.5 and has only
specified daily and yearly standard for PM10. Figure 5
shows the isopleths of the predicted hourly average
ground level concentration of PM calculated at the
selected uniform grid receptors.

The isopleths indicate the hourly predicted spatial
variations of the ground level concentrations of PM.
The maximum hourly predicted average ground level
concentration of PM is equal to 45 μg/m3, observed on
the 27 February 2008 at 0800 hours and about 1.56 km
in the NW direction from the FCC stack, and at
receptor coordinates of X=218,557.94, Y=3,218,919.

Similarly, the predicted daily average ground level
concentration of PM is compared with US EPA
ambient air quality standards for PM2.5 at all receptors.
Figure 6 shows the isopleths of the predicted daily
average ground level concentration of PM computed at
the selected uniform grid receptors.

The isopleths indicate the daily average predicted
spatial variations of the ground level concentrations of
PM in the area of study. The highest daily predicted
concentration is equal to 16 μg/m3, observed on the
29 December 2008 and about 0.75 km in the SE
direction from the stack, at a receptor coordinates of
X=220,657.94, Y=3,217,419 due to the influence of
the prevailing meteorological conditions, especially
the predominant north west wind and other meteoro-
logical factors.

To observe the computational model sensitivity,
another scenario run is performed adding two finer
meshes consisting of 21×21 uniform receptor points,
the first one covering hourly highest ground level
concentration area, the other one covering daily

Table 3 PM monthly emission factors

January February March April May June July August September October November December

0.093 0.097 0.091 0.079 0.079 0.083 0.064 0.063 0.085 0.079 0.079 0.1

Fig. 2 Daily predicted SO2 concentrations vs. measured SO2

concentrations
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Fig. 3 Isopleths plot of the predicted hourly average ground level concentration of SO2 (Google Inc. 2010)

Fig. 4 Isopleths plot of the predicted daily average ground level concentration of SO2 (Google Inc. 2010)
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Fig. 5 Isopleths plot of the predicted hourly average ground level concentration of PM (Google Inc. 2010)

Fig. 6 Isopleths plot of the predicted daily average ground level concentration of PM (Google Inc. 2010)
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highest predicted ground level concentration area.
The output accuracy has improved for both pollutants
due to application of interpolation using small values
of Δx=150 m, Δy=110 m for the first mesh and Δx=
100 m, Δy=100 m for the second mesh. There is
0.65% increase in the hourly highest ground level
concentration and 2.8% increase in the daily highest
ground level concentration, which are insignificant.
Therefore, the only parent mesh is used in the
computational process for all the other scenarios
considered in the parametric studies.

FCC stack sensitivity analysis is performed on
three scenarios (stack height, SO2 emission rate, and
stack diameter).

In scenario 1, analysis for stack heights 50, 80,
120, 160, and 200 m is conducted while keeping the
emission rate, exit flue gas velocity, exit temperature,
and stack diameter constant.

The influence of stack height is shown in Fig. 7. It
is obvious from the figure that the highest predicted
hourly and daily ground level concentrations of SO2

are reduced substantially as stack height is increased.
The reduction in the highest computed hourly ground
level concentration of SO2 is almost 50% when stack
height is doubled. The decrease in evaluated hourly
SO2 concentration as a function of stack height is
given as an exponential expression C mg=m3ð Þ ¼
1; 600:7e�9:071�10�3h and r2 is 0.999, where h is the
stack height (m). The hourly gradient dC=dh ¼
14:52e�9:071�10�3h becomes insignificant at higher
stack elevations. The highest daily predicted ground
level concentration as a function of stack height is
given as C mg=m3ð Þ ¼ 1; 409:8e�1:732�10�2h and r2 is
0.984. The daily highest predicted concentration

gradient is dC=dh ¼ 24:42e�1:732�10�2h. The locations
of hourly highest predicted concentrations of SO2

from the stack, as a function of stack height is shown
in Fig. 7 and related as D kmð Þ ¼ 0:597e1:16�10�2h and
r2 is 0. 978.

In scenario 2, SO2 emission rate effect from FCC
stack is tested at stack height of 80 m for different
total monthly emission rates of 3,000, 4,000, 5,000,
6,000, 7,000, and 8000 g/s, taking into consideration
the monthly emission variations (by using emission
factors, Table 2) and fixing other stack parameters,
i.e., exit temperature, exit flue gas velocity, and stack
diameter.

It is noticed from Fig. 8 that the highest predicted
hourly and daily ground level concentrations of SO2

is substantially decreased as SO2 emission rate is
reduced. At 50% reduction in the emission rate, the
highest hourly and daily ground level concentrations
decreased by 50%.

In scenario 3, FCC stack diameter effect is examined
at stack height of 80 m for different diameters of 1.5,
2.3, 3, and 4 m. The exit flue gas velocity is also
changed as directly related to the square of the diameter
for a fixed exit flue gas flow rate. It is observed that the
dispersion and rise of the plume are not affected by
diameter variation and the predicted ground level
concentration of SO2 remained almost unaltered. The
hourly and daily predicted concentrations of SO2 are
almost identical for all the cases.

5 Conclusion

FCC unit in a refinery is the major contributor of SO2,
and PM emissions are those responsible for adverse

Fig. 7 Stack height vs. hourly and daily predicted ground level
concentrations of SO2

Fig. 8 SO2 emission rate vs. hourly and daily predicted SO2

ground level concentrations
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impact on the immediate neighborhood of the
refinery. A complete comprehensive emission inven-
tories for a year-long period have been prepared for
both SO2 and particulate matters.

A model run performed for actual monthly emission
variation with total SO2 emission rate of 6,089.2 g/s
and total PM emission rate of 302 g/s independently,
taking into consideration monthly emission factors for
both pollutants. The daily predicted ground level
concentrations of SO2 are compared with Kuwait
EPA monitoring station daily measured SO2 concen-
trations at the same discrete receptor and showed
acceptable validation of the model output.

The highest hourly predicted concentration of SO2

is equal to 769 μg/m3. It is observed on the 8 March
2008 at 0800 hours, due to elevated SO2 emission rate
in this month and the prevailing meteorological
conditions, especially sea breeze effect in the early
morning hours. The highest daily predicted concen-
tration is equal to 335 μg/m3. It is observed on the 9
November 2008 and obviously influenced by the
predominant north west wind and high SO2 emission
rate in the month of November.

The maximum hourly predicted average ground
level concentration of PM is equal to 45 μg/m3. It is
observed on the 27 February 2008 at 0800 hours. The
highest daily predicted concentration is equal to
16 μg/m3, observed on the 29 December 2008.

The stack sensitivity is explored by changing stack
height, total emission rate, and stack diameter
independently. It is observed that the higher stack
facilitated good dispersion, thus lowering the ground
level average concentration of the pollutant up to 50%
when the stack height doubled.

It is notice that the highest predicted hourly and
daily ground level concentrations of SO2 are substan-
tially decreased as SO2 emission rate is reduced. At
50% reduction in the emission rate, the highest hourly
and daily ground level concentrations decreased by
almost 48%.

The influence of stack diameter inherently
changed the exit flue gas velocity due to invariable
flue gas flow rate. The plume rise and dispersion are
related to the exit flue gas velocity, which decreased
with the increase of stack diameter because of

proportionality to the square of diameter. For a fixed
load, there is no noticeable change in the average
hourly and daily predicted ground level concentra-
tions of SO2.
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unit emissions on the vicinity of the petroleum
refinery. Different mitigation methods will be exam-
ined to abate the high concentrations of SO2 and PM
emissions from FCC unit.
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ABSTRACT 
 
Fluid catalytic cracking unit is a major part of petroleum 
refineries as it treats heavy fractions from various process 
units to produce light ends (valuable products). FCC unit 
feedstock consists of heavy hydrocarbon with high sulphur 
contents and the catalyst used is zeolite impregnated with 
rare earth metals i.e. Lanthanum and Cerium. The Catalytic 
cracking reaction takes place at elevated temperature in 
fluidized bed reactor generating sulphur-contaminated coke 
on the catalyst with large quantity of attrited catalyst fines. 
In the regenerator, coke is completely burnt producing SO2, 
PM emissions are mainly due to high attrition of cold 
makeup catalyst charge and operating conditions, vapour 
velocity particle velocity, particle collision and particle 
degradation. The impact of particulate matter emission 
from FCC unit is assessed in the immediate neighbourhood 
of the refinery. Year long emission inventory of SO2 and 
PM have been prepared. The corresponding meteorological 
data are obtained and fed into Aermet (Aermod pre-
processor). Aermod (dispersion model) is used to predict 
ground level concentrations of PM SO2 in the selected 
study area based on 2008 emission inventory (Yateem et 
al., 2010) for a period of one year. Model output is 
validated with measured values at discrete receptors and an 
extensive parametric study has been conducted using three 
scenarios, stack diameter, stack height and emission rate. It 
is noticed that stack diameter has no effect on ground level 
concentration, as stack exit velocity is a function of stack 
diameter. With the increase in stack height, the predicted 
concentrations decrease showing an inverse relation. The 
influence of the emission rate is linearly related to the 
computed ground level concentrations. 
It has also observed that there is no hourly standard for PM. 
Therefore, daily predicted concentrations are compared 
with US EPA allowable standard for PM2.5. The 
comparison shows that there is no violation of specified 

limit for daily mean predicted concentration all over in the 
selected study area.  
 
INTRODUCTION 
 
Fluid catalytic cracking (FCC) of heavy ends into high 
value liquid fuels is commonly carried out in the oil 
refining industry. In this process the heavy feedstock 
containing sulphur as a major contaminant is cracked to 
light products. Sulphur is redistributed in the liquid and 
gaseous products and coke on the catalyst. In the 
regenerator coke with sulphur contamination is completely 
burnt and flue gas containing SO2 is discharged with 
catalyst fines produced, mainly due to high attrition of cold 
makeup catalyst charge and operating conditions i.e. vapour 
velocity, particle velocity, particle collision and particle 
degradation (Abdul Wahab et al., 2002). 
In the present work, a comprehensive emission inventories 
from FCC unit in an oil refinery have been prepared. These 
inventories are calculated based on complete combustion of 
sulphur and coke impregnated on the catalyst in the 
regenerator. Mainly for SO2 and Particulate matter (PM) 
emission rates are calculated accurately using material 
balances for a yearlong period considering seasonal 
variations in the operation of the process unit, Yateem et 
al., (2010). PM emission inventory is used in dispersion 
model to assess its impact on the immediate surroundings 
of the refinery. 
The most advanced dispersion model Aermod (Caputo et 
at., 2003; Isakov et al., 2007; Kesarkar et al., 2007) has 
been selected for prediction ground level concentration of 
PM based on comprehensive year long emission inventory 
of FCC unit.  
Aermod is a dispersion model that uses Gaussian 
distribution for the stable conditions and non-Gaussian 
probabilities density function for the unstable conditions. 
Aermet (Aermod preprocessor) provides planetary 
boundary layer parameters over a high altitude to yield 
accurate predicted concentration values for a given 
meteorological conditions. It can accommodate large 
meteorological data (multiple years). Aermap (Aermod 
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preprocessor) generates regular receptors over a given 
terrain for the evaluation of pollutants ground level 
concentrations. 
The meteorological data for year 2008 are obtained and are 
used in preprocessor Aermet to generate planetary 
boundary layers parameters. These generated data are used 
in Aermod for actual emission rates to predict ground level 
concentrations of PM and study the influence of prevailing 
meteorological conditions at this particular site.  
 
MODEL APPLICATION 
 

1. Input Data 
Aermod dispersion model implementation requires the 
following items of data: 
1. Source information: including pollutant emission rate 
(g/s), location coordinates in Universal Transverse 
Mercator (UTM) (m), base elevation from the sea level (m), 
stack height (m), exit stack inner diameter (m), exit stack 
gas velocity (m/s), and exit stack gas temperature (oK). 
2. Meteorological information for the region of interest: 
includes anemometer height (m), wind speed (m/s), wind 
direction (flow vector from which the wind is blowing) (in 
degrees clockwise from the north), ambient air temperature 
(oC), stability class at the hour of measurement 
(dimensionless) and hourly mixing height (m). 
3. Receptor information: This can be specified or generated 
by the program to predict the pollutants’ concentrations at 
the selected receptors. 
 
The entire required source input data are obtained from 
FCC unit in the refinery. A stack of 80 m height, an inner 
diameter of 2.3 m, with an average exit gas velocity of 20 
m/s and exit gas temperature of 550 oK are fed into the 
model. Monthly emission variation is considered with total 
SO2 emission rate of 6089.2 g/s and total PM emission rate 
of 302 g/s as presented in detail (Yateem et al. 2010). 
 

2. Area of Study 
The area of study in this work covers portion of Ahmadi 
governorate in the state of Kuwait. Fahaheel area is 
adjacent to the petroleum refinery has one of the Kuwait 
EPA air quality monitoring station located at a polyclinic. 
Both areas Fahaheel and Ahmadi are surrounded by arid 
desert in the west side and bordered by the Gulf from the 
east. 
Two different types of receptor coordinates are used as 
input to the Aermod model to predict the ground level 
concentration of SO2 and PM, these are: 
1. Discrete Cartesian receptors specified at the sensitive 
areas viz., a school, a shopping area and EPA monitoring 
stations in Fahaheel. A hospital and petroleum services 
companies’ offices are selected in Ahmadi. 
2. Uniform Cartesian Grid receptors covering the entire 
area of study, where the FCC stack (emissions source) is 
located almost in the center of the mesh grid. 
The receptors selected are based on the actual sites in a 
UTM location coordinate of the area of interest map. Table 
1 shows the selected discrete receptors information. 
The uniform grid receptors of a total 1764 (42 x 42) were 
divided into (x = 300 m and y  250 m) to cover about 
12 x 10 km area of study. The optimum selection of the 

mesh size is based on the computational accuracy and time. 
 

Table 1. The selected discrete receptors information 

ID 
Number

Discrete receptor 
identity 

X-
coordinate 

Y-
coordinate 

1 
Fahaheel 
Polyclinic 

219854.25 3219765.79 

2 
Petroleum Services 
Offices in Ahmadi 

216666.87 3220105.63 

3 School in Fahaheel 220300.00 3219820.85 

4 Ahmadi Hospital 213458.86 3221523.64 

5 
Shopping area in 

Fahaheel 
219274.32 3219554.21 

 
RESULTS AND DISCUSSION 
 
A year long comprehensive metrological data are processed 
by Aermet to generate boundary layer parameters and to 
pass all meteorological observations to Aermod. 
Figure 1 shows wind direction and magnitude for a period 
of year 2008. It is observed that most of the time; the 
prevailing wind direction is from North West. There is 
strong influence from the neighboring Gulf as the refinery 
is located at the coast, resulting into strong sea breeze 
blowing from East direction. Wind class frequency 
distribution for the entire year confirming 2 % calm 
conditions, while 39.8 % is between 3.6 - 5.7 m/s. the 
highest wind class 8.8-11.1 m/s is less than 1%.  

 

Fig. 1 wind rose for a period of year 2008 

A model run is performed for actual monthly emission 
variation with total SO2 emission rate of 6089.2 g/s and PM 
emission rate of 302 g/s. Monthly emission factors for SO2 
is tabulated in Table 2 and Monthly emission factors for 
PM is tabulated in Table 3. A discrete receptor is selected at 
Kuwait Environmental Public Authority monitoring station 
located at polyclinic in Fahaheel area. Concentrations of 
SO2, NOx, H2S, O3, CO, CO2, methane, non-methane 
hydrocarbon, Benzene, Toluene, Xylenes, ethylbenzene, 
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total suspended particulates and meteorological parameters 
are continuously recorded on hourly basis.  
 

Table 2 SO2 monthly emission factors 

Jan Feb Mar April May Jun 

0.077 0.083 0.096 0.1 0.077 0.088 

Jul Aug Sep Oct Nov Dec 

0.067 0.067 0.088 0.077 0.1 0.75 

 

Table 3 PM monthly emission factors 

Jan Feb Mar April May Jun 

0.093 0.097 0.091 0.079 0.079 0.083 

Jul Aug Sep Oct Nov Dec 

0.064 0.063 0.085 0.079 0.079 0.1 

 
Hourly predicted ground level concentrations at specified 
discrete receptor showed large scatter due to variation in 
meteorological conditions and the recorded values 
influenced by the contribution of various emission sources 
has made the comparison impracticable. Therefore, daily 
average measured concentrations of SO2 were compared 
with the daily-predicted concentrations to validate the 
model output. 
Figure 2 shows the plot between the measured top 20 daily 
average values versus the daily predicted top 20 values at 
the discrete receptor, Kuwait-EPA monitoring station. 
The slope is equal to 0.72, reflecting high measured values 
compared to predicted values, depicting the contribution of 
other emission sources. The correlation coefficient is equal 
to 0.91 reflecting an acceptable validation of the model 
output with measured average daily SO2 concentrations. 
 

 

Fig. 2 Daily predicted SO2 concentrations vs. measured 
SO2 concentrations 

 
 
 
 
The predicted hourly average ground level concentrations 
of SO2 are compared with Kuwait-EPA Ambient Air 
Quality Standards (AAQS) at all of the selected receptors.  
The maximum allowable level for the hourly average 

concentration of SO2, specified by Kuwait-EPA, is 444 
µg/m3. Fig. 3 shows the isopleths of the predicted hourly 
average ground level concentration of SO2 calculated at the 
selected uniform grid receptors. 
 

 

Fig. 3 Isopleths plot of the predicted hourly average 
ground level concentration of SO2 

The isopleths indicate the predicted spatial variations of the 
ground level concentrations of SO2. The maximum 
predicted hourly average ground level concentration of SO2 

in the vicinity of the refinery exceeded by as much as 300 
μg/m3. The highest predicted concentration is equal to 769 
μg/m3, observed on the 8th of March 2008 at 8:00 hour and 
about 1.713 km in the NW direction from the FCC stack, 
and not far from the Fahaheel and Ahmadi areas at the 
receptor coordinates of X = 218557.94, Y = 3219169. This 
high value of the predicted SO2 concentration is expected 
due to the elevated SO2 emission rate, which resulted from 
the high sulphur content in the FCC feedstock and other 
operational conditions and the prevailing meteorological 
conditions (temperature, humidity, wind speed, wind 
direction, stability class and planetary boundary layer).  
A thorough inspection on fig. 3 indicates that predicted 
concentrations of SO2 exceed the allowable hourly limit at 
5.3 % of the study area from North West and South West 
direction from the stack.  
Similarly, the predicted daily average ground level 
concentration of SO2 is compared with Kuwait EPA 
ambient air quality standards at all receptors. The allowable 
level for the daily average concentration of SO2 is 157 
μg/m3. Fig. 4 shows the isopleths of the predicted daily 
average ground level concentration of SO2 computed at the 
selected uniform grid receptors. 
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Fig. 4 Isopleths plot of the predicted daily average 
ground level concentration of SO2 

The isopleths indicate the daily predicted spatial variations 
of the ground level concentrations of SO2 in the area of 
study. The highest daily predicted concentration is equal to 
335 μg/m3, observed on the 9th of November 2008 and 
about 0.75 km in the SE direction from the stack, at a 
receptor coordinates of X = 220357.94, Y = 3217419 
affecting the neighboring Shuaiba industrial area, Kuwait 
main industrial complex. This high value of the daily 
predicted SO2 concentration is exceeded the allowable level 
by 157 μg/m3 and obviously influenced by the prevailing 
meteorological conditions, especially the predominant 
North West wind and other meteorological factors.  
Discrete receptor 2, is located at Petroleum services offices, 
has shown the highest SO2 hourly concentration equal to 
544 µg/m3 on 27th February at 8:00 hours. The hourly 
exceedance is occurred four times at this location 
throughout the study period. The highest daily 
concentration at the same receptor is equal to 39 µg/m3 on 
8th March. 
Discrete receptor 3, is located at school, has shown the 
highest SO2 hourly concentration equal to 279 µg/m3 on 2nd 
March at 4:00 hours. This concentration is below the 
Kuwait EPA hourly standards. The daily highest 
concentration is equal to 57 µg/m3 on 2nd March. Discrete 
receptor 4, is located at Ahmadi hospital, has shown the 
highest SO2 hourly ground level concentration equal to 288 
µg/m3 on 27th February at 8:00 hours. This value is also 
below the specified hourly limit set by Kuwait EPA. The 
daily predicted concentration is equal to 23 µg/m3 on 30th 
April. Discrete receptor 5, is located at shopping area, has 
shown the highest SO2 hourly ground level concentration is 
equal to 336 µg/m3 on 23rd October at 8:00 hours. The daily 
predicted concentration is equal to 45 µg/m3 on 22nd April. 
Both hourly and daily predicted values are below Kuwait 
EPA hourly and daily ambient air quality standards. 
 

1. Model Sensitivity  
To observe the computational model sensitivity, another 
scenario run is performed adding two finer meshes 
consisting of 21 x 21 uniform receptor points, the first one 
covering hourly highest ground level concentration area, 
the other one covering daily highest predicted ground level 
concentration area. The output accuracy has improved for 
both pollutants due to application of interpolation using 

small values of x = 150 m, y = 110 m for the first mesh 
and x = 100 m, y = 100m for the second mesh.  There is 
0.65% increase in the hourly highest ground level 
concentration and 2.8% increase in the daily highest ground 
level concentration, which are insignificant. Therefore, the 
only parent mesh is used in the computational process for 
all the other scenarios considered in the parametric studies.    
 

2. Parametric Study 
FCC stack sensitivity analysis is performed on 3 scenarios 
(stack height, SO2 emission rate and stack diameter). In 
scenario 1, analysis for stack heights 50 m, 80 m, 120 m, 
160 m and 200 m is conducted while keeping the emission 
rate, exit flue gas velocity, exit temperature and stack 
diameter constant. The influence of stack height is shown in 
fig. 5. It is obvious from the figure that the highest 
predicted hourly and daily ground level concentrations of 
SO2 are reduced substantially as stack height is increased. 
The reduction in the highest computed hourly ground level 
concentration of SO2 is almost 50% when stack height is 
doubled. The decrease in evaluated hourly SO2 
concentration as a function of stack height is given as an 

exponential expression C(g /m3) 1600.7e9.071x103 h  
and r2 is 0.999, where h is the stack height (m). The hourly 

gradient dC/dh =14.52e9.071x103 h  becomes insignificant 
at higher stack elevations. The highest daily predicted 
ground level concentration as a function of stack height is 

given as C(g /m3) 1409.8e1.732x102 h  and r2 is 0.984. 
The daily highest predicted concentration gradient is 

dC/dh 24.42e1.732x102 h . The locations of hourly highest 
predicted concentrations of SO2 from the stack, as a 
function of stack height is shown in figure 7 and related as 

D(km)  0.597e1.16x102 h  and r2 is 0.9. 
 

 

Fig. 5 Stack height vs. hourly and daily predicted 
ground level concentrations of SO2 

In scenario 2, SO2 emission rate effect from FCC stack is 
tested at stack height of 80 m for different total monthly 
emission rates of 3000 g/s, 4000 g/s, 5000 g/s, 6000 g/s, 
7000 g/s and 8000 g/s, taking into consideration the 
monthly emission variations (by using emission factors, 
table 2) and fixing other stack parameters i.e. exit 
temperature, exit flue gas velocity and stack diameter. 
It is noticed from fig. 8 that the highest predicted hourly 
and daily ground level concentrations of SO2 is 
substantially decreased as SO2 emission rate is reduced. At 
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50% reduction in the emission rate, the highest hourly and 
daily ground level concentrations decreased by 50%.  
 

 

Fig. 6 SO2 emission rate vs. hourly and daily predicted 
SO2 ground level concentrations 

In scenario 3, FCC stack diameter effect is examined at 
stack height of 80 m for different diameters of 1.5 m, 2.3 m, 
3 m and 4 m. The exit flue gas velocity is also changed as 
directly related to the square of the diameter for a fixed exit 
flue gas flow rate. It is observed that the dispersion and rise 
of the plume are not affected by diameter variation and the 
predicted ground level concentration of SO2 remained 
almost unaltered. The hourly and daily predicted 
concentrations of SO2 are almost identical for all the cases.   
Kulkarni et al., (2009) have reported that Lanthanum and 
Lanthanides are used as markers for particulate matters 
pollution as PM2.5 in petroleum refineries, mainly from FCC 
units. US EPA daily PM2.5 standard is 35 �g/m3. In the 
present work, the application of Aermod to predict ground 
level concentration of PM is considered as PM2.5 for rare 
earth elements i.e. Lanthanum and Cerium. PM2.5 is 
inhalable and has adverse impact on public health causing 
cardiovascular diseases. Kuwait EPA has no standard for 
PM2.5 and has only specified daily and yearly standard for 
PM10. Figure 5 shows the isopleths of the predicted hourly 
average ground level concentration of PM calculated at the 
selected uniform grid receptors.  
 

 

Fig. 7 Isopleths plot of the predicted hourly average 
ground level concentration of PM 

The isopleths indicate the hourly predicted spatial 
variations of the ground level concentrations of PM. The 
maximum hourly predicted average ground level 
concentration of PM is equal to 45 μg/m3, observed on the 
27th of February 2008 at 8:00 hour and about 1.56 km in the 

NW direction from the FCC stack, and at receptor 
coordinates of X = 218557.94, Y = 3218919.  
Similarly, the predicted daily average ground level 
concentration of PM is compared with US EPA ambient air 
quality standards for PM2.5 at all receptors. Figure 6 shows 
the isopleths of the predicted daily average ground level 
concentration of PM computed at the selected uniform grid 
receptors. 
 

Fig. 8 Isopleths plot of the predicted daily average 
ground level concentration of PM  

The isopleths indicate the daily average predicted spatial 
variations of the ground level concentrations of PM in the 
area of study. The highest daily predicted concentration is 
equal to 16 μg/m3, observed on the 29th of December 2008 
and about 0.75 km in the SE direction from the stack, at a 
receptor coordinates of X = 220657.94, Y = 3217419 due to 
the influence of the prevailing meteorological conditions, 
especially the predominant North West wind and other 
meteorological factors.  
To observe the computational model sensitivity, another 
scenario run is performed adding two finer meshes 
consisting of 21 x 21 uniform receptor points, the first one 
covering hourly highest ground level concentration area, 
the other one covering daily highest predicted ground level 
concentration area. The output accuracy has improved for 
both pollutants due to application of interpolation using 
small values of �x = 150 m, �y = 110 m for the first mesh 
and �x = 100 m, �y = 100m for the second mesh.  There is 
0.65% increase in the hourly highest ground level 
concentration and 2.8% increase in the daily highest ground 
level concentration, which are insignificant. Therefore, the 
only parent mesh is used in the computational process for 
all the other scenarios considered in the parametric study.  

 
CONCLUSIONS  
FCC unit in a refinery is major contributor of SO2 and PM 
emissions. These gases are responsible for adverse impact 
on the immediate neighbourhood of the refinery. A 
complete emission inventory for a year long period have 
been prepared for SO2 and PM. 
A model run performed for actual monthly emission 
variation with total SO2 emission rate of 6089.2 g/s and PM 
emission rate of 302 g/s, taking into consideration monthly 
emission factors for both SO2 and PM. 
The daily predicted ground level concentrations of SO2 are 
compared with Kuwait EPA monitoring station daily 
measured SO2 concentrations at the same discrete receptor 
and showed acceptable validation of the model output.  
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The highest hourly predicted concentration of SO2 is equal 
to 769 μg/m3. It is observed on the 8th of March 2008 at 
8:00 hour, due to elevated SO2 emission rate in this month 
and the prevailing meteorological conditions, especially sea 
breeze effect in the early morning hours. The highest daily 
predicted concentration is equal to 335 μg/m3. It is observed 
on the 9th of November 2008, and obviously influenced by 
the predominant North West wind and high SO2 emission 
rate in the month of November. 
The maximum hourly predicted average ground level 
concentration of PM is equal to 45 μg/m3. It is observed on 
the 27th of February 2008 at 8:00 hour. The highest daily 
predicted concentration is equal to 16 μg/m3, observed on 
the 29th of December 2008. 
The stack sensitivity is explored by changing stack height, 
total emission rate and stack diameter independently. It is 
observed that the higher stack facilitated good dispersion, 
thus lowering the ground level average concentration of the 
pollutant up to 50% when the stack height doubled.  
It is notice that the highest predicted hourly and daily 
ground level concentrations of SO2 are substantially 
decreased as SO2 emission rate is reduced. At 50% 
reduction in the emission rate, the highest hourly and daily 
ground level concentrations decreased by almost 48%.  
The influence of stack diameter inherently changed the exit 
flue gas velocity due to invariable flue gas flow-rate. The 
plume rise and dispersion are related to the exit flue gas 
velocity, which decreased with the increase of stack 
diameter because of proportionality to the square of 
diameter. For a fixed load there is no noticeable change in 
the average hourly and daily predicted ground level 
concentrations of SO2.  
The model output for different scenarios has been used  to 
mitigate the impact of sulphur dioxide and particulate 
emissions. Increase in stack height could reduce ground 
level concentration substantially. Sulphur reducing 
additives  are used in controlling emissions to minimise the 
the ground level concentrations to comply with the 
allowable ambient air quality standards. For emission 
control of particulates, the application of high efficiency 
electrostatic precipitator is thoroughly investigated to 
mitigate particulates ground level concentration in the 
immediate neighbourhood of the refinery. 
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