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Abstract 
 
Laser surface treatment of engineering ceramics offers various advantages in comparison with 

conventional processing techniques and much research has been conducted to develop applications. 

Even so, there still remains a considerable gap in knowledge that needs to be filled to establish the 

process. By employing a fibre laser for the first time to process silicon nitride (Si3N4) and zirconia 

(ZrO2) engineering ceramics, a comparison with the CO2 and a Nd:YAG lasers was conducted to 

provide fundamental understanding of various aspects of the laser beam-material interaction. 

Changes in the morphology, microstructure, surface finish, fracture toughness parameter (K1c) were 

investigated, followed by thermal finite element modelling (FEM) of the laser surface treatment and 

the phase transformation of the two ceramics, as well as the effects of the fibre laser beam parameter 

- brightness (radiance). 

 
Fibre and CO2 laser surface treatment of both Si3N4 and ZrO2 engineering ceramics was performed 

by using various processing gases. Changes in the surface roughness, material removal, surface 

morphology and microstructure were observed. But the effect was particularly more remarkable 

when applying the reactive gases with both lasers and less significant when using the inert gases. 

Microcracking was also observed when the reactive gases were applied. This was due to an 

exothermic reaction produced during the laser-ceramic interaction which would have resulted to an 

increased surface temperature leading to thermal shocks. Moreover, the composition of the ceramics 

was modified with both laser irradiated surfaces as the ZrO2 transformed to zirconia carbides (ZrC) 

and Si3N4 to silicon dioxide (SiO2) respectively.  

 
The most appropriate equation identified for the determination of the fracture toughness parameter 

K1c of the as-received, CO2 and the fibre laser surface treated Si3N4 and ZrO2 was K1c=0.016 (E/Hv)
 

1/2 
(P/c

3/2
). Surfaces of both ceramics treated with CO2 and the fibre laser irradiation produced an 

increased K1c under the measured conditions, but with different effects. The CO2 laser surface 

treatment produced a thicker and softer layer whereas the fibre laser surface treatment increased the 

hardness by only 4%. This is inconsiderable but a reduction in the crack lengths increased the K1c 

value under the applied conditions. This was through a possible transformation hardening which 

occurred within both engineering ceramics. 

 
Experimental findings validated the generated thermal FEM of the CO2 and the fibre laser surface 

treatment and showed good agreement. However, a temperature difference was found between the 

CO2 and fibre laser surface treatment due to the difference in absorption of the near infra-red (NIR) 

wavelength of the fibre laser being higher than the mid infra-red (MIR) wavelength of the CO2 laser. 

This in turn, generated a larger interaction zone on the surface that was not induced further into the 

bulk, as was the case with the fibre laser irradiation. The MIR wavelength is therefore suitable for  
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the surface processing of mainly oxide ceramics and surface treatments which do not require deep 

penetration. Phase transformation of the two ceramics occurred at various stages during the fibre 

laser surface treatment. The ZrO2 was transformed from the monoclinic (M) state to a mixture of 

tetragonal + cubic (T+C) during fibre laser irradiation and from T+C to T and then a partially liquid 

(L) phase followed by a possible reverse transformation to the M state during solidification. The 

Si3N4 transformed to a mixture of α-phase and β-phase (α→ α+β) followed by α+β and fully 

transforms from α+β →β-phase. What is more, is a comparison of the fibre laser-beam brightness 

parameter with that of the Nd:YAG laser. In particular, physical and microstructural changes due to 

the difference in the laser-beam brightness were observed. 

 
This research has identified the broader effects of various laser processing conditions, as well as 

characterization techniques, assessment and identification of a method to determine the K1c and the 

thermal FEM of laser surface treated engineering ceramics. Also, the contributions of laser-beam 

brightness as a parameter of laser processing and the influence thereof on the engineering ceramics 

have been identified from a fundamental viewpoint. The findings of this research can now be 

adopted to develop ceramic fuel cell joining techniques and applications where laser beam surface 

modification and characterization of engineering ceramics are necessary.  
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A   Radiation Constant (in Chapter 7) 
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Bi   Butyl rubber filled supper conductive ceramic 
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Br   Brightness 
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C   Cubic Phase (in Chapter 7) 
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c-BN   Boron Nitride 

cm
2  

Centi-meters Squared 

CO2  Carbon Dioxide 

cp    Specific Heat (See Equation 7.1, Chapter 7) 

CW  Continuous Wave 

D   Average diagonal size 

d    Depth 

E   Young‟s modulus 

F   Force 

G   Centre of the axis of whole section 

g    grams 

G1    Centre of area where the forces is taken from 

GPa  Giga Pascal 

He   Helium 

HeNe  Helium Neon 

HV  Hardness (Vickers) 

Hz   Hertz 

Ic   Interior cracks 

Ixx  Second moment of area 
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K1c  Fracture Toughness Property 

Kc   Plane stress fracture toughness 

kg   Kilo gram 

kij   Conductivity Co-efficient 

kw   Kilo Watts 

L   Latent heat per unit mass of the material undergoing phase change 

L   Liquid (Phase) 

l   Litres 

m    Meters 
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M   Monoclinic Phase  

M
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Laser beam quality factor 

m
3   
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Mm  Millimetres 
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mW  mili Watts 

N   Newtons 

N2   Nitrogen 

Nm  nano-metres 

O2   oxygen 

P    load (kg) 
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q    Heat energy across the surface 
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R    Radius 

Ra    Surface Roughness 

rad    Radians 

s    Seconds 
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sr
-1 
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V    Volts 

V    Volume 

W    Watts 

wt    Weight 
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ZrO2   Zirconia Oxide 

α    Alpha (representation of a phase) 

β   beta (representation of a phase) 

γ   Cubic (representation of a phase) 

δ   Delta 

δA   Area of Rectangle 

δy   Dimension of rectangle 

ε   Epsilon 

θ   Theta (temperature at this point on surface (see Equations 7.2 and 7.3)). 

θ
0 
   Reference Temperature 

θf    Phase change temperature 

θ
Z
   Absolute zero on the temperature scale 

λ
 
   Wavelength 

π   Pi 

ρ    Mass Density (see Equation 7.1, Chapter 7) 

ζ    Sigma (Resultant Stresses) 

%    Percentage 

+ve   Positive 

-ve   Negative 

∑    Sum (of) 

◦
C    Degree Celsius 

µm   micro-metre 

3-D   Three Dimensional 
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Figure 5.36 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated 

by CO2 laser irradiation by using O2 assist gas. 

 
Figure 5.37 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated 

by CO2 laser irradiation by using compressed air assist gas. 

 
Figure 5.38 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated 

by CO2 laser irradiation by using N2 assist gas. 

 
Figure 5.39 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated 

by CO2 laser irradiation by using Ar assist gas. 

 
Figure 5.40 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated 

by CO2 laser irradiation by using laser alone (no assist gas). 

 
Figure 5.41 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using O2 assist gas at (a) x500 and (b) x3000 resolution. 

 
Figure 5.42 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using compressed air assist gas at (a) x500 and (b) x3000 resolution. 

 
Figure 5.43 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using N2 assist gas at (a) x500 and (b) x3000 resolution. 

 
Figure 5.44 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using an Ar assist gas at (a) x500 and (b) x3000 resolution. 

 
Figure 5.45 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using no assist gas at (a) x 500 and (b) x3000 resolution. 

 
Figure 5.46 Chemical composition of the ZrO2 engineering ceramic in the as-received state and after 

CO2 laser irradiation by using the different assist gas compositions. 

 
Figure 5.47 A schematic diagram illustrating the generation of the plasma plume and C absorption 

within the surface of the Si3N4 and the ZrO2 engineering ceramic.  

 

Chapter 6: Assessment of a Suitable Method for the Evaluation of Fracture Toughness 

Parameter (K1c) of Laser Surface Treated Engineering Ceramics 

 
Figure 6.1 Median Half–penny crack in (a) and Palmqvist crack (b). 

 
Figure 6.2 Schematic of a Vickers diamond indentation with propagation of the cracks (a), and (b) 

the concept of diamond indentation employed. 
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Figure 6.3 Topography of the Vickers diamond indentation on the as-received surface of the Si3N4 

ceramics indented at 5 kg, illustrating a median half-penny crack geometry.  

 
Figure 6.4 Topography of the Vickers diamond indentation on the as-received surface of the Si3N4 

engineering ceramics indented at 20kg, illustrating a median half-penny crack geometry.  

 
Figure 6.5 Topography of the Vickers diamond indentation of the as-received surface of the ZrO2 

engineering ceramics indented at 5kg, illustrating a median half-penny crack geometry. 

 
Figure 6.6 Topography of the Vickers diamond indentation of the as-received surface of the ZrO2 

engineering ceramic indented at 20kg, illustrating a median half-penny crack geometry. 

 
Figure 6.7 As-received surface of Si3N4 engineering ceramic indented with by a 30kg load (hardness 

= 12.67GPa, crack length = 371μm, K1c = 5.45 MPa m
1/2

). 

 
Figure 6.7 K1c of the as-received surfaces of the Si3N4 engineering ceramics after applying a load of 

30kg. 

 
Figure 6.9 As-received surface of Si3N4 engineering ceramic indented by a 5kg load (hardness = 

7.73GPa, crack length = 391μm, K1c = 1.66 MPa m
1/2

. 

 
Figure 6.10 K1c of the as-received surfaces of Si3N4 engineering ceramics from applying a 5kg 

indentation load. 

 
Figure 6.11 An example of the as-received surface of ZrO2 engineering ceramic indented with by a 

30kg load (hardness =926 HV, crack length = 437μm, K1c = 6.94 MPa m
1/2

). 

 
Figure 6.12 K1c of the as-received surface of ZrO2 engineering ceramic after applying a load of 30kg. 

 
Figure 6.13 An example of the as-received surface of ZrO2 engineering ceramic indented with by a 

5kg load (hardness =1120 HV, crack length = 425µm, K1c = 1.10 MPa m
1/2

). 

 
Figure 6.14 K1c of the as-received surfaces of ZrO2 engineering ceramic from applying a 5kg 

indentation load. 

 
Figure 6.15 Fibre laser treated surface of Si3N4 engineering ceramic indented by a 5kg load, laser 

power = 150W, 100 mm/min, 3mm post size, (hardness = 7.73GPa, crack length = 247μm, K1c = 

3.59 MPa m
1/2

). 

 
Figure 6.16 Diagram of the tension and compression concept where (a) is the state of the ceramic 

under equilibrium condition and (b) showing the increase in induced compression from the fibre 

laser surface treatment.  
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Figure 6.17 K1c of the fibre laser treated surfaces of Si3N4 from applying 5kg indentation load. 

 
Figure 6.17 SEM image of the microstructure of the as-received surface Si3N4 engineering ceramic 

presented in (a) at x500 and (b) at x3000 resolution as well as the surface morphology and the 

microstructure of the fibre laser treated surface of the Si3N4 engineering ceramic at x500 and (b) at 

x3000 resolution.   

 
Figure 6.19 Microscopic image (left) and the crack profile (right) of the CO2 laser treated surface of 

the Si3N4 engineering ceramic. 

 
Figure 6.20 K1c of the CO2 laser treated surface of the Si3N4 ceramic. 

 
Figure 6.21 An example of the fibre laser treated surface of ZrO2 engineering ceramic indented by a 

5kg load, laser power = 150W, 100 mm/min, 3mm post size, (hardness = 654 HV, crack length = 

232μm, K1c = 3.97 MPa m
1/2

). 

 
Figure 6.22 K1c of the fibre laser treated surfaces of ZrO2 engineering ceramic from applying 5kg 

indentation load. 

 
Figure 6.23 Optical image of the CO2 laser irradiated surface of the ZrO2 engineering ceramic 

indented by a 49.05N load; 600 mm/min; 3mm post size; (hardness = 650 HV; crack length = 

297μm; K1C = 2.75 MPa m
1/2

). 

  
Figure 6.24 K1c of the CO2 laser treated surfaces of ZrO2 engineering ceramic from applying 5kg 

indentation load. 

 
Figure 6.25 Hardness of the Si3N4 engineering ceramic treated by CO2 and a fibre laser irradiation. 

 
Figure 6.26 K1c of the CO2 laser treated surface of the Si3N4 engineering ceramic. 

 
Figure 6.27 K1c of the CO2 laser treated surface of the Si3N4 engineering ceramic. 

 
Figure 6.27 Hardness of the ZrO2 engineering ceramic treated with a CO2 and a fibre laser 

irradiation. 

 
Figure 6.29 Crack length of the ZrO2 engineering ceramic obtained after a CO2 and a fibre laser 

irradiation. 

 
Figure 6.30 K1c of the ZrO2 engineering ceramic obtained after the CO2 and a fibre laser irradiation. 

 

Chapter 7: Thermal Analysis of Laser Surface Treated Engineering Ceramics 

 
Figure 7.1 A schematic diagram of the steps taken to construct the FEM. 
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Figure 7.2 Screen shot images of the part design showing a 3mm diameter blind hole at a depth of 

100μm in (a), the thermal constraint of 25
°
C applied on both edges to the work-piece in (b), 

application of the heat load to the ZrO2 engineering ceramic in form of the laser beam in (c), and (d) 

an image of the full 3-D mesh showing the assigned heat load to both the Si3N4 and the ZrO2 

engineering ceramics. 

 
Figure 7.3 A schematic diagram of the experimental set-up of the fibre laser surface treatment of the 

Si3N4 and ZrO2 engineering ceramics. 

  
Figure 7.4 A schematic diagram of the experimental set-up of the CO2 laser surface treatment of the 

Si3N4 and ZrO2 engineering ceramics. 

 
Figure 7.5 A schematic diagram of the positions used to measure the surface temperature of the 

Si3N4 and ZrO2 engineering ceramics during the fibre laser surface treatment. 

 
Figure 7.6 A schematic diagram of the mounting position of the thermo-couples into the Si3N4 and 

the ZrO2 engineering ceramics during the fibre laser surface irradiation. 

 
Figure 7.7 Schematics of the surface temperature reading in (a) and (b); the bulk temperature of the 

ZrO2 engineering ceramic. 

 
Figure 7.8 Experimental temperature distribution over the surface length in (a), and (b) the 

temperature distribution through the bulk of the fibre laser surface treatment of the ZrO2 engineering 

ceramic. 

 
Figure 7.9 FEM of the heat distribution of the fibre laser focused at 0mm from the edge (position 1) 

of the ZrO2 engineering ceramic (start of the laser treatment) in (a), and (b) the cross-sectional view. 

 
Figure 7.10 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) 

of the fibre laser irradiation of the ZrO2 engineering ceramic for (a) the heat distribution over the 

length of the sample, and (b) the heat distribution through the depth of the sample.  

 
Figure 7.11 FEM of the heat distribution of the fibre laser focused at 12.5mm from the edge (position 

2) of the ZrO2 engineering ceramic in (a), and the cross-sectional view in (b) and (c). 

 
Figure 7.12 Temperature curves from the FEM of the fibre laser irradiation at 12.5mm from the edge 

(position 2) of the ZrO2 engineering ceramic for (a) the heat distribution over the length of the 

sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.13 FEM of the heat distribution of the fibre laser beam focused in the centre (position 3) of 

the ZrO2 engineering ceramic in (a), and in the cross-section in (b) and (c). 
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Figure 7.14 Temperature curves from the FEM of the fibre laser irradiation at 25mm from the edge 

(position 3) of the ZrO2 ceramic for (a) the heat distributed over the length of the sample, and (b) the 

heat distribution through the depth of the sample. 

 
Figure 7.15 Parameters obtained from the FEM of the fibre laser treated surface of the ZrO2 

engineering ceramic, showing the correlation of various factors with one another; (a) power density 

versus temperature; (b) depth versus power density; (c) power density versus traverse speed; (d) 

power density versus time; (e) traverse speed versus temperature; (f) depth versus temperature and 

(g) depth versus time. 

 
Figure 7.16 TG-DSC curves for the as-received and the fibre laser treated ZrO2 engineering ceramic. 

 
Figure 7.17 A phase diagram of the ZrO2 engineering ceramic showing the change in phase with 

changing temperature of 4 mol% of Y2O3 content within the ZrO2 engineering ceramic used in this 

study.   

 
Figure 7.18 Schematics of the surface temperature reading in (a), and (b); the bulk temperature of the 

CO2 laser irradiated ZrO2 engineering ceramic. 

 
Figure 7.19 (a) Experimental temperature distribution over the surface length, and (b) the 

temperature distribution through the bulk of the CO2 laser-surface treated ZrO2 engineering ceramic. 

 
Figure 7.20 (a) FEM of the heat distribution of the CO2 laser focused at 0mm from the edge (position 

1) of the ZrO2 engineering ceramic (start of the laser treatment), and (b) the cross-sectional view. 

 
Figure 7.21 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) 

of the CO2 laser irradiation of the ZrO2 engineering ceramic for (a) the heat distribution over the 

length of the sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.22 FEM of the heat distribution of the CO2 laser focused at 12.5mm from the edge (position 

2) of the ZrO2 engineering ceramic, and (b and c) the cross-sectional view. 

 
Figure 7.23 Temperature curves from the FEM of the CO2 laser irradiation at 12.5mm from the edge 

(position 2) of the ZrO2 engineering ceramic for (a) the heat distribution over the length of the 

sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.24 (a) FEM of the heat distribution of the CO2 laser beam focused in the centre (position 3) 

of the ZrO2 engineering ceramic, and (b and c) in the cross-section. 

 
Figure 7.25 Temperature curves from the FEM of the CO2 laser irradiation at 25mm from the edge 

(position 3) of the ZrO2 engineering ceramic for (a) the heat distributed over the length of the 

sample, and (b) the heat distribution through the depth of the sample. 
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Figure 7.26 Parameters obtained from the FEM of the CO2 laser surface treated ZrO2, showing the 

correlation of various factors with one another: (a) power density versus temperature, (b) depth 

versus power density, (c) power density versus traverse speed, (d) power density versus time, (e) 

traverse speed versus temperature and (f) depth versus temperature. 

 
Figure 7.27 Schematic of the surface temperature reading in (a), and (b) the bulk temperature of the 

Si3N4 engineering ceramic. 

 
Figure 7.28 Experimental temperature distribution over the surface length in (a) and (b) the 

temperature distribution through the bulk of the fibre laser processed Si3N4 engineering ceramic. 

 
Figure 7.29 FEM of the heat distribution of the fibre laser focused at 0mm from the edge (position 1) 

of the Si3N4 engineering ceramic work-piece (start of the laser treatment) in (a) and (b) the cross-

sectional view. 

 
Figure 7.30 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) 

of the fibre laser irradiation of the Si3N4 engineering ceramic for (a) the heat distributed over the 

length of the sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.31 FEM of the heat distribution of the fibre laser focused at 12.5mm from the edge (position 

2) of the Si3N4 engineering ceramic in (a), and the cross-sectional view in (b) and (c). 

 
Figure 7.32 Temperature curves from the FEM of the fibre laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 engineering ceramic for (a) the heat distributed over the length of the 

sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.33 FEM of the heat distribution of the fibre laser beam focused in the centre (position 3) of 

the Si3N4 engineering ceramic in (a), and in the cross-section in (b) and (c). 

 
Figure 7.34 Temperature curves from the FEM of the fibre laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 engineering ceramic for (a) the heat distributed over the length of the 

sample and (b) the heat distribution through the depth of the sample. 

 
Figure 7.35 Parameters obtained from the FEM showing the correlation of various parameters with 

one another; (a) power density versus temperature; (b) depth versus power density; (c) power density 

versus traverse speed; (d) power density versus time; (e) traverse speed versus temperature; (f) depth 

versus temperature and (g) depth versus time for fibre laser surface treatment of the Si3N4 

engineering ceramic. 

 
Figure 7.36 Heating and cooling curve from the TG-DSC analysis for the as-received surface of the 

Si3N4 engineering ceramic. 
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Figure 7.37 Heating and cooling curves from the TG-DSC analysis for the fibre laser irradiated Si3N4 

engineering ceramic. 

 
Figure 7.38 SEM image of (a) the as-received surface, and (b) the fibre laser irradiated surface of the 

Si3N4 engineering ceramic. 

 
Figure 7.39 Schematic of the surface temperature reading in (a), and (b) the bulk temperature during 

CO2 laser surface treatment of the Si3N4 engineering ceramic. 

 
Figure 7.40 Experimental temperature distributions over the surface length in (a), and (b) the 

temperature distribution through the bulk of the CO2 laser surface treated Si3N4 engineering ceramic. 

 
Figure 7.41 FEM of the heat distribution of the CO2 laser focused at 0mm from the edge (position 1) 

of the Si3N4 engineering ceramic (start of the laser treatment) in (a), and (b) the cross-sectional view. 

 
Figure 7.42 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) 

of the CO2 laser irradiation of the Si3N4 engineering ceramic for (a) the heat distributed over the 

length of the sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.43 FEM of the heat distribution of the CO2 laser focused at 12.5mm from the edge (position 

2) of the Si3N4 engineering ceramic in (a), and the cross-sectional view in (b) and (c). 

 
Figure 7.44 Temperature curves from the FEM of the CO2 laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 engineering ceramic for (a) the heat distributed over the length of the 

sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.45 FEM of the heat distribution of the CO2 laser beam focused in the centre (position 3) of 

the Si3N4 engineering ceramic in (a), and in the cross-section in (b) and (c). 

 
Figure 7.46 Temperature curves from the FEM of the CO2 laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 engineering ceramic for (a) the heat distributed over the length of the 

sample, and (b) the heat distribution through the depth of the sample. 

 
Figure 7.47 Parameters obtained from the FEM showing the correlation of various factors with one 

another: (a) power density versus temperature, (b) depth versus power density, (c) power density 

versus traverse speed, (d) power density versus time, (e) traverse speed versus temperature and (f) 

depth versus temperature. 

 

Chapter 8: Influence of Laser-Beam Brightness During Surface Treatment of ZrO2 

Engineering Ceramic 

 
Figure 8.1 A schematic diagram illustrating the solid angle of divergence of a laser beam. 
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Figure 8.2 A schematic diagram showing the experimental set-up of the Nd:YAG laser surface 

treatment of the ZrO2 engineering ceramic. 

 
Figure 8.3 Optical image of the diamond indentation produced on the as-received surface indented 

by a 2.5kg (24.51N) diamond indentation load on the ZrO2 engineering ceramic. 

 
Figure 8.4 Optical images of the diamond indentation produced on the Nd:YAG laser irradiated 

surface indented by a 2.5kg (24.51N) diamond indentation load on the ZrO2 engineering ceramic. 

 
Figure 8.5 Optical images of the diamond indentation produced on the fibre laser irradiated surface 

indented by a 2.5kg (24.51N) diamond indentation load on the ZrO2 engineering ceramic. 

 
Figure 8.6 Optical images of (a) the width of the Nd:YAG laser irradiated track and (b) the width of 

the fibre laser irradiated track of the ZrO2 engineering ceramic. 

 
Figure 8.7 Optical images of the cross-sectional view of (a) the Nd:YAG laser irradiated surface, (b) 

the schematic diagram of the Nd:YAG laser irradiated surface, (c) the fibre laser irradiated surfaces, 

and (d) the schematic diagram of the fibre laser irradiated surfaces of the ZrO2 engineering ceramic. 

 
Figure 8.7 FEGSEM image of the as-received surface of the ZrO2 engineering ceramic. 

 
Figure 8.9 FEGSEM image of the fibre laser irradiated surface of the ZrO2 engineering ceramic 

within the sub-surface region. 

 
Figure 8.10 FEGSEM image of the fibre laser irradiated surface of the ZrO2 engineering ceramic 

illustrating the surface and the sub-surface layer. 

 
Figure 8.11 FEGSEM image of the fibre laser irradiated surface of the ZrO2 engineering ceramic 

illustrating the top surface layer and the sub-surface. 

 
Figure 8.12 FEGSEM image of the fibre laser irradiated surface of the ZrO2 engineering ceramic 

illustrating the top surface layer. 

 
Figure 8.13 FEGSEM image of the Nd:YAG laser irradiated sample of the ZrO2 engineering ceramic 

within the sub-surface region. 

 
Figure 8.14 FEGSEM image of the Nd:YAG laser irradiated surface of the ZrO2 engineering ceramic 

illustrating the surface and the sub-surface layer.  

 
Figure 8.15 FEGSEM image of the Nd:YAG laser irradiated surface of the ZrO2 engineering ceramic 

illustrating the top (near) surface layer.  
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Introduction 
 

1. Lasers in Material Processing 

Laser aided material processing has developed tremendously since the first invention of the laser in 

the 1960‟s. Since then, the applications of lasers have continuously increased in the 

manufacturing/engineering sectors and more in recent years in the product packaging, medical, 

entertainment and in the military sectors. This is because of the advantages that are generally offered 

by laser systems. Industrial laser systems offer high speeds, accuracy, and shorter process times, high 

power density focused on a localized area, deep penetrating treatment and aesthetics, which allow 

laser systems to hold a commercial advantage in comparison with conventional manufacturing 

methods. Industrial lasers can cut, join, remove material, mark and conduct surface treatments which 

could modify various properties of engineering and non-engineering materials depending on the 

application and its end use.  

 
Various types of lasers to this date operate with different power outputs, wavelengths, beam profile 

and delivery systems to process various materials. Those are namely: CO2, neodymium, yttrium 

aluminium garnet (Nd:YAG), high powered diode (HPDL), excimer, and the fibre lasers. The 

selection of a particular laser system is dependent on the suitability of wavelength, power output, 

material threshold and the requirements for the application for which it is used for. The interaction of 

a particular laser source with a material is a phenomenon. This is because the effects and the end 

results are dependent on the material‟s characteristics and the mechanical properties which also 

determine its feasibility for laser processing. Application of the CO2 and the Nd:YAG laser has 

dominated in the material processing industry over the last few decades, but diode and excimer lasers 

and in the recent years fibre lasers have also gained popularity. Figure 1 illustrates the application of 

different industrial lasers in the material processing and their suitability to process different 

materials.  

 
Fibre lasers have been around since 2004 and have rapidly established a place in the laser aided 

material processing sector [1]. Fibre lasers hold an advantage over the conventional laser sources as 

they provide high power with better absorption, high beam quality, focused on a small spot size, low 

maintenance, energy efficiency (low cost per wattage), high accuracy and repeatability, high 

brightness (power per unit area) and the suitability of using fibre optics to transport the beam. Such 

aspects increase the potential for new opportunities (applications) in comparison to other 

counterparts [2]. Current application of fibre lasers are expanding in the industrial scene with 

processing metals, plastics and some ceramics (scribing and marking). Nevertheless, from a laser 

material interaction view point, the effects of the fibre laser interaction on engineering ceramics is 

not fully discovered or understood as it is still new in the market.  
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Figure 1 A chart illustrating the application of variety of industrials lasers for processing various 

engineering and non-engineering materials [3 - 5]. 

  

2. Research Rationale  

Lack of resource and environmental issues have encouraged reduction in carbon emissions and the 

need to generate energy cleanly. This has generated much interest for research in this area, 

particularly for the technology of fuel cells to generate electricity from a continuously supplied 

stream of fuel and oxidant. These provide a means of converting the chemical energy directly to 

electrical energy. The technology of fuel cells for the generation of electricity could meet the current 

demands for a clean and renewable energy source. The fuel cells are made by screen-printing the 

active cell material into a flat ceramic tube. This results in flat ceramic tube with 15 fuel cells on 

each side. When the tubes are combined into bundles, then into strips and ultimately into fuel cell 

stacks, the amount of electricity generated is not inconsiderable. When the stacks are combined then 

multi-megawatt power plant can be created. To meet current market requirement for electricity, not 

to mention potential future growth, scaling-up the fuel cell stack combinations, and thus scaling-up 

of the fuel cell manufacturing process, is essential for large-scale generation capacity. However, the 

current manufacturing methods available for making the fuel cell tubes are time-consuming. In 

particular, the firing procedures that are necessary to vitrify the surface of the fuel cell tubes in order 

to seal them mean that each fuel cell tube can take at least four-days to make [6]. Such long cycle 

times give rise to manufacturing process that instead of being based on mass production, are based 

on batch production. This results in high production costs that consequently prevent large economies 

of scale being realized. One method that could reduce the manufacturing time for the fuel cell by 

replacing the firing processes would be to employ lasers to vitrify the surface of the fuel cells 
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because lasers would offer faster processing times and avoids a lengthy preparation to undergo the 

firing process. In addition, laser systems are also flexible since a laser can be mounted on a multi-

axial robotic system or a large gantry machine for processing complex and large shaped parts. This 

can accommodate the joining of the fuel cell assembly. Research has advanced in the field of laser 

machining of ceramics [7-11], surface treatment [12-22] and laser cutting [23-33] and drilling of 

ceramics [34-37]. But the effects of laser processing of engineering ceramics are still unknown and 

not fully reported in most of the published literatures. The unknown aspects in particular are the 

effects during the laser interaction with oxide and nitride ceramics. Also, a comparative study by 

using a near infra-red (NIR) and mid infra-red (MIR) wavelengths by observing the differences in 

the laser modified surface layer from a compositional, microstructural, thermal shocking, internal 

phase changes, and fracture toughness as well as influence on the ceramics by using a high 

brightness laser beams. This research firstly attempts to elucidate the physical aspects and the 

mechanisms of the laser material interaction in particular. Laser processing of engineering ceramics 

through this would be better understood for future applications such as laser assisted joining of 

engineering ceramics. Joining of engineering ceramics would be useful as an alternative process 

when manufacturing ceramic fuel cell as considerable amount of lead time, tooling, labour cost and 

man hours would be saved. This in turn would also be profitable for the fuel cell manufacturers. 

Joining of the fuel cell was however, abandoned after the initial stages of this research. This was due 

to a likely industrial collaborator pulling away from the proposal. This meant that resource such as 

experimental material was not freely available to fully complete the required investigations. Hence, 

laser-ceramic interactions were investigated in order to achieve the end objective of joining the fuel 

cells. In doing so, will allow one to thoroughly understand the wider effects on the oxide and the 

nitride engineering ceramics. In particular the microstructure, surface topography, change in 

composition, laser modified surface characteristics such as thermal shocking, fracture toughness of 

the laser induced surface layer, as well as internal changes in phase so that a potential laser assisted 

fuel cell joining technology can be developed.  

 
Laser surface treatment is essentially important because it has the potential to enhance surface 

strength, improve mechanical properties of the material such as hardness which is ideal for 

applications where wear rate is high due to shearing stresses. Laser surface treatment is also useful 

for improving the surface roughness, which in turn, could enhance the co-efficient of friction and 

reduce the shear stress acting on the material. Moreover, laser surface treatment could also be used to 

cover microcracks over ceramic surfaces. This inherently, provides a mean of maintaining the 

component life and elongates the functional life. In addition, aesthetics can also be improved by 

means of laser surface treatment (for ceramics in particular) by creating a modified glassy layer. This 

research is the first step towards attempting to join engineering ceramics by firstly understanding the 

science behind the laser material interaction by means of surface treatment. This in its own way 

would also fill the gap in knowledge. Moreover, the thesis elaborates the physical effects that take 
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place particularly during the fibre laser-interaction with the engineering ceramics which demonstrate 

the topography, compositional and the microstructural changes.   

 
In addition, a gap in knowledge is also filled by investigating the fracture toughness parameter (K1c), 

of the engineering ceramics after the laser surface processing. This is because metals and alloys in 

comparison to ceramics comprise of higher facture toughness. Therefore, it would prove to be 

beneficial if the K1c of ceramics can be improved by means of laser processing. Improvement in the 

ceramics K1c would also increase the possibility of the ceramics usage for the demanding 

applications since they would perform better in comparison to metals due to their high hardness, low 

thermal conductivity (particularly ZrO2), low co-efficient of friction and wear rate. A change in the 

K1c has an influence on the materials functionality or diversity to its applications. By improving the 

K1c of materials can increase its functional capabilities such as longer functional life, improved 

performance under higher cyclic and mechanical loading. This research also demonstrates a 

technique to calculate the K1c by employing Vickers indentation test for laser surface treated cold 

isostatic pressed (CIP) silicon nitride (Si3N4) and zirconia (ZrO2) engineering ceramics.  

 
The final aspect being investigated is the influence of the fibre laser-beam brightness thereof on the 

engineering ceramics. This is also unreported in any of the published literatures. Fibre lasers are 

known to comprise of high brightness in comparison with other lasers. This would significantly 

influence aspects such as penetration depth, hardness, laser-beam footprint and the microstructure as 

well the ceramics surface characteristics in comparison to those produced by another laser with 

lower brightness. This is because high brightness laser beam would result to high power per unit 

area. This in comparison to the identical power delivered by another laser with lower brightness 

would produce different effects. Therefore, the influence of the fibre laser beam brightness in 

comparison to the Nd:YAG laser beam is also presented in this thesis. This was due to the fact that 

the wavelengths of the two lasers are in the same region, which would allow one to understand the 

influence of the laser-beam brightness parameter with similar wavelength, power density and 

traverse speed as input parameters.   

 
Both the ZrO2 and the Si3N4 engineering ceramics were selected as they both have different 

mechanical and thermal properties. This in turn will create different effects to the laser surface 

treatments. Furthermore, both the ZrO2 and Si3N4 engineering ceramics are more frequently used for 

many applications within the engineering, medical and power generation sectors so undertaking this 

research would contribute to achieving more diversity with current and future applications of the two 

ceramics. 

 

3. Research Background and Approach 

Experiments were conducted by employing a CO2 (10.06 µm), Nd:YAG (1.064 µm) laser and is 

compared to the more recent fibre (1.075 µm) laser. This is the first time a surface treatment of the 
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engineering ceramics has been performed hitherto by employing the fibre laser. The CIPed ZrO2 and 

Si3N4 engineering ceramics were investigated for their physical interaction during laser processing. 

Laser material interaction was evaluated by studying the surface integrity, morphology and the 

microstructure by using scanning electron microscopy (SEM), field emission gun scanning electron 

microscopy (FEGSEM) and focus variation technique. The chemical changes were investigated by 

using the energy dispersive x-ray analysis (EDX). Mechanical effects such as change in hardness 

were investigated by using the Vickers indentation method which was followed by determination of 

the fracture toughness parameter (K1c) by using imperical equations from the literature. Increasing 

the K1c of the ceramics is ideal as it can open up new avenues for demanding applications if the 

material could be made to develop further resistance to fracture induced by means of a laser surface 

treatment. If a crack is to propagate on the material surface, then the applied or existing tensile stress 

must first overcome and increase the compressive stress. This could be potentially induced by the 

laser treatment. 

 
Thermal effects were investigated by using the thermogravimetry/differential thermal scanning 

calometry (TG/DSC). This was by analysing the physical changes in the ceramics occurring during 

the thermal exposure. This was complimented by conducting a prior investigation of the temperature 

distribution during the laser surface treatment. Then the process was modelled by using a finite 

element model (FEM) which would show the distribution of temperatures during the laser-material 

interaction. This helped to determine the concurrent phase transformation which the engineering 

ceramics would generally undergo. The laser-beam brightness (radiance) as a parameter is generally 

ignored in most investigations and in published work. The effects of the brightness of the fibre laser 

in comparison to the Nd:YAG laser was therefore studied with respect to change in hardness, 

dimensional size and the microstructure. 

 

4. Aims and Objectives 

A comparison is made throughout the thesis between the CO2 and the fibre laser followed by the 

Nd:YAG and the fibre laser to examine and discuss the topographical, morphological, compositional, 

micro-structural, mechanical and thermal events resulting from laser-ceramic interactions. The 

objectives of this research are as follows: 

 
(i) To obtain suitable parameter window in respect to achieving a defect-free surface by conducting 

experiments on the ZrO2 and the Si3N4 engineering ceramics in particular by using the CO2 and the 

fibre laser surface treatments. 

 
(ii) To investigate the laser-material interaction by conducting a microstructural, topographical and 

a compositional analysis of the ZrO2 and Si3N4 engineering ceramics. 
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(iii) To asses and identify the analytical technique for determination of fracture toughness property 

(K1c) and to further determine the K1c of the as-received and laser irradiated surfaces of the ZrO2 and 

the Si3N4 engineering ceramics. 

 
(iv) To study the thermal effects of the laser-material interaction by conducting an experimental and 

a computational analysis of the laser surface treatment of the ZrO2 and Si3N4 engineering ceramics. 

 
(v) To investigate the effect of the laser beam parameter brightness during laser processing of the 

engineering ceramics. 

 

5. Thesis Structure  

The structure of the thesis is presented in the schematic in Figure 2 which illustrates the construction 

of the thesis divided in four parts: 

 
Part 1 - Background of ceramics, industrial lasers used and a review of previous research with 

respect to laser-material interaction is covered in this part. 

  
Part 2 - Physical and scientific aspects namely: composition, microstructure and characterization are 

discussed herein. 

 
Part 3 - Mechanical and thermal aspects, those are: measurement of surface hardness, determination 

of fracture toughness and the residual stress, followed by experimental and computational 

investigation of thermal effects. 

 
Part 4 – New perspectives on laser beam-material interaction (study of the laser beam parameter: 

brightness)  

 
Part 1 presents the first three Chapters of the thesis which demonstrates the background of the 

engineering ceramics in Chapter 1. Introduction to lasers is presented in Chapter 2 and a review of 

prior work, particularly within the field of laser-material processing of various ceramics in Chapter 

3.  

 
Part 2 includes Chapter 4 and Chapter 5 which justifies the laser parameters chosen for the 

investigation in Chapter 4. Characterization of the CO2 and fibre laser irradiated ceramics with 

respect to compositional, microstructural and topographical changes is demonstrated in Chapter 5.  

 
Part 3 demonstrates the mechanical and the thermal aspects where the fracture toughness parameter 

(K1c) was investigated in Chapter 6. Furthermore, Chapter 7 discusses the thermal effects of the laser 

surface treatment where an experimental and a computational model (FEM) are presented. This is 

further complimented by work on phase transformation of the ZrO2 and Si3N4 engineering ceramics. 

Part 4 presents Chapter 8 which investigated the influence of laser-beam parameter - brightness. This 

is a comparative study between the fibre and the Nd:YAG laser surface treatment.  
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Figure 2 A schematic of the thesis structure and the project cycle.  
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CHAPTER 1 

Background and State-of-the-Art 

Engineering Ceramics 
 
This Chapter introduces the ceramics used within the selected engineering and non-engineering sectors. 

Manufacturing of the ceramics along with its physical properties, characteristics and its crystal structures 

are explained. Benefits of using ceramics over metallic materials are further justified along with a short 

summary of the cost issues. Justification of the failures of conventional parts made from metallic materials 

is addressed and how the existing problems with such metallic components can be overcome by using the 

engineering ceramics such as Si3N4, SiC, Zr02 and Al2O3. The main industries in focus are aerospace and 

automotive, although, applications within bio-medical and military sectors are also mentioned. 

 

1.1 Engineering Ceramics and Their History 

The word ceramic originates from the Greek word called keramicos (κεραμικός)
 
meaning pottery 

[37]. Keramicos as a word has roots from the ancient Indian language called Sanskrit meaning “to 

burn”. The Greeks refer to pottery as things made from the burnt earth. The history of ceramics dates 

back 10,000 years and is inorganic, non-metallic material, traditionally applicable to make pottery 

and chinaware for hundreds of years [37]. Traditional ceramics were made from inorganic materials 

such as clay minerals, dissolved rocks under the effect of water, and particles of sand mixed together 

to form products of white-wares, bricks, cements and tiles.  

 
Modern ceramics otherwise known as technical or engineering ceramics are typically metal oxides, 

carbides, nitrides and borides (such as Si3N4, SiC, B4C, and TiB2). Complex ceramics are often 

mixture of several species, comprising of controlled composition in order to comply with a specific 

demand.  

 
Advancements were made in late 1960s and 70s in the field of material technology to develop 

engineering ceramics that can be utilised for many demanding, ostensibly impossible and 

challenging applications. These ceramics have minimum similarity with their origins and are now 

capable of performing in the most vigorous conditions. Moreover, they are economically competitive 

than metallic materials in the long run due to the longer functional life of a product [37 -41]. 

 
Components made from ceramics tend to cost high due to their processing difficulties and high 

tooling and wear cost. Si3N4 ceramics cost between £20 - £30 per kg in comparison with metallic 

components (carbon steels). The cost of metals, however, is up to £0.50 - £0.70 per kg [42]. But the 

cost of ceramic parts may be considered economical if life cycle costs of the components are taken 

into consideration.  
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Ceramic parts provide longer durability and better performance at high operating speed without 

failing under high pressure and applied cyclic stresses which could be compromised with the cost of 

metal parts in comparison such as performance bearings used for both of the motor-sports and 

aerospace applications. The typical engineering ceramics are Al2O3, ZrO2, Si3N4, SiC, BN and BC. 

There are many more which are used for various industrial applications and the reasons for their use 

in comparison with other materials are further justified: 

 

1.2 Physical Properties of Engineering Ceramics 

 Very high temperature strength - when exposed to elevated temperatures. 

 Creep resistance - resistance of deformation at high temperature under certain stressing condition 

and when exposed to high stressing condition for fatigue. 

 Low density - which allows the bulk of the ceramic to be light weight, in comparison to the 

metallic materials.  

 Fracture toughness parameter (K1c) - is low in comparison to metals/alloys. However, ceramics 

have a reasonable K1c for the various applications that it is used for. 

 Hardness and wear resistance - which makes the ceramics comprise of low friction co-efficient 

when under exposed to shearing stress (in contact with another component (metals in particular)). 

 Electrical resistance - ideal for electrical insulation. 

 Good chemical resistance – during its exposure to vigorous chemical environments. 

 High melting temperature - ideal for high temperature applications. 

 Brittle - in comparison with metallic materials due to its high hardness. 

 Good thermal insulator - ideal for high temperature applications.  

 Good electrical insulator - in comparison with metallic materials. 

 Corrosion resistant - when exposed to water, oxygen and salt. 

 

1.3 Rationale for the Use of Engineering Ceramics  

Engineering ceramics offer wide range of mechanical and thermal properties such as high melting 

point; corrosion and wear; bending strength; hardness; heat resistance under extreme conditions; 

physical stability; chemical inertness; very good electrical conductivity combined with their 

suitability for mass production. These properties are typically superior to conventionally used metals, 

plastics and glass type materials. Ceramics are 60% lighter in comparison with conventional metals 

and alloys. A Si3N4 roller bearing for example would therefore, operate at much higher speeds and 

proves to be more efficient in comparison with the conventional bearings. Ceramic bearings for 

example are able to run dry and no lubrication is required. Hence, the use of engineering ceramics 

tends to make life easy for engineers to produce oil free engines and component systems.  
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1.4 Ceramic Manufacture 

Utilization of ceramics to manufacture complex engineering parts with intricate shapes, size and 

geometry has become common in the recent years [44]. The conventional machining methods such 

as drilling, milling and diamond cutting can be used to process ceramics; however, it is time 

consuming and expensive due to excessive tool wear and processing times. Other method use 

powder processing, moulding and compaction [44, 45]. Typical method of ceramic processing is 

conducted in various stages that create a final engineering component from powder of raw materials. 

The powder is then mixed with additives and pressed to bond the material into a particular shape 

aided by high temperature furnaces to heat the ceramic so densification and strength are induced. 

The schematic in Figure 1.2 illustrates the conventional processing method of engineering ceramics. 

 

        

Figure 1.1 A schematic diagram showing the steps involved in processing engineering ceramics [46]. 

 
Loose earth-wares such as sand, stones, clay, concrete and granite are prepared and milled which 

involve crushing of the elements by mechanical means to form a partially dense ceramic powder. 

The crushed ceramic powder is then batched which means that the powder is weighed and is 

prepared for mixing of the additives and stabilizers to form the green body which is further mixed to 

forms the thick slurry of the ceramic. The ceramic slurry is then placed into a rubber mould and 

compacted at high pressure during CIPing [46]. Thereafter, the rubber mould is placed in a high 

pressure chamber for further compression by using the dry-bag isostatic pressing technique (see 

Section 1.3.3). The drying process involved removal of binders and or water by controlled heating. 

This is where the ceramic part gains a significant amount of brittleness. The next stage generally 

involves sintering the ceramic up to 1600
°
C which helps to increase its density to the maximum 

value that is close to the theoretical or the desired values. This also decreases the level of porosity 

and enhances the strength level of the component. 

 

1.4.1 Reaction Bonding 

Si3N4 ceramics are usually made by using this method and are classified as reaction bonded Si3N4 

(RBSN). The reaction of the silicon powder with the nitrogen atmosphere starts at 1200
°
C. The 
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nitriding of the ceramic then occurs at 1450
°
C which takes around 150 to 200 hours. Nitrogen – 

hydrogen or nitrogen-hydrogen-helium, gas mixtures are used to enhance the strength of the ceramic 

and to give a faster and well controlled reaction. This process allows production of near to net shape 

components with complex profiles. The silicon has the tendency to expand to about 20% during the 

conversion to the nitride. However, there is a minimum change in the overall volume of the 

component which allows accurate shapes to be produced without undergoing an expensive and 

timely finishing process. Mechanical properties of RB Si3N4 (Young‟s modulus, hardness and 

strength) are therefore lower than that of the HP Si3N4 and S Si3N4 (sintered) [42, 43]. 

 

1.4.2 Hot Isostatic Pressing (HIP) 

The hot isostatic pressing of a Si3N4 (HP Si3N4) is generally formed by placing the Si3N4 powder into 

a graphite die and pressed at elevated temperatures which assist in increasing the densification. 

Mixture of graphite is added as the system is held at external temperature of 2000
°
C with equal 

distribution of applied pressure (see Figure 1.3). The advantage of the process is that high density 

and high strength parts are produced. However, the process has a short die life with feasibility of 

producing only simple shaped billets. The components are also required to be ground after the hot 

pressing is conducted. This however, adds further expenses to the cost of manufacturing the 

component [42, 43]. 

 

 

 

 

 

 

 

Figure 1.2 A schematic diagram of the compression of ceramic powder as reaction bonded and hot 

pressed in a pressurized chamber [42]. 

 

1.4.3 Cold Isostatic Pressing (CIP)          

The mixture of ceramic powder containing the respective bonding agent is called the green body and 

is placed into a flexible polyurethane mould of certain shaped, size and according to the specification 

of the desired product or component part. The CIP is conducted at room temperature. The flexible 

mould containing the green body is then compressed at high pressure of up to 455 bar (6600 Psi, 

depending on product size shape and required densification), from all directions (see Figure 1.4). 

This is because compaction of the components of uniform shape and of high quality can be 

produced. Cold isostatic parts are generally made from two methods: wet-bag isostatic pressing and 

dry-bag isostatic pressing as mentioned previously. Components made from the wet-bag isostatic 
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pressing are immersed into a liquid (generally water or oil) which transmits uniform pressure to the 

green body. The dry-bag isostatic pressing rather contains the water or oil within the mould as 

opposed to the wet-bag isostatic pressing and is supplied (pumped) at high pressure by channel into 

the mould which provides assistance in transmitting uniform pressure to the green body. However, 

the dry-bag isostatic pressing is costly due to high tooling cost so wet-bag isostatic pressing is more 

frequently used [47].  

 

Figure 1.3 A schematic diagram of the CIP (wet-bag pressing) technique [47]. 

 

1.4.4 Sintered (Firing) 

A sintered Si3N4 for example is made by compacting the Si3N4 powder which is heated to just under 

the melting point of the sintering additives. Diffusion and grain growth would occur with the 

sintering process and is presented in Figure 1.5 where the three stages of bonding occurs with 

increase of the temperature and bonding of the additives with the Si3N4 powder. The Si3N4 powder is 

combined with additives such as magnesium oxide (MgO) and yttrium oxide (Y2O3) combined with 

alumina oxide (Al2O3). These additives assist the liquid phase sintering process. However, protection 

must be given to the process to avoid evaporation of the Si3N4 powder and the additives. This is done 

by providing a high pressure gas atmosphere (1 to 7 MPa). The sintering process is conducted in a 

pool of Silicon powder at temperatures of up to 2070
°
C, for 5 hours in order to produce HP Si3N4. 

For demanding applications, hot pressed and sintered Si3N4 are used since the ceramic has stable 

high temperature mechanical and physical properties. The cost of the sintering process is also lower 

than reaction bonding or hot pressing. The sintering process is also used in powder metallurgy where 

many metals such as bronze, tungsten are also sintered.  
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Figure 1.4 Bonding of the ceramic particles with increasing heat showing; (a) circular particles loosely in 

contact, (b) the shape changes as the temperature increases (heat brings the particles closer and forms a 

tighter bond) and (c) the gap between each particle vanishes and forms a rigid bond which is closely 

packed together. 

 

1.5 Crystal Structures 

Crystal structures with different ceramics vary as the processing conditions additives and raw 

materials differ. Figure 1.6 and Figure 1.7 presents an example of the three phases of the crystal 

structure for a Si3N4 ceramic. Direct contact between silicon and nitrogen at high temperatures form 

a solid substance which is known as Si3N4. Si3N4 is the main component in the Si3N4 ceramic as 

about 99% of the material is a commercial Si3N4. The material has three crystal structures which are 

designated α, β, and γ. The designated letters represent the phases of crystals known as α being 

tetragonal, β being hexagonal close packed and γ being cubic (c), which is a (modification to boron 

nitride, c-BN). The most common phases of Si3N4 are α and β (Figure 1.6) that can be formed in 

normal pressure conditions [47]. In order to produce γ-phase; synthesis under extreme pressure 

conditions must be carried out. The γ-phase has a spinal type structure illustrated in Figure 1.7, 

where the silicon atoms organise six nitrogen atoms octahedrally as well as one other silicon atom 

organising four nitrogen atoms tetrahedrally [47]. All three phases (α, β, γ) have hexagonal structures 

that are constructed by corner sharing Si3N4 tetrahedra. In sequence of “ABAB” or “ABCDABCD”; 

they are considered to obtain silicon and nitrogen atoms [47]. Si3N4 exhibits polymorphism, which 

means that it can exist as different crystal structures under different conditions such as temperature 

and pressure during processing. 

 
ZrO2 ceramic is usually added with magnesia, yttria or calcia for stabilization. However, the main 

crystal phases present within the ceramic are usually: monoclinic (M), tetragonal (T) and cubic (C) 

depending on the applied temperature and or pressure to the ceramic during its processing stage [37]. 

The three major phases available for a ZrO2 ceramic which are usually transformed to C, (γ)-ZrO2 at 

2300
◦
C  above 1100

◦
C to T,  β-ZrO2 and below 1100

◦
C to M, α-ZrO2 as further presented in Chapter 

7 from the experimental TG-DSC analysis.  
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       α – Si3N4                                                             β - Si3N4 

Figure 1.5 Crystal structures of triagonal α-Si3N4 and hexagonal β-Si3N4, emphasizing the corner-

sharing Si3N4 tetrahedra [47]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Spinal structure of γ (cubic) phase Si3N4 [47]. 

 

1.6 Selected Applications of Engineering Ceramics 

Technical ceramics are widely used within the engineering sector, particularly for the most 

demanding and the environmentally prominent applications. This Section comprises of the main 

areas where ceramics are widely applicable (aerospace, automotive and the medical industry) as 

presented in Table 1.1. The reasons why they have been selected in particular are because of the 

advancing usage of the material within the various industrial sectors and for the future demands that 

the ceramics will have particularly in the aerospace and the bio-medical industry.   

 

 

 

 

 

 

 

 

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

60 

 

Table 1.1 Typical Application of ceramics in various industrial sectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Engineering 

Ceramics 

Applications  

Medical  Industrial Automotive Aerospace Military 

Al2O3 Cementing 

devices with the 

human bone 

“morphological 

fixation”, bone 

implants, 

Thread guides, 

electrical 

components 

(resistors, 

capacitors), 

armours, 

industrial 

magnets, 

grinding media, 

welding nozzles 

Seals rings, 

bushings, 

cylinder liner 

valves, 

bearings 

 

 

Gas turbine 

engine 

components 

(bearings, seals, 

valves). 

Bullet 

proof 

vests 

SiC N/A Abrasives, 

refectory, 

furnaces, cutting 

tool insert, wear 

plates 

Heat 

exchangers, 

seals, valves 

Heat 

exchangers, gas 

turbine 

combustion 

liners, 

 

ZrO2 Thumb, hip, 

knee joint 

replacement, 

dental posts, 

brackets and 

inlays. 

Power 

generation 

applications 

(fuel cells), 

electrical 

components 

(resistors, 

capacitors) 

Combustion 

liners, 

bearings 

catalytic 

converters 

(honeycomb). 

Transition 

sections in gas 

turbine engines, 

rotor blades and 

their coatings, 

nozzle guide 

vanes, bearing, 

Knives 

Si3N4 Bone Growth Shields for 

defence 

industry, cutting 

tools, resistors, 

capacitors, 

industrial 

magnets, cutting 

tools, welding 

jigs fixture 

Pistons, 

exhaust 

manifold, 

bushings, 

seals, turbo 

charger 

Valves, 

bearings, 

turbine blades, 

rocket nozzles, 

rotors 

Armour 

platings, 

bullet 

proof 

vests, 

body and 

vehicle  

armours 

BN/BC N/A Nuclear 

reactors, 

radiation 

shields, 

armours, golf 

cleats and in 

other sports 

applications 

Bearing liners, 

seals, gaskets 

Nozzles Unknown 
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1.6.1 Aerospace 

Ceramics such as Si3N4 and SiC have a wide usage for both industrial and aerospace gas turbine 

engines (turbine blades in particular). For example a gas turbine engine maybe required to operate in 

freezing conditions from a cold start at ambient temperature (possibly less than 0
°
C) to instant 

temperature change of up to 1000
◦
C. This would send a shock to the turbine parts that operate in the 

hot area of the engine. Therefore, the material of the turbine components requires strength; high 

temperature resistance; stability in combustible atmosphere; response to high frequency and 

vibration and a good response of thermal expansion as well as thermal conductivity. During these 

conditions, ceramics have the tendency to perform well in comparison with conventional metal 

alloys. Since 1975, turbine parts such as blades, nozzle guide vanes, jet engine igniters, and rotors 

have been made from Si3N4 and SiC ceramics [37] due to their adhering qualities such as high 

temperature strength, hardness and wear resistance and low density. Si3N4 is also applied in space 

applications to make radomes for missiles used for the air defence systems. It is chosen for this 

application because its mechanical strength and dielectric properties comply with the requirements of 

the application [49]. 

 
1.6.2 Automotive 

Typical applications of ceramics in the automotive sector (particularly in the use of diesel engine 

parts) are pistons, exhaust valves, rocker arm, camshaft, cam lobe, head, port and cylinder liners, 

turbocharger and exhaust manifolds, seals, spark plug insulators, sensors, thermal barrier coatings, 

disk brakes in the sports cars [37-41] and more parts are replacing the conventional materials used. 

The use of ceramic components in the automotive diesel engine is now common and figures from a 

leading ceramic manufacturer (Ceradyne Ceramics Ltd.) [49 -50] illustrate over 2.5 million 

components being manufactured for the use of diesel engines during 1999-2001 [50]. Laser surface 

treatment can prove to be highly effect in improving the co-efficient of friction as well as induce 

compressive residual stresses within the surface and sub-surface of the component as upon success 

would lead engineering ceramics to operate for longer period of time. This would minimize the 

repair and/or replacement cost which in the end would reduce maintenance costs.   

 
1.6.3 Biomedical Applications 

For ease of physical movement and better quality of human life it is often required that many 

important body parts are to be replaced or repaired before a complete failure occurs. For such a need, 

certain qualities by the replaceable material have to comply. Those requirements are namely: high 

wear resistance; strength; low coefficient of friction; corrosion resistance along with a very good bio-

compatibility. Ceramics such as Al2O3 and ZrO2 have proven to comply with the specific mechanical 

needs for many biomedical applications [37, 47, 51]. Replaceable human body parts such as hip 

implants, teeth, knee and thumb joints can be replaced or repaired by using such ceramic materials 

(see Table 1.1 for further details). The areas where ceramics are applied within the medical industry 
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are: a) replacements and repairs, b) diagnosis and c) treatment and therapy [37]. Depending on the 

ceramics composition, there are some that are identical to human bones and are acceptable by the 

human body. Al2O3 and ZrO2 do not operate in the same way. However, they are inert and have a 

limited effect to the defences of the human body [37].  

 
The uses of Si3N4 ceramics have also been successfully tested for a potential bone growth application 

around its surface so that the Si3N4 serves as a bulk of the bone-ceramic implant [52]. The work of 

Guedes et al. [52] has shown that Si3N4 is a suitable material for biomedical applications such as 

artificial knee-joint, hip-balls, acetabulae and dental implants bone as bone growth can form around 

the Si3N4 ceramic which would then be able to transform into a functional implants. This was due to 

the ceramic being a non-cytotoxic material with sufficient fracture toughness, high wear resistance 

and low friction coefficient. In addition, laser surface treatment is highly beneficial for this type of 

application since creating a desirable surface topography by means of laser surface treatment would 

assist in increased formation of bone growth around the outer skin of the ceramic. 

 
1.6.4 Military Application  

Ceramics were introduced in the military sector since 1960 as the demands for better performance 

and superior materials had increased after the WW II [37]. Many applications in the military sector 

are now using engineering ceramics. This is due to their desirable physical properties such as high 

strength to weight ratio, ability to withstand high temperatures, high hardness and corrosion 

resistance. These are all necessary for making parts as used in the military sectors namely: armoured 

platings, bullet proof vests, armoured seats and as sharp weaponery [37]. Variety of ceramics such as 

ZrO2, Si3N4, SiC, Al2O3, and B4C ceramics are now being put to use and perform with better 

efficiency, endurance and protection in comparison to the conventional materials previously used 

[53]. Laser surface treatment can be somewhat useful for this application; upon success of achieving 

a high hardness by transformation toughness would in turn, increase the usage of engineering 

ceramics for making sharp weaponery with durability and longer functional life. 

 

1.7 Summary 

The uses of ceramic components within various engineering sectors are now common, particularly, 

where high performance, reliability and maintenance cost in the long run are important. This Chapter 

addresses the constraints and benefits of using engineering ceramics for selected applications. 

Justifications are given for the reasons why the conventional parts made from metallic materials fail 

and how the existing problems with such metallic components can be overcome by using the 

engineering ceramics. There are still concerns for the use of engineering ceramics. Those are the cost 

of the raw materials; processing techniques; timely processing methods; machineability (due to their 

high hardness, brittle nature) and expensive tooling costs. However, such aspects should not be taken 
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in account if high product performance, efficiency, reliability, endurance and longer functional life 

of the products in general are required. The following areas were reviewed in this Chapter:  

 History of engineering ceramics and typical costs were briefly discussed; 

 Physical properties of the engineering ceramics and the reasons why they are ideal for various 

applications were also presented; 

 Reasons for the use of engineering ceramics for selected applications was also discussed; 

 Various manufacturing methods used to process the engineering ceramics has also been covered; 

 Applications within the automotive, aerospace, military and biomedical sectors were addressed. 
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CHAPTER 2 

Background of Industrial Lasers  
 
This Chapter introduces the typical industrial laser systems that are used within laser aided material 

processing. Application of laser systems in material processing and are presented along with reasons for 

implementations. Technical aspects are mentioned along with laser beam characteristics and optics issues 

as well as some of the major laser parameters that are used for the experimentation are also described. 

 

2.1 Introduction to Lasers 

The term LASER is a definition for Light Amplification by Stimulated Emission of Radiation. A 

laser is a highly concentrated source of coherent light which provides a high input of energy into a 

small dimensional surface area [54-61]. Laser light is differentiated by three important features from 

a conventional light.  

 
Monochromatic - this light can be focused at a discrete wavelength. The beam is one colour and one 

wavelength unlike the conventional ray of light which is incoherent radiated in all directions and 

contains different wavelengths which cannot be focused to a discrete point [5]. 

 
Coherent - it is important for the laser beam to be of the same frequency and amplitude in a phase, in 

order to contain the level of concentration in material processing or communication [5]. 

 
Uni-directional - It is the parallel beam of light which has a minimum spread. It can be focused on to 

a small area to give high power density [5]. 

 
To generate a laser light, it is required that excitation energy by stimulated emission of a suitable 

medium is supplied. During stimulated emission, organized photons (coherent) are released which 

contain a discrete certain energy and a wavelength that is dependent on the energy difference 

between excited state and the ground state. Excitation is usually generated with electrical discharge 

such as high voltage. The photons have certain energy and a phase. The emitted photon is in a phase 

with the one that collides with the excited atoms. When this photon encounters another atom, it tends 

to revert back to the ground state. However, in doing so, it will generate an identical photon. The 

properties of these two photons are uni-directional and coherent [5].  

 
The two photons will collide with two exited atom and revert back to the ground state and in doing 

so will release further identical photons. This is the amplification stage. The photons are generated in 

the optical resonator and travel in the longitudinal and the transverse direction. There are two mirrors 

which are partially reflective inside the optical resonator. The photons which are travelling in the 

path of the mirror (longitudinal direction) pass through [5]. The premature laser beam is a result of 

the photons that pass through the partially reflective mirror also known as the “leaky mirror”. The 
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Nd:YAG laser uses xenon flash lamps for excitation and the CO2 lasers use radio wave excitation. 

Within a laser system there are several parts which aid the generation of a laser beam. This is 

summed up in Figure 2.1 which represents the parts required to produce the laser beam.  

 

 

Figure 2.1 A schematic diagram demonstrating the stages in making of the laser beam [5]. 

 

2.2 Laser Classification  

There are different classes of lasers which perform in the various industrial sectors. Lasers are 

classified according to their power outputs. Class 1 laser are used for CD players and measuring 

distances and bar code reader applications. Class 2 lasers are used for the medical application and 

class 3 A and often B are used for laser printers as well as light shows and entertainment systems. 

Table 2.1 presents the different types of lasers as applicable in the various industrial sectors. 

 

 

 

 

LASING MEDIUM

A material with suitable electron energy level in which a 
population inversion can be obtained by applying a 

suitable excitation source.

EXCITATION SOURCE

To supply energy. This creates a population inversion in 
the lasing medium.

OPTICAL RESONATOR

A means of containing a suply of photons in the lasing 
medium 

HEAT SINK

To carry out waste heat from the active medium

LASER BEAM 
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Table 2.1 Classification of lasers with various applications in different industrial sectors [5]. 

 

Class & Description Industrial Sectors Application 

CLASS 1 - SAFE Entertainment CD Players 

Surveying Measuring distance and straightness 

Supermarkets Bar Code Readers 

CLASS 2 - LOW 

POWER(visible CW) 

Medical Medical lasers 

CLASS 3A -  LOW 

MEDIUM POWER 

LASERS 

CLASS 3B 

Laser scanners Laser Printers, 

Spectrometry, stereo 

lithography, & 

entertainment 

Light Show & Entertainment 

CLASS 3B** - 

MEDIUM POWER 

LASERS 

Marking Dates, stamps, barcodes scribing 

Paint Removal Paint removal from motor vehicle 

bumpers. 

Pattern Marking Pattern marking on plastic 

materials. 

CLASS 4 - HIGH 

POWER LASERS 

Cutting 

 

Various steels, aluminium, zinc, 

copper, plastics, cast iron 

Welding 

 

Various steels, Aluminium, copper, 

brass, plastics, cast iron 

Heat Treatment /  

Sintering 

Change in materials property. 

 

2.3 Engineering Applications of Industrial Lasers 

2.3.1. Laser Machining 

Demmer et al. [62] investigated the prospect of laser assisted machining, where the laser beam and a 

milling/turning tool was utilised to process ceramic parts (Si3N4 bearings in particular). Demmer et 

al. conducted experiments by using a 1 kw diode laser with a focal spot size of 9mm x 3mm 

rectangular beam. This was positioned at 90
◦
C to the work-piece by using various sizes of the milling 

or turning cutters available. The concept behind the technique is to pre-heat the processing material 

prior to machining. This would avoid excessive tool wear during machining the ceramics and allow 

softening of the material so there is an increase in the material removal rate. Adverse effects such as 

loss of hardness due to softening of the material are avoided as the heated material is removed. Laser 

assisted machining of ceramics offer economical and efficient machining especially with difficult to 

machine parts [62]. The technology has already been implemented for industrial applications to 

process ceramic parts such as Si3N4 [62]. 
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2.3.2. Laser Cutting 

Laser cutting is the most popular and commonly used process from all laser material processing 

applications. Laser cutting is applied to many materials within and outside of the engineering sector. 

Table 2.2 illustrates the laser cutting applications with various materials as used within different 

engineering sectors [5]: 

 
Table 2.2 Applications of industrial lasers in material processing. 

M
a

te
r
ia

ls
 a

n
d

 A
p

p
li

c
a
ti

o
n

s 

Industrial Sectors 

Automotive Aerospace Other Industry 

Cutting of 

steels for sun 

roofs 

Hard Brittle 

ceramics Si3N4 

Garment Cutting 

Ignition coils Titanium Alloys 

used for air frame 

structures 

Cutting of kevlar 

for armour plates 

Wipers (steel) Aluminium alloys Fibre glass 

Door locks 

(steels) 

Aluminium honey 

comb 

Various type of 

wood for the 

furniture industry 

Dash boards 

(polymers) 

Boron Epoxy Cutting of 

cigarette paper 

Auto roof 

liners (PVC) 

Three dimensional 

profile cutting 

(robotically)  of 

stainless steel 

Many electronic 

application such as 

Printed Circuit 

boards (PCB‟s) 

 

2.3.3 Laser Welding 

Laser welding requires induction of lower power densities than laser cutting. In most cases, if the 

laser beam can cut a material, then it is most likely that it can weld. However, there are other issues 

involved such as the material‟s ability to melt flow and solidify. Application of laser welding is very 

popular in the motor vehicle industry to join steels (tailored blanks in particular) [6, 63]. Numerous 

parts are joined by using laser aided robotic systems. The schematic diagram in Figure 2.2 presents 

some parts of a car that are welded by using an industrial laser as illustrated in Figure 2.2. Laser 

welding is also utilised for other applications such as joining plastics by transmissive welding for 

packaging application as well as high speed laser welding for joining of spacer bars used in double 

glazed window separation [63, 64]. High speed welding also has a potential to be applicable in the 

can manufacturing industry to seam weld tin plated steel food cans as shown by Page et al. [63], 

Blundell et al. [64] and Shukla et al. [73]. 
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Figure 2.2 A schematic diagram showing the application of laser welding within a motor vehicle [5]. 

 

2.3.4 Laser Drilling 

There are two ways in which a hole can be drilled with a laser beam. First, is by running the laser 

around the edge of the profile of the hole to be cut (specifically large holes). The second is by 

drilling small holes by using a pulsed laser beam, assisted by a high pressured gas to blast out a 

desired hole or a circular area. This is ideal for smaller diameter holes in particular and is popular for 

processing coolant holes within gas turbine blades [65].  

 

2.3.5 Laser Surface Treatment 

Laser surface treatment of a material is conducted to induce and/or enhance certain material 

properties. A prime example of this process is laser peening of metallic materials such as gear 

teeth‟s, springs, valves and particularly where deep level of residual stress is required. This is a 

recent development in the area of laser surface treatment of engineering components. The process 

employs a Nd: YLF (Neodymium, aluminium, yttrium, lithium fluoride) laser and generates a pulsed 

beam into the material which produces a shock-wave (thermal expansion) through the surface. The 

laser pulse can be fired on the work-piece several times to induce compressive residual stress 

depending on the required depth of the stress as seen in Figure 2.3. The input of the compressive 

residual stress is as much as four times larger than that of the conventional mechanical shot peening 

technique [66-67]. The deep residual stresses induced into the material would assist in combating 

fatigue and corrosion failures. Component life and hardness of the material is enhanced in the same 

way as it would be with that of the conventional shot peening technique. However, the depth of the 

residual stresses with laser peening can be four times deeper than that of the mechanical shot peening 

technique [66-67]. 
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Figure 2.3 A schematic diagram to show the process of laser shock peening and the way in which 

residual stress is induced by the high pressure plasma [13]. 

 

2.3.6 Laser Marking 

Laser marking is used for numerous application within the automotive; medical; product packaging 

and identifications; creation of pattern; logos; printing; labelling; making patterns on cloths and 

many other applications which required presentation of either information or for aesthetics. Laser 

marking is conducted on materials such as metals, polymers, wood, for logos bar codes and to 

present images or in-graving. Ceramics are usually scribed prior to cutting so the cutting depth 

becomes smaller after the laser scribing. Marking patterns on garments and cloths has also become 

popular with controlled laser parameters to ablate the surface at microscopic level and to produce a 

distinct pattern on garments such as denim jeans and T-shirts. Printed circuit boards are also laser 

marked with tracks prior to the assembly and soldering of components.      

 

2.4 Rationale for the Use of Lasers 

Lasers have now existed for over 50 years and have became one of the important tools within the 

manufacturing industry for cutting; drilling; welding; marking; machining; surface treatment and 

many other useful applications that aid and suit the manufacturing of engineering component. The 

following points address why laser systems are much superior over other systems and processes [6, 

13]: 

 Deep penetrating treatment in comparison with other processes; 

 Shorter process time which in turn gives faster throughputs and just in time (JIT) delivery;  

 High speeds and accuracy in processing intricate components and shapes; 

 Good dynamic response along with superior motion systems and freedom of movement which 

enhances the programming capabilities of processing complex shapes and geometries; 

 Aesthetically pleasing cuts, welds and marking of products; 

 Improvement with surface roughness; 

 No tool change required; 
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 Feasibility of cooling the work-piece, which is not always available with many other machinery 

and systems. 

These features in comparison with conventional processing systems are much more attractive and 

desirable to invest in for many manufacturers‟ by tailoring the laser systems to suite their unique 

application and product specification. 

 

2.5 CO2 Lasers 

The carbon dioxide (CO2) lasers produce a beam in the far IR region of 10.6 µm wavelength. High 

laser power within the rages of kW‟s can be focussed to a spot size of approximately 0.10 to 0.6mm 

in diameter. The beam is most likely accompanied by an in process assist gas and would be coaxially 

fed. A high electrical voltage discharge excites the lasing medium as shown in Figure 2.4. This 

enables the photon amplification mechanism to generate the stored optical energy that is steadily 

released via the output mirror. Cavity walls absorbed the heat generated by off axis photons which 

are cooled by continuous flow of liquid coolant that is itself cooled in a heat exchanger otherwise 

known as a chiller [69].  

 

 

Figure 2.4 CO2 laser beam generation unit [69]. 

 

2.6 Excimer Lasers 

The excimer laser has a repetitively pulsed beam and operates in the ultraviolet range. This means 

that the wavelength of the excimer laser is shorter than the wavelength of a natural light. The energy 

produced by the excimer laser is well absorbed by various materials (polymers in particular) and is 

ideally used for less severe processing applications rather than cutting or melting of materials. The 

energy produced by this type of laser removes a fine layer of the treated surface avoiding major 

surface heating and burning which rather results to localized surface modification as opposed to the 

surface melting and material removal. This makes it ideal for surface treatment and modification 

applications especially within the medical industry for refractive eye surgery [56, 70]. Excimer lasers 

have a minimum beam size of 0.25µm and are capable of drilling fine holes in a human hair. Its 

input power range is between 10 A to 370 V, generating over 100 W at the material surface by high 
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and low powered systems. Figure 2.5 illustrates the basic construction of an excimer laser [5]. The 

excitation occurs by flooding the cavity with ultraviolet light generated by spark discharge of 

electrons. Together with the high photon energy of the ultraviolet light capable of producing high 

peak powers densities to generate the excimer laser beam. 

  

 

Figure 2.5 Construction of an excimer laser [5]. 

 

2.7 Fibre Lasers 

The fibre laser is delivered by a fibre cable of a very fine diameter. This would allow minimum use 

of complex optics and produces a stable beam. The fibre laser can operate in CW or pulse mode. The 

operating wavelength of a fibre laser is 1.075 µm with a Gaussian beam profile of TEM00. The 

quality of a modern fibre laser is high. The fibre laser also has a high brightness laser-beam. Hence, 

it would produce higher power per unit area, which in turn, would produces low cost per wattage as 

mentioned previously in the introduction. The fibre laser beam is produced in the laser medium and 

is delivered through a fibre optics cable. The excitation occurs in the doped fibre cable which is the 

cavity as illustrated in Figure 2.6. The “Brag Gratings” are attached at the two ends of the fibre to 

enhance the efficiency. The diode pump helps the population inversion by using Erbium atoms 

within the cavity. Power density of the fibre laser ranges from 1 W to 1 kW which allows them to be 

applicable for intense applications such as drilling, cutting and welding to less demanding 

applications (in relation to laser power output) such as marking, and macro-machining [71]. 

   

 

Figure 2.6 A schematic diagram of a fibre laser system. 

 

2.8 Nd:YAG Lasers 

A Nd:YAG laser comprises of a crystal rod which produces the lasing medium. The crystal rod is 

composed of a neodymium, yttrium aluminium garnet. Nd:YAG laser is pumped by using a flash 
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lamp to generate the laser beam. The emitting wavelength of the Nd:YAG laser is 1.064 µm in the IR 

region. The operating mode of the laser can be in the pulsed or a CW mode. The pulsed laser 

operates with a Q switch which is an inserted switch in the laser cavity and opens when there is a 

maximum population of inversion in the neodymium ions. The light then travels through the cavity, 

depopulating the excited laser medium at maximum population inversion. Power of 20 mW, at a 

pulsed duration of 10 ns is achieved. The output to a CW beam is lower than that of the pulsed beam 

which can be distinguished as it changes colour from a pulse mode pink or purple to almost white 

light mode. The excitation is created by a flash-lamp or laser diode molecules which are arranged 

around the Nd:YAG rod as shown in the diagram below. The resonator located co-axially to the rod 

contains high reflective mirrors as well as partially reflective output coupler. Figure 2.7 illustrates a 

simple diagram of a Nd:YAG laser beam delivery systems and arrangement.     

 

 

 
Figure 2.7 A schematic diagram showing the beam delivery of a Nd:YAG laser. 

 

2.9 Laser beam Characteristics 

2.9.1 Wavelengths  

The laser beam is either absorbed, reflected or transmitted during the laser-material interface. If there 

is reflection, then there is no change made to the surface of the work-piece. If it is absorbed into the 

material, then the material will be heated, allowing cutting, welding or surface treatment to take 

place depending on the applied laser parameters. Various materials absorb different wavelengths 

better than other materials. For example aluminium has a reflectivity of 95% of the laser light at 

room temperatures. However, if it is heated to 700
o
C it will absorb up to 70% of the laser light. Non-

metals such as polymers absorb CO2 laser wavelengths better than the Nd:YAG wavelength. So 

which type of laser to use, is dependent on the processing material. Table 2.3 shows the wavelengths 

of various types of lasers with different wavelengths. The highlighted area in represents the lasers 

wavelength utilised for this research. 
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Table 2.3 Wavelengths for different types of lasers [5]. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9.2 Beam Modes  

Variation in the beam mode has a large influence on the material being processed. In recent years, it 

has been found that holographic resonators can be used to change the Gaussian beam profiles of 

various types of lasers [5]. The beam can be of many different variants of Gaussian configuration, 

which means that each type of beam has a unique end shape and profile. The power density 

(footprint) of each beam therefore varies. Hence, the interaction with the material will also differ as 

the beam mode changes and produces a change in the distribution of energy over the material. Figure 

2.8 represents a profile of common beam modes [5].  

 

 

Figure 2.8 A schematic diagram showing the footprint of various Gaussian beam modes [5]. 

Laser Type Wavelength (µm) 

Carbon dioxide (MIR) 10.60 

Nd: YAG (NIR) 1.064 

Fibre (NIR) 1.075 

Excimer 0.249 

Ruby (CrAlO3) (red) 0.694 

Rhodamine 6G dye 

(tunable) 

0.570 - 0. 650 

Helium neon (red) 0.633 

Helium neon (green) 0.543 

Argon (green) 0.514 

Argon (blue) 0.477 

Nitrogen (UV) 0.337 

Xenon chloride (UV) 0.307 

Krypton fluoride (UV) 0.247 

Argon fluoride (UV) 0.193 
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2.9.3 Beam Quality 

The CO2 laser has a highest quality beam profile (TEM00). This type of beam contains a small spot 

size, highest power density, longer focal range and low divergence. Figure 2.9 shows the graphical 

profile of a high quality beam which has the maximum heat intensity being concentrated in the 

centre. For such a beam, the M
2
 quality factor is usually close to M

2
=1. The beam quality factor 

increase with decreasing beam quality for lower order Gaussian beam.  

 

 

Figure 2.9 A schematic diagram of a Gaussian beam mode TEM00 for a CO2 Laser. 

 

Nd:YAG lasers have a medium quality beams in the region of TEM01* (see Figure 2.10) which can 

be of a doughnut shape or a “top hat” beam which (often travels down a fibre optic) with larger spot 

size, wider width, which in turn, is ideal for thick metal cutting applications. Other poor quality 

beams have multimode larger spot size, wider width which is ideal for welding rather than cutting or 

drilling applications [69].  

 

 

Figure 2.10 A schematic diagram of a Gaussian beam mode TEM01* for the Nd: YAG laser generally 

known as “central null”. 

 

2.10 Laser Optics 

2.10.1 Conventional Laser Optics 

Conventional optics within a laser system would comprise of copper or gold coated mirrors and 

concave and/or convex lenses to focus or defocus the laser beam. The lenses come in various 

thicknesses and are replaceable after certain hours of processing or if there is a change in the 

processing material thickness.  

 

2.10.2 Holographic Diffractive Optical Element (HDOE) 

HDOE are computer generated holographic optical elements which replace the conventional lenses 

and congregate with the beam delivery system in order to control the shape, size and the end profile 

of the active laser beam [72]. HDOE could be made to transform into a “top hat” “ruby post” or a 
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“peaked edge line” as presented in Figure 2.11. The difference between a Gaussian beam and a 

HDOE beam is the controllability to a desired shape and still keeping the same area of the beam 

distribution. This is useful for surface processing ceramics as the energy distribution can be 

controlled to effect thermal shock that generally results during laser-ceramic interaction.  

 

 

                                       (a)              (b)                 (c)            (d) 

Figure 2.11 A schematic diagram of the distribution of various laser beam profiles (a) Gaussian beam, 

(b) “top hat”, (c) “Rugby post” (DOE), (d) peak edge line (DOE) [72].  

 

A diffractive optical element (DOE) is a small mirror which consists of thousands of 6µm squares 

that are set below the surface at various submicron depths [72]. As the raw beam of 20mm diameter 

is fired at the DOE, the mirrors execute a particular wave. The waves then combine and interfere 

with each other to generate a premeditated beam shape. HDOE are put to use by being mounted 

within the laser beam delivery system of a CO2 laser (see Figure 2.12). HDOE offer advantages such 

as large focal depth in comparison with the conventional lenses. Hence, the working distance 

automatically becomes less critical. Conventional lenses require regular maintenance. This is not 

required with HDOE if it is well protected from fumes and dust. HDOE also reduces the amount of 

moving parts required such as galvanometers within the CO2 laser systems as well as the flexibility 

to shape the beam. It is ideal for the surface treatment applications since it allows the motion system 

to traverse around the part at high speed, flexibility and a sufficient depth of penetration. The more 

surface area that is covered by the laser pulse would reduce the cost of the operation as the process 

time of the treatment is reduced. This is more beneficial especially when processing larger parts [72]. 
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                        (a)                                (b) 

Figure 2.12 The beam delivery system for Gaussian beam in (a) and (b) the holographic diffractive 

optical elements [72]. 

 

2.11 Laser Parameters           

2.11.1 Spot Diameter and Focal Position 

The optimum focused spot size results to the maximum power density applied at the surface (see 

Figure 2.13). Focal position and spot sizes vary for every material being processed and are different 

for every process, such as welding - larger spot size is desired. For cutting, a fine spot size is 

desirable. For surface treatment, a larger spot size, which has a distribution of laser energy over large 

surface area, would be ideal. The focal position can be changed to vary the diameter of the beam. It 

is one of the major parameters of the laser material processing. Adjustment of focusing conditions 

enables a wide range of processes to be performed by changing the power density for a given 

application. In general, a raw laser beam is delivered from the lasing unit and it is focused into a 

smaller spot size by passing through a lens. This means that the operator can control the focal spot 

size by changing the focal length or focusing above or below the material. This in turn controls the 

effective power density. The diameter of the beam will change as the focal length is varied. If an 

application requires lower power density, then the focal position can be changed in the positive or 

the negative direction (above or into) the material. Figure 2.13 represents the variation in the spot 

diameter as the length of the beam is varied. The focal position at 0mm (optimum) contains the finest 

beam spot diameter; ± the optimum beam diameter of the focal length would produce the same spot 

diameter of the beam. 
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Figure 2.13 A schematic diagram showing the change in the spot diameter as the focal length is adjusted. 

 

2.11.2 Assist Gases 

Assist gases also have a very important role to play in laser material processing as it controls factors 

such as material removal, input temperature, generation of the plasma plume and the effective 

change in the composition. It is usually required that shield gases are used in order to protect the 

material in the region of the laser processing zone from a atmospheric contamination such as 

oxidation [13]. Often ionised vapour in the form of plasma (high temperature ionised gas) is 

generated from the material at high incident power. The plasma plume is likely to induce ionisation 

in the shielding gas creating a cloud of plasma in the path of the laser beam [63, 64]. Gases such as 

helium have a higher ionisation potentials compared to other gases such as argon and nitrogen. 

Hence they are more resistant to plasma formation. Argon, helium and nitrogen are used when it is 

required to cool the processing material or the system components. Argon tends to be the most 

common shield gas, since it‟s overall cost and suitability towards material processing is appropriate. 

However, helium tends to be used when high quality processing is required. In other cases, a mixture 

of helium with argon may be used [5]. Figure 2.14 shows an auxiliary (side gas) supply used to 

dissipate the plasma cloud from the laser-material interaction zone. The mixed plasma cloud can 

serve to effectively block part of the incident laser beam. The incident laser photons can be absorbed 

or scattered by this plasma, depending on the conditions. Nd:YAG laser wavelength is less absorbed 

by metal and gas plasmas than the CO2 laser. Therefore, a side gas is more often used on CO2 lasers 

than the Nd:YAG lasers. 
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Figure 2.14 A schematic diagram of the coaxial gas with generation of a plasma plume.  

 

2.11.3 Laser Power 

Laser power is the most common parameter and has the tendency to influence the major events that 

take place during the laser-material interaction. Laser power is controlled by either increasing the 

input laser power function within a laser system or by defocusing the laser beam. High power 

densities are required with cutting and sufficient power density is required for welding. For example, 

defocusing the laser beam is useful for a butt weld application so that the power density is spread 

across both plates to ensure uniform melting. The power output could be either CW or pulse as 

mentioned previously. There could also be an increase in the power density from the nominal CW if 

the laser is pulsed. However, this can only be performed for a certain period of time. For example 

CW, 2 kW, Nd:YAG laser can be pulsed to 5 kW within a limited range of frequencies and duty 

cycle [62]. The major parameters for the output beam are pulsing frequency (cycles per second), 

maximum pulse intensity and duty cycle. The reason why these parameters are important is because 

they control the input of energy into the material which inherently affects the depth of penetration, 

porosity and crack initiation, particularly with the engineering ceramics. 

 
2.11.4 Traverse Speed 

Traverse speed is also known to be one of the important and most common parameters in laser 

material processing. Change in the traverse speed with a constant laser power and spot size applied 

would result to remarkable effects on the material. As well as the laser power, the traverse speed of 

the laser beam would also dictate the power density being induced within the material. This is 

because increasing the traverse speed at constant power would reduce the laser-material interface 

time and decreasing the traverse speed leads to increase in the time which the laser beam interacts 

with the material. 

    

2.12 Pulse and Continuous (CW) Modes 

Laser beam can be commonly delivered in two ways. Either by using the pulse or by using the CW 

mode. This is purely dependant on the laser system, processing material and the specific requirement 

of the processing component and or the material composition. Some lasers such as Nd:YAG (diode 

pump in particular) are best operated by using the pulsed mode. This is due to its construction and 
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beam delivery system as well as its operating wavelength. CO2 laser systems function better by using 

the CW mode as it operates with a higher wavelength (10.6 µm) and a right angle delivery system by 

using (optics and mirror assembly). However, CO2 lasers can be pulsed but are not efficient and 

effective in comparison with the naturally pulse operating lasers. The vice versa also applies to the 

Nd:YAG laser as it can operate in a CW mode. However, it is more efficient when it functions with 

the pulsed mode.    

 

2.13 Motion system and Control  

Motion could be created between the laser beam and the material by either moving the optics at a 

stationery work-piece or by moving the work-piece beneath a stationary laser beam. Optics can be 

moved by the aid of X-Y table or by using a multi-axis industrial robot where the laser beam can be 

transmitted through a fibre optics cable such as the Nd:YAG or a fibre laser system. Other systems 

consist of complete moving parts where the optics is moving along with the moving work-piece. 

 

2.14 Summary    

This Chapter has reviewed the laser systems and various aspects of laser-material processing namely:  

 Laser beam delivery systems and how the laser beam is produced; 

 Laser beam classification are differed with respect to their applications; 

 Various laser-material processing methods are also reviewed such as laser machining; drilling; 

cutting; marking and surface treatment. 

 Reasons for the uses of lasers processing are also stated; 

 Beam characteristics, associated laser beam parameters, options in optics, as well as assist gases 

were also discussed. 

Experiments conducted in this thesis will be based on the parameters discussed in this Chapter. 

Parameters mentioned in this Chapter were explored on the ZrO2 and the Si3N4 engineering ceramics 

so a threshold can be found. This is further illustrated in Chapter 4.   
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CHAPTER 3 

Laser Beam-Material Interaction 

with Reference to the Laser 

Processing of Ceramics  
 
This Chapter focuses on the review of literature in relation with the interaction of the laser beams with 

predominantly ceramic based materials. Laser surface treatment of ceramics has slowly gained popularity 

but is still unknown in many areas such as laser welding in particular and ceramic-to-ceramic joining. Due 

to lack of understanding and feasibility has hindered its use for many applications as the physical effects of 

the process are not clearly understood. This Chapter summarizes the effects of the laser beam interface with 

ceramics not only during, but after the material interaction with respect to major processing techniques 

such as laser surface treatment, drilling, cutting, welding, machining. Also, attempt to address the gap in 

knowledge is further investigated in this research.   

  

3.1 The Laser Beam-Engineering Ceramic-Interaction 

Laser-material interaction is considered to be a very complex phenomenon because it involves multi-

factors which control and significantly influence the effects which occur on the material being 

processed. Laser-material interaction was reported by Wang et al. [74] to comprise of a thermal, 

physics, dynamic and many other scientific aspects. Wang et al. stated that the factors influencing 

laser-material interaction are laser output energy, the composition of the material, the specimen 

thickness and temperature distributions. Interaction of the laser beam with metals in particular have 

been thoroughly investigated by many other authors; namely: Prat et al. [75, 76], Lim [77] and 

Illyefalvi [77], who discussed the issues of diffusion in material transport caused by laser processing 

of thin films. Issue of laser coupling with materials, effects of plasma with increasing intensity [75, 

79], formation of a shock wave and impulse are also addressed [76]. Materials such as C5790 

graphite and aluminium alloy AU4G were used for the experimentation [75, 76]. One of the major 

dependencies of the outcome of the laser material interaction is the particular material being 

processed. Laser beam interaction with metals would produce a different effect to that of the 

ceramics due to the difference in their structure. Metals absorb the thermal energy better than 

materials such as ceramics and the thermals shock results in placing the material under compressive 

stress as the heat attempts to escape. This does not occur with ceramics as the thermal shock induced 

would expand the porous surface and provoke the microcracks and porosity to expand which in the 

end causes failures. 
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Wong et al. [70] examined the excimer laser interaction with a partially stabilized ZrO2 (PSZ) and 

suggested that lasers with shorter wavelength than 307 nm are ideal to produce the desired chemical 

reaction and material removal. The results showed severe surface melting and the formation of 

columnar structures. This was dependent on the amount of laser fluence and was influenced by the 

direction of the plasma plume expansion. In this case, the plasma plume expanded away from the 

normal and led to formation of short columinar structure.  

 
Work of Vlasova et al. [71] presented the effects of Nd:YAG laser interaction with a sheet of Silicon 

(upper layer) and Al2O3 (lower layer) which first demonstrated the composition of the ablated 

element exhibited from the laser-ceramic interaction. The ablated mixture comprised of silicon, 

oxygen and nitrogen. The Al2O3 layer also fractured after the laser material interaction, with 

evidence of oxidation occurring with the top layer of silicon. The interaction of Al2O3 with SiO2 

produced the simultaneous nitriding of the melt and decomposition of SIALONs with the formation 

of mullite and the ejection of mullite drops also occurred at the thickness off 270-1040 nm.   

 

3.2 Laser Welding  

Joining of ceramic-to-ceramic is an important aspect as it could produce more complex structures 

and also create opportunities for the ceramics to be used in areas where conventional materials would 

fail. This is particularly so for laser welding of ceramics but to this date; laser welding of ceramic-to-

ceramic is not a fully developed area. This is because the mechanism of joining ceramic-to-ceramic 

by using a heat source is different to that of the metal. Metals have the tendency to melt and reflow 

with higher viscosity compared to the ceramics when exposed to the thermal energy whereas the 

ceramics are less viscous and do not melt and reflow easily compared to metals. Moreover, the 

thermal conductivity is low for the ceramics which means the dissipation of heat through the material 

is faster in comparison to metals which in turn would allow rapid cooling to take place (super 

cooling), after the event of instantaneous heating by the laser beam. This would minimize the chance 

of the ceramic to melt and re-flow. The effect of super cooling is also a contributor of the cracks 

which occur within the ceramic during the laser interaction. This is why laser assisted ceramic-to-

ceramic joining has been proven to be successful by a very few workers [72-73]. Riviere at al. [72] 

presented a paper demonstraiting the technique of laser welding of ceramics. This was performed by 

pre-heating the SiO2-Al2O3 by the Nd:YAG laser and then butt welding it by using the CO2 laser. The 

results showed porosities within the microstructure of the weld bead, but higher bend strength was 

reported for the laser welded material as opposed to the parent material. Hirsch et al. [73] modelled a 

laser spot welding process by using a FEM and compared the data with an experimental model to 

show that both models were successful in predicting the depth and the diameter of the ceramic weld 

pool. Mikhailova et al. [74] employed a double-step method for welding two strips of Bi (2223) high 

temperature superconducting ceramics. This was by initially performing the laser melting and 

subsequent short-term thermal annealing technique. The results showed that fluid flow must be 
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considered in order to accurately model the molten pool characteristics of the ceramics, since the 

coupling of the fluid flow to heat flow is more important for ceramics than for metals. Melting of the 

laser irradiated zone was found, after cooling the reliable mechanical and electrical contact was also 

seen. The microstructure of the laser welded ceramic also differed as phase and chemical changes 

were found.  

 

3.3 Surface Treatment  

Surface treatments by using a laser beam can lead to remarkable effects such as the change in the 

materials property through induction of thermal energy into the substrate by means of a shock or a 

gentle treatment. Surface treatment can be conducted either by using a pulsed or CW laser beam. For 

the pulsed treatment, an intense laser beam can be focused to a small spot which is made to traverse 

over the material surface by creating a tailored thermal shock wave [6, 75, 76]. The thermal shock 

wave travels deep into the material and induces residual stresses which can be controlled to the 

requirement and only on the selected areas of the surface of the material. The local region being 

treated does not introduce any detrimental levels of heat into the bulk material [75, 76]. This process 

is called laser peening or “laser shock peening”. Hackle et al. [75] and Steen [5] stated that laser 

peening technology offers a greater degree of process control. This allows much deeper level of 

compressive stress to be inhibited and it maintains the appropriate quality of the surface finish on 

metals. A pulsed beam of 25 J for 25 ns was produced by an Nd:YLF (neodymium, yttrium, lithium, 

flouride) [75]. The beam is focused onto the work-piece and the desired area to be peened is covered 

with material (black coloured adhesive tape) which acts as an ablative and thermal insulating layer. 

This is a good practice and would be ideal to use for experiments in this work as the black colour is 

generally absorbent to the heat produced by the laser beam. Water was made to flow over the layer to 

absorb the laser pulse energy and thermal shocks. Gathering of plasma within the water produces 

pressure that creates the shock waves and immediately penetrate into the surface of the metal and 

plastically strains the surface. The plastic strain then induces compressive residual stresses into the 

material at depth of 1 to 7 mm depending on the power density of the focused beam and other system 

parameters [75]. The benefit of laser peening has only showed with metal alloys. It is feasible to 

induce deep residual stresses into a ceramic surface but the same effect has only been successful by 

the work of Kazuma et al. [77] who demonstrated plastic strain into the surface layer of a Si3N4 

ceramic by inducing a compressive residual stress layer on the surface. The residual stress in 

compression was said to have become larger with increasing peak power density of the irradiated 

laser pulses. Up to 100 µm of residual compressive stress was introduced particularly in the centre of 

the laser induced shot. A four-point bending test results also showed an increase of the bending 

strength and Weibull modulus by laser peening. The reason for the lack of interest by researchers in 

this area is due to the fact that ceramics are brittle. By firing a pulse of laser at a material is 

equivalent to throwing a sharp hot rod at the material surface. This increases the potential for the 
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material to crack as it is already brittle and has a porous structure [77]. Metals in comparison are 

much ductile and comprise of higher fracture strength and ductility. Hence, the energy of the laser 

shock does not lead to formation of severe cracking. Metal improvement company Ltd. [67] stated 

that laser peening of ceramics has not been performed due to lack of industrial demand. If there was 

a demand for such applications which require laser peening then it would be surely considered for 

research.  

 
Lawrence and Li conducted an experimental investigation for the differences between beam 

interaction characteristics of SiO2/Al2O3 ceramic by employing a CW CO2, Nd: YAG, Excimer and 

HPDL [16, 22]. Laser absorption, fluence threshold, thermal loading and the beam interaction at the 

melt-pool was investigated by using the Beer - Lambert‟s Law [77] and Stefan solution [79, 90]. 

Absorption length, thermal loading and melt-pool characteristics were determined by using the 

values from the experimental work presented by Lawrence and Li [91]. It was concluded that an 

evidence of re-solidification was found on the SiO2/Al2O3 ceramics when applying the CO2, Nd: 

YAG, and HPDL‟s. The ceramic had undergone some melting but not much influence of the excimer 

laser was found on the SiO2/Al2O3. This was because of the lower wavelength of the excimer laser.  

Excimer laser was said to have no effect to the melting of the SiO2/Al2O3 ceramic [91].  

 
Furthermore, Lawrence and Hao [92] used ceramics for biomedical applications which involved 

improvement of surface properties of ceramics by using industrial lasers on the Al2O3 and ZrO2 

ceramics. Other work by Lawrence and Li showed improvement in the surface properties of the same 

ceramics [93]. A 60 W high powered diode laser was used to investigate the adhesion characteristics 

of Al2O3, SiO2-TiO2, clay tiles and other ceramic tiles. The main property investigated was the 

contact angle which was proven to be enhanced. The laser beam was fired with adding four types of 

different liquids to the ceramic for wetting the material surface. Those were human blood, human 

blood plasma, glycerol and 4-Octanol. The results showed that due to the improvement in the 

material surface roughness the contact angle was reduced which resulted in the material exhibiting 

better adhesion characteristics. Evidence of some oxidation was found and formation of glass 

element was also seen. This indicated that the composition of the ceramic was changed. Hence, it 

resulted into the material comprising of better adhesion characteristics [93]. It can be gathered from 

reviewing the literature that the experimentation for this work can be conducted by using inert gas to 

protect the ceramic material from oxidation and exposure to the ambient atmosphere. However, on 

the other hand it may be desirable to oxidise the material and attempt to change its composition in 

order to gain any benefits. In particular, fracture toughness parameter K1c, as the work in [13] 

demonstrated some enhancement with the fracture property of Si3N4. 

 
Sun et al. [14, 15] investigated the effects of CO2 laser surface processing on the Si3N4 and 

eliminated imperfections within the ceramic by applying a CO2 laser beam. The researchers found 
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that the fracture behaviour was considerably affected by surface treating of the Si3N4 by means of 

using the CO2 laser. Fracture origins from the machining process and bending strength were 

improved. A four point bending test, fractographic analysis and SEM micrographs were used to 

analyse the materials surface integrity. Sun et al. used a CO2 laser to minimise the detrimental effects 

caused by grinding as the heat from the sliding motion created friction. Laser surface treatment was 

done after severe grinding of the ceramic in order to remove the mechanically induced cracks. Both 

high and low powered CW CO2 lasers were used to treat the Si3N4 surface. It was found that the 

condition of grinding has a big influence on the fracture strength of the Si3N4. Longitudinal direction 

grinding in comparison with transverse directional grinding demonstrated much more resistance to 

fracture [14, 15]. The laser used in the work of Sun et al. was a square shaped beam. This type of 

beam usually has a “top hat” end profile which means that the power distribution during its focus 

would be uniform. But this was not clearly defined Sun et al. since the CO2 laser beams are 

conventionally of TEM00 Gaussian beam mode. The Gaussian configuration of TEM00 (comprised of 

a ring shaped end profile laser beam). So the distribution of power for this type of beam would not 

be uniform throughout its surface area and this is desirable in order to obtain a uniform effect on the 

surface during the treatment. Results from the fractographic analysis showed that there were two 

types of cracks found. Machine induced cracks and inherent flaws from the material (porosity). This 

should, however, be the case with Si3N4 due to its characteristic and material structure. The depth of 

the machining cracks was between 25 to 50 µm. Sun et al. also stated that due to the viscous flow of 

the glassy phase, the surface region of the material has undergone reorganization and relaxation 

during the CO2 laser processing. Compressive stresses were induced, as residual strain from 

machining process was released by the CO2 laser processing. With longer laser processing time and 

higher power density, more relaxation of residual strain occurred. The important factor was the 

difference between the residual stresses in the treated samples to the samples which were untreated 

(as-machined). The difference was found within the material‟s surface morphology, microstructure 

and uniformity which were not further mentioned in any detail [14]. It was assumed that the surface 

integrity was changed and improved by the secondary glassy phase (YSiA1ON), which underwent a 

reflowing and rebinding process [14, 15]. This was because the temperature during the CO2 laser 

processing was measured to be higher than the stable equilibrium upper temperature of the secondary 

glassy phase. It was found that softening (possibly melting) of the secondary glassy phase caused 

infiltration in the surface defects. As the laser power density increased, the ability of the secondary 

glassy phase to rebind and flow.  

 
Morita et al. [20] worked with Si3N4 to produce a crack-free surface by using a Nd:YAG pulsed laser 

processing of ceramics. The increase in peak output power caused the crack propagation and 

generation of a thick re-cast layer. The peak power was said to be kept low as possible and the pulse 

duration to be as short as possible for a crack-free processing of ceramics [20]. This also allows 
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reduction in the thermal stress induced and into the material which justifies the elimination of crack 

generation during the process. The strength of the laser treated samples was also compared with the 

strength of ground polished surface by a diamond wheel [20]. The strength of the laser treated 

samples was reported to be 10 to 20% reduced in comparison with the diamond polished sample due 

to the residual compressive stress layer being removed by the laser process [20].  

 

3.4 Laser Drilling 

Laser drilling of the ceramics has recently developed over the last few years. A feasibility study by 

Coherent group of lasers Ltd. [94], have shown some success with processing Al2O3 and PSZ. 

However, only 30 to 45% penetration was found with laser treated samples [94]. Murray et al. [34, 

35] prior to that compared the laser drilling and cutting of ceramic substrates by using a Nd:YAG 

and a CO2 laser to process PSZ. A 7.3mm thick sample was used to drill 679µm diameter hole. The 

test material was heated prior to and after the laser processing and resulted in reduction of 

microcracks. The cooling process was carried out at 10
◦
C per min.  The optimum parameter window 

for the drilling process was found to be 200Hz, a pulse length of 0.6ms at 3.2 J and a drilling time of 

0.75s was achieved. A full penetration cut was also achieved at a speed of 100 mm/min with 170Hz 

with a pulse length of 0.4ms at 4J. The drilling and cutting process was conducted at ambient 

temperatures, 1000
◦
C, 1300

◦
C and 1600

◦
C. A co-axial assist gas caused the material to fail beyond 

1600
◦
C. Laser drilling caused less damage at the entry region of the hole and was much higher than 

the damage at the exit due to the effect of the oxygen assist gas [34, 35]. The CO2 laser parameters 

were 300Hz, 200W of laser power operating with an oxygen assist gas at 2.5 bar producing a drilled 

hole less than 1s. Microcracks were also found when employing the CO2 laser and produced two 

times the size of microcracking in comparison with the Nd:YAG laser. This was reported due to the 

higher wavelength operating with the CO2 laser causing less absorption efficiency and photon energy 

decreasing with higher wavelength. Due to these two aspects, it was reported that the melting 

ejection was difficult to obtain. This led to a built up of excessive heat due to high thermal shear 

during the laser-material interaction stage [34, 35]. Further work by Murray et al. [36] showed that at 

1100
◦
C to 1300

◦
C a change in the microstructure of the PSZ could have led to a phase transformation 

from tetragonal (T) to monoclinic (M) phase. At 2300
◦
C the T-phase of the ZrO2 changes to cubic 

(C) due to the material having a transition temperature around 2300
◦
C. Due to this change in the 

microstructure; the materials emissivity is also increased. This improves the coupling of the 

Nd:YAG laser irradiation, leading to and increasing in temperature and improves the material 

penetration, especially during the laser drilling process [36]. 

 

3.5 Laser Cutting 

Laser cutting is the most common process from all the laser assisted processing techniques. Various 

materials (metal in particular) are conventionally cut by using different laser systems. Earlier 
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research reported by Naeem et al. [26] and Tonshoff et al. [23] have conducted experimental work 

on cutting of ceramics such as Al2O3, ZrO2 and Si3N4 and have shown promising results. The authors 

in [26] state that from observing the laser material interaction, it was found that thicker materials 

have the tendency to crack sooner in comparison with thin samples (particularly with Al2O3). This 

was said to have occurred due to the material comprising poor thermal shock resistance. Both 

authors, however, did not produce a complete cutting profile, free from any kind of microcracks or 

surface flaw resulting from the thermal shock. Trials were conducted by various passes of cuts which 

produced a final cut profile [26]. The first cut produced a groove into the materials surface, the 

second cut induced further depth to form a groove and the final cut produced a fully cut profile. This 

approach can be used for surface treatment also by using lighter power densities and repetitive 

treatment in intervals which would avoid excessive thermal shocking and build up of heat for the 

investigations in this research.  

 
Lingfei et al. [25] conducted an experimental investigation on laser cutting of ceramics by using a 

combination of CO2 and a Nd:YAG laser. The Nd:YAG laser was used to scribe a groove-crack 

followed by a defocused CO2 laser which was applied to drive a crack. Al2O3 ceramics with the 

thickness of 1, 4, 6 and 10mm were used for the experiments. It was stated in the literature that laser 

cutting produced a thermal shock which damages the material to some degree [25]. The thermal 

shock is produced from the high heat energy generated for the cutting process. Cracking is a 

common problem with ceramics during any laser processing especially with thin material substrates. 

However, it was reported by Lingfei et al. that a crack-free surface was obtained for curved and 

linear cutting paths [25]. It was found that 1mm sample of Al2O3 ceramic was cut. The parameters 

used for this process were 700 W, at 2 bar gas pressure by using nitrogen. As the material thickness 

increased, the surface finish also became rougher (4mm = Ra 5.39, 6 mm = Ra 17.71 and 10 mm = 

Ra 31.74 µm). 

 
Lei and Lijun [24] worked with Si3N4 ceramics and a Q switched CO2 pulsed laser to produce a 

crack-free cut surface. The process was similar to the research conducted by Naeem et al. [26] as 

multi passes of the beam were made on the same cut area in order to produce a cutting profile. The 

experimental results illustrated that as the cutting speed increased. At the same time the length of the 

cracks decreased. This was because the input of the thermal energy decreased with increasing speed. 

Hence, the reduction in the crack lengths had appeared. Lei and Lijun et al. reported that, a crack-

free surface was found as the cutting speed exceeds 220 mm/s with the diameter of the spot size 

being 100 µm [24]. These parameters can be used for experimentation for this research for the initial 

experimental study. However, the input of the laser power must be less for a surface treatment in 

comparison to the laser cutting process.   
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Voisey et al. [27] worked with laser processing of ceramics which involved cutting, drilling, macro-

machining as well as surface treatment. Voisey et al. found that laser surface treatment of ceramics 

have several benefits over a conventional process, those are namely: 

 Sealing of porosity which occurs due to the laser surface melting; 

 Hence, the microcracks are improved which also enhances the corrosion resistance; 

 Improvement with the mechanical performance resulting from minimising the pre-existing 

surface flaws; 

 Tribological properties and surface roughness are also improved;  

 The aerodynamics of components is also increased specifically with the ceramic coated turbine 

blades components when the surface roughness was improved; 

 
Moreover, Voisey et al. also found that thermal stress induced into the material during the laser 

process has the tendency to generate cracks [27]. The crack generation can be avoided or reduced by 

applying two beam techniques which eliminates the cracks created during the first stage of the laser 

beam. This can be done by adding ceramic powder and heat to the re-melted surface during the 

second beam interaction. Voisey et al. also mentions that processing with an excimer laser produced 

smaller melt depths and showed improvements in the surface roughness of a SiC [27, 29]. Smaller 

melt depth indicates that there is less amount of material removal. This is more desirable for laser 

treating real components if the process was used to minimise existing cracks on a material such as a 

Si3N4 turbine blade.    

 
Solomah et al. [30] conducted research on the HP Si3N4 by employing a CO2 laser. Comparative 

study was conducted by laser machining of a Si3N4 with the conventional diamond machining, 

cutting and drilling processes. Solomah et al. suggested that laser machining could be a cost effective 

technique to reduce the cost of ceramic machining during applications such as drilling, profile and 

line cutting. A high power CO2 laser beam was fired as a CW and in a pulsed mode with varying 

power levels (50 to 500W) by using argon, oxygen, nitrogen as assist gases. The focused spot size of 

the beam was 100µm. The test samples were traversed by using an x-y table and a programmable 

motion controller. Samples were then ground and polished by using a diamond wheel. However, this 

is not considered for this research as it would not be ideal to grind and polish the surface after the 

laser treatment has been performed. This is because there is a risk of wearing away the laser 

irradiated layer. It would not do any justice if the laser irradiated layer was removed since further 

analysis would be required. Also, with a spot size of 100µm, it is not possible to treat a large surface 

area of the component part. Therefore, the beam is required to be directed multiple times in order to 

obtain certain coverage of the treated surface with no gaps remaining in between the treated areas. 

 
The results of Solomah et al. showed that the laser cut samples of the Si3N4 contained surface flaws 

and porosity and stated that laser cutting of such ceramics cannot be conducted alone. However, it 
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can be a complimentary process to the conventional diamond grinding. It was also found by Solomah 

et al. that during laser cutting, oxygen is the most suitable gas despite the laser beam being in a CW 

or a pulsed mode. Use of oxygen as an assist gas for processing ceramics in particular may not be 

ideal since the atmospheric effect by oxygen could change the composition of the top surface of the 

ceramic as found by Shukla [13]. Also the change is the material composition during CW treatment 

is large in comparison with the pulsed mode due to the fact that the laser beam is firing at the 

material surface for a longer period of time which allows the processing area to be affected by the 

oxygen assist gas. The pulsed beam has a lower duty cycle so the effect of oxygen is minimal in 

comparison. Microcracking was also found during laser drilling with molten material splatter 

gathering around the hole. It was also said in [30] that it is difficult to laser drill a hole in comparison 

with producing a cut since the molten material splatter is difficult to flush than a cut front during the 

laser cutting process. Voisey et al. also mentioned that the laser beam operating in the pulse mode 

can reduce cracking in comparison with a laser beam operating in a CW mode. Nonetheless, 

according to the work of Shukla [13]; a pulsed beam is described to be more effective in generating 

cracks in comparison to the CW beam. This is due to the thermal shock being introduced in a short 

interval time. The pulse beam would create rapid heating, followed by the rapid cooling. This in turn 

produces contraction and expansion within the ceramic as the thermal energy is escapes. 

 

3.6 Summary  

This Chapter has addressed various aspects of laser-material interaction. Several features were 

extracted from the literature to assist with the experimental work conducted in this thesis. Those 

features are as follows: 

 
 The guidelines for applying a range of parameters were gathered but the parameters window 

suggested in the literature will differ for the engineering ceramics used in this research. This is 

because of the unique composition within the ceramics and the different laser systems used 

herein. 

 
 The use of larger spot size. This is because the laser energy density would be distributed over a 

larger surface area. This is particularly useful for laser surface treatment. 

 
 Low gas flow rate would allow easy flow of assist gas to absorb into the surface of the ceramics. 

This would avoid excessive material removal from the ceramics during the laser-material 

interaction. 

 
 The use of black ink coating can be adopted from the work of Hackle et al. [75]. This would 

assist in reducing the reflection of the laser beam and would improve the absorption, particularly 

for the white ZrO2 engineering ceramic; 
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 To conduct experiments by using various processing conditions, created by using reactive and 

non-reactive assist gases. This would prove to be fruitful for investigating the laser- material 

interaction.  
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CHAPTER 4 

On the Establishment of Laser 

Surface Treatment Parameters 
 
This Chapter demonstrates the development of the laser processing parameters that were used to perform 

the laser surface treatment of both the ZrO2 and the Si3N4 engineering ceramics by means of a CO2 and a 

fibre laser surface treatment. The main objective was to produce a laser surface treatment free from major 

surface cracking without using any of the pre or post heating techniques, as this would increase the cost of 

the process and add more expense to the product when considering a bigger point of view. From this a 

platform was formed which was then used to conduct further investigations as presented in the future 

Chapters.  

 

4.1 Introduction 

Determination of laser parameters is an important aspect to study prior to any laser processing. This 

is because it allows one to understand the materials behaviour and the capacity of the material to 

withstand the thermal energy which is being induced by the laser beam. This is specifically 

important for ceramics as they are prone to cracking when exposed to thermal shock which is 

generally introduced during the laser-ceramic interaction. To date, limited investigations have been 

performed with respect to achieving a ideal surface treatment of various ceramics with respect to the 

ceramic being crack-pore- and defect-free [95-100]. Murray et al. [34-37] performed several 

investigations by using the a CO2 laser to cut ceramics which used a pre-heating method of the 

ceramic substrate to temperature up to 1500
°
C in a furnace and then performed the laser cutting 

process. Ester et al. [95] conducted an investigation on Al2O3 and ZrO2 based oxide ceramics by 

employing a HPDL. Laser irradiated area of 50mm x 7mm was said to have a crack-free surface. 

This was performed by controlling the laser power, traverse speed, and the sample temperature by 

pre-heating the surface of the ceramic. Triantafyllidis et al. [96-100] performed several 

investigations on laser surface treatment of mainly Al2O3 based refractory ceramics by employing 

the HPDL. Earlier work of Triantafyllidis et al. identified solidification cracking due to the 

generation of very large temperature gradients that occurred within the ceramics. Triantafyllidis et al. 

further showed that the refractory Al2O3 ceramic can be treated with a combination of laser source 

(HPDL beam trailed by a CO2 laser or vice versa), to eliminate the crack propagation by temperature 

control [96-97]. However, such methods were not always repeatable with ease and efficiency, since 

it required timely set-up and arrangement to take place. Further investigation showed that crack free-

surfaces improved the properties of the ceramic surface. Those properties were corrosion resistance; 

contact characteristics and surface morphology; contact angle; wetting and water permeability [97, 

99]. Another investigation by Triantafyllidis et al. [100] stands out from the others as it used the 
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HPDL to process refractory Al2O3 ceramic by using none of the post of pre-heating methods which 

are conventional ideas in processing ceramics by using a laser beam. Triantafyllidis et al. reported 

that a crack-free surface treatment was possible with the parameter window speed being 0.4mm/sec 

and a power density of 6×102 W/cm
2
 which led to a crack-free surface treatment for the Al2O3 

refractory ceramics. However, these parameters are unique for the refractory Al2O3 only with the 

particular composition. Other ceramics such as the ZrO2 and Si3N4 are somewhat different due to 

their chemical composition which also changes the mechanical and thermal properties and has an 

effect during laser processing. 

 
Although, ceramics have a low thermal conductivity and high resistance to withstand heat or thermal 

energy, there is still a limit or a threshold which it can resist before it fails. This failure occur either 

by shattering via producing brittle fractures or propagation of sharp cracks. In general, failure of 

ceramics under thermal loading occurs due to the introduction of the thermal shock, particularly 

during intense energy beam such as a laser. This is further justified in this Chapter but the most 

important aspect is to induce just enough energy into the ceramic so that it does not crack. For this to 

be successful, it is required that correct use of laser power, traverse speed, spot size and the gas flow 

rate are used. Although, the literature review provided some guidelines towards a range of 

parameters which are applicable for laser processing of various ceramics, but it is still unclear with 

respect to the threshold of the ceramics used for this research. This because all ceramics are different 

due to their processing history since the material composition (additives) and processing methods 

used to process the ceramics (used in this work) are somewhat different in comparison to that of the 

previous investigations. Therefore, a systematic method was used and is presented in this Chapter 

which demonstrates the approach of changing one factor (parameter) at a time to obtain the optimum 

parameter window for the ZrO2 and the Si3N4 engineering ceramics by employing the fibre and the 

CO2 lasers. Laser power; traverse speed; spot size and the appropriate power density were 

investigated since both since both ceramics have a different threshold for laser processing.  

 

4.2 Background of the Experimental Materials: ZrO2 and Si3N4 Engineering Ceramics 

The first ceramic material used for the experimentation was a cold isostatic pressed (CIP) ZrO2 with 

95 wt% ZrO2 and 5 wt% yttria (Tensky International Company, Ltd). The second ceramic material 

used for the experimentation was a cold isostatic pressed (CIP) Si3N4 with 90 wt% Si3N4, 6 wt% 

yttria and 4 wt% other, unspecified content. This initially contained a high content of α-phase as 

specified by the manufacturer. Furthermore, the microscopic image of the as-received Si3N4 with a 

similar composition was compared to the work of previous researchers (see Chapter 7) to confirm 

that the Si3N4 ceramic was in the α-phase state. Each of the samples were obtained in a bulk of 10 x 

10 x 50mm
3
 (see Figure 4.1) made from a specific rubber mould, to a specified dimension, from 

which all ceramics were CIPed. This was because the dimensions shown in Figure 4.1 were best 

suited for the laser processing experiments. The surface roughness was 1.57μm for the ZrO2 and 
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1.56μm for the Si3N4 ceramics (as-received from the manufacturer). A smoother surface than 

specified for both ceramics would have much lower surface flaws and microcracks. This in turn, 

would lead to higher surface strength and wear resistance but initial experiments showed that 

polished shinier surfaces (below 1.57μm for the ZrO2 and 1.56μm for the Si3N4), would reflect the 

beam and would therefore, reduced beam absorption into the surface and sub-surface of the 

ceramics. Thus, the surfaces were not ground and polished to achieve a better surface finish. The 

experiments were conducted in ambient condition at a known atmospheric temperature (20
◦
C).  

 

 

 
Figure 4.1 A schematic diagram of the experimental work-piece of the ZrO2 and Si3N4 engineering 

ceramics as used in this research. 

 

4.3 Fibre Laser Surface Treatment of the Si3N4 and the ZrO2 Engineering Ceramics  

A 200 W fibre laser (SPI-200c-002; SPI, Ltd.) emitting a CW mode beam at a wavelength of 

1.075µm was used in this work. The fibre laser comprised of a Gaussian beam configuration of 

TEM00 with a beam quality factor of M
2
 = 1.2. Experiments were conducted by varying one 

parameter at a time and by keeping the other parameters constant. Therefore, the laser power was 

varied from 25 to 200 W (max laser power) and simultaneously, the traverse speed was varied from 

25 to 500 mm/min by keeping the focal position constant for both the engineering ceramics. From 

initial experiments, it was found that laser power of 143.25 W, traverse speed of 100 mm/min for the 

Si3N4 engineering ceramic and the power of 137.5 W at the traverse speed of 100 mm/min for the 

ZrO2 engineering ceramic with a spot size of 3mm used for both the engineering ceramics was found 

to be an ideal constant to use in order to conduct the surface treatment (see Section 4.5.1 and Section 

4.5.2). From this, identification of the range of laser power and power density required to reach the 

material threshold was achieved and are represented by graphical means. The processing gas used for 

this set of experiment was compressed air which was supplied at a flow rate of 25 l/min. Initial 

experiments showed that the flow rate in excess of 25 l/min was blowing off excessive material 

during the laser-ceramic interaction. This was significant during surface cracking of the ceramic as 

the cracked surfaces were eventually blown away and produced a large crater. Lower gas pressure 

would result to lower interaction between the laser beam and the ceramic. Hence, 25 l/min was found 

to be appropriate for this study. This prevented the ceramic debris from travelling upwards into the 

lens and protected the optics. Programming of the laser was conducted by using an SPI software 

which integrated with the laser system. A 50mm line was programmed by using numerical control 

(NC) programming as a potential beam path which was transferred by a .dxf file. The nozzle 
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indicated in Figure 4.2 was removed for all experiments. This was to obtain a larger spot size, based 

on the fact that laser welding in general is conducted with a larger spot size. This distributed the 

power on a bigger surface area, which is ideal for conducting the surface treatment. A larger laser 

beam was applied as it is more suitable for performing the laser surface treatment as opposed to laser 

cutting or drilling where high power density is required in the smaller surface area to penetrate 

through the material. In this case, a defocused beam allows the energy to distribute over a larger 

surface area which prevent thermal shocks and sever cracking of the ceramics. In any case, the 

defocused beam yet remained Gaussian. 

 
All surfaces of both the Si3N4 and ZrO2 engineering ceramics to be treated were marked with a black 

ink coating prior to the laser surface treatment. This was to enhance the absorption and allow the 

laser beam to further penetrate into the ceramic surface. Initial experiments reviewed that the black 

ink coating helped the beam to absorb better into the material. This was particularly the case with the 

white ZrO2 engineering ceramic since it reflected the beam without the black ink coating. 

Furthermore, it was necessary to conduct like by like experiments with both laser types by using 

identical material surface conditions so a true comparison of the effects of the two lasers can then be 

further performed. The back ink coating was generally removed by the CO2 or the fibre laser surface 

treatment and was not found to have any further effect on the ceramics after the laser surface 

interaction had taken place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 A schematics diagram of the experimental set-up of the fibre laser surface treatment of ZrO2 

and Si3N4 engineering ceramics. 
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4.4 CO2 Laser Treatment of ZrO2 and Si3N4 Engineering Ceramics  

A 1.5 kW, Everlase S47, Coherent, CO2 laser was employed to conduct experiments on both the 

ZrO2 and the Si3N4 engineering ceramics (see Figure 4.3). The CO2 laser comprised of a Gaussian 

beam configuration of TEM01 with a beam quality factor of M
2
 = 1.3. One parameter was changed at 

any one time in order to determine the ultimate parameter window. The trials ranged from 50 to 200 

W of laser power with a CW beam applied with a 10.6µm wavelength, while the beam spot size was 

kept constant at 3mm with a gas flow rate of 25 l/min by using compressed air assist gas. The 

traverse speed ranged from 25 to 700 mm/min to determine the ultimate speed required to process 

both engineering ceramics. Programming of the laser was conducted by using a independent 

software which integrated with the laser machine. A 50mm line was programmed by using NC 

programming as a potential beam path transferred by a .dxf file. Stand-off distance between the 

nozzle and the work-piece was kept to 16mm in order to obtain a focal spot size of 3mm. Parameters 

used for the CO2 laser surface treatment were not directly comparable to those of the fibre laser 

surface treatment. This was due to the difference in the wavelength and the nozzle shape and 

diameter as well as the high power laser not being able to execute stably when operating at lower 

laser powers.  

 

 

Figure 4.3 A schematic diagram of the experimental set-up of the CO2 laser surface treatment of the 

ZrO2 and the Si3N4 engineering ceramics. 

 

4.5 Results and Discussion  

4.5.1 Fibre Laser Surface Treatment of the Si3N4 Engineering Ceramic  

In order to find the threshold of the Si3N4 engineering ceramic, a systematic approach was used. This 

is where the laser power was changed whilst other parameters such as the spot size of 3mm, traverse 

speed of 100 mm/min and gas flow rate of 25 l/min were kept constant during the fibre laser surface 

treatment. Table 4.1 show the range of powers used from 25 to 200 W and from 694 to 4761 W/mm
2
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along with other associated parameters. During each stage, the effects of the laser-ceramic 

interaction were recorded. This is where it was found that 143.25 W or 3979 W/mm
2
 was ideal for 

producing a surface treatment that comprised of very few cracks on the surface of the Si3N4 

engineering ceramic. As more laser power was introduced at a constant speed, the surface of the 

Si3N4 began to show some effects. Those were a change in colour, appearance of few surface cracks 

to medium and then produced high cracking profile. Colour key used to show the effects in Table 4.1 

to 4.3 are also shown in Figure 4.4 to 4.7.  

 
Table 4.1 Effects of varying of laser power by using a 3mm constant size spot at the traverse speed of 100 

mm/min and a gas flow rate of 25 l/min after fibre laser surface treatment of the Si3N4 engineering 

ceramic.  

 

 

 

 

 

 

 
 
 

 
From investigating the laser power, it was found that 143.25 W at a speed of 100 mm/min was the 

most ideal and produced the lowest cracks during the fibre laser surface treatment. Furthermore, the 

traverse speed was then investigated which varied from 25 to 500 mm/min. At the same time, laser 

power of 143.25 W and a spot size of 3mm were kept constant. The effects were then observed in 

terms of the surface cracks generated as result of the fibre laser-Si3N4 interaction. As one can see 

from Table 4.2, that lower traverse speeds resulted to more laser-material interaction time. This 

inherently produced high surface cracking. As the traverse speed increased, the laser-ceramic 

interaction time also increased. This in turn resulted to inducing lower thermal energy into the 

ceramic and therefore, reduced the cracks propagation. At a speed of 25 mm/min, evidence of high 

cracking was found as opposed to 500 mm/min. This is where there were no effects on the Si3N4 

engineering ceramic. The most ideal speed as shown in Table 4.2 was 100 mm/min and generated 

very few cracks during the fibre laser surface treatment.  

 
 
 
 
 
 
 
 
 
 

 
 

Experiments 1 2 3 4 5 6 7 8 9 10 

Laser Power 

(W) 

25 50 75 100 125 137.5 143.2

5 

150 175 200 

Power Density 

(W/mm
2
) 

694 1379 2073 2277 3472 3719 3979 4167 4556 4761 

Speed (mm/min) 100 100 100 100 100 100 100 100 100 100 

Effects           
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Table 4.2 Effects of varying the traverse speed by using 143.25 W of constant laser power, a 3mm spot 

size and a gas flow rate of 25 l/min after fibre laser surface treatment of the Si3N4 engineering ceramic.  

 

Experiments 1 2 3 4 5 6 7 8 9 10 11 12 

Laser Power (W) 143.2

5 

143.25 143.

25 

143.

25 

143.

25 

143.

25 

143.

25 

143.

25 

143.

25 

143.

25 

143.

25 

143.

25 

Power Density 

(W/mm
2
) 

3979 3979 397

9 

397

9 

397

9 

397

9 

397

9 

397

9 

397

9 

397

9 

397

9 

397

9 

Speed (mm/min) 25 50 75 100 150 200 250 300 350 400 450 500 

Effects             

 
It was found that the most ideal power for the fibre laser surface treatment of Si3N4 ceramic was 

143.25W applied at a traverse speed of 100 mm/min. Therefore, the effects produced by varying the 

spot size needed exploration. Hence, the beam diameter of the fibre laser was varied from 0.5 to 

4.5mm, whilst keeping a constant laser power, traverse speed and gas flow rate as presented in Table 

4.3. In general, the smallest spot size produces high power density in comparison to a larger spot 

size, which would affect the laser processing in a detrimental way. This is also true for the results in 

this study as the smallest spot size used (0.5mm) resulted to producing the highest surface cracks and 

the largest spot size used (4.5mm) barely changed the colour of the Si3N4. Spot size of 3mm used 

with a laser power of 143.25 W had produced 3979 W/mm
2
 of laser power density with a traverse 

speed of 100 mm/min generated the most desired fibre laser surface treated zone in terms of 

producing a lowest cracked surface. 

 
Table 4.3 Effects of varying the spot size by using 143.25 W of constant laser power, traverse speed of 

100 mm/min and a gas flow rate of 25 l/min after fibre laser surface treatment of the Si3N4 engineering 

ceramic. 

 

 

 

 

 

 

 
 

 
The effects of the laser parameters can be further presented  with respect to the crack propagation of 

the Si3N4 during the fibre laser surface treatment. Figure 4.4 shows that the increase in travese speed 

results to the laser beam having less effect. Evidance of high crack propagation can be found with 

traverse speed under 100 mm/min and with increasing travese speed the laser induced cracks had 

began to reduce untill there was no physical effect found on the surface of the Si3N4 beyond 450 to 

500 mm/min. Figure 4.5 showed the effects of the laser power and the power density on the fibre 

Experiments 1 2 3 4 5 6 7 7 9 

Spot Size (mm) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Power (W) 143.2

5 

143.2

5 

143.2

5 

143.2

5 

143.2

5 

143.2

5 

143.2

5 

143.2

5 

143.2

5 

Power Density 

(W/mm
2
) 

14325

0 

35713 15917 7953 5730 3979 2923 2237 1769 

Speed (mm/min) 100 100 100 100 100 100 100 100 100 

Effects          
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laser irradiated Si3N4 surface. The laser power and the power density has a close relationship, as the 

power density is dependant on the laser power and the diameter of the laser spot used. It can be seen 

that with increasing laser power and increasing power density, the propagation of cracks and the 

effects on the ceramic would increase due to high energy being induced into the ceramic. Therefore, 

it would increase the temeprature at the laser-ceramic interface. This in turn would also increase the 

thermal shock which characteristically leads to propagation of a crack.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 Effects of the traverse speed on the surface of the Si3N4 engineering ceramic after fibre laser 

surface treatment.                                      

     

    

 

 

 

 

 

 

 

 

 

 
Figure 4.5 Relationship between laser power and power density which shows the effects of the fibre laser 

surface treatment of the Si3N4 engineering ceramic by keeping a constant traverse speed of 100 mm/min, 

3mm spot size and 25 l/min gas flow rate.  

 
Figure 4.6 presents the effects of the laser power and the travese speed with respect to cracking on 

the fibre laser irradiated surface of the Si3N4 and demosnstrates that with increasing speed and 

increasing power the effects also become distict. However, high surface cracking begins to appear 

when applying high laser power and low travese speed. Therefore, a combination of the power and 

speed was important to apply. It was found that 100 mm/min at about 143.25W was ideal to use in 
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terms of generating a fibre laser treated surface which comprised of the lowest surface cracks.  

Figure 4.7 illustrates the the effect of power density and the travese speed. As the power density is 

incresed and the traverse speed is decreased, the propagation of the surface cracks are also increased. 

Travese speed of 100 mm/min and the power density of 3979 W/mm
2
 was found to be appropriate to 

generate the lowest surface cracks on the Si3N4.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6 Relationship between laser power and traverse speed showing the effects of the fibre laser 

surface treatment of the Si3N4 engineering ceramic, by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate.  

 

Figure 4.7 illustrates the relationship of power density and spot size of the fibre laser upon the Si3N4 

engineering ceramic. The graph showed that with lower spot size produced high power input and 

larger power density would be generated. This would consequently propagate high surface cracks on 

the Si3N4 engineering ceramic. It was found that at cosntant laser power, and travese speed, the spot 

size below 3mm generated high surface cracks as the fibre laser beam diameter was altered from 

being large to small. 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 4.7 Relationship between power density and traverse speed showing the effects of the fibre laser 

surface treatment of the Si3N4 engineering ceramic by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate. 
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Figure 4.7 Relationship between power density and spot size showing the effects of the fibre laser surface 

treatment of the Si3N4 engineering ceramic, by keeping a traverse speed of 100 mm/min, gas flow rate of 

25 l/min and laser power of 143.5W.  

 

4.5.2 Fibre Laser Surface Treatment of the ZrO2 Engineering Ceramics  

Parameters used for the fibre laser surface treatment of the ZrO2 were fairly similar to that of the 

Si3N4 except that the ZrO2 had a different threshold to that of the Si3N4. This was because the ZrO2 

ceramic comprised of higher thermal conductivity than the Si3N4. This meant that the heat was easily 

transferred to the ZrO2 than the Si3N4 and it was easy and quicker to heat the ZrO2. This intrinsically 

would produce higher thermal shock as well as surface cracking. The approach to find the threshold 

of the ZrO2 engineering ceramic was the same to that of the Si3N4 as presented in Table 4.4 to 4.6 

and in Figure 4.9 to 4.13. The power was varied from 25 to 200W and the traverse speed was 

initially kept constant to 100 mm/min by using a constant spot size of 3mm. The fibre laser had 

began to affect the surface of the ZrO2 from changing its colour at 75W to producing a very few to 

high cracks at various power intervals and eventually cracked at 200W of laser power. It was 

established that the ideal laser power was 137.5W in order to generate the lowest surface cracks so 

the traverse speed was investigated and is presented in Table 4.5. This is where the laser power, focal 

spot size, power density and the gas flow rate were kept constant and the traverse speed was varied 

from 25 to 500W. This is how it was confirmed that 100 to 150 mm/min produced the lowest cracks 

and beyond the speed of 150 mm/min produced colour changes up to 350 mm/min and had no 

further visual effects on the surface of the ZrO2. Lower speeds of 50 to 70 mm/min generated high 

cracking and further shattered the ceramic when the traverse speed was reduced to 25 mm/min. This 

was obvious as the laser beam was spending more time on the ZrO2 surface which increased the 

thermal energy input and generated the surface cracks. Figure 4.12 shows the effects of varying the 

spot size on the ZrO2 as the spot size was varied from small to large. It was found that the ZrO2 had 

shattered below 2mm spot diameter. Above 2mm of spot diameter, the laser beam produced high 

level of cracking and then generated the lowest cracks at a beam diameter of 3 to 3.5mm. Fibre laser 
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beam diameter larger than 3.5mm showed some influence on the ceramic. However, beyond 4.5mm 

had showed no visual effects. Colour key used to show the effects in Table 4.4 to 4.6 are also shown 

in Figure 4.9 to 4.13. 

 

Table 4.4 Effects of varying of the laser power by using a 3mm constant size spot at the traverse speed of 

100 mm/min and gas flow rate of 25 l/min, after fibre laser surface treatment of the ZrO2 engineering 

ceramic. 

Experiments 1 2 3 4 5 6 7 8 9 10 

Laser Power 

(W) 

25 50 75 100 125 137.5 143.2

5 

150 175 200 

Power Density 

(W/mm
2
) 

94 1379 2073 2277 3472 3719 3979 4167 4556 4761 

Speed 

(mm/min) 

100 100 100 100 100 100 100 100 100 100 

Effects           

 
 

Table 4.5 Effects of varying of the traverse speed by using a 3mm constant size spot with the laser power 

of 137.5 W, 3719 W/mm
2
 power density and gas flow rate of 25 l/min, after fibre laser surface treatment 

of the ZrO2 engineering ceramic. 

Experiments 1 2 3 4 5 6 7 7 9 10 11 12 

Laser Power 

(W) 

137.5 137.5 137.5 137.5 137.5 137.

5 

137.

5 

137.

5 

137.

5 

137.

5 

137.

5 

137.

5 

Power Density 

(W/mm
2
) 

3719 3719 3719 3719 3719 3719 3719 3719 3719 3719 3719 3719 

Speed 

(mm/min) 

25 50 75 100 150 200 250 300 350 400 450 500 

Effects             

 
 

Table 4.6 Effects of varying the spot size by using 137.25 W of constant laser power, traverse speed of 

100 mm/min and a gas flow rate of 25 l/min, after fibre laser surface treatment of the ZrO2 engineering 

ceramic. 

Experiments 1 2 3 4 5 6 7 7 9 

Spot Size (mm) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Power (W) 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 137.5 

Power Density 

(W/mm
2
) 

137500 34775 15277 7594 5500 3919 2706 2147 1697 

Speed (mm/min) 100 100 100 100 100 100 100 100 100 

Effects          

 

Figure 4.9 represents the appearance of the surface cracks with increasing laser power densities and 

traverse speed. As one can see that the graph shows that with high power density and low traverse 

speed, the ZrO2 ceramic had shattered, but as the power density decreases and the traverse speed 
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increases, the cracking of the ceramic begins to reduce until there is no significant effect on the 

material beyond 450 mm/min. This is also shown the Figure 4.10.  

 

 

 
Figure 4.9 Relationship between power density and traverse speed which shows the effects of the fibre 

laser surface treatment of the ZrO2 engineering ceramic by keeping a constant spot size of 3mm and 25 

l/min gas flow rate. 

 

 

Figure 4.10 Effects of the traverse speed on the surface of the ZrO2 engineering ceramic after fibre laser 

surface treatment.  

  

The effects are also similar with the graph illustrating the relationship between the laser power and 

traverse speed (see Figure 4.11). Increase in the laser power at low traverse speed had produced 

shattering and high cracking within the ZrO2 engineering ceramic. Further reduction in the crack 

propagation occurred with high traverse speed and lower laser power.  This reduced the effect of the 

thermal shock on the surface of the ZrO2 engineering ceramic.  
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Figure 4.11 Relationship between laser power and traverse speed showing the effects of the fibre laser 

surface treatment of the ZrO2 engineering ceramic by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate. 

 
Figure 4.12 presents the effect of the spot size versus the power density show that the laser beam 

diameter at 3mm produces a power density of 3719 W/mm
2
 at a constant traverse speed of 100 

mm/min and laser power of 137.5W. This generated the lowest cracking on the fibre laser irradiated 

layer. Increase in the spot size had resulted to having no effect and decrease in the spot diameter had 

resulted to significant cracking and shattering of the engineering ceramic. In Figure 4.13, one can see 

that the smallest cracks only appeared at sufficient power density of 3719 W/mm
2
 and a laser power 

of 137.5W. Until then, the effects were minimal on the surface of the ZrO2 engineering ceramic. 

  

 

Figure 4.12 Relationship between power density and spot size showing the effects of the fibre laser 

surface treatment of the ZrO2 engineering ceramic by keeping a traverse speed of 100 mm/min, gas flow 

rate of 25 l/min and laser power of 137.25 mm/min. 
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Figure 4.13 Relationship between power density and traverse speed showing the effects of the fibre laser 

surface treatment of the ZrO2 engineering ceramic by keeping a constant spot size of 3mm, traverse 

speed of 100 mm/min and 25 l/min gas flow rate. 

 

4.5.3 CO2 Laser Surface Treatment of the Si3N4 Engineering Ceramic 

The effects of the CO2 laser was different to that of the fibre laser as it was found that the Si3N4 

ceramic was able to resist higher CO2 laser power in comparison. Similar approach was used to 

obtain the most ideal parameters for the CO2 laser in comparison to the fibre laser. Table 4.7 shows 

that the traverse speed was initially selected at constant parameter of 100 mm/min to determine the 

most ideal laser power. Along with that, the supply of the processing gas was kept as a constant to 25 

l/min. The power density was changed characteristically, as the laser power was changed. At 25W, 

no significant effects were found. As the power was raised, the CO2 laser had began to create some 

effect by producing discolouration of the Si3N4. Moreover, small cracking had then began to occur 

beyond 200W. Colour key used to show the effects in Table 4.7 to 4.9 are also shown in Figure 4.14 

to 4.17. 

 
Table 4.7 Effects of varying of laser power by using a 3mm constant spot size at the traverse speed of 100 

mm/min and gas flow rate of 25 l/min after the CO2 laser surface treatment of the Si3N4 engineering 

ceramic. 

Experiments 1 2 3 4 5 6 7 8 9 

Laser Power (W) 25 50 75 100 125 150 175 200 225 

Power Density 

(W/mm
2
) 

694 1379 2073 2777 3472 4167 4761 5556 6250 

Speed (mm/min) 100 100 100 100 100 100 100 100 100 

Effects          

 
Table 4.7 shows the use of constant laser power (200W), power density of 5556 W/mm

2
, whilst the 

traverse speed was varied from 25 to 400 mm/min. The effects here were similar in comparison to 

the fibre laser as the traverse speed below 100 mm/min showed evidence of high cracking. Between 

the traverse speeds of 100 to 125 mm/min, cracking was reduced to very few cracks. Discolouration 
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was found with further increase in the traverse speed. This was until 350 mm/min, where only some 

effects can be seen of the CO2 laser. Beyond 250 mm/min, no effect was to be seen on the Si3N4 

engineering ceramic. Table 4.9 shows the variation in spot size by keeping other parameters 

constant. 

 
Table 4.7 Effects of varying of the traverse speed by using a 3mm constant size spot with the laser power 

of 200W, 3719 W/mm
2
 power density and gas flow rate of 25 l/min after the CO2 laser surface treatment 

of the Si3N4 engineering ceramic. 

Experiments 1 2 3 4 5 6 7 8 9 10 11 12 

Laser Power 

(W) 

200 200 200 200 200 200 200 200 200 200 200 200 

Power Density 

(W/mm
2
) 

5556 5556 5556 5556 5556 5556 5556 5556 5556 5556 5556 5556 

Speed 

(mm/min) 

25 50 75 100 125 150 175 200 250 300 350 400 

Effects             

 
 

Table 4.9 Effects of varying the spot size by using 200W of constant laser power, traverse speed of 100 

mm/min and a gas flow rate of 25 l/min after the CO2 laser processing of Si3N4 engineering ceramic. 

Experiments 1 2 3 4 5 6 7 8 9 

Spot Size (mm) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Power (W) 200 200 200 200 200 200 200 200 200 

Power Density 

(W/mm
2
) 

5556 5556 5556 5556 5556 5556 5556 5556 5556 

Speed (mm/min) 100 100 100 100 100 100 100 100 100 

Effects          

 
The relationship of power density and laser power with the crack propagation during the CO2 laser 

surface interaction is presented in Figure 4.14. This shows that the smallest cracks occurred above 

175W to 200W. Below 175W, there is only some influence on the Si3N4 ceramic as there was some 

discoloration. Evidence of high cracking was found beyond 200W. Surface treatment comprising of 

the smallest surface cracks was found at the traverse speed of 100 and 150 mm/min as shown in 

Figure 4.15.   
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Figure 4.14 Relationship between laser power and power density showing the effects of the CO2 laser 

surface treatment of the Si3N4 engineering ceramic by keeping a constant traverse speed of 100 mm/min, 

3mm spot size and 25 l/min gas flow rate. 

 

High level of cracking was seen under the traverse speed of 50 mm/min as shown in Figure 4.16. As 

the traverse speed increased, the cracks began to reduce. The smallest cracks were seen at  

100 mm/min. Beyond 100 mm/min showed only discolouration and small effects on the surface of 

the ZrO2 engineering ceramic. 

 

 

Figure 4.15 Effects of the traverse speed on the surface of the Si3N4 engineering ceramic after CO2 laser 

surface treatment.   

 

Figure 4.17 shows the relationship between the laser power and the traverse speed. This is where it 

can be seen that high cracking was to be seen with traverse speed below 100 mm/min and beyond 

were few cracks were found during the CO2 laser interaction of the Si3N4 ceramic. The cracking 

effect became less as the traverse speed was increased. This behaviour is also identical in Figure 

4.17. This illustrates the relationship of power density and the traverse speed where cracking 

behaviour of the Si3N4 during the CO2 laser surface treatment is presented. Figure 4.17 presents the 

variation in spot size during the CO2 laser treatment of the Si3N4 and shows that the surface had 

began to produce high cracking at spot size of 2mm despite the power density being low. However, 
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as the spot size began to get larger, the cracking effect had reduced at 3mm and under 4000 W/mm
2
. 

Very few cracks generated by the CO2 laser were evident from using 3mm to 4.5mm diameter beam, 

with power density being raised to 6000 W/mm
2
. However, beyond 4.5mm of beam diameter, there 

was only evidence of change in colour despite the laser power density increasing to 7000 W/mm
2
. 

This showed that the spot size had considerable contribution by influencing the surface treatment, as 

it controlled the thermal energy being induced into the engineering ceramic.  

 

 

Figure 4.16 Relationship between laser power and traverse speed showing the effects of the CO2 laser 

surface treatment of the Si3N4 engineering ceramic by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate. 

 
 

 

Figure 4.17 Relationship between power density and traverse speed showing the effects of the CO2 laser 

surface treatment of the Si3N4 engineering ceramic by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate. 
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Figure 4.17 Relationship between power density and spot size showing the effects of the CO2 laser 

surface treatment of the Si3N4 engineering ceramic by keeping a traverse speed of 100 mm/min, gas flow 

rate of 25 l/min and laser power of 200W. 

 

4.5.4 CO2 Laser Surface Treatment of the ZrO2 Engineering Ceramics  

Table 4.10 illustrates the effects of the CO2 laser on the ZrO2 ceramic as the laser power is changed 

as well as the power density. It can be seen that at 100 mm/min of constant power produced 

sufficient amount of cracking followed by shattering of the ZrO2. This is when the laser power was 

applied from 25W to 200W. From Table 4.10, it was not clear as to what parameters can be used 

until experiments with varying the traverse speed was performed. Hence, the laser power was 

selected at 62.5W. This was in-between the area where there was no effect on the ZrO2 at 50W and 

where evidence of small cracking began to appear at 75W. Therefore, 62.5W was selected with the 

traverse speed being experimented from 25 to 700 mm/min as presented in Table 4.11. Colour key 

used to show the effects in Table 4.10 to 4.12 are also shown in Figure 4.14 to 4.23. 

 
Table 4.10 Effects of varying of laser power by using a 3mm constant size spot at the traverse speed of 

100 mm/min and gas flow rate of 25 l/min after CO2 laser surface treatment of the ZrO2 engineering 

ceramic. 

Experiments 1 2 3 4 5 6 7 8 

Laser Power (W) 25 50 75 100 125 150 175 200 

Power Density 

(W/mm
2
) 

694 1379 2073 2777 3472 4167 4761 5556 

Speed (mm/min) 100 100 100 100 100 100 100 100 

Effects         

 
 
Shattering was found until the traverse speed of 100 mm/min was applied at constant laser power of 

62.5W and 1736 W/mm
2
 power density by using a 3mm diameter CO2 laser beam. From 200 to 400 

mm/min, high cracking was observed. This was reduced to small cracks as the traverse speed 

increased to 500 mm/min. At 600 mm/min, smallest cracks were to be seen. Beyond 600W, there 
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were no effects to be observed with traverse speed of up to 700 mm/min. The results at 600 mm/min 

with an applied laser power of 62.5W and a gas flow rate of 25 l/min showed that the ZrO2 had 

shattered or produced high cracking by using a spot size below 3mm. Between 3 to 3.5mm, the CO2 

laser surface treated ZrO2 comprised of the lowest surface cracks. Beyond 3.5mm, colour change 

within the ZrO2 engineering ceramic was to be seen. No significant effect was found with the spot 

diameter of up to 4.5mm (see Table 4.12). 

 
Table 4.11 Effects of varying the traverse speed by using a 3mm constant size spot with the traverse 

speed of 600 mm/min, 1736 W/mm
2
 power density and gas flow rate of 25 l/min, after CO2 laser surface 

treatment of the ZrO2 engineering ceramic. 

 
Experiments 1 2 3 4 5 6 7 8 9 

Laser Power 

(W) 

62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 

Power Density 

(W/mm
2
) 

1736 1736 1736 1736 1736 1736 1736 1736 1736 

Speed 

(mm/min) 

25 50 100 200 300 400 500 600 700 

Effects          

 

Table 4.12 Effects of varying the spot size by using 200W of constant laser power, traverse speed of 600 

mm/min and a gas flow rate of 25 l/min after CO2 laser surface treatment of the ZrO2 engineering 

ceramic. 

 
 

 

 

 

 

 

 
Figure 4.19 shows the relationship between the laser power and the power density during the CO2 

laser treatment of the ZrO2. The ZrO2 ceramic up to 50W and 1379 W/mm
2
 of power density at the 

speed of 600 mm/min showed very little affect but began to have some affect on the ZrO2 surface 

beyond 50 W and 1379 W/mm
2
. Minimal cracking was found at 62.5W with the power density of 

1736 W/mm
2
 which increased as the laser power and the power density were raised and resulted to 

high cracking and further shattering. This was different to the effects which the fibre laser had upon 

the ZrO2 as higher power density, laser power and low traverse speed were used to obtain the same 

result. 

Experiments 1 2 3 4 5 6 7 8 9 

Spot Size (mm) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Power (W) 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 

Power Density 

(W/mm
2
) 

62500 15625 20733 3906 2500 1736 1276 977 772 

Speed (mm/min) 600 600 600 600 600 600 600 600 600 

Effects          
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Figure 4.19 Relationship between laser power and power density showing the effects of the CO2 laser 

surface treatment of the ZrO2 engineering ceramic by keeping a constant traverse speed of 600 mm/min, 

3mm spot size and 25 l/min gas flow rate. 

 

The effects of the traverse speed as presented in Figure 4.20 and Figure 4.21 showed shattering of 

the ZrO2 at lows speed of up to 100 mm/min. High surface cracking was found beyond this and up to 

350 mm/min. Thereafter, small cracks were evident until 600 mm/min. Beyond 600 mm/min very 

few surface cracks were found. The ZrO2 showed some evidence of laser-material interaction beyond 

the traverse speed of 650 mm/min. From comparing the effects of laser power density and traverse 

speed showed that the traverse speed was more contributory in inducing the thermal energy into the 

ceramic. This is because the ZrO2 shattered at low power density but the speed was considerably 

low. With increasing power density and increasing speed showed some reduction in the cracks. 

However, considerable amount of cracking was prominent until 500 mm/min and was reduced to 

very small cracks until 650 mm/min (see Figure 4.22).  

 

 

Figure 4.20 Effects of the traverse speed whilst using a constant laser power of 62.5W, a spot size of 

3mm and a gas flow rate of 25 l/min on the surface of the ZrO2 engineering ceramic after the CO2 laser 

surface treatment.   
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Figure 4.21 Relationship between laser power and traverse speed showing the effects of the CO2 laser 

surface treatment of the ZrO2 engineering ceramic by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate. 

 

Figure 4.23 showed that the small spot size with increasing power density resulted to generating high 

cracking on the ZrO2. The high cracks were found until 2mm of spot diameter and then produced 

very few cracks at 3mm. Beyond 3.5mm there was some change in colour and visual effect to be 

seen on the ZrO2. This continued to occur as the power density was raised despite the increasing spot 

size and large power distribution on the ZrO2 ceramic.    

 

 

Figure 4.22 Relationship between power density and traverse speed showing the effects of the CO2 laser 

surface treatment of the ZrO2 engineering ceramic by keeping a constant spot size of 3mm and 25 l/min 

gas flow rate. 
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Figure 4.23 Relationship between power density and spot size showing the effects of the CO2 laser 

surface treatment of the ZrO2 engineering ceramic by keeping a traverse speed of 100 mm/min, gas flow 

rate of 25 l/min and laser power of 600 mm/min. 

 

4.5.5 Mechanism of Crack Propagation  

One of the reasons why failure occurs within ceramics is due to the induction of a thermal shock. 

Thermal shock is a term given for cracking and is also mentioned in the literature [37]. Because 

ceramics are hard and brittle, it makes them prone to cracking. Low thermal conductivity, high 

thermal expansion, and low toughness of ceramics generate cracks during exposure to high 

temperature. Moreover, it is the exposure to difference in the thermal gradient or temperature change 

which in term makes them fail. 

 
Thermal shock is produced when high temperature is introduced to the ceramic whilst the ceramic is 

in a state of ambience. This is particularly the case during laser surface treatment as the high power 

density from laser beam focused on a small surface area interacts with the ceramic which body is at 

20 to 25
°
C temperature. During the laser-ceramic interaction, the processing temperature is almost 

above 2000
°
C (depending on the laser parameters and the type of laser used). Most probably, the rise 

of temperature at the ceramic surface would be from ambient to about 2000
°
C within a second. Then, 

it is made to cool as the laser beam moves to another area. In this case, a temperature difference has 

occurred already. This in turn, would expand the ceramic as it tries to absorb the heat. During this 

expansion, the areas within the bulk are somewhat cooler in comparison. The cooler areas are 

working against the induced thermal energy and attempts to contract the ceramic (see Figure 4.24). 

However, the high thermal energy needs to escape. Hence, the expansion (which is in form of a 

tensile stress) of the ceramic acts as a force towards contraction (which is in form of a compressive 

stress) by the bulk (cooler areas). If the tension is sufficient enough and is inhibited to certain level, 

then it will overcome the compression. This in turn, will cause the ceramic to fail by cracking and 

often shattering the ceramic into pieces.  
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Figure 4.24 Effect of the thermal energy on the surface and within the bulk of the ceramic.  

 
4.5.6 Comparison of the CO2 Laser Surface Treatment with the Fibre Laser Surface 

Treatment of the ZrO2 and the Si3N4 Engineering Ceramics  

Since cracking occurs due to the difference in the thermal gradient then cracking can be avoided by 

reducing the thermal gradient. This is by changing the temperature of the ceramic more slowly by 

means of pre-heating the ceramic before the laser surface treatment or possibly by post-heating if 

need be. This would be by heating the ceramic after the laser surface treatment (as mentioned earlier 

in this Chapter). This in turn, would avoid rapid thermal gradient and the clash of hot and cold 

surfaces occurring at the ceramic surface and within the body. Pre-heating or post heating can be 

performed as an additional process and could compliment the laser surface treatment. Or the concept 

of using a combination of dual laser beams to perform the surface treatment can also be adopted to 

increase the cooling rate by the trailing laser beam. However, from a broader view point, both the 

dual laser beam processing technique and by using the heating furnace to pre-and post-heat the 

ceramic are additional processes which add extra value to the total cost of processing rather than the 

product itself. This includes extra process time, tooling and/or man power. More energy is also 

required for pre-and post-heating technique to take place as well as doubling the cost of laser 

processing if two lasers are used as a leading and a trailing heat source. Thus, it was rather economic 

and less time consuming to use single beam laser source. This was adopted for the investigation in 

this research and attempts were made to generate the most desirable surface that comprised of 

minimal cracking, flaws, porosity, and defects so further analysis can be conducted to elucidate the 

physical effects of laser-ceramic interaction.   

 
Over all, fibre laser surface treatment of both the ZrO2 and Si3N4 engineering ceramic was somewhat 

different to that of the CO2 laser. This was because the Gaussian beam modes were for the CO2 laser 

was TEM01 and the beam quality factor (M
2
) was 1.3. In comparison, the fibre laser emitted a beam 

with a Gaussian profile of TEM00 and an M
2
 value of 1.1. This indicated a slightly better quality 

beam. Also, the difference in the wavelength between the two lasers was significant as the fibre laser 

wavelength was 1.075µm and the CO2 laser was 10.6 µm. The beam delivery system was also 
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different since the fibre laser was delivered from a fibre cable and the CO2 laser being directed by 

mirrors, and galvano-meters. Consequently, each laser will have different effect on the surface of the 

two ceramics. It was found that when comparing the two lasers, the wavelength of the CO2 laser 

when processing the Si3N4 ceramic was being absorbed more than that of the fibre laser as higher 

power density and same traverse speed was used to reach the threshold for the Si3N4 when compared 

to the fibre laser. When the effects of the two lasers are compared for the ZrO2 engineering ceramic, 

it was found that by using the CO2 laser, low power and high traverse speed were required in 

comparison to the fibre laser. This was because the ZrO2 ceramic was shattering when using the 

identical parameter to the fibre laser. The shattering occurred because the wavelength of the CO2 

laser was being absorbed into the sub-surface of the ceramic. This in turn produced the high thermal 

energy on the ZrO2. The NIR of the fibre laser in comparison was more transparent to the oxide 

ceramic, so the energy of the fibre laser would be absorbed deeper and made it crack less at 

equivalent laser parameters to the CO2 laser.  

 
Minimum cracking was observed with using the parameters which is why such parameters were 

further adopted to conduct experiments for this research as presented in the future Chapters. Table 

4.13 shows the ideal parameters found form conducting the laser surface treatments by using the CO2 

and the fibre lasers on both engineering ceramics. These parameter are used for most of the 

investigations in this thesis except the one in Chapter 8. This utilizes a smaller beam diameter and 

the lower laser power. This was due to the technical incapability of the Nd:YAG laser used as a 

comparable source to the fibre (see Chapter 8, Section 8.3.3). By comparing the results herein with 

those of the previous workers, it can be said that the difference is mainly in the terminology of crack 

definition as the crack-free surface as described in their research is more realistically described in 

this research as surface comprising of minimal or very few cracks.  

 
Table 4.13 Selected parameters from initial experiments with a constant spot size of 3mm, gas flow rate 

of 25 l/min by using compressed air. 

 

 Parameters 

Lasers types Traverse Speed 

(mm/min) 

Laser Power 

(W) 

Power Density 

(W/mm
2) 

Si3N4 ZrO2 Si3N4 ZrO2 Si3N4 ZrO2 

CO2 Laser 100 600 200 62.5 5556 1736 

Fibre laser 100 100 143.5 137.5 3979 3719 
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4.6 Summary 

Experimental investigation was conducted on both engineering ceramics by using the CO2 and the 

fibre laser. Threshold of the two ceramics were found by using the CO2 and the fibre laser 

irradiation. In terms of producing a laser irradiated surface with minimal or no surface cracks, the 

following parameters were applied and various conclusions were drawn:  

 Fibre laser surface treatment of the Si3N4 engineering ceramic required 143.25W, at the traverse 

speed of 100 mm/min. The parameters used for the CO2 laser surface treatment of the Si3N4 

engineering ceramic used 200W at the traverse speed of 100 mm/min. 

 
 The best surface with very few cracks on the ZrO2 engineering ceramic was produced by applying 

137.5W at a traverse speed of 100 mm/min when employing the fibre laser surface treatment. The 

CO2 laser was required to traverse at 600 mm/min by inducing 62.5W to achieve the desired 

result on the ZrO2. 

 
 Both laser surface treatments of the Si3N4 and the ZrO2 engineering ceramic had utilized a beam 

spot diameter of 3mm and a gas flow rate of 25 l/min. 

 
The fibre laser surface of both the ZrO2 and the Si3N4 engineering ceramic was somewhat different 

to that of the CO2 laser due to the difference in the wavelength and the beam delivery system. This 

was because the fibre laser was delivered from a fibre cable and the CO2 laser being delivered by 

mirrors and galvano-meters. Therefore, both lasers produced different results on the surface of the 

two ceramics. From comparing the two lasers, it was found that the Si3N4 engineering ceramic was 

more resistive towards the wavelength of the CO2 laser wavelength as opposed to that of the fibre 

laser. This was due to high power density and same traverse speed was used to reach the threshold.  

 
It was found that low power and high traverse speed was required for the CO2 laser when surface 

treating ZrO2 engineering ceramic in comparison to the fibre laser when the effects of the two lasers 

are compared. This was because the ZrO2 shattered when identical parameters to that of the fibre 

laser were applied. This was because the CO2 laser wavelength was only being absorbed into the top 

surface layer of the ceramic. This in turn, produced more interaction to take place at the surface. In 

comparison, the oxide ceramic is more absorbent to the NIR wavelength of the fibre laser so the 

energy of the fibre laser would be absorbed deeper and had made it crack less at equivalent laser 

parameters to the CO2 laser.  
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CHAPTER 5 

Characterization and Compositional 

Evaluation of Laser Surface Treated 

Engineering Ceramics 
 
Surface treatment by means of a CO2 laser and a fibre laser irradiation was conducted by using various 

assist gas compositions on CIP Si3N4 and ZrO2 engineering ceramics to observe changes in their surface 

integrity, microstructure and chemical composition. Vickers indentation method was employed to 

investigate the change in hardness between the laser treated zone, heat affected zone (HAZ) and the 

interfaces. Thereafter, scanning electron microscopy (SEM) was used to observe the integrity prior to and 

after laser surface treatment. The as-received, CO2 and the fibre laser treated surface topography were 

measured in 3-D by using a focus variation technique. Energy dispersive X-ray (EDX) analysis was employed 

to detect surface modifications of the ceramics composition for the as-received and both the CO2 and fibre 

laser treatment of the engineering ceramics.   

  

5.1 Introduction 

Engineering ceramics have found wide usage in various industrial sectors. In particular, applications 

in the aerospace and automotive industry comprehensively use engineering ceramics because of their 

advantageous thermal and mechanical properties when compared to metal and alloys, as well as high 

wear resistance and low co-efficient of friction which are particularly ideal for high speed bearings, 

exhaust valves and clevis pins. Turbo charger rotors, pistons, hybrid bearings comprising of a Si3N4 

casing and ZrO2 or Si3N4 balls and a metallic casing are regularly used due to the ceramics extended 

functional life, better performance and efficiency in comparison to metallic components. Good 

thermal insulation and high melting points have enabled engineering ceramics to be readily used for 

many components within a gas turbine engine. Engineering ceramics also have high acoustic 

damping capacity to reduce engine noise and are operational in underwater environment due to their 

corrosive resistance and environmental stability [37, 41, 43, 45]. The die-electric properties of the 

ceramics also make them applicable for missile radomes.  

 
Laser surface treatment in comparison to the conventional surface processing techniques offers 

competitive advantages as mentioned previously. Such advantages are an asset to the manufacturers 

and allow them to achieve better tolerances, reduced production costs, shorter lead times as well as 

just in times delivery (JIT). Laser surface treatments can be a superior technique for processing of 

engineering ceramics for a glazing application as an example. This can potentially improve the 

surface finish as well as the aesthetics of the ceramic component/product. Another example where 
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laser processing of ceramics can be effective is by applying the laser shock processing technique 

which is successfully being used for enhancing the wear rate, co-efficient of friction, hardness and to 

reduce component mass of metals and alloys [66, 101, 102]. This is achieved by forming 

shockwaves within the metals/alloys and inducing a compressive residual stress layer. Similar effect 

can also be achieved with ceramics, whereby the functional life of the ceramic components/products 

can be enhanced if the effects of the laser-ceramic interaction are further understood [103].  

 
Several previous investigations have revealed interesting results when using industrial lasers (high 

powered) to surface treat refractory ceramics. Previous work by Wang et al. [104-106] was 

conducted by using refractory ZrO2 and Al2O3 ceramics to investigate the microstructural 

characteristics after melting of the ceramic substrate by using a CO2 laser. Surface cracking was 

found in the treated area, but changes to the laser parameters led to modified surface composition 

and morphology. Further work was conducted by Wang et al. [107] by using an Nd:YAG laser to 

surface treat refractory ceramics by adding nano-particles to modify the surface density and the 

corresponding microstructure. The laser treatment was conducted prior to and after adding the nano-

particles. Results linking to their previous investigations [104-106] showed dendrites that were much 

finer after the addition of the nano-particles. Triantafyllidis et al. [97] performed an investigation by 

using double laser sources: a CO2 and a HPDL, to investigate the possibility of generating a crack-

free surface on refractory Al2O3 ceramics by balancing out the thermal gradient and elongating the 

solidification rate. The results presented crack-and pore-free surfaces along with deeper penetration 

in comparison with the single laser processing technique. Further work by Triantafyllidis et al. [107] 

demonstrated laser cladding of thin sheets of Al2O3 by employing a high powered CO2 laser. 

Substantial grain growth was found on the surface of the treated ceramics along with increase in the 

grain size. 

 
Variation in employing processing gases has been the subject of several studies. The effect of laser 

processing of metals by using various shield gases has been investigated extensively [109-113]. 

Minami et al. [114-115] used various processing gases assisted by a HPDL to remove ceramic tile 

grout. Compressed air, Ar, N2, and O2 were used to study their effects on the microstructure, material 

removal and thermal changes. The findings revealed O2 to be the most effective gas as it maximized 

the materials removal rate. Lawrence et al. [116] used a HPDL with O2, Ar, and He assist gasses to 

study the influence of assist gas on HPDL processed concrete surfaces. The results showed the 

occurrence of porosities with all of the gases used. Minimal surface cracking and porosity was found 

from using O2 in comparison with Ar and He. Better interaction with O2 was also reported in order to 

generate sufficient heat and fluidity within the melt pool in comparison to Ar and He. This was due 

to the faster cooling rate occurring with the Ar and He which resulted in trapping the gas bubble and 

maximized the possibility to form surface cracking and porosity in contrast with using the O2 assist 

gas.  
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A number of researchers have also worked with laser surface treatment of ceramics to identify the 

effects of laser beam on material properties, such as the frictional wear [117] and the flexural 

strength of Si3N4 [15]. Sun et al. [15] investigated the possibility of eliminating imperfections within 

the Si3N4 ceramics by applying a CO2 laser. Their results showed improvement in the bend strength 

by reduced fracture origins and a change in phase as the Si3N4 was transformed to YSiAlON. The 

findings presented in Chapter 6 with regards to changes in the fracture toughness within the ZrO2 

from the fibre laser irradiated surface showed reduced crack lengths. This in turn, increased the 

fracture toughness of the fibre laser irradiated zone. This reduction in the crack lengths had occurred 

from the newly formed surface layer with a changed composition.  

 
Despite the wide use of CO2, Nd:YAG and HPDL to process various technical ceramics, other than 

the work of this thesis; no work has been done hitherto in which a fibre laser is employed to process 

the surface of engineering ceramics. This study focuses on the laser-material interaction occurring 

during the CO2 and the fibre laser surface treatment of the Si3N4 and the ZrO2 engineering ceramics 

in various processing gas environments: compressed air; O2; Ar; N2 and ambient air (no assist gas). 

The investigation comprised of observing the surface morphology, changes in the composition, the 

material removal, the topography, the surface hardness and the HAZ. Even though, the operating 

wavelength of the fibre laser is in the same region as that of the Nd:YAG laser, the fibre laser was 

still used due to several inherent advantages. Those advantages are: a better beam quality, smaller 

spot size, depth of field (longer focal length), depth of penetration, high brightness and better 

stability. The beam quality of the fibre laser is (M
2
 = 1.2) which would execute high power density 

in a same spot size in comparison to the Nd:YAG laser beam. This in turn, is likely to produce better 

interaction leading to deep penetration into the ceramic. The longer focal length allows the fibre laser 

to operate from longer distances. This is ideal to avoid backscatter and beam reflection. Lastly, the 

high brightness offered by the fibre laser in comparison to that of the Nd:YAG laser is the most 

advantageous as it induces more photon energy by executing higher power per wattage. This 

inherently reduces the cost of the surface treatment also and has a real potential to produce better 

interaction zone in comparison to that of the Nd:YAG laser. 

 

5.2 Experimental Methodology and Analysis 

5.2.1 Background of the Experimental Material 

The materials used for the experimentation were ZrO2 and Si3N4 engineering ceramics and were 

described in Chapter 4 (see Section 4.2).  

 

5.2.2 Fibre and CO2 Laser Surface Treatment Procedure 

Both fibre and the CO2 lasers were employed for the experiments in this Chapter. The details of the 

two lasers used in this investigation are presented in Chapter 4 (see Section 4.3) where description of 

both laser parameters applied on both ZrO2 and Si3N4 engineering ceramics are presented as well as 
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the programming methods used. The processing gases used with both lasers were O2, N2, Ar, 

compressed air as well as ambient air (no gas) supplied at a flow rate of 25 litres/min. Four samples 

were treated for both ZrO2 and Si3N4 each by employing the two lasers with different processing gas 

compositions.  

 
5.2.3 Method of Analysis 

A Vickers diamond indenter (Vickers (HVTM); Armstrong Engineering, Ltd.) was used to 

investigate and identify if there are any changes within the surface of the Si3N4 and ZrO2 ceramics 

after the CO2 and the fibre laser surface treatments. The hardness measurement was conducted in the 

standard manner and is described elsewhere [117, 119]. The Vickers indenter was induced five times 

over the as-received surface (laser unaffected zone), HAZ, and the laser treated surface plane of the 

Si3N4 and ZrO2 engineering ceramic treated by the CO2 and the fibre laser by employing the different 

assist gases. The indentation load applied was 30 kg. From this, an average hardness of each surface 

plane on each of the samples laser treated by using various conditions was found along with its 

standard deviation and range as presented in Table 5.1. Indentations were made from approximately 

on the centre of the laser irradiated track outwards for 4mm in increments of four diamond widths 

into the laser unaffected region of the sample. Thereafter, the size of the indentions was measured to 

determine the surface hardness in the prescribed way [117, 119]. The surface topography of the 

Si3N4 and ZrO2 prior to and after the laser surface treatment was investigated to determine the effect 

of the laser beams upon the near (top) surface. This was done by using a focus variation technique 

(Infinite Focus IFM 2.15; Alicona, Ltd.) that performed a three-dimensional (3-D) surface analysis. 

This analysis produced 3-D surface profiles of the Si3N4 and ZrO2 surfaces under investigation by 

using around a 2mm diameter beam which travelled to the length of 7mm across the width of the as-

received (laser unaffected), HAZ and the laser irradiated surface. The scanning speed used was 30 

sec/mm. The as-received, the laser irradiated surfaces and the HAZ of the Si3N4 and ZrO2 ceramics 

were observed at a microscopic level to examine the surface morphology by using a SEM and the 

elemental composition to a depth of 1μm by means of EDX analysis (Stereoscan 360; Carl Zeiss 

Leo, Ltd.). Prior to the SEM and the EDX analysis, the samples were carefully washed in distilled 

water, and then dried in hot air (150
°
C) for around 30 seconds. After this, all the samples were Au 

coated to enhance the surface electrical conductivity. 

 
5.2.4 Observation of the As-received Surface of the Si3N4 Engineering Ceramic  

Figure 5.1 shows the as-receive sample of the Si3N4, with the surface appearing to be somewhat 

coarse comprising of surface micro-cracks, as one can see specifically in Figure 5.1(a), and closely 

packed grains being seen in Figure 5.1(b). The grains were measured to be ranging between 1.5 to 

2.5μm in size. There was no evidence of the porosity pre-existing on the surface of the as-received 

Si3N4 from observing the SEM images. A compositional study of the as-received surface of the Si3N4 

showed it to be comprised of 17.5 wt% C, 22 wt% O2, 35 wt% Si, 4.5 wt% Y. N2 content of about 22 
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wt% would also exist in this sample, but the EDX system used was unable to detect any N2 within 

the chamber. This is not a problem as the undetected N2 can be found from substituting the 

percentage of the other elements that were present. 

 

 

Figure 5.1 SEM images of the as-received surface of the Si3N4, (a) at x 500 and (b) x 3000 resolution. 

 

5.2.5 Observation of the As-received Surface of the ZrO2 Engineering Ceramic  

The two micrographs indicated in Figure 5.2(a) and (b) showed the as-received surface of ZrO2 along 

with agglomerates (see Section 5.3.4.1) which comprise of the ZrO2 grains when observed at a 

higher magnification. The agglomerates ranged between 70µm to 100µm and averaged 95µm. As 

one can see that the boundaries of the agglomerates are not so closely packed in Figure 5.2. This 

would have increased the level of pores around the edge of the agglomerate boundaries. However, 

there was minimal porosity to be seen on the surface of the as-received ZrO2. The compositions of 

the top (near) surface layer of the as-received surface were 67.69 wt% Zr, 25.45 wt% O2, and 5.76 

wt% C. The values found were also expected as the main composition of ZrO2 ceramic comprised of 

zirconium and oxygen.  

 

 

                                             (a)                                                               (b) 

Figure 5.2 SEM images of the as-received surface of the ZrO2, (a) at x500 and (b) x3000 resolution. 
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5.3 Results and Discussion  

5.3.1 Fibre Laser Surface Treatment of the Si3N4 Engineering Ceramic  

5.3.1.1 Investigation of the heat affected zone (HAZ) of the Si3N4 engineering ceramic  

From measuring the surface hardness of the fibre laser irradiated Si3N4 ceramic it was found that the 

fibre laser treatment resulted in a change in the surface hardness on the various zones of the Si3N4 

engineering ceramic. The hardness changed from within the untreated zone to the HAZ and the fibre 

laser irradiated zone. An example of the hardness values are given in Figure 5.3 and are further 

presented in Table 5.1. It was found that the fibre laser irradiated zone comprised of the softest 

surface layer as the diamond indentation induced into the heat affected region, the interface between 

each zones and the untreated surface layer (see Figure 5.3). The example shown in Figure 5.3 for the 

fibre laser irradiated surface by using ambient air showed that the hardness was reduced to 1054 HV 

on the track and ranged between 960 to 1250 ±10% HV on the outer edges of the laser treated track 

particularly for the Si3N4 surface treated by using the O2 assist gas. The hardness increased along the 

edges of the track indicating that the respective surface layer was less influenced. The untreated 

surface, indicated in Figure 5.3 on both sides of the track, ranged from 1400 to 1600 HV ±10% HV. 

Variation in the hardness value can be seen with changing indentation loads. If a lower indentation 

load was used then the penetration of the diamond indenter would be rather low. This is more 

evident by the work presented in Chapter 6 as much lower indentation loads were applied to 

determine the K1c. Indentation of 30 kg load was used herein to achieve sufficient depth into the laser 

treated zones. The penetration depth of the Vickers diamond indentation is presented in Table 5.2. 

The depth of penetration of the diamond indentation at 30 kg varied as the indenter was induced on 

different surfaces that were irradiated by the fibre laser from using the various assist gases. This 

occurred due to the SiO2 layer being uneven and changing the surface morphology with the different 

gas compositions used. For instance the diamond indentation penetrated deeper for the surface fibre 

laser irradiated by using O2 assist gas. This was due to the formation of the SiO2 layer being higher 

as opposed to the one of N2 or Ar as shown in Table 5.2. This was because the formation of the SiO2 

surface layer by the fibre laser irradiation was lower for the non-reactive assist gases in comparison 

to the more reactive gases. Hence, the thickness of the SiO2 layer had changed depending on the 

assist gases used. The values in Table 5.2 relate to the amount of O2 content found by each type of 

treatment as shown later in Figure 5.14. As the O2 content increases within the fibre laser irradiated 

sample, the SiO2 layer became thicker and appears to be considerably softer to the laser unaffected 

surface (as-received) of the Si3N4. This inherently, allowed the diamond indenter to penetrate deeper 

into the surface of the fibre laser irradiated track. 
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Figure 5.3 SEM image presents an example of the fibre laser irradiated surface of the Si3N4 by using 

ambient air (no gas) showing the fibre laser unaffected surface, fibre laser treated surface and the HAZ.  

 
Table 5.1 Showing the change in the average hardness, STDEV and the range of hardness values found 

for the fibre laser irradiated zone (track) by using various assist gases, fibre laser unaffected zone and 

the HAZ of the Si3N4 engineering ceramic. 

 

 

 

 

 

 

Assist 

gases 

Hardness values in various areas on the surface of the Si3N4 engineering ceramic 

Laser unaffected zone Fibre laser irradiated track HAZ 

Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range 

O2   1627 

 
 

55 

 

1574 - 

1710 

961 

 

176 712- 1174 1391 

 

155 

 

1264 - 

1647 

Ar 1694 

 

73 

 

1575 - 

1727 

1211 103 1103 – 

1377 

  1461 

 
 

106 1326 - 

1574 

Compress

-ed air 

1627 

 

61 

 

1529 - 

1670 

1202 176 965 - 1463      1576 

 

133 

 

1461 - 

1736 

N2   1664 

 
 

102 1575 - 

1727 

1243 91 1161 – 

1420 

  1479 

 
 

114 1330 - 

1641 

Ambient 

air 

  1633 

 
 

106 1520 - 

1757 

1203 176 1092 - 

1310 

  1449 

 
 

99 1305 - 

1597 
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Table 5.2 Depth of penetration by the Vickers diamond indentation at 30 kg load induced on the fibre 

laser irradiated surfaces of the Si3N4 treated by using various assist gases. 

 

Assist gases Depth of 

penetration (µm) 

   O2 34.04 µm 

   Ar 30.05 µm 

Compressed air 30.31 µm 

    N2 29.66 µm 

Ambient air 30.14 µm 

 

5.3.1.2 The effects of the fibre laser surface treatment by using various assist gases on 

topographical characteristics 

5.3.1.2.1 O2 assist gas 

Figure 5.4 shows the surface topography of a Si3N4 sample fibre laser irradiated by using an O2 assist 

gas. The laser treated zone (see Figure 5.4), is comprised of a newly formed (melted and solidified) 

surface layer with some degree of materials removal occurring as a result of the fibre laser surface 

treatment. The depth of the material removal was up to 257μm. The grey and white areas present in 

the laser treated zone indicate surface oxidation. This was further identified from the microscopic 

and the compositional analysis. The HAZ comprises of some degree of discoloration which is an 

indication of the distribution of heat. The surface finish in terms of Ra was measured to be 12.1μm 

within the laser treated zone. This points to a severe change occurring in the surface morphology of 

the laser treated zone. This is apparent from a comparison of the surface finish for the as-received 

sample which was measured to be 1.57 μm (Ra). The changes in the surface roughness occurred due 

to the formation of an uneven surface layer from the Si3N4 ceramic through material removal and 

decomposition which formed the asperities on to the surface as seen in Figure 5.4. 

 

 

Figure 5.4 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

the fibre laser irradiation by using an O2 assist gas. 
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5.3.1.2.2 Compressed air assist gas 

The upper surface profile of the Si3N4 sample treated with the fibre laser beam by using a 

compressed air assist gas is given in Figure 5.5. This shows significantly less material removal than 

that of the sample treated with an O2 assist gas (see Figure 5.4). The depth of material removal was 

up to 169μm. This indicates that the laser-material interaction during the treatment was less reactive 

in comparison to the surface treated by the fibre laser by using the O2 assist gas. The surface finish 

within the laser treated zone was 2.12μm (Ra) and was much smoother than that of the sample fibre 

laser irradiated with an O2 assist gas, signifying a less effective surface treatment. This was because 

of the less interaction occurring between the fibre laser-Si3N4 and with using the compressed air. 

However, the whitening effect on the top surface of the track shows that oxidation took place, but not 

as much as the O2/fibre laser irradiated sample. From comparison of the compressed air/fibre laser 

irradiated surface to the O2/fibre laser irradiated surface of the Si3N4 engineering ceramic (see Figure 

5.4), shows similar effects in the near (top) surface layer. Surface oxidation is apparent as well as 

formation of craters where the surface has become much smoother. Although, the average of the 

surface finish resulted to being much coarser due to the craters comprising of gradients. This 

confirmed the melting and the redistribution of the melt zone. More porosity and trapped air holes 

are also seen in this sample. 

 

 

Figure 5.5 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

fibre laser irradiation by using compressed air assist gas. 

 

5.3.1.2.3 N2 assist gas 

Figure 5.6 shows that the sample fibre laser irradiated with an N2 assist gas displayed a smaller laser 

treated track in comparison to the sample fibre laser irradiated with an O2 assist gas (see Figure 5.4). 

This is due to N2 being a non-reactive gas and therefore minimizing the effect of surface oxidation. 

The surface profile also presents evidence of some morphological changes on the surface of the 

ceramic resulting from the fibre laser treatment. The sample comprised of a smoother surface finish 

(0.701 μm) when compared to the as-received surface and the sample fibre laser irradiated with an 

O2 assist gas. This led to less material removal in comparison with the samples treated by O2 and was 

116μm. The laser material interaction between the fibre laser by using N2 on the Si3N4 ceramic may 

have been less in comparison to other gas types used in this study (see Figure 5.6). 
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Figure 5.6 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

fibre laser irradiation by using N2 assist gas. 

 

5.3.1.2.4 Ar assist gas 

The surface of the sample fibre laser irradiated with an Ar assist gas (as shown in Figure 5.7), reveals 

similar effects compared to the surface of the sample treated with fibre laser irradiation and an N2 

assist gas (see Figure 5.6). This was, however, somewhat predictable as Ar is an inert gas which 

would also minimize the effect of oxidation and provide a much more protective treatment from 

atmosphere effects. The material removal in this case was 140μm and was slightly higher than the 

surfaces treated by the fibre laser irradiation by using a N2 assist gas. The surface finish found was 

1.61μm (Ra) after the laser treatment which again was rougher than that of the as-received surface. 

 

  

Figure 5.7 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

the fibre laser irradiation by using Ar assist gas. 

 

5.3.1.2.5 Ambient air (no assist gas) 

The laser alone treated surface by using no assist gas produced similar result to that of the fibre laser 

surface treated by using the compressed air assist gas. This could be due to the compressed air 

having identical properties to the atmospheric gas properties which produced similar results during 

the laser alone treatment [120]. However, it can be observed from Figure 5.7 that there are also 

formations of trapped air holes on the laser treated zone. Those were not seen by using other gases 
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except compressed air and O2 assist gasses. It can be gathered that the trapped air holes were formed 

as the surface melted and re-distributed leaving the trapped gas to form such a surface profile. The 

material removal was up to 162μm for this treatment (see Table 5.3). The surface finish was found to 

be 2.56μm (Ra) which in comparison with the as-received surface was much courser. This had 

occurred due to the melting and formation of the new surface layer. 

 

 

Figure 5.7 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

the fibre laser irradiation by using ambient air (no assist gas). 

 
Table 5.3 Summary of the effects of the material removal, the surface finish and the surface topography 

of the fibre laser irradiated Si3N4 engineering ceramic surfaces treated by using various assist gas 

compositions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Condition 

 

Material 

removal (μm) 

Surface finish 

(Ra) μm 

Topography 

Presence of 

oxidation 

Porosity Treated 

Zone 

HAZ 

As-received surface N/A 1.57 No Minimal N/A N/A 

Fibre laser 

treatment using O2 

257 12.1 High Average Large 

footprint 

Large 

Fibre laser 

treatment by using 

compressed Air 

169 2.12 High High Large 

footprint 

Large 

Fibre laser 

treatment using N2 

116 0.701 Very Low No Fine 

footprint 

Small 

Fibre laser 

treatment by using 

Ar 

140 1.61 Very Low No Fine 

footprint 

Small 

Fibre laser ambient 

air (no gas) 

162 2.56 High Very 

High 

Large 

footprint 

Large 
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5.3.1.3 The Effects of the Fibre Laser Irradiation by Using Various Assist Gases on the 

Morphology, Microstructure and Chemical Composition of the Si3N4 Engineering Ceramic 

Observation of the SEM images of the sample treated by the fibre laser irradiation by using an O2 

assist gas showed a significantly modified surface profile which comprised of a newly formed 

surface layer (see Figure 5.9). This can also be seen with images from the other assist gases used but 

the effects are rather distinct from using O2. The surface profile in this case was slightly different to 

that of the as-received surface as the fibre laser surface treatment had melted the top layer. The 

melted layer then redistributed unevenly and altered the surface finish and the chemical composition 

as further seen in this study. The HAZ of the surface treated with the fibre laser beam was also 

considerably broad in comparison with the samples treated by using other assist gases. This was 

because of O2 being a reactive gas, where more chemical changes had occurred in comparison to 

using an inert gas. The reason for the sample treated with an O2 assist gas producing large area of 

laser affected zones was due to the faster burning rate of the O2 than the traverse speed of the laser 

beam as stated by Bass [121]. Bass also stated that non-metallic materials such as ceramics are more 

sensitive to chemical changes from using O2. On account of this, a courser surface finish was found 

by using the O2 in this investigation. If the burning rate of O2 was slower than that of the fibre laser 

traverse speed, then the opposite reaction would occur where the laser treated zones would be narrow 

and produce a smoother surface finish. The processing temperature in this case would also be high. 

In general, the use of O2 is appropriate for the fibre laser processing of ceramics if deep penetration 

or faster processing speeds are required. But if the surface roughness and the material removal are 

more important; then Ar or N2 assist gases in particular are also ideal. 

 

 

Figure 5.9 SEM images of the fibre laser irradiated surface of the Si3N4 by using O2 assist gas at (a) ×50 

magnification (b) ×3000 magnification and (c) the HAZ at ×3000 magnification. 

 

The content of O2 found on the surface of the sample fibre laser treated with an O2 assist gas was 

reasonably high for obvious reasons. Up to 37 wt% of O2 was observed and was the highest in 

comparison to the surfaces treated by using other assist gases. In comparison to the as-received 

surface the C content was reduced to 5.56 wt% and the Si content was 17.21 wt%, as further 

presented in Figure 5.14. There was also 17.70 wt% Y found in this sample. From this, it can be 
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observed that a chemical change has occurred after treatment with the fibre laser and an O2 assist gas 

when compared to the as-received surface. 

 
The fibre laser irradiated sample with a compressed air assist gas also showed significant level of 

morphological changes along with some de-composition (see Figure 5.10). The grains are exposed in 

comparison to that of the as-received sample. The level of oxidation is not in evidence as much as 

was the case with samples fibre laser irradiated with an O2 assist gas. This was because of the O2 

content being lower in the elements found in the compressed air than that of the pure O2. The 

chemical composition found when using compressed air was 24.39 wt% C, 37.72 wt% O2, 30.43 

wt% Si, and 4.21 wt% Y. The Si was decreased in comparison to the as-received surface, but not, 

however, as much as the surface fibre laser treated with an O2 assist gas. This indicated that a 

compositional change had also occurred when performing the fibre laser surface treatment with using 

compressed air as an assist gas. 

 

 

Figure 5.10 SEM images of the surface treated by fibre laser irradiation of the Si3N4 engineering ceramic 

by using compressed air assist gas at (a) ×50 magnification, (b) ×3000 magnification and (c) the HAZ at 

×3000 magnification. 

 

The morphology of a sample fibre laser irradiated with a compressed air assist gas is shown in Figure 

5.10. It can be said that the surface has also undergone some de-composition due to the high 

temperatures produced during the laser-material interaction (in the region of over 2000
°
C). This in 

turn, produced material removal which intrinsically changed the surface morphology as the Si3N4 

was exposed to the atmosphere at such high temperatures. The irregularity of the material removal 

during the de-composition of the ceramic should also be considered. This is because it has also 

contributed to the change in the surface morphology and the surface finish. Furthermore, the change 

in the morphology also depends on the how much the grains are covered and the level of bonding 

between the new surface layer produced by the fibre laser irradiation and the secondary phase of the 

Si3N4 ceramic. The sample treated in ambient air by using the fibre laser has some relation to the 

sample fibre laser irradiated with an O2 assist gas. The laser alone (no assist gas) treated sample 

comprised of the highest O2 content after the O2 treated sample. Up to 42.60 wt% O2 was found, as is 
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evident from the images shown in Figure 5.11(b) and Figure 5.11(c). This was the highest and 

probably occurred due to the lack of processing gas being supplied at the surface during the fibre 

laser-Si3N4 interaction and also because of the extra heat generated. This characteristically formed a 

high O2 content within the surface layer treated by the fibre laser irradiation. Some areas of the 

treated zone also comprised of porosity that was produced from the formation of the new oxide layer. 

The oxide layer would have trapped the air from escaping during the solidification stage. The C 

content in the laser alone treated sample was 27.67 wt%, and Si being 27.73 wt%. 

 

 

Figure 5.11 SEM images of the fibre laser alone irradiated surface of the Si3N4 by using no assist gas at 

(a) ×500 magnification, (b) ×3000 magnification and (c) the HAZ at ×3000 magnification. 

 

SEM surface images of samples fibre laser irradiated with N2 and Ar assist gasses are shown in 

Figure 5.12 and Figure 5.13, respectively. As one can see from these figures, the HAZ and the fibre 

laser irradiated area was much smaller and sharper when a N2 assist gas was employed. The shape of 

the grains has also changed with N2, as presented in Figure 5.12(b). This is where rod type grains 

have been formed in some areas which are not seen on other samples. There is also evidence of 

porosity formation in the interface between the HAZ and the laser treated area. This is not apparent 

in the surfaces treated by using the other assist gases, except for Ar. This was because of the increase 

in the cooling rate which allowed new surface layer be formed as gases were trapped from escaping. 

This was also seen in the work of Lawrence and Li [116]. It can be said that similar effects have been 

achieved when using N2 and Ar, since they are both inert and less reactive to a chemical change in 

comparison to the other gases, including ambient air (no gas). This result is in good agreement with 

that of the Bass [121] and the findings of Minami et al. [114]. It is also believed that the 

temperatures reached during processing with N2 and Ar assist gasses were much lower to those 

reached when using O2, compressed air or ambient assist gasses. Yet at the same time, there was 

evidence of porosity found on the interface between the HAZ and the surface treated by the fibre 

laser irradiation for both samples that were treated with N2 and Ar assist gasses, as can be seen in 

Figure 5.12 and Figure 5.13. The elemental analysis given in Figure 5.14 showed, 35.47 wt% O2, 

35.45 wt% Si, 6.99 wt% C and 10 wt% Y. The O2 content within the sample laser treated with N2 

assist gas is the lowest in comparison to the other samples, but there is only a small amount of 
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difference between the O2 content found within each of the samples. However, the use of N2 as the 

assist gas certainly modified the surface profile as rod-like grains had began to form (see Figure 

5.12(b)). The Si3N4 surface fibre laser irradiated with a N2 assist gas also showed enlargement of the 

grains in comparison to the as-received surface. 

 

 

Figure 5.12 SEM images of the fibre laser irradiated surface of the Si3N4 by using N2 assist gas in (a), (b) 

and (c) the HAZ and (d) the interface between the HAZ and the fibre laser irradiated zone. 

 
The microscopic images in Figure 5.13(d) show evidence of the surface melting with using Ar assist 

gas. This in comparison to N2 was somewhat different as the grain boundaries of the Si3N4 surface 

fibre laser irradiated with an Ar assist gas had began to bind into each other. The interface between 

the HAZ and the laser treated zone in Figure 5.13(c) also shows that porosity within the ceramic has 

been covered with the newly formed surface layer. This can relate to the concept of crack healing 

where the fibre laser irradiated surface areas were close to their melting temperatures and were 

solidified and covered the surface cracks and formed a new surface layer. Similar result was also 

reported by Sun et al. [15] during a CO2 laser processing of a Si3N4 ceramics. The solidified surface 

however, particularly in the interface between the fibre laser irradiated surface and the HAZ showed 

evidence of splatter occurring from the melt-zone as the material was pushed to the side of the laser 

created track. This appears in all the fibre laser irradiated samples but is more present in the samples 

using N2 and Ar assist gases. This indicates that there was less heat produced during the interaction 

of the fibre laser-Si3N4. Hence, the gas was being trapped before escaping between the HAZ and the 

fibre laser irradiated surface. The chemical composition found on this surface was 16.36 wt% C, 

35.72 wt% O2, 27.43 wt% Si and 11.70 wt% Y. The chemical composition herein is similar to that of 

the N2 except with Ar/fibre laser irradiated sample. This was because there is more O2 content 
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present due to the Ar not coupling well with the Si3N4 in comparison to N2 so that the surface of the 

Si3N4 is protected from an atmospheric influence. 

 

 

Figure 5.13 SEM images of the fibre laser irradiated surface of the Si3N4 engineering ceramic by using 

Ar assist gas in (a), (b) and (c) the interface between the HAZ and the laser treated zone and (d) the 

HAZ. 

 

A chemical change has been observed on all surfaces treated by the fibre laser irradiation by using 

the variety of assist gases. Evidence of surface oxidation is also found with all treated samples. 

However, the effects are remarkable from using reactive gases in particular O2. The sample treated in 

ambient condition by using no assist gas also showed similar results to that of the O2 and compressed 

air assist gases. Over all, the increase in C and O2 content has been seen for all laser processing 

gasses used (see Figure 5.14). This formed a new surface layer. From the five different conditions 

used, C, O2 and Si as elements all appear within the treated surfaces to some extent. Owing to this, it 

can be said that a change in composition has taken place as the fibre laser irradiated surfaces of the 

Si3N4 engineering ceramic were altered to form SiO2. The formation of SiO2 was also discussed by 

Lysenko et al. [122], who reported that the SiO2 results from heating silicon at elevated temperature 

(1600
°
C). The temperature during fibre laser processing in this study from using any of the gas 

compositions was much higher than 1600
°
C. This is evident from the topographical and the 

microscopic images where melt zones were found. This indicated that the formation of the SiO2 layer 

was unavoidable even by using less reactive assist gases such as Ar and N2. 

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

132 

 

 

Figure 5.14 Chemical composition of the Si3N4 engineering ceramic in the as-received state and after 

fibre laser irradiation by using the different assist gas compositions. 

 
5.3.2 Fibre Laser Surface Treatment of ZrO2 Engineering Ceramic 

5.3.2.1 Investigation of the HAZ of the fibre laser irradiated ZrO2 engineering ceramic 

It was found that a change in the surface hardness had occurred from measuring the hardness of the 

fibre laser irradiated surface of the ZrO2 engineering ceramic. The hardness changed from within the 

laser unaffected zone to the HAZ and the fibre laser irradiated zone with all conditions applied. The 

hardness values are given in Table 5.4 and the depth of the diamond penetration in Table 5.5 for the 

various fibre laser irradiated surfaces ZrO2 ceramics. It was found that the laser irradiated zone 

comprised of the softest surface layer. The hardness increased as the diamond indentation induced 

into the heat affected region. The interface between each zones and the untreated surface layer is also 

presented in Figure 5.15 where an example of the fibre laser irradiated surface by using the O2 assist 

gas on the ZrO2 is presented. The hardness was reduced to an average of 776 HV with the lowest 

being 756 HV and the highest being 945 HV, within the laser irradiated track as shown in the 

example in Figure 5.15. The hardness changed as the indenter was induces on the outer edges of the 

track and ranged between 1000 to 1200 HV for ZrO2 ceramic. The induced diamond on the laser 

unaffected zone (as-received) surface was again different to that of the laser treated zone and the 

HAZ. The hardness on the laser unaffected zone was found to range between 1200 HV and 1250 

HV. Table 5.4 shows the average, standard deviation and the range of the hardness values found 

within the respective zones investigated by using the five different treatment conditions. The change 

in the hardness over the fibre laser irradiated zone and the laser unaffected area established the 

position of the HAZ, the laser irradiated zone and the interface between each region on the surface of 

the ZrO2 engineering ceramic. 
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 Figure 5.15 SEM image of the fibre laser irradiated surface by using O2 assist gas, showing the 

HAZ, the laser unaffected zone as well as the interfaces between each zones for the ZrO2 engineering 

ceramic. 

 
 Table 5.4 Change in the average hardness, STDEV and the range of hardness values found for the 

fibre laser irradiated zone (track) by using various assist gases, fibre laser unaffected zone and the HAZ 

of the ZrO2 engineering ceramic. 

 

Assist 

gases 

Hardness values in various areas on the surface of the ZrO2 engineering ceramic 

Laser unaffected zone Fibre laser irradiated track HAZ 

Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range 

O2 1270 

 

50 

 

1226 - 

1325 

 

944 

 

32 

 

797 - 

974 

 

1233 

 

150 

 

1047 -

1405 

 

Ar 1257 

 

70 

 

1139 - 

1337 

 

1070 

 

74 

 

970 - 

1104 

 

1234 

 

59 

 

1129 - 

1274 
 

Compre

ss-ed air 

1205 

 

46 

 

1160 - 

1263 

 

1037 29 1256 - 

1171 

1206 

 

75 

 

1104 -  

1261 

N2 1211 

 

47 

 

1261 - 

1160 

 

1076 
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1104 - 

1261 

 

1217 

 

36 

 

1170 -  

1256 

Ambient 

air (no 

assist 

gas) 

1239 

 

97 

 

1119 - 

1377 

 

993 

 

29 

 

957 - 

1016 

 

1209 

 

139 

 

1029 -  

1406 
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Table 5.5 Depth of penetration by the Vickers diamond indentation at 30 kg load inhibited on the 

fibre laser irradiated surfaces of the ZrO2 engineering ceramic treated by using various assist gases. 

 

Assist gases Depth of 

penetration (µm) 

O2 30.55 

Ar 29.65 

Compressed air 31.77 

N2 30.37 

Ambient air 31.24 

 

5.3.2.2 The topographical effects of the fibre laser surface treatment of the ZrO2 engineering 

ceramic by using various processing gases  

Figure 5.16(a) presents topographical image of the fibre laser irradiated surface of the ZrO2 ceramics 

by using various assist gas. The thermal energy induced by the fibre laser has led to some 

discoloration as shown in Figure 5.16(a-e). The discoloration of the laser irradiated ZrO2 is expected 

due to the thermal energy induced. Thermal exposure of the ZrO2 at elevated temperatures of over 

2500
◦
C would decompose and transpose the ceramic to black. In this case, the fibre laser irradiated 

ZrO2 has transformed from white to light grey (as shown in Figure 5.16(a-e)). Melting of the surface 

is not apparent from the topographical images. However, further analysis by using the SEM has 

revealed some degree of surface melting which can allow one to postulate that the surface 

temperatures at the fibre laser-ZrO2 interface would have ranged from 2300
◦
C to 2500

◦
C. The surface 

fibre laser irradiated by using the O2 assist gas produced 73µm of material removal from the top 

(near) layer. This was the highest when compared to other conditions. This was because of the O2 

being a highly active gas which produced an exothermic reaction and supported the blackening of the 

near surface layer of the ZrO2 ceramic. The surface finish found with the treated zone was 0.745µm 

(Ra). This was much smoother than the as-received surface indicating that the surface finish was 

enhanced after the fibre laser irradiation by using the O2 assist gas. This is because the O2 assist gas 

is much more reactive than other gas compositions. This would enhance the fibre laser-ceramic 

interaction which and would inherently generate higher processing temperature and create partial 

melting of the ceramic which is somewhat smother than the as-received surface layer. The result in a 

previous investigation by Minami et al. and Lawrence et al. also described O2 to be a highly active 

assist gas for laser processing of ceramic tile grout.  

 
The surface finish of the laser treated ZrO2 by using compressed air (see Figure 5.16 (b)) was 

0.561μm (Ra). The materials removal was up to 65μm. The surface finish was enhanced in 

comparison with the as-received surface. Though, it was not significantly different to the sample 

fibre laser irradiated by using O2 assist gas. This was because the compressed air has similar 
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composition to that of the O2 assist gas. This resulted in producing similar effects. The fibre laser 

treated track was found to be significantly large also along with a large HAZ in comparison to those 

surfaces fibre laser irradiated by using Ar and N2 assist gases.  

 
The surface of the sample fibre laser irradiated by using an N2 assist gas (see Figure 3(c)) was 

0.532μm (Ra). This showed little difference in comparison with the samples fibre laser treated by 

using the other gases. The surface finish was improved after the fibre laser treatment in comparison 

with the surface of the as-received sample. The material removal was slightly lower in comparison 

with the sample treated by O2 and was up to 62μm. This was due to the N2 assist gas being less 

reactive in comparison to O2. Therefore, would produce less of the interaction between the fibre laser 

and the ZrO2 engineering ceramic. Moreover, the processing temperature by using N2 is also lower 

compared to the O2 as an example. This would generate less heat and lower ablation.   

 
The sample fibre laser irradiated by using an Ar assist gas also presented similar effects to those 

observed when using N2 assist gas. This was perhaps to be expected as Ar is also an inert gas and 

would characteristically generate less of a reactive interaction zone between the fibre laser and the 

ZrO2 engineering ceramic surface. The materials removal was 60μm with a surface finish of 

0.469μm (Ra). The laser surface treatment using no assist gas (see Figure 5.16(d)) produced the 

roughest surface finish. The surface roughness value found was 0.736μm (Ra). Materials removal in 

this case was up to 63μm. This proved to be similar when compared to the other samples fibre laser 

irradiated by using reactive gases. This was due to the laser beam alone coupling with the 

atmospheric gas molecules to form a similar effect on the ZrO2 ceramic as no assist gas was applied 

to compliment the surface treatment. The effects of the material removal, the surface finish and the 

surface topography of the fibre laser irradiated surface of the ZrO2 engineering ceramic by using 

various assist gas compositions are presented in Table 5.6. 

 

 

(a) 
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(b) 

 

 

(c) 

 

 

(d) 

 

 

 (e) 

 Figure 5.16 Topographical images of the surface profile of the ZrO2 engineering ceramic treated 

with fibre laser irradiation when employing (a) an O2 assist gas, (b) a compressed air assist gas, (c) a N2 

assist gas, (d) an Ar assist gas and (e) ambient air (no assist gas).  
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 Table 5.6 Effects of the material removal, the surface finish and the surface topography of the 

surface treated with the fibre laser irradiation of the ZrO2 engineering ceramic by using various assist 

gas compositions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2.3 Microscopic analysis and the effect of the fibre laser irradiation by using the various assist 

gases on the chemical composition of the ZrO2 engineering ceramic 

5.3.2.3.1 O2 assist gas  

The surface of the sample fibre laser irradiated when an O2 assist gas was employed produced some 

melting of the top surface layer (see Figure 5.17). The grain boundaries herein had begun to close off 

and bind together. This inherently, produces an interlocking microstructure and enhanced the surface 

strength and resistance to fracture. This finding complimented the one in Chapter 6. The 

compositional analysis showed that the C content within the ceramic was increased to 12.77 wt% 

compared to the as-received sample by over 50%. This indicated that the laser processing resulted to 

the ceramic comprising of the C content because the C content generally existing in the atmosphere. 

The content of O2 maintained in the same region to the as-received surface and was 24.49 wt% and 

Zr was 62.74 wt% as further presented in Figure 5.22. 

 Material 

removal 

(μm) 

Surface 

finish (Ra) 

μm 

Topography 

Presence 

of 

oxidation 

Porosity Treated 

Zone 

HAZ 

As-received 

surface 

N/A 1.56 low Minimal N/A N/A 

Fibre laser 

treatment by 

using O2 

73 0.74 low Minimal Large 

footprint 

Large 

Fibre laser 

treatment by 

using 

compressed 

Air 

65 0.56 low Minimal Large 

Footprint 

Large 

Fibre laser 

treatment by 

using N2 

62 0.53 low Minimal Fine 

Footprint 

Small 

Fibre laser 

treatment by 

using Ar 

60 0.46 low Minimal Fine 

footprint 

Small 

Fibre laser 

alone 

treatment (no 

gas) 

63 0.73 low Minimal Large 

footprint 

Large 
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 Figure 5.17 SEM image of the surface of a ZrO2 engineering ceramic fibre laser irradiated by 

using an O2 assists gas at x 500 resolution. 

 

5.3.2.3.2 Compressed air assist gas  

With using the compressed air as a processing gas, it was found that there was also some degree of 

surface melting that occurred during the laser-ZrO2 interaction. This is shown on Figure 5.17(a) and 

(b), where the agglomerate boundaries have also begun to bond and interlock as the surface had 

partially melted. The C content increased to 9.52 wt% when compared to the laser unaffected 

surface. The O2 content remains similar to that of the as-received surface and Zr content was 65.22 

wt% (see Figure 5.22). 

 

  

 Figure 5.17 SEM image of the surface of a ZrO2 engineering ceramic sample fibre laser irradiated 

by using compressed air assist gas at (a) x 500 and (b) x 3000 resolution. 

 

5.3.2.3.3 N2 assist gas  

From observing the SEM images in Figure 5.19(a) and Figure 5.19(b) it can be gathered that the 

surface fibre laser irradiated with an N2 assist gas showed the least amount of laser-material 

interaction. This was due to the surface melting (in this case) being minimal in comparison with 
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other samples. Yet, the gap between the agglomerate boundaries has decreased in comparison to the 

as-received surface, but generated minimal amount of material removal. The compositional analysis 

as presented in Figure 5.22 showed 12.76 wt% C, 22.73 wt% O2 and 64.41 wt% Zr. The C content in 

this case increased with O2. Thus, N2 decreased in comparison to the as-received surface. The 

increase in the C content may have occurred during the melting, vaporization and material removal 

of the ZrO2 engineering ceramic. 

 

  

 Figure 5.19 SEM image of the surface of a ZrO2 engineering ceramic sample fibre laser irradiated 

by using N2 assist gas at (a) x250 and (b) x3000 resolution. 

 

5.3.2.3.4 Ar assist gas  

The surface morphology of the sample fibre laser irradiated with an Ar assist gas showed 

considerable amount of modification to the near surface layer as shown in Figure 5.20(a) and Figure 

5.20(b). The agglomerate boundaries showed some melting and redistribution. This had closed off 

the gaps that existed prior to the fibre laser surface treatment. This is markedly apparent in the 

sample treated by the fibre laser irradiation with an Ar assist gas in comparison to those treated under 

the other assist gases. Moreover, strengthening of the surface could occur due to a possibility of a 

phase transformation during heating (from ambient conditions) and close to melting temperature. 

This would have led phase transformation from the M-phase to the T-phase at around 1200ºC 

followed by a possible change to the C-phase (see Chapter 7 for phase transformation).  Thus, during 

the transformation from M-phase to T-phase would have led to the binding of the agglomerate 

boundaries and enhanced surface strength. This was also documented in the work of Sakuma et al. 

[123], who showed that the fracture strength was achieved during an active dual phase 

transformation of T+M phase within a ZrO2 ceramic during a sintering process. This in comparison 

with the other samples was the most influenced sample by the fibre laser irradiation when 

microstructure modifications are considered. This showed that the interaction of Ar with the other 

samples was better in surface modification ZrO2 ceramic. The compositional study (see Figure 5.22) 

revealed 23.70 wt% O2, 9.94 wt% C, and 66.36 wt% Zr. 
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 Figure 5.20 SEM image of the surface of a ZrO2 engineering ceramic sample fibre laser irradiated 

by using an Ar assist gas at (a) x500 and (b) x3000 resolution. 

 
5.3.2.3.5 Ambient air (no gas) 

The fibre laser irradiated sample in ambient air (see Figure 5.21(a) and Figure 5.21(b)) proved to be 

less reactive as the gaps between the agglomerate boundaries were not greatly affected particularly 

when compared to samples treated by Ar, O2, and compressed air. The samples fibre laser irradiated 

with N2 illustrated similar results but in that case, the material removal and the surface roughness 

were both slightly higher. This indicated that the more interaction between the fibre laser and the 

ZrO2 had also occurred.  Hence, it can be summarized that the processing gas of a particular 

composition is required in order to achieve a considerable amount of effect during the fibre laser 

irradiation when micro-structural modifications are considered. The composition found on the fibre 

laser alone treated samples was 17.91 wt% C, 23.42 wt% O2 and 57.66 wt% Zr as presented in 

Figure 5.22. The carbon content was the highest and Zr content was the lowest for this sample in 

comparison to all other samples. The content of Zr was found to have reduced in comparison to the 

as-received surface after the fibre laser surface treatment was performed by using ambient air and all 

other assist gases. The discolouration of all the surfaces (see Figure 5.16(a-e)) was a good indication 

of this to have occurred. This was because of the induction of the thermal energy as well as 

generation of the C content being absorbed within the top layer of the ZrO2 engineering ceramic 

would have led the fibre laser treated surfaces to change colour and blacken.  
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 Figure 5.21 SEM image of the ZrO2 engineering ceramic irradiated with fibre laser alone (no-

assist gas) by using no processing gas, (a) at x500 and (b) x3000 resolution. 

 

 

 Figure 5.22 Chemical composition of the ZrO2 engineering ceramic for the as-received, fibre laser 

alone and fibre laser treated surface by using different gases. 

 

5.3.3 CO2 Laser Surface Treatment of the Si3N4 Engineering ceramic 

5.3.3.1 Investigation of the heat affected zone (HAZ) of Si3N4 engineering ceramic  

By measuring the surface hardness of the CO2 laser irradiated surface of the Si3N4 ceramic it was 

found that the CO2 laser treatment resulted in a change in the surface hardness on the various zones 

of the Si3N4. This was also found for the fibre laser irradiated surface of the Si3N4 engineering 

ceramic. The hardness changed from within the untreated zone to the HAZ and the CO2 laser 

irradiated zone. An example of the hardness values are given in Figure 5.23 and are further presented 

in Table 5.7. The CO2 laser irradiated zone comprised of the softest surface layer. The hardness 

increased as the diamond indentation induced into the heat affected region, the interface between 

each zones and the untreated surface layer. The example shown in Figure 5.23 for the CO2 laser 

irradiated surface by using compressed air showed that the hardness was reduced to 967 HV on the 

track and ranged between 730 to 1079 ±10% HV on the outer edges of the CO2 laser treated track. 
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The hardness increased along the edges of the track indicating that the respective surface layer was 

less influenced. The untreated surface (see Figure 5.23) on both sides of the track, ranged from 1400 

to 1600 HV ±10% HV. 

 

 

 Figure 5.23 SEM image presents an example of the CO2 laser irradiated surface of the Si3N4 by 

using compressed air showing the fibre laser unaffected surface, fibre laser irradiated surface and the 

HAZ. 

 

The penetration depth of the Vickers diamond indentation for the various surfaces irradiated by the 

CO2 laser and the different assist gases is presented in Table 5.8. Similarly to the fibre laser 

irradiated surfaces of the Si3N4 engineering ceramic; the CO2 laser irradiated surface has also 

produced variation in the depth of the diamond indentation when using a 30 kg indentation load.  

This was also due to the formation of the SiO2 layer. With the CO2 laser irradiated surface, the SiO2 

layer was thicker and more distinct in comparison to that of the fibre laser irradiated surface of the 

Si3N4. Therefore, asperities and the changes in the surface morphology with the different gas 

compositions used were more extreme. The diamond indentation penetrated into the CO2 laser 

irradiated surface in this case was the deepest for the CO2 laser irradiated sample with compressed 

air followed by ambient air, O2, N2 and Ar being the lowest. Evidence of the SiO2 layer can be found 

on each of the surface of the CO2 laser irradiated track by using the different conditions. The change 

in the diamond indentation depth has occurred due to the variation in the thickness of the SiO2 

surface. The values in Table 5.7 correlates with the amount of O2 content the CO2 laser irradiated 

surfaces of the Si3N4 engineering ceramic has (see Figure 5.34). Increase in the O2 content results to 

the SiO2 layer being thicker and appears to be considerably softer to the laser unaffected surface (as-

received) of the Si3N4. This had also occurred in comparison to the fibre laser irradiated surface of 

the Si3N4. Though, the softening effect of the CO2 laser irradiated surface was much higher and the 
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hardness was also much lower for the CO2 laser irradiated surface in comparison to the fibre laser 

irradiated surface. The reason for the larger laser being produced by the CO2 laser surface treatment 

was because of more laser material interaction occurring at the surface of the Si3N4 ceramic in 

comparison to the fibre laser.   

 
 Table 5.7 Showing the change in the average hardness, STDEV and the range of hardness values 

found for the CO2 laser irradiated zone (track) by using various assist gases, CO2 laser unaffected zone 

and the HAZ of the Si3N4 engineering ceramic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5.8 Depth of penetration by the Vickers diamond indentation at 30 kg load induced on the CO2 

laser irradiated surfaces of the Si3N4 treated by using various assist gases. 

Assist gases Depth of 

penetration (µm) 

    O2 42.31 

    Ar 40.75 

Compressed air 42.57 

    N2 41.74 

Ambient air 42.47 

 
5.3.3.2 The effects of the CO2 laser surface treatment by using various assist gases on 

topographical characteristics 

5.3.3.2.1 O2 assist gas  

The topography of the CO2 laser surface treatment of the Si3N4 engineering ceramic by using the O2 

assist gas is presented in Figure 5.24. The profile of the track shows a complete modification to the 

surface by formation of the oxide layer. This in comparison to that of the fibre laser treated sample 

by using O2 assist gas is similar, but is more significant in terms of the width of the track and depth 

Assist 

gases 

Hardness values in various areas on the surface of the Si3N4 engineering ceramic 

Laser unaffected zone CO2 laser irradiated track HAZ 

Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range 

O2 1471 102 1377 - 

1643 

970 30 919 -

999 

1371 62 1273 - 

1433 

Ar 1513 52 1574 - 

1463 

974 76 790 - 

1099 

1419 79 1324 - 

1557 

Compress

-ed air 

1470 

 

75 

 

1377 - 

1557 

 

917 

 

166 

 

730 -  

1099 

1411 

 

33 

 

1377  

- 1463 

N2 1452 

 

70 

 

1377 - 

1549 

 

977 

 

96 

 

749 - 

1079 

1396 

 

74 

 

1509 - 

1311 

Ambient 

air 

1501 

 

102 

 

1405 - 

1643 

946 63 

 

749 - 

1016 

1433 

 

106 1541 - 

1261 
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of the oxide layer. Material removal of up to 560μm and surface roughness of 5.60μm was found as 

presented in Table 5.9. This in comparison with any other samples showed the highest materials 

removal as well as the surface roughness. This was due to the O2 gas being more reactive along with 

the surface interaction of the Si3N4 ceramic with the CO2 laser in terms of the wavelength was 

considerably higher in comparison to the fibre laser. The laser treated zone also showed high level of 

discolouration indicating that the surface was oxidized along with formation of porosity as further 

presented in Figure 5.24.  

  

  

Figure 5.24 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

CO2 laser irradiation by using O2 assist gas. 

 

5.3.3.2.2 Compressed air assist gas  

Surface profile of the Si3N4 ceramic irradiated by the CO2 laser by using compressed air is illustrated 

in Figure 5.25 and showed a much smother surface finish (2.19μm (Ra)). The materials removal was 

up to 124μm and was smaller than that of the O2/CO2 laser treated sample. Considerable amount 

difference in the material removal was found when compared to the sample CO2 laser irradiated by 

using O2 assist gas. This occurred due to O2 being more reactive than compressed air. Sufficiently 

thick oxide layer was produced from the CO2 laser irradiated surface of the Si3N4 ceramic by using 

the compressed air assist gas. This in comparison to the surface treated with other conditions was 

thicker except the sample CO2 laser irradiated by using the O2 assist gas. The surface finish had 

become smoother in this instance in comparison to the sample CO2 laser irradiated with O2 assist gas 

and had possibly occurred as there was much lower material removal. This in turn, would have led to 

producing a lower surface roughness in comparison. However, in any case the CO2 laser produced a 

rougher surface finish in comparison to the as-received surface. This was due to the uneven oxide 

layer created which was thicker in some areas than others.  
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Figure 5.25 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

CO2 laser irradiation by using compressed air assist gas. 

 

5.3.3.2.3 N2 assist gas  

The CO2 laser irradiated surface by using the N2 assist gas is presented in Figure 5.26 and showed 

over 121μm of material removal and a surface finish of 1.03μm (Ra). Both values were much bigger 

in comparison with the surface treated by the Ar but not O2 or compressed air. From observing the 

CO2 laser treated track; it can be seen that the depth of the track was not significantly large as 

opposed to the other CO2 laser irradiated samples of the Si3N4 by using the various assist gases. The 

surface roughness was somewhat enhanced in comparison to the as-received surface and the CO2 

laser irradiated surface of the Si3N4 ceramic by using all the gases except Ar. The effect of oxidation 

in general was also smaller in this sample in comparison to the more reactive gases such as O2, 

compressed air and ambient air.   

 

 

Figure 5.26 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

CO2 laser irradiation by using N2 assist gas. 

 

5.3.3.2.4 Ar assist gas  

CO2 laser treatment of Si3N4 by using Ar produced over 110μm of material removal. The roughness 

found after the treatment was 0.60μm (Ra). This was the smoothest from all the samples and 

comprised of the lowest material removal. The surface had changed colour and was affected by 

oxidation but the effect was somewhat smaller in comparison to the reactive gases. This was so due 

to the Ar being an inert gas. It can be observed from Figure 5.27 that the surface was not affected by 

oxidation in comparison to the samples treated by the reactive gases. This is expected as Ar being an 
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inert gas would have minimized the effects caused by the atmosphere that are present in the other 

treated samples. 

   

  

Figure 5.27 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

CO2 laser irradiation by using Ar assist gas. 

 

5.3.3.2.5 Ambient air (no assist gas) 

Figure 5.27 illustrates the topographical view of the CO2 laser irradiated surface by using the 

ambient air assist gas. Considerable amount of oxidation was also gathered within the CO2 laser 

irradiated track and with significant level of deformation of the surface where the laser beam made 

the interaction. The materials removal for this particular sample was 153μm with a surface roughness 

of 3.60μm (Ra). The surface roughness and the material removal were both second highest for this 

sample, followed by the sample CO2 laser irradiated by using O2 assist gas.    

 

  

Figure 5.27 A 3-D topographical image of the surface profile of the Si3N4 engineering ceramic treated by 

CO2 laser irradiation by using laser alone assist gas. 
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Table 5.9 The effects of the material removal, the surface finish and the surface topography of the CO2 

laser irradiated Si3N4 engineering ceramic surfaces treated by using various assist gas compositions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.3.3.3 The effects of the CO2 laser irradiation by using various assist gases on morphological 

characteristics, microstructure and chemical composition 

5.3.3.3.1 O2 assist gas  

The formation of porosity after the CO2 laser surface treatment has also occurred and is presented by 

the SEM micrograph in Figure 5.29. This surface in comparison with the surface of the as-received 

Si3N4 (see Figure 5.1) shows a significant difference after the CO2 laser treatment. It can be gathered 

that surface melting has occurred when comparing the laser treated and as-received surfaces. The 

overall surface roughness has increased due to the formation of porosity and formation of the uneven 

oxide layer. From comparing the SEM images of the fibre laser irradiated surface of the Si3N4 with 

O2 assist gas (see Figure 5.9) and the CO2 laser irradiated Si3N4 with O2 assist gas (see Figure 5.29), 

it is found that the effects of the CO2 laser surface treatment were greater than that of the fibre laser 

on the surface as a larger laser affected zone was discovered. The compositional analysis showed the 

surface comprised of 42.25 wt% O2, 22.57 wt% C, and 35.16 wt% Si as presented in Figure 5.34. 

The content of O2 was much higher from all the elements found within the CO2 laser irradiated 

sample by using O2 assist gas. This in comparison with the as-received surface was somewhat 

Condition 

 

Material 

removal 

(μm) 

Surface 

finish (Ra) 

μm 

Topography 

Presence 

of 

oxidation 

Porosity Treated 

Zone 

HAZ 

As-received 

surface 

N/A 1.57 No Minimal N/A N/A 

CO2  laser 

treatment 

using O2 

560 5.60 High Average Large 

footprint 

Large 

CO2  laser 

treatment 

using 

compressed 

Air 

124 2.19 High High Large 

footprint 

Large 

CO2  laser 

treatment 

using N2 

121 1.03 Very Low Minimal Fine 

footprint 

Small 

CO2  laser 

treatment 

using Ar 

110 0.60 Very Low Minimal Fine 

footprint 

Small 

CO2  laser 

ambient air 

(no gas) 

153 3.60 High Very High Large 

footprint 

Large 
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different as N2 was lost after the treatment along with increase in the O2 content and decrease in the 

C content. The results herein agrees with the results found with the work conducted by Lawrence et 

al. [116] and Minami et al. [114] by using the HPDL.  

 

 

Figure 5.29 SEM images of the CO2 laser alone irradiated surface of the Si3N4 engineering ceramic by 

using O2 assist gas at (a) ×500 magnification and (b) ×3000 magnification. 

 

5.3.3.3.2 Compressed air 

The formation of pores on the surface of the CO2 laser irradiated Si3N4 ceramic by using the 

compressed air assist gas can be seen from Figure 5.30(a). Modification of the surface morphology is 

also evident as the oxide layer has been formed on the top surface layer after the CO2 laser surface 

treatment was conducted by using the compressed air assist gas. The compositional analysis showed 

that 42.26 wt% O2, 21.77 wt% C, and 35.96 wt% Si was found. The O2 content was not much 

different to that of the sample CO2 laser irradiated by using the O2 assist gas.  

 

 

Figure 5.30 SEM images of the CO2 laser alone irradiated surface of the Si3N4 engineering ceramic by 

using compressed air assist gas at (a) ×500 magnification and (b) ×3000 magnification. 
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5.3.3.3.3 N2 assist gas 

The SEM image in Figure 5.31 shows that the surface of the CO2 laser irradiated sample of the Si3N4 

ceramic by using N2 gas assist. The CO2 content within this sample was one of the lowest as the N2 

being a non-reactive gas would have minimized the oxide layer that was present in the samples CO2 

laser irradiated with reactive gases.  The O2 content found was 25.67 wt% which was somewhat 

higher in comparison to the as-received surface, but this is expected as the Si3N4 generally has the 

tendency to oxidize when placed in at atmospheric conditions at high temperature such as the laser 

treatment. The C content was reduced to 20.52 wt% in comparison with the as-received surface and 

Si was found to be 36.77 wt% and was different to the samples CO2 laser irradiated by using O2 and 

compressed air assist gases as more of the Si atoms had oxidized in comparison.    

 

 

 Figure 5.31 SEM images of the CO2 laser alone irradiated surface of the Si3N4 engineering ceramic 

by using N2 assist gas at (a) ×500 magnification and (b) ×3000 magnification. 

 

5.3.3.3.4 Ar assist gas 

The Si3N4 surface CO2 laser irradiated with Ar assist gas in Figure 5.32 was somewhat similar to the 

CO2 laser irradiated with N2 assist gas. The surface, however, comprised of porosity which did not 

exist prior to the CO2 laser treatment when compared to the as-received surface. The CO2 laser 

treatment has also developed a level of oxide layer but was much thinner in comparison to the one 

produced by the more reactive gases. The compositional analysis showed that there was 16.07 wt% 

C, 21.41 wt% O2 and 62.49 wt% Si. This treated sample had shown the lowest O2 content from all 

the Si3N4 samples treated with the CO2 laser by using the various conditions. This further confirmed 

that with using the inert gas would be more protective from atmospheric effects which the Si3N4 

would otherwise undergo. The C was also reduced in comparison to the as-received and other treated 

samples. In addition, the content of Si was found to be the highest, which meant that the Si atoms 

were not disturbed and remained unchanged. Ar as a protective gas has worked well with 

conjunctions to the laser beam in order to form a protective surface treatment as well as finer track 

when compared to the other conditions applied with the CO2 laser.  
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Figure 5.32 SEM images of the CO2 laser alone irradiated surface of the Si3N4 engineering ceramic by 

using Ar assist gas at (a) ×500 magnification and (b) ×3000 magnification. 

 
5.3.3.3.5 Ambient air (no assist gas)  

The sample CO2 laser irradiated with using the no assist gas had produced the most porous surface as 

shown in Figure 5.33. Due to lack of assist gas being introduced at the laser-Si3N4 interface, it is 

possible that the surface temperature herein was somewhat higher in comparison to the samples CO2 

laser irradiated with other conditions. This is why the material removal in this sample was also one 

of the highest in comparison to the CO2 laser irradiated sample by using other conditions. The CO2 

laser has considerably exposed the pores within this sample which is not seen to that affect in other 

samples. The Si content for this sample had reduced after the CO2 laser irradiation to 22.34 wt%, 

with O2 increasing to 30.74 wt% in comparison to the as-received surface. Highest amount of C 

content (46.93 wt%) was found in this sample which can be said to have occurred from the lack of 

gas applied during the interaction between the CO2 laser and the Si3N4.      

 

 

 Figure 5.33 SEM images of the CO2 laser alone irradiated surface of the Si3N4 engineering ceramic 

by using no assist gas at (a) ×500 magnification and (b) ×3000 magnification. 
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Figure 5.34 Chemical composition of the Si3N4 engineering ceramic in the as-received state and after 

CO2 laser irradiation by using the different assist gas compositions. 

 

5.3.4 CO2 Laser Surface Treatment of ZrO2 Engineering ceramic  

5.3.4.1 Investigation of the Heat Affected Zone (HAZ) of the ZrO2 Engineering Ceramic  

From measuring the hardness of the CO2 laser irradiated surface of the ZrO2 engineering ceramic, it 

was found that a change in the surface hardness had also occurred. The hardness changed from 

within the laser unaffected zone to the HAZ and the fibre laser irradiated zone with all conditions 

applied. The hardness values are demonstrated in Table 5.35 for the ZrO2 ceramics. This was similar 

to the effect produced by the fibre laser irradiation as the CO2 laser irradiated zone also comprised of 

the softest surface layer. However, the hardness has decreased more in the case for the CO2 laser 

irradiated sample in comparison to that of the fibre laser. As the diamond indentation induced into 

the HAZ, the hardness began to increase. The interface between each zones and the untreated surface 

layer are not shown in Figure 5.35. This is because the whole image covers the CO2 laser irradiated 

area though the HAZ and the as-received surface are both indicated for the ZrO2 ceramic CO2 laser 

treated by using ambient air assist. The hardness was decreased from an average of up to 1250 HV to 

an average of up to 614 HV with the lowest being 579 HV and the highest being 639 HV within the 

CO2 laser irradiated track as shown in the example in Table 5.10. The induced diamond on the laser 

unaffected zone (as-received) surface was remarkably different to that of the laser treated zone. The 

HAZ and was found to range between 1200 HV and 1250 HV. The HAZ showed increase in 

hardness from the CO2 laser irradiated track, but was somewhat lower than that of the laser 

unaffected zone. Table 5.9 shows the average hardness, standard deviation and the range of the 

hardness values found within the respective zones investigated by using the five different laser 

surface treatment conditions. The change in the hardness over the CO2 laser irradiated zone and the 

laser unaffected area established the position of the HAZ, the laser irradiated zone and the interface 
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between each region on the surface of the ZrO2 engineering ceramic. The SEM image in Figure 5.35 

shows a profile of the Gaussian shaped beam in the centre part of the image. Though, a large part of 

the image is laser treated since the beam is of 3mm diameter which covers most of the surface shown 

in Figure 5.35. However, the part in the centre is partially melted due to the footprint of the Gaussian 

shaped beam producing partial melting in the central area (just under a 1mm) but not the whole 

diameter of the beam.  

 
The microstructure of the surface presented in Figure 5.35 is somewhat different to that presented in 

the latter part of the thesis (see Figure 8.7, Chapter 8). This is because the SEM images in this 

Chapter represents the unpolished laser treated surfaces of the ZrO2 engineering ceramics, whereas 

the FEGSEM images in presented in Chapter 8 shows the ground, polished and thermal etched 

surface. Thermal etching herein was not conducted due to inaccessibility of a correct technology and 

equipment generally used for etching ceramics to reveal the microstructure during that time.  

 
Furthermore, a spray drying step is used for the preparation of the ceramic powders for processing. 

In this step the powders dispersed in a liquid medium is sprayed into hot air so that the droplets will 

dry leading to the formation of spherical agglomerates. These agglomerates improve the flow-ability 

of the powder and would inherently increase the processing speed during the preparation of the green 

body (ceramic products) by pressing. It is then sintered to get the final product (the rectangular bar in 

Figure 4.1 used for the work in this thesis). The agglomerates would generally crush during the 

preparation of the green body by pressing. But, this is not always the case. Some agglomerates will 

only get flattened especially those near the surface of the sample as presented in the SEM images of 

the ZrO2 engineering ceramic. The lower magnification image in this Chapter shows these 

agglomerates in comparison to the FEGSEM images. The grains are further seen with higher 

magnification for the ZrO2 once by observing through the agglomerates as shown in the images in 

Chapter 8 for the ZrO2 engineering ceramic.  
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Figure 5.35 SEM image of the CO2 laser irradiated surface by using O2 assist gas; showing the HAZ, the 

laser unaffected zone as well as the interfaces between each zones for the ZrO2 engineering ceramic. 

 
Table 5.10 The change in the average hardness, STDEV and the range of hardness values found for the 

CO2 laser irradiated zone (track) by using various assist gases, CO2 laser unaffected zone and the HAZ 

of the ZrO2 engineering ceramic.  

 

Assist 

gases 

Hardness values in various areas on the surface of the ZrO2 engineering ceramic 

Laser unaffected zone CO2 laser irradiated track HAZ 

Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range Average 

hardness 

(HV) 

STDEV Range 

O2 1277 

 

71 

 

1204 - 

1391 

 

639 

 

37 

 

670 -

576 

 

1195 

 

37 

 

1149 - 

1250 

 

Ar 1231 

 

101 

 

1149 - 

1391 

 

697 

 

70 

 

570 - 

701 

 

1176 

 

77 

 

1261 - 

1052 

 

Comp-

ressed 

air 

1203 

 

56 

 

1261 - 

1149 

 

 

610 

 

14 

 

590 - 

626 

 

1159 

 

45 

 

1099 - 

1203 

 

N2 1254 

 

67 

 

1149 - 

1324 

 

655 

 

64 

 

573 

 

1143 

 

62 

 

1052 - 

1226 

 

Ambient 

air 

1219 

 

113 

 

1079 - 

1391 

 

614 

 

22 

 

579 - 

639 

 

1176 

 

129 

 

1079 - 

1391 
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Table 5.11 Depth of penetration by the Vickers diamond indentation at 30 kg load induced on the CO2 

laser irradiated surfaces of the ZrO2 treated by using the CO2 laser and various assist gases. 

 

 

 

 

 

 

 

 

 
5.3.4.2 The effects of the CO2 laser surface treatment by using various assist gases on 

topographical characteristics 

5.3.4.2.1 O2 assist gas 

The surface of the ZrO2 ceramic as presented in Figure 5.36 showed that the CO2 laser treated zone 

by using O2 assist gas was effective in terms producing surface modification as considerable 

discolouration of the surface occurred. When compared to the same surface irradiated by the fibre 

laser the effect was somewhat greater and showed that the CO2 laser wavelength was having more 

influence at least at the surface of the ZrO2 engineering ceramic. The surface in Figure 5.36 showed 

120μm of material removal and a surface finish of 0.71μm (Ra). The roughness was much smoother 

than the roughness of the as-received surface which showed that there was some degree of 

modification after the CO2 laser irradiation took place. The CO2 laser irradiated track however, by 

using the O2 assist gas was fairly broader in comparison to any other track created by the CO2 laser 

irradiation of the ZrO2. This was also the case when compared to the results of the fibre laser 

irradiated sample of the ZrO2 ceramic. 

 

 

Figure 5.36 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated by 

the CO2 laser irradiation by using O2 assist gas. 

 

Assist gases Depth of 

penetration (µm) 

    O2 42.21 

   Ar 40.05 

Compressed air 43.14 

    N2 41.74 

Ambient air 43.02 
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5.3.4.2.2 Compressed air assist gas 

The sample CO2 laser treated by using compressed air in Figure 5.37 showed that the surface had 

cracked when using the same parameters compared to the sample treated by O2 gas. The generation 

of the crack tends to occur from the thermal shock being induced from the laser surface treatment. 

However, it is indicative that the temperature at the surface during the CO2 laser interaction with 

ZrO2 ceramic and compressed air was somewhat higher than the temperature produced during the 

CO2 laser irradiated sample by using the O2 assist gas. The cracking was a result of the thermal 

shock induced from the CO2 laser treatment. However, the surface in this occasion has also changed 

form as the ZrO2 had been modified to some degree to produce an amorphous glassy mixture. The 

amount of material removal found on this surface was up to 91μm with a surface finish of 0.70μm 

(Ra).  

  

 Figure 5.37 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic 

treated by the CO2 laser irradiation by using compressed air assist gas. 

 

5.3.4.2.3 N2 assist gas 

The CO2 laser irradiated sample of the ZrO2 ceramic by using the N2 assist gas is illustrated in Figure 

5.37. The materials removal was found up to 77µm and the surface finish obtained was 0.91µm (Ra). 

This was slightly higher than the surface of the other treated sample of ZrO2 with the CO2 laser.  

 

  

 Figure 5.37 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic 

treated by the CO2 laser irradiation by using N2 assist gas. 
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5.3.4.2.4 Ar assist gas 

The CO2 laser irradiated surface by using Ar assist gas (see Figure 5.39) also showed some degree of 

surface cracking. Ar being inert gas would have resulted in the similar effect to those accrued by that 

of the N2 treated sample. Thus, cracking was somewhat more significant in comparison. The surface 

finish found with this sample was 0.77μm (Ra) and the materials removal was over 90μm. In 

comparison to the other samples CO2 laser irradiated by using N2, compressed air and O2 assist 

gases, the material removal was slightly higher but was still considerably lower than that of the as-

received surface of the ZrO2 engineering ceramic.  

 

  

Figure 5.39 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated by 

the CO2 laser irradiation by using Ar assist gas. 

 

5.3.4.2.5 Ambient air (no assist gas) 

The sample treated by using the CO2 laser in ambient air (no gas) is shown in Figure 5.40. This has 

also proved to have a significant change in the surface topography of the ZrO2 ceramic. It can be 

seen that the CO2 laser alone has created a thin layer of glassy profile through surface melting and 

solidification. However, due to no gas being applied the region of cracked area was considerably 

large and continuous due to excessive heat being inducted into the ceramic. The materials removal in 

this case was up to 79μm and the surface finish was 1.03μm. This was the highest from all ZrO2 

samples treated by using various gases by employing the CO2 laser.  
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Figure 5.40 A 3-D topographical image of the surface profile of the ZrO2 engineering ceramic treated by 

CO2 laser irradiation by using laser alone (no assist gas). 

 
Table 5.12 The effects of the material removal, the surface finish and the surface topography of the CO2 

laser irradiated ZrO2 engineering ceramic surfaces treated by using various assist gas compositions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
5.3.4.3 Microscopic analysis and the effect of the CO2 laser irradiation by using the various assist 

gases on the chemical composition of the ZrO2 engineering ceramic 

5.3.4.3.1 O2 assist gas 

From comparing the SEM images of the as-received and the CO2 laser irradiated surface by using the 

O2 assist gas, it can be observed that the formed agglomerates on the microstructure of the ZrO2 are 

affected from the CO2 laser surface treatment. The effect which occurred with the fibre laser 

treatment of the ZrO2 also occurs with the CO2 laser surface treatment. However, the surface 

presented in Figure 5.41 is much influenced by the laser treatment due to the higher wavelength 

 Material 

removal 

(μm) 

Surface 

finish 

(Ra) μm 

Topography 

Presence of 

oxidation 

Porosity Treated 

Zone 

HAZ 

As-received surface N/A 1.56 Very low Minimal N/A N/A 

CO2 laser treatment 

using O2 

120 0.71 Very low Very low Large 

footprint 

Large 

CO2 laser treatment 

using compressed Air 

91 0.70 Very low Medium Large 

footprint 

Large 

CO2 laser treatment 

using N2 

77 0.91 Very low low Fine 

footprint 

Small 

CO2 laser treatment 

using Ar 

90 0.77 Very low low Fine 

footprint 

Small 

CO2 laser alone 

treatment (no gas) 

77 1.03 Very low Medium Large 

footprint 

Large 
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exhibited with the CO2 laser. This caused more interaction to take place particularly at the surface 

where the CO2 laser-ZrO2 interaction had taken place. This was confirmed by the bigger HAZ and 

partial surface melting which pushed the agglomerates together as the agglomerate boundaries began 

to melt and bind together. The chemical analysis presented in Figure 5.46 showed that there were 

12.77 wt% C, 24.49 wt% O2, and 62.74 wt% Zr found. The C content was found to be as twice as 

much as that of the as-received surface. The O2 content remained unchanged along with Zr content 

decreasing to 6 wt% as opposed to the as-received surface.  

 

 

Figure 5.41 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using O2 assist gas at (a) x500 and (b) x3000 resolution. 

 

5.3.4.3.2 Compressed air assist gas 

From observing the SEM image in Figure 5.42 of the CO2 laser irradiated surface of the ZrO2 

ceramic by using compressed air, it can be observed that there was evidence of the agglomerate 

boundaries were melting and binding into each other as seen in Figure 5.42(a). The image at x3000 

resolution (see Figure 5.41 (b)) shows that the microstructure comprising of agglomerates are 

modified and have become much closer in comparison to the as-received surfaces and O2 treated 

sample. This meant that there was more induction of heat during the laser ceramic interaction with 

compressed air. This in turn would have generated some surface cracks by using the compresses air 

assist gas. However, the thermal energy had further melted the localized the surface which caused 

the boundaries of the agglomerates to begin to bond into each other. The elemental analysis shows 

that 9.52 wt% C, 25.26 wt% O2 and 65.22 wt% Zr was found. This in comparison with the as-

received surface did not show a significant difference except that the C content was increased by 

over 4% and the Zr content was reduced by 3% when using the compressed air as assist gas. 
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Figure 5.42 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using compressed air assist gas at (a) x500 and (b) x3000 resolution. 

 

5.3.4.3.3 N2 assist gas 

The bonding of the agglomerates was also observed within the sample CO2 laser irradiated with N2 

assist gas (see Figure 5.43). This is predicted to have occurred by localized melting of the top surface 

layer and further allowed a more interlocking microstructure. The gap between the agglomerates has 

closed off when compared with the as-received sample in Figure 5.2. The compositional analysis on 

this surface showed 22.3 wt% C, 14.96 wt% O2 and 63.01 wt% Zr. This in comparison to the ZrO2 

sample CO2 laser treated with O2 and compressed air did not differ too much. However, when 

compared to the as-received surface, the content of C was increase after the laser treatment. This was 

possibly due to the surface melting and inducing the C content into the surface by generation of the 

plasma plume that was inhibited into the engineering ceramic.   

 

 

Figure 5.43 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using N2 assist gas at (a) x500 and (b) x3000 resolution. 
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5.3.4.3.4 Ar assist gas 

Similar effects were found with the surface CO2 laser irradiated by using Ar assist gas when 

compared to the surface of CO2 laser irradiated sample by using N2. The regime of surface being 

melted was also seen since the agglomerates in this sample has also began to bond together and the 

distance between them had considerably reduced as shown in Figure 5.44(a). The compositional 

study showed that there was 17 wt% C, 16.01 wt% O2, and 65 wt% Zr. The level of the C content 

was the lowest by using Ar. However, in comparison to the as-received surface the C content was 

slightly higher, but the difference was only 2 wt%. This would have again resulted from the laser-

ZrO2 interaction as the plasma plume was absorbed into the ceramic. 

 

 

Figure 5.44 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using an Ar assist gas at (a) x500 and (b) x3000 resolution. 

 

5.3.4.3.5 Ambient air (no assist gas) 

Figure 5.45 illustrates the CO2 laser irradiated sample with ambient air (no assist gas). From 

observing the topography of the surface and the surface cracks which occurred, it was indicative that 

the due to no assistance given by the processing gas the CO2 laser-ZrO2 interaction temperature was 

considerably high. This resulted to the a bigger melt zone in comparison to that of the other treated 

samples of ZrO2 ceramic irradiated with different conditions. In addition, it resulted in changing the 

surface morphology at microscopic level as it can be seen from Figure 5.45(a) that the local surface 

has melted and created a newly formed agglomerates which further appeared to be different (see 

Figure 5.45(b)) to those of the other samples previously shown. The formation of new microstructure 

was much closer with an indication of an interlocking microstructure. This also indicated that laser 

alone processing of the ZrO2 engineering ceramic can be used to severely modify the surface profile 

and morphology of the ZrO2. The compositional analysis showed 11.45 wt% C, 17.19 wt% O2 and 

70.56 % Zr. The C content was fairly low in comparison with the surfaces CO2 laser irradiated with 

O2, N2, and compressed air but not Ar. 
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Figure 5.45 SEM image of the surface of a ZrO2 engineering ceramic sample CO2 laser irradiated by 

using no assist gas at (a) x500 and (b) x3000 resolution. 

 

 

Figure 5.46 Chemical composition of the ZrO2 engineering ceramic in the as-received state and after 

CO2 laser irradiation by using the different assist gas compositions. 

 
5.3.5 Change in Composition and the Mechanism of C Absorption After the CO2 and the Fibre 

Laser Irradiation of the Si3N4 and ZrO2 Engineering Ceramics 

From observing the behavior of the chemical elements within the Si3N4 and the ZrO2 engineering 

ceramics prior to and after the CO2 and the fibre laser surface treatment, it can be seen that all 

samples of the ZrO2 would characteristically comprise of zirconium and O2 content. This is because 

both elements form the main composition of the ZrO2 ceramic. For the Si3N4 it would be Si, N2 and 

Yi which would pre-exist within its main chemical composition. Various percentage of the main 

elements are lost within the surfaces as the C and O2 are introduced during and after the CO2 and the 

fibre laser after the laser surface treatment of the two ceramics. The C content generally exists for all 

the fibre laser irradiated surfaces and also when using the inert assist gases. Though, when using Ar 
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the C content is fairly low but unavoidable as C exits in the atmosphere and could only be avoided if 

the laser treatment was conducted in vacuum conditions. In general, it can be seen that the laser 

surface treatment has led to some degree of change in the composition of the ZrO2 to ZrC (zirconia 

carbide) due to induction of the C content and Si3N4 to SiO2 due to introduction of O2 at high 

temperatures [122]. For the ZrO2 engineering ceramic, it is indicated that through induction of 

carbon the fibre laser irradiated layer of the ZrO2 engineering ceramic would have transformed the 

ceramic to zirconia carbide (ZrC) through the induction of high carbon vacancies. Therefore, it 

indicated that the ZrO2 would have deemed to comprise less O2 content with an increased C content 

where the ZrO2 can be further classified as ZrO>2 (less than the original content of zirconia oxide). 

Furthermore, since the highest content of carbon is about 27% by observing all the conditions used, 

the ZrO2 is estimated to be about ZrO1.80. This shows a lower O2 content in comparison to the as-

received surface.    

 
The C content has generated from the event of the laser interaction with the two ceramics. This is 

illustrated by the schematic in Figure 5.47. The energy delivered by the laser would generate high 

temperature rise at the ceramic surfaces during the interaction and would further lead to generating a 

keyhole and then lead to some degree of melting, material removal through vaporization. During this 

instance, the vaporized substance mixes with the assist gas to form a plasma plume as mentioned by 

Hoffman et al. [122], Raciukaitis et al. [125] and Boulmer et al. [127]. As the plasma plume 

comprises of the gas mixture, the main source of C induction occurs from the assist gas molecules 

[127]. Moreover, the plasma plume is in close contact with the ceramic and is active with the 

atmosphere. This forms a bridge which then allows the C atoms to create bonds with the surface and 

within the sub-surface (1µm depth) of the ceramic in order to saturate into the surface and to the sub-

surface of the ceramic from the atmosphere [125]. The type of assist gas used would also influence 

the saturation of the C within the ceramic. This is because more reactive gases such as O2, 

compressed air, and ambient air would produce an exothermic reaction with increased surface 

temperatures by creating a higher interaction zone and producing a bigger plasma plume. This is 

more likely to absorb deeper into the surface of the ZrO2. This is why the C content was found to be 

high for conditions where O2 and ambient air was used when compared to the results of non-reactive 

gases such as N2 and Ar. 
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Figure 5.47 Schematic diagrams illustrating the generation of the plasma plume and C absorption within 

the surface of the Si3N4 and the ZrO2 engineering ceramics. 

  

5.3.6 Rational for the Change in Hardness  

The CO2 and the fibre laser irradiated surfaces had both softened the laser affected zone in 

comparison to the as-received surface and the HAZ of the two ceramic as presented earlier in this 

Chapter. The reduction in the hardness was more significant when O2 assist gas was used followed 

by ambient air, compressed air, Ar and N2 for both the engineering ceramics. The hardness then 

increased within the interface and the respected untreated areas. This ensured the location of the 

different zones found from the result of the laser surface treatment of the both the Si3N4 and ZrO2 

engineering ceramics. The change in hardness occurred due to the formation of the ZrC and SiO2 

within the laser treated regions. This was somewhat softer in comparison to the laser unaffected 

regions or the as-received surface of the two ceramics. Owing to this, a reduction in the surface 

hardness was found and indicated that the CO2 and fibre laser irradiated surface had softened the top 

(near) surface layer of the Si3N4 and ZrO2 by forming a modified surface layer. However, the effects 

were more significant with the results produced by the CO2 laser as the oxide layer produced by the 

fibre laser particularly on the Si3N4 ceramics was significantly thicker. The formation of the new 

surface layer for the ZrO2 ceramic occurred through partial melting, induction of carbon vacancies 

and formation of a glassy amorphous zone. This was during and after the laser/ceramic and the 

particular assist gas interaction took place as can be seen by the SEM micrographs. The Si3N4 was 

decomposed to some extent whilst being heated over 1900
°
C. During this phase, the Si3N4 has the 

tendency to react with ambience and oxidize itself to various degrees depending on its absorption of 

the wavelength applied and the processing temperature which it is exposed to. Through these aspects 

would have caused a localized ductile surfaces to have formed along with change in the surface 

composition which was softer than that of the laser unaffected zone for Si3N4 engineering ceramic.  
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The change in hardness found on both ceramics irradiated by the CO2 and fibre laser had 

demonstrated that the diamond indentation induced into the ceramic was somewhat larger as the 

laser irradiated surface had become softer than the as-received surfaces. This meant that the ceramics 

were less prone to cracking under the influence of a load or an impact. This also indicated that the 

laser treated ceramics would comprise of improved fracture resistance. This is further investigated in 

Chapter 6 which elucidated the fracture toughness property (K1c) modifications of the ZrO2 and the 

Si3N4 engineering ceramics following the CO2 and the fibre laser surface treatment.     

 

5.3.7 Selection of the Assist Gases 

The decision for choosing a particular assist gas is purely dependant on the specific needs for the 

application when considering the different effects that result from using the various assist gases. If 

large surface track is desired with high laser-ceramic surface interaction and high material removal, 

then CO2 laser by using reactive assist gas such as O2 is more desirable with both ceramics. This is 

particularly so for the ZrO2 ceramic as the CO2 laser showed considerable change in the surface 

microstructure of the ZrO2. This is because the ZrO2 is more absorbing the MIR wavelength as 

opposed to the NIR wavelength of the fibre laser. This was not the case for fibre laser processing of 

the Si3N4 engineering ceramic as considerable change was observed within the surface morphology. 

In general, the use of Ar and N2 assist gases resulted in producing the finest surface finish with a 

lower material removal. This was in comparison with the sample treated by using other conditions 

with both CO2 and fibre laser processing of the ZrO2 engineering ceramics. This was because of both 

processing gases being non-reactive. Hence, protecting the Si3N4 and the ZrO2 ceramic from too 

much atmospheric influence as well as generating lower surface temperatures in comparison to the 

other assist gases used. Fibre laser processing with N2 however, showed a considerably modified 

surface in comparison to Ar as small sized elongated rod-like grains were found. These types of 

grains were not seen from other results. A compositional change was yet apparent but to a lesser 

extent despite N2 and Ar showed less influence of the atmospheric effects such as oxidation. From 

the compositional study, it was observed that the Si3N4 was transformed to SiO2 and the ZrO2 was 

transformed to ZrC. The oxidation effect within the ZrO2 ceramic was somewhat less as it contains 

large percentage of O2. However, the oxidation of Si3N4 is unavoidable as the CO2 and the fibre laser 

treatment was conducted in an atmospheric condition. Therefore, such conditions would drive the Si 

to oxidize within the atmosphere at elevated temperatures and form the new SiO2 layer.  

 

5.4 Summary 

The following conclusions were drawn from applying various processing gases during fibre and CO2 

laser surface treatment of Si3N4 and ZrO2 engineering ceramics: 

 
 Fibre laser irradiated surfaces of the Si3N4 and ZrO2 engineering ceramics were both reduced in 

hardness when applying all assist gases within the laser treated track. The effect was more 
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significant with using O2 followed by compressed air, ambient air, N2 and then Ar. The hardness 

then increased within the interface and the respected untreated areas.  

 
 The change in hardness occurred due to the formation of the SiO2 within fibre laser treated 

regions. This was somewhat softer in comparison to the laser unaffected regions or the as-

received surface. Similarly, the surface of the ZrO2 engineering ceramic was also modified to ZrC 

which could have resulted to the hardness reduction. 

  
 Reactive gases produced the highest materials removal and the roughest surface finish along with 

a high level of oxidation and average porosity for both laser surface treatments on the ZrO2 and 

the Si3N4. Large surface profile of the treated and the HAZ were also observed by using reactive 

gases (particularly with the CO2 laser). This was because of the content of the particular 

compositions within these conditions were highly reactive and allowed porosity, oxidation, larger 

surface treated zones and larger HAZ to occur. 

 
 The use of Ar and N2 assist gases resulted in producing the finest surface finish with a lower 

material removal in comparison with the sample treated by using other conditions. N2, however, 

showed a considerably modified surface in comparison to Ar as small sized elongated rod-like 

grains within the Si3N4 were found. Such microstructure was not seen from other results. A 

compositional change was yet apparent but to a lesser extent despite N2 and Ar showed less 

influence of the atmospheric effects such as oxidation. The compositional study confirmed that 

the Si3N4 was transformed to SiO2.  

 
 The compositional study revealed the formation of the ZrC surface layer within the ZrO2 occurred 

with both laser surface treatments. This was saturated into the surface of the ceramics with the 

support of the plasma plume being generated during the laser-ceramic interaction. The plasma 

plume comprised of partially melted and solidified mixture and acted as a bridge between the 

surface and ambience. This further allowed the C atoms to mix with the surface to form a new top 

(near) surface layer.  
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CHAPTER 6 

Assessment of a Suitable Method for the 

Evaluation of Fracture Toughness 

Parameter (K1c) of Laser Surface Treated 

Engineering Ceramics 
 
This Chapter consists of the techniques used to determine the fracture toughness property (K1c ) of CIP Si3N4 

and ZrO2 engineering ceramics and the effects thereon of the CO2 and a fibre laser surface treatment. 

Vickers macro hardness indentation method was employed for the investigation prior to and after the laser 

surface treatment to observe the near surface changes in the ceramics hardness. Optical microscopy was 

then used to observe the ceramics near surface integrity along with flaw sizes (crack lengths) and its 

geometry. Computation and analytical methods were then used to determine the ceramics K1c. 

Enhancement of the K1c was found for both ceramics by applying the CO2 and the fibre laser irradiation, 

however, with differing mechanisms for the increases as further demonstrated in the Chapter.  

 

6.1 Introduction  

Crack sensitivity and low fracture toughness can limit the use of ZrO2 and Si3N4 engineering 

ceramics, particularly for demanding applications. Nevertheless, the applications of ZrO2 and Si3N4 

have gradually increased on account of the desirable physical properties and longer functional life 

which often gives the engineering ceramics a commercial advantage over the conventional materials 

in use. Conventional metals and alloys especially can be replaced by engineering ceramics such as 

ZrO2 and Si3N4 due to its exceptional mechanical and thermal properties offered. Now, ZrO2 and 

Si3N4 ceramics in particular are predominantly being used to manufacture components in the 

aerospace, automotive and motorsports industrial sectors [37-43]. Various components used within 

these sectors were previously mentioned (see Chapter 1, Section 1.5). For such applications, fracture 

toughness is an essential property since low fracture toughness in comparison to metals and alloys is 

one of the disadvantages of the ceramic. Inherently, an increase in the fracture toughness would 

therefore, lead to an enhancement in the components functional life and better performance. This in 

turn leads to reduction in the maintenance time and cost of the component/part and or the system.      

 

Fracture toughness is considered to be an important property for both of the ZrO2 and the Si3N4 as 

well as other ceramics in general due to their high hardness and brittleness. Materials such as metals 

and alloys are soft and ductile. This in turn would resist cracks at higher stress levels and loading 

[13, 117, 127-131], whereas hard and brittle materials such as a Si3N4 ceramic posses a low fracture 

toughness and allow crack propagation to occur at lower stresses and loading. The fracture toughness 
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for the ZrO2 ceramic is fairly high in comparison to the Si3N4 but not in comparison to metals and 

alloys. This is due to their low ductility, high hardness, caused by the closely packed grains along 

with a porous structure which increases the crack-sensitivity. This characteristically prevents these 

ceramics from increasing the movement of dislocations in comparison to that of metals [130-132]. 

Dislocations are hard to generate within the ceramics due to its strong and highly directional covalent 

bonds which make it difficult to move the atoms from its lattice positions. Mechanical yielding of the 

ZrO2 or the Si3N4 is also limited due to the porosity and the surface flaws make it crack-sensitive and 

eventually lead to a much lower resistance to fracture. K1c is a parameter of fracture toughness and is 

low for both the ceramics in comparison with metals and alloys so it would be an advantage if the 

K1c of the ceramic is enhanced. Through improvement of K1c, it is possible to make way for new 

applications where metals and metal alloys fail due to their low hardness, thermal resistance, co-

efficient of friction and wear rate.  

 
This Chapter investigated the use of empirical equations from the literature to calculate the fracture 

toughness property (K1c) of a ZrO2 and a Si3N4 engineering ceramic and observed the effects thereon 

of the CO2 and the fibre laser irradiation to effect surface treatment. A change in the K1c has an 

influence on the materials functionality or diversity to its applications. By improving the K1c of 

materials can enhance its functional capabilities such as longer functional life, improved 

performance under higher cyclic and mechanical loading particularly for demanding applications as 

previously mentioned. This study also demonstrates a technique to calculate the K1c by employing 

Vickers indentation test for laser treated CIP ZrO2 and Si3N4 ceramics. All tested samples were 

investigated for their top surface hardness, generated crack profiles from the diamond indentations 

and microstructural changes before and after the fibre laser surface treatment. 

 
Despite the use of industrial lasers such as CO2, Nd:YAG, HPDL and an excimer to process various 

technical ceramics; no other investigation, hitherto, has employed the fibre laser to process 

engineering ceramics and to investigate the K1c. Moreover, the fibre laser was selected because of its 

shorter wavelength radiation in comparison to the conventional lasers previously used for ceramic 

processing [14-16, 96, 133-139]. Also the selection of the CO2 laser was made so a contrast of two 

different wavelengths can be seen. It would be interesting to investigate further the effect of short 

wavelength on the surface properties of the ZrO2 and Si3N4 engineering ceramic. Moreover, the 

effects of the fibre laser are different to that of the CO2 laser due to the differing wavelength, beam 

conditions as well as the beam delivery system despite applying identical parameters. This is why, a 

broader investigation was carried out by using the CO2 and the fibre laser on the ZrO2 and the Si3N4 

engineering ceramic. Furthermore, despite the Nd:YAG laser wavelength being in the same region as 

that of the fibre laser, the Nd:YAG laser does not function stably in the CW mode. This is required 

for minimizing the thermal shock induced into a ceramic. Fibre lasers also produce high brightness 

in comparison to the more conventional CO2 and Nd:YAG lasers. This generally inhibits deeper 
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penetration, capability of producing finer spot sizes, longer depth of focus, as well as low cost per 

wattage being exhibited due to it high brightness. As one can see, this investigation is timely as 

limited research has been conducted by employing fibre lasers to conduct the surface treatment of 

materials, especially of engineering ceramics. 

 

6.2 Calculating the Ceramics Fracture Toughness Parameter (K1c) by means of an 

Indentation Technique 

Vickers indentation along with single edge notched beam (SENB), chevron notched beam (CNB) 

and double cantilever beam (DCB) techniques can be employed to determine the fracture toughness 

of ceramics. The use of Vickers indentation method to determine the fracture toughness parameter 

(K1c) of ceramics and glasses from empirical relationships has been demonstrated previously [140-

146]. The Vickers indentation test has several advantages such as the cost effectiveness and easy set-

up as well as being simple and less time consuming in comparison to other indentation techniques.  

 
Measured hardness and the crack lengths from the Vickers indentation test are placed into an 

empirical equation to calculate the materials K1c [13, 127, 129]. The results from the Vickers 

indentation test can then be applicable to the empirical equations which were derived by Ponton 

[127, 129], Chicot [142] and Liang et al. [143]. The equations derived by Ponton et al. [127, 129] 

originated from various other authors [144-155]. The equations were however modified and applied 

specifically to hard and brittle materials such as ceramics and glass by Ponton et al. [127, 129]. The 

equations have a specific empirical value. This is particularly suitable for different ceramics. 

However, Ponton et al.‟s work does not make it clear with regards to which empirical value and 

equation is more applicable for different ceramics. Preparations of the samples involve polishing in 

order to create a reflective surface plane (this would mean that the surface has been well polished) 

[13, 127] prior to applying the Vickers indentation process. There are still constraints with the 

Vickers indentation techniques as reported by Gong et al. [156], over the more conventional 

technique applied such as SENB and double-torsion (DT) method as mentioned elsewhere [140, 157-

159]. The constraints are: (a) the dependence of the crack geometry on the applied indentation load 

and the properties of the material; (b) indentation deformation (non-uniform fracture progression or 

rapid fracture growth) such as lateral cracking; and (c) unsuitable consideration of the effect of 

Young‟s modulus and the material hardness. Table 6.1 presents the literature K1c values for 

comparison from using the SENB, CNB and DCB technique to determine the fracture toughness of a 

ZrO2 and Si3N4 engineering ceramics [13, 160, 161].   

 
 
 
 
 
 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

170 

 

Table 6.1 Fracture toughness values of Si3N4 and ZrO2 engineering ceramics obtained by using the 

various indentation fracture methods.  

 

Indentation 

Fracture 

Methods 

Vickers SENB CNB DCB 

Si3N4 ZrO2 Si3N4 ZrO2 Si3N4 ZrO2 Si3N4 ZrO2 

K1c (MPa m
1/2

)
 

6.37 

[13] 

12 

[117] 

9 

[50] 

13.6 

[120] 

7.9 

[49] 

12.3 

[117] 

4.0 

[52] 

12.5 

[117] 
 
 

The procedure and steps in order to produce a genuine Vickers indentation test result and produce 

genuinely valid K1c values are: (a) each indentation must be performed at a sufficient distance from 

one another. This would avoid the formed cracks to inter-connect and bridge with the other diamond 

indentations performed on the ceramic surface [119, 162]; (b) a minimum load of 50 N is 

recommended; (c) it is ideal to coat the test surface with gold so performed indentations are visible 

and (d) the test samples should be around 1.5 times larger than the diagonal length of the diamond 

indentation and comprise of minimum porosity. The author also stated that the adjacent indents 

should be no closer than four times the size of the diamond indentation.  

 

6.3 Generation of the Cracking Profiles during the Indentation Test 

Liang et al. [143] investigated the K1c of ceramics by using the indentation method, followed by 

applying several equations by various authors as listed in [143]. Liang et al. stated that equations 

differ as the crack geometry changes (from Palmqvist to median half-penny cracks). He introduced a 

new equation which was said to be more universal as opposed to the previous work conducted. 

Ponton et al.‟s formula in comparison was much simplified and was easy to apply. Chicot et al. 

[142] conducted further investigation by applying two other equations to produce results using 

materials such as tungsten carbide (Nickel phosphorus treated) and pure silicon. He uses the concept 

of median half-penny crack and a Palmqvist crack system to determine the most applicable equation 

[142]. It was stated that high indenter loads produce a median half-penny crack within the material 

which is on the edges of the diamond indentation (footprint produced). This type of crack will 

always remain connected. A Palmqvist crack is produced during low indenter loading and is of a 

smaller scale in comparison. The Palmqvist crack will always appear at initial stage of the crack 

generation during the indentation process. Then, a median half-penny crack is produced once the 

impact of the indenter is exerted. It can be assumed that a median half-penny crack may be the result, 

since the ceramics comprise of high hardness, indicating that high indenter loads are required in 

order to induce visible and measurable diamond footprints.  

 
Orange et al. [167] investigated the K1c of Al2O3-ZrO2 by comparing the notched beam and the 

Vickers indentation techniques. Cracking behaviour was observed as Palmqvist and median half-

penny crack geometries were found. Low indentation loading produced Palmqvist cracks and with 
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increasing loading median half-penny cracks were found. High microcracking was also found with 

Vickers indentation technique when a fine grain size (0 to 3µm) ceramics were tested and with 

increasing grain size (0 to 5µm), the micro cracking was reduced with increase in the K1c. With the 

notched beams technique a higher K1c value was also achieved with a larger grain size [157]. From 

the work of Orange et al. [157] it can be gathered that notched beam indentation technique produced 

better results in comparison with the Vickers indentation method. Although, reasons behind this was 

not well justified.  

 
Median half-penny shaped cracks occur when high indentation loads are applied [142, 163, 164]. 

The profile of a median half-penny shaped crack is illustrated in Figure 6.1(a). It can be predicted 

that the outcome for most of the crack profiles in this study would be of median half-penny shape. 

For cracks that are of median half-penny shape the applicable equations differ (see Equations 6.1- 

6.15) [13, 127, 129]. The indention load at which the median half-penny crack occurs for most 

ceramics is 3N [142]. This was lower for the loads applied for this investigation. Therefore, it would 

be reasonable to assume that the generated cracks would always be of a half-penny median type 

crack profile. This indicated that only equation particularly applicable for median-halfpenny cracks 

should be utilised for this study in order to determine the K1c. Figure 6.1(b) illustrates a profile of a 

Palmqvist crack which tends to occur at low indentation loads [142, 165].  

 

 

(a)                                                                           (b) 

Figure 6.1 Median Half-penny crack in (a) and Palmqvist crack (b). 

 

Note: l is the surface crack length, 2a is the length of the diamond indent, c is the centre of the 

diamond to the end of the crack tip and P is the load impact.  

 

A Palmqvist crack is part of the median-half penny crack system because when a load above 3N is 

applied the indenter “pop in” occurs, while the already produced Palmqvist crack further develops 

into a median half-penny crack [142, 165]. These cracks are shallow and lie in the axis of the 

indenter as there would be a small extension at the edge of the diamond indenter [165]. Up to 50N of 

indentation loads were used for this work and so it is likely that a Palmqvist crack occur, leading to 

the half-penny median crack geometry.  
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6.4 Determination of the K1c by Using the Empirical Equations 

Equations for median half penny-shaped cracks are usually used for high indenter load applications 

[147, 149, 152]. One equation is selected to calculate the K1c value for the treated and as-received 

samples from applying the equations to real experimental values. The equations were derived by the 

ceramics geometrical values that were obtained from experimental means, of ceramics and glass 

[127, 129]. Equations 6.1 to 6.15 were mentioned in the literature to be applicable for ceramics and 

glass type materials. However, no such equation was defined as applicable for a certain ceramic type. 

Hence, the suitability of applying the various equations to the ZrO2 and the Si3N4 engineering 

ceramics was not particularly defined. This is why it was required that an investigation was carried 

out in order to determine the most employable equation prior to investigating the K1c modifications 

through the laser irradiated ceramics. There were 10 equations selected in this study from various 

equations discussed in [127, 129, 140], to first determine the K1c of the as-received surfaces of the 

ZrO2 and the Si3N4 and then the laser treated surfaces. The selected equations applicable to calculate 

the K1c, by using the Vickers indentation methods are [127]: 

 

K1c = 0.0101 P/ (ac
1/2

)       [162]   (6.1) 

 
K1c = 0.0724 P/c

3/2  
      [166]   (6.2) 

 
K1c = 0.0515 P/c

3/2          
[147]   (6.3) 

 
K1c = 0.0134 (E/HV)

 1/2
 (P/c

3/2
)      [149]   (6.4) 

 
K1c =0.0330 (E/HV)

 2/5
 (P/c

3/2
)      [152]   (6.5) 

 
K1c =0.0363 (E/HV)

 2/5
(P/a

1.5
) (a/c)

 1.56   
    [167]   (6.6) 

 
K1c =0.095 (E/HV)

 2/3
 (P/c

3/2
)      [167]   (6.7) 

 
K1c = 0.022 (E/HV)

 2/3
 (P/c

3/2
)      [167]   (6.7) 

  
K1c =0.035 (E/HV)

 1/4
 (P/c

3/2)
)      [169]   (6.9) 

 
K1c = 0.016 (E/HV)

 1/2 
(P/c

3/2
)      [161]   (6.10) 

 
K1c = 0.079 (P /a

3/2
) log (4.5 a/c)        for 0.5 ≤ c/a < 4.5  [170]   (6.11) 

 
K1c = 0.4636 (P/a

3/2
) (E/HV)

2/5 
(10

F 
)     [170]   (6.12) 

 
K1c = 0.0141  (P/a

3/2
) (E/HV)2/5 log (7.4ª/c)     [167]      (6.13) 

 
K1c =0.0232 [f (E/HV)] P/( ac

1/2
) † for c/a ≤ ≈ 2.7    [167]   (6.14) 

 
K1c =0.417 [f (E/HV)] P/ (a

0.42 
c

1.07
) † for c/a ≥ ≈ 2.   [169]   (6.15) 
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Note: Equations highlighted in bold were deemed to be appropriate for this investigation. Where P is 

load (kg), c is average flaw size (µm), a is 2c, m is length (m), HV is the Vickers material hardness 

value and E is the Young‟s modulus.  

 
Ponton et al. [130] state that Equation 6.10 as used by Kelly et al. [155] was 30 to 40 % accurate for 

ceramics which are well behaved in their indentation response. However, it is first required that the 

propagation of the crack geometry is understood from performing the Vickers indentation test on the 

as-received ZrO2 and the Si3N4 ceramics as further justified in this Chapter. It is not made clear as to 

why this equation was particularly used for the ceramic. It was therefore, required that some of the 

relevant equations that were applied to the tested values from this experiment to determine what sort 

of results are obtained. Ten equations were employed as previously stated to establish which 

particular equation type produces the K1c value that is the nearest to the known value for the as-

received Si3N4 ceramics which is normally between 4 and 6 MPa m
1/2

 and 7 to 12 MPa m
1/2

 for the 

ZrO2 ceramic.   

 

6.5 Experimental Procedure and Analysis  

6.5.1 Experimental Material  

The materials used for the experimentation were presented in Chapter 4, Section 4.1, Figure 4.1. A 

smoother surface than 1.56μm for the Si3N4 and 1.57μm for the ZrO2 ceramics would have much 

lower surface flaws and microcracks and would perform better under the diamond indentation as the 

resulting crack growth from the Vickers indentation would be smaller but initial experiments showed 

that polished shinier surfaces (below 1.56μm for Si3N4 and 1.57μm for the ZrO2) would reflect the 

beam and would, therefore, reduced beam absorption into the ceramics. Hence, the surfaces were not 

ground and polished.  

 
6.5.2 CO2 and Fibre Laser Surface Treatment 

The details of the fibre laser used for the experiments are presented in Chapter 4, Section 4.3, Figure 

4.2 and Section 4.4, Figure 4.3 for the CO2 laser surface treatment. The experiments were conducted 

in ambient condition at a known atmospheric temperature (20
◦
C) by using the compressed air at the 

rate of 25 l/min for both the CO2 and the fibre laser. 

 
6.5.3 Application of the Vickers Indentation Technique  

An indenter of a specific shape made from a diamond was used to indent the surface of the Si3N4 

under investigation [13, 14, 117, 127-132]. The diamond was initially pressed on to the as-received 

surface and the load was then released. A diamond indentation was created. Thus, on the surface 

which was then measured in size. Thereafter, the surface area of the indentation was placed in to 

Equation 6.16 to calculate the hardness value:  

  
HV= 2P sin [θ/2]/ D

2
 = 1.7544P / D

2                         
(6.16) 
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Where P is the load applied (kg), D is the average diagonal size of the indentation in mm and θ is the 

angle between the opposite faces of the diamond indenter being 136
◦
 with less than ±1

◦ 
of tolerance.

 

Indentation load of 5, 20 and 30 kg, were applied. The indented surface and the resulting crack 

lengths were measured using the inbuilt optical microscope of the Vickers indenter (Amstrong 

Engineers Ltd). This method was then implemented for both the CO2 and the fibre laser irradiated 

surfaces of ZrO2 and Si3N4 ceramics. The test samples were placed under the macro indenter and 

were initially viewed by using the built in microscope to adjust the distance between the surface of 

the work-piece and the diamond indenter. This maintained a sufficient distance during each 

indentation and allowed a standardized testing method which complied to ISO 6507-1 [119].  

 

6.5.4 Measurement of the Crack Lengths 

The crack lengths generated by employing the Vickers diamond indentation test as presented in 

Figure 6.2 (a) and (b) were measured by using a contact-less, co-ordinate measuring machine 

(CMM), Flash 200. The ceramic samples were placed under a traversing lens of the optical 

microscope. The lens traverses in the y-direction and to adjust the magnification it is also able to 

move in the z-direction. Motion in the y-direction is provided by the bed on which the test-piece is 

mounted for analysing the surface. The accuracy of the motion system in the x- and y-direction was 

± 4.37µm and ± 5.25µm in the z-direction. The image appears on the screen as the optical lens 

traverses above the surface of the test-piece. The scale resolution of the lens was 0.5µm. The 

diamond indentations and the resulting crack lengths were measured by moving the lever in the x- 

and y-directions and selecting a starting point on the screen where the crack ends (crack tip) and 

stopping on the edge of the diamond indentation footprint (where the crack starts). Then measuring 

the length or the width of the diamond footprint, followed by measuring the crack length on the other 

side of the diamond indentation from the edge of the diamond indentation (where the crack starts) to 

the crack tip (where the crack ends). This measurement was carried out in both the x- and y-

directions. 

 

 

Figure 6.2 A schematic diagram of a Vickers diamond indentation with propagation of the cracks (a) 

and (b) the concept of diamond indentation employed. 
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6.5.5 Calculation of the Fracture Toughness Parameter (K1c)    

Initial investigation used 15 equations to determine which equation type was best suited for 

calculating the K1c [127-129]. The as-received surfaces of the ZrO2 and the Si3N4 engineering 

ceramics were first tested for its hardness. Fifty indentations were made on one surface plane of 

various test samples of the ZrO2 and the Si3N4 ceramics. Measured hardness values were then 

recorded and a average was taken for the as-received surfaces. Each indentation and its crack lengths 

were then viewed at microscopic level by the aid of the optical microscope (Optishot; Nikon Ltd.) to 

observe the surface morphology. The crack lengths were measured by using a co-ordinate measuring 

machine (CMM - Smartscope Flash 200; OGP Ltd.) CMM and crack geometry was observed by a 3 

dimensional (3-D) surface topography by using a focus variation technique (Infinite focus; IFM 2.15, 

Alicona Ltd.). The crack lengths, produced by the indentations were then placed into the various K1c 

equations with its measured average hardness. Cracking geometries were then observed in order to 

confirm that the cracks generated by the diamond indentation at 5 kg were of median half-penny 

crack profile. This insured that equations (6.1) to (6.10) used for median half-penny crack profile 

were correct. Equation (6.11) to (6.15), are used for Palmqvist type crack profile and were not used. 

Figure 6.3 to Figure 6.6 presents an example of a typical surface profile produced from the Vickers 

diamond indentation using a 5 kg and 20 kg loads for both the ZrO2 and Si3N4 engineering ceramics. 

Both showed evidence of median half-penny type crack profiles where an indenter “pop in” 

indicated in Figure 6.4 for the Si3N4  and in Figure 6.6 for the ZrO2 ceramics were exerted and then 

linear cracks were produced. A Palmqvist crack profile tends to occur with lower indentation loads 

and had occurred (as indicated from the indenter “pop in”) already in this crack geometry. The 

concept was more present with higher indentation loading as presented in Figure 6.4 for the Si3N4 

and Figure 6.6 for the ZrO2 ceramic.  

 

 

Figure 6.3 Topography of the Vickers diamond indentation on the as-received surface of the Si3N4 

ceramics indented at 5 kg, illustrating a median half-penny crack geometry. 
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Figure 6.4 Topography of the Vickers diamond indentation on the as-received surface of the Si3N4 

ceramics indented at 20 kg, illustrating a median half-penny crack geometry. 

 
 

 

Figure 6.5 Topography of the Vickers diamond indentation of the as-received surface of ZrO2 ceramics 

indented at 5 kg, illustrating a median half-penny crack geometry. 

 

 

Figure 6.6 Topography of the Vickers diamond indentation of as-received surface of ZrO2 indented at 20 

kg, illustrating a median half-penny crack geometry. 

 
Equations 6.1 to 6.10 for half-penny median crack system are presented in Table 6.2 and were 

initially used to calculate the K1c of the as-received ZrO2 and the Si3N4 engineering ceramics to 
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investigate the most appropriate equation that can be applied to the experimental values for both, the 

as-received and the laser treated surfaces of the ZrO2 and the Si3N4 engineering ceramic. The results 

have been tabulated and are as presented in Table 6.3 and Table 6.4. The equations were set-up by 

using Microsoft Excel which made it easy to be able to input parameters from the full equation. 

These values were hardness, crack length, Vickers indention load and the Young‟s modulus. The 

Young‟s modulus for the as-received surface and the laser irradiated surfaces was kept to 310 GPa
 

for the Si3N4 and 210 GPa for the ZrO2. It can be seen that all the values which range between 4 to 6 

MPa
 
m

1/2 
[42] for the Si3N4 and 7 to 12 MPa m

1/2 
for the ZrO2 [42], would generally allow the 

equation to be useable for calculating the K1c for the both CO2 and the fibre laser treated and the as-

received surfaces of the two ceramics.  

 
Table 6.2 The ten equations used to calculate the K1c for the as-received surface of ZrO2 and Si3N4. 

 

Equation 

Number 

Equations Equation Origin 

6.1 K1c = 0.0101 P/ (ac1/2) Lawn & Swain [162] 

6.2 K1c = 0.0724 P/c3/2 Lawn & Fuller [166] 

6.3 K1c = 0.0515 P/C3/2 Evans & Charles [147] 

6.4 K1c = 0.0134 (E/Hv) 1/2 (P/c3/2) Lawn, Evans & Marshall [149] 

6.5 K1c =0.0330 (E/Hv) 2/5 (P/c3/2) Niihara, Morena and Hasselman [152] 

6.6 K1c =0.0363 (E/Hv) 2/5(P/a1.5) (a/c) 1.56 Lankford [167] 

6.7 K1c =0.095 (E/Hv) 2/3 (P/c3/2) Laugier [167] 

6.7 K1c = 0.022 (E/Hv) 2/3 (P/c3/2) Laugier [167] 

6.9 K1c =0.035 (E/Hv) 1/4 (P/c3/2)) Tanaka [169] 

6.10 K1c = 0.016 (E/Hv) 1/2 (P/c3/2) Anstis, Chantikul, Lawn & Marshall [161] 

 
Where P is load (kg), c is average flaw size (µm), a is 2c, m is length (m), HV is the Vickers material 

hardness value and E is the Young‟s modulus. (Young‟s modulus for the as-received Si3N4 was kept 

to 310 GPa m
1/2

). Range (required equation accuracy) is 4 to 6 MPa m
1/2

 for Si3N4 [42] and 7 to 12 

MPa m
1/2 

for the ZrO2 [42]. For all tested samples, the indentation load was 5 and 30 kg. Average of 

the K1c was obtained by using values from fifty different Vickers indentation tests on one particular 

surface plane per sample. This allowed more consistency in calculating the K1c since the values can 

be used from a bigger pool of data. 

 
The literature value of K1c for the as-received engineering ceramics (as stated before) that do not lie 

between the range given were not considered as acceptable and therefore, those equations were 

proved to be less accurate in obtaining the values close to or within the range. The K1c values found 

by using Equation 6.10 were reasonably close to the range for both the ZrO2 and the Si3N4 in 

comparison to the values obtained by the other equations so this equation was most appropriate for 
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use. Based on this, other equations were not taken into consideration since the K1c values produced 

by those equations were far from being within or close to the range.  

 
The Vickers diamond indenter was induced fifty times into the as-received surface plane of the ZrO2 

and the Si3N4 engineering ceramics. Hardness values from the indentation test were recorded and the 

resulting crack lengths were then measured to first calculate the K1c of the as-received surface. This 

produced fifty K1c values that were obtained from one surface plane. The experimental values 

obtained were an input into the set Excel spreadsheet such as the indentation load, crack lengths 

produced by the Vickers diamond indentations and the measured hardness. The equation that 

generated the closest value within the range (4 to 6 MPa m
1/2 

for the Si3N4 and 7 to 12 MPa m
1/2 

for 

the ZrO2) after fifty indentation tests was Equation 6.10. The results of the equation are presented in 

Table 6.3 and Table 6.4 along with their average, standard deviation and range. Despite the average 

K1c values of the as-received ceramics being out of the range (see Table 6.3 and Table 6.4), the 

values obtained by using Equations 6.10 were the closest to the fracture toughness range for the ZrO2 

and the Si3N4 ceramics in comparison with the other equations. Consequently, this equation was used 

for all as-received, CO2 and the fibre laser irradiated ZrO2 and Si3N4 engineering ceramics to 

determine the K1c. 

 
Table 6.3 The end K1c values with its standard deviation and range for 5 and 30 kg load from employing 

the ten equations for the as-received Si3N4 engineering ceramic. 

 
Equation 

Number 

Average K1c 

value using 

30 kg load 

(MPa m
1/2

) 

Standard 

deviation 

 

Range (MPa m
1/2

) Average K1c 

value using 5 

kg load 

(MPa m
1/2

) 

Standard 

deviation 

Range (MPa 

m
1/2

) 

6.1 0.64 0.14 0.97-0.40 0.10 0.03 0.04 - 0.20 

6.2 2.32 0.51 1.47-3.15 0.26 0.11 0.14 - 0.73 

6.3 3.71 0.73 2.35-5.67 0.577 0.17 0.22 -1.17 

6.4 19.71 4.70 10.90 - 29.51 3.71 1.27 1.07 - 5.94 

6.5 46.47 9.57 26.75 - 67.72 9.04 17.33 4.57-13.25 

6.6 474.67 100.27 323.74 - 676.21 131.67 57.69 49.29 -315 

6.7 2162.22 594.10 1357.40 - 3477.21 557.51 214.00 206.26 - 919.9 

6.7 467.94 137.57 240.13- 727.97 131.49 70.26 54.52 -379.27 

6.9 746.04 217.77 372.03-1152.66 21.60 11.37 9.07 -61.50 

6.10 7. 70 1.71 13.16 – 5.43 1.71 0.59 3.66 - 0.56 

 
Note: Young‟s modulus is 310 GPa (as-received surface), average hardness at 30 kg load is 1479 

HV (14.60 GPa) with a range of 1575 to 1207 HV (15.44 - 11.75 GPa) and standard deviation of 

69.54 HV (0.67 GPa); average a is 0.000356 m; standard deviation 0.0000553 m and average c is 

0.000177 m and standard deviation of 0.000273 m; average hardness at 5 kg load is 1106 HV (11.32 

GPa) with a range of 707 to 1524 HV (6.93 to 14.95 GPa) and standard deviation of 201.69 (1.97 
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GPa); average a is 0.000756 m; average c 0.000193 m with a standard deviation 0.0000427. The 

density was 3.15 g/cm
3
 [37, 42], and the average grain size of 2µm for the as-received surface. 

 
Table 6.4 The end K1c values with its standard deviation and range for 5 and 30 kg load from employing 

the ten equations for the as-received ZrO2 engineering ceramic. 

 
Equation 

Number 

Average K1c 

value using 

30 kg load 

(MPa m
1/2

) 

Standard 

deviation 

 

Range 

(MPa 

m
1/2

) 

Average K1c 

value using 5 

kg load (MPa 

m
1/2

) 

Standard 

Deviation 

Range 

(MPa m
1/2

) 

6.1 0.90 0.17 0.67-1.27 0.16 0.057 0.060-0.29 

6.2 3.25 0.67 2.36-4.61 0.57 0.21 0.21-1.95 

6.3 5.20 1.07 3.77-7.37 0.96 0.34 0.034-1.72 

6.4 22.24 5.07 14.64-35.5 4.77 1.64 1.76-9.04 

6.5 411.97 120.74 293-647 103.56 42.37 36-247 

6.6 472.41 137.45 277-779 117.76 47.60 41-273 

6.7 1976.63 579.32 1164-3679 496.92 203.34 205-1177 

6.7 457.74 134.16 269-752 115.07 47.09 40-274 

6.9 727.23 213.43 429-1355 173.07 74.91 64-437 

6.10 12.65 2.67 7.52 -17.11 2.51 0.90 0.92-4.76 

 

Note: Young‟s modulus is 210 GPa (as-received surface); average hardness at 30 kg load is 1141 

HV (11.19 GPa) with a range of 793 to 1346 HV (7.22 to 13.20 GPa) and standard deviation of 115  

HV (1.12 GPa); average a is 0.000275 m; standard deviation 0.0000370 m and average c is 

0.0001425 m and standard deviation of 0.000174 m; average hardness at 5 kg load is 973 HV (9.64 

GPa) with a range of 707 to 1329 HV (6.93 to 13.03 GPa) and standard deviation of 141 HV (1.37 

GPa); average a is 0.000279 m; standard deviation  0.000707 m; average c 0.00013927 m with a 

standard deviation 0.0000353. The density was 6.30 g/cm
3
 [37, 42]. 

 

6.6. Results and Discussion 

6.6.1 Analysis of the As-received Surfaces 

6.6.1.1 Analysis of Si3N4 engineering ceramic by using a 5 and 30 kg indentation load 

The average hardness value of the Si3N4 ceramic by using a 30 kg load was 1479 HV with the 

highest value being 1674 HV above the mean and lowest being 1326 HV below the mean. Figure 6.7 

illustrates the footprint of the as-received surface of the Si3N4 indented by using a 30 kg load. The 

hardness of the Si3N4 from applying a 5 kg load was much lower than the hardness values obtained 

after applying a load of 30 kg. This was because of the 5 kg load applied to the material resulted into 

lower penetration of the diamond indentation into the Si3N4 as well as the surface area of the 

diamond footprint also being smaller in dimension which resulted in generating a lower hardness 

value. An average hardness deduced by using a 5 kg load was 1106 HV. The highest value found on 

the surface of the Si3N4 was 1647 HV and the lowest value below the mean was 707 HV. This 
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fluctuation is considerable and well outside the expected range of ± 10% [117]. This wide fluctuation 

in the hardness values is however, not unusual and resulted from surface scaring and pre-existing 

cracks, porosity, as a result of the manufacturing process [164] as well as impurities on the near 

surface layer in comparison with the bulk hardness frequently produced non-uniform results.  

 
The results showed minimal difference in the generated crack lengths for the Si3N4 from applying a 5 

kg load in comparison with the results from applying a 30 kg load. The crack lengths ranged between 

227µm to 499µm with an average of 376µm. Crack lengths has a close relationship with the hardness 

of a ceramic. High hardness inherently leads to a high level of cracking and materials with low 

hardness produces smaller sized cracks. This directly relates to the final K1c value as materials with 

high hardness will give rise to long crack lengths. This in turn will generate lower K1c values. 

Materials with low hardness are softer and more ductile and will therefore produce shorter crack 

lengths through resistance to indentation and produce high K1c values. Despite the indentation load 

and the applied force being much smaller in comparison with the 30 kg load, the material was still 

cracking in equivalent measure to the results of the trials conducted by using a higher load. This 

clearly indicated that the surface did not exhibit a good response during the indentation test. This 

could mean that a smoother surface finish was required for the indentation test in order to overcome 

this problem so that the surface scaring and microcracks pre-existing on the Si3N4 were minimized 

and the strength of the top surface layer could be further enhanced for a better indentation response. 

This also has a possibility of increasing the surface hardness, yet at the same time would reduce the 

resulting cracks from the Vickers diamond footprints and avoid crack connecting from the diamond 

footprint and the pre-existing surface microcracks.  

 

 

Figure 6.7 As-received surface of Si3N4 ceramic indented with by a 30 kg load (hardness = 1292 HV 

(12.67 GPa), crack length = 371μm, K1c = 5.45 MPa m
1/2

). 

 

Ponton and Rawlings [129] suggested that a minimum loading of 50N must be pressed in order to 

produce a diamond indent. The minimum loading used herein agrees to the work of Ponton and 
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Rawlings [129]. Although, the loading herein was 49.05N and we yet see a diamond indentation with 

a median half-penny shape profile as presented in Figure 6.7. Initial experiments by using lower 

indentation loads such as 24.5N and 9.7N also presented a sufficient indented footprint from the 

Vickers hardness test. The diamond indentation in Figure 6.7 is smaller in size when compared with 

the indentation created by the 30 kg load. However, the average crack lengths found from using a 5 

kg indentation load to some extent were in the same region. The differences between the average 

values for two test results were 4.3% and less when considering a larger pool of data. From this, it 

can be gathered that macro hardness indentation test may be more stable at higher indentation loads 

than lower, particularly with hard brittle materials such as Si3N4. The overall average K1c by using a 

30 kg load was found to be 7.70 MPa m
1/2 

for the Si3N4 as presented in Figure 6.7, also showing the 

highest value being 12.77 MPa m
1/2 

and the lowest being 5.34 MPa m
1/2

. 

 

 

Figure 6.7 K1c of the as-received surfaces of the Si3N4 ceramics after applying a load of 30 kg. 

 

The result found for hardness when employing a 30 kg indentation load match with the values 

provided by the manufacturer and proves that the method used for the hardness calculation and 

measurement of the crack lengths was valid. Although, the values for the hardness are much smaller 

than the values provided in the manufacturer‟s specification when using a 5 kg load. This was due to 

the fact that the indentation load was much smaller and produced smaller footprints (see Figure 6.9) 

of the diamond which exerted lower force to the surface and reduced the end value of the K1c. The 

average K1c was found to be 1.71 MPa m
1/2 

for the Si3N4 as presented in Figure 6.10 also showing the 

highest value being 3.06 MPa m
1/2 

and the lowest being 0.55 MPa m
1/2

. 
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Figure 6.9 As-received surface of the Si3N4 ceramic indented by a 5 kg load (hardness = 900 HV (7.73 

GPa), crack length = 391μm, K1c = 1.66 MPa m
1/2

. 

 

 

Figure 6.10 K1c of the as-received surfaces of the Si3N4 ceramics from applying a 5 kg indentation load. 

 

The hardness can become much higher if the surfaces were ground and polished prior to the Vickers 

indentation test as previously stated. This would minimizes the surface microcracks and result in 

obtaining a better consistency in achieving the hardness value and the resulting crack lengths but 

surfaces could not be ground and polished in this case as the initial studies showed that grinding and 

polishing resulted to the Si3N4 ceramic becoming smooth and shiny. This in turn has the tendency to 

produced high laser beam reflection. Furthermore, grinding and polishing could not be conducted 

after the fibre laser surface treatment as it removed the newly formed surface layer and would also 

induce some degree of residual stress into the ceramic as stated by Sun Li et al. [15]. This would not 

do justice to the laser irradiated surface during the Vickers indentation test and therefore, all surfaces 

were tested as-received for the indentation study prior to and after the laser surface treatments. 
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6.6.1.2 Analysis of ZrO2 engineering ceramic by using a 5 and 30 kg indentation load 

The average surface hardness of the as-received ZrO2 was found to be 1141 HV for ZrO2 (see Figure 

6.11) when applying a 30 kg indentation load. The values provided by the manufacturer for the as-

received surfaces were 700-1200 HV for ZrO2. The highest value of 1129 HV and lowest was 757 

HV when an indentation load of 30 kg was applied. This fluctuation has occurred due to several 

factors such as porous structure, the ceramics response to the diamond indentation, surface flaws and 

microcracks pre-existing on the ceramic, operator and machine accuracy in measuring the sizes and 

footprints of the diamond indentations. Operator accuracy depends purely on the ability of the 

operator to locate and measure the size of the diamond footprint through the inbuilt lens of the 

Vickers indentation machine. Such errors were minimized in the work herein as the diamond 

footprints and the resulting crack lengths were both measured by using computational means. 

However, the machine accuracy of 775 nm for a load of 5 kg and 1471.5 nm for a load 30 kg must be 

taken into consideration when conducting the Vickers indentation test [119]. 

 
The fluctuations found in the mean hardness from the results of this study were up to 11%. This in 

comparison with the values for ZrO2 given in the literature were 1% higher from the ± 10% range 

(error) given in [117]. Error of 1% between the hardness values found in this study and the literature 

can be an exempt from being a non-conformance and may be considered to pass through the quality 

requirements if the hardness test was used for a (real life) ZrO2 engineering ceramic 

component/product. 

 

 

Figure 6.11 An example of the as-received surface of the ZrO2 indented by using a 30 kg load (hardness 

=926 HV (9.07 GPa), crack length = 437μm, K1c = 6.94 MPa m
1/2

). 

 

The average crack length produced from the Vickers indentation test was 270μm for ZrO2. Results 

from 50 indentations present that the crack lengths range from 221μm as the lowest and 335μm 

being the highest for ZrO2. The variation from its mean value was wide due to the microcracks pre-
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existing on the ZrO2‟s surface. If the surfaces were well polished the results of the crack lengths 

would be much lower as the surface would be less prone to cracking after grinding and fine polishing 

of the ZrO2. However, a smoother surface would prevent the laser from being absorbed sufficiently 

into the material surface and often has the tendency to reflect more than absorb and so the surfaces 

were not polished and were tested as-received from the manufacturer as mentioned previously.   

 
From applying a 30 kg load it was found that the cracks were significantly large due to the amount of 

force exhibiting on the surface area of the ZrO2. An example of such crack profile is shown in Figure 

6.13. It was therefore interesting to investigate the crack lengths produced with a lower indentation 

load, which predictably would have a smaller effect on the end value of the K1c of the ZrO2 

engineering ceramic. As such, a 5 kg indentation load was used due to the force over the surface area 

being much lower. This would produce a smaller footprint of the diamond and the resulting crack 

lengths. This would therefore, result to producing a lower K1c value than the literature and the 

manufacturers range given for the ZrO2.  

 
The K1c values for the as-received surfaces after applying an indentation load of 30 kg as presented 

in Figure 6.12 showed that the values obtained complied with the values given in the literature [37]. 

The average K1c for ZrO2 was found to be 12.52 MPa m
1/2

. It is indicative from the graph in Figure 

6.12 that there is a significant level of fluctuation for the values above and below the mean range.  

 

 

Figure 6.12 K1c of the as-received surface of the ZrO2 after applying a load of 30 kg. 

 

The highest value above the mean was found to be 17.20 MPa m
1/2

 and the lowest value above the 

mean was 7.29 MPa m
1/2

. This has occurred due to the following factors: (a) a change in the material 

hardness influences the end K1c value. The change in the hardness by ± 100 HV resulted into a 

change in the final K1c value by ± 0.34 MPa m
1/2 

(according to Equation 6.10); (b) change in the 

crack length (being the major parameter in the equation as used in this work (Equation 6.10)) by ± 

100μm resulted into change in the end K1c value over ± 6.31 MPa m
1/2 

if the hardness was up to 1250 

HV as a particular input parameter in the calculation. Hence, the crack length has a bigger influence 
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on the K1c end value in comparison to the hardness; (c) the surface microcracks and porosity pre-

existing on the ZrO2 surface, making it prone to cracking and reduces the ceramics resistance to 

fracture and (d) the response of ZrO2 to diamond indentation as some of the areas within the ZrO2 

produced fluctuating values as opposed to other areas from the view point of the crack length, 

porosity and the surface flaws. The surface condition should also be considered as the surface 

roughness for the ZrO2 was exceptionally high for conducting the Vickers indentation test and this 

would have resulted in producing higher crack lengths that further resulted to reduction in the ZrO2‟s 

K1c value. Similarly, these aspects should also be taken into consideration with the Si3N4 engineering 

ceramics.  

 
The hardness of ZrO2 from applying a 5 kg load was much lower than the hardness values obtained 

after applying a load of 30 kg. This was because of the 5 kg load applied to the material‟s surface 

area resulted into lower penetration of the diamond indentation into the ZrO2 as well as the surface 

area of the diamond footprint also being smaller in dimension that resulted in generating a lower 

hardness value. The average hardness value for the ZrO2 was 973 HV with the highest value being 

1330 HV above the mean and lowest being 707 HV below the mean. The hardness values of the 

ZrO2 by using a 5 kg load comply with the hardness values provided by the manufacturer. However, 

they were found to be towards a bottom limit. A possible cause of this vast fluctuation in the values 

may have occurred due to the ZrO2 comprising of microcracks, porosity and impurities on the near 

surface layer in comparison with the bulk hardness often produced fluctuating results. 

 
The results showed minimal difference in the generated crack lengths for the ZrO2 from applying a 5 

kg load in comparison with the results from applying 30 kg load. The average crack length was 

277μm ranging between 170μm to 512μm.  Despite the indentation load and the applied force being 

much smaller in comparison with the 30 kg load, the material was still cracking in equivalent 

measure to the results of the trials conducted by using a higher load. As with the Si3N4, the ZrO2 also 

indicated that the surface did not exhibit a good response during the indentation test. This indicated 

that that a smoother surface finish was more ideal when conducting the diamond indentation test so 

that surface scaring and microcracks pre-existing on the ZrO2 were minimized and the strength of the 

top surface layer is further enhanced for a better indentation response. This in turn would also 

increase the surface strength and avoid cracks from the diamond indentation to interconnect with the 

pre-existing surface flaws and microcracks. 

 
Ponton and Rawlings [129] suggested that a minimum loading of 50N must be pressed in order to 

produce a diamond indent. The minimum loading used herein agrees to the work of Ponton and 

Rawlings [129]. Despite, the loading herein was 49.05N, we yet see a diamond indentation as 

presented in Figure 6.13 with a median half-penny shape profile. Previous experiments by employing 

lower indentation loads such as 24.5N and 9.7N also created a sufficient footprint from the Vickers 
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diamond indentation. The diamond indentation in Figure 6.13 is smaller in size when compared with 

the indentation created by the 30 kg load. However, the average crack lengths found from using a 5 

kg indentation load were equally the same size as that of the 30 kg. The differences between the 

average values for two test results were 3% and less when considering a larger pool of data. From 

this, it can be gathered that macro hardness indentation test may be more stable at higher indentation 

loads than lower particularly with hard brittle materials such as ZrO2.   

 

 

Figure 6.13 An example of the as-received surface of ZrO2 indented with by a 5 kg load (hardness =1120 

HV (10.97 GPa), crack length = 425 µm, K1c = 1.10 MPa m
1/2

). 

 

The result found for hardness herein when employing a 30 kg indentation load match with the values 

provided by the manufacturer and proves that the method used for the hardness calculation and 

measurement of the crack lengths was valid. Although, the values for the hardness are much smaller 

than the values provided in the manufacturer‟s specification when using a 5 kg load. This was due to 

the fact that the indentation load was much smaller and produced smaller footprints of the diamond 

which exerted lower force to the surface and reduced the end value of the K1c. The average K1c was 

found to be 2.45 MPa m
1/2 

for the ZrO2 as presented in Figure 6.13 also showing the highest value 

being 4.42 MPa m
1/2 

and the lowest being 0.92 MPa m
1/2

. The hardness can become much higher if 

the surfaces were ground and polished prior to the Vickers indentation test as previously stated. This 

would minimize the surface micro-cracks and resulted in obtaining a better consistency in achieving 

the hardness value and the resulting crack lengths. The surfaces were tested as-received due to the 

comparison made with the laser treated surface as the ground and polished surfaces would enhance 

the materials reflectivity to the laser beam and would minimize the laser beam absorption into the 

ZrO2; consequently a compromise was required to be made. 
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Figure 6.14 K1c of the as-received surfaces of the ZrO2 from applying a 5 kg indentation load. 

 
6.6.2 Fibre Laser Surface Treatment of the Si3N4 

The mean hardness found was 1179 HV on the fibre laser treated Si3N4. The highest value above the 

mean was 1449 HV and the lowest being 751 HV. There was a 4% difference between the average 

hardness values obtained from the fibre laser treatment in comparison with the average hardness 

values obtained by the as-received surface (see Section 4.1). This is somewhat inconsiderable as 

there is a tendency for the hardness to fluctuate within ±10% of the average value particularly by 

using the Vickers indentation method [118]. Through, in general, an increase in the hardness of a 

material indicates that the surface has become more brittle and therefore was prone to cracking and 

fracture. This would manifest as longer crack lengths on the corners of the diamond indentations. 

This however, did not occur as the average crack lengths on the fibre laser treated surface were much 

reduced in comparison to the crack length of the as-received surface, 242μm compared to 377μm 

respectively. The fibre laser treated surfaces also comprised of much smaller cracks during the 

Vickers indentation test in comparison to that of the as-received surface as is evident in Figure 6.15.  

 

 

Figure 6.15 Fibre laser treated surface of the Si3N4 engineering ceramic indented by a 5 kg load, laser 

power = 150 W, 100 mm/min, 3mm post size, (hardness = 7.73 GPa, crack length = 247μm, K1c = 3.59 

MPa m
1/2

). 
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The 4% increase in hardness but a decrease in the crack lengths following the fibre laser surface 

treatment would have occurred by the event of strain hardening taking place as result of the fibre 

laser-Si3N4 surface interaction. The strain hardening through movement of dislocations, at elevated 

temperatures in turn would have induced compression into the surface and sub-surface of the 

ceramic and through the effect of transformation hardening.  

 
If one considers the heat generated from irradiation by the fibre laser beam is likely to have caused 

transformation toughness where the Si3N4 to transform from the α to β state at 1600
°
C, as stated by 

Jiang et al. [171]. This in turn would have caused the observed increase in the hardness of the Si3N4 

to 3600 HV.  Since, the temperature during the fibre laser surface treatment has been found to be 

much higher than 1600
°
C, as indicated from the surface melting and decomposition which would 

imply that the ceramic was heated to around a temperature of about 1900
°
C or above where phase 

transformation of α-β phase will inherently occur after the fibre laser surface treatment of the Si3N4.  

 
An investigation by Moon et al. [172] found that the fracture toughness of Al2O3 and Si3N4 ceramics 

was improved considerably by generating dislocations within the ceramics by plastic deformation 

(shot blasting) and then annealing to temperatures of 1500
°
C. Owing to the assumption that the 

heating temperature is around 2000
°
C and the decomposition temperature is around 1900

°
C for the 

Si3N4, the fibre laser surface treatment induced compression (see Figure 6.16); the tension would 

have needed to overcome the compression in order to produce a fracture. Therefore, the cracking of 

the Si3N4 was much smaller in comparison to the as-received surface. This meant that the tension 

induced by the 5 kg load to produce the crack on the fibre laser treated surface was much smaller 

than the induced compression. This rational goes some way to explaining the reason why smaller 

crack lengths have been found on the fibre laser treated Si3N4 surface in comparison with the as-

received surface.  

 

 

(a)                                                                     (b) 

Figure 6.16 Diagram of the tension and compression concept where (a) is the state of the ceramic under 

equilibrium condition and (b) showing the increase in induced compression from the fibre laser surface 

treatment.  
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Residual stress is generally found by using the X-ray diffraction (XRD) method on the Si3N4 

ceramics [173]. However, in this case, the fibre laser treated surface of the Si3N4 ceramic becomes 

amorphous after decomposition of the Si3N4 at 1900
°
C. Although, X-rays diffract from the 

amorphous layer, there are yet no sharp diffraction peaks that can be found and an amorphous hump 

with a broad profile is found whose position can be determined by the average intermolecular 

spacing. But, this is not ideal for residual stress measurement and therefore a possible increase in the 

compressive residual stress was only predicted mainly based on the decrease in the Vickers indented 

crack length of the ceramic after the fibre laser treatment in this study.  

 
The average K1c value for the Si3N4 after the fibre laser surface treatment was 3.25 MPa m

1/2
. The 

highest K1c value obtained above the mean was 6.03 MPa m
1/2

. The lowest value below the mean 

was 2.20 MPa m
1/2 

for the Si3N4 as presented in Figure 6.17 and Table 6.5. The K1c values for the 

fibre laser treated Si3N4 were improved by 47% in comparison with that of the as-received surfaces 

under the measured conditions. The values in Figure 6.17 mainly fluctuate due 37% reduction in the 

crack lengths found for the fibre laser treated. In those areas where the K1c is high, indicate that the 

localized near surface layer has more resistance to crack propagation under cyclic loads or during the 

onset of any tensile stresses.  

 

 

Figure 6.17 K1c of the fibre laser treated surfaces of the Si3N4 from applying 5 kg indentation load. 

 
Indentation fracture toughness method is heavily dependent on the local microstructural changes and 

its influence. Hence, the microstructure of the fibre laser irradiated and as-received surfaces of the 

Si3N4 ceramic are presented in Figure 6.17 (a) – (d). Surface flaws, cavity and micro porosity as well 

as  morphology are also present in the image. Figure 6.17 (c) and (d) show the microstructure of the 

fibre laser irradiated Si3N4 ceramics and is somewhat different to that of the as-received surface. It 

can be seen that considerable amount of material removal has occurred from the laser beam 

interaction after some degree of decomposition taking place. The removal of the surface was around 

101µm by using compressed air assist gas. This has produced a degree of oxide layer from the 

exposure to the atmosphere and would have also changed the composition of the laser treated area of 
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the Si3N4 as previously shown in Chapter 5. The surface morphology also shows a reduction in the 

porosity and the surface flaws that are apparent particularly in Figure 6.17(a). This may have caused 

the increase in hardness with reduced crack length. This in turn increases the K1c under the measured 

conditions.   

 

 

 (a)                                                                          (b) 

 

             (c)                                                                    (d) 

Figure 6.17 SEM image of the microstructure of the as-received surface Si3N4 engineering ceramic 

presented in (a) at x500 and (b) at x3000 resolution as well as the surface morphology and the 

microstructure of the fibre laser surface treated surface of the Si3N4 engineering ceramic at x500 and (b) 

at x3000 resolution.   

 
Consideration should also be given to the processing conditions of the ceramic as this will vary the 

depth of indentation and the relative cracking geometry underneath the diamond indenter depending 

on the sintering conditions of the ceramic and the relative density. In this case the Si3N4 was not 

sintered and therefore was not fully dense (3.15 g/cm
3
) [174] compared to a fully sintered Si3N4 

(3.60 - 3.70 g/cm
3
) [42]. The partially sintered or un-sintered Si3N4 would be more porous in 

comparison to that of a fully sintered Si3N4 and therefore would be low in strength. This also means 

that the cracking geometry would be longer in comparison to the fully dense Si3N4. The depth of the 

indentation is dependent on the indentation load applied. At 30 kg the depth of the indentation was 

around 30.05µm on the laser treated track. At 5 kg of load, the depth was 14.74µm on the laser 
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treated track. The depth of the laser treated track ranged from 100 to 120µm and in relation to the 

diamond indentation depth was much deeper. This meant that the diamond indentation was not fully 

penetrating through the fibre laser irradiated surface to make contact with the sub-surface where the 

condition of the sub-surface microstructure would fully affect the cracking geometry of the fibre 

laser irradiated surface. The condition of the sub-surface would affect the crack geometry for the 

instance where the diamond indenter is penetrating through the modified surface layer.    

 

Table 6.5 (see end of the Chapter) presents the results obtained by the as-received surface and the 

fibre laser treated surface of the Si3N4 engineering ceramic. Values for the fibre laser treated surface 

were compared to the values of the as-received and the CO2 laser irradiated surface indented by 

using a 5 kg load to determine the percentage rise and decrease. A load of 5 kg was used after 

discovering that the 30 kg load would produce a bigger diamond indent which would overlap the 

microcracks which exist on the surface of the ceramics after the laser treatment. Vickers indentation 

method offers many advantages for calculating the K1c. Nevertheless, it has many flaws. Those are 

the results obtained from the hardness test heavily depending on the operator‟s ability to detect the 

crack lengths and its geometry. The ceramics ability to the indentation response and the surface 

conditions that were used during the indentation test as smoother surfaces would result to higher 

surface strength and influences the hardness value and the resulting crack lengths. The K1c results 

could be much more accurate if a consistent surface hardness value was obtained along with its crack 

geometry which could be found from employing other indentation techniques as well as various 

other methods by using other existing equations would also produce variation in the K1c value.  

 
The K1c value would also be affected if the effect of Young‟s modulus is to be considered. The fibre 

laser irradiation would increase the stress and strain ratio of the ceramic on one plane in comparison 

to the other planes. This may then produce anisotropy within the plane that is normal to the direction 

of the laser treatment as opposed to the remaining untreated material in other planes. The ceramic 

would also become anisotropic as the grain structure found from the SEM (see Figure 6.17) images 

does not show any regularity in comparison to the one of the as-received surface. This would 

indicate that the laser treated surface may be anisotropic. As well as the changed composition and 

reduction in porosity, the change in the Young‟s modulus would also occur due to an interlocking the 

microstructure produced by the fibre laser irradiation. The interlocked microstructure will produce 

refinement in surface flaws and covering of the microcracks. This in turn, will create a denser 

surface layer and affect the elastic property by increasing the stress resistance. If the Young‟s 

modulus is raised due to such effects then the end K1c value would also increase as the Young‟s 

modulus is an effective parameter into the K1c equation. So, it is likely that the influence of the 

Young‟s modulus would be significant in calculating the K1c values in this investigation. 
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6.6.3 CO2 Laser Irradiated Surfaces of Si3N4 

The average hardness of the CO2 laser treated surface was 1010 HV - a reduction of 7.5% from the 

as-received surface. This reduction in the surface hardness indicated that a softer surface layer was 

produced by CO2 laser treatment. This resulted in a surface that would be more resistant to cracking 

and fracture. The hardness values ranged between 666 HV and 1373 HV. From the range, it can be 

gathered that the fluctuation in the hardness value was large. This was due to the surface containing 

an oxide layer of around 123µm thickness (presented in the Chapter 5, Section 5.3.3.2.2 , Figure 

5.25) which was somewhat softer and more uneven in comparison to the laser unaffected surface. As 

such, the diamond indenter penetrated deeper into the surface in some of the regions than in others. 

This is why the diamond indentation in Figure 6.19 is not symmetrical in comparison to that of the 

as-received surface. 

 
Reduction of the surface hardness from the CO2 laser surface treatment led to a reduction in the 

cracks lengths induced by the Vickers diamond indenter to an average of 216μm. This was 43% 

lower in comparison to the as-received surface of the Si3N4 engineering ceramic. The crack lengths 

ranged between 179 to 463μm. Vast fluctuations resulted from the newly formed, uneven oxide layer 

after the CO2 laser surface treatment. This was also seen with the Si3N4 ceramic irradiated by using 

the fibre laser surface treatment. However, the oxide layer appeared to be somewhat larger in width 

and in depth of the CO2 laser irradiated surface of the Si3N4 as seen in Figure 6.19.  

 

 

 

Figure 6.19 Microscopic image (left) and the crack profile (right) of the CO2 laser treated surface of the 

Si3N4 engineering ceramic. 

 

It can be seen from Figure 6.19 that the diamond indentation was larger than that of the as-received 

surface of the Si3N4 engineering ceramic (see Figure 6.9) by about 7µm. The indentation size 

measured was 117µm, with a hardness of 666 HV and the crack length of 160µm. The topographical 

image in Chapter 5, Section 5.3.3.2.2, Figure 5.25 of the CO2 laser treated surface, presents the 

newly formed surface layer comprising of surface oxidation along with the heat affected zone (HAZ) 
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and the laser unaffected zone. The new surface was formed from the result of the Si3N4 engineering 

ceramic being exposed to the atmosphere at high temperatures. This would have led to a possible 

compositional change where the Si3N4 was changed to SiO2. The change in composition of the Si3N4 

was also confirmed from a previous investigation by Lysenko et al. [122]. The average K1c of the 

CO2 laser treated surface was found to be 3.16 MPa m
1/2

 and ranged between 1.95 and 5.30 MPa m
1/2

 

as presented in Figure 6.20. These values also fluctuate considerably due to the variations found in 

the hardness and the crack lengths that led to generating an uneven surface profile after the CO2 laser 

surface treatment.  

 

 

 

Figure 6.20 K1c of the CO2 laser treated surface of the Si3N4 ceramic. 

 
6.6.4 Analysis of the Fibre Laser Treated Surfaces of the Si3N4 by Using a 5 kg Indentation 

Load 

The mean hardness found was 940 HV on the fibre laser treated ZrO2. The highest value above the 

mean was 1079 HV and the lowest being 726 HV. There was a 4.5% difference between the average 

hardness values obtained from the fibre laser treatment in comparison with the average hardness 

values obtained by the as-received surface. The fibre laser had decreased the hardness in comparison 

to that of the as-received surface of the ZrO2. The average crack length of the fibre treated ZrO2 was 

170μm. The highest above the mean was 243µm and the lowest being 112µm. The crack length was 

much reduced in comparison with the crack length of the as-received surface which was 270μm. The 

fibre laser treated surfaces also comprised of much smaller cracks in comparison with the as-

received surface (see example in Figure 6.21). Reduction in the surface hardness indicated that the 

laser surface treatment had softened the top (near) surface layer of the ZrO2. From this, it can be 

assumed that some degree of melting and solidification may have taken place during the laser-

ceramic interaction. Through this, would have caused a localised ductile surface to have formed 

along with change in the surface composition.  



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

194 

 

 

Figure 6.21 An example of the fibre laser treated surface of the ZrO2 indented by a 5 kg load, laser 

power = 150 W, 100 mm /min, 3mm post size, (hardness = 654 HV (6.41 GPa), crack length = 232μm, K1c 

= 3.97 MPa m
1/2

). 

 
The average K1c value for the ZrO2 after the fibre laser treatment was 5.05 MPa m

1/2
. The highest K1c 

value obtained above the mean was 7.76 MPa m
1/2

. The lowest value below the mean was 2.67 MPa 

m
1/2 

for ZrO2 as presented in Figure 6.21. The K1c values for the fibre laser treated ZrO2 under the 

conditions measured were enhanced by 56% in comparison with that of the as-received surfaces. The 

values in Figure 6.22 fluctuate due to the softening of the treated surface that would have generated 

lower cracks during the indentation test. In those areas where the K1c is high, indicate that the 

localised near surface layer has more resistance to crack propagation under cyclic loads or during the 

onset of any tensile stresses.  

 

 

Figure 6.22 K1c of the fibre laser treated surfaces of the ZrO2 from applying 5 kg indentation load. 

 
6.6.5 Analysis of the CO2 Laser Treated Surfaces of the ZrO2 by using a 5 kg Indentation Load  

The mean hardness found was 754 HV on the CO2 laser treated ZrO2 ceramic. The highest value 

above the mean was 1120 HV and the lowest being 473 HV. It can be said that there is certainly a 
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vast amount of difference between the highest hardness value and the lowest. This was due to the 

difference in absorption and lack of penetration of the beam in some area in comparison to the other 

areas of the ZrO2 surface where there was sufficient CO2 laser beam interaction occurring with the 

ceramic. This made the more CO2 laser affected areas to allow the diamond indentation to penetrate 

than other which consequently had affected the surface hardness and resulted to a difference between 

the hardness of the CO2 laser irradiated surface of the ceramic and the fibre laser irradiated surface of 

just over 10%.  

 
Figure 6.29 illustrates the diamond footprint of the CO2 laser irradiated surface of the ZrO2 

engineering ceramic along with its cracking geometry. Average crack length of the CO2 laser treated 

surfaces was 216μm with the highest value above the mean being 333μm and the lowest being 

143μm as presented in Figure 6.29. This was interesting when compared to the crack lengths 

obtained by the fibre laser surface treatment of the ZrO2 which were considerably low. It is usually 

expected that the softer surface with low hardness would result to producing low cracking. This was 

not the case with the CO2 laser treated ZrO2 when compared to the crack length obtained by the fibre 

laser surface of the ZrO2 which comprise of 27% lower cracks. Justification for this phenomenon is 

given later in this Chapter. 

 

  

Figure 6.23 Optical image of the CO2 laser irradiated surface of the ZrO2 ceramic indented by a 49.05 N 

load; 600 mm/min; 3mm post size; (hardness = 650 HV; crack length = 297μm; K1C = 2.75 MPa m
1/2

).  

 
Figure 6.24 illustrates the K1c values obtained for the CO2 laser irradiated surface of the ZrO2 

engineering ceramic showing an average K1c value of 3.75 MPa m
1/2

. The highest above the mean 

was found to be 6.77 MPa m
1/2

 and the lowest was found to be 1.69 MPa m
1/2

. The vast fluctuation is 

also expected with the results for this sample since the fracture toughness property K1c is a reflection 

of the surface hardness and the cracking geometry of the diamond indentation which also produced 

significant fluctuation in the values found. The K1c of the CO2 laser irradiated surface of the ZrO2 
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ceramic was however, significantly higher than the as-received surface. This meant that a level of 

surface modification and increase in the K1c under the measured condition was found up to 50% 

which is remarkable in general. 

 

 

Figure 6.24 K1c of the CO2 laser treated surfaces of the ZrO2 from applying 5 kg indentation load. 

 

6.6.6 Comparison of CO2 Laser Surface Treatment and Fibre Laser Surface Treatment of the 

Si3N4 Engineering Ceramic  

6.6.6.1 Change in the surface hardness   

The average hardness of the CO2 laser irradiated surface of the Si3N4 was 1027 HV which was - a 

reduction of 13% from the fibre laser irradiated surface (1154 HV). This reduction in the surface 

hardness indicated that a softer surface layer was also produced by the CO2 laser irradiation in 

comparison to that of the fibre laser irradiation. The hardness values ranged between 264 HV and 

1449 HV for the CO2 laser irradiated Si3N4 and between 777 HV to 1449 HV for the fibre laser 

irradiated Si3N4 as shown in Figure 6.24. It is evident from Figure 6.23 that the fluctuation in the 

hardness value was large. The reason for this was due to the surface containing an oxide layer of 

around 100 to 150µm thickness resulting from both laser treatments. This was somewhat softer and 

more uneven in comparison to the laser unaffected surface. As such, the diamond indenter penetrated 

deeper into the surface in some of the regions than in others. This is why the diamond indentation 

shown in Figure 6.15 and Figure 6.19 are not symmetrical. 
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Figure 6.25 Hardness of the Si3N4 ceramic treated by the CO2 and a fibre laser irradiation. 

 

It can be seen from the footprint of the diamond indentation produced by the CO2 and the fibre laser 

that the footprint of the CO2 laser irradiated Si3N4 is larger than that of the fibre laser irradiated 

surface. Both the CO2 and the fibre laser treated surface of the Si3N4 genuinely showed evidence of 

surface oxidation. The new surface was formed from the result of the Si3N4 ceramic being exposed to 

the atmosphere at high temperatures. This would have led to the possible compositional change 

where the Si3N4 was changed to SiO2. Moreover, the occurrence of the white phase as illustrated in 

Figure 6.15 and Figure 6.19 would also lead to some modification in the microstructure of the Si3N4 

ceramic as the white oxide layer would be formed above the normal surface of the Si3N4. This in turn 

would generate in-filling of the surface cracks in various areas and also cover the grains that would 

normally appear on the top surface layer. The change in composition of the Si3N4 was also confirmed 

from a previous investigation [124]. A reduction in the crack length obtained on the CO2 laser 

irradiated surface occurred due to the oxide layer being somewhat thicker in various areas in 

comparison which showed lower surface hardness and the resulting crack lengths.   

 
6.6.6.2 Change in the crack length  

The crack lengths obtained from both of the laser irradiated surfaces are presented in Figure 6.26. 

The average crack length obtained from the CO2 laser irradiation was 277μm and ranged between 

179μm to 463μm. This in comparison to the cracks produced by the Vickers indentation test of the 

fibre laser irradiated Si3N4 was 16% lower. An average crack length found was 242μm with a highest 

of 307μm and the lowest of 160μm for the fibre laser irradiated surfaces. The fluctuation from the 

values in Figure 6.26 has resulted from the newly formed, uneven oxide layer after both of the laser 

surface treatments. 
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Figure 6.26 K1c of the CO2 laser treated surface of the Si3N4 ceramic. 

 
6.6.6.3 Change in the K1c 

The average K1c of the CO2 laser treated surface was found to be 4.77 MPa m
1/2

 and ranged between 

2.74 MPa m
1/2 

and 11.90 MPa m
1/2

. This was 26% higher in comparison to that of the fibre laser 

irradiated surface of the Si3N4 ceramic. The average K1c value for the Si3N4 after the fibre laser 

treatment was 3.51 MPa m
1/2

. The highest K1c value obtained above the mean was 6.03MPa m
1/2

. The 

results are shown in Figure 6.27. The values also fluctuate considerably due to the variations found 

in the hardness and the crack lengths that led to generating an uneven surface profile as mentioned 

earlier in this study. 

 

 

Figure 6.27 K1c of the CO2 laser treated surface of the Si3N4 ceramic. 
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6.6.7 Comparison of CO2 Laser Surface Treatment with Fibre Laser Surface Treatment of the 

ZrO2 Engineering Ceramic  

6.6.7.1 Change in the surface hardness  

Figure 6.27 presents the fluctuations in the hardness of the CO2 and the fibre laser irradiated surfaces 

of the ZrO2 ceramics along with its mean hardness value over 50 indentation tests that were 

conducted on one surface plane.  As one can see that the hardness of the CO2 laser irradiated surfaces 

was considerably lower than that of the fibre laser irradiated surface. The average hardness of the 

CO2 laser irradiated ZrO2 was 754 HV with the highest value being 1120 HV and the lowest being 

473 HV. The average hardness for the fibre laser irradiated surface of the ZrO2 was 940 HV. The 

highest value above the mean was 1079 HV and the lowest being 726 HV for the ZrO2 ceramic. The 

hardness values fluctuated in both of the curves due to an uneven surface being produced from 

material removal as well as melting and solidification. The hardness of the CO2 laser irradiated 

surface was up to 22% lower than that of the fibre laser. This showed that the CO2 laser irradiation 

had softened the surface of the ZrO2 in comparison to that of the fibre laser irradiated surface. 

 

   

Figure 6.27 Hardness of the ZrO2 ceramic treated with a CO2 and a fibre laser irradiation. 

6.6.7.2 Change in the crack length  

Average crack length of the CO2 laser treated surfaces was 216μm with the highest value above the 

mean being 333μm and the lowest being 143μm as presented in Figure 6.29. The average crack 

length of the fibre laser irradiated surface of the ZrO2 was 171μm. The crack length was much 

reduced in comparison with the crack length of the CO2 laser irradiated surfaces. Despite the increase 

in hardness produced by the fibre laser irradiated surface, a 21% decrease in crack length was found 

from the fibre laser irradiation. This can be seen from Figure 6.21 and Figure 6.23 where the 

diamond indentation produced by the CO2 laser irradiation was larger due to the softening of the 

surface but produced high cracking profiles. In comparison, the indentation created by the fibre laser 

irradiated surface was smaller due to surface hardening and yet produced a considerably smaller 
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cracking geometry. The expected result was larger crack length due to smaller indentation footprint 

produced. From this, it can be postulated that compressive residual stress could have been induced 

during the fibre laser surface irradiation which caused lower crack propagation as further explained 

in this Chapter. 

 

 

Figure 6.29 Crack length of the ZrO2 ceramic obtained after a CO2 and a fibre laser irradiation. 

One can see from the optical micrographs in Figure 6.21 and Figure 6.23 that surface oxidation is not 

apparent. The ZrO2 ceramic is less sensitive to the effect of surface oxidation during the exposure to 

the laser beam irradiation. This was due to the majority of the ZrO2 ceramics comprising of Zr + O2. 

It can also be seen from the optical micrographs that the ZrO2 has been changed in colour especially 

in Figure 6.21 due to the thermal energy being induced. It is possible however, that the ZrO2 had 

undergone a degree of compositional change since it has been exposed to the environment at high 

temperatures during both CO2 and the fibre laser irradiation. A compositional change from ZrO2 to 

ZrC is likely to have occurred during the laser surface interaction. This would bring changes in the 

fracture resistance of the ZrO2 and is deemed to have influenced the K1c values after the laser surface 

treatments.   

6.6.7.3 Change in the surface K1c 

Figure 6.30 presents the K1c of the CO2 and the fibre laser treated ZrO2 ceramics which showed that 

the K1c of the fibre laser irradiated surfaces was 29% higher than that of the CO2 laser irradiated 

surface. The average K1c of the CO2 laser irradiated surface of the ZrO2 was 5.63 MPa m
1/2

 with the 

highest value being 9.75 MPa m
1/2

 above the mean and the lowest being 2.97 MPa m
1/2 

below the 

mean. The average value found for the CO2 laser irradiated surface of the ZrO2 was 4.16 MPa m
1/2 

with the highest value being 7.54 MPa m
1/2 

and the lowest being 1.79 MPa m
1/2

. The values for both 

laser treated surfaces fluctuated due to the variation in the surface hardness and the differing crack 

geometries. The surface finish of the ceramics prior to the laser treatment should also be considered 
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where the unpolished (as-received) surface is more prone to cracking during the diamond indentation 

due to pre-existing manufacturing surface flaws and microcracks, which was the case in the study. 

 

 

 Figure 6.30 K1c of the ZrO2 ceramic obtained after the CO2 and a fibre laser irradiation. 

6.6.7 Differences between the CO2 and the Fibre Laser Surface Treatment and the Effects on 

the Hardness, Crack Lengths and the K1c of the Engineering Ceramics 

6.6.7.1 Rationale for the change in the hardness 

The results showed that a change in the hardness occurred from both of the laser treatments to the 

ZrO2 and the Si3N4 engineering ceramics. However, the hardness produced by the CO2 laser in 

comparison to the fibre laser was somewhat lower. This was due to the difference in the absorption 

of the MIR wavelength of the CO2 laser and the NIR wavelength of the fibre laser. Both the CO2 and 

the fibre laser wavelength, however, penetrate to a significant depth within the ceramics. The CO2 

laser has the tendency to produced high interaction zones at the surface, whereas the fibre laser is 

penetrated deeper into the ceramic layer for the Si3N4 ceramic in particular. This produces more 

compositional change at the top surface irradiated by the CO2 laser as the white SiO2 layer is 

produced. This layer is somewhat softer in comparison to the parent surface. For the ZrO2 ceramic, 

the fibre laser wavelength is somewhat transparent. Hence, the interaction is lower in comparison to 

the CO2 laser interaction with the ZrO2. This in turn will produced high local temperature and larger 

melt pool at the surface, but yet it is still shallow in comparison to the fibre laser irradiated surface. 

The larger melt zone intrinsically produces a bigger diamond indentation footprint in comparison to 

the fibre laser irradiated surface and therefore has slightly lower hardness in comparison.  This 

finding relate to the work of White et al. [175] who reported that an increase in the hardness of boron 

carbide ceramic by processing with the NIR wavelength of a Nd:YAG laser was found which 

comply with the higher hardness found with the NIR wavelength of the fibre laser. 

 

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

202 

 

6.6.7.2 Rationale for the change in the crack lengths and the end K1c of the ceramics 

The increase in the hardness usually manifests as an increase in the crack length due to the ceramic 

becoming more brittle. However, this did not occur with the surfaces of both CO2 and the fibre laser 

irradiation. A likely cause for this would be the effect of crack healing as the pre-existing surface 

microcracks on the ceramic were filled and covered particularly by the fibre laser irradiation. Also, 

the event of phase transformation would have occurred for both ceramics. This would have led to a 

change in the K1c values.  

 
Consideration must also be given to the event of strain hardening taking place as result of the fibre 

laser-ceramic surface interaction. The effect of strain hardening through movement of dislocations at 

elevated temperatures, inherently, could induce compression into the surface and the sub-surface of 

the ceramic and through the effect of transformation hardening. If one considers the heat generated 

from the fibre laser beam radiation is likely to have caused the Si3N4 in particular to transform from 

the α to β state at 1600
°
C, as stated by Jiang et al. [171]. This intrinsically, would have caused the 

observed increase in the hardness of the Si3N4 to 3600 HV in particular. Since, the temperature 

during the fibre laser processing has been found to be much higher than 1600
°
C [171] for both 

ceramics, phase transformation of α-β phase will inherently, occur within the Si3N4  and from M-

phase to an active T-phase would occur within ZrO2 during the fibre laser irradiation.  

 
An investigation by Moon et al. [172] found that the fracture toughness of Al2O3 and Si3N4 ceramics 

was improved considerably by generating dislocations within the ceramics by plastic deformation 

(shot blasting) and then annealing to temperatures of 1500
°
C. It is postulated that during the ceramic 

being processed at elevated temperature would have led to an increase in the hardness as the 

movement of dislocations at high temperatures would have induced a degree of residual stress into 

the ceramic in the form of compression. 

 
In account of the fibre laser induced compression, the tension would have needed to overcome the 

compression in order to propagate a crack. Therefore, the cracking of the ceramics was much smaller 

with the fibre laser irradiated surface in comparison to that of the CO2 laser irradiation. This meant 

that the tension induced by the 49.05N load to produce a crack on the fibre laser treated surface was 

much smaller than the induced compression. This rational goes some way to explaining the reason 

why smaller crack lengths have been found on the fibre laser treated ceramic (particularly with 

Si3N4) surfaces in comparison with the CO2 laser treated surface. Values obtained for the hardness, 

crack length and the K1c for the Si3N4 and the ZrO2 ceramics treated by both the fibre laser and the 

CO2 laser are presented in Table 6.5.  
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6.6.9 Other Influential Aspects Affecting the K1c of the Laser Treated Ceramics  

6.6.9.1 Differences in laser parameters 

The differences within the K1c results achieved by the CO2 and the fibre laser surface treatment have 

occurred due to several aspects which should be considered. Those are the material absorption; laser 

beam delivery system; wavelength and the brightness (power per unit area) and the beam quality 

factor (M
2 

= 1.3) as well as the Gaussian beam mode of the CO2 laser (TEM01) whereas the fibre 

laser M
2
 value was 1.2 and the Gaussian beam mode of TEM00 indicating that the beam quality of 

the fibre laser was better and the Gaussian beam mode higher. Therefore, the effect of the beam 

quality factor is minimal. However, it is important to consider the way in which the Gaussian beam 

of TEM00 is delivered, as this would have an influence on the interaction between the ceramics and 

the specific laser used. Since the CO2 laser is delivered by a galvanometers and stationary mirrors the 

beam is focused at a fine spot size, whereas the fibre laser beam is delivered by a fibre cable which is 

less focused. It is required that a larger laser-beam spot diameter is used for ceramic surface 

treatment so that the laser beam is distributed evenly onto the ceramic. In this case a fibre laser with 

a low focused beam in comparison to that of the CO2 would be more ideal especially for the surface 

treatment of the ceramics. 

 
The material absorption co-efficient is varied with different laser wavelengths. As some wavelength 

are better absorbed by the ceramics than others. The CO2 laser wavelength absorption with ceramics 

is about 77%, whereas the fibre laser wavelength absorption is about 92% [91, 126]. This means that 

the fibre laser wavelength is more absorbed into the material and exhibits better interaction zone. 

This produces more photon energy that is induced onto the ceramic surface. This in turn, produces 

high temperatures during the fibre laser processing. This allows the ceramics to undergo phase and 

compositional changes and affect the hardness and the resulting crack geometries in different ways 

and has also affected the end K1c result from the two different lasers used. 

 
The difference in the laser brightness (luminance) between the two lasers used would also have an 

effect during the ceramic interaction as the fibre laser is much brighter than the CO2 laser. This 

indicates that there is more power per unit area being executed at the ceramic surface. On account of 

this, it is indicative that the luminance at high power per unit area is larger with the fibre laser and 

produces more interaction, high processing temperatures and rather leads to transformation 

hardening of the ceramics. This is not seen with the CO2 laser surface treatment. Chapter 8 further 

presents the effect of the fibre laser-beam brightness on the ZrO2 engineering ceramic to demonstrate 

this effect.  
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6.6.9.2 Influence of the ceramics surface condition 

The CO2 and the fibre laser both were executed on the as-received surfaces of the ZrO2 and the Si3N4 

ceramics which comprised of some degree of surface flaws such as porosity and microcracks and 

machine induced scaring prior to the laser surface treatment. Due to this, the possibility of crack 

propagation increases during the diamond indentation tests. If the surface flaws were minimized in 

this study by introducing grinding and polishing of the near surface layer of the ceramics, then the 

crack propagation during the indentation test would have been somewhat low. This is also true 

because the ground and polished surfaces are free from the surface impurities and has the tendency 

to induce compressive stress and allow the ceramics to be more resistant to cracking [176]. This in 

turn, also increases the surface K1c as the resulting crack lengths from the indentation tests are 

reduced. This indicates that the surfaces of the ceramics are less prone to cracking.  

 
6.6.9.3 Effects of phase transformation and change in composition 

A new surface was formed especially on the top surface of the Si3N4 ceramic after being irradiated 

by both CO2 and the fibre laser (see Chapter 5, Section 5.3.1.2.2, Figure 5.5 and Section 5.3.3.2.2, 

Figure 5.25). This was because of the Si3N4 ceramic being exposed to the atmosphere at high 

temperatures and led to a possible change in the composition as the Si3N4 was changed to SiO2. 

Consequently, the effects with ZrO2 were also identical after conducting both the CO2 and the fibre 

laser surface treatments. A change in composition within the ZrO2 would have also taken place 

where the top surface of the ZrO2 was changed to ZrC. A compositional change within the laser 

irradiated ZrO2 and the Si3N4 was also previously confirmed in Chapter 5. A change in composition 

after the fibre laser surface treatment in turn, would affect the hardness of the ceramics. This 

inherently, influenced the crack geometry during the Vickers indentation test and furthermore, the 

end K1c values.  

 
6.6.9.4 Effects of the Vickers indentation test and parameters used within the K1c equation 

The Vickers indentation method is easy to set-up and cost effective but it still has several flaws such 

as the results obtained from the hardness test heavily depending on user‟s ability to detect the crack 

lengths and its geometry. The K1c values could be much improved if the surface hardness values and 

the resulting crack geometries were consistently balanced with minimal fluctuation. The fluctuations 

found in the mean hardness from the results of this study were up to 11%. This in comparison with 

the values for the ceramics given in the literature were 1% higher from the ± 10% range (error) given 

in [119]. Error of at least 1% (minimum) between the hardness values found in this study and the 

literature can be an exempt as mentioned earlier in the this Chapter. 

 
Calculation of fracture toughness is somewhat difficult due to various uncertainties such as the 

selection of the most appropriate equation; input parameters which compliment the equation used; 

the surface conditions of the ceramics and the ceramic response during the diamond indentations test. 
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Consideration should be given to two parameters that can influence the K1c of the ceramics herein 

and on a general note. Those parameters are; the indentation load and the Young‟s modulus. The 

indentation load was kept constant in this study, so the effects of this parameter were zero. However, 

the Young‟s modulus would influence the K1c of the Si3N4 since an increase in the ratio of stress and 

strain would increase the Young‟s modulus value and affects the end K1c value. If the effect of 

Young‟s modulus was ignored then the K1c value for the CO2 laser treated surfaces would be reduced 

to 6% on average. 

 

6.7 Summary 

Fracture toughness property K1c of the as-received, CO2 and the fibre laser surface treated Si3N4 and 

ZrO2 engineering ceramics was investigated and the following conclusions were raised: 

   
 Various empirical equations were used to calculate the K1c of the as-received surfaces of the Si3N4 

and ZrO2 engineering ceramics to investigate the most suitable equation. It was found that 

equation: K1c = 0.016 (E/Hv)
 1/2 

(P/c
3/2

)
 
was the most relevant to use. 

   
 Modification in hardness and the crack length demonstrated that the hardness acted as an 

influential parameter in changing the surface K1c of the engineering ceramics.   

 
 Comparison of the as-received surface with the CO2 and the fibre laser treated surface showed 

improvement in the K1c of the top surface layer of both laser treated ZrO2 and Si3N4 engineering 

ceramics under the applied conditions. 

 
 CO2 laser surface treatment resulted to considerable softening of the treated layer of the two 

ceramics leading to an increased K1c. On the other hand, the fibre laser increased the hardness 

only by 4% but produced a reduction in the crack length was found. This led to an increased K1c 

values under the applied conditions.    
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Table 6.5 Surface hardness, crack lengths and the K1c values found by using a 5 kg indentation load, from the experimental investigation of both the Si3N4 and 

the ZrO2 engineering ceramics, treated by the CO2 and the fibre laser irradiation. 

 

 Average Surface hardness (Hv) Average surface crack length (μm) Average surface K1C (MPa m
1/2

) 

Si3N4 STDEV Range 

 

ZrO2 STDEV Range 

 

 

Si3N4 STDEV Range 

 

ZrO2 STDEV Range 

 

Si3N4 STDEV Range ZrO2 STDEV Range 

As-

received 

surface 

1106 201 707 -

1647 

973 141.37 

 

707-

1330 

376 765 227 -

499 

277 707 177 - 

512 

1.71 0.59 0.55 - 

3.06 

2.45 0.73 0.92 – 

4.42 

CO2 laser 

treatment 

1019 216 666 - 

1379 

754 177 473 - 

1120 

277 609 179 - 

463 

216 434 144 - 

333 

3.16 1.17 1.13 - 

5.30 

3.75 1.05 1. 69 - 

6.77 

Fibre laser 

treatment 

1154 159 777 -

1449 

940 60 726 - 

1079 

 

242 407 160 -

307 

170 328 112 - 

243 

3.25 0.94 1.95 - 

5.52 

5.05 1.51 2.67 - 

7.76 
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CHAPTER 7 

Thermal Analysis of Laser Surface 

Treated Engineering Ceramics  
  
The thermal effects of CO2 and fibre laser surface treatment on the Si3N4 and the ZrO2 engineering ceramic 

were studied by using a computational finite element model (FEM). Temperature increases on the surface 

and the bulk of the ceramics during the laser surface treatment were measured by using an IR thermometer 

and specifically located thermocouples. The FEM was used to reveal the temperature distribution at various 

stages of the laser surface treatment of the two ceramics. By utilizing data obtained from a thermo, 

gravimetry-differential scanning calorimetry (TG-DSC), the FEM predictions of the temperature 

distribution were used to map phase transformations and significant events occurring during the fibre laser 

surface treatment in particular of the two ceramics. The mapping revealed that the laser surface treatment 

generally resulted in a phase transformation of the ceramics at various temperatures changes as further 

elucidated in this Chapter.  

 

7.1 Introduction 

Laser interaction with any material is a complex phenomenon and this is especially so with 

engineering ceramics since the laser process involves multi-factors such as power density; traverse 

speed; instantaneous heating; ablation; rapid cooling and solidification. To analyse such events; 

thermal analysis by means of employing the experimental, analytical and computation approaches 

can be useful to investigate the laser-ceramic surface interaction.  

 
Previous research by several workers has revealed ways of predicting and calculating the surface and 

the bulk temperature of various laser processing methods by using numerical means. Cline and 

Anthony [177] conducted one of the first investigations to determine the temperature profiles of a 

metallic alloy during CO2 laser processing. They presented an analytical model by using the 

Greens‟s function for a Gaussian laser beam traversing at a constant velocity. Lax [178, 179] 

investigated a one-dimensional numerical integral of a solid material by the temperature rise during 

an onset of a Gaussian laser beam when applying a steady-state solution and by taking in account of  

the constant and the temperature-dependent thermo-physical properties for the solid. Nissim et al. 

[180] also used the Greens‟s function to calculate temperature profiles of an elliptical laser beam 

during annealing of a silicon gallium arsenide (semiconductor). Their results showed that with prior 

knowledge of the thermal conductivity, accurate temperature can be calculated and are valid for any 

material.  Moody and Handel [181] as well used a CW elliptical laser beam by using an improved 

formalism of the Kirchhoff transformation to evaluate the temperature profiles on a silicon substrate. 

Thermal conductivity, diffusivity, and the surface reflection were considered as important functions 
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in the analysis. Their findings showed variation in the temperature profiles within the molten, the 

semi liquid and the solid regions.  

 
Sanders [182] adopted the steady state solution of a Gaussian laser beam on a solid substrate to 

approximate the onset of the surface temperatures. Kar and Mazumber [183] implemented the 3-D 

transient heat conduction equation to generate temperature predictions as well as a FEM of a 

Gaussian laser beam chemical vapour deposition process thereof on a pure titanium work-piece. The 

3-D model showed a relationship between the variation in the temperatures at fluctuating laser 

powers and the traverse speeds.  Kar [184] then followed an investigation by using a quasi-steady-

state heat conduction model to analyse the laser heating of a solid substrate with rectangular, square, 

multimode, and single or multiple laser beams. Their findings presented a 3-D quasi-steady-state 

thermal model and an approximation of the temperature spread during the laser heating with a single 

or multiple beams by using a rectangular spots.  

 
Cheng and Kar [185] then conducted a theoretical investigation to study the densification of ZrO2 

ceramic coating processed with a moving transmission electron microscopy (TEM00) mode laser 

beam. They produced a 3-D quasi-steady state heat conduction model by applying the Fourier 

integral transform method to show that the depth of the HAZ, the influence of laser power, spot size 

and the processing speed on the densification of the ZrO2 ceramic. The use of both computational 

and an experimental model in this study was adopted rather than a numerical model for calculating 

the temperature distribution was because of simplicity, to obtain accuracy and also because it is less 

time consuming particularly, with the adopting the computational FEM approach. The temperature 

measurement by using the experimental approach would also lead to achieving a realistic values as 

oppose to a analytical model, which does not consider the physical aspects such as the heat transfer 

from the work-piece to the clamps or the processing table (as a second body) in contact with the test-

piece. This can have a considerable effect on the temperature distribution as opposed to a finite body 

in space used without any constraints in the analytical models. 

 
Experimental measurement of the processing temperatures during the laser surface treatment is 

rather difficult with hard, brittle engineering ceramics and often requires a lengthy and time 

consuming preparation for drilling holes, positioning and mounting the temperature sensors or 

thermocouples. However, this method is ideal for measuring the temperature changes in the bulk. 

Thus, it is not suitable for measuring the surface temperatures so pyrometers or contact-less devices 

are also employed, as demonstrated by Zhang et al. [186], Hao & Lawrence [187] and Ignatiev et al. 

[188]. Ignatiev et al. also stated that such measuring techniques are helpful to detect the material‟s 

phase transformation. This approach is also adopted for the investigation herein as further revealed. 

Temperature measurement during the laser surface treatment is important as the measured 

temperatures are used as an input parameter into the computational models for determining features 
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such as deformation, bending, tensile and compressive stresses as well as the thermal heat map and 

distribution of heat. 

 
Several researches have been published on finite element analysis (FEA) by using design software 

such as ABAQUS and ANSYS for investigating the residual stress and thermal distribution of 

various laser processing technique applied on conventionally used metals and alloys. Braisted and 

Brockman [189]; Yongxiang et al. [190]; Ocana et al. [191] and Chen et al. [192] who studied the 

laser surface treatment through shock peening and constructed a 3-D model of the process which led 

to the determination of residual stress fields and surface deformation. The steady heat transfer 

equation to model the evaporating laser cutting process by using a 3-D computational finite element 

model was studied by Kim [193]. Shiomi et al. [194] analysed a laser rapid prototyping of metallic 

powders with the aid of a FEA. Investigation of the temperature fields and the stress state during 

laser welding by the aid of a simulated FEM and the thermal heat map produced to improve the laser 

welding process was conducted by Carmingnani et al. [195]; Spina et al. [196]; Yilbas et al. [197]; 

Zain-Ul-Abdein et al. [198] and Naeem et al. [199]. Much work has been conducted with modelling 

various laser processes with metals. However, very little work has been published with finite element 

modelling of laser surface treatment of engineering ceramics.  

 
Considerable amount of research has also been conducted within the field of phase transformation of 

the ZrO2. The phase transformation of the ZrO2 ceramic occurs when it is exposed to 

increasing/decreasing or changing temperatures as stated by Zakurdaev and Huang [200]; Luping et 

al. [201] as well as Holand and Beall [202]. With respect to the changing temperature being 

introduced during the laser surface treatment; it is important to understand the thermal effects of the 

laser irradiation upon the crystal phases of the ZrO2 ceramics. ZrO2 ceramic comprise of three phases 

within its crystal structure. Upon heating at 700
°
C the transition from M-phase to the T-phase begins 

to occur. At 1100
°
C, the ZrO2 ceramic fully transforms from M-phase to the T-phase. Furthermore, 

the T-phase becomes active until 2370
°
C. The reverse order takes place upon cooling of the ceramic. 

This was presented in the work of Garvie et al. [203]; Porter and Heuer [204]; Sergio [205]; Zhou et 

al. [206]; Sato et al. [207]; Haraguchi et al. [208]; Shackelford and Doremus [209]; Richardson [37]; 

Huang et al. [210] and Lee and Rainforth [211]. 

 
There are several events that take place within a ceramic during phase transformation. Previous 

research has shown the change in ZrO2 phases by introducing heat treatment such as sintering and 

annealing at temperatures up to 1500
°
C. Sintering at temperatures up to 1500

°
C would result to an 

increase in hardness and toughness as found by Xigeng et al. [212] and Nayak et al. [213]. Changes 

in volume, strength and the grain boundaries depending on the concentration of the additive and the 

critical temperature applied was also reported  by Sato and Ohtaki [214] as well as decreasing the 
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grain size of the ZrO2 reduces the amount of T to M phase transformation. Zhu [215] stated that the 

grain size of a 2 mol% ZrO2 ceramic was dependant on the transformation temperature. 

 
Considerable amount of research has also been conducted within the field of phase transformation of 

the Si3N4 ceramics as described in the numerous literatures on the phase transition of the Si3N4 

ceramic [216-223]. The phase transformation of the Si3N4 ceramic occurs when it is exposed to 

mainly increasing temperatures. With respect to the increasing temperature being introduced during 

the laser surface treatment; it is important to understand the thermal effects of the laser irradiation 

upon various phase changes within the Si3N4 ceramic. Phase transformation of the Si3N4 ceramic 

during laser surface processing is however, not been widely published in the literature. Phase 

transformation of the Si3N4 ceramics is complex in comparison to other ceramics such as a ZrO2. 

This is because the behaviour of the Si3N4 during the heating process involves densification via 

particle arrangement, solution diffusion-precipitation and coalescence. These aspects are required for 

a full α-phase to β-phase conversion [216].    

 
Messier et al. [217] investigated the phase transformation of powder Si3N4 and reported that a 

change of α-phase to β-phase occur at 1600
°
C. Effect of this transition also leads to formation of fine 

log-shaped grains with hexagonal symmetry being formed.  Messier et al. also stated that α-phase 

was generally formed at low temperature. Ziegler and Hasselman [218] investigated the phase 

transformation of hot pressed Si3N4 (HPSN) and reaction sintered Si3N4 (RSSN) ceramic and 

reported that different morphology is formed with change in phase with respect to the increase in the 

temperature. The β-phase grain structure has the tendency to increase to a rod-like grain. These types 

of grains are usually formed at about 1499
°
C. Sarin [216] also commented on the increased grain size 

of the ceramics and occurrence of wiskar rod-type grains with high aspect ratio forming at 1770
°
C 

during sintering of the ceramics for up to 4 hours. Formation of the rod-like grains and transition to 

β-phase was also confirmed by the work of Sajgalik and Galusek [219]. Rouxel et al. [220] reported 

a phase transformation of the Si3N4 ceramic from α-phase to β-phase between sintering temperatures 

of 1549
°
C to 1649

°
C. Increase in the fracture toughness via decrease in the hardness and the Young‟s 

modulus was also reported in Rouxel et al.‟s investigation. Such modifications occurred through 

microstructural changes that were found in the work of previous researchers. Yang et al. [221] also 

investigated the change in phases occurring with the Si3N4-MgO-CeO2 ceramic and found that 

densification of the ceramic occurred at 1500
°
C. This was followed by the phase transition of the 

Si3N4-MgO-CeO2 from α-to-β occurring at 1500
°
C and endings at 1600

°
C. Dai et al. [222] conducted 

an in depth study of the phase transformation behaviour of the Si3N4 at temperature between 1600
°
C 

to 1700
°
C. It was reported that α-to-β transformation occurred when heating the ceramic to 1600

°
C. 

This finding also complied with the finding of Jiang et al. [223] and the work of various authors 

reviewed previously. Dai et al. also reported that SiO2 was formed during the α-phase to β-phase 

transition.  
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This research attempts to look at the underlying effects during such phase changes and how the Si3N4 

and the ZrO2 engineering ceramics are evolved from the CO2 and the fibre laser irradiation. Thermal 

distribution and the change in the characteristics of the two ceramics during the CO2 and the fibre 

laser surface treatment were under investigation. This was done by performing an experimental 

investigation of the temperature exhibited during the CO2 and the laser irradiation within the bulk 

and the surface of the ZrO2 engineering ceramics. Consequently, mapping of the heat distributed 

within engineering ceramics by an experimental model and by using a FEM with the aid of 

Unigraphics Nx-5 Nastran design and simulation software by Sham [224] is presented herein. In 

addition, verification of the experimental model in comparison to the FEM; phase transformation 

within the ZrO2 and the Si3N4 engineering ceramics was speculated at various temperatures prior to, 

during and after the fibre laser surface treatment of the both the engineering ceramics. The 

experimental value was used as the input parameter for constructing a FEM. This was then used for 

postulating any changes within the Si3N4 and the ZrO2 ceramics such as phase transformations, 

through data obtained from a thermo, gravimetry-differential scanning calorimetry (TG-DSC). No 

other investigation hitherto adopts the combination of employing the Unigraphics NX 5 Nastran 

software for conducting the analysis and fibre laser processing of the ceramics in particular as this 

was the first time. 

 

7.2 Mathematical Model Development of the CO2 and the Fibre Laser Surface 

Treatment of the Si3N4 and ZrO2 Engineering Ceramics 

7.2.1 Thermal Modelling 

It is important to study the event during the laser interaction with the ceramics. The laser beam with 

a given power density and a constant traverse speed (see Section 4.2, Chapter 4) is passed on the top 

surface of the ceramics. During this time, the laser energy is absorbed by the ceramics to about 90% 

as reported by Zhang and Modest [186]. The absorbed light in form of heat causes a degree of 

surface heating. This leads to a degree of melting, followed by some level of ablation through 

vaporization and finally solidifies during its cooling process to ambient temperatures. Phase changes 

during such events also occur at certain temperature gradients as mentioned earlier in this study. 

Furthermore, an analytical solution as presented in Equation 7.1 onwards can be adopted to evaluate 

an analytical model.  

 
∂

2
 (kθ)/ ∂x

2 
+ ∂

2
 (kθ)/ ∂y

2 
+∂

2
 (kθ)/ ∂z

2 
+ qb = ρc p ∂θ/∂t     (7.1) 

 
and θ is the temperature and kij are the conductivity co-efficient. The variable ρ, cp and qb are mass 

density, the specific heat and the rate of heat generation per unit volume. The thermal energy acting 

on the surface of the engineering ceramics due to convection to the environment is governed by  

          
q = - h (θ – θ

0
),           (7.2)  
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where q is the heat energy across the surface, h is a reference film co-efficient, θ is the temperature at 

this point on the surface and θ
0
 is a reference temperature value. The thermal energy on the ceramic 

is due to radiation to the environment and is governed by  

 
q = A [(θ – θ

Z
)

4
 – (θ

0
 – θ

Z
)

4
],               (7.3)  

 
where q is the thermal energy across the surface of the ceramic, A is the radiation constant, θ is the 

temperature at this point on the surface, θ
0
 is an ambient temperature value and θ

Z
 is the value of 

absolute zero on the temperature scale being used. Therefore, the radiation constant is defined as: 

 

A = ɛσ,            (7.4) 

 

Where ɛ is the emissivity of the surface and the σ is the Stefan Boltzmann constant. In a situation 

where phase change occurs, particularly so for a pure substance, then the following boundary 

conditions of Rolph and Bathe [225] is applied at the phase transition interface at the solid-liquid 

interface: 

 
 θ = θf,            (7.5) 

 
∆ qs dS = -ρL dV/dt          (7.6) 

 
where θf, ρ and L are the phase change temperatures, mass density and latent heat per unit mass of 

the material undergoing phase change and V is the volume. The heat is absorbed at a rate 

proportional to the volumetric rate of conversion of the material, dV/dt, at the solid liquid interface as 

stated by Equation 7.6. The heat must also be balanced by the heat flow, ∆ qs, from the interface. The 

–ve sign is used for a situation where absorption of heat during melting occurs. The steps to 

construct the FEM by using a computational method of steady state solution are further presented 

with its 3-D geometry.  

 

7.2.2 FEM Development 

A FEM was constructed by using Unigraphics, NX 5.0, Nastran designing software. The model 

presents the thermal distribution of the CO2 and the fibre laser irradiated heat distribution over the 

sample. This is compared to the experimental heat distribution model by the two lasers. This is to 

investigate if there is a correlation between the experimental and the FEM. The steps taken for the 

finite element analysis (FEA) are illustrated in Figure 7.1.  
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Figure 7.1 A schematic diagram of the steps taken to construct the FEM. 

 
The component part was first designed which represented the experimental work-piece (see Figure 

7.2). It comprised of a 3mm diameter blind hole with a depth of 100μm, equivalent to the footprint of 

the CO2 and the fibre laser beams used. A depth of 100μm was assigned for the blind hole as the 

minimal penetration of the laser beam. It was necessary to introduce the blind hole to the model to 

assign a heat load acting on the work-piece as opposed to assigning the laser beam as a heat load. 

This is because the laser beam is not a solid object and does not have the required physical properties 

for the model to function correctly. This also helped to minimize the computational time and the 

model complexity during the simulation. 

 
The second step to construct the model was to assign the material properties. However, the user must 

ensure that the correct software functions are selected. Those are namely: the design simulation 

followed by NX Nastrad design and the thermal solver. The materials properties are presented in 

Table 7.1 and then assigned to the work-piece. Young‟s modulus; Poisson‟s ratio; shear modulus; 

thermal expansion coefficient and the thermal conductivity are predominant properties directly 

affecting the model and hence, were assigned in all three x-y and z-directions by using the 

orthotropic material function of the NX Nastrad design, (thermal solve). This was because the 

characteristic of the ceramic does not remain the same in all axis of its orientations due to certain 
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manufacturing impurities and further modifications to have occurred during processing of the 

ceramics. Also, the ceramic was exposed to the laser beam (thermal energy). This would have lead to 

induction of further changes within the material from the induced thermal stress.  

 
Table 7.1 Input of the properties assigned to the Si3N4 and the ZrO2 engineering ceramic to construct the 

FEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
After assigning the material properties, the third step of the FEM was to give constraints (see Figure 

7.2(b)) to the work-piece or to set the boundary conditions. The constraint is in form of a thermal 

constraint and is assigned to the work-piece in positions where the sample is connected to another 

body (i.e mounted to the processing table by using putty). A putty was used since mechanical 

clamping is not always ideal for holding hard brittle ceramics due to the risk of inducing mechanical 

tensile stress which often leads propagation of fractures. Furthermore, the use of putty provided a 

firm fixation and avoided any vibrations when the working table was in motion during the fibre laser 

surface treatment. A thermal constraint of 25
°
C was applied to the positions shown in Figure 7.2(c) 

on both edges of the work-piece. This meant that the work-piece was held firm in those positions and 

was in contact with another body during the CO2 and the fibre laser surface treatment. The 

temperature of the thermal constraint was applied at an atmospheric temperature of 25
°
C.  Step four 

of the FEA involved applying a heat load to the work-piece. This is where the following heat loads 

were applied as dependant on the various processing conditions of the CO2 and the fibre laser surface 

treatment of the ZrO2 and the Si3N4 engineering ceramics: 

 
 Experimental temperature of 2473

°
C found for the fibre laser irradiated ZrO2 ceramic and 

applied on the 3mm diameter blind hole (see Figure 7.2(c)) on the work-piece at the laser power 

density of 3717.44 W/mm
2
. 

  

Material Properties Value (Units) 

Si3N4 ZrO2 

Mass Density  3200 kg/m3 6050 kg/m3 

Reference Temperature 25
°
C 25

°
C 

Specific Heat 900 J/kg-k 425  J/(kg*
°
C ) 

Young‟s Modulus 320000 MPa 270000 MPa 

Poisson‟s Ratio 0.27 0.27 

Shear Modulus 110000 MPa 55000 MPa 

Thermal Expansion 

Coefficient 

3.25 u /
°
C 7×10-6 /

°
C 

Thermal Conductivity 15 W/m-k 1.75  W/(m*
°
C) 

Thermal capacity  3200 kg/m3 400  J/(kg*
°
C) 
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 Experimental temperature of 1752
°
C found for the CO2 laser irradiated ZrO2 ceramic and 

applied on the 3mm diameter blind hole on the work-piece at the laser power density of 1736.11 

W/mm
2
. 

  
 Experimental temperature of 2269

°
C found for the fibre laser irradiated Si3N4 ceramic and 

applied on the 3mm diameter blind hole on the work-piece at the laser power density of 3979.16 

W/mm
2
. 

 
 Experimental temperature of 1935

°
C found for the CO2 laser irradiated Si3N4 ceramic and 

applied on the 3mm diameter blind hole on the work-piece at the laser power density of 5556 

W/mm
2
. 

 
This was the maximum power density induced by the 3mm diameter beam of the CO2 and the fibre 

laser according to the threshold of the ceramics. The surfaces of the ceramics were assigned a view 

factor of 1. This is the amount of heat being passed on from one surface to another. In this case, the 

thermal energy irradiated by the laser beam was only being passed onto one surface during the heat 

transfer as described by Cengel and Turner [120]. Absorption of 90% was assigned to the model by 

taking in consideration of the absorption values found in a previous investigation by Zhang and 

Modest [186]. An emissivity of 0.40 was used as it is a typical value for all ceramics. 

 
Once a thermal load was applied the FEM is then ready to be meshed. Furthermore, a fine 3-D mesh 

of tetrahedral by using 10 nodes, with an overall element size of 1mm was created on the work-piece 

(see Figure 7.2(d)). The final step of the FEA is to create a simulation by using the post processing 

function of the NX 5.0 Nastran software. This generated a solution from the input data and produced 

a simulation in form of a FEM. This was also animated to investigate the distribution of heat during, 

prior to, and after the laser process as presented further in this chapter by the aid of screen shots of 

the animation.  

 

 

(a)                                                                (b) 

Figure 7.2 Screen shot images of the part design showing a 3mm diameter blind hole at a depth of 100μm in 

(a) and (b) the thermal constraint of 25
°
C applied on both edges to the work-piece.  
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(c)                                                             (d) 

Figure 7.2 Screen shot images of the part design showing application of the heat load to both the Si3N4 

the ZrO2 ceramics in form of the laser beam in (c) and (d); an image of the full 3-D mesh showing the 

assigned heat load to both the Si3N4 and the ZrO2 engineering ceramics. 

 

7.3 Experimental Techniques and Analysis 

7.3.1 Experimental Material  

Details of the materials used for the experimentation are presented in Chapter 4 (see Section 4.1, 

Figure 4.1). 

 
7.3.2  CO2 and Fibre Laser Surface Treatment 

The details of the fibre laser used for the experiments are presented in Chapter 4, Section 4.3 and 

Section 4.4 for the CO2 laser surface treatment. Figure 7.3 and Figure 7.4 illustrate the schematic 

diagram of the set-up of the two lasers used.  

 

 

Figure 7.3 A schematic diagram of the experimental set-up of the fibre laser surface treatment of the 

Si3N4 and ZrO2 engineering ceramics.  
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Figure 7.4 A schematic diagram of the experimental set-up of the CO2 laser surface treatment of the 

Si3N4 and ZrO2 engineering ceramics. 

 

7.3.3 Temperature Measurements 

7.3.3.1 Infra-red (IR) thermometer 

The surface processing temperature was measured by using a portable IR thermometer (Cyclops 100 

B; Land instruments international Ltd). The device was bolted on a tripod and positioned 1m away 

from the processing area (see Figure 7.3 and Figure 7.4). The IR thermometer was then aligned with 

the work-piece by means of a He-Ne beam of the CO2 and the fibre laser as indicated in Figure 7.5. 

Thereafter, the laser beam was switched on for the surface treatment to take place. The IR 

thermometer was then switched on shortly after and followed the laser ceramic interaction as the 

laser processing began. The IR thermometer was switched off before the CO2 or the fibre laser 

surface treatment was completed (see Figure 7.5). This procedure was adopted for every 

measurement that was taken for the experiment. This allowed an average temperature to maintain 

closer to the real temperature of the processing area. However, it was important that the operator 

constantly monitored the processing area through the viewing window of the lens of the IR 

thermometer whereby the traversing laser beam was followed in order to accurately measure the 

temperature during the laser surface treatment. The temperature measurement was conducted on five 

different areas of the surface of the ceramic work-piece as indicated in Figure 7.5. The measurement 

on the surface was conducted as the beam traversed on the surface of the work-piece. Each area was 

measured in one pass of the laser beam. The average reading of the temperature was taken from five 

passes of the laser beam executed on five samples. This enabled to produce consistent values of the 

temperature measurement. 
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Figure 7.5 A schematic diagram of the positions used to measure the surface temperature of the Si3N4 

and ZrO2 engineering ceramic during the fibre laser surface treatment. 

 

7.3.3.2 Digital temperature reader 

The bulk temperature measurement was taken by using a precision fine wire (0.20mm diameter x 

152mm in length), R-type, thermo-couples, capable of reading up to 2300
°
C (P13R, Omega 

Instruments Ltd.) and were precisely mounted at various positions within the bulk of the sample as 

illustrated in Figure 7.6. Each of the fine wire thermocouples set was wired to a two pin plug which 

connected to a digital temperature reader (N9002-Thermometer; Comark Ltd.) for receiving the 

feedback in of a temperature reading. Three holes were drilled into the ceramic by using the 

ultrasonic drilling method, after which the tip of the thermocouples were mounted into the holes at 3, 

6, 7mm from the surface (see Figure 7.6). The holes were then filled by using filler (paste) made of 

organic type material that is stable during high temperature processing. This assured firm fixation for 

the thermo-couples during the laser surface treatment. Measurement was taken in three different 

passes of the laser surface treatment. This was because one pass could only measure the temperature 

from a single set of thermocouple positioned in a single hole. A new sample was used with each pass 

of the fibre laser and five identical readings were recorded for each of the positioned hole to achieve 

consistency in the bulk temperature measurement. 

 

Figure 7.6 A schematic diagram of the mounting position of the thermo-couples into the Si3N4 and the 

ZrO2 engineering ceramics during the CO2 and the fibre laser surface treatment. 

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

219 

 

7.3.4  Thermogravimetry-Differential Scanning Calorimeter (TG-DSC) Analysis 

TG-DSC analysis (1500 DSC; Stanton Redcroft, Ltd.) was conducted on the as-received and fibre 

laser irradiated samples of the Si3N4 and the ZrO2 engineering ceramics. The average surface area of 

the samples was approximately 2mm
2
 for both of the samples and the mass was 26mg for the Si3N4 

and 29.45mg for the ZrO2 engineering ceramic. The samples were placed into an Al2O3 crucible and 

N2 was used as a purge gas at 50 ml/min. Once in place, the samples were heated up to 1500
°
C at a 

rate of 10
°
C/min

 
to measure the mass flow as the temperature increased. The samples were then 

cooled to ambient temperature at the same rate by using the same parameters to measure the mass 

flow as the temperature reduced. The heat flow through the as-received and the laser treated samples 

was recorded for any changes during the heating and cooling cycles and are shown in Figure 7.16, 

Figure 7.34 and Figure 7.35. From this, recording it was then possible to identify specific phase 

events that occurred in both the Si3N4 and the ZrO2 engineering ceramics during heating at what 

temperature these events take place. 

 

7.4  Results and Discussion 

7.4.1  Fibre Laser Surface Treatment  

7.4.1.1 Experimental temperature readings of the ZrO2 engineering ceramic  

The average temperatures found on the surface after five passes of the fibre laser are presented in 

Figure 7.7(a) and (b) for the surface temperature and the bulk for the ZrO2 engineering ceramic. At 

the laser-ceramic interface the surface temperature was found to be 2473
°
C. This is close to the 

manufacturer‟s specification of the melting temperatures (2550
°
C) in comparison. The difference 

between the two readings was 2.5%. This difference could be justified by the accuracy and the 

operator error that may have occurred during the experimentation. This is above the melting 

temperature of the ZrO2 which indicated that there is some degree of melting which occurred. This 

was also supported by the evidence in Chapter 5 where grain boundaries have began to bind together 

and inter-lock as result of partial melting. The surface temperature on the side of the sample (away) 

from the laser treated zone was found to be much lower than the melting temperature. This would 

obviously be high due to the heat transferring through the bulk of the ceramic. Interestingly, the 

temperature readings should result to being stable throughout one surface plane. However, this was 

not the case as the difference between position 2, 3 and 4 was sufficiently large (251
°
C).  
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Figure 7.7 A schematic of the surface temperature reading in (a) and (b) the bulk temperature of the 

ZrO2 engineering ceramic during fibre laser surface treatment. 

 

The temperature measurements taken from using the thermo-couples within the bulk of the ZrO2 

ceramic are presented in the Figure 7.7(b). The average bulk temperature after five readings in 

position 6, 7 and 8 were 1275
°
C, 1727

°
C, and 1451

°
C. This result agrees with the surface temperature 

presented in Figure 7.7(a) that 3mm below the surface due to the heat transfer; the temperature is 

above 400
°
C lower. At 6mm below the surface, the measured temperature was considerably lower 

(1225
°
C). In this position, the temperature has begun to decrease as the heat was distributed 

throughout the surface. Moreover, the temperature at 7mm below the surface was 1007
°
C as the heat 

was passed on from the bulk of the ceramic to the surface. 

 
In Figure 7.8(a) and (b), both of the graphs are constructed from the experimental values found. This 

was for a situation where the fibre laser was incident at 25mm length (centre) from the edge of the 

ZrO2. The distribution of heat is presented in Figure 7.8(a). This illustrated the surface temperature 

over the length of the ZrO2 sample at 25mm. At the length of 0mm the experimental temperature was 

instantaneously ramped up to 1604
°
C and gradually increases as it comes closer to the incident beam. 

The peak temperature found was 2473
°
C at 25mm length (centre of the work-piece) of the focused 

laser beam upon the ZrO2 test-piece. The temperature reduced to 1935
°
C at 37.5mm in length and 

was recorded at 1739
°
C at the edge of the sample at 50mm.  

 
The graph in Figure 7.8(b) presents the experimental temperatures obtained in the bulk of the 

ceramic particularly at 3, 6 and 7mm. Temperatures at various other positions can also be calculated 

from these three values as shown in Figure 7.7(b). In general the curve in Figure 7.8(b) has declined 

due to the reduction of the temperature through the bulk of the ceramic. The temperature is reduced 

from 2473
°
C at the depth of 0mm (surface) to 2015

°
C at 3mm, 1225

°
C at 6mm and 1007

°
C at 7mm 

depth. From this, the temperature at the depth of 10mm can be predicted as shown in Figure 

7.8(b).The experimental investigation would now be used as a base to construct the FEM. The results 
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found herein are also compared to the FEM for validation and confirmation of the level of accuracy 

or error in the temperature measurements in this study. 

  

 

(a)                                                                               (b) 

Figure 7.8 Experimental temperature distributions over the surface length in (a) and (b) the 

temperature distribution through the bulk of the fibre laser surface treatment of the ZrO2 engineering 

ceramic. 

 

7.4.1.2 FEM temperature reading 

A FEM was constructed which revealed the surface and the bulk temperature maps by taking in 

account of the surface and the bulk temperatures measured from the experimentation. The surface 

maps are presented in Figure 7.9, 7.11 and 7.13. Because of the laser beam traversing as a CW beam; 

it is always ideal to construct the model so that it illustrates the FEM of a moving laser beam. 

However, in this case, a stationary spot was used for the analysis to observe the effect of the thermal 

radiation. The total time to cover the whole area of the sample was 30 sec at a traverse speed of 100 

mm/min. This would cover 1.66 mm/sec. In Figure 7.9, the first point of contact with the ceramic 

and the laser beam has been demonstrated. The impact on the beam is only 1.5mm onto the surface 

despite comprising of a spot size of 3mm diameter. A heat map is illustrated for this condition and is 

compared with the values for the experimental temperature readings that were found. It can be 

observed that the maximum temperature found at the laser-material interface on the FEM was 

2354
°
C. The temperature here was lower than the temperature from the real experimental value by 

5.47%. Error of the computational method within ±10% can be considered to be in good agreement 

with the experimental values. In Figure 7.9(b); the laser beam is only concentrated at 50% of its 

diameter because it is focused on the edge of the sample (start of the laser surface treatment). This 

enabled the cross-sectional distribution of heat to be analysed. From observing the cross-sectional 

heat map, it can be seen that the near to melting temperature found through the bulk of the ceramic 

ranges between 100 to 200µm.  
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(a)                                                                              (b) 

Figure 7.9 FEM of the heat distribution of the fibre laser focused at 0mm from the edge (position 1) of 

the ZrO2 engineering ceramic work-piece (start of the laser treatment) in (a) and (b); the cross-sectional 

view. 

 
From observing the results from the model in Figure 7.9(a) and (b), the determination of temperature 

distribution over the surface at various lengths and through the bulk at various depths are presented 

in the graph in Figure 7.10(a) and Figure 7.10(b). In this model, the incident beam at the start of the 

surface treatment is covering 0 to 1.5mm radius. The temperature within this area as seen on Figure 

7.11(a) is up to 2350
°
C. During this time the temperature distribution over the rest of the surface is 

lower. This is due to the heat transfer taking effect over the surface. At 25mm in the centre of the 

work-piece, the temperature was up to 710
°
C and at 50mm (edge of the sample) the temperature was 

much lower (120
°
C). The result of the FEM at this position appears to be in good agreement with 

that of the experimental result. However, from observing the depth of the distribution from the model 

in Figure 7.9(b); the surface temperature at 0mm is 2350
°
C and reduces to 1190

°
C at the depth of 

2mm, 1000
°
C at 4mm, 794

°
C at 7mm and finally reducing to 25

°
C at 10mm (room temperature). 
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Figure 7.10 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) of 

the fibre laser surface treatment of the ZrO2 engineering ceramic for (a) the heat distribution over the 

length of the sample and (b) the heat distribution through the depth of the sample.  

 
The FEM in Figure 7.11(a-c) showed that the temperature pattern was somewhat different to that of 

the one found at the start of the laser treatment (see Figure 7.9) as the average heat input began to 

increase over the total surface area of the ZrO2 engineering ceramic. Despite the effect of surface 

melting during the laser interaction and the rapid cooling effect taking place; the temperature at the 

laser irradiated zone has increased on the surface and through the bulk as presented in the graph in 

Figure 7.10(a) and Figure 7.7(b).  

 

 

(a)                                                      (b)                                      (c) 

Figure 7.11 FEM of the heat distribution of the fibre laser focused at 12.5mm from the edge (position 2) 

of the ZrO2 engineering ceramic in (a) and the cross-sectional view in (b) and (c). 
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The traversing laser beam is paused in time at 12.5mm from the edge in order to show the effects at 

that position. At 12.5mm as presented the temperature is at its highest which is 2564
°
C (see Figure 

7.12). Gradually, the temperature begins to decrease to 1347
°
C at 25mm, 1017

°
C at 37.5mm and 

750
°
C at 50mm. The temperature through the bulk has increased in comparison with the bulk 

temperature during the start of the fibre laser surface treatment due to the increase in time that the 

laser beam has spent on the ceramic. This in turn would have caused a sufficient level of heat to be 

produced. From melting temperatures at 0mm (surface); the temperature reduces to 1675
°
C through 

the bulk during the laser-ceramic interaction at 12.5mm in length after the start of the treatment. 

 

  

Figure 7.12 Temperature curves from the FEM of the fibre laser surface treatment at 12.5mm from the 

edge (position 2) of the ZrO2 engineering ceramic for (a) the heat distribution over the length of the 

sample and (b) the heat distribution through the depth of the sample. 

 

The illustrations in Figure 7.13(a), (b) and (c) show the FEM of the laser-ceramic interaction in the 

centre of the work-piece (25mm from the edge). In this position the distribution of heat is different to 

the interaction during the initial stages as previously shown. The ZrO2 ceramic in this position is in 

thermal equilibrium since the temperature distribution is well balanced. At 25mm the heat is at its 

peak (2577
°
C) near to the melting temperature of the ZrO2 ceramic. During this time, the slope 

gradually increases to the highest position, maintains for 3mm and then declines and has the opposite 

effect where the temperature curve is declined.  
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(a)                                                         (b)                                                  (c) 

Figure 7.13 FEM of the heat distribution of the fibre laser beam focused in the centre (position 3) of the 

ZrO2 engineering ceramic in (a) and in the cross-section in (b) and (c). 

 

From this point onwards; as the laser beam traverses furthermore on to the sample, the effect of heat 

distribution is similar to that of the one presented in previous FEM‟s. The temperature distribution 

over the surface was similar to that of the FEM presented in Figure 7.14 as well as the results 

obtained from the experimental model. The difference between the experimental model and the 

computational FEM was up to 5% particularly for the temperature predictions over the surface 

length. The bulk readings for the two compared models were also in good agreement. However, 

consideration should be given to the accuracy of thermometer device used for measuring the 

experimental temperature (±10%) as well as the distance which the temperature measurement was 

taken from. The distance of the temperature measurement changes as the laser beam traverses away 

from the focused IR beam of the thermometer device (see Figure 7.1). This would also cause some 

fluctuation in the results found.  
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Figure 7.14 Temperature curves from the FEM of the fibre laser surface treatment at 25mm from the 

edge (position 3) of the ZrO2 engineering ceramic for (a) the heat distributed over the length of the 

sample and (b) the heat distribution through the depth of the sample. 

 
7.4.1.3 Comparison of the experimental and the FEM produced by the fibre laser surface 

treatment  

At the laser-ceramic interface the surface temperature was found to be 2473
°
C (see Figure 7.7). This 

result is in good agreement with results found in Chapter 5, where it was found that fibre laser 

surface treatment of the ZrO2 resulted in some degree of melting of the top (near) surface layer. 

Interestingly, the temperature readings would be expected to be stable throughout a plane, but this 

was not the case as up to 16% difference in temperatures between Positions 2 to 3 and 4 to 5 was 

observed. The difference between the two results may have resulted from the following: 

 
(i) The error in reading the temperature resulting from the contact-less IR thermometer device; 

 
(ii)  Fluctuation in the laser power during the processing stage (although, stable output    powers 

were recorded prior to the laser surface treatment); 

 
(iii)  The ceramic material being somewhat inhomogeneous. 

 
The temperature is expected to be fairly high in at the edges of the samples in position 5, (where the 

average temperature was measured at 1772
°
C) and on the same surface plane in position 2, 3, and 4 

as it is at the edge of the sample indicating that there is less area for the heat to travel. This created 
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sufficient heat at the surface. Still, the experimental surface temperature measurements agree with 

those of the FEM (reference to Figure 7.12) with a +10% error. Further modification to the 

temperature measurement settings would improve the consistency in obtaining more accurate 

temperature readings.  

 
The average temperatures measured within the bulk of the ZrO2 after five readings also agree with 

the bulk temperatures predicted by the FEM. At 3mm below the surface the temperature was up to 

2035
°
C. The FEM by comparison gave a temperature of over 1900

°
C, and agreement of just over 7%. 

The temperature in Position 7 (see Figure 7.7) was found to be 1451
°
C. This in comparison to the 

FEM was 79
°
C lower, indicating an error of 5.5%. Finally, at Position 6 the temperature recorded 

was 1275
°
C, while the temperature predicted by the FEM was 245

°
C lower, a difference of 19%. It is 

clear that the bulk material temperatures measured experimentally were slightly lower than those 

produced from the FEM. This may have resulted due to three known factors:  

 
(i) Heat loss through the 3mm holes drilled into the sample; 

  
(ii)  Lack of contact of the thermocouples to the material surface; 

  
(iii)  The thermocouple response time. Such aspects were not taken into account by the FEM and so 

the FEM results will always be higher.  

 

7.4.1.4 Development of extended parameters from the FEM 

Based on the results obtained from the FEM a range of possibilities are presented in Figure 7.15(a-g) 

for traverse speed; power density; depth of heat distribution; temperature; and time, in relationship to 

one another. From this, one can predict and gauge the input parameters during fibre laser surface 

treatment of the ZrO2 engineering ceramic at various input parameters.  

 
As with all laser processes, the results herein show that a lower traverse speed at high power density 

would generate high processing temperatures. This in turn would lead to a deeper distribution of the 

thermal energy. The effects are opposite when the processing speed increases or the power density 

decreases. This is when the surface temperature is also reduced with lower penetration of the thermal 

energy into the bulk of the ceramic. Consideration of power density would also allow one to gauge 

the effect of the laser spot size as an additional parameter, since the spot is a function of the power 

density applied. Typically, a smaller spot size than 3mm by using the same power input (137.5 W) 

would produce a much bigger power density and would further compliment the models that are 

presented in this study.  
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(a)             (b) 

 

(c)                                                                              (d) 

 

(e)                                                                       (f) 

 

                 (g) 

Figure 7.15 Parameters obtained from the FEM of the fibre laser treated surface of the ZrO2 

engineering ceramic, showing the coloration of various factors with one another; (a) power density 

versus temperature; (b) depth versus power density; (c) power density versus traverse speed; (d) power 

density versus time; (e) traverse speed versus temperature; (f) depth versus temperature and (g) depth 

versus time. 

 

 

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

Power density (W/mm2)

T
e

m
p

e
ra

tu
re

 (
C

)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18 20

Depth (mm)

P
o

w
e
r 

d
e
n

s
it

y
 (

W
/

m
m

2
)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300

Traverse speed (mm/min) 

P
o

w
e
r 

d
e
n

s
it

y
 (

W
/

m
m

2
)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7

Time (Sec)

P
o

w
e
r 

d
e
n

s
it

y
 (

W
/

m
m

2
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500

Traverse speed (mm/min)

T
e
m

p
e
ra

tu
re

 (
C

)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20

Depth (mm)

T
e
m

p
e
r
a
tu

r
e
 (

C
)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

Depth (mm)

T
im

e
 (

S
e
c
)



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

229 

 

7.4.1.5 Phase transformation of ZrO2 engineering ceramic 

The TG-DSC analysis is presented in Figure 7.16. The heating curve for the as-received ZrO2 surface 

shows an exothermic peak at 50
°
C and a corresponding reduction in mass flow of 7mW. This 

indicated a possible release of moisture. At 700
°
C the small peak observed suggests a possible phase 

change where the mixture of M+T could have occurred. At 1290
°
C a further change in the curve 

indicated a phase transformation of M-T. The mass flow reduced as the sample reached 1500
°
C 

during the heating cycle. During the cooling process mass flow was much higher and similar effects 

took place to that of the heating curve. At 1205
°
C the curve showed an additional peak. This may 

have occurred due to the change in the phase transformation from the T to the T+M phase.  

 

 

Figure 7.16 TG-DSC curves for the as-received and the fibre laser treated ZrO2 engineering ceramic. 

 
The curve produced by the fibre laser treated ZrO2 sample was somewhat different to that of the as-

received sample as more heat will have flowed through the bulk due to air blocks or cavities within 

the as-received sample. This in turn would cause a decline in the mass flow. During the heating cycle 

the curve produced for the fibre laser treated ZrO2 showed changes at 750
°
C, which marks the 

beginning of the M+T phase change. At 1400
°
C the curve showed a minor change, indicating that the 

T transformation had fully occurred. This is different to the effect of the as-received sample and that 

of a previous finding by Porter and Heuer [204]. A possible cause of this would be due to the 

ceramic changing its composition after the fibre laser surface treatment. Hence, the observed 

increase in mass flow was to be seen. During the cooling cycle there were no changes to be seen 

until 705
°
C. This is a sign that the ZrO2 had transformed back to the M state. The TG-DSC analysis 
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only investigated changes up to 1500
°
C. Since the temperatures measured experimentally and 

predicted from the FEM were much higher, we can only surmise the effects beyond 1500
°
C. 

From observing the temperature distribution obtained experimentally and from the FEM (see Figures 

7.9, 7.11 and 7.13); it can be seen that the distribution of heat varies in different positions on the 

ZrO2 engineering ceramic as the fibre laser beam is frozen in one position in order to investigate the 

heat distribution for this study. From this, one can see that the rapid surface and the bulk heating 

occur. This is followed by the rapid cooling effect which took place where the ZrO2 is transformed 

from M →M+T →T →T+C during heating. It is then instantaneously transformed back from T+C 

→T →T+M →M. 

 
Figure 7.17 presents a conventional phase diagram of the ZrO2 engineering ceramic with the 

percentage of molar content of Y2O3. The vertical dotted line shows that the ZrO2 used for this work 

comprised of 4 mol% as stated by the manufacturer. On account of this, one can see the changes in 

the phases as the ZrO2 ceramic is being heated by the fibre laser irradiation. Furthermore, the phase 

change of the ZrO2 can be predicted during the laser-ceramic interaction where the M+C phase of the 

ZrO2 begins to change phase at 500
°
C and transforms to a mixture of M and T-phase. The M+T 

phase fully transforms to T at about 700
°
C as presented in Figure 7.17. The ZrO2 ceramic with 4% 

Y2O3 at about 1300
°
C changes phase from T to T+C and then forms the C-phase at about 2200

°
C. 

Further increase in the temperature of about 2750
°
C transforms the ZrO2 into a mixture of L+C 

phase. Results in Chapter 5 illustrated that the grain boundaries of the ZrO2 engineering ceramic 

treated by the fibre laser where binding due to melting and re-solidification were to be seen. This 

indicated that the phase transformation of the ZrO2 would be in the region of L+C state. The changes 

in the phase during the cooling process are reasonably symmetrical to that of the heating. However, 

the time it takes to heat the ceramic is much faster than the rate of cooling so the rate of phase 

change is much slower during the solidification stage. The TG-DSC results reveal the changes within 

the ZrO2 ceramic during heating and cooling up to 1500
°
C. However, the changes in the phase 

beyond 1500
°
C can only be predicted from using the FEM and the experimental model as well as the 

phase diagram presented in Figure 7.17. In addition, from observing the event of the laser material 

interaction, it can be stated that the ZrO2 ceramic is certainly not in a thermal equilibrium. This is 

simply due to the focused laser beam executing a high power density in a small spot size which is 

producing a melt zone at the processing zone, whilst the other areas of the ceramic are much cooler. 

This goes to show that due to the temperature difference during the fibre laser surface treatment 

leads to the variations in the phase changes within the ZrO2 where the fibre laser-ZrO2 interaction 

zone maybe L+C phase, whilst the other phases of the ceramic may be a mixture of M, M+T, T, T+C 

and C at the same time.  
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Figure 7.17 A phase diagram of the ZrO2 engineering ceramic showing the change in phase with 

changing temperature of 4 mol% of Y2O3 content within the ZrO2 engineering ceramic used in this 

research.   

 

7.4.2 CO2 Laser Processing of the ZrO2 Ceramic  

7.4.2.1 Experimental temperature readings  

An experimental model of the temperature distributions of the CO2 laser over the ZrO2 engineering 

ceramic is illustrated in Figure 7.18(a) and (b). The temperature on average during the CO2 laser and 

the ZrO2 surface interaction was 1752
°
C. The surface temperature on the outer edges of CO2 laser 

irradiated ZrO2 ceramic is presented in Figure 7.18(a). The highest surface temperature measurement 

was found to be 776
°
C in position 4 (see diagram in Figure 7.18) and the lowest was 679

°
C - a 97

°
C 

of difference in the same surface plane. As described previously, the temperature measurements were 

different on one plane when they should be the same in general. However, this difference can be 

justified when considering the inhomogeneous material and the errors in measurement as previously 

discussed. The bulk temperature as shown in Figure 7.18(b) illustrates the temperature reading at 

various positions with the ZrO2. The temperature measurements were found to be 325
°
C, 677

°
C and 

1034
°
C at 8mm, 6mm, 2mm beneath the surface. Despite the temperatures being different to the 

temperature distribution pattern over the surface and through the bulk of the CO2 laser irradiated 

ZrO2 ceramic in comparison to the fibre laser irradiated surface of the ZrO2 was somewhat the same 

as it can be seen from Figure 7.19(a) and Figure 7.19(b). The experimental temperature value of the 

bulk are used from Figure 7.18(b) to construct a graphical representation of the bulk temperature 

from the surface at 0mm to 10mm through the bulk and showed gradual decline as the heat was 

distributed into bulk of the ZrO2 ceramic.  
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Figure 7.18 A schematic diagram of the surface temperature readings in (a) and (b) the bulk 

temperature of the CO2 laser irradiated ZrO2 engineering ceramic. 

 

 

Figure 7.19 Experimental temperature distributions over the surface length in (a) and (b) the 

temperature distribution through the bulk of the CO2 laser surface treated ZrO2 engineering ceramic. 

 

7.4.2.2 FEM temperature readings 

The FEM of the CO2 laser irradiated surface of the ZrO2 ceramic is presented in Figure 7.20(a) for 

the surface and the bulk in Figure 7.21(b). The maximum temperature found from the FEM was 

1795
°
C which was not far from the experimental temperature findings. The difference in the 

temperature was only 43
°
C. This was a + 2.5 % difference. However, the difference increases as the 

CO2 laser beam traverses further over the surface of the ZrO2 ceramic as further seen in the FEM 

representing the heat distribution of the later positions. The temperature distribution showed in 

Figure 7.20(b) and Figure 7.21(b) was found at 1795
°
C at the surface and then began to decline to 

724
°
C at 4mm, 579

°
C at 7mm and then 79

°
C at 10mm beneath the surface.  
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          (a)                                                        (b) 

Figure 7.20 (a) FEM of the heat distribution of the CO2 laser focused at 0mm from the edge (position 1) 

of the ZrO2 engineering ceramic (start of the laser treatment) and (b) the cross-sectional view. 

 

 

 

Figure 7.21 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) of 

the CO2 laser irradiated surface of the ZrO2 engineering ceramic for (a) the heat distribution over the 

length and (b) the heat distribution through the depth of the sample. 
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The FEM for the CO2 laser irradiated ZrO2 ceramic in position 2 is presented in Figure 7.22(a) and 

(b) and furthermore in the graphical format in Figure 7.23(a) and (b) for the surface and the bulk. 

The maximum surface temperature in this position was 1741
°
C and was somewhat larger than the 

experimental model and the FEM temperature map in position 2. This was because of the increase in 

temperature of the ceramic since the CO2 laser beam was active on the ceramic for a longer period of 

time. The difference in the FEM and the experimental model was 5% and is generally predicted due 

to the FEM not taking in factors such as the environment and the heat loss to the parent surface in 

contact which the ceramic is mounted on. The bulk temperature was found to range from the highest 

of 1741
°
C on the surface, 1194

°
C at 5mm and 1144

°
C at 10mm below the surface. The FEM value in 

this case for the bulk temperatures were about + 17% higher than that of the experimental model.  

 

 

                             (a)                                                     (b)                                                       (c) 

Figure 7.22 FEM of the heat distribution of the CO2 laser focused at 12.5mm from the edge (position 2) 

of the ZrO2 engineering ceramic and (b and c) the cross-sectional view. 
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Figure 7.23 Temperature curves from the FEM of the CO2 laser irradiation at 12.5mm from the edge 

(position 2) of the ZrO2 engineering ceramic for (a) the heat distribution over the length of the sample 

and (b) the heat distribution through the depth of the sample. 

 
The FEM for position 3 in the centre of the sample is presented in Figure 7.23(a) for the surface and 

Figure 7.23(b) and (c) for the bulk of the CO2 laser irradiated ZrO2 ceramic. The maximum 

temperature on the surface of the ZrO2 irradiated with the CO2 laser was found to be 1747
°
C. This 

was also somewhat larger than the temperature obtained by the experimental model and the 

temperature map in the position 1 and 2 from the FEM. The temperature distribution pattern showed 

in Figure 7.24(a) was similar to the previous pattern found in the fibre laser irradiated surface of the 

ZrO2 as the temperature was balanced on both sides of the active CO2 laser beam over the surface of 

the ZrO2. The difference between the FEM in position 1 and 2 was +3% and +1%. This is not large 

but showed an increase in the temperature as the CO2 laser beam traversed onto the surface of the 

ceramic. However, the difference between the FEM herein and the experimental temperature reading 

was + 95
°
C which was about 5.5%. The bulk temperature shown in Figure 7.25(a) show a balance of 

the temperature on both sides of the sample as the CO2 laser beam was focused on the centre at 

25mm (see Figure 7.24(a)) with the temperature distributed evenly on the ZrO2 as shown by the 

curve. Gradual decline in the curve can be seen with the bulk temperature reading as the temperature 

was reduced from 1747
°
C on the surface to 1230

°
C at 5mm and then 1160

°
C.  

 

 

                               (a)                                                 (b)                                                    (c)     

Figure 7.24 FEM of the heat distribution of the CO2 laser beam focused in the centre (position 3) in (a); 

and the cross-section of the ZrO2 engineering ceramic work-piece in (b) and (c). 
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Figure 7.25 Temperature curves from the FEM of the CO2 laser irradiation at 25mm from the edge 

(position 3) of the ZrO2 ceramic for (a) the heat distributed over the length of the sample and (b) the 

heat distribution through the depth of the sample. 

 

7.4.2.3 Comparison of the experimental and the FEM 

The experimental temperature at the CO2 laser-ZrO2 interface was found to be 1752
°
C. This in 

comparison to the FEM in position 3 was 95
°
C lower. It was also found that the temperature 

difference throughout one surface plane were not the same for the CO2 laser irradiated sample of the 

ZrO2 engineering ceramic. The difference was under 5% which can be classified as being within an 

exceptional range. The reason for this difference has been mentioned earlier in this Chapter (see 

Section 7.4.1.3).  

 
The average temperatures measured within the bulk of the ZrO2 after five readings at 3mm below the 

surface the temperature was up to 1034
°
C. The FEM by comparison gave a temperature of about 

1250
°
C. This was with an error of about 20%. The temperature in Position 7 (see Figure 7.18) was 

found to be 677
°
C. This in comparison to the FEM was twice that of the experimental temperature. 
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Lastly, in Position 6 the temperature recorded was 325
°
C, while the temperature predicted by the 

FEM was 1170
°
C. This was considerably, higher than the bulk temperature. It can be seen that the 

bulk temperatures measured experimentally were to some extent a lot lower for the CO2 laser 

irradiated ceramic in comparison to that of the FEM. Along with the factors previously mentioned, a 

valid point should be considered. This is the fact that the FEM model does not consider the 

processing speed of the laser. The FEM was generated as it was to be focused on one particular area. 

However, in case of the CO2 laser irradiated surface of the ZrO2, the speed was increased as larger 

cracking was found. Hence, the measured surface temperature was recorded to be lower. Another 

point to be considered is the absorption of the ZrO2 engineering ceramic with that of the CO2 laser. 

This is further discussed in the latter part of this Chapter.   

 

7.4.2.4 Development of extended parameters  

Figure 7.26 illustrates the prediction of various laser parameters by considering factors such as 

power density, surface and bulk temperatures, depth, time and traverse speed for the CO2 laser 

surface treatment of the ZrO2 engineering ceramic.     

 

                                             (a)                                                                         (b) 

  

(c)                                                                             (d) 

Figure 7.26 Parameters obtained from the FEM of the CO2 laser surface treated ZrO2, showing the 

correlation of various factors with one another: (a) power density versus temperature, (b) depth versus 

power density, (c) power density versus traverse speed and (d) power density versus time. 
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                                            (e)                                                                                (f) 

Figure 7.26 Parameters obtained from the FEM of the CO2 laser surface treated ZrO2, showing the 

correlation of various factors with one another: (e) traverse speed versus temperature and (f) depth 

versus temperature. 

 

7.4.3 Fibre Laser Surface Treatment of the Si3N4 Engineering Ceramic  

7.4.3.1 Experimental temperature readings 

The average temperatures found on the surface of the Si3N4 engineering ceramic after five passes of 

the fibre laser are presented in Figure 7.27(a) and (b); the surface temperature and the bulk 

temperature of the Si3N4 ceramic. At the laser-ceramic interface the surface temperature was found 

to be 2269
°
C. This was considerably higher than the general melting temperature of the ceramic 

(1900
°
C) [42] in comparison. This is when the Si3N4 ceramic undergoes decomposition. The 

difference between the two readings was 19.5%. This undoubtedly showed that the fibre laser 

surface treatment temperature was sufficiently higher than that of the decomposition temperature of 

the Si3N4. The surface temperature on the side of the sample (away) from the laser treated zone was 

found to be much lower than the melting temperature. This would obviously be high due to the heat 

transferring through the bulk of the ceramic.  

 

Figure 7.27 Schematics of the surface temperature reading in (a) and (b) the bulk temperature 

of the Si3N4 engineering ceramic. 
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The temperature measurements taken from using the thermo-couples within the bulk of the Si3N4 

engineering ceramic are presented in the Figure 7.27(b). The average bulk temperature after five 

readings in position 6, 7 and 8 were recorded to be 976
°
C, 1497

°
C, and 1164

°
C. This result agrees 

with the surface temperature presented in Figure 7.27(a) that 3mm below the surface due to the heat 

transfer; the temperature is above 400
°
C lower. At 6mm below the surface, the measured temperature 

was considerably lower (1164
°
C). In this position, the temperature has begun to decrease as the heat 

was distributed throughout the surface. Moreover, the temperature at 7mm below the surface was 

977
°
C, as the heat was passed on from the bulk of the ceramic to the surface. 

 
In Figure 7.28(a) and (b), both of the graphs are constructed from the experimental values. This was 

for a situation where the fibre laser was incident at 25mm length (centre) from the edge of the Si3N4 

ceramic. The distribution of heat is presented in Figure 7.28(a). This illustrated the surface 

temperature over the length of the Si3N4 sample at 25mm. At the length of 0mm the experimental 

temperature was instantaneously ramped to just less than 700
°
C and gradually increases as it comes 

closer to the incident beam. The peak temperature found was 2269
°
C at 25mm length (centre of the 

work-piece) of the focused laser beam on the Si3N4. The temperature reduced to 730
°
C at 37.5mm in 

length and was recorded at 750
°
C at the edge of the sample at 50mm.  

 
The graph in Figure 7.28(a) and (b) presents the experimental temperatures obtained on the surface 

and the in the bulk of the ceramic. In general the curve in Figure 7.28(b) has declined due to the 

reduction of the temperature through the bulk of the ceramic. The temperature is reduced from 

2269
°
C at the depth of 0mm (surface) to 1500

°
C at 3mm, 1235

°
C at 6mm and 1195

°
C at 7mm depth. 

From this, the temperature at the depth of 10mm can be predicted as shown in Figure 7.28(b).The 

experimental investigation would now be used as a base to construct the FEM. The results found 

herein are also compared to the FEM for validation and confirmation of the level of accuracy or error 

in the temperature measurements in this study.  

 

 

                                            (a)                                                                                 (b) 

Figure 7.28 Experimental temperature distributions over the surface length in (a) and (b) the 

temperature distributions through the bulk of the fibre laser irradiated Si3N4 engineering ceramic. 
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7.4.3.2 FEM temperature reading 

A FEM was constructed which revealed the surface and the bulk temperature maps by taking in 

account of the surface and the bulk temperatures measured from the experimentation. The surface 

maps are presented in Figure 7.29, Figure 7.31 and Figure 7.33. The impact on the beam is only 

1.5mm onto the surface despite comprising of a spot size of 3mm diameter. It is seen that the 

maximum temperature found at the laser-Si3N4 interface on the FEM was 2236
°
C. The temperature 

here was lower than the temperature from the real experimental value by only 1.5%. In Figure 

7.29(b); the laser beam is only concentrated at 50% of its diameter because it is focused on the edge 

of the sample which is the start of the laser treatment. This allowed the cross-sectional distribution of 

heat to be analysed. 

 

 

                                                  (a)                                                                (b) 

Figure 7.29 FEM of the heat distribution of the fibre laser focused at 0mm from the edge (position 1) of 

the Si3N4 ceramic (start of the laser treatment) in (a) and (b); the cross-sectional view. 

 
From observing the results from the model in Figure 7.29(a) and (b), the determination of 

temperature distribution over the surface at various lengths and through the bulk at various depths 

are presented in the graph in Figure 7.30(a) and (b). In this model, the incident beam at the start of 

the surface treatment is covering 0mm to 1.5mm radius. The temperature within this area as seen on 

Figure 7.30(a) is up to 2227
°
C. During this time the temperature distribution over the rest of the 

surface is lower. This is due to the heat transfer taking effect over the surface. At 25mm in the centre 

of the work-piece, the temperature was up to 573
°
C and at 50mm (edge of the sample); the 

temperature was much lower. The result of the FEM at this position appears to be in good agreement 

with that of the experimental result. However, from observing the depth of the distribution from the 

model in Figure 7.30(b); the surface temperature at 0mm is 2250
°
C and reduces to 790

°
C at the depth 

of 2mm, 650
°
C at 4mm, 470

°
C at 7mm and finally reducing to around 300

°
C at 10mm. 
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Figure 7.30 FEM temperature distribution curves of the initial stage at 0mm from the edge (position 1) 

of (a) the heat distributed over the length of the sample and (b) the heat distribution through the depth 

of the sample for the fibre laser irradiated surface of the Si3N4 engineering ceramic. 

 
The FEM in Figure 7.31(a-c) showed that the temperature pattern was somewhat different to the one 

found at the start of the fibre laser surface treatment as the average heat input begun to increase over 

the total surface area of the Si3N4. Despite the decomposition and surface melting occurring during 

the laser interaction and the rapid cooling effect taking place; the temperature at the laser irradiated 

zone has increased on the surface and through the bulk as presented in the graph in Figure 7.32. 

 

 

                                    (a)                                                  (b)                                                  (c) 

Figure 7.31 FEM of the heat distribution of the fibre laser focused at 12.5mm from the edge  

(Position 2) of the Si3N4 in (a) and the cross-sectional view in (b) and (c). 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

242 

 

The traversing laser beam is paused in time at 12.5mm from the edge in order to show the effects at 

that position. At 12.5mm the highest temperature on the surface was found to be 2143
°
C. Gradually, 

the temperature begins to decrease to 1167
°
C at 25mm, 953

°
C at 37.5mm and 729

°
C at 50mm. The 

temperature through the bulk has increased in comparison with the bulk temperature during the start 

of the fibre laser surface treatment due to the increase in time that the laser beam has spent on the 

ceramic. This would have caused a sufficient level of heat to be produced. From melting 

temperatures at 0mm on the surface; the temperature reduces to 1355
°
C through the bulk at the 

bottom surface layer as the heat is passed on during the laser-ceramic interaction at 12.5mm in length 

after the start of the treatment. 

 

 

 

Figure 7.32 Temperature curves from the FEM of the fibre laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 ceramic for (a) the heat distributed over the length of the sample and (b) the 

heat distribution through the depth of the sample. 

 
The illustrations in Figure 7.33(a), (b) and (c) show the FEM of the laser-ceramic interaction in the 

centre of the work-piece (25mm from the edge). In this position the distribution of heat is different to 

the interaction during the initial stages as previously shown. The Si3N4 ceramic in this position is in 

thermal equilibrium since the temperature distribution is well balanced as presented in Figure 
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7.33(a). At 25mm the heat is at its peak (2277
°
C) near to the melting temperature of the Si3N4 

ceramic. During this time, the temperature slope gradually increases to the highest position as shown 

in Figure 7.34(a) and maintains for 3mm, then has the opposite effect where the temperature curve is 

declined. 

  

 

                                       (a)                                                  (b)                                                 (c) 

Figure 7.33 FEM of the heat distribution of the fibre laser beam focused in the centre (position 3) of the 

Si3N4 ceramic in (a) and in the cross-section in (b) and (c). 

 
From this point onwards - as the laser beam traverses furthermore on to the sample, the heat 

distribution is similar to that of the one presented in previous FEM‟s. The temperature distribution 

over the surface was similar to that of the FEM presented in Figure 7.33, as well as the results 

obtained from the experimental model. The difference between the experimental model and the 

computational FEM was less than 1% particularly for the temperature predictions over the surface 

length. The bulk readings for the two compared models were also in good agreement. However, 

consideration should be given to the accuracy of thermometer device used for measuring the 

experimental temperature (±10%) as well as the distance which the temperature measurement was 

taken from. This is because such factors will have a considerable effect on the experimental readings. 

The distance of the temperature measurement changes as the laser beam traverses away from the 

focused IR beam of the thermometer device (see Figure 7.6). This would also cause some fluctuation 

in the results found.  
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Figure 7.34 Temperature curves from the FEM of the fibre laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 ceramic for (a) the heat distributed over the length of the sample and (b) the 

heat distribution through the depth of the sample. 

 
7.4.3.3 Comparison of the experimental and the FEM of the fibre laser irradiated surfaces of 

the Si3N4 

At the laser-ceramic interface the surface temperature was found to be 2269
°
C. The temperature 

readings was again stable throughout one surface plane as up to 36% difference in temperatures 

between Positions 2 to 3 and 4 to 5 was observed. The difference between the two results may have 

resulted from the error in reading the temperature resulting from the contact-less IR thermometer 

device, fluctuation in the laser power during the processing stage (although, stable output powers 

were recorded prior to the laser surface treatment) and the ceramic being somewhat inhomogeneous. 

 
The average temperatures measured within the bulk of the Si3N4 after five readings was 1497

°
C at 

3mm, 972
°
C at 7mm and 1164

°
C at 6mm below the surface of the Si3N4 engineering ceramic (see 

Figure 7.27). When compared to the experimental bulk temperatures with that of the FEM, the 

difference found was 1475
°
C at 3mm, 1266

°
C 7mm, and 1342

°
C at 6mm. In this case, the 

temperature difference was 1% at 3mm, 29% at 7mm and 15% at 6mm beneath the surface. Despite 
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the temperatures being within the expectable range more closely to the surface, the FEM however, 

does, have the tendency to generate higher temperatures in comparison to the experimental values 

found. These factors have been discussed previously in this Chapter in Section 7.4.1.3.  

 
7.4.3.4 Development of extended parameters from the FEM of the fibre laser surface treatment 

of the Si3N4 

Various possibilities can be accrued based on the results obtained from the FEM for parameters such 

as traverse speed; power density; depth of heat distribution; temperature; and time, in relationship to 

one another. Based on this, prediction of the input parameters during fibre laser surface treatment of 

the Si3N4 at various input parameters (see Figure 7.35 (a-g)) can be made. As with all laser 

processes, the results herein show that a lower traverse speed at high power density would generate 

high processing temperatures. This inherently, would produce deeper distribution of the thermal 

energy; the effects are opposite when the processing speeds increases or the power density decreases. 

This is when the surface temperature is also reduced with lower penetration of the thermal energy 

into the bulk of the ceramic. Consideration of power density would also allow one to gauge the effect 

of the laser spot size as an additional parameter, since the spot is a function of the power density. 

Typically, a smaller spot size than 3mm by using the same power input (143.25 W) would produce a 

much bigger power density and would further compliment the model that are presented in this study.  

 

                                              (a)                                                                              (b) 

 

                                        (c)                                                                                 (d) 

Figure 7.35 Parameters obtained from the FEM showing the coloration of various aspects with one 

another; (a) power density versus temperature; (b) depth versus power density; (c) power density versus 

traverse speed and (d) power density versus time. 
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                                         (e)                                                                                 (f) 

 

                                         (g) 

Figure 7.35 Parameters obtained from the FEM showing the coloration of various aspects with one 

another; (e) traverse speed versus temperature; (f) depth versus temperature and (g) depth versus time 

for fibre laser surface treatment of the Si3N4 engineering ceramic. 

 
7.4.3.5 Phase transformation of Si3N4 engineering ceramic 

Figure 7.36 and Figure 7.37 show the changes within the Si3N4 engineering ceramic after heating to 

1500
°
C and cooling to room temperature during the TG-DSC analysis. Figure 7.36 represents the as-

received surface and Figure 7.37 illustrates the fibre laser irradiated surface. As one can see, there is 

a considerable difference in the events which have occurred for the two samples. The fibre laser 

irradiated surface in comparison to the as-received surface has allowed much more mass flow to 

have taken place. The highest mass flow found on the fibre laser irradiated surface was about 

270mW when compared to the as-received surface which was about 37mW. A decline in the mass 

flow from 1450
°
C to 1500

°
C was also observed in the as-received sample (see Figure 7.36). This 

would have occurred from the heat induced by the fibre laser irradiation. This in turn caused some 

degree of densification of the Si3N4 engineering ceramic. This intrinsically allowed more heat to 

flow through the bulk due to air blocks or cavities within the as-received sample. Therefore, a 

decline in the mass occurred. On the other hand the fibre laser induced heat would have also affected 

the composition of the Si3N4 engineering ceramic where a formation of an oxide layer would have 

occurred as shown from the chemical analysis in Chapter 5. This oxide layer would have increased 

porosity and allowed more mass flow to occur for the fibre laser treated sample in Figure 7.37.  

 
At 50

°
C, a rapid decline in the heating curve can be seen. This indicated an endothermic reaction as 

the Si3N4 would have begun to absorb the atmospheric gases and had began the process of oxidation. 

This would last over the full course of heating the sample to high temperatures. Evidence of some 
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change was also observed from the curve between 1300
°
C to 1450

°
C. From this, it can be postulated 

that the phase transformation of the Si3N4 engineering ceramic has started to take place where large 

percent of the α-phase is present and the β-phase has began to form. At 1400
°
C the transition 

between α-phase to β-phase would have occurred where α+β would be found. The gradient of the 

curve begins to increase beyond 1400
°
C. This showed increase in the mass flow and indicated the 

end of the phase transformation, where mainly the β-phase is present. Beyond 1450
°
C, the Si3N4 

engineering ceramic has fully transformed to β-phase and shows the end of the phase transformation. 

At 1500
°
C the cooling cycle begins, where it can be seen that the cooling curve has lower mass flow 

on average and almost identical events occurring. When the sample was cooled it can be seen that 

the mass flow was slightly lower and the decline in the curve found at about 1400
°
C was not to be 

observed during the cooling stage. This was because the Si3N4 engineering ceramic does not usually 

have the tendency to produce reverse phase transformation as stated by Messier et al. [217]. The TG-

DSC analysis was only performed from room temperature to 1500
°
C. This demonstrated the 

expected changes that have occurred. Although, postulation can be made for the events which would 

take place after the 1500
°
C, since the temperature found both in the FEM and the experimental 

model was up to 2200
°
C. This indicated that decomposition and melting would occur around 1900

°
C. 

 

 

Figure 7.36 Heating and cooling curve from the TG-DSC analysis for the as-received surface of the Si3N4 

engineering ceramic. 

 
The TG-DSC curve for the fibre laser irradiated surface was somewhat different in comparison to 

that of the as-received surface as mentioned previously. This was because the fibre laser irradiation 

has produced a change in composition of the Si3N4 which was considerably different to that of the 

as-received Si3N4. This change has been presented Chapter 5 which demonstrated the formation of 

the SiO2 layer formed on the Si3N4. Therefore, the oxidized surface did not show any evidence of 

major change during the TG-DSC analysis as there was considerable amount of change which took 

place already from the fibre laser irradiation.  
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The TG-DSC curve for the fibre laser irradiated surface was somewhat different in comparison to 

that of the as-received surface as mentioned previously. This led to the difference in the mass flow in 

Figure 7.36 and Figure 7.37 which occurred because the Si3N4 ceramics in Figure 7.36 is of the as-

received sample and Figure 7.37 is of the fibre laser treated sample. In other words, the fibre laser 

treated sample comprised of the oxidized layer which consequently reflected the mass flow to be 

different when compared to the as-received surface which was mainly comprised of the α-phase. The 

α-phase existed in the as-received sample (Figure 7.36), which then began the transformation to α+β 

at around 1450
°
C during heating. This in comparison to the sample which was heated by the fibre 

laser irradiation (Figure 7.37) was not in the same form as it is likely that the β-phase was already 

developed (before the TG-DSC analysis) when the fibre laser surface treatment was being 

undertaken at temperatures of 1600
°
C and over. The temperatures were confirmed by the FEM and 

the experimental models. 

 
From analysing events which has taken place during the TG-DSC analysis of the fibre laser 

irradiated sample of the Si3N4 engineering ceramic; it can be said that the α-phase to β-phase 

transformation would have already occurred within this during the fibre laser treatment. This was 

possibly between 1300
°
C to 1450

°
C, which then was irreversible during the cooling stage. The 

presence of the β-phase can be confirmed by comparing the microscopic image of the fibre laser 

irradiated surface presented in Figure 7.38(b) and comparing it with the as-received surface of the 

Si3N4 in Figure 7.38(a). This is where it is indicated that a change in morphology and the 

microstructure by elongated rod-like grains in large numbers as well as the formation of the SiO2 

zones is to be seen on the fibre laser irradiated surface as shown in Figure 7.38(b). This type of 

behaviour was also mentioned by the work of Sarin [216], Messier et al. [217], Ziegler and 

Hasselman [218] and Dai et al. [219] who investigated the phase transformation of the Si3N4 ceramic 

during its exposure to high temperature gradients. Also, the microscopic image in Figure 7.38(b) was 

found to be somewhat similar to previous investigations [226, 227] where formation of elongated β-

grains was discussed. Hence, a comparison was made to further confirm that the phase 

transformation herein was valid. 
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Figure 7.37 Heating and cooling curves from the TG-DSC analysis for the fibre laser irradiated Si3N4 

engineering ceramic. 

 

 

(a)                                                                                       (b) 

Figure 7.38 SEM images of (a) the as-received surface and (b) the fibre laser irradiated surface of the 

Si3N4 engineering ceramic. 

 

7.4.4 CO2 Laser Surface Treatment of the Si3N4 Engineering Ceramic  

7.4.4.1 Experimental temperature reading 

Figure 7.39(a) and Figure 7.40(a) presents the experimental model of the Si3N4 ceramic irradiated by 

the CO2 laser. This demonstrated the temperature distribution over the surface of the sample. The 

average surface temperature was found to be 1935
°
C at 25mm from the edge of the sample and was 

slightly higher than the decomposition temperature of the Si3N4 ceramic in general. This meant that 

the CO2 laser had also melted the ceramic which further led to decomposition at 1900
°
C. 

Compositional analysis of CO2 laser surface treatment as presented in Chapter 5 for the Si3N4 
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ceramic showed that the Si3N4 was being transformed to SiO2. This is because melting and 

decomposition had taken place. Surface temperature values showed in Figure 7.39(a) also supports 

this finding. Like with previous results of the fibre laser irradiated surfaces, the temperature away 

from the CO2 laser-material interaction zone was much lower due to the heat being distributed 

through the bulk. However, the temperatures were again not similar on one surface plane. This was 

also found with other samples as there was up to 120
°
C difference found on one surface plane 

between the highest and the lowest values. In general, at 25mm position the temperature found at the 

CO2 laser-Si3N4 interaction was 1935
°
C. At the same time the surface temperature going further 

away from the beam began to decrease. The bulk temperatures presented in Figure 7.40(b) was used 

to further demonstrate the temperature distribution through the bulk which is illustrated in Figure 

7.40(b). The results showed that the temperature was at its highest (1935
°
C) at the surface and began 

to decrease through the bulk and was found to be 254
°
C at the bottom of the sample as the heat 

distributed into the bulk of the Si3N4 engineering ceramic. 

 

Figure 7.39 Schematic diagrams of the surface temperature reading in (a) and (b) the bulk temperature 

during CO2 laser surface treatment of the Si3N4 engineering ceramic. 

 

 

(a)                                                                            (b) 

Figure 7.40 Experimental temperature distributions over the surface length in (a) and (b) the 

temperature distribution through the bulk of the CO2 laser surface treatment of the Si3N4 engineering 

ceramic. 
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7.4.4.2 FEM temperature reading 

The heat distribution of the CO2 laser on the surface of the Si3N4 in position 1 is presented in the 

FEM illustrated in Figure 7.41(a) and (b) for the surface and through the cross-section through the 

bulk. The maximum temperature found on the surface was 2140
°
C. This is also presented by the 

graph in Figure 7.42 (a) and (b) where it can be seen that the surface temperature is at maximum, 

where the interaction of the Si3N4 surface with the CO2 laser was taking place. During this time, the 

temperature begins to lower by moving away from the CO2 laser-Si3N4 interaction zone. Comparing 

the FEM with the experimental model, it is found that the FEM was just over 10% higher.  

 

 

(a)                                                                      (b) 

Figure 7.41 FEM of the heat distribution of the CO2 laser focused at 0mm from the edge (position 1) of 

the Si3N4 ceramic (start of the laser treatment) in (a) and (b); the cross-sectional view. 

 
The graph in Figure 7.42(a) and (b) illustrated the temperature distribution obtained on the surface 

and the bulk of the Si3N4 ceramic. The surface temperature curve for the start of the CO2 laser 

treatment showed that the temperature during the CO2 laser surface interaction near enough to the 

edge of the sample  was about 2140
°
C whilst, the temperature on other parts of the surface was 

lower. A regime where the temperature began to decrease further away from the CO2 laser 

interaction zone was again as shown in the temperature map in the FEM (see Figure 7.41 and Figure 

7.42(b)). Similar results in the bulk of the ceramic were also found, as the temperature was reduced 

from being the highest at the surface but declined through the bulk. 
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Figure 7.42 Temperature curves from the FEM of the initial stage at 0mm from the edge (position 1) of 

the CO2 laser irradiation of the Si3N4 ceramic for (a) the heat distributed over the length of the sample 

and (b) the heat distribution through the depth of the sample. 

 
In position 2 as demonstrated in Figure 7.43(a-c), the temperature illustrated by the model was 

somewhat higher to that of the FEM of position 1. The temperatures were higher in position 1 as 

opposed to position 2 due to the fact that more surface area was available in position 2 for the CO2 

laser to distribute the heat more equally. The maximum temperature found on the surface at this 

position was 2167
°
C. This in comparison to the experimental model was 12% higher. The bulk 

temperature within this position is presented in Figure 7.43(b) and (c) and Figure 7.44(b). The 

temperature was found to be about 2167
°
C and had gradually decreased to 1410

°
C at 5mm into the 

bulk and then reduced to about 1355
°
C at 10mm at the bottom of the surface. 
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(a)                                                    (b)                                            (c) 

Figure 7.43 FEM of the heat distribution of the CO2 laser focused at 12.5mm from the edge 

 (Position 2) of the Si3N4 ceramic in (a) and the cross-sectional view in (b) and (c). 

 

 

 

Figure 7.44 Temperature curves from the FEM of the CO2 laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 ceramic for (a) the heat distributed over the length of the sample and (b) the 

heat distribution through the depth of the sample. 

 
The FEM for the CO2 laser surface treatment for position 3 in the centre of the sample at 25mm from 

the edge is presented in Figure 7.45. The FEM produced a temperature of 2071
°
C as one can see 
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from Figure 7.45. As mentioned previously the sample according to its dimensional size is at 

maximum thermal equilibrium. This means that the heat is equally distributed on all sides of the 

sample as the CO2 laser was focused on the centre. Figure 7.45(b) and (c) as well as Figure 7.46(b) 

illustrated the bulk temperature within the same sample. The temperature within the bulk was found 

to be 1375
°
C at 5mm depth and 1307

°
C at the bottom of the sample at 10mm depth. This was about 

7.5% higher than that of the experimental model. The FEM produced for the position 1, 2 and 3 has 

demonstrated the temperature map of the first half of the samples (at 1.5mm, 12.5mm and 25mm 

from the edge). The temperature map would be identical on the other half of the sample as the laser 

beam traverse further to surface of the whole 50mm long ceramic. Figure 7.46(a) showed the 

balanced distribution in the surface temperature during the CO2 laser beam exhibiting on the centre 

of the ZrO2 as the sample is under thermal equilibrium for a period of 1.66 sec. Figure 7.46(b) 

illustrated the gradual decline in the temperature as the heat was distributed from the surface to the 

bulk.  

 

 

(a)                                                  (b)                                            (c) 

Figure 7.45 FEM of the heat distribution of the CO2 laser beam focused in the centre (position 3) of the 

Si3N4 ceramic in (a) and in the cross-section in (b) and (c). 
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Figure 7.46 Temperature curves from the FEM of the CO2 laser irradiation at 25mm from the edge 

(position 3) of the Si3N4 ceramic for (a) the heat distributed over the length of the sample and (b) the 

heat distribution through the depth of the sample. 

 

7.4.4.3 Comparison of the experimental and the FEM 

The surface temperature found on the experimental model at the CO2 laser-Si3N4 interface was 

1935
°
C. This in comparison to the FEM was about 7.5% lower which is generally acceptable. The 

surface temperatures difference between the two models on the outer skin of the sample was about 

5% for the in position 1 in Figure 7.7, just under 14% for position 2, and 5.5% for position 4.  

 
The bulk temperatures on the model were found to be +4.5% higher for the FEM at 3mm, but was up 

to 27.5% for the position at 6mm beneath the surface. At 7mm below the surface the difference in 

the temperature was over 50%. This indicated that the surface temperatures and bulk temperatures 

closer to the surface were in good match but deeper into the bulk. Despite the temperatures being 

within the expectable range more closer to the surface, the FEM however, does, have the tendency to 

generate higher temperatures found by the experimental values. This indicated that the way in which 
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the CO2 laser is induced into the Si3N4 ceramic is somewhat different to what is expected by the 

FEM. Consideration is also given to factors such heat loss through the 3mm holes drilled into the 

sample, lack of contact of the thermocouples to the material surface and the thermocouple response 

time. These are not directly considered by the FEM so the results will be higher in most cases. 

However, the CO2 laser wavelength is surely having an effect on the Si3N4 ceramic which is not in 

consideration by the FEM. 

 
7.4.4.4 Development of extended parameters  

Figure 7.47 shows the multi-factor laser parameters which were determined from the FEM. 

Parameters such as traverse speed; power density; depth of heat distribution; temperature and time, 

in relationship to one another.  

 

 

(a)                                                                     (b) 

 

 

                                           (c)                                                                                 (d)       

 

 

                                             (e)                                                                              (f) 

Figure 7.47 Parameters obtained from the FEM showing the coloration of various factors with one 

another: (a) power density versus temperature, (b) depth versus power density, (c) power density versus 

traverse speed, (d) power density versus time, (e) traverse speed versus temperature and (f) depth versus 

temperature. 
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7.4.5 Comparison of Temperatures between the CO2 and the Fibre Laser Surface Treatment 

of the ZrO2 Engineering Ceramics. 

Table 7.2 illustrates the temperatures found by the CO2 and fibre laser surface treatment of the ZrO2 

engineering ceramics from the FEM and the experimental model. It can be seen that there is a 

considerable difference in the temperatures obtained by the two lasers on the surface and the bulk of 

the ZrO2. The temperature over the surface of the CO2 laser irradiated sample was 1752
◦
C. This in 

comparison to the fibre laser was up to 42% lower as the average temperature after 5 passes was 

found for the fibre laser irradiated sample of the ZrO2 to be 2472
◦
C. The surface temperatures 

produced by the FEM for the CO2 and the fibre laser irradiated sample were 1747
◦
C and 2577

◦
C. A 

40% increase in the temperatures generated by the fibre laser irradiated surface.  

 
The bulk temperature by the experimental model was also higher for the fibre laser irradiated surface 

in comparison to the CO2 laser irradiated surface and was 50% lower as the average temperature at 

5mm below the surface of the CO2 laser irradiated sample was 700
◦
C and the fibre laser irradiated 

sample being 1600
◦
C. This was also similar for the bulk temperatures found within the FEM as the 

readings were measured to be 1230
◦
C for the CO2 laser and 1951

◦
C for the fibre laser. The bulk 

temperatures for the FEM were 59% higher for the fibre laser in comparison to the temperatures 

accrued by the CO2 laser irradiation. 

 
As one can see that the temperature of the fibre laser irradiation in comparison to that of the CO2 

laser was somewhat higher in both areas (the surface and the bulk) of the ZrO2 ceramic for both the 

FEM and the experimental model. This was due to the influence of several factors which caused the 

difference in the temperatures generated during the laser-ZrO2 interaction. Those are namely: 

 
 The difference in the threshold for the ZrO2 whilst processing with the two laser types. As 

presented in Chapter 4. The power density induced into the ZrO2 for the CO2 laser was 

considerably lower than that of the fibre laser as the ZrO2 was cracking at considerably lower 

powers during CO2 laser-ZrO2 interaction in comparison to that of the fibre laser irradiation. 

Moreover, the traverse speed was also increased during the CO2 laser surface treatment in 

comparison to the fibre laser surface treatment. This in turn had influenced the surface 

temperatures. Although, the FEM did not take in consideration of the traverse speed, the 

experimental model yet reflected this factor which showed considerably low temperatures in 

comparison. 

 
 Furthermore, the bulk temperature for the CO2 laser irradiated surface was also lower in 

comparison to that of the fibre laser. From this it was indicative that the absorption of the CO2 

laser wavelength with the ZrO2 ceramic was somewhat lower in comparison to that of the fibre 

laser irradiation. However, the CO2 laser interaction with the ZrO2 on the surface was 

remarkably noticed by the topographical analysis. Though, the influence of the CO2 laser was 
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limited to the local surface and the sub-surface only, whereas the fibre laser was absorbed to a 

sufficient level of depth. In comparison, the NIR of the fibre laser was more absorbent through 

the ZrO2. This resulted to recording high processing temperatures. Due to this there was also a 

significant difference within the hardness of the ZrO2 as previously discussed in Chapter 6, 

Section 6.6.9.1.  

 
Table 7.2 Comparison of the surface and the bulk temperature obtained by the experimental 

investigation and the FEM of the CO2 and the fibre laser surface treatment of the Si3N4 and ZrO2 

engineering ceramics. 

Laser Types Experimental Model FEM 

Surface 

temperature (
°
C) 

Bulk 

temperature (
°
C) 

at 5mm below 

surface 

Surface 

temperature 

(
°
C) 

Bulk 

temperature 

(
°
C) at 5mm 

below surface 

Si3N4 ZrO2 Si3N4 ZrO2 Si3N4 ZrO2 Si3N4 ZrO2 

CO2 Laser 1935 1752 1100 700 2071 1747 1375 1230 

Fibre Laser 2269 2473 1350 1600 2277 2577 1366 1951 

 
7.4.6 Comparison of CO2 Laser with the Fibre Laser Surface Treatment of the Si3N4 

Engineering Ceramic.  

Comparison of the temperatures of CO2 and the fibre laser surface treatment of the Si3N4 engineering 

ceramics are also presented in Table 7.2 for both the FEM and the experimental model.  The CO2 

laser irradiated sample produced 1935
◦
C. This was 17% lower in comparison to the fibre laser 

irradiated sample as the average temperature after 5 passes was found to be 2269
◦
C on the fibre laser 

irradiated surface. The average surface temperature configured by the FEM of the CO2 laser was 

2071
◦
C and 2277

◦
C for the fibre laser irradiated sample which was a difference of just over 10 %.   

 
The bulk temperature by the experimental model at 5mm below the surface was 1100

◦
C for the CO2 

laser irradiated sample of the Si3N4. This in comparison to the fibre laser irradiated sample was 

1350
◦
C, which is a difference of 23%. The FEM bulk temperature was 1375

°
C for the CO2 laser and 

1366
◦
C for the fibre laser irradiated sample of the Si3N4. Although, in this case, the temperatures 

were almost identical but the pattern of the fibre laser irradiated temperature being higher still 

continued as 0.5% difference was found.  

 
Similar differences in the temperature readings were also found with the CO2 and fibre laser surface 

treatment of the Si3N4 ceramics to that of the CO2 and fibre laser surface treated ZrO2 ceramics. This 

was because the temperatures found by the fibre laser irradiation were considerably higher on the 

surface and the bulk of the Si3N4. This was again due to the fact that the absorption of the NIR 

wavelength of the fibre laser was better in comparison to that of the MIR wavelength of the CO2 

laser. This intrinsically generated bigger interaction zone at the surface in comparison to the fibre 
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laser surface treatment, but was not induced further into the bulk as was the case with the fibre laser 

irradiation. This can be further justified by the fact that the bulk temperatures for the fibre laser 

surface treatment were higher than that of the CO2 laser surface treatment. As well as the fact that the 

thicker SiO2 layer produced by the CO2 laser irradiation in comparison to that of the fibre laser (as 

previously shown in Chapter 5 and also discussed in Chapter 6) produced higher K1c values. This 

was due to the result of the softer surface being generated on the Si3N4 ceramic because of the 

thicker oxide layer being produced by the CO2 laser irradiation. However, it can be said that the 

absorption by both the Si3N4 and the ZrO2 engineering ceramics of the NIR wavelength of the fibre 

laser is higher in comparison to the absorption of the MIR wavelength of the CO2 laser. Yet the MIR 

wavelength of the CO2 laser is rather suitable for mainly the surface treatment of the oxide ceramics 

which does not require deep penetration. For the nitride ceramics, the temperature induced are fairly 

high in comparison to ZrO2 ceramics. This indicates that the CO2 laser wavelength is further 

absorbed into nitride ceramics in comparison to the oxide ceramics but surface interaction of the CO2 

laser wavelength is also considerable. 

 

7.5 Summary 

The following conclusions are drawn from conducting an experimental and a thermal FEM of the 

fibre and the CO2 laser surface treatment of the ZrO2 and Si3N4 engineering ceramics: 

 
 From both of the surface and the bulk temperature measurements, the distribution of the 

temperature over the length and the depth of the two engineering ceramics treated by the fibre and 

the CO2 laser was also presented and the FEM was verified with an overall error of +10%. 

  
 This is consistent over estimate of temperature by the FEM which may have resulted due to: (a) 

heat loss through the 3mm holes drilled into the sample; (b) lack of contact of the thermocouples 

to the material surface and (c) the thermocouple response time. Such aspects were not taken in 

account by the FEM and so the FEM results will always be higher.  

 
 Furthermore, the FEM expands to demonstrate the relationship between the processing 

temperatures, time and the depth of the heat distribution, with parameters such as traverse speed 

and power density. These would correlate with one another to reveal the extended range of 

parameter window during the fibre and the CO2 laser surface treatment of the ZrO2 and the Si3N4 

engineering ceramics.  

 
 The thermal analysis of the CO2 and the fibre laser of the ZrO2 engineering ceramics showed that 

there was a considerable amount of temperature difference between the CO2 and the fibre laser 

surface treatment with the FEM as well as the experimental temperature readings within both 

engineering ceramics. 
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 The bulk temperature by the experimental model was also higher for the fibre laser surface 

treatment in comparison to the CO2 laser surface treatment and was 50% lower as the average 

temperature at 5mm below the surface of the CO2 laser irradiated sample was 800
◦
C and the fibre 

laser irradiated sample being 1600
◦
C. The bulk temperatures for the FEM were 59% higher for 

the fibre laser in comparison to the temperatures found by the CO2 laser irradiation.  

 
 The temperature of the fibre laser irradiation in comparison to that of the CO2 laser is somewhat 

higher on the surface and the bulk of the ZrO2 ceramic for both the FEM and the experimental 

model. This was due to the difference in the threshold for the ZrO2 whilst processing with both 

the lasers.  

 
 The power density induced into the ZrO2 for the CO2 laser was considerably lower than that of 

the fibre laser as the ZrO2 was cracking at considerably lower powers during the CO2 laser-

interaction in comparison to that of the fibre laser.  

 
 Comparison of the temperatures distributions of the CO2 and the fibre laser surface treatment of 

the Si3N4 for both the FEM and the experimental model showed that the CO2 laser irradiated 

sample was 17% lower in comparison to the fibre laser irradiated sample. The average surface 

temperature configured by the FEM for the CO2 laser was 2081
◦
C and 2287

◦
C for the fibre laser 

irradiated sample, producing a difference of just over 10%.  

 
 The surface temperature reading between the CO2 and fibre laser irradiation of the Si3N4 showed 

that the fibre laser irradiation was considerably higher on the surface and through the cross-

section. This was because of the fact that the NIR wavelength absorption of the fibre laser was 

better in comparison to that of the MIR wavelength of the CO2 laser. This generated a bigger 

interaction zone at the surface in comparison to the fibre laser surface treatment but was not 

induced further into the bulk as was the case with the fibre laser irradiation.  

 
 Furthermore, the bulk temperatures for the fibre laser surface treatment were higher than that of 

the CO2 laser. However, it can be said that the absorption of the NIR wavelength by both the 

engineering ceramics was higher in comparison to the absorption of the MIR wavelength of the 

CO2 laser. Yet the MIR wavelength was rather suitable for mainly surface processing of oxide 

ceramic which does not require deep penetration as previously stated.  

 
 For the nitride ceramic, the temperatures induced are fairly high in comparison to oxide ceramic. 

This indicated that the MIR wavelength was further absorbed into nitride ceramic in comparison 

to the oxide ceramics, but surface interaction of the MIR wavelength (CO2 laser) was also still 

considerable.  

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

261 

 

 Phase transformation of the ZrO2 from the M state to a mixture of T+C during fibre laser 

irradiation and from T+C to T followed by the M state during solidification had occurred. The 

TG-DSC analysis for the fibre laser irradiated Si3N4 engineering ceramics showed that the fibre 

laser surface treatment generally resulted in a phase transformation of the Si3N4 from α-phase to 

β-phase. The transformation began at 1300
°
C and ended at round 1400

°
C, where a mixture of α-

phase and β-phase (α→ α +β) was found. Then transformation of α+β occurred at about 1400
°
C 

and full transformation from α+β →β-phase occurred at 1450
°
C.  

 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

262 

 

 

 

 

 

 

 

 

 

 

 

 

PART 4 

 

NEW PERSPECTIVES ON LASER BEAM-

MATERIAL INTERACTION 

 

 

 

 

 

 

 

 

 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

263 

 

CHAPTER 8 

Influence of Laser-Beam Brightness 

During Surface Treatment of ZrO2 

Engineering Ceramic  
  
Effects of the laser parameter brightness or radiance of the fibre and the Nd:YAG laser surface treatment of 

the ZrO2 engineering ceramic were investigated. This has been done because the distinctive surface 

modifications, K1c and the differences in processing temperatures that were found in the previous Chapters 

after fibre laser surface treatment and when compared to the CO2 laser surface treatment. By applying 

identical parameters, except for wavelength (which in this case was similar between the Nd:YAG and the 

fibre laser), the influence of brightness exhibited by the two lasers was investigated in respect to the change 

in the hardness, dimensional size of the laser irradiated zones and the microstructure of the ZrO2 

engineering ceramic.  

 

8.1 Introduction 

Brightness is a very important characteristic of a light source. It is defined as the amount of light 

delivered from a surface per unit of area [228-229]. The term brightness is mainly used when the 

visual quality of a light source in relation to contrast and glare is being expressed. However, 

brightness in turn does not only relate to a light source such as a lamp or a candle as light can be 

found through reflection and transmission also. For instance, a bright surface will have high 

reflections and a dull surface will have low reflection [229]. The use of the term brightness in some 

way or another is a comparison of two light sources which are judged by the human eye as it creates 

variation in the intensities on the surface of the retina [230].  

 
Brightness in general terms is defined as candles per square meter of light being emitted on a surface 

and is classified as “luminance” or “radiance”, depending on its application [229, 231]. When the 

brightness is mentioned as a photometric quantity the term luminance is usually used. However, the 

term radiance is mentioned when describing radiometric quantity [231]. Luminance can be expressed 

as the direction of light emission. This means that the brightness of an object is dependent on the 

direction or the angle which one can look from [228]. Luminance is also the intensity of light that is 

emitted from the surface whereas the intensity of light that is directed on a surface is classified as 

illuminance which is the opposite of luminance. In some instance, radiometric term radiance of a 

light source is used in literatures for the sake of simplicity, particularly, when expressing laser beam 

brightness, which is the power per unit area per solid angle of divergence [229]. 
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Laser beams in comparison to other light sources comprise of high brightness energy since a laser 

light exhibits very high power levels in a narrow beam or a spot size [230]. Hence, the spot size 

which the laser beam can be focused to is very important [232]. Brightness of lasers is an 

unchangeable property. This means that the brightness is not affected by focusing or defocusing a 

laser beam. This is made clear by a primary law of optics which states that the brightness of a light 

source is an unchangeable quantity [229, 233]. The brightness of a Gaussian beam does not change 

as it propagates because the brightness is inversely proportional to the solid angle. The solid angle 

produced by a laser beam is proportional to the square of the divergence angle θ. The smaller the 

divergence the higher the brightness of the laser. High brightness beams, however, has the most 

idealised beam profile and tend to have a high beam quality factor. 

 
Laser power density and laser brightness has close relationship due to their parameters being 

somewhat common. The laser power is input power per spot size. This is multiplied by the Gaussian 

beam configuration value, whereas the brightness is the input power per unit area per solid angle 

(beam divergence) [233-237]. Brightness is important in laser processing applications since the 

intensity obtained within a focusing area within a lens is proportional to the brightness of the beam. 

High brightness laser processing allows fine spot size of the beam and allows longer focusing 

distance so that flexibility is further achieved with material processing as more distance is covered 

during laser processing. This is particularly offered by the fibre laser and are both used for the 

investigation herein as further presented.  

 
High brightness laser sources such as a fibre laser or a HPDL produces high temperature during 

material interaction [235, 238]. High brightness laser source in particular – a fibre laser also offer a 

longer depth of field (long focal length), small spot sizes and beam quality as well as stability of the 

laser beam during execution.  The brightness of a laser is more effective in comparison to the laser 

power intensity. This is because by achieving high brightness would generate high processing 

temperatures [238]. This is particularly important for ceramic processing in order to achieve surface 

melting, to cover the surface cracks and to achieve localized modification and phase transformations 

within the ceramic. The use of high brightness laser for material processing is also advantageous due 

to its potential of achieving low cost per wattage output [231].  

 
Measuring the brightness of a light source is a difficult practice and requires a complex set-up and 

procedures to follow. This is specially so for measuring the brightness of an industrial laser due to 

the complexity of the machines and the experimental set-up required. The correct measuring 

technique for brightness of a laser beam is strategically documented in the British standards [239-

241]. Forbes et al. [242] modelled the brightness from a cross porro-prism resonators and showed 

that the brightness is significantly influenced by the angle between the two prism edges. At higher 

prism angles the brightness was increased as fewer petals of the beam footprint were to be seen. 
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With decreasing angles and increasing the number of petals of the beam footprint showed decreasing 

the prism angles and inherently a reduction in the brightness. 

 
The use of high brightness emitting lasers have made a way forward within the laser aided material 

processing industry in the recent years by several workers. Wallace [243] described the use of high 

brightness beam diode lasers which produces high efficiencies and lower operating costs. Wenzel et 

al. [244] modelled features of high brightness semiconductor lasers and showed that high reliability 

and efficiency can be obtained from applying high brightness laser beam despite having low beam 

quality. Brown and Frye [245] also showed the use of high brightness cutting and drilling of 

aerospace materials by using a Nd:YAG laser. The results showed improved cutting and also 

achieved shallow angle holes. Li et al. [246] investigated the reliability and efficiency of high 

brightness lasers of 940 nm wavelength and demonstrated the maximum power conversion 

efficiency of 60% at an output power of 72 W with very good beam quality. Treusch et al. [247] 

studied the use of high-brightness semiconductor lasers for material processing and revealed that 

collimation lenses can be used to increase the brightness of the laser by a factor of two as well as the 

wavelength and polarization coupling also contributing to the increased brightness. Leibreich and 

Treusch [248] followed a similar investigation on improving the brightness of a semiconductor diode 

laser by using stacking laser bars (beams) comprising of different wavelength to increase the output 

power as well as the brightness. Their results briefly described that the brightness can be enhanced 

by two without any changes to the beam quality factor (M
2
). This in turn would improve and open a 

new avenue for the laser materials processing sector. Other investigation by Hanna [249, 250] 

showed that an increase in brightness can be obtained by altering the transverse mode. Variation in 

the transverse mode leads to a change in the beam divergence and alters the brightness of the laser 

source [249].  

 
Val et al. [251] investigated the effects of laser cladding of flat plates of AISI 304 stainless steel and 

Co-based super-alloy powder as a coating material by applying a Nd:YAG laser and a Yb: YAG 

fibre laser. The results from the fibre laser in comparison to that of the Nd:YAG showed more 

versatility with regard to the parameter window as well as enlarged clad track, and deeper 

penetration. However, similar hardness was obtained from applying both lasers. Val et al. further 

concluded that this effect had occurred due to the better beam quality and also due to the high 

brightness on offer by the fibre laser. This is ideal for producing wider clad tracks and a Nd:YAG 

laser is ideal for producing narrower clad tracks. The work of Val et al. closely relates to the work in 

this study as the effects of brightness between an Nd:YAG laser and a fibre laser are investigated but 

by using engineering ceramics (in particular ZrO2).  

 
Although, several investigations have been published in the field of improving the laser brightness, 

there is still limited work that has been published with the use of a fibre laser to process materials. 
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This is particularly so for engineering ceramics as to date, no work has been conducted hitherto with 

employing the fibre laser to surface treat engineering ceramics. This investigation considers the 

laser-beam brightness as an influential parameter of laser-ceramic and other material processing in 

general. Also, the physical effect of high laser-beam brightness during the surface interaction with 

such materials is detailed. Also, brightness is an important parameter of laser material processing 

rather than the input power. It is the brightness that is the driving force rather than the power 

intensity and is very much discarded when it come to laser material processing. Hence, the work in 

this investigation attempts to introduce the likely effects that could occur by the different brightness 

of laser sources which have the same processing parameters. Physical differences in the effects of the 

fibre laser and the Nd:YAG laser brightness up on surface treatment of the ZrO2 engineering ceramic 

in particular are discussed after the laser-ceramic surface interaction has taken place. The fibre and 

Nd:YAG lasers were selected as they both have similar operational wavelength. Therefore, would 

serve to provide a better comparison than the CO2 laser. Nevertheless, the brightness of the CO2 laser 

beam is not disregarded in this Chapter, since the content of this thesis has mainly focused on the 

effects of the CO2 and the fibre laser surface treatment.  

 

8.2 Background of Laser-Beam Brightness Calculation  

Theoretical brightness is calculated by means of simplified equations described in several literatures 

[229-233]: 

 

    
    

  
           (8.1) 

 
Where Pout is the power over the surface area and AΩ is the solid angle of divergence of the beam. 

Brightness is inversely equal to the solid angle of divergence. The solid angle of divergence created 

by a laser beam is equal to the square of the divergence angle θ as shown in Figure 8.1. The solid 

angle of a Gaussian beam equates to:  

 
Ω = π θ

2
 = λ

2
 / π w

2 
0          (8.2) 

 
and is inversely proportional to (π w

2 
0). Where λ is the wavelength of the particular laser beam and 

w0 is the beam radius at the beam waist or divergence. The solid angle of divergence is usually small 

for laser beams in comparison to other light sources due to their high directionality. This in turn 

generates high brightness beams. 
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Figure 8.1 A schematic diagram illustrating the solid angle of divergence of a laser beam. 

 

For a circular Gaussian laser beam; the beam propagation ratio is illustrated in Equation 8.3. Where 

M
2

y and M
2
x are the beam propagation ratio‟s in the x-and the y-direction. Furthermore, brightness 

can be derived in Equation 8.4 which comprises of feature in Equation 8.1 to 8.3:  

 
M

4
 = M

2
y . M

2
x          (8.3) 

 

    
    

       
          (8.4) 

 
The solid angle presented in Figure 8.1 is a unique dimension for all laser beams with different beam 

profile and Gaussian configuration. This solid angle is the divergence of the beam after being 

focused by the optics (focusing lens). The angle of beam divergence the calculated brightness values 

of the fibre, Nd:YAG and the CO2 lasers are presented in Table 8.1, along with other beam 

characteristics and properties as a comparison.  

 
 Table 8.1 Properties of the fibre, the Nd:YAG and the CO2 laser used for this investigation. 

Laser 

Type 

Beam 

divergence 

(m/rad) 

Brightness 

(W/cm
2 
/ sr

-1
) 

 

Beam 

quality 

factor 

(M
2
) 

Gaussian beam shape Gaussian 

beam 

mode 

Cross-sectional 

view 

Plan view 

Nd:YAG 

laser 

5.5 609.50 6.7 

 

 

TEM00 

Fibre 

laser 

0.2 1755.37 1.2 

 

 

TEM00 

 

 

CO2 laser 5 1471.57 1.3 

 
 

TEM01 

 

 

7.2 Experimentation and Analysis  

8.3.1 Experimental Material  

The material used for the experimentation was CIPed ZrO2 engineering ceramic which was 

previously described in Chapter 4 (see Section 4.1, Figure 4.1).  
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8.3.2 Nd:YAG Laser Surface Treatment  

A 65 W Nd:YAG laser (HK, SL902; Hahn & Kolb Ltd.) emitting a CW mode beam at a wavelength 

of 1.064µm was used in this work (see Figure 8.2). The focal position was kept to 210mm above the 

work-piece to obtain a 2.2mm spot size. The processing gases used was N2 at a flow rate of 25 l/min. 

Programming of the laser was conducted by using a Hahn & Kolb, U3 CAD software. This 

integrated with the laser system as a 50 mm line was programmed by using NC programming as a 

potential beam path. To obtain an operating window, trials were conducted at the fixed spot size of 

2.2mm and 65W by varying the speed between 4 and 100 mm/sec. this was because 65W was the 

maximum power and a 2.2mm beam was the largest spot size which the Nd:YAG laser could exhibit. 

From these trials, it was found that 10mm/sec at 65W
 
were the ideal laser parameter to use in terms 

of achieving a sufficient footprint on the material to conduct further analysis. 

 

 

Figure 8.2 A Schematic diagram showing the experimental set-up of the Nd:YAG laser surface 

treatment of the ZrO2 engineering ceramic. 

 

8.3.3 Fibre Laser Surface Treatment 

A 200W fibre laser (SPI-200c-002; SPI, Ltd.) emitting a CW mode beam at a wavelength of 

1.075µm was used in this work as previously shown in the work of earlier Chapters. The focal 

position was kept to 20mm above the work-piece to obtain a 2.2mm spot size. The processing gases 

used were N2 supplied at a flow rate of 25 l/min. Programming of the laser was conducted by using 

an SPI software which integrated with the laser system. A 50mm line was also programmed by using 

NC programming as a potential beam path, which was transferred by .dxf file. The nozzle indicated 

in Figure 4.2 (see Chapter 4, Section 4.3) was removed for all experiments. To obtain an operating 

window, trials were conducted at the fixed spot size of 2.2mm 65W and at a traverse speed between 
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10mm/sec so that an equal comparative study of the effects of the Nd:YAG laser and the fibre laser 

can be performed.  

 
8.3.4 Hardness Measurement  

Vickers indentation method was adopted for measuring the hardness of the laser irradiated surfaces 

of the ZrO2 engineering ceramics by applying an indentation load of 2.5kg (24.51 N). The 

methodology has been described in the previous Chapters (see Chapter 5, Section 5.2.3 and Chapter 

6, Figure 6.2). 

 

8.3.5 Sample Preparation and Etching  

The as-received and the laser irradiated samples were mounted in epoxy resin (Epofix, Struers Ltd.) 

and were finely polished by using a semi-automatic polishing machine (TegraPol-25, Struers Ltd.) 

aided by using a successively finer diamond polishing discs. The final polishing procedure was 

conducted by using a 0.04µm colloidal silica suspension (OP-S; Struers Ltd.). The samples were 

then removed from the epoxy resin. Furthermore, the samples were etched by using a thermal 

etching technique in order to expose the grains, to determine the grain size and to investigate the 

microstructure of the ZrO2 engineering ceramic. Temperature of 1300
°
C was applied in a furnace to 

samples of the as-received, fibre and Nd:YAG laser irradiated ZrO2 engineering ceramic. The 

samples were held at 1300
°
C for 5min with a heating/cooling rate of 10

°
C /min.  

 

8.3.6 Microscopic Imaging  

The Vickers indentation footprint of the as-received, fibre and the Nd:YAG laser irradiated zones 

were all observed by employing the optical microscopy (Optishot; Nikon Ltd.). Further analysis was 

conducted by employing a FEGSEM (Ultra-high-resolution, 1530VP; Leo Ltd.). This investigated 

the microstructure of the laser untreated surface, Nd:YAG and fibre laser irradiated surfaces of the 

ZrO2 engineering ceramics. 

 

7.3 Results and Discussion  

8.4.1 Change in Hardness 

The average hardness was measured for the as-received, fibre and Nd:YAG laser irradiated surfaces 

of the ZrO2 engineering ceramic. The average indentation size, hardness readings along with its 

STDEV and the ranges in the values are presented in Table 8.2. The average indentation size for the 

as-received surface was 61µm with an average hardness of 1225 HV (12.01 GPa). This in 

comparison to the Nd:YAG laser irradiated surface was somewhat smaller and indicated that the 

Nd:YAG laser irradiated surface had become more ductile and softer. The average diamond 

indentation size of the Nd:YAG laser irradiated surface was 79µm with an average hardness of 747 

HV (7.32 GPa). A 36% reduction in the hardness and up to 29.5% increase in the diamond 

indentation size was obtained by the Nd:YAG laser irradiated surface.  
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However, when comparing the results of the Nd:YAG laser irradiated surface with that of the fibre 

laser; it was found that the change in hardness was also sufficiently large but the fibre laser irradiated 

surface comprised of much higher hardness in comparison to that of the Nd:YAG laser. Sufficiently 

large surface cracking with the fibre laser surface treatment sample was also found. This indicated 

that the surface was much harder from the result of reaching high temperature which would have 

caused a steeper thermal gradient and rapid cooling effect to take place in comparison to the 

Nd:YAG laser surface treatment. The average size of the diamond indentation was found to be 

63µm. This in comparison to the as-received surface was just over 3% larger but 22% smaller in 

comparison to that of the Nd:YAG laser irradiated surface. The average hardness of the fibre laser 

irradiated surface was 1179 HV (11.56 GPa). This was just under 4% lower than that of the as-

received surface and 32% higher than the Nd:YAG laser irradiated surface. Figure 8.3 to 8.5 

illustrates an example of the diamond indentation for the as-received surface (see Figure 8.3). The 

Nd:YAG laser irradiated surface is shown in Figure 8.4 and the fibre laser irradiated surface is 

shown in Figure 8.5. 

 
Table 8.2 Hardness values found for the as-received, fibre and Nd:YAG laser irradiated surfaces of the 

ZrO2 engineering ceramic. 

 

Type of laser Average 

indentat

ion size 

(µm) 

Range 

(µm) 

STDEV 

(µm) 

Hardness (HV) 

Average Range STDEV 

As-received 

surface 

61 57- 67 0.0312 1225 1002 - 1414 12.01 

Nd:YAG 

laser 

irradiated 

surface 

79 

 

71-77 0.0055 

 

747 

 

599 - 920 

 

104 

 

Fibre laser 

irradiated 

surface 

63 59 - 71 0.0043 1179 920 -1332 149 
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Figure 8.3 Optical image of the diamond indentation produced on the as-received surface indented by a 

2.5kg (24.51N) diamond indentation load on the ZrO2 engineering ceramic. 

 

 

Figure 8.4 Optical images of the diamond indentation produced on the Nd:YAG laser irradiated surface 

indented by a 2.5kg (24.51N) diamond indentation load on the ZrO2 engineering ceramic. 
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Figure 8.5 Optical images of the diamond indentation produced on the fibre laser irradiated surface 

indented by a 2.5kg (24.51N) diamond indentation load on the ZrO2 engineering ceramic. 

 
8.4.2 Change in Size 

From the topographical observation of both the Nd:YAG and fibre laser irradiated tracks (footprints); 

it was found that 32% difference in width was to be seen between the footprint created by the two 

different lasers. The average width of the Nd:YAG laser irradiated track was 632µm and the average 

length of the HAZ being 72µm. This in comparison to the track width of the fibre laser was much 

smaller as presented in the example in Figure 8.6 (a) and (b). The average width of the fibre laser 

irradiated surface was 737µm. The average width of the HAZ was found to be 79µm. This was 24% 

higher than that of the Nd:YAG laser irradiated surface.  

 

 

(a)                                                                             (b) 

Figure 8.6 Optical images of (a) the width of the Nd:YAG laser irradiated track and (b) the width of the 

fibre laser irradiated track of the ZrO2 engineering ceramic. 

 

Furthermore, the optical images in Figure 8.7 presents the cross-sectional view of the ZrO2 

engineering ceramic in (a) the Nd:YAG laser irradiated surface and (b) the of the Nd:YAG laser 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

273 

 

irradiated surface with its dimensional sizes, (c) the fibre laser irradiated surface and (d) the 

dimensional size. It can be seen from the cross-sectional analysis that the fibre laser irradiated 

surface has produced a larger penetration depth and broader profile in comparison to that of the 

Nd:YAG laser. In average, the depth of penetration for the fibre laser was 447µm as oppose to the 

depth of penetration of the Nd:YAG laser being 295µm. This was up to 51.5 % lower. The Nd:YAG 

laser had produced a partial amorphous glassy zone. This was a mixture of zirconia carbide (see 

Chapter 5, Section 5.3.2) as can be seen in the image in Figure 8.7(a). This meant that melting did 

occur with the Nd:YAG laser irradiated surface. However, it was not as remarkable as the fibre laser 

irradiated surface of the ZrO2 as the whole cross-section was found to be of the amorphous glassy 

layer. This intrinsically, indicated that more melting and new formation of the surface layer had 

occurred with the fibre laser surface treatment despite using the same laser parameters. The increased 

melting and the glassy layer within the fibre laser irradiated surface had occurred from the difference 

in temperature between the two lasers as the fibre laser with a higher brightness had created much 

higher temperature. This characteristically had melted the surface and generated a larger melt pool. 

The surface and the cross-sectional cracking of the ZrO2 engineering ceramic particularly after the 

fibre laser surface treatment compliments the high temperatures generated at the fibre laser-ZrO2 

interaction. 

 
 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 8.7 Optical images of the cross-sectional view of (a) the Nd:YAG laser irradiated surface and (b) 

the schematic diagram the Nd:YAG laser irradiated surface of the ZrO2 engineering ceramic.  
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(c) 

 

                                                                                    (d) 

Figure 8.7 Optical images of the cross-sectional view of (c) the fibre laser irradiated surfaces and (d) a 

schematic diagram of the fibre laser irradiated surfaces of the ZrO2 engineering ceramic. 

 

8.4.3 Change in Microstructure 

8.4.3.1 As-received surface  

The microstructural evaluation by using the FEGSEM of the ground and polished surface of the 

untreated sample in Figure 8.7 presents the surface morphology. This shows the grain boundaries 

along with the grain sizes. The grain size ranged between 0.7 to 0.9µm with some porosity also 

evident. The microstructure presented in Figure 8.7 is somewhat different to that of the one presented 

in Chapter 5 for the ZrO2 engineering ceramic. This was due to two reasons: firstly, the surfaces 

herein were ground and polished and were followed by undergoing a thermal etching process. This 

helped to enhance the grain exposure and the appearance of the grain boundaries. Thermal etching 

process was not conducted for the images presented in Chapter 5 for the ZrO2 engineering ceramics 

in comparison. Secondly the images in Chapter 5 are also different despite using the ZrO2 

engineering ceramics herein being from the same batch as that of the one in Chapter 5. This is 

because the images in Chapter 5 comprise of spherical agglomerates which are formed during 

powder preparation of the ceramic for processing. During this stage the ceramic powder is dispersed 

in a liquid medium and is sprayed into hot air so that the droplets could dry. This eventually leads to 

the formation of spherical agglomerates. The spherical agglomerates would improve the flowability 

of the powder. This increases the processing speed during the preparation of green bodies (ceramic 

products) by pressing. Then, sintering is conducted to get the final product which is the rectangular 

ZrO2 engineering ceramic sample as used in the work. In reality, the agglomerates should crush 



Viability and Characterization of the Laser Surface Treatment of Engineering Ceramics 

 

275 

 

during the preparation of the green body when pressed, but it is not always the case. Hence, some 

agglomerates will only get flattened especially those near the surface of the sample. This is what is to 

be seen in the microscopic images presented in Chapter 5 for the ZrO2 engineering ceramic, whereas 

the images in this Chapter are ground and polished so the agglomerates are not to be seen.  Though, 

by using higher magnification image allows one to see the grain boundaries as further illustrated in 

this Chapter. 

 

 

Figure 8.7 FEGSEM image of the as-received surface of the ZrO2 engineering ceramic. 

8.4.3.2 Fibre laser irradiated surface  

From observing the fibre laser irradiated surface as shown in Figure 8.9; it can be observed that the 

grain boundaries have enlarged and elongated in comparison to the ground and polished untreated 

surface. However, there is also an increase in the porosity and surface flaws in some of the regions of 

the fibre laser irradiated surface. This would have resulted from escaping of entrapped porosity 

during the event of the laser interaction with the surface of the ZrO2. Moreover, the sizes of the 

grains vary from 3 to 10µm from the top (near) surface layer and through the sub-surface and the 

bulk of the ceramic. This is because the processing temperature at the top (near) surface layer was 

much higher than the sub-surface and the bulk. This would have produced the grain growth. Figure 

8.10 presents the cross-sectional microstructure showing the increase in the grain size from the bulk 

of the ZrO2 to the sub-surface and the top surface layer of the fibre laser irradiated zone. The 

microstructure at the top surface layer (see Figure 8.11 and Figure 8.12) is somewhat different as 

significant grain growth has occurred due to the high temperature gradient existing at the laser-ZrO2 

interface.  
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Figure 8.9 FEGSEM image of the cross-section of the sub-surface layer of the fibre laser surface treated 

ZrO2 engineering ceramic. 

 

 

Figure 8.10 FEGSEM image of the cross-section of the fibre laser irradiated surface of the ZrO2 

engineering ceramic showing variation in the grain sizes within the sub-surface, towards the bulk and 

the top surface layer. 
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Figure 8.11 FEGSEM image of the cross-section of the top layer of the fibre laser irradiated surface 

ZrO2 engineering ceramic at x 25k magnification. 

 

 

 Figure 8.12 FEGSEM image of the cross-section of the fibre laser irradiated ZrO2 engineering ceramic 

illustrating the top surface layer at x 2.5k magnification. 

 

8.4.3.3 Nd:YAG laser irradiated surface 

The microstructure of the Nd:YAG laser irradiated surface in comparison to that of the as-received 

surface has been reasonably modified as presented in Figure 8.13 to Figure 8.15. The grain sizes 

herein range from about 3.5 to 7µm and an average grain size was of about 5µm. This in comparison 

to the laser untreated surface was considerably large. However, when compared to the fibre laser 

irradiated surfaces, the grain boundaries were somewhat smaller. Similar effect which occurred with 

the ZrO2 samples irradiated by the fibre laser had also occurred with the Nd:YAG laser. But, it was 

slightly less significant. The sample observed at the cross-section comprised of larger grains at the 

top near surface layer. This further reduced as it was observed at the sub-surface and the bulk of the 
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ZrO2 engineering ceramic as presented in Figure 8.13. However, this type of grain growth was 

slightly abnormal as elongation of the grains (particularly in Figure 8.15) was seen in few areas. 

Figure 8.14 showed the very top surface layer of the ZrO2 which was irradiated by the Nd:YAG 

laser. The microstructure in this area was reasonably modified in comparison to the microstructure 

where the laser-ZrO2 interaction did not occur. Moreover, evidence of surface melting, re-flowing 

and solidification can be seen particularly in Figure 8.14 where the laser- ZrO2 interaction had taken 

place.  

 

 

Figure 8.13 FEGSEM image of the Nd:YAG laser irradiated sample of the ZrO2 engineering ceramic 

within the sub-surface region. 

 

 

Figure 8.14 FEGSEM image of the Nd:YAG laser irradiated surface of the ZrO2 engineering ceramic 

illustrating the surface and the sub-surface layer.  
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Figure 8.15 FEGSEM image of the cross-section of the Nd:YAG laser irradiated surface of the ZrO2 

engineering ceramic illustrating the top surface layer. 

 

8.4.4 Rationale and the Differences between the Effects Produced by the fibre and Nd:YAG 

Laser Surface Treatments   

From the difference in the hardness values found by the results of the two laser types it can be 

summarized that the Nd:YAG laser irradiation was producing a much softer and a ductile surface to 

that of the fibre laser irradiation. From comparing the effects of the fibre laser surface treatment and 

that of the Nd:YAG laser, it is postulated that the high brightness of the fibre laser would generate 

high temperature at the surface of the laser-ZrO2 interface. This was also supported by previous 

workers [243, 246]. The higher temperature has allowed the fibre laser irradiated ZrO2 engineering 

ceramic to generate larger melt-zones in comparison to that of the Nd:YAG laser. This resulted to 

change in composition as a thicker and a broader glassy layer was produced. This in turn had also 

shown high hardness in comparison to the Nd:YAG laser irradiated surface. In addition, it is also 

believed that rapid cooling from the higher temperature gradient of the fibre laser would have 

contributed to the increased hardness produced as result of the fibre laser surface treatment. It is 

likely that a high processing temperature of the fibre laser irradiation in comparison to that of the 

Nd:YAG laser would have caused a phase change from T to L to have occurred. This produced a 

harder fibre laser treated surface as opposed to the Nd:YAG laser treated surface which did not result 

to the same phase change. This was due to lower processing temperature exhibited by the Nd:YAG 

laser.     

 
The change in the dimensional size was produced by the high brightness beam of the fibre laser 

interacting more with the ZrO2 engineering ceramic. This in turn had generated higher processing 

temperatures than that of the Nd:YAG laser, whereas the Nd:YAG laser irradiation only generated 

lower interaction zone as well as lower depth of penetration of the beam. This is shown by Figure 

8.7(a) and (b) and is compared to Figure 8.7 (b) and (c). The difference in size between the footprint 
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of the fibre and the Nd:YAG laser irradiation (see Figure 8.6(a) and (b)) was also found as well as 

the cross-sectional images shown in Figure 8.7(a) to (d) of the Nd:YAG and the fibre laser irradiated 

samples. As well as the depth of penetration being larger for the fibre laser in comparison to the 

Nd:YAG laser; the high temperature produced by the high brightness of the fibre laser had also 

created a larger melt zone (see Section 8.4.2) and the amorphous glassy phase. This indicated that the 

grain refining for both types of lasers were different as the surface of the fibre laser with larger melt-

pool was producing bigger grain sizes than that of the Nd:YAG laser. This in turn, generated a harder 

surface of the fibre laser irradiated sample which was fully melted to the amorphous glassy phase in 

comparison to the Nd:YAG laser which was a mixture of the amorphous glass and the zirconia 

carbide through the induction of carbon vacancies. This on the other hand had created a softer 

surface as the hardness was significantly reduced. 

 

8.4.5 Rationale and the Differences between the Effects Produced by the fibre, Nd:YAG and 

the CO2 Laser Surface Treatments   

 
The brightness value for the three lasers used in this research is presented in Table 8.1. The 

experimental investigation showed that the fibre and the Nd:YAG laser had a considerable influence 

due to the differences in the beam divergence and the beam quality factor which inherently resulted 

to the difference in the brightness value, despite having similar wavelength, Gaussian beam mode, 

power input and the laser beam spot size as well as the traverse speed. The influence of the CO2 laser 

beam brightness was not experimentally demonstrated as there was a vast difference in the 

wavelength of the fibre and the Nd:YAG laser in comparison to the CO2 laser and also because a like 

by like study was more comparable in this case.  However, the CO2 and the fibre laser were 

compared throughout the thesis and it was therefore inevitable to mention the influence of the CO2 

laser beam brightness on the engineering ceramic (ZrO2 in particular). 

 
The CO2 laser beam was much lower in brightness in comparison to the fibre laser despite having 

higher wavelength as shown in Table 8.1. This was because of the lower M
2
 value and higher beam 

divergence of the CO2 laser which resulted to the lower brightness value by about 26%. It was 

therefore indicative that the lower brightness value would in turn produce lower surface temperature 

during laser-ceramic interaction which was already confirmed by the results in Chapter 7 (from the 

temperature distribution shown by the FEM and the experimental model). Nevertheless, the CO2 

laser with respect to producing the thicker modified laser irradiated layer, broader footprints of the 

laser irradiated zone was found. This was because of the ZrO2 engineering ceramic was generally 

accepting the NIR wavelength of the fibre and the Nd:YAG laser better than the MIR wavelength of 

the CO2 laser as previously mentioned in Chapter 7. This resulted to the CO2 laser interacting more 

on the surface of the ceramic than the bulk which naturally showed broader footprints and HAZs 

whereas the fibre and the Nd:YAG laser in comparison had illustrated narrow irradiated footprints 
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and HAZs, thinner laser irradiated (modified) layers but deeper penetration of heat as the ZrO2 

ceramic was allowing the NIR wavelength to penetrate deeper into the bulk.  

 
8.4.6 Contribution of Laser-Beam Brightness as a Parameter to Effect Laser Processing of 

Engineering Ceramics. 

Brightness is dependent on the output power, the solid angle of divergence and the M
2
 factor. These 

are all parameters of the brightness equation as shown in Section 8.2 in this investigation. However, 

laser brightness is primarily dependant on the transverse mode as well as the beam quality factor M
2
. 

The better the beam quality of the laser, the higher the brightness exhibited. In this case, despite the 

transverse mode being in the same region for both the Nd:YAG and the fibre lasers, the beam quality 

factor was a lot better for the fibre laser as there was over 5 ½ folds of difference between the beam 

quality factors of the Nd:YAG laser where the M
2
 value was 6.7 and M

2
 = 1.2 for the fibre laser. 

This meant that the fibre laser is able to produce a brighter beam. Also, the beam divergence would 

play a big role in increasing the brightness value as smaller beam divergence produces smaller solid 

angle of divergence (Ω = π θ
2
). The beam quality factor therefore, allows higher brightness to be 

exhibited. This consequently affected the change in the hardness, dimensional size and the 

microstructure of the ZrO2 engineering ceramic.  

 
The difference in the two brightness values for the Nd:YAG and the fibre laser was over 3 folds. The 

fibre laser comprised of high brightness but did not produce the same difference with the physical 

effects that took place from the Nd:YAG and fibre laser surface treatment. Moreover, to suggest a 

consistent relationship between the difference in the brightness value and the effects which take 

place from of the laser surface treatments as a quantitative value would require further experimental 

investigation. It is also suggested that the relationship between the brightness value for two lasers 

and its relative effects are unique for each ceramic. This is because factors such as the material 

property as well as the absorption of the laser wavelength are taken into consideration.       

 
As shown, the high laser-beam brightness can exhibit longer depth of penetration and bigger 

footprints by using identical laser power. Furthermore, it is therefore possible to operate the high 

brightness laser at much lower powers. This in turn, would exhibit a surface treatment with the same 

dimensional size. This in the long run would help to achieve low cost per wattage laser surface 

treatment which is just as effective as the surface treatment applied by using a low brightness beam 

at higher cost per wattage. High brightness laser such as the fibre laser is ideal in terms of laser 

processing of ceramics where high powers are required for surface modification and microstructural 

changes as well as phase modification where obtaining elevated processing temperatures are 

important to create a phase change. 
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8.5 Summary  

Influence of the laser-beam brightness was investigated after the fibre and the Nd:YAG laser surface 

treatments thereon the ZrO2 engineering ceramic. The findings revealed: 

   
 The hardness of the ZrO2 was reduced by 36% for the Nd:YAG laser in comparison to the as-

received surface. However, only 4% reduction in the surface hardness was found from employing 

the fibre laser surface treatment. This was because the diamond footprints were reduced which 

indicated that the fibre laser irradiated surface had also become somewhat softer, although, it was 

not significant as much as the results of the Nd:YAG laser.   

 
 The width of the fibre laser irradiated zone was also broader in comparison to the Nd:YAG laser 

irradiated zone by 32%. The depth of penetration was up to 48.5% higher for the fibre laser 

surface treatment.  

 
 The microstructural changes also showed that the fibre laser irradiated surface was producing 

large grains in comparison to the Nd:YAG laser irradiated surface by over 20% difference in size. 

 
 The physical and the microstructural effects differed for the two lasers despite using identical 

laser processing parameters. This resulted from the high brightness generated from the fibre laser 

in comparison to that of the Nd:YAG laser. This in turn, produced higher processing 

temperatures, causing larger thermal gradient. This characteristically produced a bigger melt pool. 

Hence, a harder surface in comparison to the Nd:YAG laser was produced and caused, an 

increase in the width and the depth of penetration, as well a change in the microstructure. 

  
 It can be concluded that high brightness lasers require lower powers to penetrate at equivalent 

dimensions to that of the low brightness lasers. This would be more cost effective since less cost 

per wattage is utilized. Processing of engineering ceramics is ideal by applying high brightness 

lasers. This inherently produces remarkable surface modifications in terms of composition, phase 

changes and K1c.  

 
 Experimental investigation of the effects of the brightness on laser processing is rather limited. 

This work is first step demonstration of what the effective results of laser brightness has on the 

engineering ceramics. Further work in this field would be considerably fruitful for better 

understanding of the possible effects and to conduct an efficient laser surface treatment of the 

engineering ceramics. 
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Summary and Conclusions 
 
The work presented in this thesis elucidates several key issues associated with fibre and CO2 laser 

interaction with Si3N4 and ZrO2 engineering ceramics during surface treatment. The following 

conclusions were drawn from the thesis:  

 
 To achieve a surface treatment with minimal defects, fibre laser treatment of the Si3N4 used a 

power density of 5556 W/mm
2
 and 3919 W/mm

2
 for the ZrO2. For both the engineering ceramics, 

a traverse speed of 100 mm/min was used. For the CO2 laser surface treatment of the Si3N4; a 

power density of 5556 W/mm
2
 at a traverse speed of 100 mm/min and 1736 W/mm

2
 at 600 

mm/min for the ZrO2 was used. 

 
 A lower traverse speeds or higher power density than above resulted to an increase in surface 

cracks and considerable melt zones. Higher traverse speed and lower power density had a 

minimal effect on the surface of the two engineering ceramics.      

 
 A reduction in hardness of both the engineering ceramics was found when employing both lasers. 

But the reduction in hardness was more significant when employing the CO2 laser. Softer surfaces 

were found when using O2, compressed air, ambient air, followed by N2 and Ar assist gases.   

 
 Reactive gases generated the highest material removal and the roughest surface finish along with 

a high level of oxidation and average porosity. Large surface profile of the laser treated and the 

HAZ were also observed on both engineering ceramics.  

 
 The use of Ar and N2 assist gases resulted in producing the finest surface finish with a lower 

material removal in comparison with the sample treated by using other conditions. A 

compositional change was yet apparent but to a lesser extent despite N2 and Ar showing less 

influence of oxidation.  

 
 The compositional study confirmed that the Si3N4 was transformed to SiO2. Likewise, the surface 

of the ZrO2 engineering ceramic was also modified to ZrC. Both laser surface treatments 

produced an interlocking microstructure particularly by using Ar and N2 assist gases.  

 
 From assessing the fracture toughness property K1c of the as-received, CO2 and the fibre laser 

treated engineering ceramics, it was identified that Equation: K1c = 0.016 (E/Hv)
 1/2 

(P/c
3/2

) was 

the most relevant to employ for both engineering ceramics. 

 
 A change in the hardness and the crack length as result of the Vickers indentation was found to be 

influential parameters. This resulted to a change in the end K1c value (under the applied 

conditions).  
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 The K1c of the top surface layer improved with both the CO2 and the fibre laser treated surfaces 

when compared to the as-received surfaces. However, the hardness was considerably lower for 

the CO2 laser treated surface compared to that of the fibre laser. This resulted to a lower K1c value 

for the fibre laser surface treatment compared to that of the surface treated by the CO2 laser under 

the applied conditions. 

 
 The FEM and the experimental model of the fibre and CO2 laser surface treatment of both the 

engineering ceramics was verified with an overall error of +10% over the surface and through the 

cross-section. The FEM further expands to demonstrate the relationship between various 

parameters which would correlate with one another to reveal the extended range of parameter 

window during the fibre and the CO2 laser surface treatments.  

 
 The surface and the bulk temperature produced by the fibre laser surface treatment of the Si3N4 

and the ZrO2 were considerably higher in comparison to the CO2 laser.  

 
 The difference in processing temperature resulted from high laser-beam brightness and high 

absorption of the NIR wavelength of the fibre laser in comparison to the MIR wavelength of the 

CO2 laser during surface treatment of both engineering ceramics.   

 
 Nevertheless, the CO2 laser generated a bigger interaction zone on the surface and was not 

induced further into the bulk as was the case with the fibre laser.  

 
 The MIR wavelength is rather suitable for mainly surface processing of oxide ceramics that do 

not require deep penetration. For the nitride ceramics, the temperatures induced were fairly high 

in comparison to the oxide ceramic. This indicated that the CO2 laser wavelength is further 

absorbed into the nitride ceramic in comparison to the oxide ceramic. But, the surface interaction 

of the MIR wavelength was also considerable for surface processing oxide ceramics. 

 
 Thermal mapping of the as-received and fibre laser irradiated ceramics revealed that the fibre 

laser surface treatment generally produced a phase transformation of the ZrO2 from the M to a 

mixture of T+C to T and then a partially L phase (during heating), followed by the M state during 

solidification. Thermal analysis of the fibre laser irradiated Si3N4 showed that a phase 

transformation from α-phase to β-phase occurred during fibre laser-Si3N4 interaction.   

 
 Influence of the laser-beam brightness parameter showed a reduction in the hardness for the 

Nd:YAG laser surface treatment in comparison to that of the fibre laser and the as-received 

surface of the ZrO2. But the width and depth of penetration were higher and the grain sizes were 

larger for the fibre laser irradiated zones in comparison to that of the Nd:YAG laser. 

 
 The physical and microstructural effects differed when applying the two lasers despite using 

identical processing parameters. This was because the fibre laser exhibited a high brightness laser 
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beam which produced high processing temperatures. Consequently, this produced a harder 

surface compared to the Nd:YAG laser and caused an increase in the width and the depth of 

penetration.   

 
 It can be concluded that high brightness lasers require lower powers to penetrate at equivalent 

dimensions compared to a low brightness laser. This would be more cost effective since lower 

cost per wattage would be utilized.  

 
 Processing of engineering ceramics is more ideal by using high brightness lasers as high power 

densities are required. This inherently, produces remarkable surface modifications in terms of 

compositional, topographical, temperature difference, phase changes and K1c values under set 

conditions.   
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Future Recommendations 
 
The research presented in this thesis has established several scientific finding. These findings 

compliment the development of a laser surface treatment process of engineering ceramics. In 

particular, the effects of the fibre laser are is still new in the market and has several advantages over 

the more conventional systems previously used for processing engineering ceramics. These are 

discussed in this thesis and are also compared with the effects of the CO2 laser. Thereby, suggestions 

are recommended for future investigations in order to take forward the work detailed in this thesis.  

 

Laser Processing Aspects  

Future experiments could apply the dual laser beam processing technique with either a trailing or a 

leading laser beam. This could be carried out by either leading or by a trailing laser which is selected 

as an additional heat source for the ceramic rather than a single laser beam. The additional laser 

beam could be executed at lower power density to that of the main laser source. This will allows 

either heating the material to a certain temperature or elongating the cooling after the main laser 

source has been in contact with the ceramic.  

 
As well as CW beam processing it would be valuable to conduct surface treatment by using a pulsed 

laser beam. This is because the microscopic, multiple shock waves could be induced into the ceramic 

surface and possibly the sub-surface. This could enhance the possibility of inhibiting residual 

stresses in form of compression. Very little work has been done in this area but a recent publication 

has showed some successful results particularly with a Si3N4 ceramic. Hence, an in depth future 

investigation would show some new findings and valuable contributions to knowledge, as well as 

diversity for application of many ceramic components currently used within the sectors where 

ceramics are readily used.    

 

Material Characterization and Thermal Analysis Aspects 

Although, the TG-DSC analysis was successfully employed to observe the changes within the 

ceramics during heating and cooling; it would be useful to characterise the ceramics by means of X-

Ray diffraction method in order to gauge the existing phases present within the as-received ceramics 

prior to undertaking the laser surface treatments. 

 
In addition, it would also be interesting for one to investigate the effects at higher temperature than 

1500 
◦
C on the phase transformation of the ceramics. Due to lack of availability of appropriate 

equipment for thermal testing, the investigation herein was only conducted between the temperatures 

ranging from 25
◦
C to 1500

◦
C. It would add more insight into the ceramics behaviour at elevated 

temperatures if this is further investigated. For example confirmation of the cubic phase taking effect 

at melting temperatures for the ZrO2 engineering ceramic.  
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Thermal analysis of the Si3N4 and the ZrO2 engineering ceramics irradiated by the CO2 laser and the 

Nd:YAG laser would also be ideal so a comparison of the events which have occurred with the fibre 

laser irradiated ceramics can be put forward. This would give further understanding of the changes 

during the heating and cooling cycle. 

  
It is also suggested that temperature measurements of the laser process should be performed for all 

types of gases. This will allow one to understand exactly how much temperature is raised whilst 

using more reactive gases in comparison to the non-reactive gases. This will also allow the physical 

effects on the surface to be compared by the different types of gases with their resulting temperature 

differences generated. In addition, it is suggested that wear test and tensile strength of laser surface 

treated engineering ceramics is conducted as it will give further indication of the effects produced as 

result of the laser-material interaction.  

 

Accuracy with Calculating the Mechanical Property 

Grinding and polishing of the ceramics prior to the laser surface treatment would be ideal as this will 

enhance the surface strength and improve the response by the ceramics during the insertion of the 

Vickers diamond indentation. This in turn will produce less fluctuation in the hardness values and 

propagation of the resulting crack lengths and the end K1c values. However, this will have produced 

a smooth shiny surface which intrinsically will have an adverse effect as the laser beam during the 

interaction stage will reflected due to the processing surface being somewhat shiny. Therefore, it is 

suggested that a special absorption tape is used to cover the ceramic surface during laser processing. 

This will particularly improve the absorption of the ceramics and give better results for the depth of 

penetration and the wavelength suitability.  

 
Prediction of the residual stress could be conducted by the X-ray diffraction method or by using the 

Raman Spectroscopy. In addition, the results can then be compared with that of a FEM model by 

using the current software package (Nx-5.0 Nastrad Unigraphics package) used in this research.  

 

Finite Element Modelling Issues  

The FEM constructed for this research is a collection of temperature distributions for various 

positions. It would be ideal to observe the whole event of the laser-ceramic interaction by taking in 

consideration of the kinematics associated with the event. In other words FEM of the moving laser is 

suggested for further study. This demonstrates temperature distributions of a moving beam rather 

than the FEM of a still laser beam at various positions. This would surely reveal good information of 

the temperature profiles. However, it can be improved for better understanding of laser-material 

interaction. In addition, absorption of both laser wavelengths should be measured for the Si3N4 and 

the ZrO2 engineering ceramics by experimental means. This will produce more accurate temperature 

readings by the FEM. 
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Laser-Beam Brightness Measurement  

It is also recommended that experimental investigation to measure the laser-beam brightness is 

conducted by using the method mentioned in the European standards (ISO 11146-1) [252-255]. The 

experimental brightness values calculated for the work herein are estimation for the laser brightness 

exhibited by the two lasers but they do not take in account of the losses or the gains of the laser beam 

during its delivery and during passing through the optics.  

 

Modifications with Ceramic Processing Stage 

Laser processing of ceramics is limited due to the effect of the thermal shock and the associated 

stresses effects which the ceramics tends to undergo. This is purely due to the characteristics of the 

material as it is hard and brittle and has very low ability to generate plastic deformations when it is 

exposed to thermal gradients. Therefore, it is suggested that one step should be taken in reverse by 

considering its processing method where certain additives should be placed within the ceramics so 

that it has the tendency to withstand the thermal shock. This could be done by laser surface treating 

the green slurry as opposed to a high strength fully sintered ceramic which is very hard and brittle 

and prone to the effect of thermal shock, which in the case by using a (semi-heated) ductile slurry 

could well eliminate the usual problems that are seen with laser processing of the engineering 

ceramics in general.     

 

Technology Transfer   

The scientific finding and methods approached in this research could be used for future studies 

where the foundation of processing engineering ceramics is essential before it is applied to an 

industrial problem. Such understanding can now be applied for joining fuel cell tubes which are used 

within the power generation sector where the current manufacturing process of joining fuel cells are 

time-consuming and expensive. This is due to the required processes needed to vitrify surface of the 

fuel cell tubes so that they are sealed together. However, the firing process required for this 

vitrification could take up to four-days for each tube to be sealed. This in turn would add cost to the 

manufacturing process when these tubes are combined into bundles, then into strips and ultimately 

into stacks [6]. This is why industrial lasers such as a fibre laser can be introduced, primarily to 

investigate if such a seal between the fuel cell tubes can be achieved by laser surface treatment. If 

this is successful then it would mean that the fuel cell manufacturers in the UK would have access to 

a technique that allows reduced fuel cell manufacturing times and all other associated benefits as 

previously mentioned in the introduction. 
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Appendix 
 

Appendix A 

Table 11.1 Technical Specification of the As-received Si3N4 and the ZrO2 engineering ceramics 

used for experimentation in this work. 
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Item Unit Si3N4 ZrO2 

Density g/cm3 3.20~3.30 6.05 

Thermal expansion coefficient 10-6/k 3.2 10.5 

Modulus of elasticity GPa 300~320 210 

Poisson‟s ratio  0.26 0.30 

Hardness 

 

(HV) 1500~1700 1200 
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Flexural strength (700℃) MPa 200 300 

Compressive strength (700℃) MPa 1400 2100 

Fracture toughness MPa m
1/2

 2.5 10.0 

Thermal conductivity (500℃) W/mk 17 2 

Specific resistance (600℃) Ωmm
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Rolling contact fatigue failure 

mode 
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