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Abstract

Using example generation to explore undergraduates’ conceptions of real

sequences: A phenomenographic study

by Antony W. Edwards

This thesis uses an example generation task to explore undergraduate students’ under-

standing of basic sequence properties in Real Analysis. First, a review of the literature

looks at three areas of research: the transition to studying mathematics at the tertiary

level, examples and the process of example generation, and the learning of Real Analysis.

It notes a lack of research on how students interact with simpler definitions in Analysis,

and suggests that an example generation task is an ideal research tool for this purpose.

Then, two pilot studies are reported. The first gave 101 students an example generation

task during a lecture. In this task, students were asked to generate examples of sequences

that satisfied certain combinations of properties. In the second pilot study a similar task

was given to six students in an interview setting with a ‘think-aloud’ protocol. These

pilot studies found that many students gave sequences that did not satisfy the requested

properties, whilst other students gave examples that were not sequences.

The thesis then reports on a main study in which the example generation task was

completed by 15 students during an interview, and 147 students during classes. The

interview data is analysed phenomenographically, with results presented along four di-

mensions of variation, where each dimension describes different ways of experiencing an

aspect of sequence example generation: Using Definitions, Representation of Sequences,

Sequence Construction Strategies, and Justifications. The larger-scale class data is then

analysed by Rasch Analysis to objectively rank the questions in order of their difficulty,

and to show that the interview-based responses reflect those in the wider cohort.

By asking students to generate their own examples of sequences, this thesis has furthered

what is known about student understanding in two areas. The first area is how students

understand content related to sequences in Analysis. The thesis considers students’

understanding of how sequences can be represented, how sequence property definitions

can be combined and how definitions affect sequences in different ways. The second area

is how students interact with example generation tasks, the approaches that are effective

when students are trying to generate examples, and the ways students justify or check

their answers.
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Chapter 1

Introduction

This thesis is situated within the literature focusing on undergraduate mathematics

education. Much of this literature explores the transition from secondary to tertiary

study in mathematics, which is considered by many as particularly difficult for students

(Holton, 2001; Smith, 2004; Tall, 1991a). Such difficulties have been at least partially

attributed to the changes in teaching and learning style at university (Baker et al., 1973;

Clark and Lovric, 2008, 2009; Copes, 1982), changes in the content of mathematics

(Alcock and Simpson, 2002; Artigue, 1991; Gueudet, 2008), and changes some authors

believe are needed in students’ understanding and thinking (Crawford et al., 1994; Tall,

1991b; Tall and Vinner, 1981).

Of the research exploring mathematics learning at this level, much has has focused on

material from Real Analysis (Artigue, 1991; Meehan, 2007; Tall, 1991b; Weber, 2008).

This is both because the material is typically studied early on in a mathematics degree

and so of interest to those studying the transition to university, but also because it is

rich in complex formal definitions (Alcock and Simpson, 2002), and yet students often

make judgements based on reasoning from their concept images (Tall and Vinner, 1981)

and spontaneous conceptions based on the everyday meaning of words (Cornu, 1991).

This thesis contributes to the literature exploring students’ understanding in Real Anal-

ysis, but it focuses on an area which has had relatively little study in the literature

compared with the limiting behaviour and continuity of functions. The mathematical

1
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objects under consideration are real-valued sequences, that is, functions

f : N→ R, f(n) = an

where (an) represents the image of the sequence. This thesis examines how students early

on in their degrees understand and work with sequences and the definitions associated

with basic sequence properties, such as strictly increasing. Such definitions are typically

taught before those relating to the limiting behaviour and continuity of functions (e.g.

Burn, 1992), and are comparatively simpler in terms of their quantifiers.

The main study reported in the thesis uses an interview-based task where students are

asked to generate examples of sequences satisfying combinations of definitions, such as a

strictly increasing sequence which does not tend to infinity. Using a phenomenographic

methodology (Marton and Booth, 1997) in the analysis of the main study, the thesis not

only explores students’ understanding of sequences and the definitions associated with

sequence properties, but also the same students’ approaches and reasoning related to

the example generation process.

The thesis presents its findings in terms of a set of dimensions of variation, with each

dimension focusing on a different aspect of the example generation process: the different

ways in which students use definitions when generating examples (Section 6.2); the

ways students choose to represent their answers (Section 6.3); the strategies of example

construction employed by students (Section 6.4); and the ways in which students justify

the correctness of their answers (Section 6.5).

This introduction continues by stating the thesis’ research questions, and then outlining

the structure of the thesis on a chapter-by-chapter basis, with a final comment on the

dependencies between the chapters.

1.1 Research questions

The main purpose of the thesis is to address two research questions:

1. How successful are students at accurately generating examples of sequences satis-

fying certain combinations of properties?
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2. What is the qualitative variation in students’ experiences of sequence generation?

The first question is concerned not only with the number of students who provide correct

answers in example generation tasks, but also the type of answers they might give, and

the ways these answers might vary. It also is concerned with the ways students go about

process of example generation, and how successful those different ways may be. When

answering this research question in the thesis’s conclusion, reference will also be made to

what the studies have suggested about students’ concept images and concept definitions,

and the types of misconceptions and spontaneous conceptions that are associated with

the reasoning students have demonstrated.

The second question, phrased within the framework of phenomenography (Marton and

Booth, 1997), is concerned with exploring the dimensions of variation which collectively

describe students’ experience of sequence generation, and the categories of description

that comprise each dimension.

1.2 Structure of the thesis

This thesis has nine chapters, the first of which is this introduction chapter. The other

chapters fall into four sections: reviewing the literature (Chapters 2 and 3), reports of

empirical studies (Chapters 4, 5, and 6), two validation exercises (Chapters 7 and 8),

and a thesis discussion and conclusion (Chapter 9).

Literature reviews

Chapter 2 situates the thesis within the mathematics education literature. It begins

by exploring issues related to the progression to studying mathematics at the tertiary

level, looking at the social, epistemological and cognitive issues, and introducing the

theoretical constructs of concept image, concept definition and spontaneous conceptions.

Next, it explores research on examples and example generation, defining the notion of

an example space, and outlining research which has studied students’ example spaces

and the process of example generation. After discussing why the module Real Analysis

has been well-studied by mathematics education researchers, it highlights that there has

been considerably less research on simpler concepts in Analysis such as real sequences.
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The chapter concludes that an example generation task is a good tool to use to study how

students reason and interact with sequences and the definitions of sequence properties.

Chapter 3 outlines the phenomenographic methodology used in the main study of the

thesis. Phenomenography is a research specialism which explores students’ experience

of a phenomenon, focusing on students’ reports of their thinking and interpreting such

reports at face-value as possible ways of experiencing the phenomenon. Assumptions of

phenomenography are stated and discussed, and the specialism is briefly compared with

other interpretive forms of research. Then, various education studies that have taken a

phenomenographic approach are described in terms of their methods and presentation

of their outcomes, including some studies that explore students’ understanding in math-

ematics and science. Finally, the work of authors that have criticised phenomenographic

methods and analyses are commented upon. The chapter concludes that phenomeno-

graphy is a good research methodology to guide a study of students’ experiences in the

example generation process, both in terms of methods used, and in the way it presents

results in terms of dimensions of possible variation experienced by students.

Empirical research

Two pilot studies are described and briefly analysed in Chapter 4. These pilot studies

were conducted and analysed before the inclusion of a phenomenographic methodology;

their findings are included in the thesis to give the reader a flavour of the range and

type of responses students can give to sequence example generation tasks, and how

how such responses helped shape the research questions. The first pilot study was an

example generation task given to 101 undergraduate students, asking them to provide

examples of sequences subject to certain combinations of constraints. It found that

many students did not provide a sequence that satisfied the conditions of the questions,

sometimes instead giving a mathematical object which was not a sequence. The second

pilot study gave an example generation task to six students as part of a semi-structured

interview. Results were constrained by the limited sample size confounded with some

students feeling unable to attempt the questions, but the answers given by students

did replicate the types of answer found in the first pilot study. Most significantly, the

second pilot study suggests that some students are more likely to give answers that are

not sequences, some questions are more likely to provoke answers that are not sequences,
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and when students generate objects which are not sequences, at least some believe the

object given does represent a sequence.

The next two chapters outline the main study and present the main study’s outcomes.

Chapter 5 plans the main study. It takes the research specialism of phenomenography

described in Chapter 3 and links it with the findings from the pilot studies in Chapter

4 and the research on example generation from the review of research in Chapter 2 to

design an example generation task, and provide a framework in which to analyse the

data from such a task. The aim of the main study is to answer the second research

question and provide more information on the first research question by conducting ex-

ample generation interviews and analyse them with techniques from phenomenography

(so that dimensions of variation describing the qualitative variation in students’ experi-

ences emerge from the data). Chapter 6 first presents a brief discussion on the variation

within the definitions and example generation questions from a researchers’ perspective,

followed by the outcomes of the data analysis: an ‘outcome space’ consisting of four

dimensions of variation: Using Definitions, Representation of Sequences, Sequence Con-

struction Strategies, and Justifications. Each of these dimensions of variation consists

of a number of categories of description arranged hierarchically in terms of their relative

sophistication, with each category of description separately and collectively addressing

the second research question. The chapter concludes by focusing on the categories of

description that are associated with the types of incorrect answers seen in the pilot

studies.

Validation

The next two chapters of the thesis present two activities designed to explore the validity

of the main study’s outcomes.

Chapter 7 explores the communicative and pragmatic validity of the dimensions of vari-

ation described in Chapter 6; in other words the chapter considers how applicable the

dimensions of variation are to new data, and if the dimensions of variation are seen

as useful by other researchers. These questions are addressed by reporting on an inter-

coder validity exercise in which two colleagues took the dimensions of variation and used

them to independently code extracts of new interviews. The chapter is largely based

on a discussion between the two researchers and the author based on how consistent
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and applicable the dimensions of variation were to new data. The chapter concludes

that both researchers felt that the structure and content of the dimensions of variation

was appropriate for analysing new data, internally consistent, and that the methods

provided insight into the data.

Chapter 8 then explores the external validity of the main study by comparing the fifteen

students who were interviewed as part of the main study with a wider population of

147 from their year group who were given the task in class seminars. The statistical

technique of Rasch Analysis is argued to be ideal for this purpose, and after showing

that the dataset satisfied the Rasch Model’s assumptions a computer package was used

to estimate the data’s Rasch Model parameters. The questions are ranked objectively in

order of difficulty, and it is noted that in general the more difficult questions combined

different types of definitions. Then, the students who took the task during interviews

were compared to the wider population. The chapter concludes that the students inter-

viewed in the main study typically answered fewer questions correctly when compared

to the entire cohort (including the interviewed students), but that the characteristics of

the answers given were similar to those students in the wider population who answered

the same number of questions correctly.

Conclusions

Finally, Chapter 9 returns to the two research questions and answers them using the

findings from previous chapters. The chapter first considers the second research question

by revisiting the main study’s dimensions of variation. Then attention is turned to

the first research question. It is answered quantitatively based on data from the four

studies in the thesis, and then in terms of students’ example spaces, concept images,

spontaneous conceptions and the way students have approached the process of example

generation. Where appropriate the dimensions of variation from the main study are

used here also to provide further backing for the conclusions. After this the thesis’s

methodology is considered, and it is noted that whilst some authors have used the

terminology of phenomenography when talking about example generation as a pedagogic

tool (for instance Watson and Mason, 2005, p.5, describe students’ example spaces in

terms of dimensions of possible variation), this thesis has been the first to use the

methods of phenomenography to analyse data from example generation tasks used as
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a research tool. Finally the chapter considers the thesis’s pedagogical implications and

new research that could further extend the thesis’s outcomes within educational research

both in Real Analysis and in other areas of mathematics.

1.2.1 Chapter dependencies

It is intended that the thesis is read following the numerical order of its chapters, but the

reader may choose to read some chapters before their numerical ordering, as illustrated

in Figure 1.1, and outlined below.

The general literature review on relevant areas of mathematics education presented in

Chapter 2 should be read first, as it introduces the concepts, constructs and terminology

used elsewhere in the thesis.

Chapters 3 and 4 may be read in numerical order if the reader wishes to separate the

literature reviews from the empirical studies, although because Chapter 4 reports on

pilot-study research that was not conducted from a phenomenographic perspective, it

may be read before Chapter 3 presents this methodology. Moreover, reversing the order

of these two chapters may give the reader a more solid foundation on which to follow

how phenomenography can help address the research questions of the thesis.

The main study’s planning and results (in Chapters 5 and 6, respectively) should be

read before chapters Chapters 7 and 8 as both these latter chapters present validation

exercises based on the main study’s data and results. However, the order in which to

read these validation exercises is arbitrary.

Finally the discussion and conclusion presented in Chapter 9 draws on content from all

the chapters in the thesis.
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Chapter 2:

Review of Research

Chapter 3:

Methodology

Chapter 6:

Dimensions of Variation

Chapter 4:

Pilot Studies

Chapter 5:

Main Study

Chapter 1:

Introduction

Chapter 7:

Inter-coder Validation 

Exercise

Chapter 8:

Rasch Analysis

Chapter 9:

Discussion and 

Conclusion

Figure 1.1: Chapter dependencies in the thesis. A → B means that it is intended
that Chapter A be read before Chapter B.



Chapter 2

Review of Research

This review of research is split into three sections. The first, Section 2.1, gives a brief

and general overview of research that deals with the problems students face when they

begin the transition to tertiary level mathematics. It identifies general social issues,

epistemological issues related to students’ beliefs about learning, and cognitive issues

related to the transition to advanced mathematical thinking. In subsection 2.1.3 two

specific constructs are introduced: Tall and Vinner’s (1981) concept image/concept def-

inition, and Cornu’s (1991) notion of spontaneous conceptions. Both of these are used

frequently in the rest of the thesis.

The second section, Section 2.2, focuses on research on examples. It considers the

fundamental role examples play in mathematics, and looks at how mathematicians and

students use examples. It concludes that, for an expert, examples play an important

role both when developing new theory and when studying existent theories, but that

students often use examples inappropriately. The section also discusses research on

example generation, describing how researchers have argued that example generation

is not only a useful pedagogic strategy for extending students’ examples, but also for

exploring students conceptions of a mathematical concept or idea. In subsection 2.2.2

the construct of example spaces is introduced (a phrase used by various authors, but

particular reference is made to Watson and Mason, 2005). Again, this idea is used

frequently in the thesis.

Then, Section 2.3, focuses on research which explores how students learn and understand

the undergraduate module Real Analysis. It revisits the themes of formal abstraction

9
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and definitions which were introduced in the first section of the chapter, but in the

context of students’ difficulties learning Analysis. It is identified that there has been

relatively little research that explores students’ conceptions of some of the simpler ideas

in Analysis, and Section 2.4 concludes that it is this gap in the literature that this thesis

will address.

2.1 The progression to tertiary level mathematics

This section describes the work of researchers who have identified and explored students’

difficulties in the transition from secondary to tertiary level study in mathematics. It

places the thesis within the wider context of studies exploring students’ difficulties when

starting at university, but is deliberately only a brief overview; subsequent sections cover

in more detail research more directly applicable to the themes in the thesis.

2.1.1 Social and epistemological issues

The transition to tertiary level study in mathematics is widely documented as difficult for

students (e.g. Clark and Lovric, 2008, 2009; Tall, 1991b). Various authors have framed

these difficulties in terms of students’ approaches to learning more generally. Studies

have shown that secondary-level students typically believe mathematics to consist solely

of problems that can be solved by applying facts, rules, formulæ and procedures taught

by a teacher or presented in a textbook (Garofalo, 1989), and that mathematics problems

should take a short time to solve, otherwise there is something wrong with the problem

(Frank, 1988). A university student’s approach to learning is expected to be more self-

directed, their intellectual growth is considered to be non-linear and recursive and it is

appropriate to balance different approaches and alternatives (Copes, 1982; Perry, 1988).

Authors have designed constructs which reflect these different approaches to learning. In

research outside of mathematics education, Svensson (1977) gave first year undergrad-

uate students of education a passage of text to study, then asked them to summarise

the passage and describe what they did when they were studying it. Some students

reported that they assembled facts from the passage, without considering links between

these facts (an atomistic approach), while other students searched for the whole meaning

of the text, considering the author’s intention (a holistic approach). In a similar study,
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Marton and Säljö (1976) asked students to recount how they approached a reading task,

finding that there was a distinction within students’ descriptions; some reported they

did not try to understand the text, only memorising it (a surface approach), whilst oth-

ers tried to understand the message of the text (a deep approach). As noted by Marton

and Säljö (2005), it was often the case that the students who self-reported a surface

approach, trying hard to remember the text’s content, frequently failed to do so, whilst

those that concentrated on the text’s meaning tended to remember the content very

well. Other authors have added a third, ‘strategic’ approach to learning (e.g. Ramsden,

1984), but this is not so much a learning style as the targeted application of a knowingly

surface approach which chooses which algorithmic approach is most appropriate to solve

a particular problem.

Within the context of learning mathematics, rather than approaches to learning in gen-

eral, Skemp (1976) defined two types of understanding (instrumental and relational).

These could be considered as types of understanding that result from the different

approaches to learning. Instrumental understanding is described by Skemp as “rules

without reason”, which has a parallel to the atomistic or surface approach to learning.

Relational understanding is “both knowing what to do and why”, which is the type of

learning likely to result from a holistic or deep approach to learning.

Making a more explicit link between mathematics learning and Marton and Säljö’s

(1976) construct, Crawford et al. (1994) explored university mathematics students con-

ceptions’ of learning and approaches to learning. Students were asked to complete spe-

cially designed Approaches to Learning and Conceptions of Mathematics questionnaires,

and their answers were phenomenographically1 analysed. When analysing students’ ap-

proaches to learning, Crawford et al. used Marton’s deep-surface distinction, and found

that 82% of students answered in ways which were classified as surface approaches to

learning mathematics. In terms of students’ conceptions of mathematics, 77% gave re-

sponses that were classified as fragmented (i.e. focused on the parts rather than wholes).

The relationship between students identified as having a surface approach to learn-

ing and those identified with fragmented conceptions of mathematics was significant,

χ2(1, N = 236) = 126, p < .001.

1See Chapter 3 for a discussion on phenomenographic methods, and more detailed account of Craw-
ford et al.’s (1994) research.
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In a later study, Crawford et al. (1998) gave the same questionnaires to the students later

on in their courses. They found that there were the expected correlations between prior

and current approaches to learning; for instance prior surface to post surface approach

(r = 0.62, p < 0.01). They also found that students identified with a surface approach to

learning were more likely to find their workload inappropriate and teaching quality poor

compared to those with a deep approach, which echoes the results of Bessant (1995)

who found that students with a deep approach to mathematics were less likely to be

anxious about their courses. Students identified by Crawford et al. as having a deep

learning style also “achieved at a higher level” in their final exams, although interestingly

there was little difference in the groups’ views as to the appropriateness of the course’s

assessment method.

Perhaps as a result of (or anticipating) such studies, there has been a drive to help stu-

dents have a deeper approach to learning mathematics, and to understand mathematics

in a relational fashion. The publication of Curriculum and Evaluation Standards for

School Mathematics by the National Council of Teachers of Mathematics (1989) which

triggered the US ‘math wars’ as described by Schoenfeld (2004), could be regarded as

an attempt to introduce younger students to a relational understanding of mathematics.

At the university-level, more recent attempts have included bridging courses (Alcock

and Simpson, 2001; Wood, 2001), innovative uses of technology such as electronic voting

systems (Draper, 2009), plotting/zooming software (Chae and Tall, 2001; Tall, 2003)

and research on the benefits of peer instruction (Crouch and Mazur, 2001).

While theories such as the ‘deep-surface’ styles of understanding focus on students’ at-

titudes to learning, and others such as the ‘relational-instrumental’ focus on types of

understanding, other researchers have concentrated more on how the content of mathe-

matics changes at university. The next subsection looks at research which considers why

some of the more complex mathematical content met in tertiary education is so different

to what students have met before, giving one suggestion as to why a procedural ‘surface’

approach may result in difficulties in the secondary-tertiary transition.
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2.1.2 The changing content of mathematics

Authors exploring the changing content of mathematics at university often hypothesise

that changes are necessary in the way students think about mathematics itself (c.f. Craw-

ford et al.’s (1994) fragmented/coherent conceptions of mathematics). As Tall describes

in an introductory chapter to a book focused on undergraduate mathematics education:

The move from elementary to advanced mathematical thinking involves a

significant transition: that from describing to defining, from convincing to

proving in a logical manner based on those definitions. This transition re-

quires a cognitive reconstruction which is seen during the university students’

initial struggle with formal abstractions as they tackle the first year of uni-

versity. (Tall, 1991b, p.20)

Such authors often label this new way of thinking Advanced Mathematical Thinking

(AMT). As described by Tall in the above quote, AMT includes skills needed to be

successful in tertiary mathematics such as dealing successfully with formal definitions,

as well as constructing and understanding formal mathematical proof. In a literature

review on the secondary-tertiary transition, Gueudet (2008) reported that many scholars

view the transition to formal abstraction and proof to be fundamental conceptual barriers

when studying mathematics at university.

Other authors have argued that advanced thinking in mathematics can occur at any

age (for instance Harel and Sowder, 2005), which is more in keeping with Skemp’s

(1976) distinction between relational and instrumental understanding in mathematics,

and Crawford et al.’s (1994) fragmented/coherent conceptions of mathematics. In this

thesis AMT is considered more in the context used by Tall; it is the types of thinking

that are associated with undergraduate study and beyond.

Some authors have argued that because of this change in the content of mathematics

at the tertiary level, there should be an effort to change the way students interact with

mathematics, especially in modules with a high proportion of formal content, such as

mathematical Analysis (Artigue, 1991). In particular, understanding the role that defi-

nitions play within tertiary mathematics is particularly difficult for students. For now,
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a thorough discussion of students’ interactions with definitions is postponed until math-

ematics education research on (real) Analysis is discussed in more detail in Section 2.3.

This is because it is helpful to first introduce constructs such as concept image, concept

definition, and example spaces before a discussion on definitions in more detail. For now

it is noted that many students struggle with their Analysis modules, in part because the

formal definitions student meet in Analysis are particularly complex relative to those in

other modules (Alcock and Simpson, 2002).

2.1.3 Concept image, concept definition, and spontaneous conceptions

Tall and Vinner (1981) described a construct which distinguishes between reasoning

based on students’ prior experiences with mathematics and reasoning which is based

on definitions within mathematics. The first type of reasoning uses a student’s concept

image.

[Concept image] describes the total cognitive structure that is associated with

the concept, which includes all the mental pictures and associated properties

and processes. It is built up over the years through experience of all kinds,

changing as the individual meets new stimuli and matures. (Tall and Vinner,

1981, p.152)

A concept image is therefore a mental collection of mathematical and non-mathematical

objects and associations, which may be vast. A concept image may not be consistent

within itself, it may change over time and, depending on the situation, the student may

be aware of different parts of a concept image when faced with different situations (Tall

and Vinner, 1981; Vinner, 1991). In this thesis we will see situations where a students’s

evoked concept image (the portion of a concept image which is accessed at a particular

time) changes during the course of a short period of time (i.e. during a twenty-minute

task).

The second type of reasoning is said to be based on a student’s concept definition:

[Concept definition] is a form of words used to specify that concept. It may

be learnt by an individual in a rote fashion or more meaningfully learnt and
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related to a greater or lesser degree to the concept as a whole. It may also

be a personal reconstruction of a definition. (Tall and Vinner, 1981, p.152)

A student’s personal concept definition may be different from the formal mathematical

definition, but one would expect that for a more experienced mathematician the two are

more similar. In this thesis, ‘concept definition’ without clarification refers to an indi-

vidual’s personal concept definition; when reference is made to the formal mathematical

definition the phrasing ‘formal definition’ is used (this follows the style used in papers

such as Bingolbali and Monaghan, 2008; Tall, 1988).

Ideally, a student’s reasoning in mathematics would be based on both their concept

image and a concept definition which is similar (or identical) to a formal concept defini-

tion. However some students may reason based on their concept image solely (Vinner,

1983). This can be a problem because much of tertiary mathematics involves successfully

dealing with formal definitions. Moreover, within a concept image there can often be

mathematical and non-mathematical notions and representations which are elaborated

from spontaneous conceptions (Cornu, 1991).

A spontaneous conception often exists before a mathematical concept is learnt and can

be part of a students’ evoked concept image. For instance, Schwarzenberger and Tall

(1978) note that students will have met the phrases ‘tends to’ and ‘limit’ before dealing

with formal definitions in tertiary mathematics, and some of the everyday meanings of

the words may interfere with their mathematical counterparts (similarly noted by Mon-

aghan, 1991). To continue with the example of a limit, possible spontaneous conceptions

may arise from familiarity with a road speed limit which should not be exceeded. How-

ever, the limit of a function can be exceeded infinitely many times, such as:

lim
x→∞

1

x
sin(x) = 0

Issues of spontaneous conceptions are of course not restricted to the English language.

Recently Spyrou and Zagorianakos (2009, 2010) argued that because the Greek word for

function (synartisi) is often used in everyday language when a relationship is symmetrical

or proportional (in the same way that distance a car can travel and the amount of

petrol are related), undergraduates often treated the order of variables in an equation
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as irrelevant; when asked to give examples of functions all but one student wrote a one-

to-one function, and many had difficulties when asked to give an explanation of how a

function could be many-to-one.

The impact of everyday terms in a logical statement was also discussed by Mason and

Pimm (1984), in particular the use of the word ‘any’ and its relationship with the

universal quantifier ‘∀’. They remarked that

Mathematicians tend to use ‘any’ to mean ‘every’, and occasionally their

meaning conflicts with ordinary usage. For example [an assignment] reads

‘For any matrix A in W , show that A2 = A.’ Six out of 13 submitted answers

chose a particular matrix for A and derived the result. When asked about

this one student commented ‘Well, it said show it for any, so I just picked

one.’ (Mason and Pimm, 1984, p.281)

Concept image, concept definitions and spontaneous conceptions are constructs which

attempt to describe and explain why students struggle with the content of mathematics

(Alcock and Simpson, 2009a). For instance, various authors have argued that students

do not correctly recognise certain types of tangent because their concept images do not

contain such examples. Tall (1986) noted that few students could identify tangents

drawn that touched the function more than once, and more recently Biza et al. (2008)

noted that few trainee teachers had seen tangents which ‘cut’ the function in two (e.g.

at the inflection point of a cubic). It is unlikely that the students in Tall’s or Biza et

al.’s study were reasoning with the formal concept definition of a tangent, rather than

their concept images which (one can assume) lacked appropriate examples.

As noted by Bingolbali and Monaghan (2008, p.21), concept image and concept defi-

nition have been more frequently used in studies looking at tertiary level mathematics

learning, and this is possibly because—as discussed in the last subsection—the content

of tertiary mathematics is more dependent on understanding formal definitions and the

role definitions play within mathematics (a more detailed discussion of definitions within

mathematics is presented in Section 2.3.2).
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2.2 The use of examples in mathematics

This section shifts the focus from looking at research on the general difficulties students

face when studying tertiary mathematics, to exploring research on how experts and stu-

dents use and reason with examples. First, subsection 2.2.1 outlines what ‘an example’

means within the context of this thesis. Then, subsection 2.2.2 introduces the terminol-

ogy of specific, generic, general and particular examples, together with the construct of

an example space.

After these preliminary discussions, the attention of the chapter turns to the literature

on how experts and students of mathematics use examples. Subsection 2.2.3 explores

research which focuses on how mathematicians use, reason with, and understand exam-

ples, and then subsection 2.2.4 contrasts the previous subsection by focusing on students’

interactions with examples. As well as reasoning with their concept images and not their

concept definitions as identified in the last section, some students also base much of their

thinking on empirical arguments involving generalisation from specific examples. The

section then turns to look at which examples students have access to; in subsection 2.2.5

research is introduced that explores the structure of example spaces, and subsection

2.2.6 the process of example generation. In conclusion, this section identifies that we

know little about how students go about the process of example generation, and it is

this gap in the literature which this thesis addresses.

2.2.1 The scope of examples considered in this section

In the thesis, when the word example is used, it refers to a mathematical object that

satisfies certain criteria. Often the criteria will be that of satisfying a formal mathe-

matical definition. This means that ‘worked out examples’, or ‘model solutions’ are not

considered as ‘examples’ within this context. Of course, examples of those types have

been studied by other authors (for instance Chi et al., 1989; Sweller and Cooper, 1985).

2.2.2 Terminology

This subsection first introduces terminology which describes for what purpose an ex-

ample is used, whether it be to represent a wider class of objects, or just as a one-off
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instance of a phenomenon. Then, the construct of an example space is introduced.

Specific, Generic, General, and Particular examples

A recurring theme that will be identified in this section is that when individuals interact

with examples, some may regard the examples as representatives for a wider class of

objects, whilst others will see the examples as specific instances only. Mason and Pimm

(1984) illustrated this with the following exposition from Analysis:

The function

x→ |x|

is often the only example of a continuous but non-differentiable function

presented [to students]. What is happening is that the lecturer, in presenting

the example, is seeing it as generic. It indicates a whole class of functions

x→ k|x|+ C

at the very least. The students however are concentrating on the particular

example. They see, not a class of functions, but a single function. (Mason

and Pimm, 1984, p.285)

It is necessary therefore to formulate a terminology which accounts for how an individual

intends to use an example. In the same paper, Mason and Pimm (1984) presented the

terminology of ‘specific’, ‘generic’, ‘general’ and ‘particular’ examples, distinctions which

shall also be used in this thesis. In this explanation of their terminology I follow their

use of ‘the number 6 as an even number’ as illustrating each example type:

Specific A one-off situation that may or may not be general

THE even number 6

The existence of such an object is the important point rather than necessarily the

representation of a wider collection of objects. In this sense counterexamples to

theorems are specific.

Generic Using an example to represent a class of examples with a similar property

AN even number such as 6
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Here, the example is used to represent other objects, but there is no intention to

represent a complete class of objects.

General Using an example to represent an operation on a wider class

ANY even number like 6

Here the extent of the class to that the example refers to is known, or implied.

Particular Using a general example in a specific situation or argument

2N is even, 2N + 2N = 4N so 4N is also even

In this example, each 2N implicitly refers to the same number, so although N

in isolation is a general example, when used in this context 2N is a particular

example.

(italics taken directly from Mason and Pimm, 1984, p.281, 283)

The distinction between Specific and Particular examples is subtle. As an additional

illustration, consider the stages of a proof by mathematical induction:

• The aim is to prove the statement P (n) ∀n ∈ N, so in this line n is general

• First we prove P (n0) for a specific base case, n0

• Assume the truth P (k), for a particular value of k

• Prove P (k) =⇒ P (k+1), so although the choice of k in the last step was arbitrary,

now it is fixed in calculations, (because it is particular) unlike the general n

When an example is presented, different audiences may perceive the example to be of

different types, as illustrated by the quoted passage from Mason and Pimm (1984) on the

previous page. In the terminology just introduced, the lecturer is treating the example

as generic, while the students are interpreting it as specific, whereas perhaps an audience

of academics would also treat the example as generic. This means that exploring how

students use and interact with examples can be difficult for a researcher; it will not

always be clear how such students are interacting with examples. Such intersubjectivity

concerns are more thoroughly discussed in the methods chapter of the main study,

Section 5.5.
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Example spaces

Various authors have described a construct which attempts to encompass the examples

to which an individual has access, either generally or at a specific time. Michener (1978,

p.364) used the term examples space to describe the set of examples an individual may

use when considering a specific mathematical concept and result in mathematics. More

recently, authors such as Watson and Mason (2005) have defined an individual’s example

space in a way that is more analogous to Tall and Vinner’s (1981) construct of a concept

image:

Think of an example space as a toolshed containing a variety of tools —

examples that can be used to illustrate or describe or as raw material. Some

tools are familiar and come to hand whenever the shed is opened, whereas

others are more specialised and come to hand only when specifically sought.

(Watson and Mason, 2005, p.61)

In Section 2.1.3, an individual’s concept image was described as the total cognitive

structure that is associated with a particular concept. Similarly an example space can

be described as the set of examples (and classes of examples) that an individual has access

to (with the previously stated proviso that ‘worked examples’ etc are not included in

the context of this thesis). An example space can therefore be considered a subset of a

concept image. This may amount to a vast collection of examples which may be in a

variety of representations (graphs, formulae, lists, and more vague objects), but at any

specific moment only a limited number may be accessed. Goldenberg and Mason (2008,

p.187) called this accessible set the accessible example space, and Watson and Mason

(2005, p.76) call a similar construct a situated (local) personal (individual) example space.

However, to keep the analogy with an individual’s (evoked) concept image I shall follow

Zazkis and Leikin’s (2007) use of (evoked) example space in this thesis.

Within an (evoked) example space, Watson and Mason (2005, p.51) and Bills et al.

(2006) argue that there will always be a degree of structure.

Example spaces are not just lists, but have internal idiosyncratic structure

in terms of how the members and classes in the space are interrelated. (Bills

et al., 2006, p.133)
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This structure is determined implicitly by the individual, rather than imposed by an

external agent. In particular, the structure may include the suitability of an example

for different purposes, for instance whether typically it is used in a ‘specific’, ‘generic’,

‘general’, or ‘particular’ sense. Empirical studies, based on asking students to generate

examples of concepts, or identify whether objects are examples of certain concepts,

suggest that the structure of an individual’s example spaces reflects that individual’s

experience and memory, and that the structure of the evoked example space may change

based on the circumstances of the prompt (wording, who is asking), or even that it

changes in the same circumstances (see Section 2.2.5).

2.2.3 Experts’ use of examples in mathematics

This subsection explores research which looks at how mathematicians use and under-

stand examples. It can be considered that mathematicians look for general relationships

within mathematics, describing them in definitions and theorems. Despite this empha-

sis on the general, many mathematicians consider it important to work with specific

and particular examples of a concept, as was remarked by Bills et al. (2006) in a paper

looking at research into examples within mathematics education:

Many would agree that the use of examples is an integral part of the discipline

of mathematics and not just an aid for teaching and learning. (Bills et al.,

2006, p.126)

Michener (1978) also argued that examples are fundamental in properly understanding

mathematics when she attempted to build a conceptual framework of the “ingredients

and processes involved in the understanding of mathematics,” (Michener, 1978, p.361).

She argued that to understand mathematics, one needed to master three major cate-

gories of mathematical item: results (theorems and arguments), examples (illustrative

material) and concepts (definitions and more informal notions). Michener (p.382) went

on to suggest that one can not fully understand results or concepts without good control

over the choice and use of examples that are associated with them.

There has understandably been much research which looks at how experienced mathe-

maticians interact with examples, and the rest of this section focuses on such research.



Review of Research 22

A wide variety of authors suggest that many expert mathematicians (i.e. doctoral level

or higher who publish research in their field) use examples when researching new topics

(Zazkis and Chernoff, 2008, p.196). Although not strictly a mathematician, Richard

Feynman remarked that, when faced with a new equation:

I can’t understand anything in general unless I’m carrying along in my mind

a specific example and watching it go. (Feynman et al., 1997, p.244)

For Feynman at least, looking at a situation with a specific example helped him gain a

more general understanding of the situation. When asking mathematicians how they use

examples, Alcock (2004) found that there were three ways in which experts self-reported

using carefully-selected specific examples in the proving process:

1. Instantiating examples in order to understand a statement or definition.

2. Generating an argument for a universal statement, by (directly) argu-

ing about or manipulating a specific example and translating this to a

general case or (indirectly) trying to construct a counterexample and

attending to why this is impossible.

3. Considering possible counterexamples to general claims in a proof.

(Alcock, 2004, p.2-21)

In a more recent study, Alcock and Inglis (2008) reported on a case study into the use of

examples by two doctoral students. They found that when faced with a new topic, one

student used examples only when prompted to do so, but the other made substantial

use of examples throughout. When interviewing research mathematicians, Weber and

Mejia-Ramos (in press) asked if they “used examples to increase their confidence that

a proof is correct”. Each confirmed they did, and some claimed that they never read

a proof without considering examples. Morrow (2004) gave mathematics lecturers a

collection of explanations why a theorem was true and asked them to say which was

them was the most convincing. A graphical example was chosen by one because:

[From Professor Jones:] It gives you that “aah” insight that you don’t get

when you work through the definition. In this one [a definition based answer],
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you do get the “aah” insight at some point, but it’s a little more painful in

coming, a little slower in coming.

(Morrow, 2004, p.121)

Some mathematicians have a favourite set of example to use in a variety of situations,

which echoes the quote on page 20 about how, within an individual’s example space,

some examples come to hand more readily than others. Michener (1978, p.366) described

this type of example as a reference example, standard cases that are used to check out

understanding. In the context of discussing the development of example spaces, Watson

and Mason (2005, p.75) describe how the mathematician Peter Nyikos has a repertoire

of usual counterexamples to try with certain types of questions that are peculiar in some

way or another, for example totally ordered sets with two or three elements. Indeed, en-

tire books have been written on the subject of counterexamples (Gelbaum and Olmsted,

2003; Mason and Klymchuk, 2009).

The research cited here suggests that, for a mathematician studying a topic which is

unfamiliar, using examples might aid understanding of that topic. However, choosing

which examples to use brings with it the concern of ensuring that the example is ap-

propriate to that definition or theorem, especially if the definition or theorem is well

established in mathematics. To some extent this concern can be reduced by using refer-

ence examples, but such examples may not be sufficiently general to exemplify the entire

definition or theorem. Compared with an undergraduate student of mathematics, it is

natural that an expert will have far greater experience when selecting, generating, and

working with examples that are appropriate to the subject matter (Moore, 1994, p.260).

Such experts will be more aware of need to control for undesirable issues that can result

when a specific example is treated as general or generic. For instance an example may

bring with it further unwanted properties which are not generalisable to the entire class

of objects which it represents, or an example may behave in a way which is uncharac-

teristic of the class as a whole (Mason and Pimm, 1984). This section now leaves expert

practice, and explores how students use examples, before looking at literature which

explores example spaces more abstractly.
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2.2.4 Students’ use of examples in mathematics

The previous subsection argued that experts use examples when trying to understand

new topics, and so understandably it is considered beneficial by many for students to

be presented with examples when learning a new topic (Bills et al., 2006; Meehan,

2007; Selden and Selden, 1998). Indeed, as noted by Chick (2009, p.30), for many

educators “there is an underlying assumption that examples facilitate learning,” and

in terms of pedagogy, examples are important for providing a more concrete grounding

when abstract ideas are introduced (Alcock, 2004; Dahlberg and Housman, 1997; Weber

et al., 2008). Meehan (2002, p.77) notes that students who can access more (correct)

examples of a concept will have better informed concept images, and therefore possess

concept images more in line with formal theory.

It is not clear, however, that undergraduate students of mathematics will interact with

examples in the same way that experts do. This subsection first introduces the notion of

a student’s proof scheme, and then presents research which suggests that many students

find empirical arguments convincing, and that students sometimes try to prove statement

by checking with examples rather than by more deductive arguments.

Proof schemes

Harel and Sowder (1998) explored the different mathematical arguments undergraduate

students found convincing, which they grouped into general types called students’ proof

schemes.

A person’s proof scheme consists of what constitutes ascertaining and per-

suading for that person. (Harel and Sowder, 1998, p.244)

Seven proof schemes were presented in the paper, which were grouped into three cate-

gories:

• External conviction proof schemes, which includes arguments which are reliant

on formal symbolic manipulation (symbolic proof scheme), appeals to an external

authority such as a textbook (authoritarian proof scheme), and where conviction
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is gained from the form of the proof (ritual proof scheme). These proof schemes

tend to require no intrinsic justification.

• Empirical proof schemes, which are reliant on physical facts and sensory experi-

ences not backed by deduction (procedural proof scheme), or generalisation from

specific examples (inductive proof scheme).

• Analytical proof schemes, which may be based on deductive transformation of

verbal or written statements (transformation proof scheme), or deductions based

on manipulation of axiomatic statements (axiomatic proof scheme).

This subsection is concerned with students’ use of examples, and so most of the focus

will be on empirical proof schemes. Weber (2010) noted that there are three types of

empirical evidence that may convince a student that the universal statement ‘∀x ∈ X,

P (x)’ is true. The first is to check one or several specific examples for x, the second is to

arrive at a reason why P (x) is true based on trying specific examples, and the third is to

try and generate a generic example with which to check the statement. These types of

arguments (which I would agree should be classified as empirical proof schemes) would

not be accepted as proofs by the mathematical community, but clearly they play a large

part in mathematical reasoning. Harel and Sowder (1998, p.276) noted that arguments

similar to these are common amongst undergraduate students, perhaps because “natural,

everyday thinking utilises examples so much.”

Research on students’ tendency towards empirical proof schemes

There has been much research, both before and after Harel and Sowder’s (1998) paper,

which explores the types of arguments students find convincing, and the arguments stu-

dents accept as valid proofs. Research with secondary school students typically suggests

that they find empirical arguments both to be convincing, and to prove the statement.

Chazan (1993) gave two geometry proofs to nine high school students during research

interviews. The first was an empirical proof which involved measuring specific examples,

and the second was a deductive ‘two-column’ proof. The empirical measurements were

found to be more convincing by three of the students for at least part of the interviews,

while two students did not find the deductive proof convincing because of the possibility
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of counterexamples (a possibility that these two students also identified for the empir-

ical proof). Stylianides and Al-Murani (2010) also explored whether secondary school

students thought a proof and a counterexample could coexist, finding evidence of such

views when students were surveyed, but less so when they were asked to explain their

views during an interview.

This research suggests that when secondary school students view an argument as a

proof, they still prefer to use reasoning consistent with empirical proof schemes to gain

conviction. Exploring the relationship between what a student found convincing, and

what a student viewed as a proof, Fischbein (1982) gave students in grades 10–12 the

following statement:

Dan claims that the expression E = n3−n is divisible by [6 for] every n and

he gives the following proof:

n3 − n = n(n2 − 1) = n(n+ 1)(n− 1) = (n− 1)n(n+ 1)

i.e. n3 − n = (n− 1)n(n+ 1)

Thus we have obtained the product of three consecutive numbers (n− 1,

n, n+ 1). Among three consecutive numbers there is always, at least,

one number divisible by two and there is always one number divisible

by three. Therefore the product is divisible by 2 and by 3. The product

of three consecutive numbers will then be divisible by 2.3 = 6.

(Fischbein, 1982, p.16)

The students were asked if they agreed with Dan’s proof (82% did), if they thought the

proof was fully correct (69% agreed), and if the proof was indeed general for any n (60%

thought it was). Of the 85% of students who thought Dan’s proof was correct, over half

(57%) agreed that in order to increase their confidence in the theorem, further checks

were necessary, such as trying numbers to get “more precise” results.

The above studies indicate that secondary school students typically rely on empirical

proof schemes both when they claim to be convinced by a deductive proof, and also when

they are more skeptical about them. It is understandable therefore that various authors

have identified that students often solely use examples to validate conjectures, so-called

‘proof by examples’ (Harel and Sowder, 1998; Nardi and Iannone, 2006, p.18). This is
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in contrast to more experienced mathematicians who tend to reason with examples in

conjunction with an analytical proof scheme based on formal definitions (Alcock, 2004).

Studies which consider undergraduate students’ proof schemes have found more mixed

results. In a series of six interviews with first year undergraduates, Morrow (2004)

presented the students with the statement:

The derivative of every even function is an odd function.

(Morrow, 2004, p.108)

Students were asked first to reflect on the statement, and then to consider five arguments

presented to them: a collection of examples, a graphical argument, a formal deductive

proof based on definitions, a proof based on the chain rule, and a flawed algebraic ma-

nipulation. As well as indicating whether the arguments were a proof of the statement,

they were asked to gauge how convincing they found each argument. Two of the six

students did not consider a deductive proof to justify the truth of a statement unless

they also used an example as a subsequent check, and one student regarded proof as the

same as working with a well-chosen generic example.

Rather than presenting students with arguments and asking if these arguments are

proofs, Recio and Godino (2001, p.91) asked 429 first year undergraduates to themselves

prove statements from geometry and algebra. A high percentage of the answers were

empirical, and so arguably this finding is consistent with the students finding convincing

arguments that are consistent with empirical proof schemes. However, Vinner (1997)

and Weber (2010) noted that when students are asked to provide proofs there are various

reasons why they may provide empirical answers without believing in empirical proof,

for instance as not being able to produce a deductive proof and wishing to obtain partial

credit for their answer.

Other authors have found empirical proof schemes to be rarer amongst undergraduate

students. Weber (2010) gave undergraduate students a collection of mathematical state-

ments and arguments and asked them to (a) rate their understanding of the arguments

on a five-point scale, (b) rate how convinced they were on the same scale, and (c) decide

if the argument was a proof. 96% of students did not find empirical arguments convinc-

ing (i.e. selected 1-4 on the scale rather than 5: “I feel completely convinced”), and 93%
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did not view such arguments as proof. Weber (p.328) conjectures a variety of reasons as

to why these results are different to that which has previously been shown, one of which

was the close proximity of the task to the completion of a transition-to-proof course.

In order to explore students’ proof schemes, some of the studies in this subsection’s ex-

position asked students to provide their own proofs, whilst others gave students proofs to

read and comment upon. In all but Weber’s (2010) study, examples and empirical argu-

ments were seen as convincing (and often preferable over deductive proof) by students.

These results are to be taken in the context of other research indicating that students’

approaches to proof may change even during the course of one interview (Housman and

Porter, 2003), but if students are convinced and prefer working with examples, it is

important to study in more detail how they work with examples.

Do students spontaneously choose to work with examples?

If reasoning based on careful use of examples is fundamental to the understanding of

mathematics (Bills et al., 2006; Michener, 1978; Watson and Mason, 2005) and students

find reasoning based on arguments from empirical proof schemes convincing, it may be

the case that teaching based on examples may reinforce or otherwise encourage reliance

on (often inappropriate) empirical proof schemes.

As discussed in the last section in respect to expert practice, reasoning based partially

on carefully-selected examples is not necessarily undesirable. It is not clear, however,

that students do spontaneously choose the same types of examples that experts do, and

whether they reason with these examples in a similar way to experts. In particular, it

is not clear whether students generate examples of concepts if such examples are not

given to them. Dahlberg and Housman (1997) asked eleven undergraduates (one reading

computer science, the other ten mathematics) to explore a class of function they had

not met before:

A function is called fine if it has a root (zero) at each integer

(Dahlberg and Housman, 1997, p.287)
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Each student, who had taken courses in Analysis, Linear Algebra and Set Theory, was

asked to determine if functions presented to them were fine, and then to consider more

general conjectures such as:

No polynomial is a fine function.

(Dahlberg and Housman, 1997, p.288)

Students were observed to follow one of four strategies: example generation (such as

sketching generic examples), reformulation (such as rewording the definition more for-

mally), decomposition and synthesis (breaking down the definition informally), and

memorisation (which involved no manipulation other than memory of the definition).

Students who spontaneously generated examples when faced with the definition were

more successful in understanding that topic in the interview situation. In contrast, We-

ber (2009) presented a case study of a successful student who claimed in a post-task

interview that when faced with new concepts he would “plug in examples to get an idea

of what it means”, but did not do this when given a task similar to the one used by

Dahlberg and Housman; the student instead preferred to work in the abstract.

The research presented in the thesis involves asking students to generate examples of

sequences, based on definitions that are provided to them. Dahlberg and Housman’s

(1997) research would indicate that students who are successful at doing this have a

better understanding of the topic in question, but in order to be successful in example

generation a students’ example space must contain such examples, or their concept image

the material to construct (and identify) such examples. Research is needed therefore on

the content and structure of students’ example spaces.

2.2.5 Attempts to describe the structure of example spaces

The last two subsections concluded that it is of interest to explore students’ example

spaces, and how they go about reasoning with examples from such spaces. This explo-

ration is useful because both expert mathematicians and students frequently make use

of examples, and many students use (or overuse) examples within an empirical proof

scheme. If one considers that it is a goal of mathematics education research to describe

how students think mathematically, then an exploration of students’ example spaces is

necessary.
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Authors cited in this subsection typically have used example generation as a tool to

explore students’ example spaces. By example generation, I mean the practice of asking

individuals to give examples of a mathematical object subject to certain constraints, for

instance ‘a function f : R → R which is continuous everywhere.’ The next subsection

looks at studies which discuss the process of example generation in more detail; in this

subsection we focus more on studies exploring the content and structure of example

spaces rather than the process of ‘evoking’ or ‘searching’ within them.

Studies in which authors have gone about describing the structure of example spaces

can roughly be separated into two approaches depending on the unit of analysis. One

approach focuses on a specific individual and a specific concept, and attempts to map

a portion of that individual’s (evoked) example space. Another approach is to focus on

the example space as the unit of analysis, attempting to describe common structure in a

variety of individuals’ example spaces. With respect to Watson and Mason’s terminology

(2005, p.76), the first type are exploring personal potential example spaces, whilst the

latter are exploring collective and situated example spaces.

The work of this thesis sits amongst the latter approach; one of its aims is to explore

students’ example spaces of real sequences (this is related to the first research question

in section 1.1). In this subsection both approaches to exploring example spaces are

discussed in turn.

Exploring an individual’s example space

The authors of studies which focus on an individual’s (evoked) example space are in-

terested in exploring which examples an individual can access, and which examples are

evoked under different conditions. In a paper on using example generation as a research

tool, Zazkis and Leikin (2007) introduced an assumption that is common to most studies:

Our working assumption is that example generating tasks may serve as a

research tool in studies that aim to describe and analyze participants’ knowl-

edge. (Zazkis and Leikin, 2007, p.19)
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In the paper, Zazkis and Leikin (2007) presented a case study of two trainee elemen-

tary teachers that identified misconceptions in the teachers’ mathematical knowledge by

seeing how the teachers dealt with example generation tasks. One such task was to

Think of a 5-digit number that leaves a remainder of 1, when divided by 2.

They described an account of a teacher who deduced that such a number must be odd

(in the next section focusing on example generation such deductions are said to be part

of an analysis strategy), but despite this the teacher did not feel comfortable that her

reasoning was correct when faced with examples of odd numbers; for instance the teacher

preferred to check her example (10,003) was correct by dividing her answer by 2.

Associated with research that explores an individual’s example space is that which at-

tempts to use example generation to introduce new concepts. Watson and Shipman

(2008) encouraged secondary-school students to explore which numbers of the form

(a +
√
b)(c +

√
d) would give rational answers when multiplied out. They found that

this inquiry-based approach was partially successful, some students had began to dis-

cover identities such as
√
a
√
b =
√
ab, but many students avoided special cases, instead

choosing only square numbers for b and d, and never considering numbers in the more

generic form (a−
√
b).

Zazkis and Leikin (2008, p.145) argued that the “examples generated by students mirror

their understanding of particular mathematical concepts”. In this study, they asked

trainee secondary school teachers to generate definitions of a square, then used these

definitions for the basis of discussion with the participants. This view—that insights

into the structure of an individual’s example space will also mirror their conceptions of

the concept more generally—provides one link between the evoked example space and

the evoked concept image.

Exploring example spaces more generally

The other approach to describing the structure of example spaces is focused at the space

itself, rather than at specific individuals. Tsamir et al. (2008) examined the structure of

the example space of five- and six year old children by asking them if various geometrical

figures were (examples of) triangles or not. By doing this they identified that the children
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had an implicit notion of ‘triangleness’. This research is typical; it does not attempt a

general description of an individual’s example space (or the structure of this space) in

the form of a case study, it instead explores many individuals’ evoked example spaces

and draws conclusions about the general nature of such example spaces.

When example generation is used as a way to explore topics which are already known

to the individuals, researchers typically place constraints on the type of example that is

required. Zaslavsky and Peled (1996) asked teachers and student teachers of mathemat-

ics to give an example of a binary operation that was commutative but not associative.

Their findings were focused on two areas; they first provided evidence of a weak evoked

example spaces (the authors used the term content search-space, but the two terms are

essentially the same), and the second was to highlight the participants’ primitive concept

images of binary operations, which were typically overgeneralised and the order of oper-

ations overlooked. This study used example generation to explore both the participants’

evoked example spaces and to draw hypotheses about their concept images.

In a paper discussing general features of example spaces, Goldenberg and Mason (2008)

described some of the different ways they may be structured. For instance, it is possible

that an example of a mathematical object has associated to it a notion of represen-

tativeness. This is similar to the idea presented within Watson and Mason’s (2005)

‘toolshed’ quote (on page 20); that some examples are more frequently used, so to the

individual they are somehow more representative of the entire class of examples. For

instance, x = 0 is perhaps a less representative example of a quadratic equation than

(x− 4)(x+ 3) = 0. Goldenberg and Mason suggest that such unrepresentative examples

typically restrict the possible variation that can be found in the entire class of objects.

Within their discussion, Goldenberg and Mason note that Marton and Säljö’s (2005)

framework of phenomenography and variation theory are intuitively applicable to re-

search on example spaces. Other authors already discussed here (such as Watson and

Shipman, 2008) also make reference to this framework, and this thesis too uses phenom-

enography as a guiding framework for the main study component. Phenomenography is

discussed in more detail in Chapter 3, but it is worth noting that phenomenographical

studies are interested in describing the variation of different ways a phenomena can be

experienced. Many authors of phenomenographic studies subscribe to the general thesis

that in order for an individual to learn, that individual must become (perhaps implicitly)
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aware of possible variation. Therefore with the focus turned to example spaces, such

methodologies assume that: (a) a ‘better’ example space is one with more variation, and

(b) an individual who understands a concept ‘better’ will have a more varied example

space.

2.2.6 The process of example generation

In the last subsection, studies were discussed that described the content and structure

of (evoked) example spaces. These studies did not dwell upon the implicit and explicit

thought processes that are required during example generation. This subsection explores

the literature which deals with this area by outlining and discussing three recent studies.

Each study attempts to draw conclusions about the example generation process by

observing students tackling and reflecting upon example generation tasks. The tasks

themselves vary from those presented in formal mathematical terminology (Antonini,

2006) to graduate students of mathematics, to tasks presented in everyday language

(Asghari, 2007) to undergraduates.

Despite the range of tasks and students in the three studies, the authors’ findings are

similar, and so it is not unreasonable to conclude that the accounts of example generation

presented in this subsection are generalisable to example generation more generally. Each

study identifies students who use a ‘picking and checking / trial and error’ approach,

others that work with examples to modify them until they are happy they are correct,

and some students who deduce properties that the examples must have before thinking

of an example itself. In each study students’ strategies are reported as idealised versions,

based on what the researchers observed and what the students commented upon (c.f.

subsection 5.5 which discusses issues of intersubjectivity in research).

Hazzan and Zazkis’s account of perceptions of example generation

Hazzan and Zazkis (1999) asked pre-service elementary school teachers three example

generation questions. Each question asked for a mathematical object to be generated

which satisfied certain criteria:

1. Give an example of a 6-digit number divisible (a) by 9, (b) by 17.
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2. Give an example of a function that has a value of −2 at x = 3.

3. Give an example of a system of equations with two variables that has (3, 7) as a

solution.

(Hazzan and Zazkis, 1999, p.1)

They found that students tended to construct their examples by making deductions

based on the concepts in the question. In the paper, such deductions are described in

terms of ‘links’ between the concepts in the question. Although the ‘link’ terminology

shall not be used further in this thesis, I will describe their results within this framework

(the following descriptions are summarised from Hazzan and Zazkis’s paper):

Occasional links An individual prefers to work with a concrete object, using a ‘picking

and checking’ strategy.

Procedural links An individual follows an algorithm to produce examples, and when

such an algorithm is not given, one is created. Such an algorithm is typically based

on the form of question.

Conceptual links The individual begins with a trivial or otherwise simple example

(such as 999,999 for task 1, or {x = 3, y = 7} for task 3), and then proceeds to

modify it by adding some variation. Those who take this approach do not usually

present the simple examples as their answer because they feel a need to create

more sophisticated answers.

Hazzan and Zazkis’s account is interesting because it combines cognitive and affective

elements; each type of linking behaviour is presented with reasons (often in the form of

quotations from students) why a student embarked on that process. In general, Hazzan

and Zazkis inferred that barriers to example generation are often emotional rather than

mathematical, indicating that the freedom allowed in an example generation task can

result in uncertainty and students wishing to ‘quit and avoid making choices when there

is no one definite way to proceed.’ (Hazzan and Zazkis, 1999, p.11).

In the research presented in this thesis (see Section 6.4), it could be argued that some

of the students in my study made occasional, procedural, and conceptual links (for

instance see Haroon’s comments in subsection 6.4.2, Phalgun’s comments in subsection
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6.4.1, and Valter’s comments in subsection 6.4.3, respectively). However, unlike Hazzan

and Zazkis’s account, the results in this thesis present affective dimensions separately

from the cognitive strategies.

Asghari’s example generation / example checking structure

Compared with Hazzan and Zazkis’s emphasis on the affective aspects of strategy choice,

Asghari’s (2005, 2007) research is concerned with the interplay between how the example

is generated and how the example is checked. Asghari gave undergraduate students

from various subjects (not just mathematics) a task which was related to an equivalence

relation:

A country has ten cities. A mad dictator of the country has decided that he

wants to introduce a strict law about visiting other people. A ‘visiting-city’

of the city, which you are in, is: A city where you are allowed to visit other

people. A visiting law must obey two conditions: (1) when you are in a

particular city, you are allowed to visit other people in that city, and (2) for

each pair of cities, either their visiting cities are identical or they mustn’t

have any visiting-cities in common. (Asghari, 2007, p.26)

Observing students tackling the problem, Asghari argued that there are two main ways

to go about the generating of a solution, which I paraphrase here:

Conceptual Generating The individual’s concept definition is used to construct the

example. Provided the concept definition is appropriately aligned to the formal

definition, examples generated by this process will be “correct” without the need

for further checking. In the context of the mad dictator task, students may make a

deduction about the cities (such as the symmetry of dots), and base their example

on that.
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Figural Generating The concept definition is temporarily set aside, and the individual

uses the representation system of the question or answer to guide generation2. This

requires subsequent comparison (checking) with the concept definition in order to

confirm if the example is of the required type. In the context of the mad dictator

task, students may begin by filling in some dots, and work out which other ones

must also be filled.

This distinction in approaches to generating examples is partly a consequence of the

type of example generation task Asghari chose. In the mad dictator task the examples

solicited were (a) of a non-formal definition that was not explicitly related to the par-

ticipants’ prior knowledge, and (b) the required representation system of the examples

was shading dots on a fixed grid, thus lending itself to figural generating which could

loosely be deemed as colouring in some dots and seeing what happens. Despite this, the

conceptual/figural framework described here gels well with the terminology of concept

image and concept definition.

A shortcoming with Asghari’s research is that due to the focus on the checking part

of example generation, it is still very unclear how the actual generating takes place

in either figural or conceptual generating. This is perhaps a more interesting aspect;

as noted by Hazzan and Zazkis (1999) and Selden and Selden (1998), the lack of pre-

learned algorithm-like process to solve example generation tasks can be disconcerting to

students, and it is often not clear which route a student could or should use to find one.

The final study presented in this subsection is more generalisable to other example gen-

eration tasks compared with Asghari’s findings and, unlike Hazzan and Zazkis’s results,

it does not intertwine the choice of strategy with the strategies themselves. Although it

does not add substantially to the types of example generation behaviour noted so far,

it does widen the scope further than either the occasional/procedural/conceptual or the

conceptual/figural distinctions.

Antonini’s example generation strategy framework

Antonini’s (2006) framework arose by studying what mathematics graduate students did

when they were asked to give examples of mathematical objects with varying properties.

2In the case of the ‘mad dictator’ problem the representation system of the answer is the pattern of
circles to fill in.
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The properties requested were:

1. Give an example of a real function of a real variable, non constant, periodic and

not having a minimum period.

2. Give an example of a function f : [a, b] ∩ Q → Q (with a, b ∈ Q) continuous and

not bounded.

3. Give an example of a binary operation that is commutative but not associative.3

4. Give an example of three natural numbers, relatively prime, whose sum is a number

which is not prime to any of them.

(Antonini, 2006, p.58).

After exploring the processes self-reported by participants during the example generation

tasks, Antonini concluded that there were three main approaches to example generation:

Trial and error The example is sought among some recalled objects: for each example

the subject only observes whether it has the requested properties or not.

Transformation An object that satisfies part of the requested properties is modified

through one or more successive transformations until it is turned into a new object

with all the requested characteristics.

Analysis Assuming the constructed object [exists], and possibly assuming that it sat-

isfies other properties added in order to simplify or restrict the search ground,

further properties are deduced up to consequences that may evoke either a known

object or a procedure to construct the requested one. (Antonini, 2006, p.58–59)

Antonini noted that the trial and error strategy was far more common than either the

transformation or analysis, a comment that was also made by Iannone et al. (2009),

who asked undergraduates to generate examples of functions satisfying certain criteria

and then analysed their data based on Antonini’s classification. As was noted at the

start of this subsection, ‘trial and error’-like strategies were also present in other studies:

Hazzan and Zazkis (1999) also commented that ‘picking and choosing’ was a common

feature of the occasional links approach, and it could be argued that the notion of figural

3Antonini acknowledges that this question is modified from Zaslavsky and Peled (1996).
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generation is a type of trial and error, but with the form of an answer guided by the

(required) representation.

Transformation-like strategies can also be seen in Hazzan and Zazkis’s (1999) notion of

conceptual links, where a trivial or prototypical example is modified to become more

sophisticated without losing the features which made it valid in the first place. However,

Antonini’s transformation strategy also encompasses strategies where the object chosen

initially does not meet the requirements.

Finally, Asghari’s (2005; 2007) conceptual generating strategy is similar to Antonini’s

analysis strategy. When conceptually generating an example, concept definitions are

used to construct the example, and provided the concept definition is appropriate the

example will be valid. In an analysis strategy, further properties are deduced or assumed

in order to restrict the search to a more accessible portion of the example space.

When presenting the results of a phenomenographic data analysis of the main study data

in Chapter 6, Antonini’s classification will be used as an underlying basis the dimension

of variation that describes the strategies students used to generate examples.

2.3 Real Analysis

In this final section, the attention is turned to a specific undergraduate module: Analy-

sis. Anecdotally, it is well observed that students struggle with the content of an Anal-

ysis module, and that the point of understanding formal definitions and proof within

Analysis is a milestone for many students, as reflected in two famous mathematician’s

autobiographies:

My eyes were first opened by Professor Love, who taught me for a few terms

and gave me my first serious conception of analysis. [. . . ] I learnt for the first

time as I read [Jordan’s Cours d’analyse] what mathematics really meant.

(Hardy, 1967, p.147)

The day when the light dawned [. . . ] I finally understood epsilons and limits,

it was all clear, it was all beautiful, it was all exciting. [. . . ] I had become a

mathematician. (Halmos, 1985, p.48)
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In Section 2.1 it was noted that when studying mathematics at university many students

have difficulty when moving from “describing to defining, from convincing to proving in

a logical manner based on these definitions.” (Tall, 1991b). This section explores these

issues in the context of dealing with formal definitions in an Analysis module. It will be

identified that there is relatively little research on how students work and reason with

the simpler definitions found in Analysis, and it is this gap in the literature that will be

addressed in this thesis.

2.3.1 Why do students find Analysis so difficult?

It is widely regarded that Analysis is a difficult module to study (Alcock and Simpson,

2001, 2002; Artigue, 1991; Meehan, 2007; Weber, 2008). In a paper exploring research

in the teaching and learning of Analysis, Robert and Speer (2001) listed the main math-

ematical areas they considered to be part of Analysis. These were:

Functions of one and several variables, considered both locally and globally,

limits, continuity, derivatives, sequences, definite and indefinite integrals,

and differential equations. (Robert and Speer, 2001, p.283)

For now, this working definition is used, but later in the thesis ‘Analysis’ will be used

in conjunction with the content of Analysis modules studied by students who took

part in the example generation tasks. Robert and Speer (2001, p.288) go on to note

that contained within several of these topics, in particular continuity, derivatives and

sequences, there is a conceptual difference between exploring properties of a particular

object (they give the example of the function f(x) = 7x3 + 5x2− 2x+ 4), and exploring

more general properties (say of an arbitrary cubic). They suggest that, for students

of mathematics, the disparity between these two ways of dealing with content causes

difficulty, especially when it is considered that the focus at the secondary level may well

have been more on the particular than the general.

In keeping with this observation, Alcock and Simpson (2002) found that some students

extrapolate general features (sometimes in the form of definitions) from single prototype

examples, taking the properties of this example as the basis of definitions for a wider class

of objects. Such a prototype procedure can be successful if the example used is sufficiently

general: they present results from an interview where a pair of undergraduate students
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successfully argue about the convergence of
∑ (−x)n

n for fractional x based on the single

prototype
∑ (−1/2)n

n .

These two papers suggest that the relationship between general and particular objects

can both aid learning and also cause difficulties for students studying Analysis, but such

conclusions can also be drawn for many modules met by students early on in tertiary

education. Stewart and Thomas (2010) attempted to aid students’ understanding in

Linear Algebra by dealing with the ideas of the span and a basis for a set of vectors both

in terms of individual vectors and in more general terms via concept maps, which I would

argue was an effort to help students implicitly compare the behaviour of specific and

more general objects. In terms of why Analysis is regarded as difficult, say compared to

modules such as Linear Algebra, other authors such as Alcock and Simpson (2002) argue

that in Analysis the definitions students meet are more complex. The next subsection

focuses on why this may be the case. It looks at the role of definitions in mathematics,

eventually concluding that despite the complexity of some definitions within Analysis,

there is a need for research which concentrates on how students reason with relatively

simple definitions in an Analysis setting.

2.3.2 The role of definitions

Mathematical definitions are important structural concepts within mathematics but of-

ten create a serious problem for students (Dubinsky, 1991). Definitions constrain to

which objects a theorem can be applied and they outline the scope of technical terms

contained within proofs. Without a firm understanding of the status of definitions within

mathematics and how definitions should be used, students will struggle in important ar-

eas such as proof (see Weber, 2002, for instance).

Recall from Section 2.1.3 that Tall and Vinner’s (1981) construct of a concept definition

aimed to distinguish between reasoning based on the formal mathematical definition

of a concept and reasoning based on alternative ways of understanding the concept.

These alternative ways of understanding may originate from spontaneous conceptions

based on the everyday use of words, and a student’s prior experience with the mathe-

matics in question (Cornu, 1991). These constructs are useful when exploring students’

understanding of specific definitions (such as those in this thesis), but less useful for

exploring students’ epistemological views of definitions. This subsection first examines
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these views, before returning to definitions that are more closely related to Analysis,

and in particular the role of quantification in such definitions.

Students’ epistemological views of definitions

To students, what constitutes a (good) definition may change based on experience and

instruction (Zaslavsky and Shir, 2005), and yet definitions are often introduced to stu-

dents with the assumption that the lecturer sees them in a similar way to the student

(Vinner, 1976). The strict role that definitions play within mathematics is often not

clear to students; when it is appropriate to use definitions, and what is nature of their

role and purpose more widely within mathematics? Can they be created on the spot to

be used, or are they universal truths that we are merely describing? Are some definitions

‘better’ than others?

Students entering university are rarely given the chance to ‘play around’ with definitions,

instead definitions are typically regarded by students in a lexical sense (Vinner, 1976),

in particular that definitions are not canonical and depend on the situation and context.

Vinner gives the example of “a house is a building for human habitation”, which depend-

ing on the context can be regarded as a definition, statement or fact, noting that within

mathematics definitions play a far stricter role, as part of the ‘formalistic approach’ to

mathematics (as described by Vinner, 1976), but students do not appreciate this shift

in the way the word definition is used.

Alcock and Simpson’s (2002) study, discussed in the previous section, found that stu-

dents can be reluctant to work with definitions. In a study with undergraduate students

studying Analysis, some students needed several prompts to be persuaded to write down

a complete definition and use it. The paper concluded with the observation that when

asked to work with definitions (say in the context of a lecture) students may instead work

with a prototype example, modifying it to be compatible with the definition and basing

further reasoning on this example rather than the definition. In the pilot study chapter

of the thesis, this phenomenon is observed with respect to the definition of ‘increasing’

and ‘decreasing’ sequences where students treated the combination of these definitions

to be a sequence which increases for a region then decreases later, rather than the formal

interpretation of the definitions: a constant sequence (see Chapter 4, and Edwards and

Alcock, 2008).
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Logic and quantification in definitions

Aside from studies examining students’ epistemological views of definitions, much re-

search has been conducted which explores what students find difficult about the meaning

of specific definitions. It is within this body of research where authors have considered

why definitions within Analysis are particularly difficult.

Students meet and struggle with definitions in many mathematics courses, whether

relatively simple definitions of the style ‘all a are b’ (where b is a simple statement)

(Epp, 2003), to more complex definitions say the continuity of a function within an

Analysis course (Tall and Vinner, 1981), or linear independence in linear algebra (Uhlig,

2002). What makes the latter definitions especially difficult is the presence of one or

more logical quantifiers (Alcock and Simpson, 2002; Dubinsky et al., 1988; Vinner, 1976).

Undergraduate students of mathematics tend to first meet existential and universal

quantifiers (∃ and ∀) within proof based courses such as Analysis, Abstract Algebra, or

possibly in a bridging course designed to help students move from more procedurally-

based courses such as Calculus and Differential Equations (Selden and Selden, 1999).

Dubinsky and Yiparaki (2000) considered how mathematics undergraduates deal with

statements involving a single combination of a universal and existential quantifier. Some

statements were in everyday language:

There is a mother for all children

and some were written with mathematical content:

For every positive number a there exists a positive number b such that b < a.

Noting in the paper that in the real life examples the meaning of the statement is more

ambiguous (the first statement may arguably be interchanged with ‘all children have a

mother’ in everyday language), they asked the students if the statement was true, and

to give an explanation of why. From those explanations they decided if the student was

treating the statement in the form ‘∀x ∃y’, or in the form ‘∃x ∀y.’ The study also asked

students questions about the meaning of the quantifiers in isolation, and what would

need to be changed in order to negate statements they had identified as true. Whilst
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students were successful in answering questions about the quantifiers in isolation, when

statements combined quantifiers the students did not use the syntax of a statement when

analysing it, they either paid no attention to the quantifiers in the everyday statements

and continued to fail to do so in the mathematical statements, or attended quantifiers

in the everyday statements and failed to do so in the mathematical statements. (ibid .,

p.264). Few students could identify the changes needed in order to negate statements

they claimed to be true.

In an earlier study, Dubinsky et al. (1988) looked at how students interpret and negate

statements which contain multiple quantifiers. They found that students struggled with

multiple quantifiers in the same definitions, and statements such as

For every tire in the library, there is a car in the parking lot such that if the

tire fits the car, then the car is red. (Dubinsky et al., 1988, p.45)

were extremely difficult for students to deconstruct; students were asked how they might

validate such a statement, commonly being side-tracked by the everyday variables (tire,

car) opposed to the logic of the statement. Both these studies identify discrepancies be-

tween students’ concept definitions and the formal mathematical definitions, highlighting

a particular issue with respect to quantification.

Aside from the everyday meaning of statements containing multiple quantifiers, other

researchers have considered the effect of making objects in statements real life, or imag-

ined. In one part of a study by Sá et al. (1999), undergraduate students from a variety

of subjects were asked whether 24 logical statements were true. Eight of the statements

were worded such that the truth of the statement was in conflict with the everyday

meaning of the conclusion such as the (false) statement:

(1) All living things need water; Roses need water; therefore, Roses are living

things.

Eight statements’ truth was not in conflict with the everyday meaning of the conclusion

such as the (true) statement:

(2) All fish can swim; Tuna are a fish; therefore Tuna can swim
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The final eight statements involved imaginary content:

(3) All opprobines run on electricity; Jamtops run on electricity; therefore,

Jamtops are opprobines.

(all from Sá et al., 1999, p.500)

They found a significant ‘belief-bias’, in that more students incorrectly stated the truth

of statements similar to (1) than either those similar to (2) or those similar to (3),

with a larger effect size for the (1) and (3). This, and similar studies from the cognitive

psychology literature (e.g. Evans et al., 1983) confirm that spontaneous conceptions from

the everyday meanings of logical phrases may be present in students’ evoked concept

images of definitions.

Definitions within Analysis

At the start of this section focusing on Analysis, on page 38, it was noted that a typical

Analysis module places emphasis on formal definitions and proof. Whilst this is true for

many modules met by students early in undergraduate mathematics, Analysis is unusual

in that its definitions typically contain multiple, nested, quantifiers. The module is rich

in everyday language (e.g. limit, as discussed below), and authors such as Alcock and

Simpson (2002) also note that Analysis conducive to visual representations of concepts

and objects, which may result in students reasoning with inferences from imagery rather

than formally via definitions. In a subject such as group theory, they note, students

may make more use of formal definitions because visual representations are less readily

available (Alcock and Simpson, 2002, p.33).

In Analysis students spend some of their time proving statements which they find ob-

vious, despite not being able to follow the proofs themselves (Tall and Vinner, 1981,

p.17). The combination of this observation, and the factors noted above result in stu-

dents finding Analysis difficult and, perhaps due to this, Analysis has been much studied

by researchers in Mathematics Education. However, amongst the definitions taught as

part of a typical Analysis course, most research has been conducted on those which

contain multiple quantifiers, such as the continuity of a function, or the limiting process

(Alcock and Simpson (2009b) argue this is because the limiting process is central to



Review of Research 45

much of Analysis). Considerably less has been researched on how students deal with

simpler definitions.

The limiting process

Here, mathematics education research on the limiting process in Analysis is discussed

to give a flavour of the type of work that exists on how students work with definitions.

Historically mathematicians did not agree completely on notion of converging to a limit,

with theorems published which ‘admitted exceptions’ such as Cauchy’s theorem that

the limit of a convergent sum of continuous functions is itself convergent (Jahnke, 2008;

Sørensen, 2005). Various authors have shown that, for many students, the everyday

meaning of limit impedes their understanding of the formal mathematical definition

(Cornu, 1991; Monaghan, 1991; Sierpinska, 1987; Tall and Vinner, 1981). Research has

shown that students do not see the limit of a function as useful in finding approximations

(Çetin, 2009), and that they have difficulty moving from a dynamic conception of a limit

to a more formal one (Williams, 1991). Other authors argue that difficulties moving

to a more formal conception of a limit are ‘at least partially a result of insufficient

development of a strong dynamic conception’ (Cottrill et al., 1996, p.190).

2.4 Rationale for focusing on sequence properties

As illustrated in Section 2.1, many researchers consider the transition from secondary

to tertiary mathematics a particular trouble spot for students (Clark and Lovric, 2008,

2009; Gueudet, 2008; Hong et al., 2009; Wood, 2001). Outside the literature dealing with

social aspects of this transition, much of the literature in this area considers the transition

to formal thinking within mathematics a particular challenge (Dubinsky, 1991; Harel and

Sowder, 2005; Sfard, 1991; Tall, 2004; Tall and Vinner, 1981; Vinner, 1983). Working

with formal definitions is seen as a particular obstacle (Alcock and Simpson, 2002;

Vinner, 1976), and this has resonated with my own experiences during a mathematics

degree. As Alcock and Simpson (2002) noted, analysis is considered to be a difficult

course at university by both students and lecturers, and this is in part due to the

complexity of formal definitions.
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There has been much research on the convergence and limits of functions and sequences

(Bérgé, 2006; Cornu, 1991; Monaghan, 1991), and in particular students have have prob-

lems dealing with quantifiers in logical statements (Dubinsky et al., 1988), and multiple

nested quantifiers (Cottrill et al., 1996). Considerably less attention has been given

to properties of sequences which are simpler (in terms of their use of quantifiers) than

convergence and limiting behaviour, such as the properties increasing and decreasing.

For instance contrast the definition that a sequence converges to a number, l, with the

definition of an increasing sequence.

Converging to a limit The sequence (an) converges to the number l if and only if

∀ε > 0, ∃N ∈ N s.t. ∀n > N , |an − l| < ε.

Increasing The sequence (an) is increasing if and only if ∀n ∈ N, an ≤ an+1.

In terms of the number and interaction of the quantifiers in the two definitions, the

latter is far simpler than the much studied limiting process.

The work of the thesis addresses this gap in the literature by concentrating on students’

interactions with these simpler and less studied definitions. The studies in the thesis will

show that many mathematics undergraduate students still struggle when understanding,

applying and negating these simpler definitions.

2.5 Summary of chapter

The chapter began with a summary of the social, epistemological and cognitive issues

related to the progression to study mathematics at tertiary level. Students are given

less guidance but more responsibility for understanding the content their work, and the

nature of the mathematics has changed from application of techniques to a need to

understand how mathematical arguments are dependent on proper use of formal defini-

tions. Rather than reasoning with concept definitions, many students reason primarily

with concept images which may contain spontaneous conceptions which are not good

representations of the whole class of objects constrained by a definition.

At the same time as they are expected to reason with formal definitions, many students

are reliant on empirical proof schemes; they are persuaded by arguments that involve
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specific examples of mathematical objects behaving in a certain way. Students can

therefore run into difficulties in situations where the properties of such examples may

not be generalisable to the whole class of objects under consideration.

Research on how students work with examples often uses the technique of example gen-

eration to explore students’ example spaces. Recently produced work suggests that there

are a series of different strategies students typically employ when generating examples,

but in general little is known from a students’ perspective how to about generating

examples.

Within the different modules studied at the tertiary level, Analysis is regarded by many

as particularly difficult. It has been suggested that this is partly because definitions

within Analysis are particularly complex, often containing nestled combinations of quan-

tifiers. While Analysis has attracted much attention from researchers in mathematics

education in topics such as limits, there has been little research however looking at how

students interact and reason with simpler definitions within an Analysis context.

This thesis uses an example generation task to explore how students interact and reason

with simple definitions, shedding light on students’ concept images related to these

simple definitions. It simultaneously explores how students go about (and report how

they go about) example generation in such a context.
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Methodology

The main study reported in this thesis (see Chapters 5 and 6) has been framed within

the research specialism of phenomenography, first described and used by Ference Marton

and his research group from the University of Göteborg in Sweden. This methodology

chapter is an introduction to and literature review of phenomenography.

This chapter first gives an outline of phenomenography in Section 3.1, noting its unit

of analysis (ways of experiencing a concept), and two methodological assumptions (a

second-order orientation, and the need to bracket during research). Section 3.2 then

considers phenomenography’s ontological and epistemological stances, and compares

these to other qualitative methodologies in mathematics education, including the re-

lated methodology of variation theory. After this, Section 3.3 discusses how authors of

phenomenographic and variation theory studies in educational research typically present

their results in the form of an outcome space. This section also considers the form that

such an outcome space may take. Section 3.4 then outlines the data collection and analy-

sis methods associated with phenomenography, and considers how authors have justified

the validity and reliability of their studies. The last section, Section 3.5, outlines some

of the criticisms that have been made towards phenomenography and how these relate

to the research in this thesis.

In this chapter the word “students” has been used to represent the individuals who are

being studied. This is because in my study the individuals who are being studied are

undergraduate students of mathematics. However, if direct quotations are taken from a

48
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study whose participants were not students and the author(s) use a different term for

instance “subjects”, I have not edited their language.

3.1 Outline of phenomenography

The research specialism of phenomenography was developed by Marton and his research

team in the 1970s (Marton, 1975; Marton and Säljö, 1976; Marton and Svensson, 1979).

The word “phenomenography” was first used in Marton (1981); initially the approach

was used when investigating qualitative differences observed when students were asked

to read, comment upon, and then summarise a text. In an early article, which, according

to Entwistle (1997) should not strictly be labelled as phenomenographic, Marton noted:

The present study is likely to be considered rather unconventional from the

methodological point of view. Usually, the variables are, so to speak, given

and one attempts to ascertain relationships between them; in our case the

categories of description are themselves results (Marton, 1975, p.275).

As Bowden (2005, p.12) notes, “the object of study is not the phenomenon being dis-

cussed per se, but rather the relation between the subjects and that phenomenon.”

Marton was not alone in moving away from the type of research described as scientific

method (Cohen et al., 2007; Pring, 2000), i.e. an approach to research which first identi-

fies variables, then generates hypotheses and finally tests those hypotheses by controlling

for as many variables as possible, attempting to show causality for the remaining vari-

ables. In a similar vein to other interpretive approaches to research (phenomenology,

ethnomethodology, symbolic interactionism, etc), Marton’s focus was on describing stu-

dents’ descriptions of and reflections upon a concept, rather than research describing

the concept directly in terms of interaction of variables.

The unit of analysis in phenomenographic studies therefore is students’ ways of ex-

periencing a concept (Marton and Booth, 1997). A way of experiencing a concept is

synonymous with phrases such as “conceptions”, “ways of understanding”, “ways of com-

prehending” and “conceptualisations” (Marton and Booth, 1997, p.114). Säljö (1997,

p.175) argues “conception” may be an alternative translation from the original Swedish

uppfattning, and I would also include “descriptions of”, “approach towards”, “view of”,
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“knowledge of”, and “concept image of” as synonyms. Within the phenomenography

literature it is usual to use the word experiences with the intention of encompassing this

wide range of statements, and this thesis will also follow this practice.

Research in phenomenography therefore aims at “description, analysis, and understand-

ing of experiences; that is, research which is directed towards experiential description”

(Marton, 1981). The focus is not so much on the source of these ways of experiencing,

but on the categories of description of ways of experiencing, and the variation between

these categories. In particular, this is what separates phenomenography from other

interpretive approaches to research. A particular individual’s experience of a concept

is not assumed to be constant, but dynamic depending on the situation. The object

of focus therefore is not to categorise or label an individual’s way of thinking, it is to

categorise the possible experiences of an individual. As explained by Marton:

If we accept the thesis that it is of interest to know about the possible

alternative conceptions students may have of the concept or the aspects

present in, related to or underlying the subject matter of their study, it is

these questions specifically which we must investigate. (Marton, 1981, p.183)

An individual who is aware of more aspects of a phenomenon is considered to be more

knowledgeable about that phenomenon, and will have the flexibility be able to handle it

in more efficient ways (Marton and Booth, 1997, p.117). Learning is therefore considered

to be the process of becoming capable (or aware) of doing something, and “the pattern of

variation inherent in the learning situation is fundamental to the development of certain

capabilities.” (Marton and Tsui, 2004, p.15).

Although there have been refinements between Marton’s approach in 1975 and later

phenomenographic studies, two methodological assumptions have remained throughout

(Hasselgren and Beach, 1997). The first assumption is that phenomenographic research

should approached by considering second-order descriptions and questions. Second order

descriptions are accounts of peoples ideas about the world from those people themselves,

whereas first order descriptions may include statements about the world written by the

researchers themselves (Marton and Booth, 1997, p.178). In an educational context, a

researcher is not concerned with describing a concept (e.g. what are the salient features

of multiplication), but rather students’ ways of experiencing the concept (e.g. what is
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students awareness of multiplication). The second assumption of phenomenography is

that of the need to bracket during research. Bracketing means that researchers should

only focus on the parts of the concept that the student is focusing on at that particular

time, suspending judgement on other parts, both during data analysis, but also to a

certain extent when interviewing students (Marton and Booth, 1997, p.119).

3.2 Comparison to other research methodologies

The previous section gave an overview of the research specialism of phenomenography,

but did not comment on how it relates to other qualitative educational methodologies,

although a passing reference was made to the ‘big three’ qualitative methodologies of

phenomenology, ethnomethodology, and symbolic interactionism (Cohen et al., 2007).

This section begins by considering phenomenography’s ontological and epistemological

stances, before relating it to such methodologies.

3.2.1 Ontological stances in phenomenography

Phenomenography is distinct from other research methodologies due in part to its on-

tological position, or rather its lack of a firm position. Svensson (1997, p.164) argued

that phenomenographic research deliberately makes few claims in this area:

The position taken differs from empiristic and positivistic assumptions about

observations as facts, and knowledge as inductively based on facts. It also

differs from rationalistic, mentalistic and constructivistic assumptions about

knowledge as rational or mental constructions within a more or less closed

rational and/or mental system. Thus the view of knowledge is that it is re-

lational, not only empirical or rational, but created through thinking about

external reality. . . . Knowledge is seen as dependent upon context and per-

spective. (Svensson, 1997, p.165)

The above quotation includes the phrase “external reality”, which is a phrase that could

be associated with a positivist ontological stance, i.e. that the world can be described

as existing independently from human experience, and so a complete and scientific ex-

planation of reality can be made (Pring, 2000). Similarly, the previous section referred
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to ‘mathematical concepts’, which could be interpreted as a positivist statement: that

these concepts somehow exist beyond human experience. From a phenomenographic

standpoint, the existence or otherwise of an external reality is irrelevant; phenomenog-

raphers do not claim to study the reality of the world, but instead individuals’ accounts

of their awareness of conceptions of the world. Svensson (1997, p.165) argued that

within the phenomenography literature different researchers have taken different onto-

logical stances. It is tough to confirm this claim because the majority of authors of

research papers in phenomenography do not comment on their ontological stance.

My ontological stance is that I believe mathematicians clearly define objects with axioms

and definitions, and attempt to deduce consequences and results based on relationships

between these objects. Whatever the status of knowledge contained or represented

by these objects, be it via social acceptance (Ernest, 1993) or objectivity via internal

certainty (Rowlands et al., 2001), or some Platonic reality argument, these objects still

remain clearly defined. Beyond that, in keeping with the phenomenographic stance of

the thesis, I do not have a firm opinion on the nature of reality. My attention is focused

on students’ awareness of these clearly defined objects.

3.2.2 Epistemological stances in phenomenography

In phenomenographic research, an epistemological assumption is that knowledge of a

concept is the ability to experience variation of that concept. To know that something

is red means that we must have experienced variation between red and other colours in

the past. It might be considered that the notion of an individual becoming aware of

variation is comparable to an individual constructing knowledge, say in individual con-

structivism, as described by Piaget (1950) or radical constructivism described by von

Glasersfeld (1984). Both these theories do not fit well with phenomenography, however.

Piaget’s scheme is based on stages of development, which is similar to phenomenogra-

phy’s collection of different ways of experiencing a concept and variation between them,

but the latter does not classify learning as development through these stages. Von

Glasersfeld’s interpretation of constructivism involves the denial of an external reality,

whereas phenomenography makes no assumptions in this area (see the last subsection).

Alternatively, it may be considered that phenomenography is compatible with social-

cultural theories, which stem from accounts of learning such as Vygotsky’s (1978) social
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constructivism, where learning is seen as a relationship between outer and inner speech.

Perhaps from a phenomenographic perspective the relationship between outer and inner

speech is the mechanism allowing a student to become aware of more or less variation?

As discussed earlier, phenomenographers are not so concerned on the mechanisms of the

ways of experiencing, but the variation between possible ways of experiencing.

Marton and Booth clarify their position with regards to various theories of construc-

tivism in the following quote:

individual constructivism . . . regards the outer (acts, behaviour) as being in

need of explanation and the inner (mental acts) as explanatory, whereas

the reverse is true for social constructivism. . . . One should not, and we do

not, consider person and world as being separate. . . . [Students are] neither

bearers of mental structures nor behaviourist actors. . . . Thus the dividing

line between “the outer” and “the inner” disappears. . . . The world is not

constructed by the learner, nor is it imposed upon her; it is constituted as

an internal relation between them. (Marton and Booth, 1997, p.13)

3.2.3 Comparisons with other qualitative methodologies

If two researchers are interested in exploring how students think, and reject an approach

primarily based on the scientific method, they will conduct their research in superficially

similar ways (Cohen et al., 2007). Theory will be emergent, grounded in the data (Glaser

and Strauss, 1967), and will attempt to yield insight and understanding of an individual’s

behaviour. Phenomenography thus has much in common with other qualitative research

approaches, but it is distinct from the ‘big three’ of phenomenology, ethnomethodology,

and symbolic interactionism. This section concludes by briefly contrasting the various

approaches.

Phenomenography has much in common with phenomenology including a second-order

approach to research, bracketing out other ways of seeing the world and so taking indi-

viduals’ accounts at face value (Cohen et al., 2007). From a historical view, phenomeno-

graphy was not developed from phenomenology (Svensson, 1997), and there are several

key differences between the approaches. First, in a phenomenological account, the aim is
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to describe the essence of a concept as completely as possible, whereas in a phenomeno-

graphic account the researcher is interested in the different ways individuals experience

the concept and the variation between these ways of experiencing (Marton and Booth,

1997, p.116). Describing the variation is not the same as describing the concept, and

it is not thought that the concept is in some way ‘the same’ as its phenomenographic

account (Larsson and Holström, 2007, p.59). Second, in a phenomenological account, a

researcher may primarily use their own experiences of a concept (e.g. Mason, in press),

rather than accounts from others.

Ethnomethodolgy and symbolic interactionism also take a second-order approach to

research, but have less in common with phenomenography. Linguistic ethnomethod-

ologists study the use of language and conversation in everyday life, and situational

ethnomethodologists examine how people negotiate the social contexts in which they

find themselves (Cohen et al., 2007). Clearly phenomenography has little in common

with these research specialisms . Symbolic interactionism relies on a distinction between

the ‘natural’ world which includes human drives and instincts, and an external world

which includes symbols, language and objects. It studies the interaction between these

worlds, which is an interaction that does not exist in phenomenography (see the quote

from Marton and Booth, 1997, at the end of the last subsection).

3.2.4 Variation Theory

Some recent studies which can be considered phenomenographic (Al-Murani, 2006;

Runesson, 1999, 2006; Watson and Mason, 2004, 2006) have shifted the perspective so

that the objects of research are the categories of description themselves. Such authors

effectively first decide which dimension(s) of variation they are studying, then explore

students’ awareness of this dimension. Such studies typically label themselves within

the specialism of Variation Theory, and have the goal of describing these dimensions of

possible variation.

I see the distinction between a phenomenographic account and a variation theory account

as follows. In a phenomenographic account, the object of research is students’ awareness

of a phenomenon and the qualitatively different ways of experiencing the phenomenon

is presented in categories of description, grouped into dimensions of variation. Marton

and Säljö (2005, p.336) call this the “referential aspect—i.e. a particular meaning of an
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object [or concept], anything delimited and attended to by subjects.” In a variation

theory study, a researcher is interested in exploring a particular dimension of variation,

and so looks at individuals’ awareness of a phenomenon in this context. Marton and

Säljö (2005, p.336) call this the “structural aspect—i.e. the combination of features [of

the concept] discerned and focused upon by the subject.”

A study that focuses on the referential aspect will ask general questions such as ‘how

do you go about learning maths?’, whereas studies that focus on the structural aspect

will typically introduce a mathematical object to the students and then ask them about

features of that object associated with the dimension of variation under consideration. It

is difficult, if not impossible, to determine where phenomenography ends and variation

theory begins, because even a strictly phenomenographic account will frame its results

within the framework of variation theory. In some studies, a concept was introduced to

the subjects in varying forms, and the subjects were interviewed about their experiences

of the variation in the object (Asghari, 2004; Runesson, 2006; Watson and Mason, 2004,

2006). Others have studied the use of variation by teachers when they are teaching

(Al-Murani, 2006; Runesson, 1999).

The main study of this thesis uses an example generation task to explore undergraduate

mathematics students’ awareness of sequences, and also their awareness of example

generation. Even though the students were given a task as the focus of the interview,

rather than asking referential questions such as “what is a sequence?”, I still consider the

thesis to be in the tradition of phenomenography rather than variation theory. This is

because in the main study, dimensions of variation emerged from categories of description

that were grounded in the data. The task was not used to explore a pre-defined aspect

of sequences or example generation, rather it was used as a device to focus students’

awareness towards these two areas.

3.3 Reporting dimensions of variation

As discussed in the previous section, phenomenographic research aims to describe the

different ways individuals may experience a phenomenon, and reports these different

ways in terms of categories of description which are then arranged into dimensions of

variation. Together, the dimensions of variation form an outcome space of the research
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(see below). While the specifics of data collection and analysis are covered in Section

3.4, this section presents some examples of the way phenomenographic and variation

theory researchers present these dimensions of variation.

Before undertaking a phenomenographic piece of research, the researcher must decide

the scope of the study. The conception or object of research must be chosen, and possibly

the types of variation to focus on, whether they be referential or structural, or even more

precisely defined such as Watson and Mason’s (2004) choice of values in equations and

coordinate points.

3.3.1 The outcome space

A dimension of variation is a set of related categories of description which are stable

between situations, even if individuals may “move” between categories on different occa-

sions (Marton, 1981, p.195). For instance, the dimension of variation Using Definitions

(see Section 6.2) outlines students’ experiences of formal mathematical definitions during

in the main study’s task. This dimension of variation includes the categories of descrip-

tion Def-A Unaware of Definitions, Def-B Refers to Definitions, Def-C Uses Definitions,

and Def-D Manipulates Definitions.

The categories of descriptions in a dimension of variation are usually hierarchical (as

is the case for Using Definitions), although an individual’s awareness may fluctuate be-

tween categories in a short space of time (for some students in the main study, this

occurred in the span of a single interview). This is what distinguishes a phenomeno-

graphic dimension of variation from a developmental scale construct such as Piaget’s

(1950) stages of development, where a student is at a certain level, and progresses

along a hierarchy of categories as their thinking matures. In a phenomenographic study,

awareness associated with more the sophisticated of categories of description, a more

varied understanding of a concept, and being more knowledgeable about a concept are

synonymous (Marton and Booth, 1997, p.107).

Within a phenomenographic study there may be a single dimension of variation reported.

In such cases the outcome space is the same as the dimension of variation. Other studies

may have several dimensions; Crawford et al. (1994) reported on students’ conceptions
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of mathematics and how it is learned (discussed in more detail in Section 3.3.2). In such

cases, the outcome space is formed by combining the dimensions.

Some researchers have formed dimensions of variation from data sources that were not

empirical studies with students, such as the historical emergence of a concept (Renström

et al., 1990), or teaching experiments (Neuman, 1997). It is therefore not always the

case that a dimension must be remarked upon by the students in the study in order to

be included, although phenomenographic researchers attempting to ground their results

in their data may consider extensive use of results from outside the study as bringing

into question the validity of such research.

3.3.2 Previous research exploring dimensions of variation

This subsection consider how authors have presented dimensions of variation in published

phenomenographic studies. It concentrates on studies within mathematics and science

education literature to date, at the cost of excluding research in some areas, for instance

studies that have been conducted in the field of medicine such as Larsson and Holström’s

(2007) study on anaesthesiologists’ understanding of their work.

Variation in students’ approaches to learning

Some of the earliest studies that could be described as phenomenographic took place

before the theoretical framework of phenomenography had taken shape. Studies include

those looking at students’ reading of texts (Marton, 1975; Marton and Säljö, 1976; Svens-

son, 1977). These and other studies concerned with students’ approaches to learning

(both from phenomenography and other theoretical frameworks such as Yorke’s (2006)

social-cultural account) evolved into the well-known deep learning and surface learning

distinction that is used commonly used in educational literature (this distinction was

discussed in subsection 2.1.1). Marton (1975) gave students a passage of text to read,

and then asked them to outline what that thought the meaning of the text was. Besides

the partition of subjects into those that displayed deep and surface processing of the

text, the paper’s results section presented two dimensions of variation1: the object of

1The paper does not refer to these as dimensions of variation because it predates the formation of
phenomenography.
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focal attention, and the agent of learning. Within each dimension of variation there were

two categories, each of which was hierarchically ordered:

Object of focal attention

• What is signified (what the object is about)

• The sign (the discourse itself, or the recall of it)

Agent of learning

• Active processing (the subject being the agent of learning)

• Passive processing (the subject not being the agent of learning)

(adapted from Marton, 1975, p.276)

In a more recent study, Vermunt (1996) observed within a phenomenographic framework

what students actually did to learn, which is slightly different to their approach to

learning. The students interviewed were from a variety of different degree programs and

were of a wide variety of ages, all registered on degree courses at the Open University.

Four learning styles were identified (1) undirected learning style, (2) reproduction directed

learning style, (3) meaning directed learning style, and (4) application directed learning

style. Further description of these categories is outside the scope of this exposition,

but it is interesting to note that Vermunt did not comment whether the categories are

hierarchically related in terms of their sophistication, although the nomenclature of the

learning styles implies this may be the case.

In the field of mathematics education, Crawford et al. (1994) gave 300 beginning uni-

versity students a questionnaire consisting of five open-ended questions on the students’

conceptions of mathematics and their approaches to studying it. Twelve students were

selected for an in-depth structured interview in order to clarify their written statements,

and after a phenomenographic data analysis (see next section) they reported several

dimensions of variation including the one reproduced in this section as Table 3.1. This

contains students’ approaches to learning mathematics, moving from an aim of repro-

duction to understanding.
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Table 3.1: Categories of the responses for students’ approaches to learning mathe-
matics (Crawford et al., 1994, p.337)

Category

A. Learning by rote memorisation, with an intention to reproduce knowl-
edge and procedures

B. Learning by doing lots of examples, with an intention to reproduce
knowledge and procedures

C. Learning by doing lots of examples with an intention of gaining a
relational understanding of the theory and concepts

D. Learning by doing lots of difficult problems, with an intention of gain-
ing a relational understanding of the entire theory, and seeing its rela-
tionship with existing knowledge

E. Learning with the intention of gaining a relational understanding of
the theory and looking for situations where the theory will apply

Variation relating to students’ view of the concept itself

The studies in this section have a slightly different approach to those reported in the

last. Rather than taking a phenomenographic approach to study students’ concepts of

what it means to learn and how they go about learning a concept, the researcher focuses

the students’ attention on a particular concept or object. Studies which do this vary in

how precise the topic under discussion is, ranging from the very general “what do you

think mathematics is?” (Crawford et al., 1994, p.335), to a more focused approach on a

specific mathematical question (Watson and Mason, 2006). Both the studies cited here

are discussed in more detail later in this section.

An example of a study with a specific focus is Renström et al.’s (1990) exploration

of students’ conceptions of what matter is, (see Figure 3.1 for a reproduction of their

outcome space representation). Although the study is not mathematics-related it is

included in this chapter for two reasons. The first is that the authors used a combination

of methods in the study; not only did they interview twenty secondary school students,

but they also used insights gained from the other research and the history of science. The

second is that the outcome space they eventually present does not have linear dimensions.

This is unusual, and reflects a judgement made by the researchers that there are two

distinct ways of experiencing matter which are more or less equally sophisticated.

From mathematics education, another part of Crawford et al.’s (1994) study looked at

the beginning undergraduate students’ conceptions of mathematics, which can be found
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Figure 3.1: Students’ conceptions of matter. The dimension of variation in the inter-
nal structure of each conception is indicted in the boxes. (from Renström et al., 1990,

p.558).

in Table 3.2. This dimension was linear and hierarchically structured.

A study which focussed on students’ experiences of a much narrower topic than the whole

of “maths” was conducted by Watson and Mason (2006). They produced a task where

different groups of inservice and preservice teachers explored the set of points which are

the same distance apart using taxi-cab geometry, i.e. implicit use of the metric

d : R2 × R2 → R d ((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|

The task began by giving the teachers a list of points which were 3 units from the point

A = (−2,−1), and asking them to both plot the points calculate the distances from
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Table 3.2: Categories of the responses for students’ conceptions of mathematics (from
Crawford et al., 1994, p.335)

Category

A. Maths is numbers, rules and formulae
B. Maths is numbers, rules and formulae which can be applied to solve

problems
C. Maths is a complex logical system; a way of thinking
D. Maths is a complex logical system which can be used to solve complex

problems
E. Maths is a complex logical system which can be used to solve complex

problems and provides new insights used for understanding the world

A (it was not stated that they were all the same distance apart). Watson and Mason

observed different types of variation which they did not report diagrammatically but

rather than in descriptive form. These are paraphrased as:

• Variation in the order the teachers approached the list of points. Some plotted

the points to begin with, some calculated each individually then plotted, and some

calculated and plotted each point in turn. Regardless of the approach, almost all

began to make generalisations early on.

• Variation in the aspects of the task the teachers reflected on. Most made conjec-

tures about which points may be 3 units away, and each successive example jolted

them into thinking about other points which may not have fitted in with their

sense of pattern. Some operated at a higher level; comparing the points with the

Euclidean circle, asking themselves “why this A?” and “why 3?”

In the main study of this thesis, dimensions of variation that are related to students’

view of sequences and sequence generation will include students’ awareness of:

• The status and use of a formal mathematical definition (see Section 6.2)

• The way a sequence can be represented (see Section 6.3)

• The strategies used to generate sequences (see Section 6.4)

• The way students justify their answers (see Section 6.5)
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Variation in teachers’ awareness

In the previous sections, and throughout the chapter, the word student has been used

in relation to the individuals whose awareness of variation is being studied, and this is

because student understanding is the focus of my research. Phenomenographical studies

do not always have the student as their focus however. Some researchers interview

and observe teachers of mathematics, exploring their awareness of the different types

of questions they use within a teaching context, and the outcome space consists of the

dimensions of possible variation within the question types. Papers by Al-Murani (2006)

and Runesson (1999) have taken this focus; such papers are not discussed in any further

detail in the thesis.

3.4 Methods in phenomenography

The methodological assumptions of phenomenography are deliberately unclear. Marton

and Booth (1997, p.116) state that it has “the object of research as its only defining

attribute, and not methods and theories.”

Perhaps as a consequence, until recently there has been little guidance in the phenom-

enography literature to aid a researcher in data collection and analysis. For example a

book with the aim of describing phenomenography as a research specialism, the 224–

page “Learning and Awareness” by Marton and Booth (1997), devotes fewer than ten

pages to data collection and analysis. More recently, Åkerlind (2005c) has compared

different authors’ phenomenographic methods, and Bowden and Green (2005) have re-

leased a methods-based book based on their interpretation of phenomenography. Much

of what follows in this section is drawn from these two accounts, together with literature

written for qualitative studies more generally.

3.4.1 Data collection

In phenomenography, data must be gathered to investigate others’ ways of experiencing

a concept, unlike, say phenomenology, where philosophers might primarily investigate

their own experiences (Marton and Booth, 1997, p.116). There are only a certain number

of ways of collecting such data, and most authors agree that the most common is to
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interview students (Entwistle, 1997; Fleming, 1986; Green, 2005; Säljö, 1997). The data

in this case are records of the interview, audio and video recordings, field notes and

and materials used in the interview. Other approaches to data collection include use of

questionnaires (Åkerlind, 2005a), and attempts to use more naturalistic situations, such

as Lybeck’s (1981) account of students learning about the concept of density in physics

by observing students’ interactions with each other and the teacher in a classroom. In

this main study presented by this thesis (see Chapters 5 and 6), data is gathered from

task-based interviews, and so this section will only consider the methods of interview-

based studies.

In a book chapter reflecting on phenomenographic research, Bowden and Green (2005)

noted that before conducting interviews there were many questions that a phenomenog-

rapher needs to answer including: Whom to interview?, How many to interview?, What

kinds of questions to ask and what comments to make?, When to begin the analysis?

Such questions are answered for the main study’s task-based interviews in Section 5.2.

What follows in this subsection is a brief discussion of what authors have written about

the methodology of task-based interviews.

It was noted in the last section that some variation theory studies have used tasks

in an interview situation (Asghari, 2004; Watson and Mason, 2004). There are fewer

phenomenographic studies that give students a task during interviews (Marton, 1975, is

an example of such a study). The lack of studies may be the result of a belief that a

task-based interview is seen as overly constrictive when a researcher wishes to explore

a student’s experience of a concept. In the main study in this thesis, I have found

that using an example generation task is a good middle ground; it functions to steer

a student’s experiences towards the mathematical object under study, but still allows

flexibility in possible responses and the resulting discussion.

Similar to all interview research, in task-based interviews there are certain considerations

to take into account, such as choosing an appropriate structure of the interview, and

which questions to ask (Bryman, 2004). The questions asked to students during a task-

based interview can be separated into two types: those that are asked as part of the task

itself and those asked when students are asked to reflect on the task. A researcher may

choose to ask the reflective questions during the task itself (at the risk of influencing the
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student’s thinking during the task), or after the task phase of an interview (at the risk

of a student forgetting their thoughts during the task).

The questions asked as part of the task itself are usually pre-determined and the same

for all students, and so a good pilot study will help construct a suitable set of questions

(Bowden, 2005, p.19). The pilot study reported in this thesis in Chapter 4 found which

questions were answered well, badly, and not at all, and this was taken into account when

planning for the main study (see Chapter 5). Reflective questions are usually asked in

the form of a semi-structured series Goldin (1997). In such a series of questions, there is

a pre-determined framework of themes to be explored but not a strict list of questions

to be followed (as would be the case in a structured interview). Goldin (1997, p.53)

argues that the chief reasons for such an approach are the flexibility of being able to

pursue different approaches depending on what takes place during the interview and

reproducibility in terms of the themes addressed. The form of questioning taken in

the main study was that of a conversational interview focused around the student’s

interaction with the example generation task (Patton, 2002).

Another issue associated with interviewing students in a task-based interview is the

effect of the interviewer’s instruction and prompts on the student’s actions (Koichu and

Harel, 2007). Authors do not agree if accurate reports will be produced when a student

is requested to ‘think-aloud’; Ericsson and Simon (1980) claim that such reports will

be representative, while other authors such as Fleming (1986) argue that students may

not wish to be truthful about their actual thoughts to an interviewer. When using a

think-aloud protocol, an interviewer may decide to prompt the student with variations

of the question “what are you thinking about?” after a long period of silence (Koichu

and Harel, 2007). Such prompts may be interpreted by the student that their last answer

was incorrect, or otherwise disturb their thinking. There is not much that can be done to

reduce this, although if there is a long silence an interviewer can time their interruption

to not coincide with the student immediately finishing a question.

3.4.2 Data analysis

As described above, the data from an interview-based phenomenographic study consists

of the records of the interviews. In a task-based interview such as the ones conducted as

part of my main study, these records may also include students’ answers to the tasks, and
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records of the comments students made when completing the task. During data analysis,

a researcher takes these snapshots of the possible ways to experience the concept, and

attempts synthesise the salient features of students’ awareness in terms of categories of

description, which then can be formed into dimensions of variation. This subsection

outlines how phenomenographers do this by coding the interview transcripts for salient

features and then combines similar codes to form categories of description, which in turn

are compared in dimensions of variation. Specifics on the data analysis procedure of the

thesis’s main study can be found in Section 5.4; what follows here is a more general

account.

Transcription

The considerations when transcribing interviews are similar to those for other non-

phenomenographic studies, as outlined by authors such as Ochs (1979) and Poland

(2001). Some considerations, such as transcribing the comments of multiple students

are not applicable to my research, but considerations such as not accidentally rephrasing

sentences and phrasing structures, and the inability of a transcript to completely reflect

the social process of a conversation Fleming (1986), will be kept in mind when the

transcription protocol of the thesis’s main study is outlined in subsection 5.3.3.

Coding

The coding of transcripts in phenomenographic data analysis are similar to those of

grounded theory (Richardson, 1999), in that the categories of description emerge ‘bottom

up’ from the data rather than a ‘top down’ approach where hypotheses are constructed

and deduced (Green, 2005). Transcripts are usually focused on both individually and

as a whole set (Åkerlind, 2005c); a phenomenographic researcher is trying to compare

the different ways students experience the concept so it is important to keep perspective

between different students’ accounts (Marton and Booth, 1997).

Such a coding scheme has much in common with Glaser and Strauss’s (1967) grounded

theory approach to qualitative data analysis, where a constant comparative analysis

is made between different individuals or groups of people by first labelling data with

codes, then grouping those codes into similarly themed concepts, then grouping similar
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concepts into categories which are then used to generate a theory explaining the subject

of the research. After Glaser and Strauss ended their collaboration they disagreed on

the best way to ‘do’ grounded theory data analysis (Glaser, 1992; Strauss and Corbin,

1988), in particular if the codes generated from the data will always interact in the same

way. Glaser’s interpretation of the grounded theory does not allow the categories which

result from the coding to have a predefined general structure:

The analyst has no idea that “dimensions,” merely one of many theoretical

coding families, is, before emergence, the most relevant. (Glaser, 1992, p.46)

The above quotation is in the context of a severe criticism of Strauss and Corbin’s

(1988) approach to grounded theory (rather than phenomenography), but I have little

doubt that Glaser would hold similar opinions towards phenomenography’s dimensions

of variation. So although in practice there is much in common between a grounded

theory approach to data analysis and a phenomenographic one, it is not clear that ‘the

method of grounded theory’ can be lifted wholesale and used in a phenomenographic

study.

Åkerlind (2005c) has reported on the methods used by phenomenographers to decide

which parts of the data should be coded:

Utterances found to be of interest for the question being investigated. . . are

selected and marked. The meaning of an utterance occasionally lies in the

utterance itself, but in general the interpretation must be made in relation

to the context from which the utterance was taken. (Marton 1986, as cited

in Åkerlind, 2005).

I have in the back of my mind the question ‘What does this tell me about

the way the student understands [the phenomenon under study]?’ In other

words, what must [the phenomenon] mean to the student if he or she is saying

this or that? (Bowden, 1994, as cited in Åkerlind, 2005).

Codes therefore attempt to pick out parts of a transcript which the researcher finds

particularly representative of the extract, or that are otherwise salient to the research.

Marton and Booth (1997) note that it is particularly important for a researcher to
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‘bracket’ their own views and attempt to read the extract in the same way as the

student intended it. Researchers must not treat the whole interview as representative

of a single conception, but be open to the possibility that different conceptions may

manifest themselves at different times (Bowden, 2005).

There may appear to be a discrepancy between bracketing data and the general method

of constant comparison within grounded theory. I believe there to be no such dis-

crepancy because interpretation of an utterance and comparison with other utterances

are isolated in phenomenography. This is because when comparing utterances, the re-

searcher assumes the previous interpretation is a possible way for a student to experience

the concept, rather than seeking certainty that the student is actually experiencing the

concept in the way believed.

What this means for the main study’s data analysis (see Section 5.4 for a complete

description) is that the initial open-coding will be focused on interpreting individual

utterances. After this when forming categories of description by comparing similarly-

coded utterances, alternative explanations for the meaning of utterances are bracketed.

Once the categories of description and dimensions of variation are formed, then the

original meaning of utterances can be reconsidered.

Forming categories and dimensions of variation

Åkerlind (2005c) quotes a passage from Prosser, explaining how a research assistant

began to form categories from the data:

[The research assistant] was asked to read through the whole set of tran-

scripts. . . several times until she felt she was reasonable familiar with them.

She was then to try to construct a set of categories which she felt encom-

passed her perceptions of what the students were trying to say. She then

went back over the transcripts, adjusted the categories, and cycled between

the categories and the transcripts until she felt she had a reasonably stable

set of categories. (Prosser, 1994, p34, cited in Åkerlind, 2005)

From this quotation it is not at all clear how categories of description were generated

from the coded transcripts. Such an account tends to suggest that categories were formed
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for each transcript and then compared between transcripts. Other accounts of category

formation report creating pools of similar meaning that are decontextualised from the

transcript, with categories forming from these pools of meaning (Åkerlind, 2005c).

It is important to remember therefore that once categories of description are arrived at,

one must still take notice that they are based on different parts of different interviews

and so are independent from the interview transcripts and interviewees. Svensson (1997,

p.170) notes that “what counts as the ‘same’ conception may be expressed in many

linguistically different ways and what counts as different conceptions may be expressed

in a very similar language.”

Structural links between categories of description are then examined, and the relative

sophistication of related categories is compared forming a hierarchical dimension of vari-

ation (Green, 2005; Marton and Booth, 1997). In this thesis the dimensions of variation

are reported in Chapter 6, and specific details of the data collection and analysis methods

are given in Chapter 5.

3.5 Criticisms of phenomenography

3.5.1 Validation and Reliability

Questions as to the validation and reliability of phenomenographic research originate

both from outside and within the specialism. As with all qualitative research it is open

to questions related to descriptive and interpretative validity, in other words to what

extent has the data collection and analysis process resulted in an accurate refection of

the students’ experiences. As Maxwell (1992) notes:

Not all possible accounts of some individual, situational, phenomenon, ac-

tivity, text, institution, or program are equally useful, credible or legitimate.

. . . validity is always relative to, and dependent on, some community of in-

quirers on whose perspective the account is based. (Maxwell, 1992, p.284)

However, when taking a phenomenographic approach towards data analysis the re-

searcher is looking for possible dimensions of variation, rather than a set of dimensions
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of variation which most accurately describe the interviews the researcher has conducted.

This second-order approach means that descriptive and interpretative validity are there-

fore alleviated to a certain extent (although they can never be ignored; it is not as if a

phenomenographic account with fictional data can be in any way valid), but theoretical

validity and generalizability are extenuated as a result of this.

Åkerlind (2005c) notes two types of validity checks that are commonly practiced within

phenomenography research. Communicative validity checks involve checking whether

the resulting outcome space resonates with others. This may include the “research

community, the individuals interviewed2, other members of the population represented

by the interview sample, and the intended audience for the findings” (Åkerlind, 2005c,

p.330). Pragmatic validity checks are where the researcher checks if the results are

meaningful and useful for their intended audience. This is perhaps the most useful

measure of validity; Entwistle writes that

for researchers in higher education, however, the test is generally not [phe-

nomenography’s] theoretical purity, but its value in producing useful insights

into teaching and learning. (Entwistle, 1997, p.128)

In this thesis, Chapter 7 presents an inter-coder validation exercise that explores the

communicative and pragmatic validity of the main studies’ dimensions of variation.

Ensuring reliability in a phenomenographic account is similar to that of any qualitative

research. It is important that the interpretation of data has been consistent and of

quality. Methods such as audit trails can be used, where the researcher identifies the

processes of analysis so that the results are consistent with the data (Cohen et al.,

2007, p.149). Other techniques include coder reliability checks, where two researchers

independently code all or a sample of interview transcripts, and dialogic reliability checks

where agreement between researchers is reached through discussion and mutual critique

of the data (Åkerlind, 2005c, p.331).

2It is inappropriate however to seek feedback on a utterance-by-utterance level from interviewees,
for there is no claim that an utterance represents a category of description within a dimension of
representation and so the “interpretation or categorisation of an individual interview cannot be fully
understood without a sense of the group of interviews as a whole”(Åkerlind, 2005c, p.331).
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3.5.2 The theoretical position taken

This subsection discusses general criticisms with the theoretical position of phenom-

enography. A general criticism is that the second-order stance taken does not banish

ontological and epistemological issues in general, but merely moves them to a different

arena. If the first-order methodological criticisms related to the nature of the concept

are avoided by concentrating on students’ experiences of the concept, then second-order

criticisms remain, namely the likely inconsistency between students’ experiences of a

concept, their reports of these experiences, and interpretations of the reports of these

experiences. This argument is summarised by Ericsson and Simon (1980), and Säljö

(1997):

[verbal reports of thinking] cannot be relied on to produce data stemming di-

rectly from the subjects’ actual sequences of thought processes. . . the variety

of inference and memory processes that might be involved in producing the

reports make them extremely difficult to interpret or to use as behavioural

data (Ericsson and Simon, 1980, p.221)

It is doubtful if and in what sense the interview data generated in much of

the empirical work within this tradition can be assumed to refer to ‘ways of

experiencing’, the core object of research in phenomenography. (Säljö, 1997,

p.173)

What a researcher can do is observe and analyse students’ accounts of reflections on

a way of experiencing a phenomena. The researcher then attempts to bracket their

own ideas and conceptions during a period of analysis, eventually forming dimensions

of variation from categories of description generated from these accounts. From my

literature search, it is more common for phenomenographic accounts to not claim that

the individuals from their study are located “on” a particular dimension of variation,

but rather that it is possible to be aware of a concept in a way typified by a category of

description. In other words, a way of experiencing a concept is something different to

the theoretically constructed outcome space.
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When we talk about “a way of experiencing something” we usually do so in

terms of individual awareness. When we talk about “categories of descrip-

tion” [i.e. dimensions of variation] we usually do so in terms of qualitatively

different ways a phenomenon may appear to people of one kind or another.

(Marton and Booth, 1997, p.128)

This does bring into question the validity and generalisability of results; there is always

the danger that the eventual categories of description and dimensions of variation are

reflections of the researcher’s own ideas. This danger, however, is present with every

qualitative approach to social research (Bryman, 2004). In Section 5.5, there is a more

focussed discussion as to how these methodological issues relate to the main study’s data

collection and analysis procedures.

3.6 Summary of chapter

Studies which use the methodology of phenomenography aim to describe the variation in

how students experience a concept, and ask questions such as which ways to experience

a concept make people able to handle it more and less efficiently. To learn, or to improve

one’s understanding of a concept is then defined to be an an increase in awareness of

the possible variation.

Phenomenography maintains two assumptions. First, that research should be approached

by considering second-order descriptions (i.e. students’ own accounts of their experi-

ences) and second, that a researcher focuses only on aspects of a concept that a student

focuses on, bracketing their own values and judgements. A Phenomenographer then

attempts to describe the range of possible ways to experience a concept by grouping

these descriptions first into categories of description, then similar categories of descrip-

tion from least to most sophisticated in a dimension of variation. The outcome space,

which consists of the dimensions of variation, then outlines the different possible ways

students may experience the concept.
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Pilot Studies

This chapter presents findings from two exploratory pilot studies conducted early on in

my research. These pilot studies were conducted and analysed before the framework of

phenomenography, or the research questions of the thesis had been decided upon, and

so the chapter’s findings are not presented within a phenomenographic framework. The

studies do, however, still provide evidence as to how students interact with the example

generation of sequences, and so data from these studies will be used when answering the

the first research question in Chapter 9.

The chapter is more autobiographical in tone compared with others in the thesis. It is

an account describing the development of my thinking, and also of the evolution of an

example generation task, a version of which will be used as the basis of the task-based

main interview study. It presents some of the answers given by students taking the task,

and reflects on their possible concept images and spontaneous conceptions.

In Section 4.1 the first version of the task is described in conjunction with its implemen-

tation as a quantitative pilot study. An analysis of the data from this first pilot study

follows, with a brief discussion of the outcomes of this study. Section 4.2 then describes

a modification of the task into a smaller scale example generation task conducted in

semi-structured interviews. A brief analysis of the data from this second pilot study

follows.

72
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4.1 First pilot study

Early on, the opportunity arose for me to give an example generation task to a class

of students who were beginning a module on introductory Real Analysis. All students

enrolled in this module had taken a class on Sequences and Series either one or two years

before, and sat an exam on the material. The initial format of the task was suggested

to me by my supervisor, who was the lecturer in the analysis module.

The primary aim of the task (and its subsequent analysis) was for me to obtain a large

quantity of data to explore the types of answer students give to an example generation

task on an area of mathematics they had seen before. The data analysis would be course-

grained, allowing me some insight into students’ concept images of real sequences, and

their example generation capabilities.

4.1.1 About the task

Participants

The first pilot study of the task was given to 101 undergraduates at Loughborough

University. 60 were second year single-honours mathematics students, 38 were third

year students on a joint maths degree, one student was a third year single-honours

student and two students declined to give their details. All but the third year single

honours student had taken a course entitled Sequences and Series in the previous year.

The intended content of Sequences and Series included: Key concepts of real numbers,

in particular supremum and infimum; the notion of convergence for sequences; algebra

of limits; monotone sequences; subsequences; Cauchy sequences; tests for convergence

of series; and absolute and conditional convergence. The lecture in which the task took

place was the first of the term, but the Analysis module specification and students’

module choice forms reminded students that the Sequences and Series module was a

prerequisite.

The task

The task had two stages:
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Stage 1.

A comprehensive reference sheet was distributed and the students were given five minutes

to re-familiarise themselves with the definitions it contained. Students kept this sheet

for the duration of the lecture. The reference sheet can be found in Figure 4.1 and some

discussion on the presentation of the definitions in Section 4.1.1.

Stage 2.

Next students were given the example generation task sheet, which asked them to give

examples of real sequences that satisfy certain combinations of properties, or to say that

the given combination of properties was impossible. This task sheet can be found in

Figure 4.2. The students had the rest of the lecture to complete this sheet (around 40

mins), and were reminded after fifteen minutes that they could use the definitions if

needed and to move on to a different question if they were stuck.

A comment on the presentation of definitions

There was a notable difference in the way definitions were presented in the Sequences

and Series course and in the definitions sheet. In the lecture notes from the course,

definitions were presented in a “wordy” way:

Definition 3.10 (divergence to infinity). The sequence sn is said to diverge to +∞, for

which we write sn → +∞, if, for every positive real number H, there exists real

number n0 such that for all n ≥ n0 we have sn ≥ H.

But in the definitions sheet the same definition was presented as:

Definition: (an) → ∞ (we say “(an) tends to infinity” or “(an) diverges to infinity”)

if and only if ∀C > 0, ∃N ∈ N s.t. ∀n > N , an > C.

The way definitions were presented in the task definition sheet was more formal in

style, but the two definitions are equivalent, and the students had seen mathematical

quantifiers and set symbols in other first-year modules such as Mathematical Thinking.

Furthermore, the lecturer felt it was desirable for the definitions to be introduced in this

style for the purposes of the Analysis module, where similar styles of definitions would

be the norm.
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Review of Sequences

Definitions

The definitions in the following list should be familiar to you from the course Sequences
and Series.

Remember that a sequence is a list of real numbers

a1, a2, a3, a4, . . .

where (an) denotes the whole sequence.

Definition: A sequence (an) is said to be increasing if and only if ∀n ∈ N,
an+1 ≥ an.

Definition: A sequence (an) is said to be strictly increasing if and only if ∀n ∈ N,
an+1 > an.

Definition: A sequence (an) is said to be decreasing if and only if ∀n ∈ N,
an+1 ≤ an.

Definition: A sequence (an) is said to be strictly decreasing if and only if ∀n ∈ N,
an+1 < an.

Definition: A sequence (an) is said to be monotonic if and only if it is increasing or
decreasing.

Definition: A sequence (an) is said to be bounded above if and only if ∃u ∈ R s.t. ∀n ∈ N,
an ≤ u.

Definition: u is said to be an upper bound for the sequence (an) if and only if ∀n ∈ N,
an ≤ u.

Definition: A sequence (an) is said to be bounded below if and only if ∃l ∈ R s.t. ∀n ∈ N,
an ≥ l.

Definition: l is said to be an lower bound for the sequence (an) if and only if ∀n ∈ N,
an ≤ l.

Definition: A sequence (an) is said to be bounded if and only if it is both bounded above
and bounded below.

Definition: (an)→ a (we say “(an) tends to a” or “(an) converges to a”) if and only if
∀ε > 0, ∃N ∈ N s.t. ∀n > N , |an − a| < ε.

Definition: A sequence (an) diverges if and only if it does not converge to any finite limit.

Definition: (an) → ∞ (we say “(an) tends to infinity” or “(an) diverges to infinity”) if
and only if ∀C > 0, ∃N ∈ N s.t. ∀n > N , an > C.

Figure 4.1: The definition sheet given to students in the first pilot study.
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Information about this task

This task does not form part of any assessment and will not affect any degree classifica-
tion awarded. The purpose of this task is to help us better understand the class’ knowledge
of sequences.

Sequences Review

Give an example of each of the following, or state that this is impossible. You may
write your sequence in any way you choose (e.g. using a formula or a list of numbers).

Q1. A strictly increasing sequence.

Q2. An increasing sequence that is not strictly increasing.

Q3. A sequence that is both increasing and decreasing.

Q4. A sequence that is bounded below, but not above.

Q5. A sequence that has neither an upper bound nor a lower bound.

Q6. A decreasing sequence that is bounded below.

Q7. A monotonic sequence that is not bounded below.

Q8. A bounded, monotonic sequence.

Q9. A monotonic sequence that has neither a lower bound nor an upper bound.

Q10. A non-monotonic sequence that has neither a lower bound nor an upper bound.

Q11. A sequence that converges to 100.

Q12. A sequence that converges to two different limits.

Q13. A convergent sequence which is not monotonic.

Q14. A sequence that tends to minus infinity.

Q15. A sequence that tends to minus infinity and is not monotonic.

Q16. A strictly increasing sequence that does not tend to infinity.

Q17. A sequence that tends to infinity and is not increasing.

Q18. A sequence that tends to infinity, of which infinitely many terms are 0.

Q19. A divergent, bounded sequence.

Q20. A divergent sequence that is not bounded.

Figure 4.2: Questions on the first pilot study’s task sheet. The actual sheet had gaps
between questions.
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Possible answers to the example generation questions

Below are possible answers to each of the questions, with a brief explanation to the types

of sequences which satisfy the properties.

Q1. A strictly increasing sequence.

This condition is satisfied if each subsequent term is higher than the last, for in-

stance (an) = n

Q2. An increasing sequence that is not strictly increasing.

Here, each subsequent term must be greater than or equal to the last, for instance

(an) = 1, 1, 2, 3, 4, . . .

Q3. A sequence that is both increasing and decreasing.

The only sequences satisfying this question are constant sequences, for instance

(an) = 1

Q4. A sequence that is bounded below, but not above.

Here, sequences such as (an) = n are fine

Q5. A sequence that has neither an upper bound nor a lower bound.

A typical answer to this question might be (an) = n(−1)n

Q6. A decreasing sequence that is bounded below.

The sequence must converge from above, for instance (an) = 1/n

Q7. A monotonic sequence that is not bounded below.

Here, we can have a sequence that is decreasing and not bounded below such as

(an) = −n

Q8. A bounded, monotonic sequence.

The sequence must either be constant or converge, for instance (an) = 1/n

Q9. A monotonic sequence that has neither a lower bound nor an upper bound.

The combination of properties requested is impossible

Q10. A non-monotonic sequence that has neither a lower bound nor an upper bound.

Any correct answer to Question 5 will work here
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Q11. A sequence that converges to 100.

The constant sequence (an) = 100 is fine

Q12. A sequence that converges to two different limits.

Impossible

Q13. A convergent sequence which is not monotonic.

This can be satisfied by a sequence which oscillates around a number with decreasing

magnitude such as (an) = (−1)n
n , or by a sequence such as (an) = 1, 0, 1, 1, . . .

Q14. A sequence that tends to minus infinity.

Here, a sequence such as (an) = −n is fine

Q15. A sequence that tends to minus infinity and is not monotonic.

A sequence such as (an) = 1, 0, 1, 0,−1,−2, . . . satisfies this question

Q16. A strictly increasing sequence that does not tend to infinity.

The sequence must converge, for instance (an) = −1/n

Q17. A sequence that tends to infinity and is not increasing.

Here, there must be at least one pair of terms that decrease, (an) = 1, 0, 1, 2, 3, . . .

works

Q18. A sequence that tends to infinity, of which infinitely many terms are 0.

This is impossible

Q19. A divergent, bounded sequence.

Here the sequence must not converge, so (an) = (−1)n is fine

Q20. A divergent sequence that is not bounded.

Any answer to Question 5 also satisfies this question

4.1.2 Data analysis

In keeping with the exploratory nature of the pilot study I began by reading through the

task sheets returned by the students. There was a large volume of data; 101 students

had answered 20 questions and of the 2,020 possible responses only 30% of questions

were left blank (for a more detailed breakdown per question see Figure 4.3).
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Difficulty of questions

The first analysis I made was an attempt to gauge which questions were more difficult

than the others. If I were attempting to determine relative difficulty of the questions

now I would have used a Rasch Analysis (see Chapter 8), but with this dataset I just

considered the proportion of correct answers.

I went through each sheet marking the tasks as if they were a class assignment, marking

them correct (C), incorrect (I) or not attempted/blank (B). Figure 4.3 gives a breakdown

of this coding for each question on the task. There was a degree of interpretation here;

minor slips of notation were overlooked, but the scripts were generally marked harshly

(for a more detailed discussion of the marking of scripts see Section 4.1.4).

The difficulty of a question was calculated by considering the number of students that

answered a question incorrectly. In such a calculation, it is unclear if blank answers

should be counted as incorrect; if a student leaves a question blank perhaps they at-

tempted it and couldn’t give an answer, or perhaps they did not have sufficient time to

complete the question. There are two metrics that take these perspectives into account,

d1 and d2.

The first metric, d1(i), gives the proportion of students who did not correctly answer

Question i, which assumes that a blank answer represents a student not being able to

answer a question:

d1(i) =
#Ii + #Bi

101

where Ii are those students incorrectly answering Question i and Bi are those students

leaving Question i blank.

The second metric, d2(i), gives the proportion of students answering Question i incor-

rectly from those who attempted the question. This metric assumes that blank answers

are due to a student not having time to attempt the question:

d2(i) =
#Ii

#Ii + #Ci

where Ii are those students incorrectly answering Question i and Ci are those students

correctly answering Question i.
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Table 4.1: Difficulty metrics for each question. Higher numbers correspond to more
difficult questions.

Qn Difficulty
#I+#B

101
#I

#I+#C

1 0.03 0.03
2 0.55 0.43
3 0.87 0.86
4 0.24 0.15
5 0.72 0.67
6 0.47 0.33
7 0.59 0.48
8 0.68 0.57
9 0.72 0.59
10 0.75 0.55
11 0.57 0.37
12 0.67 0.52
13 0.90 0.78
14 0.24 0.13
15 0.95 0.91
16 0.86 0.77
17 0.97 0.95
18 0.76 0.41
19 0.80 0.67
20 0.68 0.41

Each metric gives the difficulty of a question as a value 0 ≤ d ≤ 1, with more difficult

questions having a difficulty value closer to 1. The metrics were calculated for each

question and are presented in Table 4.1. Unsurprisingly there is a significant positive

correlation between these two metrics, r = .942, p < .01, which indicates that the choice

of how to treat a blank answer is arbitrary. For the remainder of the chapter I shall use

the first metric (answers that were not correct as a proportion of all answers).

Based on this metric, the most difficult questions (with first metric difficulty in brackets)

were, in order:

Q17. A sequence that tends to infinity and is not increasing (d1(17) = 0.97)

Q15. A sequence that tends to minus infinity and is not monotonic (d1(15) = 0.95)

Q13. A convergent sequence which is not monotonic (d1(13) = 0.90)

Q3. A sequence that is both increasing and decreasing (d1(3) = 0.87)
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Q16. A strictly increasing sequence that does not tend to infinity (d1(16) = 0.86)

It can immediately be seen that four of these questions (17, 15, 13, and 16) involve

combining definitions which focus on different aspects of a sequence. Some properties,

such as increasing, decreasing, and monotonic compare terms pairwise across the entire

sequence. Other properties, such as tending to infinity, focus on the long term behaviour

of the sequence. It is not obvious why these particular combinations may cause more

difficulties than other combinations which mix local and longer term properties, such

as Q7. A monotonic sequence that is not bounded below. The issue of combining local

and longer term sequence properties successfully is discussed in more detail in the main

study, Section 6.1.

Analysis of individual questions

I then went through each question looking at the students’ responses in an attempt to

explore the incorrect responses given to the most difficult questions. I made a log of the

different answers students gave, and wrote brief reflective essays on each question on the

task.

During this process of reflection, I decided that within the incorrect answers there were

two qualitatively different types of answer. There were answers which were sequences

that did not possess all the properties required by the question, and those answers

which weren’t sequences. These non-sequence responses often had properties which

were similar to the properties specified, such as an answer which gave an unbounded set

when an unbounded sequence was requested.

I then extended my initial categorisation of answers (C/I/B) into four categories by

partitioning the incorrect answers into the two types I had observed. The second coding

scheme is given in Table 4.2. This coding scheme is used for the remainder of this thesis.

As with the previous categorisation, there was a degree of interpretation as to whether

an answer is actually intended to be a function f : N → R or not. The answers at this

stage which were most difficult to code were examples written as functions f : X → R

where the set X was not stated, or otherwise ambiguous. Section 4.1.4 discusses the

methodological issues of this ambiguity.
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Table 4.2: Categorisation scheme for responses to the first pilot study.

Code Description

C Correct
Answers which were correct.

B Blank
No answer was given.

IS Incorrect sequence
An incorrect answer given in the form f : N → R, or one that could
reasonably be interpreted as such.

INS Incorrect non-sequence
Other incorrect answers

Analysis focusing on IS and INS sequences

Only questions which had a high proportion of incorrect responses were recoded to the

(C/B/IS/INS) categorisation. As explained in Section 4.1.2, my focus at this stage

was towards the type of answers students gave to the more difficult questions, and so I

recoded the five questions with the highest proportion of incorrect answers relative to

the metric d1, Questions 17, 15, 13, 3 and 16.

I also looked in more detail at a further question that, based on my reflective log on

each question, had many interesting INS responses.

Q9. A monotonic sequence that has neither a lower nor an upper bound (d1(9) = 0.72);

Within these six questions, three had a large number of incorrect responses because the

majority of students attempting the question stated that the combination of properties

requested were impossible. These were questions 15, 16, and 17. I shall first discuss

these three questions, and then consider the ones remaining.

Analysis of Questions 15, 16, and 17

Questions 15, 16, and 17 were:

Q15. A sequence that tends to minus infinity and is not monotonic.

Q16. A strictly increasing sequence that does not tend to infinity.
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Q17. A sequence that tends to infinity and is not increasing.

Table 4.3: Breakdown of answer types for Questions 15, 16 and 17.

C B IS INS “Impossible”

Question 15 5 44 6 14 32
Question 16 14 40 9 12 26
Question 17 3 39 14 5 40

A breakdown of the answer types for each of these questions is given in Table 4.3. These

three questions could be considered to be targeting standard misconceptions within

sequences, such as the idea that a strictly increasing sequence must tend infinity. A task

such as this one does not provide any evidence why many students thought Questions 15

and 16 were impossible, and also why many students did not attempt these questions,

but there are similar features between the three questions. I briefly comment on these

features here, leaving further discussion to later chapters).

• The general comments made at the end of Section 4.1.2 regarding different defi-

nitions focusing on different aspects of the sequence also resonates here. Proper-

ties such as increasing and monotonic involve comparing sequences term-by-term,

whereas a property such as tending to infinity relies on considering the long-term

behaviour of a sequence. If a student tries to consider the term-by-term proper-

ties as long-term then perhaps the properties become impossible. For instance, a

long-term version of increasing may mean ‘going up’ to some extent. With such

a meaning, the combination of properties requested by Questions 15, 16, and 17

will appear to be impossible.

• All three questions rely on negating a property, and research suggests that students

find this particularly difficult (Antonini, 2001; Evans and Handley, 1999). If the

students in question are not formally negating the definitions, it may well be

the case that they are instead taking the opposite of an everyday meaning of a

property. For instance, the opposite of the everyday meaning of increasing may be

considered to be decreasing, and it is correct that there is no decreasing sequence

which tends to infinity.
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Analysis of Questions 3, 5, and 9

The remaining three questions had varying proportions of IS and INS answers (see

Table 4.4 for a breakdown), and I now discuss the responses to each of these questions

in more detail.

Questions 3, 5, and 9 were:

Q3. A sequence that is both increasing and decreasing.

Q5. A sequence that has neither an upper bound nor a lower bound.

Q9. A monotonic sequence that has neither a lower bound nor an upper bound.

Table 4.4: Breakdown of answer types for Questions 3, 5, and 9.

C B IS INS “Impossible”

Question 3 13 8 52 7 21
Question 5 28 17 24 31 1
Question 9 28 33 21 19 as C

In Questions 3, 5, and 9 a large proportion of the responses given were not correct.

Many student gave sequences that did not have the required properties and, on the

whole, these IS responses were not wholly unreasonable. Many were sequences that did

not have all of the required properties but did have some of these. For instance two

students gave sequence

(an) = (−2)n

as an answer to Question 9. This sequence has neither a lower nor an upper bound,

though it is not monotonic. Answers of this type are perhaps to be expected as students

may attempt to give an appropriate answer but be unable to find one that satisfies all

the requirements simultaneously.

Less expected was the large number of responses that were not infinite sequences of

real numbers, though typically these INS responses did not appear to be arbitrary. For

instance, as a response to Question 5, eight students gave the answer

(−∞,∞)
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and five students gave the double-sided sequence

−∞, . . . ,−1, 0, 1, . . . ,∞

These answers, together with sixteen given in standard set notation (R, Z, n3 ∀n ∈ R,

etc.) are indeed unbounded, and a generous interpretation might allow that answers such

as may be thought of as monotonic in some sense also. It seems that in a typical INS

response, the definition of a sequence is violated (specifically changing its domain) in

order to fit the other properties, rather than violating the other properties while keeping

the primary one of being a sequence. This result echoes that of Dahlberg and Housman

(1997), who reported that that some students modify or reinterpret the meaning of a

concept if they are unable find examples to satisfy it.

With hindsight, this large number of INS responses is perhaps not so surprising. Stu-

dents will typically see a formal definition of a sequence early in their Sequences and

Series course, but this definition may not be reiterated or used explicitly in subsequent

reasoning. So, although it is alarming that students may reach the end of such a course

without having internalised the idea that ‘sequence’ means ‘infinite real one-sided se-

quence’ in this context, it is understandable if they are unable to maintain sufficient

control to exclude examples of other, related objects (series, sets etc.).

4.1.3 Ethical considerations in the first pilot study

When designing the first pilot study ethical issues were first addressed by completion of

the Loughborough University’s ethical clearance checklist. No facet of the pilot study

required clearance from the ethical advisory committee. Possible issues that were iden-

tified as a result of a discussion with my supervisor were that students are used to

completing short tasks in lectures as part of their assessed work, and so it may appear

to students as if this task was also assessed. Consequently it was heavily stressed that

the task was not assessed work, and that the results would only be used by us to gain

an understanding of the types of responses they gave to this type of task.

A further ethical consideration with the first pilot study is the more general one of using

the students’ lecture time wholly or partly for research purposes. While research that

gathers data during teaching time can face issues of ethics, in the first pilot study the
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task was designed to correspond with the learning objectives of the course, it formed

a recap of material which had been previously studied, and it introduced them to the

definition-focused approach of their future lectures. Furthermore, students’ responses

to the task informed the lecturer of their prior understanding, allowing more time to be

spent recapping last year’s material.

Other ethical considerations included the amount of time given to students and the

format of the task sheet. I felt that both these parts of the design were appropriate

for the audience in question, and the lecturer (who was involved in the design of the

definition and task sheets) treated the task as she would any other in-lecture activity,

with the expectation that the students would engage with it and with the intention of

using it as the basis for later discussion. Students were therefore not told that they could

decline to complete the task, although any student that did not do so had no attention

brought to them.

4.1.4 Methodological issues in the first pilot study

Before summarising this study and its implications for the main study, I briefly acknowl-

edge and discuss some difficulties in gathering and interpreting this type of data.

Timing of task

Almost all (99%) of the students had completed the module Sequences and Series three

months before the task, and the lecture in which the task was given was the first one

after the Summer vacation. So although the relevant definitions were provided, it may

be that a larger proportion of correct results would have been seen had the task been

given immediately following Sequences and Series module. This concern is addressed to

a certain extent in both the second pilot study and the main study. The participants

in these latter studies had recently been taught the material. This (first) pilot study

perhaps provides some indication, however, of the retention of the material over time.
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The appropriateness of the definition sheet

There is the issue of how many definitions to provide on the definition sheet, in what

form the definitions should be, how much detail to give on the sheet, and even if it

is appropriate to have a definitions sheet at all. For the purposes of this pilot study

it seemed only fair to give each student a collection of all the relevant definitions, as

students who participated in the pilot study were not given a chance to prepare. Fur-

thermore, the high proportion of incorrect answers with the definition sheet available is

a striking result, and one would expect that students would perform worse on the task

without the information available. There is also the question of whether the number of

INS would be lower if the definition sheet emphasised the definition of a sequence more

explicitly. I believe that the explanation given on the definition sheet (see Figure 4.1)

was sufficient, however.

The coding of answers

As noted in Section 4.1.2, there is a problem regarding inferring a students’ meaning

from the examples given in tasks such as this. In Question 5 examples such as (an) = n3

can be found in both category IS and INS, depending on how explicit an answer was

given, but it is impossible to know which domain was intended. For instance, consider

the following answers given by three students to Question 5: A sequence which is not

bounded above or below.

1. (an) = n3, n ∈ N

2. (an) = n3, n ∈ R

3. (an) = n3

4. (an) = n3 with a sketch of a function (see Figure 4.4 for three possible sketches)

The first answer will have been coded as IS; the domain is specified as the natural

numbers and so the object written is a sequence. The second answer’s domain is the

real line, so the object is certainly not a sequence, and will have been coded INS. The

third answer does not specify the domain, and so the benefit of doubt is given as it

can be reasonably interpreted as a sequence, although it is perfectly possible that the



Pilot Studies 89

second answer too was intended to be the real-valued function, but for the purposes of

the categorisation the benefit of the doubt was given towards IS categorisation where

there was ambiguity.

My conviction of the categorisation of the fourth answer depended on the accompanying

graph. Three examples of graphs of functions are given in Figure 4.4. If a student

gave a “dotty” graph, such as the one presented in Figure 4.4(a), then the domain is

clearly N and so the answer would be categorised IS. At the other extreme, if a student

included a graph of the continuous function over the whole of R, such as in Figure

4.4(c) then the answer is certainly INS. The answer most difficult to categorise would

be with a graph of the positive region only, but still a continuous function rather than a

“dotty” sequence. This type of answer would have still been categorised INS, because

technically the function drawn has domain R+, but with less conviction on my part

because anecdotal evidence suggests that students often make this type of sketch even

when they are otherwise dealing with the function as a sequence.

(a) f : N→ R (b) f : R→ R

(c) f : R+ → R

Figure 4.4: Possible sketches to accompany the answer an = n3
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There was generally less ambiguity with sequences given as a list of numbers, for instance

double-sided sequences such as

−∞, . . . ,−1, 0, 1, . . . ,∞

were considered to be a function f : Z→ R, and so was also marked INS.

It is not obvious how a researcher should address this problem without an interview

component in the study—as noted in the previous paragraph, had the definition and

task sheets been more specific in reminding the students that a sequence should have N

as its domain, some of the interesting responses may have been lost.

The research questions addressed by the pilot study

Finally there is a more theoretically-based methodological issue which was highlighted

by an anonymous reviewer to a PME short oral paper I submitted (Edwards and Alcock,

2008). Did the pilot study aim to (a) use example generation as a lens to explore stu-

dents’ concept images of sequences, or (b) explore how example generation can provide

information about students’ concept images more generally, using sequences as as the

object in focus? This was a very valid criticism, and due to the exploratory nature of the

analysis the answer probably is “a little of both.” In my main study I have reflected on

which parts of data collection and analysis have supported which theoretical questions.

4.1.5 Conclusions from the first pilot study

In this section I have presented the results of an example generation task given to

second and third year university students. Data and conclusions from this study have

been published in conference proceedings (Edwards and Alcock, 2008), but not in the

form presented by this thesis.

Although the results should be treated with caution for the reasons stated in Section

4.1.4, it is clear that many students have problems dealing with even the simple sequence

properties of monotonicity and boundedness. A large proportion of students gave re-

sponses that indicated spontaneous conceptions at odds with the formal definitions; only
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13% could combine the definitions increasing and decreasing to give a sequence satis-

fying both, despite 98% of students correctly giving an example of a strictly increasing

sequence. Often attempts to generate a sequence that satisfied certain properties ap-

parently led to a failure to control for the requirement that the answer be a sequence.

This pilot study succeeded in its aim of gathering a relatively large amount of data in

order to provide some initial information about students’ knowledge and understanding

of sequence properties. Together with the second case study, this exploratory analysis

of example generation data highlighted issues to explore further in the design and im-

plementation of my main study. The key issues are summarised in Section 4.2.5, after

the second pilot study in Section 4.2.

4.2 Second pilot study

The second pilot study was a small interview study whose aim was to explore in more

detail the types of interesting IS and INS responses I observed in the first pilot study.

The data analysis was focused on examining situations where such responses were given.

This section begins with a description of the choice of questions used in the second pilot

study task and an outline of the format each semi-structured interview took. Finally

there is a description of the analysis process and some general observations on the type

of answers seen. In the next section I draw together findings from both pilot studies in

anticipation for the main study.

4.2.1 About the interviews

Participants

The second pilot study took place in February 2008, with a group of students who were

taking a course on Sequences and Series. This module is the first time students at

Loughborough University are taught sequences and was the compulsory module taken

by the first pilot study’s participants.

I canvassed for volunteers to attend an hour-long interview where they were told they

would be asked to complete a short task, receive feedback on their mathematics and
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also be given a sigma-branded USB pen drive as compensation for their time. Seven

students volunteered and six attended interviews.

Reducing the number of questions

Each interview was scheduled to last for an hour, with a discussion section at the be-

ginning and a more focused discussion section at the end. This meant the number of

questions had to be reduced from the first pilot task, as I did not wish for the students

to feel rushed and there was a danger of this had I kept all twenty questions. In order to

decide which questions to include in this second version of the task several factors were

taken into account.

• Although it was expected that the most interesting responses would emerge from

more difficult questions which combined several sequence properties, I did not want

to make the task appear to be an unsettling list of ‘trick questions’. I therefore

included some of the more straightforward questions from the first pilot. An

unexpected consequence of including such questions was that they served as an

informal benchmark for a student’s comfort-level with sequences.

• The first pilot study had indicated that IS and INS responses were commonly

given to some questions, and so questions were included with the expectation of

yielding these types of responses. Questions 3 and 5 were included directly from the

first pilot study, but Question 9 was modified to reduce the number of properties

under consideration (see next bullet).

• Questions were limited to combining at most two properties. In the pilot study

those questions with three clauses were poorly attempted and poorly answered.

• I felt it better to group similar questions together; this allowed me to explore in

more depth a person’s concept image of one property, such as boundedness. It also

allowed me to target consistencies and inconsistencies within a group of questions

in the post-task discussion period.

The task was structured into three themes: increasing and decreasing, boundedness, and

dealing with infinity, with three or four questions in each theme. Figure 4.5 lists the
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questions on the second pilot study’s tasksheet, together with my rationale for including

them. The themes were not stated on the sheet.

Each theme began with an “easy” question, and progressed to more difficult ones as

indicated by (a) the type of responses I noted in the first pilot study, (b) the metrics in

Table 4.1, and (c) my refections on what answering the question entailed. Two questions

were included that were not trialled on the pilot study: Question 4 which asked for a

sequence which was neither increasing nor decreasing, and Question 5, which asked for

a sequence with no upper bound.

Planning the style of the interviews

I structured the interview into four parts. First was an introductory period. Students

were welcomed, and the purpose of the interview was explained to them (i.e. that I was

interested in how they were finding the transition to university and that the task was

designed to see how they were finding the Sequences and Series module). They were

also told that I would not be reporting back to their lecturer any information that could

personally identify the students. This stage of the interview was very brief.

During the second stage of the interview I asked each student how they found the

transition to university. This part of the interview was designed not only so I could find

out about their background and how they were finding university (data that I do not

comment upon here), but also to establish a rapport with the students and put them at

ease. This stage of the interview lasted between five and ten minutes.

In the third stage of the interview, the definition sheet was presented to the students,

and they were given the task sheet. I explained that I did not want to influence the way

they think during the task, so I would remain silent throughout, but that I was happy to

go through their answers afterwards. They were also encouraged to ‘think aloud’ where

possible. Each student was given as long as they needed to complete the task sheet.

Finally, each student was given feedback on their performance, in the form of a con-

versation focused around their answers. This part of the interview was semi-structured

(Ginsburg, 1981) around the following themes:

• How did you find the task?
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Page 1 — Increasing and Decreasing

Q1. A strictly increasing sequence
Q1 on pilot study, difficulty 0.03

Q2. An increasing sequence that is not strictly increasing
Q2 on pilot study, difficulty 0.55

Q3. A sequence that is both increasing and decreasing
Q3 on pilot study, difficulty 0.87

Q4. A sequence that is neither increasing nor decreasing
A new question, related to the previous question

Page 2 — Boundedness

5. A sequence that has no upper bound
A new question, intended to be an easy introduction to page 2

6. A sequence that has neither an upper bound nor a lower bound
Q5 on pilot study, difficulty 0.72

7. A bounded, monotonic sequence
Q8 on pilot study, difficulty 0.68

Page 3 — Dealing with Infinity

8. A sequence that tends to infinity
Similar to Q14 on pilot study, difficulty 0.24

9. A sequence that tends to infinity that is not increasing
Q17 on pilot study, difficulty 0.97

10. A sequence that tends to infinity that is not bounded below
A new question based on Q9 from the pilot study, but with fewer properties

11. A strictly increasing sequence that does not tend to infinity
Q16 on pilot study, difficulty 0.86

Figure 4.5: Questions asked in the second pilot study task, with comments in italics.
Difficulties are taken from the first metric given in Table 4.1 (higher numbers correspond

to more difficult questions).
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• Were any questions easier/harder than others?

• Questions focused on their answers, especially any INS ones

• Provide assistance to any questions they were stuck / incorrect on

4.2.2 Data analysis

The audio data from each interviews was transcribed and the task sheets examined for

instances of IS and INS responses. Relevant extracts of transcripts were then examined

for comments on the answers given. Unlike in the first pilot study, it was practical

to compare responses both across questions and participants. A more general analysis

focusing on every response to the task in conjunction with the the entire transcribed

data was not completed due to time constraints.

Outcomes from the second pilot study

The students who were interviewed in the second pilot study struggled with the task.

36% of questions were left blank (compared to 30% in the first pilot), and only 29%

of questions were answered correctly. The answers the students gave can be found in

Table 4.5. In this table each response has been coded in relation to the coding system

which was given in Table 4.2. Some student gave multiple answers, or went back later

giving another answer, and the Table 4.5 reflects this by including both answers where

appropriate.

As noted earlier, the aim of the interviews was to explore further the thought processes

of students who produced IS and INS responses. As with the first pilot study, many

of the answers given to the task were incorrect. Bearing in mind some students gave

multiple answers, I saw fewer IS responses (6) than INS ones (17).

Within the INS responses it was notable that there were both students who tended to

give INS responses, such as Student 2, and also questions which tended to be answered

with INS responses, such as Question 6. The remainder of this sections looks at Student

2 and Question 6 in more detail.
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A student who gave many INS solutions

Although there was a very limited sample of people who were interviewed it was clear

that certain students who sat the task had a poor control over the way in which sequences

can be represented formally. Student 2 generated examples which were of many different

mathematical types, including

Sequences with undefined variables, such as “a, a+ 1, a+ 2”

In the answer to Question 1 and 2, the example generated was correct, but given in a

general form rather than a specific example. These answers were classified as INS, but

they are clearly correct to a certain extent.

Intervals of the real line, such as “[0,∞]”

Examples for Questions 5, 6, and 10 were each given as a connected interval of the

real line. The examples chosen are to some extent correct in regards to the requested

properties, for instance as an example of a sequence with neither an upper nor a lower

bound, the interval (−∞,∞) was given.

A finite list of numbers, such as “[1, 2 . . . , 5]”

The answer to Question 7 was given as a finite list of numbers, and so is bounded and

monotonic, but not a sequence.

A further property the sequence may have, such as “sn → 1”

In two questions the student drew a conclusion about the properties the sequence must

or may have, but did not give an example. As soon as these statements were written

the student immediately moved on to the next question.

After the student finished the task, I discussed the different types of answer with the

student. For example:

Interviewer: You’ve sort of written them in three different ways throughout

the paper.

Student 2: Yeah.

Interviewer: And can I ask why? If that’s OK?

Student 2: It just depended on what I was thinking really. To me when

you get to infinity you can’t, well I suppose I could do dot-dot-dot. I don’t
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know. I don’t know why I did it like that. It just depends on how I think of

it in my head at the time.

Interviewer: So you would say that the ones that are written, say with the

brackets, you somehow thought of those differently perhaps to those two?

Student 2: No, I reckon I could probably write that as a bracket one. And

I could write all these as brackets, I could probably write them all in each of

the other ways.

Here ‘bracket ones’ referred to the examples the student gave in terms of intervals of the

real line. For this student, a sequence could be represented as an interval of the real line,

or both other representations such as including a list of numbers. Perhaps this student

was confusing the values of a sequence and the range of possible values of the sequence,

in other words the set {an : n ∈ N} ⊂ R and the interval (inf{an : n ∈ N}, sup{an : n ∈

N}) ⊂ R.

A question in which many students gave INS responses

As well as students who predominately gave INS responses, there were also questions

which seemed to evoke such responses from students who in other questions gave C or

IS responses. Two such questions were:

Q6: A sequence that has neither an upper bound nor a lower bound

Three of the six students gave the interval (−∞,∞) for this question. Of course, this

is a mathematical object which does not have an upper nor a lower bound. Looking at

the students lecture notes, it seems the topic of boundedness was covered in some depth

in conjunction with sets early on in the course, and this may have some bearing on the

answers seen in the task.

Q11: A strictly increasing sequence that does not tend to infinity

Two of the students gave a finite sequence, which again is understandable as if such

objects were sequences also then this example would satisfy the requested properties.
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4.2.3 Ethical considerations in the second pilot study

When designing the second pilot study ethical issues were first considered by completion

of the Loughborough University’s ethical clearance checklist (the second pilot study did

not required clearance from the ethical advisory committee). I also attended a short

training session focused on ethics in research held by my department.

I recognise that being asked to ‘do maths’ whilst being audio-recorded and observed

by a stranger might be intimidating for some students, and so the early stages of the

interview were designed to have little to do with the task and were more focused on

chatting to the student to put them more at ease. The semi-structured nature of the

final stage of the interview was also designed to adapt for the way the student had

progressed with the task. As I shall mention in more detail in the next subsection, the

students struggled with the task, and in some cases I felt it more appropriate to guide

the students through the questions than to let them become unsettled, feeling that they

could not answer any of the questions on the task.

4.2.4 Methodological issues in the second pilot study

As reported earlier, the students who were interviewed in the second pilot study struggled

with the task: 36% of questions were left blank and only 29% of questions were answered

correctly. This is perhaps less surprising when one considers that the second pilot study

focused on questions which yielded a large proportion of IS and INS responses in the first

pilot, but even the easier ‘warm-up’ questions (1, 5 and 8) were answered by two-thirds

of students at most. Answers left blank in an interview-based study are, in general, less

of a concern than in a class-based task because they (a) allow students do some thinking

about the question which might be verbally self reported at the time, and (b) there was

also the opportunity for me to discuss questions left blank with the student during the

discussion period. These were not possibilities in the first quantitative task.

Most students appeared to be comfortable making clear that they were struggling dur-

ing the task. The following excerpt illustrates this, taken from when Student 5 was

attempting the third set of questions:
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Q8. A sequence that tends to infinity

Student 5: I don’t really know how to, I can’t read things off. I don’t know

how to write like you say a sequence that tends to infinity.

Q9. A sequence that tends to infinity that is not increasing

Student 5: I don’t know what to say.

Q10. A sequence that tends to infinity that is not bounded below

Student 5: I don’t know what would you want for a sequence that tends

to infinity, not bounded below. I don’t know what sort of thing would be

bounded below, like how you’d represent that.

Later in the interview, we were discussing the difference between this type of task and

coursework more generally:

Student 5: Yes. It’s harder. Probably because for the courseworks we can

refer to the examples that have been in lectures, or tutorial questions and

pick up similarities. I guess you follow a pattern that they have taken and

get an answer, rather than here it’s probably more important questions I

should know the answer to, and if I was given this as coursework I probably

wouldn’t do as well.

This student was particularly articulate and confident in voicing her difficulties with the

task, but other students became more unsettled as the task went on. This had the result

that in some interviews my plan of non-involvement during the task was not followed for

ethical reasons; one student became agitated that they could not attempt many questions

and so in this interview I took on a more of a tutorial role than that of an interviewer.

This type of occurrence suggests that, for some students, an example generation task

may be a very poor tool to explore concept images of sequence properties; they either

had relatively empty concept images or were unable to evoke their concept image. For a

student such as Student 5, who in the quote above described what Lithner (2008) calls

imitative reasoning, perhaps a near-empty evoked concept image is a valid conclusion.

In most interviews, the schedule of questions to be asked during the semi-structured dis-

cussion period (see Subsection 4.2.1) was not strictly followed; instead the conversation

was drawn to “spontaneous questions in the natural flow of an interaction,” described by
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Patton (2002) as an informal conversational interview. Consequently in the main study,

described in the next chapter, the discussion period was planned to be an interaction of

this type.

4.2.5 Conclusions from the second pilot study

The second pilot study has provided some more insight into the thought processes of

students, or at least the thought process reported by students as they ‘thought aloud’

during the task. In one case, an INS representation of a sequence as an interval of the

real line was treated as a valid sequence, and a student believed they could represent

any sequence both in this form, and as a list of numbers. It was speculated that some

students are more prone to providing INS examples, and some questions more likely to

provoke INS examples, although this may be a result of students having been recently

taught about boundedness in the context of intervals rather than sequences.

In conjunction with the first pilot study, the second study has demonstrated that ex-

ample generation tasks can be successfully used to explore students’ concept images

of sequence properties, but only when questions are of appropriate difficulty for the

students answering them.

4.3 Summary of chapter

This chapter has presented a reflective account of two pilot studies which were con-

ducted a year before the main study. The pilot studies were not designed or analysed

from a phenomenological perspective, and were presented as illustrative of the types of

behaviour, concept images and spontaneous conceptions that I observed from students

prior to the main study.

The first pilot study was quantitative, and reported on an example generation task

given to 101 undergraduate students. The task asked the students to provide examples

of sequences subject to certain constraints, and the students also had access to a compre-

hensive definition sheet throughout the task. It was found that students often not only

did not manage to provide a sequence which satisfied the constraints, they sometimes

provided mathematical objects which were not sequences. These two types of incorrect
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answers were classified as incorrect sequences (IS) and incorrect non-sequences (INS).

Typically, an INS response would, to some extent, reflect the constraints requested

(such as an unbounded set given when an unbounded sequence was requested).

The second pilot study aimed to shed more light on the thought process which leads

to INS answers. It selected some of the questions from the first pilot study and asked

students to complete them as part of a semi-structured interview. It was found that

some students provided INS answers to several questions, and that certain questions

prompted many students to give INS answers. In the discussion period of the interview,

after the task had been completed, some students indicated that they believed they

could switch between a valid representations of a sequence, and an INS answer without

corrupting the sequence.

A summary of the number of participants, number of questions, with the mean student

scores and standard deviations are given in Table 4.6.

Table 4.6: A summary of average student scores in the pilot studies.

Study No. students No. questions Mean score St. dev

Pilot study 1 101 20 6.95 (34.7%) 3.98 (19.9%)
Pilot study 2 6 11 2.83 (25.8%) 2.23 (20.2%)

In each pilot study there has been evidence that students’ spontaneous conceptions have

remained in focus during the task, most commonly when dealing with the properties

of increasing and decreasing, where 87% of students could not give an example of a

sequence which was both increasing and decreasing, and 2/5 of such students instead

giving a sequence which is oscillatory to some extent. These properties are considerably

simpler (in terms of their definitions) than other properties studied in the literature.



Chapter 5

Main Study: Planning and Data

Analysis

This chapter describes the planning and phenomenographic data analysis procedure of

an interview-based example generation task given to students. After briefly discussing

the aims of the study, Section 5.2 discusses the how the task is related to the pilot

studies, and describes the participants, the task given to students in the interview, and

the interview itself. Issues related to the transcription of the data are then explored

in Section 5.3. Next the phenomenographic data analysis of the study is outlined in

Section 5.4, which includes descriptions including open codes, headings, categories of

description and dimensions of variation (Chapter 6 presents the outcomes of this data

analysis). Lastly, intersubjective and ethical considerations are highlighted in Sections

5.5 and 5.6, respectively.

5.1 Aims of the main study

The aims of the main study are related to the thesis’ two research questions, which are

restated here for convenience:

1. How successful are students at accurately generating examples of sequences satis-

fying certain combinations of properties?

2. What is the qualitative variation in students’ experiences of sequence generation?

103
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The primary aim of the main study is to answer the second research question. This

chapter describes the data collection and analysis procedures of the main study, the

outcomes of which are reported in the next chapter. In common to all the studies in the

thesis, the first research question is also addressed by the main study, which provides

more evidence for the conclusions eventually drawn in Chapter 9.

5.1.1 Relation to phenomenography

Chapter 3 described in detail the research specialism of phenomenography. The second

research question of this thesis is a phenomenographic one and, as discussed above, the

main study was conducted to address this research question. Therefore throughout the

following discussion of data collection and analysis, the description and terminology used

is oriented to those used in phenomenography (‘bracketing’, ‘category of description’,

‘dimension of variation’ etc).

5.2 Planning for the main study

5.2.1 Participants

The participants in the main study were first year undergraduate mathematics students

from the University of Warwick. A different cohort from the pilot study was used because

at the time the second study was scheduled to take place (autumn 2008), the appropriate

cohort of students at Loughborough University would be second year undergraduate

mathematicians, some of whom took part in the pilot studies.

The University of Warwick had around 350 single-honours students and more than

200 on a joint degree including mathematics in 2008, and so there was theoretically

a large number of students who could volunteer to complete the task under interview

conditions. All students were contacted via e-mail and asked to participate in the study.

It was hoped 20 students would volunteer, but only 15 responded and attended their

respective interviews. By means of payment for their time each was offered feedback on

their performance and a ‘sigma’-branded USB memory stick.

These undergraduates had previously met formal definitions of sequence properties in

lectures, i.e. definitions with quantifiers, rather than as ‘wordy’ definitions. It was hoped
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that this would eliminate some of the problems commented upon (in the pilot studies)

involving students’ unfamiliarity with the definitions.

5.2.2 Design of the task sheet

The version of the task sheet used in the second (interview-based) pilot study was

answered badly by students, with five of the six students answering fewer than four

of the eleven questions correctly (see Section 4.2). In the subsection reflecting on the

pilot study’s methodology (4.2.4), it was noted that students not being able to answer

questions correctly is not necessarily a bad thing in an interview-based study, for the

think-aloud protocols and discussion period can provide insight into students’ thought

processes. However, as reflected upon in the subsection related to ethical considerations

(4.2.3), it was unnerving for students to be asked to complete a task they could not

approach, and so serious consideration was given to using a simpler task in the main

study.

On reflection, I felt it appropriate to use the same task in the main study because the

participants in the main study had been introduced to formal definitions of sequence

properties in the weeks leading to the interviews, and had been dealing with theorems

and proofs using such formal definitions. The definition sheet was slightly modified to

correspond to the notation used at The University of Warwick (in particular, an entire

sequence is written “(an)” to distinguish it from the specific term of the sequence “an”).

The definition sheet used in the main task can be found as Figure 5.1, and the main

study’s task sheet can be found as Figure 5.2.

5.2.3 Description of interviews

Each student had agreed to meet for an hour at a mutually convenient time, although not

all sessions lasted a full hour. They were first asked to read the participant information

sheet (see Appendix A.1 for a copy), and then asked if they would consent to audio and

video recording during the interview. All participants agreed to be audio recorded, one

participant declined the video recording and the video camera failed for one interview.

Once the student had signed an informed consent form (see Appendix A.2), I began by

introducing myself and discussing my research. Then for around 15-10 minutes I chatted
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Review of Sequences

Definitions

Remember that a sequence is a list of real numbers

(a1, a2, a3, a4, . . . )

where (an)∞n=1 denotes the whole sequence.

Definition: A sequence (an)∞n=1 is increasing if and only if ∀n ∈ N, an+1 ≥ an.

Definition: A sequence (an)∞n=1 is strictly increasing if and only if ∀n ∈ N, an+1 > an.

Definition: A sequence (an)∞n=1 is decreasing if and only if ∀n ∈ N, an+1 ≤ an.

Definition: A sequence (an)∞n=1 is strictly decreasing if and only if ∀n ∈ N, an+1 < an.

Definition: A sequence (an)∞n=1 is monotonic if and only if it is increasing or decreasing.

Definition: A sequence (an)∞n=1 is bounded above if and only if ∃U ∈ R s.t. ∀n ∈ N, an ≤ U .

Definition: U is an upper bound for the sequence (an)∞n=1 if and only if ∀n ∈ N, an ≤ U .

Definition: A sequence (an)∞n=1 is bounded below if and only if ∃L ∈ R s.t. ∀n ∈ N, an ≥ L.

Definition: L is an lower bound for the sequence (an)∞n=1 if and only if ∀n ∈ N, an ≤ L.

Definition: A sequence (an)∞n=1 is bounded if and only if it is both bounded above and
below.

Definition: A sequence (an)∞n=1 diverges if and only if it does not converge to any finite
limit.

Definition: (an)∞n=1 tends to infinity if and only if ∀C > 0, ∃N ∈ N s.t. n > N ⇒ an > C.

Figure 5.1: The definition sheet given to students in the main study, interview com-
ponent.

with the student about their experiences in secondary and tertiary education, and how

they were finding their courses. Although this data would not form part of the data

for my analysis because it was not relevant to example generation, this portion of the

interview was always included as it functioned as an ice breaker, allowing a rapport to

be established between myself and the student.

The student was then given the list of definitions and asked if they had seen them before.

Every student indicated that they had seen the definitions in that form before, although

some students indicated that they were uncomfortable with them. In these cases the

student was reassured that although they were going to be given a task related to the
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Please give an example of each of the following, or state that this is impossible.

You can write your sequence in any way you choose:
As a list of numbers, as a formula, etc.

You do no need to prove your answers.

[Questions on page 1]

1. A strictly increasing sequence

2. An increasing sequence that is not strictly increasing

3. A sequence that is both increasing and decreasing

4. A sequence that is neither increasing nor decreasing

[Questions on page 2]

5. A sequence that has no upper bound

6. A sequence that has neither an upper bound nor a lower bound

7. A bounded, monotonic sequence

[Questions on page 3]

8. A sequence that tends to infinity

9. A sequence that tends to infinity that is not increasing

10. A sequence that tends to infinity that is not bounded below

11. A strictly increasing sequence that does not tend to infinity

Figure 5.2: Questions on the the main study task sheet, interview component. The
actual sheet was on three pages and had three-inch gaps between questions.

definitions they would not have to formally use them, and it was reiterated they were

not being assessed in any way.

Students were then presented with the task sheet and asked to work through the ques-

tions. They were reminded that they could skip any question and tackle them in any

order they liked, and that they were encouraged to think aloud, even if this felt alien to

them. Finally it was restated that the task was not a test, but even so they would be

offered no assistance or encouragement while they were completing it. It was explained

that I was happy to go through their answers with them afterwards if they wished me to.

There was no formal time limit on the sheet; each student had as long as they needed

to complete the task and were asked to indicate when they were finished.

The final part of the interview was an unstructured discussion period, where I discussed

with the student the answers they had given. This discussion period could loosely be

categorised as an informal conversational interview, as defined by Patton:
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The informal conversational interview relies entirely on the spontaneous gen-

eration of questions in the natural flow of an interaction. (Patton, 2002,

p.342)

I say loosely categorised because the matters which were discussed in the interview

were focused on the students’ responses to the example generation task, so the phrase

‘natural flow of an interaction’ is taken more in the context of a mathematics tutori-

al/supervision. Because the student and interviewer had the common ground of the

example generation task, many of the problems with this type of interview (such as the

style being less systematic and comprehensive) are reduced because the conversation,

although not formally structured, was focused on the questions on the task sheet and

the answers the students gave. In each interview I initially focussed on questions the

student had left blank or answered ‘impossible’, and then let the conversation progress

as naturally as possible from there. This is common in phenomenographic studies, even

when there are a structured series of questions (Åkerlind, 2005b).

In summary, each interview’s hour-slot was scheduled into four periods:

• Reading the information sheet and completing consent form

• An initial chat about first year mathematics and an introduction to the task

• Completing the task

• Discussion of answers and general advice

Figure 5.3 outlines the time taken for each student in the chat, task, and discussion

periods. The length of time spent reading the information sheet and completing the

informed consent form is not included in Figure 5.3 because I did not begin the audio

recording until the student consented that I may do so, and so there is no data to

indicate the length of this period. The length of the discussion period for Oksana1 was

brief because she arrived to the interview late, and had to catch a bus home.

1a pseudonym
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Relation to phenomenography

In each interview there were two sources of verbal data. The first was the comments

the student made as they completed the task. The choice of which comments were

appropriate was left to the student, although each student was prompted to talk as much

as they felt comfortable doing. Comments ranged from stating their interpretation of

what they were doing:

I’m just writing the definitions.

to deeper reflections on their thought process:

I’m not too sure about this one either, because if it’s tending to infinity but

then it’s not bounded below, but it has to be bounded below because you

have to start at a certain point.

The second source of data was the discussion period after the task phase, and as indicated

by Figure 5.3, the duration of this part of the interview was typically longer. Here the

conversation was lead by the interviewer, but focussed on the answers given by the

student in the task and what the student had talked about during the task. Following

Bowden’s (2005) suggestions for phenomenographic interviewing, questions typically

asked for more information, or encouraged reflection upon ideas raised by the student.

At all times I attempted to bracket my own judgement. Despite this, the social contract

between myself (someone who is experienced in mathematics) and the student (someone

who is less experienced) meant that this type of questioning was at times perceived by

a student as hints that they are mistaken (Koichu and Harel, 2007), as is illustrated in

the following extract from the main study interviews:

Interviewer: That one, you sort of paused.

Student: I was thinking monotonic, if I wanted it to be increasing or de-

creasing.

Interviewer: And which did you decide?

Student: I decided decreasing, and changed it to increasing. Nah, I decided

increasing and changed it to decreasing.
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Interviewer: Ok, why was that?

Student: I don’t know, I might change it back [laughs].

There is little that can be done to remedy this situation. At the start of the interview

I had remarked to each student that I would avoid telling them if they were correct or

incorrect until the end of the interview. In hindsight, it would have also been prudent

to stress that I would be asking the same questions whether their answers were correct

or incorrect.

5.3 Transcription and marking of answers

5.3.1 Pseudonyms assigned to students

During the data analysis each student was assigned a pseudonym, as listed in Table

5.1. This is because each student was informed at the start of their interview that “the

recordings will be treated in strictest confidence and any reference to them shall hide the

identity of the student in question” (Participant Information Sheet, Appendix A.1). In

Table 5.1, each student’s gender and ethnicity has been maintained in an effort to keep

as much (unidentifiable) information about each participant present as possible whilst

still acting in accordance with the Participant Information Sheet.

The reader may feel that this conflicts with the phenomenographic principle of bracketing

data. Perhaps it might be easier for a reader to bracket the quoted incidents and analysis

presented in the next chapter had the students’ identities been entirely erased? While

to a certain extent this might be true, I believe two other factors outweigh this. The

first is still related to bracketing, but to my bracketing rather than the reader’s. When

analysing and reporting the data, I have had access to more information than the reader,

and so the interpretative analysis presented in the next chapter will be subject to my

value-laden judgements and interpretations. Although I have made an effort to be

as objective as possible in this regard, the reader is in a better position to evaluate

my bracketing if provided with as much information as possible. The second factor is

that I believe an alternative allocation of names or markers would remove some of the

humanity from the students in question. Had they been labelled “A”, “B” etc, I believe

they would have seemed less human, and I also felt it would be inappropriate to allocate
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Table 5.1: Pseudonyms for interviewed students

Interview order. Pseudonym

1. Anna
2. Ben
3. Valter
4. David
5. Edha
6. Phalgun
7. Guan
8. Haaroon
9. Ian
10. Joe
11. Ken
12. Laura
13. Mike
14. Nicola
15. Oksana

every student a Western (or Eastern) name, a male (or female) gender, regardless of

their actual background. I feel the actual presentation of names hides the identity of

the students, while reminding the reader that they are unique individuals.

5.3.2 Categorisation of answers

The answers each student had given during the task phase of the interview are repro-

duced in Table 5.2 (for Questions 1-5) and Table 5.3 (for Questions 6-11). In these

tables, intended to give the reader an overview of the different interviews, only the

‘final’ answer is reproduced, rather than answers given during working, or alternative

answers. The answers in Table 5.2 and 5.3 are re-created as to be as faithful as possible

to the originals (so, for instance commas and ellipses within a student’s list notation are

never corrected).

5.3.3 Transcription of interviews

Transcription protocol

In the first stage of analysis the audio from each interview was transcribed. Apart from

decisions of how to typeset mathematical statements, no consideration was made of the
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interviews’ meaning. This was for two reasons, first to enable a constant comparison

during analysis and second to function as a safeguard for transcription quality.

After examining descriptions of interview protocols from various authors such as Poland

(2001) and Ochs (1979) I decided to write my own protocol for the interview data. This

was because the protocols in these accounts were designed for conversation-based inter-

views with multiple interviewees, whereas in the main study students were interviewed

individually, and during the task phase for large pieces of the interview there was a

single speaker. The protocol used was as follows:

• Each transcript begins with a time in square brackets, such as [03:23], which

corresponds to when the conversation began relative to the timer on the audio file.

At various points during the interview, times may be added into the transcript to

aid navigation of the recordings, for instance after a long pause.

• Any comments that needed to be made during transcription, such as something

being inaudible the comment would be made [in square brackets]. Square brackets

were also used for elements of the conversation which are impossible to transcribe,

such as [laugh] or [sigh].

• Mathematical content would be typeset in standard latex form based on the con-

text. Where the context was ambiguous a comment would be added.

• A new line is started after one of three conditions:

1. A new speaker begins

2. After a long pause (dependent on context, but typically 5+ seconds)

3. When it was clear the student moved onto a new topic or changed question

• Lines that start Interviewer: were said by me

• Lines that start Student: were said by the student

• A line that ends with / is interrupted by the next line (it does not indicate a pause)

• Shorter pauses, and discourse markers (such as “erm” and “like”) were not tran-

scribed, instead they were marked with appropriate punctuation.

• An abrupt pause in the middle of a statement (but not an interruption), was

marked by —.
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For the 13 students where a video recording existed to accompany the interview audio

transcript, the video was synchronised with the transcript so that ambiguous passages

could be interpreted with more evidence. To a certain extent, this helps avoid the prob-

lems associated with written transcripts of data as commented upon in the methodology,

subsection 3.4.2.

5.4 Coding of data

When each interview had been transcribed, the transcripts were coded inductively from

the “bottom-up”, in a way similar to a grounded theory analysis (Glaser, 1992; Glaser

and Strauss, 1967; Strauss and Corbin, 1998). The aim here was to “identify concepts”

and “discover their properties and dimensions” within the transcripts of each interview

(Strauss and Corbin, 1998, p.101). Such data analysis techniques are common when tak-

ing a phenomenographical approach (Åkerlind, 2005c; Richardson, 1999), as I discussed

in my methodology chapter. This section will go in to more detail about the different

stages of my coding process, which are first summarised here:

1. Open coding of data

Here salient passages of transcript are labelled with a representative code in an

attempt to objectively capture their meaning.

Described in Subsection 5.4.1, open codes are written in small caps.

2. Collection of codes under headings

Codes with the same meaning are merged, and those with similar meanings are

grouped together under a descriptive heading.

Described in Subsection 5.4.2, headings are written in lower case italics.

3. Formation of categories of description

Headings that describe related phenomena are grouped, and the associated tran-

script extracts compared.

Described in Subsection 5.4.3, categories of description are written in Title Case

Italics.

4. Formation of dimensions of variation

Related categories of description are ordered in terms of their sophistication.
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Described in Subsection 5.4.3 also, dimensions of variation are not given a special

typeface. From the analysis of the main study data four dimensions of variation

were generated: Using definitions, Representation of sequences, Sequence construc-

tion strategies, and Justifications (see next chapter).

At each stage, the aim remains to capture every salient detail and aspect from the

data. What is salient at a particular point is up to a matter of interpretation, but in

this interpretation of a phenomenographic data analysis which is strongly based on the

writings of Åkerlind (2005c), Green (2005) and Marton and Booth (1997), it should

be possible to take the dimensions of variation formed in the final stage and use their

categories of description to code the transcripts, and still capture the salient features of

the interview.

The above account is quite abstract and should be thought of an an overview only. In

the descriptions of each stage below, examples from the transcripts, codes, headings,

categories and dimensions from the main study data and analysis will provide some

firmer ground.

Use of technology in data analysis

Throughout the coding process the qualitative management software Atlas.ti (Muhr,

2010) was used. The purpose of Atlas.ti within qualitative data coding is discussed by

Muhr (1991) and more recently by Lewins and Silver (2007), and so the intricacies of

the software package will not be discussed in detail here. In general, the software is

equivalent to having unlimited margin space to write notes and attach codes, but with

the modification, searching, and retrieval efficiency of a desktop computer.

5.4.1 Open coding

During open coding, the interview transcripts are disassembled in order to explore and

identify units of analysis to code for meanings, feelings, actions, events and so on (Cohen

et al., 2007). More specifically the transcripts were read line-by-line, labelling incidents

(i.e. what happens at a particular time) with short codes of between 1 and 8 words.

Where it was more appropriate to label passages of text, say at the paragraph level,
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whole paragraphs were coded (Atlas.ti is able to attach a code to a quotation of any

length). Some incidents from the interview could not be adequately summarised by a

short code. For these incidents a short name was still chosen for the code, but comment

was also attached to the code outlining the incident in more detail. After the first coding

there were 130 codes. A sample list of codes is given in Table 5.4.

Table 5.4: A selection of codes from the initial open coding. All codes beginning with
the letter ‘C’ or ‘D’ are listed.

C and N increase
=⇒ sequence must
increase

can reach infinity combining definitions

common sense Comparing to func-
tions

constant =⇒ in-
creasing

constant is increasing
& decreasing

constant is monotonic constant sequence

constructing se-
quence

correct combination
of global and local
properties

correctly use defini-
tion

decreasing =⇒ can’t
tend to infinity

definition of infinity degrees of difficulty

different domains difficulty of ques-
tions

distance from limit

domain as R domain as Z domain can not be
real

draws graph dynamic sequence

The open coding process attempted to label passages as objectively as possible, with the

aim to code what happened or what was said in the corresponding interview segment,

rather than my interpretation of the passage. Despite this there will always be a degree

of interpretation as to the meaning of events (such issues with the intersubjectivity of

interview study analysis is described in more depth in Section 5.5). For instance, the

code common sense was used as a label for extracts such as when Valter remarked:

Valter: Just appealing to common sense

but also to his statement:

Valter: Intuitively I’d say

and also to Phalgun’s comment:
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Phalgun: Both increasing and decreasing, a trivial one, (an) = 1

These last two extracts are arguably less explicitly about common sense, certainly in the

sense that the student did not say the phrase itself, but in my initial open coding they

were labelled as such. This is because, for instance in the case of the final quote, when a

mathematician says something is ‘trivial’ they are using a type of mathematical common

sense; the student was appealing to our collective common sense as mathematicians.

Atlas.ti allows extracts to be coded with multiple codes, and so the latter quote was also

coded Trivial and Constant sequence. Latter stages of data analysis would reflect

upon how appropriate the codes were to the passages coded and remove duplications;

here the aim was to capture the most salient features with appropriate codes.

Where I wished to make an interpretive observation, such as on Phalgun’s use of the word

‘trivial’ and its links to the notion of common sense, a theoretical memo was created.

These memos could be attached to a passage of text of any length (and so are equivalent

to writing a note on a post-it note and sticking it on the page). Memos were written

which focused both on line-by-line incidents but also over longer periods of analysis

(such as a general comment about a student over the whole interview). When re-reading

memos, it became clear that some identified themes across wider durations of interviews

and possibly across different interviews, and accordingly the relevant passage(s) of the

interview were coded to reflect this.

The transcripts were coded in the same order as the students were interviewed, and

codes were re-used where appropriate (as was seen in the case of common sense, above).

During the open coding other transcripts and previous parts of the same transcript were

‘bracketed’, i.e. the statements were taken at face value in the sense the student intended

(see the methodology in Chapter 3 for a more detailed account of this phenomenographic

term).

After all interviews were coded there was a total of 130 codes, a brief selection of which

was given in Table 5.4. Some of these codes dealt with what the student remarked, for

instance the use of code common sense was described in the last section. Similarly

the code degrees of difficulty referred to instances where a student remarked that

one question was more difficult than another. Other codes deal with what the student

did (draws graph), a student’s interactions with their work (dynamic graph), or the

logical implications of what a student said, such as a statement where a student makes
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a claim that a decreasing sequence can’t tend to infinity (decreasing =⇒ can’t

tend to infinity). Finally, some codes labelled phenomena first observed in the pilot

studies, such as codes related to INS answers (domain as Z).

At this stage some codes with essentially the same meanings were combined, provided

the codes’ associated transcript extracts indicated this was appropriate. For instance

the codes uses technique seen in class and recalls classroom proof were both

merged with the prior work code.

5.4.2 Collection of codes under headings

Once all codes had been created, and merged where appropriate, the codes were then

grouped under headings. A heading is a more abstract higher order concept, which

describes a similar group of codes. The headings were created so that when it came

to forming categories of description, not only would there be fewer units to work with,

but also so that the “problems, issues, concerns and matters” that are important to the

students being studied could be highlighted (Strauss and Corbin, 1998, p.114). Contin-

uing to look at the code common sense, we can see that it was placed under a heading

which collected codes which described how students justified their answers:

Heading: justifying answers

common sense (see above)

dynamic sequence (phrases such as “the sequence goes to”)

impossible (where the only justification was the word impossible)

justifies answer (catch-all code)

list easier (justifying the form of the answer)

not confident with answers (no justification, only doubt)

notation dependent upon complexity of sequence (justifying

the form of the answer)

unseen sequence (unsure of answer because it was new to them)

unsure of answer (otherwise unsure of the answer)

Some of the codes included within the justifying answers heading included codes re-

lated to the lack of justification, such as unseen sequence (where a student remarked
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that they had not seen a sequence of a certain type before), and unsure of answer.

This is an illustration that although an open coding cannot code for the absence of a

phenomenon, these two codes suggest what students may do rather than justify their

answers.

Occasionally when it became clear that the phenomenon under consideration had a rela-

tive grounding in the literature, codes were later introduced under a heading. In practice

the only instance of this is when Antonini’s (2006) classification of example generation

was used to categorise some of the variation within the heading construction strategies.

Antonini’s (2006) strategy is outlined in the literature review, and the corresponding

dimension in the data is described in more detail in Section 6.4.

5.4.3 Categories of description and dimensions of variation

In the next stage of analysis, all the incidents associated to codes under a specific heading

were listed. Where two headings covered similar content, initially the incidents were

considered together. In conjunction with a student’s answer sheet and the audio/video

recoding (but still bracketing other incidents in the interview), the incidents under a

heading were compared, and ordered roughly in terms of their sophistication. This was

usually possible because the set of incidents came from the same or similar headings, so

it was rare to have two extracts that could not be compared at this stage. The aim was

not to create a definitive ranking, but to determine and contrast the different type of

phenomena coded under a particular heading(s).

Once a rough ordering of sophistication of extracts had been made, the salient fea-

tures of each were described. These descriptions became ‘categories of description’ that

collectively form the hierarchal structure of a dimension of variation. Extracts that ex-

emplified categories of description particularly well were specially marked, and it is a

selection of these incidents that make up the quotations presented in the next chapter.

Once the related categories of description had been drafted, they were again compared

with the codes and quotations from the relevant heading, and the categories modified if

they did not capture the data as fully as possible.

Finally, when the extent of a dimension of variation had been defined as completely

as possible, I reread through the transcripts looking for extracts that might have been
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missed by earlier stages of coding, but which still exemplified the dimensions of variation.

After this process, for a given category of description within a dimension of variation,

there were (1) incidents which originated from the initial open-coding analysis, and (2)

incidents that were later included after the dimension of variation had been defined.

When reporting the dimensions in the next section, I do not distinguish between inci-

dents with different origins; quotations should be read as illustrating the dimension of

variation, rather than originating from a code→heading→category path.

5.4.4 Relation to grounded theory

The type of process that forms categories of description and dimensions of variation is

similar to ‘axial coding’ in grounded theory, where a researcher attempts to make links

between headings and codes to integrate codes around the axes of central categories

(Cohen et al., 2007). The procedure used in phenomenography is different however,

as it has the aim of producing dimensions of possible variation from the phenomena

delimited by the headings and its codes.

Unlike the progressions from transcripts to codes, and then to headings, it is not the

case that categories of description are formed from headings, and afterwards grouped

into dimensions of variation. Instead, similar headings are considered together and the

possible variation across and within these headings is explored, which consists of go-

ing back to the transcripts and comparing the coded extracts. Variation of experience

unearthed by these comparisons was captured by a series of categories of description.

These categories of description are, in some sense, a dimension of possible variation.

However the structure of a definition is hierarchical, ranging from less sophisticated in-

cidents to more sophisticated ones. Moreover a dimension of variation should have the

contrast, generalisation, separation, and fusion properties as described in Section 3.3.1

of the methodology. In other words a dimension of variation should allow comparisons

between their component categories of description, suggest generalisation to other con-

cepts and objects, be considered in isolation from the other dimensions, and combined

with other dimensions without losing the meaning from one dimensions.
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5.5 Interpretation and Intersubjectivity

Any study that is interested in interpreting the ways students explore their example

spaces or the ways students go about example generation will be subject to certain

issues with regards to the interpretation of data and the intersubjectivity of researchers

and interviewees. Such issues are also present within much of mathematics education,

especially in areas where qualitative approaches are taken (Ginsburg, 1981; Lester, 2005;

Oliver et al., 2005), and Section 3.5 of this thesis discussed some of these in relation to

phenomenography. No research will ever completely determine an individual’s thought

process, because to do this an individual must be conscious of the processes and be able

to articulate these accurately to a researcher, which is clearly impossible even when the

researcher is the individual.

In this section, ‘issues of interpretation’ are problems that may emerge when considering

multiple meanings of events from the interviews. During the data collection and analysis

described in this chapter and reported on in the next chapter, I have tried to bracket my

thoughts and align my way of thinking with the student’s, in the hope that the resulting

categories of description have emerged from the data, rather than be biased towards

only discerning aspects of which I was already aware. I have tried to both anticipate

and articulate instances where an event or extract can be interpreted in multiple ways.

The validation exercise discussed in Chapter 7 also addresses some of these concerns in

more detail.

‘Issues of intersubjectivity’ are closely related to issues of interpretation, but are more

philosophical in nature. Suppose we ask a participant to generate an example of a certain

type of mathematical object. In order for the researcher to evaluate whether a suggested

example is of the required type a definition is needed, which may be an informal one (such

as a square in the context of elementary mathematics), or a formal mathematical one (an

equivalence relation in the context of undergraduate mathematics). In the terminology

introduced in Section 2.1.3, the researcher must consider whether the generated example

is consistent with the researcher’s personal concept definition of the object type. The

researcher must assume further that their personal concept definition is compatible with

the formal mathematical definition. This is before we even consider whether a formal

mathematical definition, or knowledge in general, can exist beyond subjective cognitive

construction (for an extensive debate in this area see Kieren, 2000; Lerman, 1996, 2000;
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Steffe and Thompson, 2000). So although when interpreting interview data researchers

can attempt to address issues of interpretation, issues of intersubjectivity are inherent.

Another issue of intersubjectivity arises when exploring a student’s example space.

When viewed from a student’s perspective, an example generation task requires use

of their personal concept definition (which they may or may not be explicitly aware of)

when generating and checking whether an example is of the required type. In some

cases, the student’s concept definition will be identical to the researcher’s and/or the

formal concept definition, but in general this shall not be the case; a student may reason

with elements of their concept image in conjunction with a concept definition (Vinner,

1991).

This means that a student’s example space may contain objects which, although incom-

patible with interviewer’s example space, are examples as far as the student is concerned

(by the trivial argument that they are present in the student’s evoked example space).

Establishing whether such examples should be valid is now significantly more difficult.

The approach taken in this thesis is to highlight and discuss instances where the validity

of an example is debatable from an intersubjective perspective, drawing a conclusion

from such discussion, but leaving the reader to determine whether they agree with such

a conclusion (for instance, see Figure 4.4 and the associated section considering whether

a graph of n3 can be considered a real-valued sequence). Section 3.5 described how

Phenomenography avoids some of the concerns about intersubjectivity by interpreting

students’ accounts of their thinking as representing ‘ways of thinking that are possible’,

rather than ‘what the student is exactly thinking’.

5.6 Ethical considerations

As with both pilot studies, ethical considerations for the main study included completion

of Loughborough University’s ethical clearance checklist. One question on this checklist

prompted some consideration:

[Does the study] involve procedures which are likely to cause physical, psy-

chological, social or emotional distress to participants?
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When completing the checklist for the pilot studies this question was answered ‘no’

because I did not think the task (and interview) situation would cause any physical,

psychological, social or emotional distress. However, recall that in the second pilot study

some students felt uncomfortable because they could not answer any question on the

task (see Section 4.2.4). After reflecting on this question, and after discussion with my

supervisor, I decided that for the main study the answer to this question would remain

‘no’, because being unable to answer a question, then working on it with guidance from

a tutor is part of being an undergraduate student. However, I decided on a procedure

to follow should the situation arise again. Initially a student would be encouraged to

persevere (by saying that the questions are difficult and many people have struggled

with them), but ultimately I would repeat what was done in the pilot study, changing

the tone to that of a tutorial rather than a research interview if necessary.

The remainder of the questions on the ethical clearance checklist were more clearcut, and

indicated that clearance was not required from the ethical advisory committee. After

confirming that no further ethical approval was needed from Warwick University for

either this study or the larger-scale validation study (see Chapter 8), I lodged a signed

copy of the ethical clearance checklist with my head of department.

Another ethical decision was how to advertise the task to the students. Although stu-

dents were compensated for their time with payment (a memory stick), students were

also told that the interview experience would also be a good opportunity to receive feed-

back on their mathematical thinking. I do believe this to be the case, although it may

have resulted in the students who volunteered for the study to be those that were strug-

gling in comparison to their peers (this is discussed in more detail in Section 8.4.4, when

the interviewed students are compared to the wider cohort of first year mathematics

students at Warwick University).

The remainder of this section discusses informal reflections on ethical considerations on

a phenomenographic task-based interview.

Unlike the interviews from the second pilot study, the interviews in the main study

were undertaken from a phenomenographic perspective. Such a perspective involves

the interviewer suspending judgement and ‘bracketing’ as much as possible so to reflect

with the student on their understanding of a topic. In an interview, typically this

was manifested by the interviewer acting as though incorrect mathematics was correct
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(relative to formal theory). There are clearly ethical dimensions to such a practice, and

these were resolved as much as possible by explaining the situation to the student at the

start of the interview. I would typically explain that “as you answer the questions, and

when we discuss them afterwards, I don’t want to say if you are right or wrong. This

is because I’m interested in you describing how you are thinking and I don’t want to

influence the way you are thinking. I am happy to go through your answers properly at

the end of the interview.” Although the wording of this statement changed from student

to student, each interview introduction included the sentiment of this statement.

Furthermore, phenomenographic studies typically focus on ‘why’ questions, and quite

often a student will feel unable to articulate their thinking to a level they themselves feel

satisfied with (Åkerlind, 2005b, p.115). This may mean that it is effortful and potentially

tiring for students to reflect deeply on their thought processes, and why their answers

are correct. I therefore attempted to make the interview as pleasant an experience as

possible for the student, for instance each interview began with a ‘chat’ period designed

to allow a rapport to be established between myself and the student (see Section 5.2.3).

5.7 Summary of chapter

This chapter has described the planning and data analysis of the main study. Designed

to address the second research question of the thesis, and to provide more evidence on the

first research question, the study is framed within the methodology of phenomenography,

as presented in Chapter 3.

In the study, fifteen students from Warwick University were individually interviewed.

During these interviews, each student was given a modified version of the example

generation task used in the pilot studies in Chapter 4. Each student discussed their

thoughts as they completed the task via a ‘think-aloud’ protocol, and later during an

informal discussion period with the interviewer. Throughout the each interview, the

interviewer attempted to ‘bracket’ their judgement on the content of the mathematics,

asking questions that requested more information and those which encouraged reflection

on ideas raised by the student.

The data analysis procedure began by transcribing the entire set of interviews. The

transcripts were then phenomenographically analysed by first open coding the data,
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then collecting of codes under headings, and finally forming of categories of description

and dimensions of variation. The next chapter reports on the dimensions of variation

which emerged from this data analysis.



Chapter 6

Main Study: Dimensions of

Variation

This chapter addresses the second research question:

What is the qualitative variation in students’ experiences of sequence gener-

ation?

As described in the previous chapter, the thesis aims to consider qualitative variation

of experience from the research specialism of phenomenography. Four dimensions of

variation are presented in this chapter: Using Definitions, Representation of Sequences,

Sequence Construction Strategies, and Justifications. Each of these dimensions emerged

from the phenomenographic data analysis, as described in Chapter 5. This chapter

begins with a brief discussion of the variation present in the definitions and questions

from the perspective of a researcher in Section 6.1. Then, in Sections 6.2–6.5, the chapter

outlines each dimension of variation by discussing the categories of variation present,

and presenting and commenting upon illustrative incidents from the data.

Each section focusing on a dimension of variation begins with a general discussion of

the emergence of the dimension, and its relation to the second research question. A

summary table of the categories of description is then presented (recall that a dimen-

sion of variation has a hierarchical structure, beginning with categories including few

features of the concept to categories which describe richer or deeper ways of seeing the

concept). Then, each category of description is broken down into types of incident, with

128
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illustrations of the category from the data. These incidents are only considered from

within the context of the relevant dimension of variation, postponing comparison across

dimensions of variation until the end of this chapter. Finally, each section concludes

with a summary of the dimension.

Within a particular report of an incident, quotes present the data in the order in which

events occurred. If the quote is taken from when the student was answering a question

during the task phase of the interview, the quoted passage begins by stating the question

under consideration, then what the student said, then finally the student’s answer:

Q1. A strictly increasing sequence.

Student: I think this would work.

[Answer given: an = n]

If the quote is taken from discussion period after the task had been completed, the

student’s answer is presented immediately after the question, and then the discussion

between interviewer and student is given.

Q1. A strictly increasing sequence.

[Answer given: an = n]

Interviewer: Why did you write that?

Student: I thought it would work.

6.1 Variation in the questions

Although the purpose of a phenomenographic study such as this is to explore students’

awareness of sequence generation, it is important to also consider the variation present in

the questions students were asked. Phenomenographers usually subscribe to Marton and

Booth’s (1997) belief that learning is the same as becoming aware of possible variation

in the object of study, and so before considering the dimensions of variation in students’

awareness it is first worthwhile therefore to first consider the variation that is present in

questions and the definitions under consideration.

Such an analysis relies on my thoughts as a researcher, rather from empirical data, and

so such an account is more phenomenological than phenomenographical. Recently, some
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authors have researched the variation in examples from a similar perspective (e.g. Mason,

in press; Watson and Chick, in press). Note that here it is variation in the definitions and

example generation questions that is considered, rather than variation in the examples

themselves. Also, the variation discussed here is the result of my reflections before and

during the data analysis; I make no claim that the variation of sequence property types

discussed in this section is the only way in which variation of sequence properties can

be considered.

The definitions presented to students on the definition sheet are superficially similar

(this definition sheet was reproduced as Figure 5.1). Many definitions from this sheet

make some stipulation on the terms of the sequence based on the ordering of their sub-

scripts, and many contain either or both of the quantifiers ∀ and ∃. It is understandable

therefore that when students are considering a definition together with a sequence, they

misinterpret which features of the sequence the definition constrains.

The features that the sequence properties constrain fall into three types. Some, such

as increasing and strictly increasing, give a rule that dictate a condition on subsequent

terms that must hold for each term of the sequence. Some definitions do not dictate a

sequence’s term by term behaviour, but provide condition for all terms, such as those

involving bounding a sequence. Other definitions do not stipulate the behaviour of a

finite number of terms, but give conditions for the long term behaviour of the sequence,

such as the definition of tending to infinity. In summary, I consider there to be roughly

three different ‘types’ of definition on the sheet:

Term-by-term (pairwise) definitions [T-T]

These define the behaviour of the sequence as it moves from term to term.

Longer term behaviour can sometimes be inferred.

Such as: increasing, decreasing, strictly increasing, strictly decreasing, mono-

tonic

Sequence-wide properties [S-W]

These are definitions that specify a rule (which may involve a universal quan-

tifier) for all terms in the sequence, treating each term in isolation.

Such as: bounded above, bounded below, upper bound, lower bound, bounded

Long-term properties [L-T]

These give a rule (which may involve a universal quantifier) which must be
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satisfied from (or at) some point in the sequence.

Such as: tending to infinity, diverges

In terms of these definition types, each question asks students to use a single definition,

or to combine the same or different types. Looking at each question on the task sheet:

1. A strictly increasing sequence [T-T]

2. An increasing sequence that is not strictly increasing [T-T/T-T]

3. A sequence that is both increasing and decreasing [T-T/T-T]

4. A sequence that is neither increasing nor decreasing [T-T/T-T]

5. A sequence that has no upper bound [S-W]

6. A sequence that has neither an upper bound nor a lower bound [S-W/S-W]

7. A bounded, monotonic sequence [T-T/S-W]

8. A sequence that tends to infinity [L-T]

9. A sequence that tends to infinity that is not increasing [T-T/L-T]

10. A sequence that tends to infinity that is not bounded below [S-W/L-T]

11. A strictly increasing sequence that does not tend to infinity [T-T/L-T]

Chapter 8, which reports on an analysis of the task when given to a large group of

students, will note that questions combining different types of properties were more

difficult than those which combined a single type, which in turn were more difficult

than those which asked students to consider a single definition (in Section 8.4.2). In

this chapter, in the following section which discusses the dimensions of variation Using

Definitions, we will see that some issues students had may have resulted from treating

one type of definitions as if it were another.
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6.2 Using definitions (Def)

The focus of this dimension of variation is students’ awareness of (that is, their use of

and comments on) the definitions of sequence properties in the task. The focus is not

extended to the way students deal with the definition of a sequence (this awareness is

covered in the Representation of Sequences dimension of variation).

Recall that students were presented with a comprehensive definition sheet immediately

before the task phase of the interview. It is unsurprising therefore that many students

made use of these definitions in some way or another during the task. However, from

the perspective of the second research question, students were aware of different aspects

of the definitions, and how they can be applied when generating examples of sequences.

At one extreme we have the category of description Def-A Unaware of Definitions, where

students rely almost wholly on non-mathematical spontaneous conceptions, taking the

‘everyday’ meaning of words in the place of a sequence property, much as (Cornu, 1991)

observed was the case when some students dealt with the concept of a limit. At the

other extreme, in category of description Def-D Manipulates Definitions, students use

and manipulate aspects from the definitions both when constructing their sequences and

when justifying why their sequence is correct. Between these categories of description,

there are instances of students referring to definitions, but with no evidence that they

are using them in any way (Def-B Refers to Definitions), and those students who use

definitions, but do not demonstrate that they are treating them as objects (Def-C Uses

Definitions).

An outline of this dimension of variation is given in Table 6.1.

Table 6.1: Dimension of Variation: Using definitions.

Description

Def-A. Unaware of Definitions
Def-B. Refers to Definitions
Def-C. Uses Definitions
Def-D. Manipulates Definitions
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6.2.1 Def-A. Unaware of definitions

This category of description originates from statements and actions which were coded to

suggest that students were not aware of how the definitions were related to the example

generation task (and so from a phenomenographic perspective possibly also less aware

of the role of definitions in mathematics more generally). Incidents which were classified

Def-A were often the result of a failed attempt by student to interact with a definition

after they had been prompted to do so by the interviewer.

Other incidents of being unaware of definitions involve students who used the everyday

meaning of the properties in place of the formal definitions. Some of these everyday

meanings had little in common with the formal definition. A summary of the types of

incident that are in this category include students who:

• Refers to definitions only when prompted

• Used spontaneous conceptions related to the everyday meaning of a property in

place of a formal definition

• Ignored / not referred to the definitions1

Incident Def-A1: Refers to definitions only when prompted

Consider the following incident that took place during the discussion period with Ian.

During the task, Ian had not referred to or commented upon the definitions:

Q1. A strictly increasing sequence

[Answer given: an = n where n ∈ N]

Q2. An increasing sequence that is not strictly increasing

[Answer given: 1, 2, 1, 3, 1, 4, 1]

Interviewer: Do you want to just have a quick read of the definitions of

increasing and strictly increasing, and have another quick look at Questions

1 and 2. Do you follow what the definitions are saying here?

1There is no illustrative incident corresponding to this event, it is a general observation from the
data.
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Ian: Yeah, it’s just that the small thing between two successive terms can

be equal with increasing, but with strictly increasing they are always just/

Interviewer: So looking again to your answers to [Question] 1 and 2, are

you still comfortable with them or not?

Ian: No, Question 2’s wrong, because, well, yeah I’m happy with increasing,

because every successive term’s going to be greater than the previous term,

and [29 second pause]. So I suppose you need something like, some example

of a term being the same so it’s not always increasing

[Changes answer to 1, 1, 2, 2, 3, 3].

Ian had demonstrated that although he had not referred to the definitions during the

task (and had, perhaps as a consequence, given incorrect answers), when prompted to

recall definitions he was capable of applying them successfully. Such incidents imply

that even if an incident has been categorised as Def-A, it does not necessarily follow

that the student is unable to recall and apply definitions in all situations.

Incident Def-A2: Using everyday meanings of properties in place of formal

definitions

A well-documented type of phenomenon that is categorised within Def-A is when the

the everyday meaning of words are used as the concept definition for a property. Cornu

(1991, p.154) noted that when students deal with formal definitions of mathematical

concepts their prior knowledge, for instance the everyday meaning of the words, can

mix with the mathematical definition resulting in a potentially conflicting concept image.

This prior knowledge which may or may not conflict with the formal definition is referred

to as a spontaneous conception. Incidents in Def-A2 make no reference to the formal

definition at all; students’ use of the property is wholly composed of their spontaneous

conceptions (in other words no reference is made to the formal definitions at all).

Looking back at the results from the pilot studies, it was clear that for certain students,

the formal properties of increasing and decreasing were synonymous with “going up”

and “going down”. Some students in the main study also used the terms in a similar

way, such as when Edha was answering Question 3 in the task period:
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Q3. A sequence that is both increasing and decreasing

Edha: Erm, both increasing and decreasing, sine or cos curve?

Interviewer: What made you think of the sine or cos curve?

Edha: It just keeps going up and down, but I don’t think that’s right. I’m

not too sure.

[Answer given: an = (−1)n(n+ 1)]

David had similar thoughts:

David: Both increasing and decreasing. For that one then, the first one I

immediately think of it, lets go for sin(n).

[Answer given: an = sin(n)]

Such everyday meanings may be mathematical, but not consistent with formal mathe-

matics, such as David’s answer to Question 6:

Q6. A sequence that has neither an upper bound nor a lower bound

David: Ok. That’s quite a tough one actually. Because I’m thinking the

first term of the sequence is normally going to be the lower bound.

The use of everyday meanings may also have repercussions when negating properties,

for instance when Valter commented:

Valter: If a sequence is not increasing then it must be either oscillating or

decreasing.

Interviewer: What do you mean by oscillate?

Valter: Erm, it’s neither increasing nor decreasing.

This everyday negation of increasing stated here is not contradictory with the negation of

the formal definition of increasing (i.e. that there is at least one term which is lower than

its predecessor), but it relies on defining another property—oscillating—in a circular

argument.



Dimensions of Variation 136

6.2.2 Def-B. Refers to definitions

It was rare for there to be no reference to mathematical definitions, but this did not mean

that students used the formal definitions correctly, or remained consistent in their use

of definitions. Most students made reference to the contrasting definitions when moving

from Question 1 to Question 2, as these questions deal with very similar properties. This

is different to actually using the definition, whether it be during example generation or

validation of answers. Other students referred to definitions only when they got stuck

with the task, checking for instance that their notion of tends to infinity was the same

as the one on the sheet.

In general, for an incident to be classified Def-B, either an improper (but mathematically-

based) definition was used, or the definition was not used in a consistent way. The types

of event which are in this category include:

• Modifying definitions with everyday spontaneous conceptions

• Modifying definitions with spontaneous conceptions from mathematics

• Referring to definitions without using them when answering the questions

• May look at definition for inspiration but does not use later

Incident Def-B1: Modifying definitions with everyday spontaneous concep-

tions

Incidents of this nature are similar to those described in incident Def-A2, but whereas in

Def-A the entire definition was taken to be the same as an everyday meaning, incidents

in Def-B typically take the formal definition as a base, but then include spontaneous

conceptions which add to, or otherwise modify the definition.

In the last section, we considered David’s comments behind his answer to Question 3 as

an example of Def-A. If we now consider this in the wider context of his actions during

the first four questions we can see that his usage of increasing and strictly increasing are

in keeping with the formal definitions, but once he considers increasing and decreasing

together the everyday meaning of the words begin to modify his use of the formal

definition of increasing:
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Q1. A strictly increasing sequence

David: Ok. So the first one is pretty simple. Just straightforward progres-

sion of the natural numbers.

[Answer given: an = n]

Q2. An increasing sequence that is not strictly increasing

David: Second one. Erm, Ok so I’m trying to think of a sequence that have

some terms that are equal to each other maybe. Or a whole sequence that

is all equal to each other. To show it’s increasing, but not strictly[. . . ] I’m

not sure if that qualifies, that’s the thing. Obviously all the terms are equal

and then there are no increasing terms. Erm, OK. I’ll leave that how it is.

[Answer given: an = 1]

Q3. A sequence which is both increasing and decreasing

David: Both increasing and decreasing. For that one then, the first one I

immediately think of it, lets go for sin(n).

[Answer given: an = sin(n)]

Q4. A sequence that is neither increasing nor decreasing

David: Ok. Haha, yeah that one’s going to be my straight-line one. Just a

constant at k, just for a bit of rigour. Yeah, so that one [points at Question

2] I’m going to have to rethink, but there we go.

[Answer given: an = k k ∈ R]

At this point, it seems that provided David considers increasing and decreasing in isola-

tion from each other he is happy with the view that a constant sequence is increasing (and

so presumably, also considered in isolation, decreasing). When it comes to combining

the two properties, his viewpoint is shifted to fit in with the spontaneous conception that

‘increasing and decreasing’ means ‘going up and down,’ and so the sequence an = sin(n)

is increasing and decreasing, and the constant sequence an = k, where k ∈ R is neither

increasing nor decreasing.

David did not comment on the inconsistency of his answers at this point, but did so

later on, after first attempting the other questions on the task:

Q2. An increasing sequence that is not strictly increasing
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David: Ok, that’s, this one here increasing but not strictly increasing. I

want some level terms really.

Interviewer: You don’t have to give a formula if you don’t want to, if you

can make it obvious what the pattern is from the/

David: I’m going to go for — I wonder if you can do this

[Changes answer to an = n for n < 5, an = 5 for n ≥ 5]

David had not explicitly recalled a formal definition during the task, but from his initial

and subsequent attempt at Question 2 it appears that he understood the distinction

between an increasing sequence and a strictly increasing sequence. However, once he

decided that a constant sequence is neither increasing nor decreasing (c.f. his answer to

Question 4) he concludes that a constant sequence is therefore not suitable for Question

2 either. He then decided to modify his (correct) answer to Question 2 to a different

(correct) answer which conflicts less with his answer to Question 4. This was raised

during the discussion period:

Interviewer: And so for this one here [Question 2]- you were quite happy

about that one [an = 1] and that one [an = n for n < 5, an = 5 for n ≥ 5]

satisfying it, but then that one you were a bit/

David: Yeah, because obviously for an increasing one that’s not strictly

increasing you can have terms that are level. But all the terms being level

just doesn’t seem to qualify for an increasing sequence, just by the meaning

of the word.

Here we have seen an incident where David initially treated the sequence properties in

a way which was correct relative to the formal definitions, but then his spontaneous

conceptions (e.g. that a sequence which is both increasing and decreasing goes up and

down) has modified his initial understanding of the definitions.
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Incident Def-B2: Modifying definitions with spontaneous conceptions from

mathematics

The spontaneous conception outlined in the last incident has an everyday use, whereas

some students demonstrated that spontaneous conceptions could have a more mathe-

matical basis. In the following quote from Ben, he takes the definition of an upper

bound, and modifies the constraint that an upper bound be a real number, allowing an

upper bound to have the value infinity:

Q6. A sequence that has neither an upper bound nor a lower bound

Ben: Ok so here we want one that has a U at infinity and minus infinity to

get both of those. So you could have −1, 2,−2, 3,−3.

[Answer given: 1,−1, 2,−2, 3,−3 . . .]

Incident Def-B3: Referring to definitions without using them when answer-

ing the questions

This incident explores comments that relate to students who made reference to the exis-

tence of definitions, but did not necessarily use an appropriate definition. Typically such

students also did not apply these definitions appropriately. One common instance was

using definitions as a justification for the impossibility of the combination of properties

requested by Question 9. Here are a collection of quotes to illustrate this, taken from

both the task and discussion periods:

Q9. A sequence that tends to infinity that is not increasing

Guan: If it tends to infinity it has to be increasing.

Ian: I suppose, by the definition of infinity, because there’s always going to

have to be terms that exceed a limit so you just always seem to be increasing,

I don’t know, all the terms that I think of are going to infinity in other ways,

always increasing.

Joe: Because otherwise, if it tends to infinity and it’s positive it has to

increase.

Ken: A sequence that tends to infinity that is not increasing. I think that’s

impossible. By definition.
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Some of these quotes only refer to definitions implicitly (such as the one from Guan,

which depending on context could be classified Def-A also), but the reasoning these

students report make logical deductions based on what it means to tend to infinity

(and so these quotes are considered as belonging to the students’ concept definitions of

tending to infinity).

Incident Def-B4: Mixing sequence-wide, long-term, and term-by-term prop-

erties

Recall from Section (6.1) that from this researchers’ perspective, there is variation in

the way a definition constrains the terms of a sequence; whether they constrain term-

by-term (T-T), sequence-wide (S-W), or in long-term behaviour (L-T). Treating one

of these definition types as another is another way in which a student may refer to a

definition whilst still not use it appropriately:

For instance, consider the following comment from Phalgun, who is treating tending to

infinity and bounded below as if they were term-by-term properties:

Q10. A sequence that tends to infinity that is not bounded below

Phalgun: Something going up and down at the same time

It is easily argued that Phalgun has the spontaneous conceptions ‘tending to infinity is

going up’ and ‘not bounded below is going down’, but from the perspective of definition

types Phalgun may be treating tending to infinity and being bounded below as T-T

property.

The following quote can be interpreted as Ken treating increasing as a S-W property:

Q4. A sequence that is neither increasing nor decreasing

[Answer given: (−1)n]

Ken: It’s not getting larger, it’s just going from 1 to −1

Here, one interpretation of Ken’s statement “it’s not getting larger” is that it is an

implicit reference to the definition of increasing, only the definition is being treated as

if it were a sequence wide property, rather than a term-by-term one.
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6.2.3 Def-C. Uses definitions

In this category students not only make reference to mathematical definitions when

constructing or validating answers, they also provide evidence that they are using the

example in a way that is consistent with how definitions are used in formal mathematics.

Particular features of a definition may be focussed on (such as the ∀ quantifier), or the

meaning of the definition may be attended to. This category also includes instances

where a student uses a definition, but inappropriately (see incident Def-C3).

The type of incidents categorised as Def-C were:

• Using definitions to confirm answers are correct

• Using definitions when constructing answers

• Mixing sequence-wide, long-term, and term-by-term properties

Incident Def-C1: Using definitions to confirm answers are correct

Incidents categorised Def-C were almost exclusively related to the sequence properties

of increasing and decreasing, typically when students justified that their answers to

Question 1 and 2 were correct.

Q1. A strictly increasing sequence

[Answer given: an = n]

Haaroon: So it’s strictly increasing so it’s always going to go above the

next term, so it just needs to go up.

Q2. An increasing sequence that is not strictly increasing

Nicola: I was thinking for this one you need one that’s going to, at some

point plateau, stay at the same point, ’Cus it’s not strictly increasing.

[Answer given: an = 1, 1, 2, 2, 3, 3,]

These incidents may seem superficially similar to the incidents described in Def-B3,

where definitions were referred to when justifying that answers were impossible. How-

ever, the types of incident shown in Def-B3 did not make reference, or use, the content of



Dimensions of Variation 142

the definitions, they were instead using the language of formal mathematics but not in

a way that was consistent with the meaning of the formal properties (such as Guan who

said that ‘if it tends to infinity it has to be increasing’). Here, in the incidents classified

as Def-C, the both the definitions themselves and the framework of their use are con-

sistent with formal mathematics; implicit reference is made to the ‘∀n ∈ N, an+1 ≥ an’

part of the definition of increasing.

Incident Def-C2: Using definitions when constructing answers

Some students chose to write the appropriate definitions down near the questions, in-

dicating that they were trying to keep the definitions in focus when answering the

questions:

Guan:

Phalgun:

Others looked at the definition sheet to check definitions, or because they had forgotten

the meaning of a particular property:

[Nicola looks at definition sheet]

Interviewer: Which one did you just look at?

Nicola: The monotonic. Increasing or decreasing.

In these incidents students were making explicit reference to the content of a definition

when completing the task.
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Incident Def-C3: Mixing the content of sequence-wide, long-term, and term-

by-term properties

The type of incident presented here is similar to those in Def-B4, where a definition of

a certain type (T-T. S-W, L-T) was treated as if it were another. In Def-B4, it was the

idea of what the definition did, perhaps making reference to the definition but not using

the content of the definition at all. Here we present an incident where Valter certainly

uses the content of the definition, but the way he works with the definition suggests that

he is treating ‘not increasing’ as a T-T definition (where in fact it is a S-W property).

I first present the incident, summarise it, and then explain why it was categorised Def-C.

Q9. A sequence that tends to infinity that is not increasing.

[Answer given: impossible]

Valter: It might be easier to use the definition, tending to infinity in graph-

ical way. You have C here which is an arbitrary value bigger than zero, and

we know that for a sequence to tend to infinity every term of the sequence

after a certain N must be greater than this C. For all n. For all C. So if we

take another one higher then we can find a corresponding N2. So we keep

on choosing Cs and have to look for corresponding Ns, and one can see that

the terms of the sequence have to increase at some point.

In summary, Valter first considers the definition of tending to infinity, in particular

noting that it contains a C, which is fixed, but arbitrary. For the particular value,

C1, he notes that there is an N1 where for all n > N1, an > C1. He then chooses

a larger value C2 > C1, and defines a N2, which without loss of generality we can

assume N2 > N1. Then he claims the sequence of (Ni) must increase. This summary is

illustrated in Figure 6.1.

Here, I argue there are two alternative interpretations. The first is that Valter is effec-

tively negating increasing to mean ‘can never increase’, i.e.

Definition (false): A sequence (an)∞n=1 is not increasing if and only if ∀n ∈ N, an+1 ≤

an.
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C2

C1

N2N1

Figure 6.1: An illustration of an alternative (false) definition of increasing, i.e. that
the sequence tends to its supremum.

and so his version of the definition of a ‘not increasing’ sequence is a T-T property. An

alternative interpretation is that Valter is using ‘increasing’ to mean the L-T property

(illustrated in Figure 6.1):

Definition (false): Let X = sup{an, n ∈ N}. A sequence (an)∞n=1 is increasing if and

only if ∀C < X, ∃N ∈ N s.t. ∀n > N , an ≥ C.

This definition is perhaps more in keeping with the everyday meaning of increasing (the

sequence is ‘going up’ over time), but it includes sequences which formally are not in-

creasing. Despite the similarity with the everyday spontaneous conception, this incident

was not categorised Def-B because Valter is doing more than referring to definitions, he

is taking elements from the definition of tending to infinity and attempting to use these

with the definition of increasing.

For the incident discussed here, and in earlier in Def-B4, it is often difficult to clearly

categorise clearly into either Def-B or Def-C. This is because from one perspective (Def-

B), these incidents are similar to Incident Def-B1/2 where spontaneous conceptions

from everyday usage and other mathematical knowledge mean that students misuse the

definitions. However, it is possible to interpret some passages as illustrations of Def-C,
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as we did here, because in some sense the students are using the way one deals with a

certain definition type, but for a type which is dissimilar.

6.2.4 Def-D. Manipulates definitions

In this category, definitions are used as objects than can be used in conjunction with

each other and restated in different ways or from different perspectives whilst not adding

to, or modifying their meaning. Differences and similarities between definitions may be

explored. The types of incident categorised as Def-D were:

• Making distinctions between similar definitions

• Negating definitions

• Combine definitions and using them to draw conclusions

• Reformulate definitions in everyday language or in formal mathematics, without

changing meaning

Incident Def-D1: Making distinctions between similar definitions

It could be argued that the design of the task encourages students to focus on this

type of activity. For instance, in order to move successfully from Question 1 to 2, a

students needed to make some attempt to compare the definitions of increasing and

strictly increasing, and many students did this explicitly. Two such students were Ben

and Guan, who discussed the distinction between increasing and strictly increasing when

answering Question 2, and appreciated that not all terms in the sequence need to be

repeated:

Q2. An increasing sequence that is not strictly increasing

Ben: Again, these [sequences] are ones that can be equal to the ones be-

fore because that’s the difference in the definition, so you could have say

1,1,2,2,3,3. Any combination of those really.

[Answer given: an = 1, 1, 2, 3, 3, (sic)]
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Guan: I’m thinking about the definition of increasing sequence and strictly

increasing. So the difference is that strictly increasing the next term must be

greater than the previous one, while increasing can be greater than or equal

to the previous one. So it can be a constant sequence.

[Answer given: an = 2, 2, 2, 2, 2, . . . ,]

Incident Def-D2: Negating definitions

Successful completion of the task sheet required students to work with the negation of

some definitions. Whilst some students did not manage to do this, instead taking the

everyday negation of the statements (sometimes successfully and sometimes unsuccess-

fully), other students described a more formal negation, such as Valter who was asked

why his answer to Question 4 was correct:

Q4. A sequence that is neither increasing nor decreasing.

[Answer given: an = (−1)n]

Valter: This follows straight from the definition of increasing sequence. The

condition is that each term an+1 is greater than or equal to the proceeding

one an, which must be true for all n. But we can see that this is not true

for all n. We take this term, a2 and the next term a3 is less than, so the

sequence is not increasing. And by similar reasoning we can conclude that

it is also not decreasing.

Incident Def-D3: Combining definitions and using them to draw conclusions

It was rare for a student to combine definitions at a level where they made clear which

aspects of the definitions were being combined. When a students did attempt this type

of detailed examination of a definition it was usually tough to extract meaning from

their often meandering explanations (c.f. Incident Def-C3). Sometimes students com-

bining sequence properties with little reference to the formal definitions (Incident Def-

C1). However, Oksana came close to using definitions as part of a formal mathematical

argument:
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Q10. A sequence that tends to infinity that is not bounded below

[Answer given: impossible]

Oskana: The definition of tending to infinity is that you can find a, that

there’s always an N such that aN > C given a C, but you know that there’s

always going to be a negative term after you find— say you say a C. There’s

no way there’s not going to be a negative term after the aN term, so you’re

not going to be able to find aN term such that it’s greater than C for all

an > N . I’m sorry, I’m definitely sure that it’s not possible.

Because these were spoken rather than written there is a degree of interpretation as to

whether “n” was n or N . In the above quotation, for the categorisation Def-D, Oskana

has been given the benefit of the doubt, and her statement is assumed to be equivalent

to the more more formal:

• From the definition of increasing to infinity, we know that for any C > 0, we can

find N , where an > C for all n > N .

• Starting at this N , we know that there must be a natural number m > N where

the corresponding sequence term am < 0, because otherwise the sequence would

be bounded below.

• Therefore the sequence can’t both tend to infinity and be bounded below.

If this is a valid interpretation of Oskana’s argument, then she is using the definitions

of tending to infinity and bounded below together, selecting the parts which contradict

each other.

Incident Def-D4: Reformulate definitions in everyday language or in formal

mathematics, without changing meaning

In incident Def-C3, Valter used the definition of tending to infinity to construct the

increasing sequence (Ni). This incident was categorised Def-C because he went on to

use this reformulated definition to conclude that the elements of the sequence (an) were

increasing. However, if we focus on the reformulation part alone, Valter’s reformulation

lost none of the meaning of the definition of tending to infinity.



Dimensions of Variation 148

6.2.5 Commentary on definition usage

As was discussed in the introduction to this dimension of variation section, because

students were presented with the definition sheet before attempting the task, the infor-

mation that the task can provide with regard to how students are spontaneously aware

about mathematical definitions is limited. From a phenomenographical perspective, the

sheet has immediately shifted students’ focus towards property definitions before they

had even begun the task, and so it is not immediately clear that drawing conclusions

about students awareness of property definitions is completely valid in this context.

Furthermore, the task sheet also implicitly encouraged formal definition use via its con-

tent, and by the request that students ‘think-aloud’. However, despite these concerns,

some students were reluctant to consider definitions during the task until prompted

(Def-A), and several relied on spontaneous conceptions rather than use or refer to the

formal definitions (Def-B, Def-C). Few students treated them as objects that they could

manipulate, combine, and reformulate without losing meaning (Def-D).

It is also worth noting that most of the incidents reported here focus on the sequence

properties of increasing and decreasing, rather than boundedness. This does reflect the

data, where most of the questions involving boundedness did not evoke statements or

actions that referenced the corresponding definitions. Perhaps this is a reflection on the

similarity between the everyday meaning of ‘bounded above’ and its formal mathematical

counterpart, so maybe the difficulty with applying a definition is directly related to how

similar it is to everyday spontaneous conceptions (this hypothesis is discussed further in

Section 9.5).

Excerpts from the data that correspond to this dimension of variation can be tough to

categorise because, in an example generation interview situation, implicit use of examples

is superficially similar to not using definitions at all. There are three specific instances

where the categorisation of a quote relies on a high degree of (possibly alternative)

interpretation.

1. If a student makes no reference to definitions then this is not necessarily an indi-

cation that at that time that their behaviour is characteristic of category Def-A.

They could be using definitions internally or implicitly in a way which, if articu-

lated would be categorised Def-C or Def-D.
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2. There were times when students claimed (a) the sequence satisfied the properties

requested or (b) that there was no sequence satisfying the properties “by defini-

tion.” This could be the result of using definitions in a either a way consistent

with (formal) mathematics (Def-D), or in a more colloquial sense (Def-B).

3. As illustrated by Incident Def-C3, it is not clear whether a misconception related

to a definition is the result of a spontaneous conception (which may result from

the everyday meaning of a word, or prior mathematical knowledge), or treating

different definition types (T-T, S-W and L-T) interchangeably.

Within a phenomenographic account these three issues are less troublesome. This is

because the second research question is not concerned with labelling specific incidents,

but describing the possible ways of experiencing, which the ‘using definitions’ dimensions

has done.

6.3 Representation of sequences (Rep)

This dimension of variation considers students’ awareness of the ways students chose to

represent their answers, the types of objects students considered to be representations

of sequences, and which, if any, representations are seen as ‘better’ answers to the

sequence example generation questions. From the perspective of the second research

question, these three areas are very similar, if not the same. For instance, if a student

answers a sequence example generation question by choosing a type of mathematical

object (which may or may not be a sequence), then it is possible to be aware of that

object as a sequence. Similarly, if a student believes a certain type of mathematical

object to represent a sequence, then it is possible such an answer can be given as a

response to a sequence example generation task.

The dimension begins with category of description Rep-A Any Representation is Suitable,

where students do not place any constraints on the way their sequence is represented.

Even mathematical objects which are not functions from the natural numbers to the

reals might be considered as sequences within incidents from this category of description,

which has a clear link to the INS answers given by students in the two pilot studies in

Chapter 4. In the next category of description, Rep-B One Representation is Superior,
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students recognise that certain objects are not sequences, but have a preference of one

particular representation of sequence for their answers. Such students sometimes can

generate a sequence, but cannot write it down in the required form, and so may leave

the question blank. In the most sophisticated category of description, Rep-C Any Well-

Defined Representation is Suitable, students are flexible in the way they write down their

answers, but ensure that their answers are sequences.

An outline of the dimension is given in Table 6.2.

Table 6.2: Dimension of Variation: Representation of sequences.

Description

Rep-A. Any Representation is Suitable
Rep-B. One Representation is Superior
Rep-C. Any Well-Defined Representation is Suitable

6.3.1 Rep-A. Any representation is suitable

In the pilot study tasks it was common for students to give examples of mathematical

objects which were not sequences but possibly did have the properties requested by the

question in some loose sense. Such answers were classified INS in the coding scheme

from the pilot studies. These objects fall into this category; they are representations

of objects given when students were attempting to provide a example of a sequence

satisfying certain properties.

Compared with the pilot studies, there were considerably fewer answers of the INS type

from students in the main study (3 from 151 non-blank answers), which is remarkable

given that the interview style, structure and content was relatively unchanged. Despite

few students giving INS answers, several students did consider briefly offering objects

which were not sequences, but corrected themselves before writing down their answer.

Overall, however, there was far less variation observed amongst the INS answers, in

particular there were no ‘mathematical nonsense’ answers, or objects which were not

functions (such as intervals and sets).

The types of incidents categorised as Rep-A were:
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• INS answers generally2

• Changing the domain of a sequence

• Considering giving an answer of INS type

Incident Rep-A1: Giving a finite sequence

As described in the previous paragraph, it was rare for a student to settle on an INS

response as a final answer but when such an event happened it was because the student

had changed the domain of a sequence. One student, Anna, gave an answer which was a

real function over a finite interval of the reals. The rest of her answers were well-defined

sequences (or she stated that the combination of properties was impossible). During the

discussion period this issue was raised:

Q3. A sequence that is both increasing and decreasing

[Answer given: an = sinn, 0 ≤ n ≤ π, with sketch (below)]

Interviewer: Out of interest, some of your sequences have gone on forever

and some of them have stopped. I’m interested in why some of them did

that and some didn’t.

Anna: Like where?

Interviewer: Your sine one, that stopped, and I think the rest carried on,

is that right? Apart from the ones which were impossible.

Anna: I just showed that it was increasing there and decreasing there [refers

to the increasing and decreasing sections of the graph].

2as noted above, there were few INS answers in the main study, but the prevalence of these answers
in the pilot studies warranted inclusion of this incident type.



Dimensions of Variation 152

In examining this incident within the Rep dimension of variation we must focus on the

representation of Anna’s answer, bracketing other dimensions of variation, in particular

the fact that even if we consider the extension of the function to all reals, and then the

projection on to the natural numbers it is still not increasing and decreasing.

Anna may or may not have considered her answer to be a sequence in its own right.

She wrote “an”, which may suggest that she was using n ∈ N as was the convention in

her course. Later however, she drew the equivalent continuous function over the interval

[0, π]. In the discussion period she demonstrated that she believed that this answer

characterised the important features of a sequence answering this question, namely that

the graph increases for a region and then decreases for a region, and so (within her frame

of reference) it is an increasing and decreasing sequence.

From a phenomenographic perspective, by giving this answer to a sequence example

generation task, Anna has demonstrated that some students may believe a sequence can

be represented in a way which is not equivalent to a function from the natural numbers

to the reals.

Incident Rep-A2: Changing the domain to Z

As noted in the pilot study, some of the task questions which request combinations of

properties that are impossible within formal mathematics can be considered possible if

the definition of a sequence is altered to include double-sided sequence, that is a function

f : Z→ R. In the interviews, Ian did precisely this:

Q10. A sequence that tends to infinity that is not bounded below.

Ian: Actually I suppose just an = n is going to be, it’s not bounded below

because if you just include all the- if n can just be an integer. Yeah, if n

is just an integer, then it’s not going to be, there’s no lower bound for the

sequence. That will tend to infinity. And also negative infinity as well. Yeah,

I’m just going to go with that though.

[Answer given: an = n, for all integers]
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Incident Rep-A3: Considering changing the domain

Several students implicitly considered using a domain other than N when answering

questions, but decided that it was not permissible. The following two quotes illustrate

this:

Q10. A sequence that tends to infinity that is not bounded below.

Mike: I suppose we could have something like, no - because we can never

have a negative n can we? I was thinking we could have something like

an = n3, something like that and that wouldn’t be bounded below, and it

would tend to infinity, but then we’d have to have a negative n, which we’re

not allowed.

Q7. A bounded, monotonic sequence.

Ken: Well I was trying to think of something that would tend towards the

limit, actually I think I’ve already answered this question, bounded mono-

tonic sequence - yeah, it is for natural numbers, isn’t it?

Interviewer: What do you mean?

Ken: You’re doing natural numbers for the sequences aren’t you, so not

negative?

These quotes illustrate something not seen in the pilot studies, they are incidents where

students who briefly consider and then reject INS responses.

6.3.2 Rep-B. One representation is superior

For some students that were interviewed, certain representations of sequences were seen

as superior. Such students would typically work with some representation of their se-

quence initially: a graph, list of numbers, or a mental object of some type, but no final

answer would be given until this representation had been converted to a certain type,

sometimes at the expense of not giving a final answer at all. For the students in this

study, the desired representation was, without exception, a formula.

The types of incidents categorised as Rep-B were:
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• Sequences are not valid unless they are represented with a formula

• Knowing an answer but unable to write it in a ‘correct’ way

• Unsure of correct notation to use

Incident Rep-B1. The only valid representation is a formula

In the interview data collected, if a student remarked that they felt there was only one

valid representation of a sequence it was that of a formula, “an = f(n)”. This incident

selects some of these comments which were made. The first quote illustrates this belief

manifesting as an obstacle for Nicola, who knew what she wanted her sequence to do,

but ran into trouble writing the sequence as a formula:

Q2. An increasing sequence that is not strictly increasing

Nicola: If you have every two successive terms are the same, then that

would be increasing. Think how to write that. Well I could write it as a list

of numbers. That’s actually a viable sequence?

Comments of this type often occurred during the discussion period when I was discussing

questions the students had left blank. Where a student gave the impression that they

could think of a sequence but couldn’t write it down I suggested to students not to worry

about finding a formula. The following two quotes illustrate this:

Q2. An increasing sequence that is not strictly increasing

Interviewer: You don’t have to find a formula. You can just put a list of

numbers if you prefer.

Phalgun: That’s not really right is it? It’s writing numbers.

Q9. A sequence that tends to infinity that is not increasing

[Answer given: Impossible]

Interviewer: So all we need to do is go down a few times, or just once, then

go up forever.

Anna: But how would you write that?
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Interviewer: In terms of your drawing you could do down, then up, like a

tick.

Anna: Yeah, do you know any like ‘that’ [points at her answer a different

question, given as a formula]

Incident Rep-B2. Clarification of the ‘correct’ representation

One student, Anna, asked for clarification at the beginning of the task as to how to

represent sequences in the task:

Anna: Do I need to write down the formula or draw the graph?

Other students did not ask for clarification until they had begun the task, seeking

confirmation as to what was an acceptable way of representing their answer only when

they were in possession of some sequence (either on paper or mentally):

Joe: I don’t have to write like, brackets an = n or anything?

Nicola: I’m thinking about a2n. That’s a sub-sequence. Am I allowed a

sub-sequence?

Ken: Well a strictly increasing sequence has every term greater than the

last one, so

[Writes answer: (3)]

Ken: Is that notation ok?

Laura: Strictly increasing sequence, so every term has to be bigger than the

one before, so you could just have 1, 2, 3, 4. Do I need to put like up to n or

whatever?

The last quote from Laura also illustrates a cross-over between concerns about suitable

notation (this Incident) and wanting to represent the sequence as a formula (Incident

Rep-B1). Laura is unsure whether to represent the sequence “(an) = n” as:
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(a) 1, 2, 3, 4, . . .

or (b) 1, 2, 3, 4, . . . , n.

6.3.3 Rep-C. Any well-defined representation is suitable

In the interviews, eight students (out of 15) gave at least one answer in terms of a list

of numbers and at least one answer as a formula. Of these eight students, two (Phalgun

and Ian) only wrote down a list of numbers after prompting from me. The remaining

students typically provided the representation which was ‘easiest’ to write down, as will

be illustrated in Incidents Rep-C1 and Rep-C4. What makes this category distinct from

Rep-B is that in the incidents categorised here students are content that the object they

give is a valid representation sequence, even if it is not the most desirable representation

for them. Students did not typically comment on alternative representations of their

sequences, but one such case is illustrated in Incident Rep-C2.

The types of incident categorised as Rep-C were:

• Using a representation when unable to use another

• Treating two representations as equivalent

• Switching between representations

• Using the representation which is easiest to write

Incident Rep-C1. Using a representation when unable to use another

Of the eleven questions on the task, Laura gave seven examples, stating that the combi-

nation of properties of four questions were impossible. Of the seven examples she gave,

four were lists of numbers and three were formulae. During the discussion stage I asked

if there was a difference for her in the answers:

Interviewer: Another interesting thing, for me at least, is that you’ve given

a list of numbers for some of them and for other ones you’ve given a formula.

Did you just fancy a variation, or are these just more complicated perhaps,

what were you thinking?
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Laura: I don’t actually know. Mainly for ones like that I wouldn’t know

how to write it, well no you’d— I could but I’d have to think to do that, it’s

more. Yes I guess some of them, most of the ones that I wrote as a list it’s

because I couldn’t think immediately how to put them as like ‘an =’.

Another student, Nicola, remarked when answering Question 2 that writing a list of

numbers was a way of ‘getting around’ writing a formula:

Q2. An increasing sequence that is not strictly increasing

Nicola: I get around this by not writing this as a formula. ’Cus I want

something that I want to dip at some point, but still going to be going

properly up like that.

Nicola later modified her answer to include repeated terms (rather than dip), but kept

the representation of the example as a list of numbers rather than a formula (all her

other answers were given as a formula).

Incident Rep-C2. Treating two representations as equivalent

In one case a student remarked that two representations were equivalent:

Guan: A sequence that tends to infinity. So that can just be an = n. Which

equals 1, 2, 3, 4, 5.

[Answer given: an = n = 1, 2, 3, 4, 5,]

Note that in Guan’s answer the equivalence is also illustrated in a way which is mathe-

matically imprecise; she has used the equals sign in an inconsistent way (both between

her two uses and relative to formal mathematics). Within this dimension of variation this

is bracketed, however, and the written answer is interpreted as indicating equivalence of

sequence representations.

Incident Rep-C3. Switching between representations

In this incident a change in representation is prompted by the interviewer:
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Mike: A sequence that tends to infinity that is not increasing, I didn’t think

we would be able to do that

Interviewer: And why’s that?

Mike: Actually yes we could — well, yes we could actually because, We

want something that goes like that. [draws sketch, shown below]

Mike: So it’s not increasing as there is a decrease between those terms,

but it is increasing to infinity. So I’ll write it, we want something like an =

10, 9, 20, 19,

Interviewer: It’s quite tricky to get a formula for that

Mike: Yes I think so, we probably want something a bit simpler.

Interviewer: Can you think of how to make it simpler?

Mike: Well we could pick out something in here, we’ve got the 10, 20 and

the 30. So I’m not sure how I’d notate this but something like an equals,

lets say, if n is odd, 10n. n is even, an−1 − 1. Err, which would give us this

sequence think.

A statement such as this demonstrates that Mike is comfortable, when prompted, to

represent the sequence in different ways. Note that here the choice to represent as a

formula was directed by the interviewer.

Incident Rep-C4. Using the representation which is easiest to write

One student, Oksana, switched between different sequence representations in her series

of answers. For the first six questions, and later in Question 9 her answers were given

as a list, and for Questions 7 and 8 she she wrote a formula. This was brought up in

the discussion period:
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Q1. A strictly increasing sequence

[Answer given: 1, 2, 3, 4,]

Q7. A bounded, monotonic sequence

[Answer given: 1
n ]

Interviewer: Some of them you gave a list of numbers for, and then when

you got to Question 7/

Oksana: Yeah [laughs]. Because I found it, I couldn’t think of a, yeah

actually I don’t know why—

Interviewer: That’s fine, it’s just interesting

Oksana: Because I like the idea of “1, 2, 3, 4,” but the writing of “1, 12 ,”

sound more complicated so I thought, I thought why not?!

Oksana has moved flexibly between different representations of sequences, and based on

her response to the interviewer’s question, she did not consciously decide to do so. On

reflection, she notes that her answer to Question 7 would have been more cumbersome

to write as a list of numbers, and hypothesises that this may be the reason why. This

idea perhaps can be continued to explain her returning to writing a list of number for

Question 9:

Q9. A sequence that tends to infinity that is not increasing

[Answer given: 231564897 . . .]

This sequence is easier to write as a list of numbers than in a sequence.

6.3.4 Commentary on representation of sequences

The students who volunteered for the main study gave far fewer answers which were

not sequences compared to the pilot studies, in terms of number of INS responses. For

instance, no student gave an interval of the real line, something which was most common

in the pilot interview study. The rare instances of INS responses were categorised Def-

A, along with certain comments and answers which suggested that certain students

considered representations which gave the ‘essence’ of a sequence as valid sequences in

their own right (see, for instance, Incident Rep-A1). It was far more common for a
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student to to briefly consider altering the domain when faced with a combination of

properties they were struggling with. Incident Rep-A3 presented two passages where

students considered extending the domain to Z in order to answer a question involving

boundedness.

The lack of INS responses did not mean that students were comfortable with multiple

representations of sequences, however. Incidents which were categorised Rep-B typically

involved students who knew, to some extent, what the behaviour of their chosen sequence

was or perhaps what it would look like in a sketch, but they were unsatisfied with their

answers until their sequence was represented as a formula in the format “an = f(n)”.

Even amongst students who presented their sequences in multiple representations, lists

of numbers were typically seen as less desirable than formulae for many students, as is

demonstrated in Incident Rep-C1.

6.4 Sequence construction strategies (Con)

This dimension looks at the strategies students use when they generate sequences. As

discussed in the literature review in subsection 2.2.6, in this context the word strategy

is used only loosely. The students did not typically comment on an example-generation

strategy explicitly, but did often comment on what they were attempting to do when

answering a particular question. It is the interpretation of such comments, together

with observations from what students did during the task, that form the basis of this

dimension of variation, addressing the second research question in terms of the possible

strategies a student might be aware of, and therefore act upon.

When the heading construction strategies emerged from the open coding of my data

it was compared with the classification made by Antonini (2006). Although Antonini

did not frame his research within a phenomenographic framework, his categorisation of

example generation strategies into three types — trial and error, transformation, and

analysis — fitted neatly with incidents coded under sequence construction strategies,

and so these strategies can be found within my dimension of variation under categories

of description Con-B, Con-C, and Con-D, respectively. The remaining category of de-

scription Con-A Generic Initial Approaches, outlines routines and rituals performed by
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students typically at the start of the question, such as underlining key words in the

question.

Aspects from this dimension of variation have been published in Edwards and Alcock

(2010a).

An outline of the dimension is given in Table 6.3.

Table 6.3: Dimension of Variation: Sequence construction strategies.

Description

Con-A Generic Initial Approaches
Con-B. Trial and Error
Con-C. Transformation
Con-D. Analysis

In this section, the categories within the dimension of variation are first described,

postponing arguments that the categories with higher letters are more sophisticated

until the discussion section.

6.4.1 Con-A. Generic initial approaches to questions

Some students had a routine that they followed when attempting a new question, re-

gardless of the properties asked for in the question. These routines might be to refer to

the appropriate definition, or underline parts of the question. These initial approaches

to generating examples are considered as less sophisticated than the other strategies in

the dimensions because they manifested as routines. Of course, such routines might

be useful or even desirable when generating examples; by initially familiarising them-

selves with the appropriate definitions at the start of a question, students may be more

successful in applying one of the other strategies (c.f. Incident Def-C2).

The types of incidents categorised as Con-A were:

• Underlining properties

• Writing down the definitions

• Repeating the question over and over
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Incident Con-A1. Underlining properties and writing down definitions

Haaroon chose to underline in each question the properties which were requested, then

to look at the definition sheet and copy down parts of the appropriate definition that

were salient to him. The following scan of his task sheet illustrates this.

Phalgun also chose to begin by write down the definitions:

Phalgun: Erm, basically I’m just writing the definition of increasing se-

quence so that I could think of an example.

Writing down relevant definitions is probably a very good starting point when generating

examples, but such mechanised behaviour independent of the question asked is labelled

Con-A.

Incident Con-A2. Repeating phrases or definitions

Some of the more sophisticated strategies that will be outlined later in this dimension

of variation (specifically Con-B and Con-C) require an initial example to be generated.

These initial examples may, or may not, be valid examples. For some students, finding

any initial example at all to check or manipulate was problematic. Phalgun demon-

strated two ways to gain inspiration, repeating the question aloud and writing over the

question.

Phalgun: I just keep writing over it ’cus I can’t think. And [if] I can’t do

stuff I just keep writing over it and then hopefully.

Such routines appear to be very unsuccessful in providing inspiration. In a similar

incident, Haaroon recalled he had seen a sequence which satisfied Question 9, and spent

some time trying to recall it:
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Q9. A sequence that tends to infinity that is not increasing.

Haaroon: I remember doing this one actually. Hum, I remember doing this

one.

Interviewer: Was this a question on one of the assignments?

Haaroon: Yeah, I remember doing this one. So it’s not increasing, so it’s

going up and then down, up and then down essentially. I think so yeah. . . . I

remember doing this one—I should know this one, it’s so poor. I’ll have to

leave it.

6.4.2 Con-B. Trial and error

The second category in the Sequence Construction Strategy dimension of variation is

trial-and-error type strategies. Antonini (2006) described the trial and error strategy as

follows:

The example is sought among some recalled objects; for each example the

subject only observes whether it has the requested properties or not. (An-

tonini, 2006, p.58)

Antonini found that this type of strategy was the most frequent used in his study of

graduate students of mathematics, and in my data this is also the case. In a Con-B

strategy, an initial example is generated and then either accepted as correct, or checked

to see whether it satisfied the definitions specified by the question. In the most trivial

case, the initial example is one which the student already knows is correct from past

experience. The types of incidents categorised as Con-B were:

• Trying simple (prototypical) examples

• Trying examples seen in class

• Trying examples already used on the task

Incident Con-B1. Trying simple (prototypical) examples

Some students began questions by considering simple examples. A student who did this

was David:
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Q1. A strictly increasing sequence

David: Ok. So the first one is pretty simple. Just straightforward progres-

sion of the natural numbers.

[Answer given: an = n]

Q5. A sequence that has no upper bound

David: I’m going to use, again, the simpler, just the natural numbers again.

[Answer given: an = n, n ∈ N]

For these two questions, David has noted that the simple sequence (an) = n will work.

Many students gave this sequence to the three ‘warm-up’ questions on the task sheet:

Question 1 (93%), Question 5 (80%), and Question 8 (47%).

Incident Con-B2. Trying examples already used on the task

Some students took a sequence which they had already given to an earlier question

and checked whether it also worked for a new question. No student remarked that

they were using their prior answers in any kind of structured way, for instance looking

at questions they had answered previously which contained similar properties to the

question they were trying to answer. It is possible that this was implicitly the case

for some students however, and some incidents could be interpreted as such. Take, for

instance, the following incident from when Guan was attempting to give an example for

Question 9. Earlier in the interview she had answered Question 6 as follows:

Q6. A sequence that has neither an upper nor a lower bound

Answer given: an = (−1)nn

She was now attempting to answer Question 9:

Q9. A sequence that tends to infinity that is not increasing

Guan: I think it can just be this one [points to her answer to Question 6],

because—oh, that doesn’t tend to infinity[. . . ] this is just a sub-sequence

tending to infinity but the whole sequence doesn’t.
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Her answer to Question 6 was not increasing and contained a subsequence which tends

to infinity, which is superficially similar to the question she was attempting. Later on in

the task she used trial and error with an example she remembered from class to answer

Question 9, and this is discussed towards the end of Incident Con-B3.

Incident Con-B3. Trying examples seen in class

It was common for students to refer to sequences they had seen in their lectures and

problem classes. This was often because the material was fresh in their mind:

Haroon: As you see I’ve been using log(n), because I’ve just had a tutorial

and I’ve just been doing logs. So it’s been drilled in to you.

Ben: Well to be honest in the series that we were doing this morning this

sequence came up.

It is interesting to note that the phrasing of this incident indicates that the reference

to the assignment sheet is also being used to justify the correctness of the answer (see

the dimension of variation Justifications in Section 6.5). This suggests that for some

students, a trial and error strategy evoking examples the student has already met brings

with it a justification as to why the example is correct (see Incident Jus-B1 in subsection

6.5.2).

In the previous incident (Con-B2) we saw Guan using her previous answers as candidates

for latter questions. She too used examples she had seen in class:

Q9. A sequence that tends to infinity that is not increasing.

Guan: Yes, I think I’ve found an example for nine. It’s, I remember the

lecturer talked about a sequence which is [like] this:
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[sketches]

Guan: So it tends to infinity but it’s not increasing because this term [points

an even term] is obviously not greater than the previous term. So, we can

write it as 1, 0, 2, 0.

[Answer given: an = 1, 0, 2, 0, 3, 0, 4, 0, . . .]

Bracketing the fact that the example generated to satisfy Question 9 is incorrect, we

can see that this quote, together with the ones presented in the last incident, shows that

Guan had used various sources to obtain initial solutions for her Con-B trial and error

strategy, including answers given to previous questions on the task and sequences she

had seen previously in class.

6.4.3 Con-C. Transformation

Recall that Antonini (2006) described the transformation strategy as follows:

An object that satisfies part of the requested properties is modified through

one or more successive transformations until it is turned into a new object

with all the requested characteristics. (Antonini, 2006, p.59)

A transformation strategy requires an initial example, or representation of an example,

in order to make (possibly successive) transformations. For the sequence generation

questions in the task, no student made more than one transformation, but there was

variation in the source and representation of the initial example. The types of incidents

categorised as Con-C were:
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• Transforming an answer seen before

• Transforming via another mathematical object

• Transforming a graphical object

Incident Con-C1. Transforming an answer seen before

When answering Question 6, several students described a strategy where they began

with an oscillating sequence of fixed magnitude such as (an) = (−1)n, and increased

the magnitude of successive terms. No student did the reverse: taking an increasing

sequence and introducing an oscillatory factor, although this would also be a way in

which a transformation strategy may give a correct answer to Question 6:

Q6. A sequence that has neither an upper bound nor a lower bound.

Valter: We can recall from the assignment 4 that the sequence an = (−1)n

was neither increasing nor decreasing, it was oscillating between −1 and 1.

But its absolute norm was 1 so we want to change this 1 to another number,

say a number larger than 2. So this would still oscillate about the x-axis but

would be, the odd terms would, the sub-sequence of the odd terms would

diverge to minus infinity while the sub-sequence of the even terms would

diverge to plus infinity. So it has no bounds.

[Answer given: (an) = (−2)n].

Q6. A sequence that has neither an upper bound nor a lower bound.

[Answer given: an = n(−1)n]

Interviewer: So how did you come up with that one?

Nicola: I thought of (−1)n, and thought that is bounded, so I needed to

change it at each n, so just timesed it by that [n], and it’ll be different every

time.

Sometimes in the discussion part of the interview I prompted students to modify an

attempt given previously:
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Q6. A sequence that has neither an upper bound nor a lower bound.

[Answer given: −1, 1,−1, 1]

Interviewer: So you’re kinda on the right lines with that number 6, so

thinking about what you’ve done. Is there any way you can modify the

sequence you’ve just wrote to make it get as big and as small as you like?

Edha: Oh, that’s an = (−1)n, if we multiply it by something I guess. So if

we multiply it by n+ 1. Then if it’s 1, it’s -2, and then 3, and then -4, yeah

that’s an example.

[Changes answer to: an = (−1)n(n+ 1)]

Sometimes, students began with an answer, then modified it syntactically:

Q6. A sequence that has neither an upper bound nor a lower bound

Phalgun: A sequence that has neither an upper bound nor a lower bound.

[writes a = (−2)n]

Phalgun: an = (−n)n. That’s not right is it.

Here Phalgun begins with the prototype answer a = (−2)n, and for some reason is

not happy with it, so modifies the value inside the bracket. He is still not happy with

his answer, but leaves it and continues to the next question. Later in the interview,

it becomes clear that Phalgun is attempting to generate more esoteric answers by this

method:

Q8. A sequence that tends to infinity

Phalgun: A sequence that tends to infinity

[pause of 20 seconds, during which Phalgun writes the example (an) = 2n]

Interviewer: So you’re after a better one again, yeah?

Phalgun: Yeah. I mean these are pretty obvious, I’m trying to think of a

good example.

[Phalgun writes down (an) = en and moves onto the next question]

The notion that although equally correct, some examples are better than others, ties

in with the general (undefinable) notion of mathematical elegance. Some authors argue
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that it is a good pedagogical strategy to ask students to generate several examples,

or requesting that students try to provide example which they believe few others will

generate (e.g. Watson and Mason, 2005).

Incident Con-C2: Transforming via another mathematical object

This incident looks at where Valter begun with an INS object and then transformed that

object into a sequence, before deciding that the sequence did not satisfy the question.

Such events were categorised Con-C2, as an object is being transformed in an attempt

to answer the question:

Q10. A sequence that tends to infinity that is not bounded below

Valter: An example of that would be ‘an =’, no that actually would be. I

was thinking about graphs as functions.

Interviewer: Do you want to sketch what you were thinking of if you can’t

think of a formula?

Valter: I was thinking of the graph of a function log(x), as a sequence we

define it, it keeps on increasing tending to infinity, but it’s bounded below.

Here, Valter has first considered the function

f(x) = log(x), f : R→ R

and noted that it tends infinity as x→∞ and is not bounded below. When restricting

the function’s domain to N, he notes that the resulting sequence also tends to infinity,

but is now bounded below.

Unlike the Incident Con-C1, the behaviour of the sequence is not transformed, it is the

domain of the mathematical object that is adjusted. Although Valter’s transformation

did not produce a valid answer to the question, this type of strategy will sometimes be

successful. For instance it could reasonably be argued that students who give sequences

based on trigonometric functions are using this strategy implicitly.
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Incident Con-C3: Starting with a graph

Some students began with a sketch of a function, and attempted to find a sequence

which behaved in the same way. This type of incident is similar to Incident Con-C2,

above, but in that incident the mathematical object was a real-to-real function, and the

graph was a representation of that object. Here the difference is that the graph is the

only given representation of the mathematical object.

During the discussion phase of Ken’s interview, he was told that Question 9 was not

impossible. He then had some inspiration, and sketched the shape of a function of which

the corresponding sequence would have the required properties:

Q9. A sequence that tends to infinity that is not increasing.

[Answer given: Impossible]

Ken: Ah, actually, yeah that one is possible. You could have something like

a sine curve doing that.

[sketches]

Ken: I need to think of the equation. Yeah, something like n+ sin(n).

Here, Ken has taken his sketched graph, and tried to find a function which describes it.

Superficially, the sketch looks as though it may be a sine graph rotated to be along the

line f(x) = x. He then attempted to find a formula for the type of function he sketched,

and suggested an = n+sin(n). This transformation has not been unsuccessful, however,

because the sequence represented by this formula is increasing (one way to see this is to

observe that f ′(x+ sin(x)) ≥ 0 ∀x, and so the sequence (an) = f |N must be increasing).

In this incident Ken has taken a object represented jointly as a sketch and in relation to

a known function, sin(x), and transformed it into an IS answer. This incident therefore

demonstrates that a transformation strategy may not always provide a valid solution
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to a question, and such strategies may also remove desirable features from the object

generated initially.

6.4.4 Con-D. Analysis

Recall that Antonini (2006) described the analysis strategy as follows:

Assuming the constructed object [exists], and possibly assuming that it satis-

fies other properties added in order to simplify or restrict the search ground,

further properties are deduced up to consequences that may evoke either

a known object or a procedure to construct the requested one. (Antonini,

2006, p.59)

Recall that in his study with graduate students of mathematics, Antonini found fewer

incidents of analysis than other strategies. Similarly, in their example generation study

with undergraduates, Iannone et al. (2009) found only one case where a student’s rea-

soning was consistent with an analysis strategy. In the main study data here there were

also fewer instances of analysis compared with the other strategies, but still several inci-

dents of note. Such incidents were typically where a student’s construction strategy was

analysis in that assumptions and deductions were made in order to evoke an example,

but it was often the case that these individual assumptions and deductions within this

strategy were mathematically incorrect.

The types of incidents categorised as Con-D were:

• Making deductions to clarify the example space

• Making assumptions to reduce the example space

Incident Con-D1. Making deductions to clarify the example space

When answering Question 11, Phalgun deduced that if a strictly increasing sequence

does not tend to infinity, it must converge:

Q11. A strictly increasing sequence that does not tend to infinity.
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Phalgun: A strictly increasing sequence that does not tend to infinity. In-

creasing, converges to a limit.

Here, Phalgun’s deduction has clarified a feature of the examples that satisfy Question

11 without changing the meaning of the question, and so it is an example of a Con-D

Analysis strategy. Arguably this extra information could have resulted in him evoking a

richer example space for this question. However, despite this deduction, Phalgun could

not answer Question 11, and in the course of attempting it he did not make reference

to this deduction again.

Sometimes deductions which serve to clarify the extent of the example space were incor-

rect, and actually expanded the example space to include sequences which do not satisfy

the question. Such a deduction was made by Ian:

Q5. A sequence that has no upper bound.

Ian: I’m not sure you can say that but any strictly increasing sequence will

do that. So (an) = n diverges to infinity so it has no upper bound.

This chain of statements contains deductions which are mathematically incorrect. It

is not the case that any strictly increasing sequence will have no upper bound, and so

within this analysis strategy incorrect deductions have been drawn. The next statement,

that a sequence which diverges to infinity will have no upper bound, is correct and the

answer given, (an) = n, is also correct, however.

In the discussion period, Ian came close to the type of reasoning that if present during

example construction would be labelled Con-D Analysis. Whilst justifying why his

answer to Question 6 was correct he noted that:

Q6. A sequence that has neither an upper bound nor a lower bound.

[Answer given: an = (−2)n]

Ian: It’s going to increase, a subsequence is going to increase and decrease

too. An increasing subsequence, decreasing subsequence, and for each term

is going to exceed the upper bound and the lower bound.
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This is an account of why Ian’s answer was correct, rather than an account of a con-

struction process or strategy, so it may not be clear why this passage was coded Con-D.

However, this incident can be interpreted as the student indicating the features of an-

swers which satisfy Question 6. In other words:

• If a sequence (an) has neither an upper bound nor a lower bound it must contain

an increasing subsequence and a decreasing subsequence.

• For any candidate upper bound, there must be a term in the increasing subsequence

that exceeds it (or we can modify the increasing subsequence accordingly), and a

similar property for candidate lower bounds and the decreasing subsequence.

• (an) = (−2)n has suitable subsequences.

A chain of reasoning such as this would demonstrate a clarification of the type of se-

quences which satisfy Question 6.

Incident Con-D2. Assuming further conditions

When a further condition is assumed, the example space is restricted. This can be of

benefit when the further condition serves to make the reduced space more accessible,

and the examples in it more salient. Within the data from this example generation task,

such further conditions were typically that an answer could be written in a particular

way. For instance, Haaroon decided to assume that his answer could be written in terms

of two subsequences:

Q10. A sequence that tends to infinity that is not bounded below.

Haaroon: But not bounded below, so it’ll be one of those like an+1 [sic] and

a2n

This assumption did not help Haaroon provide an example, because there are no se-

quences which satisfy the conditions, so imposing further constraints on the representa-

tion of answers is unhelpful in this case.

Sometimes the assumption that the sequence could be represented as two subsequences

reflected the belief that the entire sequence would somehow carry-over the desirable
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features of each subsequence. For instance, Ian began down this line of reasoning, but

realised it would not work:

Q10. A sequence that tends to infinity that is not bounded below.

Ian: I’m trying to think of the example (−2)n again, where it’s got subse-

quences. One can tend to infinity and one can tend to negative infinity. It’s

not going to be bounded below, but the whole sequence isn’t going to tend

to positive infinity.

Therefore, for the students in this study a Con-D Analysis construction strategy was

not always successful, especially when further conditions were assumed.

6.4.5 Commentary on sequence construction strategies

When the heading sequence construction strategies emerged from the open coding of my

data it was compared with Antonini’s (2006) classification. Almost all incidents coded in

this category fitted neatly within Antonini’s classification, and those which did not were

typically generic initial ways of approaching questions; actions that were performed to

several questions in succession (categorised as Con-A Generic Initial Approaches). The

remaining categories took Antonini’s classification and labelled in the same order he

presented in the paper presented: Con-B Trial and Error, Con-C Transformation, and

Con-D Analysis. This subsection now proposes that this ordering of the dimension of

variation increases in terms of mathematical sophistication, then goes on to relate the

dimension to previous research on Anonini’s classification.

Con-A is clearly the least sophisticated strategy; it is the application of one or more of

a set of routines that are independent to the content of the question. These routines

are arguably not strategies to answer the question as much as a way a students can

familiarise themselves with the question and its associated content. Such routines may

be beneficial if used in conjunction with another strategy, but for some students, this

type of behaviour was the way they predominately went about tackling the questions.

Incidents categorised Con-B are more sophisticated than those classified by Con-A be-

cause an example is generated. The validity of examples produced by trial and error is
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typically unknown until they have been checked, and so this strategy is less sophisticated

than Con-C Transformation or Con-D Analysis.

The most sophisticated strategies are those which either take an example, consider what

it is lacking and transform accordingly (Con-C), or deal implicitly with the set of all

examples which satisfy the given properties, clarifying or restricting this set to make

example generation easier (Con-D). It is very difficult to compare these two strategies

in terms of sophistication, but I believe that deducing or assigning properties in the

abstract is more sophisticated than taking with a concrete example and modifying it.

One can easily imagine a very sophisticated transformation, and a very simplistic ana-

lytic deduction or assumption, and so I would not argue that all Con-D incidents will

be clearly more sophisticated than all Con-C incidents; there is some degree of overlap.

Antonini (2006) and Iannone et al. (2009) both reported that trial and error was the

most common strategy seen in their participants. This is notable because the partic-

ipants from the two studies had different levels of mathematical experience (graduate

students and undergraduate students of mathematics, respectively). The undergraduate

mathematicians in this study also predominately used strategies labelled Con-B, but this

prevalence in the data is possibly due to two confounding issues. First, students were

encouraged to think aloud; it is much more likely an event is self reported as ‘I thought

of this example’ rather than a more detailed account of a more sophisticated example

generation strategy. Second, generating examples of sequences which satisfy combina-

tions of properties is perhaps less conducive to Con-C and Con-D strategies compared

with the mathematical objects Antonini’s participants were asked to generate.

When students in my study did use strategies which were categorised Con-C and Con-

D, they typically did not produce valid examples. This may be because the type of

mathematics involved within these strategies is too sophisticated for the students; novice

mathematicians are more likely to make incorrect assumptions and deductions in a Con-

D strategy, and make errors transforming an example in a Con-C strategy. By the very

nature of the trial and error strategies categorised as Con-A however, errors can only

occur when checking to see if an initial example has the required properties.
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6.5 Justifications (Jus)

This dimension looks at how students justified their confidence in their answers, and how

they justified the deductions they made during the interviews. Incidents presented from

the categories of description in this dimension originate from two parts of the interview

therefore: comments students made when attempting the questions during the task

period, and comments made when students were reflecting upon, and discussing their

answers in the discussion period. In terms of the second research question, the dimension

is richer than just incidents where a student did, or did not justify their answers. It also

looks at the sophistication of these arguments, and considers students’ level of confidence

in their justifications.

The category of description Jus-A No Justification Attempted presents incidents where

students did not justify their answer. Such students may have been unsure that their

answer was correct so did attempt to justify it, and perhaps others were so confident in

their answer that they felt no justification was appropriate. Incidents where students

sought justification, clarification or confirmation from an external source are classified

Jus-B, Appeals to an External Authority. An attempt at a justification, but one based

on intuition, or otherwise without reference to any mathematical content is classified

Jus-C, Informal Justifications. Finally, incidents where a student offered a justification

which was based on suitable mathematical warrants were classified Jus-D, Formal Jus-

tifications. These mathematical Jus-D classifications bracket whether the mathematics

is valid relative to formal mathematics, they are based more on the type of justification

offered.

An outline of the dimension is given in Table 6.4.

Table 6.4: Dimension of Variation: Justifications.

Description

Jus-A. No Justification Attempted
Jus-B. Appeals to an External Authority
Jus-C. Informal Justifications
Jus-D. Formal Justifications
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6.5.1 Jus-A. No justification attempted

There were many incidents where students made no attempt to justify why their answer

was correct, or why a chain of reasoning was correct. Incidents categorised as Jus-A

range from when students made a statement with reason given as to why it was correct,

to remarks about the obviousness of an answer or conclusion, to those students who

remarked that they were unsure of their answer. In summary, the types of incidents

categorised as Jus-A were:

• No reference to justification

• Reference to an answer being obviously correct

• Students unsure of the validity of their statement

Incident Jus-A1. No reference to justification

There were many times a conclusion was drawn, or an answer given, with no justifi-

cation at all. Such statements may have been correct, or incorrect, relative to formal

mathematics as is illustrated by the following two extracts, respectively:

Nicola: If it oscillates it’s not increasing or decreasing.

Mike: If it’s not bounded below, then that means it goes to infinity below.

Incidents of this type typically stated their conclusion as if they were facts.

Incident Jus-A2. Reference to an answer being obviously correct

In lieu of justifying why an answer was correct, some students appealed to the obvious-

ness of their answer. Consider the following four extracts which claim, respectively, that

an example is easy to generate, that a question is likely to be impossible via intuition

and common sense, that an example is trivially correct, and that a question is impossible

by definition:



Dimensions of Variation 178

Q4. A sequence that is neither increasing nor decreasing.

[Answer given: 1, 1, 1, 1, 1, 1, . . .]

Edha: That’s easy.

Q9. A sequence that tends to infinity that is not increasing.

Valter: Intuitively I’d say 9 was one that was impossible. Just appealing to

common sense.

Q4. A sequence that is both increasing and decreasing.

Phalgun: Both increasing and decreasing, a trivial one an = 1

[Answer given: (an) = 1]

Q9. A sequence that tends to infinity that is not increasing

Ken: I think that’s impossible. By definition.

These four justifications are grouped here because they are similar, not because they

necessarily should all belong to Jus-A. Note that the phrases “trivial” and “by definition”

are often used legitimately within a formal mathematical framework, and so it is a

subjective matter whether the use of this word in a given context should be classified

Jus-A No Justification Attempted or Jus-D Formal Justification. In particular I believe

by considering the structure of the justification, rather than the mathematical truth,

Edha’s comment should be classified Jus-A, Valter’s Jus-C, and Phalgun and Ken’s

Jus-D.

Incident Jus-A3. Students unsure of the validity of statements

Some incidents were marked Jus-A when a student noted they were unsure if their

answer, or a conclusion they were drawing was valid:

Valter: I’m not sure you can say [this], but any strictly increasing sequence

[will have no upper bound]
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6.5.2 Jus-B. Appeals to an external authority

In this second category of description, incidents are presented where students did not

justify their answers or conclusions themselves, but instead referred to an external au-

thority. The external authority may be what they have been told in lectures, what they

remember from class problem sheets, or from work they have otherwise done previously.

Such incidents were not categorised as Jus-A because here a student is providing a jus-

tification, all be it one based on some other source. Several of the events categorised

Jus-B can also be found in incident Con-B3 Trying Examples Seen In Class.

The types of incidents categorised as Jus-B were:

• Referring to lecturers comments

• Recalling past assignment sheets

• Asking the interviewer for input

Incident Jus-B1. Referring to lecturers’ comments

The following quote from Guan was previously given as part of Incident Con-B2. Here

Guan believed she had remembered her lecturer giving an example of a sequence which

would satisfy Question 9:

Q9. A sequence that tends to infinity that is not increasing.

Guan: Yes, I think I’ve found an example for nine. It’s, I remember the

lecturer talked about a sequence which is [like] this:

[sketches]
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Guan: So it tends to infinity but it’s not increasing because this term [points

an even term] is obviously not greater than the previous term. So, we can

write it as 1, 0, 2, 0.

[Answer given: an = 1, 0, 2, 0, 3, 0, 4, 0, . . .]

In this quote after providing the justification that the sequence was mentioned by her

lecturer, she went on to provide justification why the sequence is not increasing (“because

this term is obviously not greater than the previous term”), but did not continue to give

a reason why the sequence tends to infinity. Indeed the sequence does not tend to infinity

as every second term returns to zero.

Joe similarly made reference to his lecturers’ comments, but decided to overrule them:

Q4. A sequence that is neither increasing nor decreasing.

[Answer given: an = 3]

Interviewer: Why is that [neither increasing nor decreasing]?

Joe: Because it’s just like a flat line. But then in those cases we’re told that

it’s increasing and decreasing, but then it’s doing neither as well. So I’ll just

put that for that.

Joe’s recollection that his lecturer stated that a constant sequence is increasing and

decreasing is at odds with his spontaneous conception that “it’s doing neither as well”,

but he is unwavering in providing the constant sequence an = 3 for Question 4 (A

sequence that is neither increasing nor decreasing), and the sequence an = (−1)n for

Question 3 (A sequence that is increasing and decreasing).

Incident Jus-B2. Recalling past answers

As an illustration of a student who justified an statement by appealing to previous

work they had completed, a quote from Valter, previously given in Incident Con-B3, is

repeated. Note that here “assignment” refers to a question already answered on the task

sheet, rather than a class assignment.

Valter: We can recall from the assignment 4 that the sequence (an) = (−1)n

was neither increasing nor decreasing.
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Incident Jus-B3. Asking the interviewer for input

On rare occasions, students asked the interviewer if their answers were correct:

Q7. A bounded, monotonic sequence.

Ben: Bounded monotonic sequence. if it’s bounded then it’s bounded above

and below. It’s monotonic so it’s increasing or decreasing. So the bounds.

Yeah, if you just have a normal monotonic sequence that is the same. Mono-

tonic, yeah you can have them both. Then that’s bounded above and below

at 1, and it’s monotonic.

[Answer given: an = 1, 1, 1, 1, 1]

Ben: Is that ok?

Q2. An increasing sequence that is not strictly increasing.

Joe: I don’t know, is this like one of those ones where you’ve got an, where

the odd numbers equal zero and the even numbers equal n.

[Answer given: [a2n] = 0 [a2n−1] = n (sic)]

Ben: Does that count for this one?

When this did happen, I explained that I didn’t want to say until they had finished the

task, but was happy to go over answers afterwards.

6.5.3 Jus-C. Informal justifications

To be classified as Jus-C, a student will have provided a justification as to why their

answer, or chain of reasoning is correct, but that justification will not be based in

(formal) mathematics. What exactly should constitute a justification calling on formal

mathematics or otherwise will depend on context, but for the sequence generation task

given to students the types of incidents categorised as Jus-C were:

• Justifying with non-mathematical terminology

• Referring to intuition or common sense

• Unable to think of any alternatives
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Incident Jus-C1. Justifying with non-mathematical terminology

In this type of incident students justify their answer or chain of reasoning, by using

terms that have not been defined. Often it is very clear what the student means such

as Nicola’s use of “plateau”:

Q2. An increasing sequence that is not strictly increasing

Nicola: I was thinking for this one you need one that’s going to, at some

point, plateau, stay at the same point. Cus it’s not strictly increasing.

[Answer given: an = 1, 1, 2, 2, 3, 3, . . .]

Although Nicola’s notion of a sequence plateau can easily be formally defined (perhaps

∃N ∈ N s.t. an = an+1), one can never be sure that a term phrased in everyday language

will be similarly understood by everyone. The phrase “stay at the same point”, again

phrased in everyday language, has less ambiguity and helps clarify Nicola’s meaning.

Similarly, the treating an increasing sequence to be the same as a sequence that “goes

up” has been a commonly referenced spontaneous conception in this chapter. Using

such language as a justification is therefore labelled Jus-C:

Q3. A sequence that is increasing and decreasing

Edha: Sine or cos[ine] curve?

Interviewer: What made you think of the sine or cos[ine] curve?

Edha: It just keeps going up and down, but I don’t think that’s right.

Incident Jus-C2: Referring to intuition or common sense

An extract already presented as part in Incident Jus-A2 for comparative purposes was

labelled Jus-C:

Q9. A sequence that tends to infinity that is not increasing.

Valter: Intuitively I’d say 9 was one that was impossible. Just appealing to

common sense.
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Here Valter’s justification that no sequence can both tend to infinity and not increase is

based on his common sense. Such statements have been labelled as Jus-C, as opposed to

statements such that the answer is “trivial” or true “by definition”, which have a more

valid, if ambiguous, footing in formal mathematical reasoning.

Incident Jus-C3: Convincing oneself of the answer

Those students who justified their answer by stating they had convinced themselves were

also categorised as Jus-C:

Q9. A sequence that tends to infinity that is not increasing.

Nicoa: So I’m looking for a strictly increasing sequence that’s bounded

above, because that would mean it wouldn’t go to infinity.

Nicola: Yeah, I’ve convinced myself that, maybe, logs aren’t bounded, be-

cause you can have have any positive number greater than 1 and you’ll keep

getting an answer.

Nicola’s statement, that the logarithm function is unbounded is correct (and so she

correctly reasons that it is not bounded above), but her justification: that it is defined

for any number greater than 1 (or alternatively that it is increasing with the domain) is

invalid relative to formal mathematics.

Incident Jus-C4: Unable to think of any alternatives

In a similar vein to the last incident, the next extract taken from Ian’s interview reached

a situation where he reached a conclusion because he could not think of any other

examples:

Q9. An sequence that tends to infinity that is not increasing.

[Answer given: Impossible]

Interviewer: So could you explain why, in wavy-handy terms, why you

think [this question is] not possible?
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Ian: Erm, because if it’s going—I don’t know—I suppose, by the definition

of infinity, because there’s always going to have to be terms that exceed a

limit so you just always seem to be increasing, I don’t know, all the terms

that I think of are going to infinity in other ways, always increasing. I can’t

think of anything that’s just constant or decreasing that’s going to infinity.

It is probably the case that the interviewer’s request for an informal justification (in-

tended to put Ian at ease, indicating I didn’t want a formal proof) contributed to the

nature of the response, but the last comment: that the student couldn’t “think of any-

thing that is constant of decreasing that’s going to infinity” was labelled Jus-C. Note

that Ian’s error stems from negating increasing to mean constant or decreasing, but in

this section we bracket this spontaneous conception related to definition-type.

6.5.4 Jus-D. Formal justifications

The final category of description includes those incidents where a student’s answer or

reasoning was backed by a mathematically-based justification. To be classified as Jus-D

the mathematical content need not be correct. It is the style of argument offered by the

student on which this dimension of variation focuses. The types of incidents categorised

as Jus-D were:

• Logical deductions with a mathematical warrant

• Use of definitions to support claims

• Use of accepted mathematical phrases

Incident Jus-D1. Logical deductions with a warrant

Students quoted in Incident Jus-A1 typically stated their conclusion without any jus-

tification, as if their conclusions were facts that required no further warrant. Where

students did provide such a warrant, the passage was labelled Jus-D:

Q5. A sequence that has no upper bound

Valter: an = n diverges to infinity, so it has no upper bound.
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Ian: That’s the same [sequence] as Question 1 I think [an = n]. For every

upper bound you can always have terms above that upper bound.

In both of these quotes, the student has reused their answer to Question 1 when answer-

ing Question 5, and provides a reason why this is appropriate. The following extract

from Guan’s interview also has this structure (so is labelled Jus-D), but the warrant is

no longer valid:

Q5. A sequence that has no upper bound

Guan: So it can be [a] strictly increasing sequence, so every term is greater

than the previous term which [has] no upper bound. So it can be the same

as the first one.

Incident Jus-D2. Use of definitions to support claims

Many of the incidents categorised Def-D Manipulates Definitions contain justifications

based on the definition of sequence properties. The extracts given in Incident Def-D1

are restated here to illustrate this:

Q2. An increasing sequence that is not strictly increasing

Ben: Again, these [sequences] are ones that can be equal to the ones be-

fore because that’s the difference in the definition, so you could have say

1,1,2,2,3,3. Any combination of those really.

[Answer given: an = 1, 1, 2, 3, 3,]

Guan: I’m thinking about the definition of increasing sequence and strictly

increasing. So the difference is that strictly increasing the next term must be

greater than the previous one, while increasing can be greater than or equal

to the previous one. So it can be a constant sequence.

[Answer given: an = 2, 2, 2, 2, 2, . . . ,]

The students in both of these extracts justify why their answer to Question 2 is correct

by drawing attention to the difference in the definitions of an increasing sequence and a

strictly increasing sequence (i.e. that the constraint an < an+1 is relaxed to an ≤ an+1).
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Incident Jus-D3. Accepted mathematical phrases

In Incident Jus-A2, two interview extracts were presented that were similar to those

which make reference to an answer being ‘obviously’ correct, but used the mathematical

terms ‘trivial’ and ‘by definition’:

Q4. A sequence that is both increasing and decreasing.

Phalgun: Both increasing and decreasing, a trivial one an = 1

[Answer given: (an) = 1]

Q9. A sequence that tends to infinity that is not increasing

Ken: I think that’s impossible. By definition.

These forms of justification are common in mathematics, and although usually reserved

for statements and claims that are mathematically simple to show (relative to the audi-

ence), the students’ use of these terms are attempts at using mathematical warrants for

claims.

6.5.5 Commentary on justifications

This section has outlined the dimension of variation Justifications, which has focused

on the types of arguments students provided as to why their answers and chains of

reasoning were correct. Throughout the dimension, the validity of a statement relative

to formal mathematics has been bracketed, and ways in which these statements were

justified examined. In Jus-A incidents, students provided no justification, and in Jus-B

justification was sought from an external authority. When students provided justifica-

tions themselves, these were categorised as either informal (Jus-C) or formal (Jus-D).

The distinction the section presented between informal and formal was subjective, but

based on the structure of the argument presented: if the structure of an arguments was

compatible with formal mathematics then it was marked Jus-D, otherwise Jus-C.

Ambiguity in this dimension of variation is likely to arise from different interpretations of

what exactly constitutes a formal mathematical justification framework. The categori-

sation presented here makes the distinction that deductions involving warrants drawn
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from mathematics are classified as Jus-D, bracketing the truth of those deductions. This

is different to a distinction between arguments that use logic and those that do not. The

distinction is whether a claim is backed up in a mathematical way.

Considering briefly the times when students chose to spontaneously give reasons for

their answers and thinking, this dimension of variation corresponds well with Asghari’s

(2005) account of students’ checking procedures for the ‘mad dictator’ task (see Section

2.2.6). Recall that Asghari noted that students would either use their concept definition

when generating the example, thereby establishing the example’s validity relative to

that concept definition (conceptual generating), or else check to see if the answer was

correct after generating it (figural generating). In this task the timing of (spontaneous)

justifications was similar: students would either generate the example using the think-

aloud protocol to provide reasons why their comments were correct (relative to their

concept definitions), or else they would give an example and then justify why it was

correct. Note that some of the justifications found in this dimension may not have been

classified by Asghari as checking procedures, such as appeals to an external authority.

6.6 Summary of chapter

This chapter has addressed the second research question by presented the dimensions of

variation that emerged from the phenomenographic data analysis of the main study of

this thesis. The chapter began with a brief outline of the variation perceived between

the definitions and the questions in the task, from the perspective of this researcher.

A distinction was drawn between definitions that compared sequences term-by-term,

definitions that gave a constraint that had to be met by all terms in a sequence, and

definitions that governed the long-term behaviour of a sequence. Respectively these

three definition types were labelled term-by-term, sequence-wide, and long-term. It was

noted that the questions on the task then asked students to combine different sequence

types.

Thereafter, four dimensions of variation were presented in Sections 6.2–6.5. The cate-

gories of description for each dimension are given in Table 6.5. Within each section, each

category of description was illustrated by a collection incident types, where extracts of

interview transcripts were presented. In keeping with the phenomenographic account



Dimensions of Variation 188

of the data, in this chapter it was common to bracket two features: the validity of the

extract’s content relative to formal mathematics, and the ‘location’ of extracts from the

perspective of the other dimensions of variation.

Table 6.5: Summary of the different dimension of variation outlined in this chapter.

Using Definitions (Section 6.2)

Def-A. Unaware of Definitions
Def-B. Refers to Definitions
Def-C. Uses Definitions
Def-D. Manipulates Definitions

Representation of Sequences (Section 6.3)

Rep-A. Any Representation is Suitable
Rep-B. One Representation is Superior
Rep-C. Any Well-Defined Representation is Suitable

Sequence Construction Strategies (Section 6.4)

Con-A Generic Initial Approaches
Con-B. Trial and Error
Con-C. Transformation
Con-D. Analysis

Justifications (Section 6.5)

Jus-A. No Justification Attempted
Jus-B. Appeals to an External Authority
Jus-C. Informal Justifications
Jus-D. Formal Justifications

The first dimension of variation, Using Definitions, reported students’ awareness of def-

initions in the context of such a task. In the least sophisticated category of description,

Def-A Unaware of Definitions, students relied on spontaneous conceptions based on

the everyday use of term. Def-B Refers to Definitions provided instances of students

who made reference to (formal) definitions without using them as such, Def-C Uses

Definitions included times when students used the content of the definitions in the ex-

ample generation process, and in the most sophisticated dimension, Def-D Manipulates

Definitions, students manipulated the definitions, perhaps negating or combining two

definitions.

The second dimension of variation, Representation of Sequences, contrasted students’
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awareness of different ways in which to write down their sequence (typically in the form

of a list of numbers, or a sequence). The least sophisticated category of description, Rep-

A Any Representation is Suitable, provided instances where students presented answers

without considering the representation chose of the sequence. When students had a

strong preference for a particular type of representation (almost always as formula), this

was categorised Rep-B One Representation is Superior. Here students were aware of

different possibilities for sequence representation, but inflexible in the representations

they provided. Finally, in category Rep-C Any Well-Defined Representation is Suitable,

students were aware of different possible representations for their sequences, and moved

between them with ease choosing the most suitable for a particular purpose.

The third dimension of variation, Sequence Construction Strategies, focused on the ways

in which students approached the example generation task. In the least sophisticated

category of description, Con-A Generic Initial Approaches, students performed rou-

tines and rituals prior to attempting to answer the question, repeating phrases aloud,

writing down definitions and sketching graphs. The remaining three categories of de-

scription followed Antonini’s (2006) example generation classification: Con-B Trial and

Error, where students tried examples one-by-one until they found one which satisfied

the required properties, Con-C Transformation, where an initial object not satisfying

the requested properties was modified in stages until it did, and Con-D Analysis, where

deductions were made about the properties an correct example might or should have,

which eventually evoked a known sequence or a procedure to construct one.

The final dimension of variation, Justifications, looked at the different ways students

justified their final answer or chains of reasoning. In the least sophisticated category

of description, Jus-A No Justification Attempted, students presented their answers or

gave logical statements with no warrant for their validity. Then, in the category of

description Jus-B Appeals to an External Authority, students asked the interviewer for

confirmation, or stated that they had relied on what they had been told in class. In

the final two categories of description, Jus-C Informal Justifications and Jus-D Formal

justifications, students provided reasons why their answer or chain of reasoning was valid.

The distinction between an informal and a formal justification was drawn at whether

the framing of, and technical terms in, a statement could be found in mathematics.
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Inter-Coder Validation Exercise

This chapter outlines an inter-coder validity exercise, which aims to consider how well

the second research question has been addressed by the dimensions of variation reported

in the previous chapter. The exercise aimed to explore both the communicative and

pragmatic validity of the dimensions of variation that emerged from the data analysis.

In the validation exercise, two colleagues independently coded extracts of interviews

from a set of data that was not used in the main study. They were then asked to

comment on how consistent and applicable the categories within each dimension were,

and to discuss how complete a (phenomenographical) picture of the data was achieved.

7.1 Aims of the validity exercise

The data analysis procedure described in Chapter 5 aimed to produce a phenomeno-

graphical description of the different ways in which students experience the sequence

example generation task. The outcome of the analysis was the emergence of a set of

dimensions of (possible) variation. As described in the methodology of the main study

(Chapter 3), the validity of such an analysis can be considered from two angles. The

first angle is in terms of communicative validity, which addresses the question of how

persuasive the interpretation of the data has been, whether the dimensions of variation

are internally consistent and whether they are applicable to new data. The second an-

gle is in terms of pragmatic validity, which explores “the extent to which the research

outcomes are seen as useful” (Åkerlind, 2005c, p.331).

190
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The validation exercise described in this chapter gave two mathematics education re-

searchers interview extracts and asked them to consider the communicative and prag-

matic validity of the dimensions of variation outlined in the last chapter.

7.2 Origin of the data used in the validation exercise

The data used in the validation exercise originated from interviews with two first year

mathematics undergraduates at Leicester University. In common with the students

from the main study, the topic of sequences and their properties was taught to the

Leicester students in their first year (in this case in the module MA1151 Introductory

Real Analysis). All students registered on this module were contacted at the beginning

of the course inviting them for interview. Three students volunteered, and each took

part in interviews in the same format as in the main study. During the interviews the

students were given the same task sheet and definition sheet as the students in the main

study (the same notation was used in each module).

For the validation exercise, two of the three interviews were selected and transcribed.

The student in the interview which was not selected for the exercise had given few

examples on the task, instead giving a short sentence for each answer. For instance, for

Question 4 she had answered:

Figure 7.1: An answer to Question 4, given by one student at Leicester whose answers
were not selected for the validation exercise

Although this type of answer is interesting, and perfectly classifiable within my coding

system1, these answers were so different to those given by students in the main study

I felt it was more appropriate to give my colleagues tasksheets and transcripts from

students who had attempted to give sequences to the questions.

1For instance it could be coded as Con-D. (Analysis)
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The other two interviews were transcribed starting from when the student began the

task, and ending when the discussion phase had evolved into more of a tutorial. The

transcripts of these two students (from here labelled Student A, and Student B) can

be found in Appendix B. It may be helpful for a reader of this thesis to code a por-

tion of them in conjunction with the dimensions of variation given in Chapter 6 before

continuing with this chapter.

7.3 Format of the validation exercise

7.3.1 The coders

Two colleagues agreed to code the extracts, and shall be known hereafter as Coder 1

and Coder 2. Coder 1 has had much experience with qualitative analysis and coding

using a grounded theory approach, but little practice using Atlas.ti. Coder 1 was also

familiar with my research in general. Coder 2 has had less experience with qualitative

data analysis, but during the last twelve months has frequently used Atlas.ti to code

data. Coder 2 was less familiar with my research and had not seen the task sheet or

outlines of dimensions of variation before.

7.3.2 Outline of the exercise

At the start of the validation exercise Coder 2 went through the task sheet to familiarise

herself with its layout and content. I then outlined my interpretation of a phenomeno-

graphic approach to coding, in particular the second order perspective, and bracketing

of content outside a dimension of variation’s focus. I then presented each coder with

a summary sheet for each dimension of variation, and talked through each sheet’s con-

tent. Each summary sheet contained the table outlining the layout of the dimension (for

instance see Table 6.1 in the main study chapter), and the short introductions which

described each category of description within a particular dimension of variation (see the

text between the category title and the first incident in each category). The incidents

and quotes presented in the main study chapter were not included. Any questions about

the dimensions or the validation task were answered and I briefly explained the aims of

the validation exercise. This introductory phase lasted around 45 minutes.
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Each coder was then given a hard copy of the transcripts and task sheets for Students A

and B, and an Atlas.ti file which was set up with the transcripts and categories for each

dimension of variation. Each coder was asked to code the transcripts for salient features

in conjunction with my dimensions of variation, but also to note anything that was

related to a dimension but did not fit, and also anything salient that seemed not to fit

with any dimension. This stage of the exercise lasted around 90 minutes. Coder 1 coded

both transcripts in this time. Coder 2 coded the transcript of Student A and around a

fifth of the transcript of Student B. Neither coder asked any additional questions during

the coding.

After the coding, we discussed as a group the validation exercise for around 45 minutes.

We first compared the dimensions that each coder had chosen, and then the appropri-

ateness of the dimensions of variation structure for each extract, and any other general

thoughts. Both coders gave their permission for this portion of the validation exercise

to be audio-recorded. I listened to the recording several times, writing notes about the

themes which emerged.

7.4 Outline of outcomes emerging from the validation ex-

ercise

This section describes the salient points made during my discussion with Coder 1 and

Coder 2 in the final part of the validation exercise. In general both coders felt able to ap-

ply codes to the data, and differences of opinion were typically focused on the distinction

between codes and the intended purpose of the various dimensions. Although the dis-

cussion was centred around the choice of categories to code a passage, emerging themes

could be split into three areas. They were: (1) General coding issues and technique,

(2) The phenomenographical approach to data analysis, and (3) The meaning of specific

categories within a dimension of variation. I will outline the concerns, suggestions and

comments of the coders in each of these areas, interjecting in italics my reflections. I

will then finally relate these comments to communicative and pragmatic validity.



Validation Exercise 194

7.4.1 General coding issues and technique

Some of the issues discussed related to general coding choices and themes which may be

true of any interpretive coding scheme.

Length of passages to code

The two coders had made different choices when deciding appropriate lengths of tran-

script to attach codes. Coder 1 followed a style that was similar to how the main study

data has been initially coded. She selected salient passages related to any category

within a dimension of variation, and these passages were labelled with a code. In a

different style to this, Coder 2 had split the text up question by question assigning a

code from each dimension to each question.

This resulted in Coder 2’s transcripts being more heavily coded than Coder 1’s tran-

scripts. It also resulted in Coder 2 feeling that for sections of text associated with some

questions there was not enough data to code for each dimension.

Coder 2: I thought I had to put one of each [dimension] for each question.

For each question I put four [codes]. I decided to see which one it was I

thought fitted.

Coder 1: I didn’t do that.

Coder 2: But there was an answer where she didn’t say much, I think the

first four are almost identical [in respect to the codes applied to Student A]

When a researcher is coding a transcript for dimensions of variation, it is not clear which

length of text is appropriate for a single incident. Coder 1’s style was in keeping with

the way a researcher would generate codes when initially coding transcript, but perhaps

this is not so appropriate when coding within a preexisting framework?

I believe an appropriate approach is to consider first what a coding framework is trying to

achieve. The dimensions of variation presented in Chapter 6 aim to describe students’

awareness of example generation of sequences, not to provide a framework that can

classify each answer with respect to each dimension. So although a question-by-question

approach may be an appropriate level of detail in which to code in some cases, the

framework is not intended to code every answer with each dimension of variation.
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Naming of categories

The practice of labelling each category within a dimension with a short title sometimes

resulted in a discrepancy between the category’s intended use, and alternative interpre-

tations of the category’s meaning.

Coder 2: I was sticking with it because I decided, you know once you decide

that ‘unaware’ [of definitions] only means a certain thing you will stick with

it until it’s completely different, and so it’s one of these coding experiences.

Coder 2 also found that once she had decided on the meaning of a particular category, the

meaning of other categories would then be extrapolated based on comparisons between

different parts of the transcripts, rather than the descriptions of the categories.

Both of these issues are inevitable for any classification scheme that is interpretative and

hierarchical. I felt it necessary to have a short name for each category because it is quite

dry to refer to categories by their classification only (e.g. Rep-C), but I acknowledge that

there is a danger that short names do not completely reflect subtle distinction between

similar sounding categories.

Coding of answer sheets as well as the transcript

A general issue that was raised by both Coder 1 and Coder 2 was that at times they

felt that it was less appropriate to code part of a transcript, but instead more insight-

ful to code a students’ answer. This can be seen when Student A gave the sequence

“1, 4, 9, 16, 25, . . .” as an example of an increasing sequence. Both Coder 1 and Coder 2

felt that this was a prototypical example (square numbers), and therefore evidence of a

Con-B (Trial and error) construction strategy. However, Student A had not articulated

the terms of the sequence or verbally described her thoughts and so there was nothing

to code on the transcript. Because Coder 2 had decided to try and assign a code from

each dimension for every question on the task she had coded the corresponding ques-

tion Con-B. Coder 1 agreed with Coder 2’s interpretation of the answer, but decided

the transcript did not have the required emphasis and so elected not to code for this

interpretation.



Validation Exercise 196

This discussion point highlighted a more general question of what evidence, if any, a coder

should consider as complimentary to the audio transcript. When coding the audio from

an example generation task such as the one given to students, it seems appropriate to

consider students’ answers as codable entities also. During the analysis of the main task,

almost all answers were commented upon at some point during the interview (either in

the task or discussion phase), and so this issue did not emerge. In each incident analysed

in Chapter 6, I included the student’s answer, and where appropriate I included a scan

of the answer.

Differences in interpretation of codes

Finally, there is the issue that with any interpretive coding scheme, there will be differ-

ences. A particular rich example of this is for the line when Student A remarked “No, I

don’t know that one”. Depending on the context of the remark, and the interpretation

relative to the dimensions of variation it could be coded:

• Con-A (generic initial approaches). Perhaps Student A tried to think of the ex-

ample for each question and gives up if she can’t think of one right away?

• Con-B (trial and error). Perhaps internally she is trying out prototypical se-

quences?

• Jus-B (appeals to an external authority). Perhaps she is justifying not giving an

answer to the interviewer?

• Def-B (refers to definitions). Perhaps she is explaining that she doesn’t know what

the definition means, and so can’t think of an example?

A qualitative coding system relies on coders interpreting both the codes, and the material

to be coded. An individual incident may be difficult to define exactly within a particular

dimension, and what is often more helpful is to compare a variety of incidents, determin-

ing which are more and less representative of particular categories within a dimension.

The nature of the validation exercise described in this chapter meant that such a compar-

ative process was not possible and so it is unsurprising that there were discrepancies in

some cases between myself, Coder 1 and Coder 2. I outline some of these discrepancies

in later sections of this chapter.
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7.4.2 The phenomenographical approach to data analysis

During the discussion, three main comments were raised about the study’s phenom-

enographical methodology, and the subsequent implications for data analysis. The first,

and most general, was on how phenomenography appears to blur the distinction between

what a student articulates and what can be inferred by a researcher based on what the

students says and does. Coder 2 wondered if a limited series of interviews can yield

enough information to truly explore how students think, especially if such a study is

reliant on students articulating what they think.

As described in Chapter 3, a phenomenographic account of data describes the variation

in the different ways students can experience a topic, and exploring the relationships

between these dimensions of variation. Attributing a way of thinking to an individual,

or labelling a student’s way of thinking is not a primary issue. I have found that over

the course of fifteen interviews evidence of a variety of dimensions, and a rich variation

within each dimension.

The second issue raised was connected with bracketing. Both coders agreed they did

not have difficulties bracketing a dimension from other dimensions.

Coder 1: [There was] no real issue with regards to which dimension we were

coding at a particular time.

However, both coders found it difficult to bracket mathematical correctness during the

coding of the data. For instance, both transcripts contain incidents that could arguably

coded Con-D (Analysis), but the statements themselves were incorrect relative to formal

mathematics, or the students were dealing with concepts that were in some sense too

easy to count as sophisticated. For this to be coded as the ‘most sophisticated’ in the

dimension seemed to reward student for not understanding the material.

Coder 1: I was in two minds of [deciding if the extract should be coded as]

manipulating and using [definitions], because he’s doing something with the

definitions—combining them correctly—but not hard ones, I didn’t really

feel he deserved a [Def] D.
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To bracket the content of the mathematics is difficult but it is certainly the case that a

student can comment on a particular definition, representation, construction strategy or

justification in a way that is sophisticated relative to the dimension, but with mathemat-

ical content that is unsound relative to formal theory. The problem with bracketing the

mathematical correctness is an issue which reoccurs throughout this description of the

validation exercise.

The third issue raised which was related to the phenomenographical approach was that

some of the less sophisticated categories within some dimensions were negatively phrased.

For instance, it is not clear how best to code the validation transcripts for Def-A (unaware

of definitions). If a student declares “I don’t know the definition here” they are referring

to definitions, and so the extract should be coded Def-B. Exactly when is it appropriate

to code for Def-A?

In some dimensions of variation there are negatively phrased categories which are in-

cluded in part to complete the dimension, for instance Def-A’s inclusion in the dimension

using definitions. This is not the same as these categories not being present in the data;

sometimes a student’s comments demonstrate the a spontaneous conception based on the

everyday use of a word, thus they imply that the student is unaware of definitions at

this point. Within such a transcript therefore inferences must be made as to when it is

appropriate to label using a negative phrased category.

7.4.3 Discussion related to the dimension using definitions

We now move on to discuss Coder 1’s and Coder 2’s comments which were related to

individual dimensions of variation. Recall that in the last section, Def-A (unaware of

definitions) was described as negatively phrased. When discussing with the coders what

they felt this category meant, it was clear that initially Coder 2 saw the category as the

same as ‘getting the definition wrong’ or ‘uses definitions superficially’.

Student A, line 25: “And here there’s an L. So maybe that’s like an’s in

between U and L. But I don’t know if the U counts.”

Coder 1: The next one on line 25 [Student A], I also put [Def-B] refers to

definitions

Coder 2: I put [Def-A] unaware of definitions
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Coder 1: She seems to be talking about the U , the L and the ans, that’s

clearly from the definitions isn’t it?

Coder 2: Erm, because it didn’t go more into it

This understanding of the role of Def-A is probably a result of the labelling. Clearly a

student who misapplied a definition is unaware of the correct application. The intended

use of the category was not for this purpose, for if a student misapplies a definition they

are, to some extent, aware of how definitions could be used, and more generally aware of

the role they play in mathematics. The category Def-A is intended for incidents where

a student completely relies on everyday spontaneous conceptions, or answers a question

with no reference to definitions. So I would personally code the incident as Def-C.

During the discussion, my interpretation of the boundary between Def-B and Def-C was

neatly summarised by Coder 1:

Coder 1: It’s about referring to the content rather than [the] existence

Lastly, it was discussed whether Def-D (manipulates definitions) could occur when they

are manipulated incorrectly, for instance combining two definitions improperly.

Because a phenomenographic account brackets how correct an answer is when considering

a student’s awareness of definitions, I consider this to be perfectly possible.

7.4.4 Discussion related to the dimension representation of sequences

Most of the discussion which was related to the categories within the representation

of sequences dimension, focused on Student A’s answers. Student A gave each of her

examples as a (one-sided) list of numbers, and so arguably this dimension could not be

richly coded for. For instance, giving all lists could be classified Rep-B (one particular

representation is always superior), for instance there was one passage when both coders

felt that the student was trying to find a list of numbers which corresponded to a graph

she had sketched:

Coder 1: It seems like she is looking for a different representation, but it

doesn’t seem that she thinks that’s the only one that’s superior.
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It may be that only incidents where a student remarks that one type of answer is superior

should be coded Rep-B, but it is also possible to infer that if a student gives examples in

a certain representation and appears to want to give others in that representation also

then this is also an incident that can be classified as Rep-B. In my interpretation of

the interview with Student A there is too little comparison of sequence representations

to determine the classification; it is not clear that she would be unsettled by giving an

example in a different representation.

Student B was seen to have a Rep-B (any representation is suitable) approach through-

out, and there was little discussion about this.

7.4.5 Discussion related to the dimension construction strategies

The first general comment that was made about construction strategies was that it was

not clear if, to be coded as such, a strategy had to be commented upon or if it could be

inferred from a series of actions or a final answer.

Coder 1: For [Student A] there is naturally less on strategies because you

don’t hear her talking about what she’s doing as she does it.

Incidents presented in the construction strategies section of the main study (Section 6.4)

were usually based on the comments made by the students, rather than inferences made

by the final answers given. In the transcripts used in the validation exercise there were

fewer such incidents.

Both coders decided to code for inferred meanings and usually these corresponded well.

Discrepancies included:

• Do Con-B (trial and error) and Con-C (transformation) strategies always need a

sequence to start with?

• Must the representation of the sequences within a Con-C (transformation) strategy

remain the same?

• Is transformation the same as thinking with (different) graphs?
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These questions, and the coding of extracts based on them, are probably the result of not

giving the coders examples from my data. My view of the answers to these discrepan-

cies (yes, no, no) is clearer when the incidents from the main study data are read in

conjunction with the category classifications within the sequence construction strategies

dimension of variation.

7.4.6 Discussion related to the dimension justifications

The main concern from Coder 2 with regard to the justifications dimension was the

scope of the justifications which were to be included. For instance, should a justification

which is in relation to a strategy used (rather than the answer given) be included?

Coder 2: At one point I asked myself: am I looking for reasons for the

strategy used, or reasons for the answer given?

This concern is an unfortunate consequence with the naming of the dimension. When the

validation task was completed the name of the dimension was ‘justification of answers’,

which implied that the dimension was only focused on students comments related to the

answers they gave, rather then their justifications more generally.

The second concern was again based in interpretation of the category names, in particular

the informal/formal distinction. For instance, was this the same case as informal/formal

mathematically? Also, in the words of Coder 1, ‘did formal justification have to be right?’

The way I envisioned the dimension, formal justifications were those judged by an expert

to be suitable, relative to the statement which is being justified. So a justification can

be in a suitable format, but with an incorrect warrant, for instance. I also think it is

possible to have a formal justification which uses a mathematical basis, but contains

little formal mathematics (for instance, “the sequence 1,2,3,. . . is increasing, because the

definition says that each number must get bigger”), whereas an informal justification

may be something where a meaning is given, but it is not related to formal mathematics

(such as, “the sequence 1,2,3,. . . is increasing, because it clearly is”).

An interesting comment was made in relation to the separation aspect of dimensions

of variation. When a student ‘uses’ or ‘manipulates’ a definition, it is sometimes for

justification purposes, and so it may be the case that these categories often coincide.
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Coder 1: When they refer to the definitions and they, at the same time,

give an informal justification, they often came together as a natural thing.

While I feel this is true, I still believe the categories are separable; although it may not be

possible to justify an answer without using a definition, other justifications (for instance

targeted at the strategy used) are possible with no reference to definitions.

7.5 Implications for communicative validity

Recall that communicative validity addresses to what degree a coding framework is

internally consistent, whether it offers a persuasive interpretation of data, and whether

it can be applied to new datasets. Both coders felt able to code the transcript of student

A and B with the dimensions of variation outlined and described in Chapter 6. Each

believed the structure of the dimensions allowed them to be consistent in their coding

both within and between the two transcripts. This implies that the dimensions can be

applied to new data unrelated to the main study.

The exposition in the previous section has focused primarily on the discrepancies be-

tween the coders’ choices, and such discrepancies have typically been at the level of

distinguishing between categories within a dimension of variation. Coder 2’s decision

to associate a category from each dimension of variation to every question in a tran-

script resulted in some discrepancies in her choice of codes compared with Coder 1, but

once the coders had discussed the meaning of the different categories, they found they

could agree on the meaning of each category, and to what data it is most applicable.

Moreover, these meanings are consistent with my interpretation of the codes also. There

was discussion on the boundaries of the categories within some dimensions, but this is

inevitable when the distinctions are fine and subtle. Overall I believe this indicates that

the dimensions of variation are internally consistent.

Neither coder felt that new categories need be added to any dimension, but both coders

felt that it would be beneficial to code answer sheets as well as transcripts for a data

analysis to be more complete.
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7.6 Implications to pragmatic validity

Recall that pragmatic validity addresses to what extent the research outcomes are seen

as useful. This is arguably tougher to address than communicative validity; it depends

on a reader’s view of educational research and the application of a phenomenographic

approach to data analysis. The two coders that took part in the validation exercise were

both familiar with qualitative approaches to data analysis, and felt that the phenom-

enographic approach was appropriate for the data.

I would argue that the validation exercise reported in this chapter is not a very good

way of addressing pragmatic validity in general. Although both coders agreed without

prompting from me that they had a greater insight into example generation and students’

awareness of sequences after the exercise, this can not necessarily be attributed as a

result of coding for the dimensions of variation. For instance, such insights may just be

a consequence of reading through the transcripts.

7.7 Summary of chapter

This chapter has presented the results of a validation exercise which addressed the

communicative validity, and to a lesser extent pragmatic validity, of the dimensions of

variation framework presented in Chapter 6. In the validation exercise, active researchers

in mathematics education were presented with new data to code within the framework,

and then were asked to reflect on their choices of codes and the validity of the framework.

Both researchers felt that the structure and content of the dimensions were appropriate

to the data, internally consistent, and provided insight into the data.



Chapter 8

Using Rasch Analysis to Validate

the Task

This chapter uses a statistical technique — Rasch Analysis — to help determine how

characteristic the students interviewed in the main task were, relative to the population

of first-year undergraduates from which they were recruited. First, Section 8.1 introduces

some of the theory behind Rasch Analysis, describing briefly its use in educational

research to date. This section can be omitted for readers who are familiar with the

technique, although please note that the notation and terminology used in this chapter

can be found in Subsection 8.1.1.

Next, Sections 8.2 and 8.3 describe the origin of the data and its suitability for the Rasch

Model, respectively. Then Section 8.4 describes how Rasch Analysis has been used to

(1) objectively rank the questions in terms of difficulty relative to my population, (2)

compare the students I interviewed in the main task with the general population, and (3)

determine how characteristic (in a statistical sense) the interviewed students are in rela-

tion to the general population. This last use helps address, to a certain extent, concerns

that are inherent with self-selecting or ‘opportunistic’ samplings of my population, and

whether the think-aloud protocol may have affected student performance on the task.

Some of the material in this chapter has been published in a similar form (Edwards,

2010; Edwards and Alcock, 2010b), in particular the introduction to Rasch Analysis,

but the material has been edited for inclusion in this thesis.

204



Rasch Analysis 205

8.1 Description of Rasch Analysis

The Rasch Model and its application to data, Rasch Analysis are Item Response Theory

(IRT) models. Rasch Analysis aims not only to rank questions by their difficulty, and

rank students in terms of their performance on the test, but also to measure how likely a

particular pattern of answers many be (for instance it is unlikely a student scoring well on

a test will answer an easy question badly). The Rasch Model is one of the more commonly

used models in IRT (Baker and Kim, 2004), in part because the routines associated with

it can be shown to converge to a unique solution if given ‘well-conditioned’ data (Fischer,

1981, see also Section 8.3 of this chapter).

The use of IRT models has recently increased in popularity due to the introduction

of affordable technology capable of quickly running the routines (Kline, 2005, p.107),

and Rasch Analysis has been used as the basis of analysis for a diverse range of studies.

These include the analysis of Likert-scale questionnaires to determine course satisfaction

(Waugh, 1998), and attainment (Haines and Crouch, 2001). Rasch Analysis has been

used both to analyse (Ryan and McCrae, 2006), to construct (Chen et al., 2005), and

to use (Dobby and Duckworth, 1979) banks of test items.

Within mathematics education, the Rasch Model is “being used increasingly as a research

tool by ‘mainstream’ researchers rather than merely by the sophisticated psychometri-

cians involved in large-scale achievement testing”’ (Callingham and Bond, 2006). This

quote was taken from the editorial of a special issue on Rasch Analysis of the Mathemat-

ics Education Research Journal. Articles in the journal included Watson et al.’s (2006)

longitudinal study of students’ understanding of chance and probability, and Bradley

et al.’s (2006) use of Rasch Analysis to explore Likert data of student’s conceptuali-

sations of quality mathematics instruction. Other articles in this special issue found

their data was unsuitable for Rasch Analysis (Stacey and Steinle, 2006), or combined

Rasch Analysis with other statistical techniques, such as Factor Analysis (Grimbeek and

Nisbet, 2006).

In terms of using Rasch Analysis to determine the likelihood of a particular patterns

of answers (in other words how characteristic is a set of answers?), Ryan and Williams

(2007) have used this idea to produce personalised assessment feedback to trainee teach-

ers, highlighting which areas of mathematics needed more attention. Other authors
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have explored the ‘person-fit’ statistics (these are a measure of the likelihood of a set of

responses) via additional statistical techniques (Emons et al., 2005; Reise, 2000). As far

as I am aware, no author has used Rasch Analysis to compare an interview cohort with

the associated wider population of students.

8.1.1 Terminology

The Rasch Model assumes that for each person taking the test there is a parameter

measuring their ability (or performance on the test), and for each item on the test there

is a parameter measuring the item’s difficulty. The notation used for these parameters

differs from text to text (Fischer and Molenaar (1995) use νj , βi whereas Baker and Kim

(2004) use ηj , δi). In this section, and beyond, I shall be using the following notation

and terminology:

Item A question on a test. The item in focus at any particular time is given the label

i, and there are always j items in a test.

Person An individual taking the test. The person in focus at any particular time is

given the label p, and there are always n people in the test.

Test A set of j items, attempted by n persons. It is not necessary that each person

answers each question, but in my task this was the case.

Task When I refer to the task outlined in the main study chapter, it is ‘the task’, with

j = 11 and n = 147 (or n = 162 if interviewed students are included). When I am

referring to test instruments in general I use ‘a test’, as outlined above.

Answer The word ‘answer’ is used interchangeably with the score (of 1 or 0) person p

obtained for item i. It is often written as xp,i ∈ {0, 1}. The matrix of test answers

(persons as rows, items as columns) is the n× j matrix X = ((xp,i)).

Total scores The number of students answering item i correctly is the item total,

si =
∑

p xp,i. The raw score of a person is rp =
∑

i xp,i.

Difficulty parameter Associated to every item, i = 1, . . . , j there is a difficulty pa-

rameter, δi. This is an idealised property that can only be estimated. We call

these estimates Di (estimated difficulty of an item).
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Ability parameter Associated to every person, p = 1, . . . , n there is an ability param-

eter, ξp. This is an idealised property that can only be estimated. We call these

estimates Ap (estimated ability of an person).

The distinction between δi, Di (and ξp, Ap) is an important one, because in order to

estimate the parameter δi we make certain assumptions for Di. For instance, in the

analysis which follows, we arbitrarily centre Di so that the mean across all items is

equal to zero.

8.1.2 Definition of the Rasch Model

The Rasch Model, given in Equation (8.1), gives a probability that person p answers

item i in a test correctly, provided certain assumptions hold (these assumptions are

discussed in the next section). This success-probability is a function of Ap and Di alone:

Pp,i = P (xp,i = 1) =
exp(Ap −Di)

1 + exp(Ap −Di)
(8.1)

The graph of this success-probability against Ap−Di is drawn in Figure 8.1. Notice that

because the Rasch Model gives the probability for person p answering item i correctly,

the equation only makes sense when we are considering the difference between Ap and

Di, rather than just considering one of these quantities.

It is this distance between a person’s ability and an item’s difficulty that is a measure

of how well-suited the item is for the person. The value Ap −Di is defined because the

parameters are both on the same scale. For instance, if a person and item are judged to

have the same parameters (so Ap−Di = 0), the probability that the person answers the

item correctly is defined to be 0.5. The choice of scale for the parameters is arbitrary; all

that is required is that for a fixed distance between a person and an item there should

be a fixed probability of answering the item successfully.
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Figure 8.1: The shape of the Rasch Model, defined by Equation 8.1.

The Rasch Model uses a logit (log istic unit) scale for Ap and Di. To explain how this

scale works, note that by taking natural logarithms of Equation 8.1 we obtain Equation

8.2.

loge

(
Pp,i

1− Pp,i

)
= Ap −Di (8.2)

This value, loge(Pp,i/(1 − Pp,i)) is the logit of Pp,i, which represents the log-odds of

answering a question correctly. By expressing Ap and Di in logits we can make direct

comparisons between different person and item parameters.

A more difficult item or a more able person’s parameters are larger positive numbers,

and easier items/less able persons have larger negative values. In the task used in the

main study (and arguably most tests in general) it is desirable for almost all persons

to have a success-probability between 0.05 and 0.95 for each item, or else the items are

much too difficult or much too easy for the population. Using Equation (8.1), these
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success-probabilities correspond approximately to Ap − Di lying between −3 and +3

logits.

Given Person 1 and Person 2, with associated parameter estimates of A1 < A2, the

success-probability for Person 1 will be lower than Person 2 no matter which item is

under consideration. This does not mean that the model of success-probabilities is

linear, however, as illustrated in Table 8.1. In this table we fix two Ap and two Di, but

note that the success-probability from an easier to a harder item decreases more for one

of the persons. This table is best read in conjunction with Figure 8.1.

Table 8.1: The success-probabilities of persons for different values of Ap and Di.
Note that Person 1’s success-probability decreases by a larger amount than Person 2’s

success-probability.

Item 1 Item 2 Success-probability
D1 = −1 D2 = 0 difference D1 → D2

Person 1 A1 = 0 0.731 0.500 -0.231
Person 2 A2 = 1 0.881 0.731 -0.150

8.1.3 Assumptions of the Rasch Model

As described in the last section, the central assumption of the Rasch Model is that when

a person is faced with an item in a test they have a certain probability of answering

that item correctly, which is based solely on the parameters δi and ξp. This means it is

relatively quick to compute the Ap and Di estimates of the parameters, and it is easy

to interpret the results, but it does prompt questions as to how it is possible to claim

that a person has a latent trait called ‘ability’ and an item has a latent trait called

‘difficulty’. One way of addressing this claim is to emphasise that the Rasch Model is a

stochastic1 model of what happened on one particular test, not an attempt to describe

actual reality in any philosophical or psychological sense (Rasch, 1980, p.110). However,

the assumption that there is only one parameter per item or person does mean that

the test should be unidimensional, that is the test should only assess a single construct

(Kline, 2005, p.109). This assumption also means that the Rasch Model is unsuitable for

tests where another factor may have an influence, such as the inclusion of a ‘guessing’

factor.

1i.e. a model which does not predict the outcome of an event, but focuses on the probability of an
outcome’s occurrence
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The assumption of unidimensionality in a Rasch Analysis may seem incompatible with

the multiple dimensions of variation that formed the outcome of the phenomenographic

analysis of interview data presented in Chapter 6. This is not the case, however, because

there is a difference in the use of the word ‘dimension’ in the two contexts. In Rasch

Analysis, ‘dimension’, or more specifically the assumption of unidimensionality in the

data, refers to the presence of a single unknown parameter that predicts how well a

student might perform on a task. When estimating this parameter, we consider only

whether questions were correctly or incorrectly answered, and there are various statis-

tical tests that can be performed to suggest if the data is unidimensional (see Section

8.3). In the context of the phenomenographic analysis of the interview data (Chapter

6), ‘dimensions of variation’ are a lens with which to describe different aspects of how

the cohort of students interacted with the task. The dimensions do not aim singly or

collectively to measure how good a student is at answering a specific set of questions;

they instead consider aspects of students’ reported interactions with the task. It is,

therefore, perfectly possible to have a unidimensional set of questions from the perspec-

tive of a Rasch Analysis, but where students’ interaction with the task can be described

phenomenographically by a set of dimensions of variation.

A further assumption of the Rasch Model is local (stochastic) independence of the test

items, that is, that the probability of answering one item correctly should not be depen-

dent on the answers to other questions. This assumption considerably simplifies both

the use of the model and the estimation of the parameters δi, ξp. The dichotomous

Rasch Model is therefore not suitable for tests where the questions are structured into

parts, with the latter parts relying on the earlier ones (although there are ways around

this). A full, detailed discussion of the assumptions of Rasch Analysis is given by Fischer

and Molenaar (1995).

8.1.4 Validating the model

In a review of the Rasch literature Tennant and Pallant (2006) found that there are

three main approaches to assessing (uni)dimensionality.

1. Using classical approaches (e.g. principal component analysis)
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2. Those which consider that once the Rasch Model has been applied, a good fit with

the model reflects unidimensionality

3. Those which involve some post-hoc testing, assuming that there is a good fit to

the model

My own literature search confirms Tennant and Pallant’s: different authors are concerned

with the assumption of unidimensionality to different extents. Some authors make no

reference to the unidimensionality of their data, implicitly assuming that if the analysis

shows a good fit with the Rasch Model then their data is unidimensional (Chen et al.,

2005; Lawson, 2006; Misailidou and Williams, 2003; Waugh, 1998). This is also reflected

in the following quote from Bond and Fox (2007):

Generally, practitioners of Rasch measurement rely on the indicators of misfit

to reveal the extent to which any item or person performance suggests more

than one underlying latent trait is at work. (Bond and Fox, 2007, p.251)

Some authors have offered qualitative arguments for the unidimensionality of their data

(Coe, 2008), whilst others argue that classical approaches can be used successfully in

conjunction with a Rasch Analysis. For instance Smith (1996) examined simulated data

sets and found both principal component analysis and methods examining the fit of

the Rasch Model work in a variety of situations. Green (1996) argued that when the

data is unidimensional then both principal component analysis and a Rasch Analysis

are successful, but when items are less closely related, the correspondence is imperfect,

and the different analyses resulted in different definitions of scale.

In section 8.3 I examine the validity and unidimensionality of my data by looking at

Cronbach’s α and a principal component analysis.

8.1.5 Applying the model to test data: Rasch Analysis

Given a test that produces dichotomous data (answers are either correct or incorrect),

and assuming the assumptions of the Rasch Model, a Rasch Analysis of the data is

conducted in two stages:

1. Produce parameter estimates Ap and Di for each person and item;



Rasch Analysis 212

2. Test fit of model to the original dichotomous data.

It has been shown that if the data is ‘well-conditioned’, there will be a unique Ap and

Di for the data, and that procedures to estimate the parameters will converge to these

values (Fischer, 1981). In Section 8.3.4, it will be shown that the data from the example

generation task is well-conditioned. For now we assume that the data is well-conditioned.

Estimating the parameters of the model

In the first stage, persons with zero or all items correctly answered, and items on which

every person was (un)successful are removed from analysis. This is because most meth-

ods of estimating the ability/difficulty parameters of such persons/items would result

in parameters of ±∞. This is undesirable; for instance taking the case of assigning

Ap = +∞ to someone scoring full marks would imply that the test contains the hardest

question that it is possible to write. In most test data (including my data), there are

many more persons than items, and so it is rare for an item to be removed at this stage.

After such items and persons are removed, there is the possibility that new items and

persons now score zero or perfectly, and so these must also be removed from the initial

analysis. In reality, this occurs rarely (Fischer and Molenaar, 1995, p.42), and such

persons and items removed at this and previous stages are re-introduced after the other

persons and items have had their parameters estimated.

There are a variety of ways of proceeding with the parameter estimation from this point

and whole books have been written on the different choices (for instance see Baker

and Kim, 2004). Some procedures take an iterative process where parameters are first

essentially guessed, then these guesses are used as estimates in a procedure to produce

a second set of estimates and so on. Others attempt to jointly estimate both sets of

parameters.

The data analysis presented in this chapter uses a combination of the ‘Normal Approxi-

mation Algorithm’ PROX to produce the initial estimates and then from these estimates

run the ‘Joint Maximum Likelihood Estimation’ (JMLE) algorithm to give more precise

estimates. This combination is popular in the literature (Bond and Fox, 2007; Wright

and Masters, 1982), and is the default option on the computer program used to run the

analysis: Winsteps (Linacre, 2009).
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The PROX routine takes as an initial guess for each item the logit of the proportion of

persons who answered it correctly, and does similarly for the abilities of persons. Then

in an iterative process described by Wright and Masters (1982, p.64) it re-estimates the

item difficulties based on the estimates of person ability (so that the greater the variance

of person ability, the greater the variance of item difficulty), and vice-versa. When the

rate of increase of range of Ap and Di slows to a certain level (which is set to 0.5 logits

per iteration), the procedure ends.

The JMLE routine takes as its guess estimates the output from PROX. It applies the

Rasch Model (Equation 8.1), to each {p, i} pair, and then sums these expected values

to obtain item and person estimated raw scores. It compares these predicted raw scores

with the observed scores, making minor alterations to Ap and Di depending on how

the estimated and observed scores differ. This results in new estimates of Ap and Di,

and the procedure is repeated. Fischer (1981) proved the existence and uniqueness of a

JMLE solution (i.e. that this iterative process converges), dependent on the necessary

and sufficient condition that the data is well-conditioned. I show in Section 8.3.4 that

my data is well-conditioned, and so a unique solution exists for Di and Ap using JMLE

estimation. This is not the same as assuming that the unique solutions are equal to δi

and ξp.

Testing the fit of the model

After the parameters Di and Ap have been estimated, the Rasch Model (Equation 8.1)

is used to produce a matrix of success-probabilities for each {p, i} pair:

S = ((Pp,i|Ap, Di))

It is then possible to make comparisons between the data matrix X and the success-

probability matrix S. The closer the fit between these two matrices, the better the Rasch

Model is at modelling the data. To compare how well the data fits person-by-person,

we can compare corresponding rows of the matrices. To compare how well the data

fits item-by-item we can compare corresponding columns of the matrices. Finally, we

can compare on a person-item level by comparing individual cells of the matrices. The

most common comparisons (‘outfit’ and ‘infit’) are based on chi-squared tests, and are
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outlined below. We say that an item or person underfits the Rasch Model when the

response string is noisy or erratic (for instance a student might score highly but answer

an easy question incorrectly). A person or item overfits the model if the response string

is almost too good to be true, which may indicate a lack of local independence of the

items (Bond and Fox, 2007, p.241).

To obtain a person’s outfit to the model, the expected score of this person answering

each question is calculated from Equation 8.1, and subtracted from the observed score

to obtain a residual. These residuals are squared and standardised, and then an aver-

age of the squared standardised residuals is calculated (Wang and Chen, 2005). These

outfit mean square values can then be transformed into a t statistic that follows approx-

imately the standard normal distribution (Wilson and Hilferty, 1931). Outfit statistics

are outlier-sensitive, which means they tend to be dominated by persons(items) which

have unexpected responses for the items(persons) deemed much tougher(more able) or

easier(less able) compared with the person(item)’s measure (Wright and Masters, 1982,

p.99).

A person’s infit to the model is information-weighted, that is, each standardised residual

is first weighted according to its variance. These weighted standardised residuals are then

summed, and divided by the sum of the variances. Similarly to the outfit value, these

infit mean square values can be transformed into a t statistic. Infit statistics tend to be

dominated by persons(items) which have unexpected responses for the items(persons)

with similar measures.

As described by Bond and Fox (2007, p.239), an infit or outfit mean square value of

v corresponds to 100(v − 1)% more variation between the observed and the estimated

values than expected by the model, and infit or outfit t-values greater than +2 or less

than −2 can be interpreted as having not being compatible with the model (p < .05).



Rasch Analysis 215

8.2 The data from this study

8.2.1 Data collection

Participants

The participants in the validation study reported in this chapter were first year students

at Warwick University. These students were in the same year as the students interviewed

for the main study (see Chapter 5) and they took the task in class between one and three

weeks after the final interview took place.

The first Rasch Analysis of data only includes students that completed the task in the

classes (rather than in interviews). There were 147 such students, once those that had

taken the task both in an interview and class were removed. For the Rasch Analysis

which also included the 15 interviewed students (Section 8.4.3 onwards), the size of the

dataset increases to 162.

The definition and task sheet

Each student was provided with the same definition sheet as given to the students

interviewed during the main study.

The same questions that were asked during the main study interviews were included

on the task sheet. The ordering of questions was unchanged, but the space between

questions was reduced so that they could fit on a single page. A box was added at the

top of the page asking students to indicate if they had already completed the task sheet

in an interview (tutors were asked to remind students to tick the box if appropriate).

Four students in the sample of 151 students indicated they had previously answered the

questions in an interview and were removed from the analysis.

There were 11 classes in total, and 7 classes returned sets of completed sheets. A

breakdown of the number of students, the mean score and standard deviation of scores

is given in Table 8.2. Most classes had 15-35 students present, and the average scores

for each group were high (> 8/11 questions answered correctly). It is also worth noting

that, in general, students did better on the task in class than they did in interview.
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Table 8.2: Descriptive statistics for each class group, with the interviewed students’
statistics included for comparison.

Class No. students Mean score SD

A 38 9.26 2.10
B 30 8.83 2.48
C 25 10.04 1.02
D 4 10.00 0.82
E 31 9.06 1.79
F 19 8.53 2.50

Total 147 9.19 2.05

Interviewed 15 7.40 2.38

8.2.2 Marking the task sheets

Each answer was marked in conjunction to the taxonomy given in Section 4.2 (i.e. each

question was categorised C, B, IS or INS), and the results tabulated in a spreadsheet.

This data can be found in Appendix C. For the Rasch Analysis, dichotomous (correct

or incorrect) data must be entered so the categories IS, INS, and B were combined

so that any student answering in these ways would have xp,i = 0; correct answers were

coded as xp,i = 1.

8.2.3 Ethical considerations

As with all the studies in the thesis, Loughborough University’s ethical checklist was

completed beforehand. No question on this checklist raised further issues.

Similar to the ethical considerations discussed in the context of the first pilot study

(Section 4.1.3), an important ethical consideration with this study was that of using

student problem class time to collect research data. Initially contact was made with

the course lecturer, and permission was granted to give the task during problem classes.

The lecturer did not consider the content of the task to be greatly different from the

tasks given routinely in the classes, either in terms of the type of questions asked, or

the difficulty of these questions. Furthermore we both agreed there were clear pedagogic

reasons to encourage students to complete and reflect upon such tasks. Each problem

class tutor was briefed on the questions students typically found difficult, and it was

suggested that the tutors go through these questions in more detail with the students.



Rasch Analysis 217

By doing this, the students would benefit from the activity in the same way they would

from the standard problems given out each week.

8.3 Tests of validity and suitability

As described in Subsections 8.1.3 and 8.1.4, before conducting a Rasch Analysis of

dichotomous data there are a variety of tests that can be performed to check that the

data is suitable for the procedure (Fischer, 1981; Glas and Verhelst, 1995; Kline, 2005;

Tennant and Pallant, 2006). Following such recommendations, this section explores

the data’s internal validity and dimensionality first by calculating Cronbach’s α and

its associated error in Subsections 8.3.1 and 8.3.2, and then by performing a principal

component analysis in Subsection 8.3.3. Then, in Subsection 8.3.4 the data is shown to

be well-conditioned (in the sense of Fischer, 1981), so that the JMLE routine to estimate

the Ap and Di parameters will have unique solutions.

8.3.1 Cronbach’s alpha

Cronbach’s alpha (Cronbach, 1951), referred to as alpha, is a measure of the reliability

of a set of items (i.e. their internal consistency, which refers to how interrelated the

items in a test are). It is considered a persuasive index, so much so that it has almost

become synonymous with reliability (Kline, 2005, p.174). Alpha is related to a test

of reliability called ‘split-half reliability’, where the dataset is split randomly into two

halves (by persons, not items), scores for each item are calculated in each half, and the

correlation is calculated between the two halves. One would expect a good test to have a

high correlation. The alpha statistic is equivalent to taking the mean of all the possible

split halves (Cronbach, 1951), and can be defined as

α =
j

j − 1

(
1−

∑q
i=1 σ

2
i

σ2T

)

where j is the number of items on the test, σi is the variance of item i, and σT is the

variance of the entire test, that is

σ2T =

j∑
i=1

σ2i +
∑
i 6=k

σik
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For my data, α = 0.792, which is above the 0.7 threshold considered reliable (Cohen

et al., 2007, p.506). It is close enough to 0.7 to consider alpha’s standard error (see next

section).

Whilst alpha is a valid statistic for reliability, it should not be considered as a statistic

which measures the unidimensionality of items (Cortina, 1993; Field, 2009). In fact,

alpha is an underestimate of reliability unless the data is unidimensional (Schmitt, 1996,

p.350).

That alpha is not a measure of unidimensionality can be demonstrated by constructing

sets of data with two or more underlying dimensions and then showing that alpha for

such data is above 0.7 (Field, 2009). So the alpha for my task indicates that the items

are reliable, which is a good thing, but the alpha does not tell us that the test is

unidimensional.

8.3.2 Standard error of Cronbach’s alpha

It is a well-known fact that the value of alpha increases with the number of items on a

test (Cortina, 1993, p.101), and so it is appropriate to also consider the standard error

of alpha, which is the error in the calculated alpha relative to the true alpha. Various

methods have been proposed to calculate this error (Duhachek and Iacobucci (2004) list

seven). The following will be used in this thesis:

1. Bootstrapping

2. Cortina’s formula

3. Duhachek and Iacobucci’s formula.

The second and third methods were published in papers that were concerned with the

misuse of alpha (Cortina (1993) and Duhachek and Iacobucci (2004), respectively), and

the first was suggested to me by a colleague at Loughborough.

Bootstrapping is a computer-intensive method where the standard error of a statistic

is estimated by treating the data as a population and taking repeated samples (with

replacement) from the data set (Efron and Tibshirani, 1986). A Matlab routine was

written (see Appendix D.1) which took a sample of size n = 147 (with replacement)
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from my data and calculated Cronbach’s alpha for this sample. The code was set to

execute a million times, and from each run alpha was calculated. The variance of these

million alphas was calculated to be SEbootstrap = 0.0494. A histogram of the distribution

can be found in Figure 8.2.

Figure 8.2: Bootstrap histogram for 1,000,000 values of alpha for my task data.

Application of the standard error formula given by Cortina (1993),

SE =
SDr√

0.5j(j − 1)− 1

where SDr is the standard deviation of the item intercorrelations (0.149), gives SECortina =

0.0202

Finally, the standard error formula given by Duhachek and Iacobucci (2004), based on

van Zyl et al.’s (2000) work, was used:

SE =

(
2j2

(p− 1)2(d′V d)

)(
(d′V d)(trV 2 + tr2V )− 2(trV )(j′V 2j)

)
where d is a j × 1 vector of ones, and V is the population covariance matrix among the

items. The formula was applied via a Matlab code (for code, see Appendix D.2), and it
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Table 8.3: 95% Confidence intervals for Cronbach’s alpha, based on three methods of
calculating alpha’s standard error.

Method SE of α 95% confidence interval

Bootstrap 0.0494 0.774 < α < 0.810
Cortina (1993) 0.0202 0.780 < α < 0.804
Duhachek and Iacobucci (2004) 0.0688 0.770 < α < 0.814

gave the value SEDuhachek = 0.0688.

All these measures of the standard error of alpha assume that it is normally distributed,

and so we can calculate 95% confidence intervals for alpha based on the standard formula

α± 1.96

(√
SE

n

)
(8.3)

Table 8.3 lists the SE and confidence intervals for the different calculations for standard

error, and by each method we can see that alpha is comfortably above 0.7, the level

associated with reliable internal consistency of a test.

8.3.3 Principal component analysis

The previous section’s analysis of Cronbach’s alpha gave a measure of the reliability of

the test, suggesting how the task’s might vary if it were asked on repeated attempts. The

next analysis of the data prior to running the Rasch Analysis is a principal component

analysis (PCA). This is a technique which will be used to explore the dimensionality of

the data. Recall that to be suitable for a Rasch Analysis, items should be unidimensional.

This means that a student’s total score could reasonably interpreted as a measure of a

single latent trait, in this case perhaps ‘a student’s ability to generate sequences which

satisfy certain constraining properties’.

A PCA of the data looks to maximise the variance of linear combinations of the items

(Rencher, 2002, p.380). The initial task items (j = 11) could be considered as eleven

principal components which collectively describe all the variance in the data. The key

idea of a PCA is is that if a linear combination of these items can explain much of the

variance of the data then this principal component is in some ways a better descriptor

of the data than the individual items. If a PCA gave four components which could
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account for a good proportion of the variance, then it may be the case that it is better

to look at these four principal components than the original eleven items. I use the

word ‘may’ because there is no statistical test to help a researcher make this decision.

Instead, qualitative judgements must be made after the PCA.

PCA can be used as a preparatory tool to examine dimensionality of data (Tennant and

Pallant, 2006), again subject to qualitative judgements on both the method of rotation2

and the interpretation of results. Manly (2005, p.101) and Field (2009, p.642) both sug-

gest the ‘orthogonal varimax’ rotation as a good choice for exploratory data analysis and

so I have used this type of rotation (furthermore, running alternative rotation methods

did not give me very different results). For each PCA reported in this section, I have

used the program SPSS to run the analysis (SPSS, 2010).

If the data is unidimensional a PCA would find that there is one component with an

eigenvalue much larger than the rest. Rencher (2002, p.397) suggests a variety of meth-

ods to decide what ‘larger’ means in this context, but notes that it is common to use a

scree plot to look for a natural break or point of inflection in the eigenvalues.

Before the first PCA of the data, the Kaiser-Meyer-Olkin measure was used to verify

the sampling adequacy (i.e. to check that the items are correlated enough to perform

the PCA) for the analysis (Kaiser, 1970). For the complete data set with interviewed

students removed n = 147, KMO = .72 (‘good’ according to Field, 2009, p.659), and

all KMO values for individual items were > .65, which is above the acceptable limit of

.5 (Field, 2009). Bartlett’s measure of sphericity was used to test the null hypothesis

that the correlation matrix was null (in which case it would not be suitable for a PCA).

For my data, χ2(55) = 536.26, p < .001, which indicates that correlations between items

were sufficiently large for PCA to be meaningful.

The PCA was conducted on the 11 items with orthogonal rotation (varimax), to obtain

eigenvalues for each component in the data. The rotated component matrix for the first

three components can be found in Table 8.4, and a scree plot of their eigenvalues in

Figure 8.3.

The scree plot indicates there are two components before the point of inflection on the

graph. The rotated component matrix suggests that the first component is an overall

2Because a principal component is a linear combination of the items, the problem of calculating
components with maximum variance is equivalent to rotating matrices of correlations.
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Table 8.4: Rotated Component Matrix. Extraction Method: Principal Component
Analysis. Rotation Method: Varimax with Kaiser Normalization.

Component
1 2 3

Q1. .169 .704 .206
Q2. −.055 .410 .654
Q3. .747 .063 .359
Q4. .710 −.126 .242
Q5. .177 .899 .033
Q6. .616 .270 −.040
Q7. .594 .291 −.340
Q8. .153 .853 .011
Q9. .285 −.009 .684
Q10. .658 .197 .095
Q11. .602 .152 .041

Component Number
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Figure 8.3: Scree plot for the PCA of all questions.
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measure of performance on the test; the loading is positive for all but one question, and

for the one question that is negatively weighted (Q2), its loading is much smaller than

the rest. The second component is weighted highly for Questions 1, 5, and 8, and less

so for the other questions. It is also worth nothing that for these three questions the

loadings on the first factor is smaller. In summary, Component 2 can be considered a

measure of how well students performed on Question 1, 5, and 8 and Component 1 can

be considered to measure of how well students performed on the remaining questions.

Recall that Questions 1, 5 and 8 were deliberately chosen because they were easy ‘warm-

up’ questions. The PCA’s second component may reflect the outcome that students

who could not answer these three questions correctly would not score highly on the

test overall, and so for this component, performance on the other questions has less

of an impact (for the unrotated component matrix the values for these questions were

negative).

It is not immediately clear whether the PCA has indicated that the data is unidimen-

sional. If the reasoning in the previous paragraph is sound then the PCA’s two compo-

nents have highlighted the easier and harder questions on the task, both of which still

are asking students to do the same thing. Looking at the components in more detail,

the first component’s eigenvalue is over twice the second, and this is reflected in the

percentage variance explained by these components (33.35% and 15.33%, respectively).

Moreover, if the proposed explanation for the second component is legitimate, then it

too is measuring students’ ability to produce examples in this setting, only that if a

student is unable to answer easy questions they will do badly overall. This does not

seem to be a further dimension in the data.

To clarify the situation, the PCA was re-run with Questions 1, 5, and 8 removed (but

otherwise with the settings unchanged). This examines the task’s dimensionality without

these easier questions. Table 8.5 and Figure 8.4 present the rotated component matrix

and scree plot for this second PCA. As before the Kaiser-Meyer-Olkin measure verified

the sampling adequacy for the analysis, KMO = 0.73, (> .63 for individual items) and

Bartlett’s measure of sphericity χ2(28) = 258.40, p < .001 indicated that correlations

between items were sufficiently large.

In this second PCA, the eigenvalue for the first component (which again can be inter-

preted as overall measure of performance on the task) is smaller (2.63 compared to 3.67),
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Table 8.5: Rotated Component Matrix. Extraction Method: Principal Component
Analysis. Rotation Method: Varimax with Kaiser Normalization.

Component
1 2 3

Q2. −.032 .052 .779
Q3. .854 .217 .197
Q4. .880 .098 .032
Q6. .083 .817 .175
Q7. .208 .696 −.159
Q9. .232 .099 .719
Q10. .215 .712 .259
Q11. .502 .388 .042

Component Number
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Figure 8.4: Scree plot for the PCA of the reduced set of questions.
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but the percentage variance explained by this factor has increased slightly (36.67% com-

pared to 33.35%). The eigenvalue of the second component is much smaller now that

Questions 1, 5, and 8 have been removed (1.1). It now positively weights Questions 6,

7, and 10, but accounts for less overall variance (13.76%).

For the Rasch Analysis, outlined in the next section, all questions have been included

in the dataset. This is for several reasons:

1. A principal component analysis will always give j components, and a qualitative

judgement must be made as to whether the components identified suggest the data

is multi-dimensional.

2. The second component (which weighted Questions 1, 5, and 8 more than the other

questions) accounted for only 15% of the variance of the task

3. It is not clear that the presence of easy questions makes a test multidimensional;

scoring badly or well on these items is still an indication of a student’s ability to

generate example of sequences

4. Removing these items served to highlight further items which made up the second

component.

Other authors have suggested that if residuals are within acceptable limits after the

Rasch Analysis (i.e. if the outfit and infit measures are t-values are between −2 and

+2), then the Rasch Model is appropriate for the data (Tennant and Pallant, 2006).

Subsection 8.4.2 will show that this is the case for the questions on the task.

8.3.4 Fischer’s test of well-conditioned data

In the next section, the PROX/JMLE routine as outlined in Section 8.1.5 will be used

to estimate the Ap and Di parameters for each person taking the task and each item in

the task. Fischer (1981) presented a necessary and sufficient condition for the existence

and uniqueness of a solution for such routines (i.e. that they converge). The definition

of this condition, that the data be well-conditioned, is not needed in this discussion, but

can be found in Fischer (1981, p.59). In the same paper, Fischer proved the following

lemma:
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Lemma 8.1. Let the items be ordered according to the number of persons answering

them correctly, s1 ≤ s2 ≤ · · · ≤ sk. Define nr to be the number of persons with total

score r. Then a n.s. condition for the data to be ill-conditioned is the existence of an

index value, k′, 1 ≤ k′ ≤ j − 1, such that

k∑
r=k−k′

nrr =

k′∑
i=1

si + (k − k′)
k∑

r=k−k′
nr. (8.4)

Proof. See Fischer (1981, p.63).

To apply this lemma, first the dataset was reduced to those persons/items who did

not score zero or a perfect score, because the PROX/JMLE routine is only run on

the data with such persons and items removed. With this reduced dataset (n = 100,

j = 11), nr and si, were calculated (see Tables 8.6(a) and 8.6(b), respectively). Then

for k′ = 1, . . . , 10, Equation (8.4) was calculated (note that Lemma 8.1 says that if the

equation holds for any 1 ≤ k′ ≤ j−1 then the data is not well conditioned). Table 8.6(c)

shows that for each k′ the equation does not hold, and so the data is well-conditioned.

8.4 Applying the Rasch Model to my data

8.4.1 Comparing Rasch analyses with and without including the stu-

dents who were interviewed

The first Rasch Analysis was run with only the students who were not interviewed. The

dataset therefore consists of 147 strings of 11 dichotomous responses. Using the package

Winsteps (Linacre, 2009), person ability and item difficulty parameters were estimated

via the PROX/JMLE routines. The JMLE convergence criterion as set so that it would

continue to iterate until the largest logit change was 0.0001.

The same procedure was then completed with the answers from the fifteen interviewed

students included. This was to demonstrate that the item difficulty parameters from the

first run and those from the second run were not significantly different. Table 8.7 gives

the parameters for the two runs, together with the standard error for each estimate and
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Table 8.6: Preliminary and final calculations for Fischer’s (1981) equation for n.s. con-
ditions of ill-conditioned data.

(a) Number of students answering r ques-
tions correctly

Total score No. of students
r nr
1 1
2 0
3 0
4 2
5 5
6 6
7 14
8 9
9 25
10 38

(b) Questions ranked by the number of
students answering them correctly, after
students scoring zero or full marks have
been excluded

Rank Qn No. of students
i si
1 9 23
2 11 64
3 10 70
4 3 73
5 6 78
6 4 79
7 2 81
8 7 85
9 1 95
10 8 98
11 5 99

(c) Partial calculations of elements of Fischer’s (1981) equation for ill-conditioned data, and the result
of applying Equation 8.4

k′
∑11

r=11−k′ nrr
∑k′

i=1 si (11− k′)
∑11

r=11−k′ nr Equation 8.4 holds?

1 380 23 380 No
2 605 87 567 No
3 677 157 576 No
4 775 230 602 No
5 811 308 516 No
6 836 387 485 No
7 844 468 396 No
8 844 553 297 No
9 844 648 198 No
10 845 746 100 No

the outfit t-statistic. The standard error is given by the given by formula

SEDi =
1√∑n

p=1(Pp,i(1− Pp,i))
(8.5)

where Pp,i is the probability the model predicts person p answering item i correctly, as

given by Equation 8.1. If we knew the ‘true’ item difficulty, δi, it would be expected

that the estimate Di to fall in the interval (δi − SEDi , δi + SEDi) 68% of the time. The

outfit t-statistic was described in Section 8.1.5.

The difficulty estimate and standard error for the two analyses (the first four columns
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Table 8.7: Estimated difficulty parameters for the data with(out) interviewed students
included.

Item Difficulty estimate Model S.E. Outfit (std)
without with without with without with

Q1. −1.65 −1.77 0.52 0.49 1.2 1.2
Q2. 0.28 0.34 0.29 0.27 1.4 1.2
Q3. 0.89 0.93 0.26 0.24 −1.9 −2.1
Q4. 0.44 0.69 0.28 0.25 0.9 1.6
Q5. −3.85 −4.24 1.15 1.12 −1.7 −1.9
Q6. 0.52 0.27 0.28 0.27 −1.2 −0.3
Q7. −0.10 −0.14 0.32 0.30 −0.4 −0.4
Q8. −2.90 −2.75 0.83 0.69 −0.2 −0.4
Q9. 3.80 3.89 0.26 0.25 1.9 1.5
Q10. 1.09 1.28 0.26 0.23 −0.9 −0.3
Q11. 1.47 1.49 0.25 0.23 0.5 0.5

of Table 8.7) are plotted for comparative purposes in Figure 8.5, which shows that there

is not a significant difference between the item difficulty parameter estimates when the

interviewed students are included, although the difficulty estimate of Question 6 has

decreased when the interviewed students were included (note that 10/11 interviewed

students answered this question correctly).

In terms of fit to the model, only one item has outfit smaller than −2 or greater than

+2, Question 3 after the interviewed students were included. The outfit mean square

value for this question is 0.56, which corresponds to 44% less variation than expected

by the model. In the first run of the model the question had 42% less variation than

expected by the model, so in reality this is a modest change also.

Because the difficulty parameters of the items do not change significantly, for simplicity

further analysis will be conducted with the dataset including all students.

8.4.2 Difficulty of items in the task

Using the item difficulty estimates in Table 8.7 we can order the items in terms of their

difficulty, as presented in Figure 8.5. Note that the logit estimates reflect the metrics

used in the pilot study evaluation (calculated in Table 4.1, and presented in task-sheet

order in Figure 4.5), giving roughly the same ordering. The Rasch Analysis has indicated

some differences from the first pilot study, notably that the pilot study found Questions
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3 and 11 to have the same level of difficulty (0.87 and 0.86 respectively in the scale of

the pilot study’s metric), whereas the Rasch Analysis indicates that Question 11 is 0.56

logits more difficult.

The three questions which were included as easier warm-up questions, Questions 1,

5, and 8, have large negative Di estimates. Their standard errors are large, which

suggests that the majority of students’ ability estimates were much higher than D1, D5,

and D8 (this is confirmed in the next section, Figure 8.7). Recall that Ap − Di > 3

approximately corresponds to Pp,i > 0.95, and so if there are few students with ability

parameter estimates within three logits of D1, D5, and D8, then the accuracy of the

estimation of these Di parameters will be poor.

The remaining questions have estimates between −1 and +2 logits, with one question

deemed much tougher than the rest at just under 4 logits. Note that exactly how much

tougher is a question that can only be answered when we are considering a particular

person, and so fixing a value of Ap in equation 8.1. For instance, the model predicts that

a person with Ap = 2 is around five times as likely to answer Question 10 correctly than

Question 9 (P (Q10) = 0.673, P (Q9) = 0.131), but this difference changes to almost

eleven times for a person with Ap = 0 (P (Q10) = 0.218, P (Q9) = 0.020).

8.4.3 Rasch Analysis of interviewed students

I now turn my attention to the students interviewed in the main study. Their ability

estimates, standard errors, outfit and infit statistics are given in Table 8.8. Note that

each of the standardised outfit and standardised infit measures is in the (−2,+2) re-

gion, which indicates each interviewee’s series of responses is compatible with the Rasch

Model (Tennant and Pallant, 2006). The range of ability parameter estimates for the

interviewed students is less than for the population, but this is a reasonable difference

when there were only 15 interviews.

The ability estimates, standardised outfit and standard errors are represented in a

Rasch pathway diagram in Figure 8.6. Pathway diagrams are used to represent three-

dimensional data, and authors such as Bond and Fox (2007) have used them to represent

the output of a Rasch Analysis. This diagram plots a bubble for each interviewee. The

bubble’s centre is in plotted with the person’s ability measure in the vertical direction,
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Table 8.8: Rasch Analysis statistics for the interviewed students.

Student Score Ability S.E. Infit Outfit
mnsq std msq std

Anna 7 1.02 0.76 1.11 0.47 0.75 0.28
Ben 10 3.58 1.25 0.33 −0.8 0.11 −0.64
Valter 9 2.40 0.95 0.70 −0.35 0.41 −0.08
David 7 1.02 0.76 0.78 −0.74 0.53 0.07
Edha 2 −2.56 1.07 1.52 0.91 1.73 0.90
Phalgun 8 1.64 0.82 0.63 −0.97 0.39 −0.10
Guan 8 1.64 0.82 0.80 −0.41 0.53 0.06
Haaroon 4 −0.77 0.84 0.51 −1.06 0.34 −0.39
Ian 5 −0.12 0.78 1.02 0.16 0.86 0.22
Joe 6 0.46 0.75 0.90 −0.28 0.67 0.08
Ken 10 3.58 1.25 0.33 −0.8 0.11 −0.64
Laura 8 1.64 0.82 0.80 −0.41 0.53 0.06
Mike 10 3.58 1.25 1.86 1.09 1.07 0.52
Nicola 7 1.02 0.76 0.89 −0.31 0.67 0.20
Oksana 10 3.58 1.25 1.86 1.09 1.07 0.52

standardised outfit in the horizontal direction, and the bubble’s width is plotted to re-

flect the standard error of Ap (the circle’s diameter is set to equal the SE measure in

logits). I will briefly discuss the diagram in conjunction with the response strings of the

interviewed students before replotting the diagram to include the students who were not

interviewed (in Figure 8.8). This is in order to give a comparison between interviewed

and non-interviewed students.

Concentrating on the standard error (the size of the bubbles), we can see that the

standard error is smaller for persons with ability estimates between +2 and −1 logits,

and larger for more extreme ability estimates. This corresponds to the majority of items

in the task having difficulty measures within this region (see the previous section), hence

a better estimate for these students can be made.

Looking at the location of the bubbles, we see that at the top of the diagram there

are four bubbles centred at a height corresponding to Ap = 3.58. This corresponds

to answering 10/11 questions from the task correctly. Two bubbles slightly overfit the

model (Ben and Ken are in the negative outfit region) and two slightly underfit the model

(Mike and Oskana are in the positive outfit region). This is an indication of how likely the

response strings are for each person; Ben and Ken answered all but Question 9 correctly

and Mike and Oskana answered all but Question 10 correctly. Because Question 9 was
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estimated to be more difficult than Question 10 (in terms of the difficulty parameters),

Ben and Ken’s string of answers fit the Rasch Model better, and so their outfit measure

is less than Mike and Oskana’s outfit measure.

At the bottom of the diagram we have Edha and Haaroon. Edha answered only 2/11

questions correctly (DEdha = −2.56), but her two correct questions were 5 and 6. Other

questions on the task which were estimated to be easier than Question 6 (such as Ques-

tion 1 and 8) were answered incorrectly. The Rasch Model would expect a student

scoring 2/11 to have answered these questions correctly rather than Question 6, and

so Edha’s standardised outfit to the model is relatively large at 0.9, although this is

still well within the (−2,+2) region which is deemed acceptable (Bond and Fox, 2007).

Haroon answered four questions correctly, and these four were Question 1, 5, 7, and 8.

These four questions were measured to be the easiest four questions on the task, and so

Haaroon’s standardised outfit is the negative value of −0.39. In this sense, the misfit

measure (in this case, standardised outfit) is a measure of how characteristic a specific

student’s scores are in relation to the whole population (Edwards and Alcock, 2010b).

The rest of the interviewed students have ability parameter estimates between −0.5 and

+2.5, and standardised outfit measures closer to 0. Comparing these students’ outfit

and infit measures, we see that both David and Phalgun have larger infit than outfit

measures, which suggests that these students answered the easy questions correctly,

the difficult questions incorrectly, but gave unexpected (or uncharacteristic) answers for

questions with similar difficulty parameter estimates.

Recall that test suitability can be considered by counting how many questions have diffi-

cult parameter estimates within three logits of each person’s ability parameter estimate.

Doing this, we find that 9 questions were ‘suitable’ for Anna, David, Haaroon, Ian, and

Nicola, 8 questions were suitable for Valter and Joe, 7 questions were suitable for Phal-

gun, Guan, and Laura, and 6 questions were suitable for Ben, Edha Ken, Oksana, and

Mike (note that the questions may be different for each person). Thus the Rasch Anal-

ysis suggests that for all interviewed students at least half the questions were suitable,

and for seven students at least eight of the questions were suitably targeted.



Rasch Analysis 234

8.4.4 Comparing interviewed students with those completing the val-

idation task

Now, differences between the students taking the task as part of the interview and in

class are considered. This subsection first concentrates on the proportion of students

answering each question correctly, noting that interviewed students generally answered

fewer questions correctly. Then the ability parameter estimates of the interviewed stu-

dents are considered, and it is noted that according to the Rasch Model, the difficulty

of questions are targeted more towards the interviewed students. Finally, measures of

fit are considered, and here also the Rasch Model suggests the task was more suitable

for the interviewed students, in the sense that their response strings better fitted the

model’s expectation.

Comparing proportions of students answering each question correctly

Before we consider what a Rasch Analysis can tell us about how the interviewed students

compared with all students, we will discuss Table 8.9, which recaps the proportion of

students answering each question correctly in the validation exercise and main interview

study. The table shows that the interviewed students performed worse than those who

took part in the validation study; for most questions, the percentage of students answer-

ing correctly is lower amongst those from the interview cohort. An independent samples

t-test was performed on each students’ total score. On average students who took part

in the validation task scored better (M = 9.19, SE = .17) than the interviewed students

(M = 7.40, SE = .62). The difference was significant t(160) = 3.18, p < 0.02, and

the effect size medium r = .24 (although only just: Cohen (1988) gives 0.24–0.36 as a

medium effect size).

Below I suggest three hypotheses why there may be a difference in the two groups.

Seminar tutors were asked to tell students to work with the task individually, and

to collect sheets before going over the answers, so I will assume that these requests

were followed. The first hypothesis to explain the observed difference is that the initial

recruitment advertisement attracted those students who were struggling on the course.

As discussed in the ethical issues section of the Main Study (Section 5.6), students

were told that the interviews had the dual purpose of discussing how they found the



Rasch Analysis 235

Table 8.9: Total correct answers given to each question, for the validation exercise
(this Chapter, n = 147) and the main interview study (Chapter 5, n = 15).

Question Validation Interviews
% %

1. A strictly increasing sequence 95.9 93.3
2. An increasing sequence that is not strictly increasing 86.4 44.6
3. A sequence that is both increasing and decreasing 81.4 12.9
4. A sequence that is neither increasing nor decreasing 85.0 46.7
5. A sequence that has no upper bound 98.6 100.0
6. A sequence that has neither an upper bound nor a lower bound 84.4 93.3
7. A bounded, monotonic sequence 89.1 80.0
8. A sequence that tends to infinity 98.0 93.3
9. A sequence that tends to infinity that is not increasing 46.9 13.3

10. A sequence that tends to infinity that is not bounded below 78.9 40.0
11. A strictly increasing sequence that does not tend to infinity 74.8 53.3

transition to university, and also to ask them some “maths questions related to their

first year’s study.” Perhaps this wording encouraged students who were struggling with

their course to attend, however when chatting to the students during the ‘chat’ period

of the task (see Figure 5.3) none gave me the impression that this was the case. A

second hypothesis to suggest such a difference is that the validation exercise took place

one to three weeks after the interviews, giving students more time for the material to

settle. A third hypothesis is that the ‘think-aloud’ protocol may discourage successful

generation of examples, in keeping with Miller’s (1956) famous claim that there are 7±2

items of working memory at any given time. Nisbett and Wilson (1977) argued that the

verbal content of think-aloud task-based interviews is unreliable, so perhaps also there

is a hit on a performance level too (Clark et al., 2006; Moreno, 2006). However various

studies have suggested that think-aloud protocols make no difference in performance in

well-designed interviews (e.g. Ericsson and Simon, 1980; Leow and Morgan-Short, 2004).

In this context, well-designed refers to speech that is related to the thinking needed to

complete a task, and there is no reason to suggest that such a condition was violated in

these tasks.

A similar difference was observed between the quantitative first pilot study and the

qualitative second pilot study. Table 8.10 recaps the first and second pilot studies’

number of students, number of questions, mean student score and standard deviation.

The table suggests that the difference in the performance of students taking the task
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Table 8.10: A summary of average student scores in each study.

Study No. students No. questions Mean score St. dev

Pilot study 1 101 20 6.95 (34.7%) 3.98 (19.9%)
Pilot study 2 6 11 2.83 (25.8%) 2.23 (20.2%)
Main study 15 11 7.40 (67.3%) 2.30 (20.9%)
Validation study 147 11 9.19 (83.5%) 2.05 (18.6%)

during an interview and those taking the task during class might not be isolated to the

main study.

Rasch Analysis’ estimates of person ability

Now let us look at how a Rasch Analysis can complement this standard statistical

analysis. Winsteps’s output for the entire population is given in Appendix E. Before

the interviewed students are compared with those who completed the task in class, the

complete dataset (including both groups of students) will first be described. Looking at

the entire population of persons taking the task, represented as a histogram in Figure 8.7,

28% of students provided a correct example for every question, and so scored perfectly.

These students were not included by Winsteps when estimating the other person and

item parameters; they were re-introduced by the program afterwards with a small value

subtracted from their total score, and so the ability estimates for such students (Ap =

5.21) should be taken with greater caution (such estimates have a large standard error,

in this case 1.98).

Almost all students not scoring perfectly have ability estimates between −1 and +4

(97%). By adding and subtracting 3 logits to each individual’s ability estimate, we can

conclude that 71 students have a suitable ability parameter estimate for at least 8 items

on the task (recall that |Ap − Di| < 3 =⇒ Pp,i ∈ (0.05, 0.95)). So, according to the

model the task was correctly targeted for around half of the students, which is probably

a result of the 46 students who answered every question correctly. Recall from the last

section that when given in interview, the task was correctly targeted for 7/11 students.
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Figure 8.7: Histogram of estimated person ability (for the dataset with interviewed
students included).

Pathway diagram and measures of fit

A Rasch pathway diagram for all students is given in Figure 8.8. On this graph, the bub-

bles which represent interviewed students are shaded. Bearing in mind that the bubble

centred at (5.21, 0) represents 47 people, the graph confirms the t-test indicating that

the interviewed students performed significantly worse than those taking the validation

task. The reasons for using a Rasch Analysis is not just to compare person abilities

however, it is also to compare the nature of the response strings, as measured by the

outfit values. When we compare the outfit values of the interviewed students with those

scoring similarly in the validation task (by looking at the horizontal placement of the

bubbles) we can see that the interviewed students’ standardised outfits are between −1

and +1, but the outfit values of some of the students who took the task in class are

larger than this. This may mean that the interviewed students’ response strings fit the

Rasch Model better than the overall populations’ response strings, but it could also be
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because there were far fewer students who were interviewed; a further statistical test is

needed to see if the difference is significant (see below).

There is also the possibility that between the two groups there is a different relation for

infit compared to outfit. Recall that outfit emphasises discrepancies between predicted

and observed scores for items with difficulty parameters that are far from a person’s

ability estimate, and infit emphasises discrepancies for items that have similar difficulty

parameters to a person’s ability estimates. For instance, if it is the case that asking

an interviewee to articulate their thinking induces them to make errors on questions

that the student might otherwise answer correctly, one would expect this effect to be

larger for items with similar difficulty parameters to that person’s ability parameter

estimate. If this is the case we would find that interviewed students’ infit measures are

higher than non-interviewed students, relative to their respective outfit measures. The

opposite scenario is also possible, that asking students to think aloud makes them focus

more on the questions, although the significant result from the t-test on students’ total

scores suggests that this latter possibility had not been the case.

To address these concerns a one-way between-groups multivariate analysis of variance

(MANOVA) was conducted, with the null hypothesis that there was no difference in

the relationship between the dependent variables ‘outfit’ and ‘infit’ for the groups ‘in-

terviewed students’ and ‘non-interviewed students’. The MANOVA failed to reject the

null-hypothesis, F (2, 159) = 0.67, p < .516 (Each of Pilli’s trace V = 0.008, Wilks’s

statistic Λ = 0.992, Hotelling’s trace T = 0.008 and Roy’s largest root Θ = 0.008

also failed to reject the null-hypothesis). This is not the same as claiming there is no

difference between the groups3, but it is evidence to support a claim that there is no

significant difference in the outfit and infit measures for interviewed and non-interviewed

students in this study. This indicates that the response strings of two students with the

same total score are likely to be similar, even when one student completed the task in

an interview and one student did not.

3For instance, it may be the case that both of the hypothetical scenarios described in the previous
paragraph were true for different students and so there was no statistical effect for the entire group
considered as a whole
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8.5 Summary of chapter

In order to compare the students interviewed in the main study with the wider popula-

tion, the example generation task was given to the rest of the year group approximately

three weeks later during problem classes. After removing those students who completed

the task in class having already been interviewed, there were 147 students in the dataset.

The statistical procedure of Rasch Analysis was used to analyse this dataset and the

dataset with interviewed students included.

Once the data was shown to be suitable for Rasch Analysis, the computer package

Winsteps (Linacre, 2009) was used to estimate the Rasch Model parameters for the

data, and measure these parameters’ fit to the model. First the parameters were used to

objectively rank the questions in order of their difficulty, and second to make comparisons

between the interviewed students and the general population. Then, fit statistics were

used to determine how characteristic the interviewed students response strings were,

relative to the general population.

It was shown that students who took the task during an interview performed worse

compared to those that did not (on average answering 1.79 fewer questions correctly),

and some hypotheses were suggested to account for this. When looking at the estimated

parameters’ fit to the Rasch Model, both interviewed and non-interviewed students

response strings fitted the model well. Moreover, when comparing interviewed and non-

interviewed students with similar ability estimates, there was no statistical difference

between the response strings. These two results combine to indicate that, in terms of

the Rasch Model, although the students who took the task during an interview scored

lower, their responses were not uncharacteristic for students from the population who

scored similarly.



Chapter 9

Discussion and Conclusions

This thesis has contributed to two growing areas of research: that which looks at stu-

dents’ understanding of the undergraduate module Analysis, and that which explores

students’ awareness in the example generating process. As well as advancing what is

known in both these areas in isolation, the thesis has shown that an example generation

task can be successfully used to explore students’ understanding of sequences and basic

sequence properties in Analysis. The thesis is also the first account to use an example

generation task as the basis for a phenomenographic analysis of a topic.

This discussion and conclusions chapter takes as its starting point the research questions

initially stated in the Introduction (Section 1.1), and restated here:

1. How successful are students at accurately generating examples of sequences satis-

fying certain combinations of properties?

2. What is the qualitative variation in students’ experiences of sequence generation?

The first two sections of this chapter focus on the research questions in reverse order.

Section 9.1 addresses the second research question by revisiting Chapter 6’s dimensions

of variation. Then, in Section 9.2, the first research question is addressed by considering

all the studies in the thesis and relating these to the dimensions of variation where

appropriate.

Section 9.3 then shifts the focus away from the research questions and considers the

methodology of the main study, examining the extent to which this phenomenographic

241
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study of an example generation task has provided useful information about the generated

concept outside of such tasks. Pedagogical implications are discussed in Section 9.4, and

then Section 9.5 suggests possible future research stemming from all of these areas.

9.1 What is the qualitative variation in students’ experi-

ences of sequence generation?

This research question was addressed in the analysis of the main study, presented in

Chapter 6. Four dimensions of variation emerged from the analysis of the example

generation interview data, with each dimension containing three or four categories of

description, ordered in terms of increasing sophistication. Recall that when analysing

the data, the dimensions emerged by taking students’ comments at face-value, bracketing

where appropriate both the truth of the statement relative to formal mathematics, and

the other dimensions.

Table 9.1 restates the categories of description for each dimension of variation that was

previously presented as Table 6.5.

The first dimension of variation, Using Definitions, described qualitative differences in

students’ awareness of definitions. In this context, the definitions were those of sequence

properties (rather than the definition of a sequence itself), and students’ awareness

refers to how students interacted with definitions during the task, to what extent they

explicitly made reference to them, and whether parts of the definitions were used in the

example generation process. Analysis of data collected in the main study suggested that,

when students did not use definitions they instead relied on spontaneous conceptions

(usually based on everyday use of words).

The second dimension of variation, Representation of Sequences, considered the different

ways students wrote down their sequences, and the reasons the students gave for this

choice. Typically students presented their sequences as a list of numbers or as a formula

(indeed the definition sheet given to students suggested they do this), but this dimension

of variation also captured behaviour where students wrote down as answers objects

that were not sequences. Analysis of interview transcripts suggested that such students

typically still regarded these objects as sequences. This dimension of variation also



Discussion and Conclusions 243

Table 9.1: Summary of the different dimensions of variation outlined in Chapter 6.

Using Definitions (Section 6.2)

Def-A. Unaware of Definitions
Def-B. Refers to Definitions
Def-C. Uses Definitions
Def-D. Manipulates Definitions

Representation of Sequences (Section 6.3)

Rep-A. Any Representation is Suitable
Rep-B. One Representation is Superior
Rep-C. Any Well-Defined Representation is Suitable

Sequence Construction Strategies (Section 6.4)

Con-A Generic Initial Approaches
Con-B. Trial and Error
Con-C. Transformation
Con-D. Analysis

Justifications (Section 6.5)

Jus-A. No Justification Attempted
Jus-B. Appeals to an External Authority
Jus-C. Informal Justifications
Jus-D. Formal Justifications

highlighted some students’ belief that certain types of representations (e.g. a formula)

were ‘better’ than others, which sometimes led to students being able to generate a

sequence, but not feeling comfortable with writing it down.

The third dimension of variation, Sequence Construction Strategies, focused on the

strategies students used when generating their examples. Various informal approaches

were included as ‘strategies’ when exploring the extent of this dimension, such as repeat-

ing the question aloud, writing down relevant definitions and sketching a graph. Classed

as more sophisticated were times when students followed the trial and error, transforma-

tion and analysis strategies previously identified in Antonini’s (2006) research exploring

how experts generated examples. This thesis contributes further to what is known about

how undergraduates use these strategies, in particular transformation and analysis that

contain flawed reasoning (see Section 6.4 and Edwards and Alcock, 2010a).

The final dimension of variation, Justifications, explored the different ways students
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justified their final answers and the chains of reasoning given as they followed the think-

aloud protocol. The types of behaviour included in this dimension ranged from students

who provided no justification for their answers, to those whose reasoning was based on

arguments framed in formal mathematics.

The inter-coder validation exercise in Chapter 7 suggested that these dimensions of

variations are generalisable to other groups of students taking the main study’s task.

Moreover, I speculate later in this discussion and conclusion chapter that the qualitative

variation in students’ experiences of sequence generation, as contained within these

dimensions of variation, will also be present in most example generation activities at

undergraduate level.

It is important to bear in mind that, even in the context of answering this research

question, the dimensions of variation presented in Chapter 6 are not a classification

system whereby each student can be labelled a ‘Def-w|Rep-x|Con-y|Jus-z student’. In

the course of the main study’s interviews, there were cases where a student was labelled

by different categories of a dimension of variation, depending on the portion of the

interview considered (for instance, incidents from Valter’s interview can be found in

Def-A, Def-C and Def-D). The dimensions of variation instead help us reflect upon the

different possible ways students can be aware of the different aspects of the example

generation of sequences, and so they have addressed the second research question.

9.2 How successful are students at accurately generating

examples of sequences satisfying certain combinations

of properties?

This section considers the extent to which the thesis has addressed the first research

question. To a certain extent, each study in the thesis has contributed towards answering

this question, and so this section draws on aspects from each study, including relevant

parts of the dimensions of variation. In order to justify that the thesis has answered the

question and thus contributed to what is known about how successful students are at

generating examples of sequences, the following areas will be discussed: the number of

students giving correct answers in the studies, the types of examples students gave, how

students have gone about example generation, and what the thesis has told us about
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students’ concept images, example spaces, and spontaneous conceptions associated with

sequences and sequence properties.

9.2.1 The number of students providing correct answers

This subsection addresses the first research question quantitatively. It collects the mean

score of the students from each study, and suggests that the answer to the research

question depends on both the cohort of students and the way in which the example

generation task is delivered. It then considers a specific pair of questions: Question 1

and Question 3 as an illustration of a quantitative result that can be found across all

studies.

Table 9.2 repeats Chapter 8’s summary of the mean student scores from the various

studies in the thesis. In the description that follows this table, the first research question

is answered with respect to each individual study. Some comparisons are drawn between

the mean percentage scores from the studies, but there are no in-depth comparisons. This

is because differences between the studies make such a comparison not appropriate. For

instance the first pilot study included more questions than the other studies, and the

second pilot study’s cohort was different from the main study’s cohort. This is not a

weakness in the design — each study’s aim was not the same — and so it is unsurprising

that results are not directly comparable.

Table 9.2: A summary of average student scores in each study. The dotted lines
separate studies where direct comparisons cannot be made.

Study No. students No. questions Mean score SD

Pilot study 1 101 20 6.95 (35%) 3.98

Pilot study 2 6 11 2.83 (26%) 2.23

Main study 15 11 7.40 (67%) 2.30
Validation study 147 11 9.19 (84%) 2.05

In the first pilot study 101 students sat a 20-question example generation task during a

lecture. All but one student had studied a module on Sequences and Series the previous

year, and so it was surprising that the mean student score was low (35%). An indication

of this study was that students were struggling with the content of the task, rather

than the task format. For the second pilot study, a similar task (but with nine fewer

questions) was given to six students who were currently attending the Sequence and
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Series module. In this pilot study the percentage of correct answers was even lower than

in the first pilot study (26%).

There was a higher mean percentage of correct answers in the main and validation stud-

ies. These used the same question set as the second pilot study, yet there was a marked

increase in total marks. This difference may be a result of the higher entry requirements

required by the second institution, or a reflection that the second institution placed more

emphasis on formal definitions earlier in the degree. Subsection 8.4.4 reported that an

independent samples t-test indicated a significant difference between the students’ scores

in the main study and the scores in the validation study, with the interviewed students

scoring less well (note Table 9.2 indicates this was also the case for the pilot study).

This subsection also discussed hypotheses for this discrepancy. In terms of the mean

score of students, therefore, the answer to the first research question is that the success

of students answering the type of example generation exercises varies depending on the

cohort and situation.

Across each study, it was noted that there were many students who gave a correct

example for Question 1 (a strictly increasing sequence), but who did not for Question

3 (a sequence that is both increasing and decreasing). In the first pilot study 97% of

students answered Question 1 correctly but only 13% answered Question 3 correctly.

For the second pilot study these percentages were 67% and 0%, in the main study they

were 93% and 60%, and in the validation study 96% and 81%. To find this result across

each study suggests that, in terms of answering the first research question qualitatively,

students are less successful when combining multiple definitions. The Rasch Analysis of

the validation study also indicated that questions that combine multiple definitions are

more difficult (see subsection 8.4.2).

9.2.2 The types of examples given by students

This subsection considers the different types of examples students gave when answer-

ing the tasks’ questions. The discussion here has a clear link to such students’ evoked

example spaces (i.e. all examples to which a student has access at a particular time,

including both mathematical and non-mathematical representations). This thesis has
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contributed to what is known about students’ example spaces by identifying a reoc-

curring phenomenon where students treat classes of objects which are not sequences as

sequences in this type of task.

Each question on the task(s) asked students to give an example of a sequence satisfying

particular properties, and indeed each question contained the word sequence. In order to

be successful in any question on the various tasks therefore, a student needed to present

their answer in a form that was a valid representation of a sequence, i.e. a mathematical

function f : N → R, or an object that could be interpreted as such (a more thorough

description of what is meant by this was presented in Section 4.1.4).

It was noted in the first pilot study that some students presented their answers in forms

which were not sequences (this was presented as a conference paper in Edwards and

Alcock, 2008). In this thesis such answers have been classified and referred to as incorrect

non-sequences (INS). These answers typically retained some of the constraints asked for

by the question, such as a student giving the unbounded interval (−∞,∞) when the

question asked for an example of an unbounded sequence. Such answers were also seen

in the second pilot study, where it was noted that some students tended to give INS to

several questions, whilst some questions prompted INS responses from several students.

It was also noted in this second pilot study that one of the students who gave many

INS reported the belief that any sequence could be written as both a formula and as

an interval of the real line.

In the main study, answers that were INS and statements related to these answers were

included within the dimension of variation Representation of Sequences (see Section

6.3). Category of description Rep-A. Any Representation is Suitable (Section 6.3.1)

contained incidents where students believed there was no restriction on the way their

answer could be represented, including the INS-type answers. Examples given here

included students who gave a continuous function whose domain was finite, and those

that gave a double-sided sequence (i.e. a function f : Z → R). When such students

discussed these answers with the interviewer, it was unclear whether they believed these

answers to be sequences (as was clear for the student from the second pilot study),

but the students did report that they believed the examples to satisfy the properties

requested in the question. Although the validation study did not focus on the nature
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of incorrect answers, a browse of Appendix C shows that some students here too gave

several INS answers (e.g. student WB09).

The above discussion has highlighted that students across each study provided answers

that were not of the requested object type. Given that the studies’ cohorts span two

universities, and at least two year groups in the case of the pilot studies, these results

strongly suggest that such answers may be a common feature to example generation

exercises, or at least ones where the object type is fixed and the properties requested by

the questions are loosely applicable to other object types.

When a student answered a question correctly, the example given was typically written

as a list of numbers or as a formula. When a student reflected on the source of their

examples (usually when they were stuck and searching for inspiration), it was sometimes

remarked that they had seen such an example in class or in a lecture. Instances where

a student appeared to construct their example during the interview are discussed in the

next subsection.

9.2.3 The process of example generation

In relation to the first research question this thesis has also contributed to what is known

about how undergraduate students go about the process of example generation.

The two pilot studies did not explicitly consider what students did, or what students

reported they did, as they were constructing examples. The main study and its analysis,

however, did consider what the example generation task suggests about these areas. As

outlined in Section 6.4, the data fitted very well with Antonini’s (2006) three categories

of example generation (Trial and error, Transformation and Analysis). This implies that

Antonini’s categories apply more widely (to undergraduates as well as postgraduates),

and with tasks that ask a set of questions all on the same topic (rather than from different

aspects of mathematics). As well as contributing to what is known in this regard, this

thesis has also highlighted that when undergraduate students use a transformation or

analysis strategy, sometimes the logical deductions which underpin these strategies are

false relative to formal mathematics.

A further addition to what was previously known about students’ example generation

strategies is a type of behaviour not noted by Antonini (2006) or subsequent studies
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using Antonini’s strategy as their basis. In the least sophisticated category of the Se-

quence Construction Strategies dimension of variation, students would perform rituals

and routines that were seemingly unrelated to the question asked. Such routines were

not always undesirable, for instance writing down any definitions in the questions is

probably a very good idea, but others such as repeating the question over and over

again waiting for inspiration were seen as ‘strategies’ less sophisticated than even trial

and error.

9.2.4 Concept images and spontaneous conceptions

The various studies presented in this thesis have also contributed to what is known about

students’ concept images in relation to sequences and sequence properties. The previous

discussion about students’ example spaces is relevant here, provided one considers the

example space to be a subset of the concept image (as was suggested in Section 2.2.2),

as it suggests which objects students treat as part of their concept image for sequences.

Another aspect of the concept image that the studies in this thesis can shed light upon is

that related to the definitions of sequence properties. In each task, students were given

lists of sequence definitions, but the ways students dealt with definitions varied (see

dimension of variation Using Definitions in Section 6.2). In the studies where the task

was given to students in class (the first pilot study and the validation study), little can

be deduced about students’ concept images as data consists solely of the completed task

sheets. In the other, interview-based, studies, only the main study focused (in part) on

the ways in which students interacted with the sequence definitions. Therefore what this

thesis has told us about students’ concept images and spontaneous conceptions comes

primarily from the dimension of variation Using Definitions (see Section 6.2).

In this dimension, it was noted that many students did not make reference to formal

definitions, instead relying on what they thought the definitions meant (in Tall and

Vinner’s (1981) terminology such students relied on reasoning from their concept images

rather than working with formal concept definitions). Students who did this typically

interpreted the everyday meaning of a definition, such as “essentially going up” for an

increasing sequence. While spontaneous conceptions such as these were successful in

answering some questions, students who relied on this type of reasoning typically did

not provide correct answers for questions that combined properties: “essentially going
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up and down” is a less helpful concept image for a sequence that is both increasing and

decreasing. Although when Cornu (1991) described spontaneous conceptions they could

be drawn from both everyday language and previous mathematical experience, most of

the identifiable spontaneous conceptions from students came from the everyday meaning

of words.

Section 6.1 hypothesised that there were essentially three different types of formal se-

quence property definitions in the task: those that compared sequence elements pairwise

term-by-term, those that gave a rule for every sequence element to follow, and those that

controlled the behaviour of the sequence in the long-term. It was noted in subection

8.4.2 that, according to the estimates of difficulty parameters in the Rasch Analysis,

the most difficult questions (in terms of number of students answering incorrectly) were

those that combined the definition types, for instance asking a student to give a sequence

that satisfied both term-by-term (e.g. increasing) and a long-term (e.g. tending to infin-

ity) properties. This finding, combined with the main study’s observation (in subsection

6.2.1) that many students who struggled with the questions combining sequence types

were working with everyday concept definitions rather than formal ones, provides more

backing for the claim that a question is more difficult because it requires reasoning us-

ing formal definitions rather than common spontaneous conceptions present in concept

images.

In terms of the first research question, this thesis has suggested that when a student

struggles with the type of example generation activity given in the various studies, it may

be because they reason primarily with their concept images rather than formal concept

definitions. As noted in the literature review, most studies considering undergraduate

students’ concept images of formal definitions have focused on definitions such as limiting

behaviour and continuity of sequences, and so this thesis has furthered what is known

by demonstrating results that are consistent with earlier observations, but for simpler

definitions that are met by students earlier on in their courses (a similar conclusion

was made by Alcock and Simpson (2009b), but via a classification task rather than by

example generation).
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9.3 Using example generation as a phenomenographic re-

search tool

As well as addressing the two research questions, as discussed above, this thesis has been

the first study to use the combination of an example generation task with a phenom-

enographic analysis to draw conclusions about students’ understanding of a concept.

Various authors have suggested that studying students generating examples is a good

research tool (e.g. Bills et al., 2006; Zazkis and Leikin, 2007), but few have speculated

on the best way to do this beyond Zazkis and Leikin’s (2007) suggestion that researchers

explore the correctness of the examples, how they are produced, how they vary, and how

general or specific they are.

In phenomenographic studies to date, typically a concept or object is introduced to

students, and then the students are asked to reflect on that topic through a series of

open interview questions. For example Marton and Säljö’s (1976) distinction between

deep/surface approaches to learning was the result of studying students’ interaction with

a reading task, and the same students’ reflections on that task. Renström et al.’s (1990)

exploration of students’ conception of matter partly involved asking students what they

thought matter was. In this thesis’s main study, rather than asking students what they

thought a sequence was, students were instead provided with a sheet of formal definitions

and asked to complete a structured example generation task, thinking aloud as they went

along, then afterwards discussing the task with the interviewer. What follows here is

some thoughts on the extent to which this thesis can be considered a phenomenographic

study.

By basing the student interviews around the context of an example generation task,

the main study in this thesis has introduced students to the topic in question, and

encouraged the students to get involved with the topic in a way that would be difficult,

if not impossible, via a series of open questions. In this sense it is similar to the type of

studies above. However, unlike these studies, the focus of discussions with the students

has been more narrow than it would have been had the interviews been focused around

the question “what is a sequence?” On reflection, I believe that if the students had

been asked this question during the interview, it would either have had an influence on

the type of behaviour seen during the task (if students were asked before the task), or
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implied to students that some of their answers were not sequences (if they were asked

after the task), thus interrupting the flow of conversation of the discussion period and

creating ethical difficulties. In hindsight, however, I would have liked to ask this question

at the end of the task phase of each interview, although the content of the dimension

of variation Representation of Sequences has suggested the type of variation that might

exist in response to such an open question.

Despite these differences in the focus of dialogue between student and interviewer in this

study and traditional phenomenographic studies, I believe in terms of the analysis of

the interview data the methodology is clearly in keeping with phenomenography. The

analysis successfully generated a rich set of dimensions of variation, and these dimensions

reflect the qualitatively different ways of experiencing sequence generation observed in

the interviews. Moreover, the inter-coder validation exercise in Chapter 7 has suggested

that the dimensions of variation are both stable and applicable to new datasets.

9.4 Pedagogical implications

The pedagogical implications of the thesis are discussed in two areas. First the section

considers whether the example generation task could be useful for students to complete

in a different context, and second the section considers how the dimensions of variation

Using Definitions and Representation of Sequences might be useful pedagogical content

knowledge for a lecturer.

Example generation tasks

Example generation tasks have been suggested by some authors as a good way to intro-

duce new topics to students and to help students explore links in topics they are already

familiar with (Dahlberg and Housman, 1997; Hazzan and Zazkis, 1999; Watson and

Mason, 2002, 2005). It is tough to argue against Meehan’s (2002) claim that students

with access to a wider range of examples will have more developed example spaces, and

hence authors have suggested it might be beneficial to engage students with more varied

collections of examples (Alcock and Simpson, 2009b; Selden and Selden, 1998). I would

go even further and propose that students with a rich and varied (evoked) example space

are more likely to have concept images that are aligned with formal theory. Perhaps
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completing this thesis’s example generation task in a more pedagogically-focused setting

may help students unearth a wider variety of examples with which to work in the future?

However, when the task was given to students in interview conditions the (correct)

answers they gave typically did not vary greatly; it was rare for a student to try to

provide different or interesting examples across or within questions (a notable exception

was Phalgun: see Incident Con-C1, page 168). Watson and Mason (2005) note that by

asking students to provide more than one example, or to generate examples that the

students believe few others would have thought of, a researcher or teacher can unearth

a richer variation of responses. However, in the pilot study interviews, students were

struggling to provide any example at all, and probing for different or unusual examples

did not seem a positive step forward (and so such requests were not continued in the

main study). The conclusions discussed above in response to the first research question

were, in part, that some students find example generation difficult, and that they may

encourage reasoning based on concept images rather than formal concept definitions.

This tends to suggest that, unless students are carefully supported, the use of this type

of example generation task as a pedagogical tool may not help those students who are

struggling with the role and content of definitions in mathematics.

After most interviews, I asked the student whether they had ever completed a task such

as the one they had just finished (none had). Most students seemed receptive to the idea

that trying to find examples which satisfy combinations of properties can mean one learns

a lot about these properties. Although working with definitions in mathematics relies

on understanding what definitions mean and how they work, authors have suggested

that being exposed to, and classifying, different collections of mathematical examples

can help students understand the definitions when they are formally presented (Alcock

and Simpson, 2009b). It is not clear if the example generation task used in the studies

reported by this thesis might also be useful for students to complete prior to, during or

after the teaching of formal definitions in Analysis.

Dimensions of variation

In terms of the dimensions of variation presented by the thesis, I believe it would be

useful for lecturers in mathematics to be aware of the Representation of Sequences di-

mension. Anecdotally, it is common for lecturers to introduce a new mathematical object



Discussion and Conclusions 254

to students by either first giving some examples of the object, and deducing or imposing

properties that the object must have more generally, or by initially stating some combi-

nation of axioms and definitions and then providing examples of the object. However,

this thesis has suggested that when some students are asked to provide objects that

satisfy combinations of constraints, some do not keep the object invariant. This means

that the relationship between definitions and the objects constrained by definitions is a

grey area for some students, and so either way of introducing new topics may be con-

fusing. I personally find myself thinking of the different categories of description on this

dimension when teaching students about how mathematical objects are constrained by

axioms and definitions in mathematics.

Similarly, the dimension of variation Using Definitions also contains incidents that lectur-

ers of mathematics may find informative. The types of deductions inferred by students

who make no reference to definitions may be surprising to an experienced mathemati-

cian. For instance the absence of a conflict between Joe’s spontaneous conception that a

constant sequence was neither increasing nor decreasing and what he remembered from

lecture about such a sequence being increasing and decreasing (see Incident Jus-B1, page

179).

Implications for my own teaching

The research carried out in this thesis has informed my own teaching. When I teach

students about definitions such as increasing, I try to emphasise not only the defini-

tion’s role in clarifying which objects should be classed as increasing, but also that when

mathematicians use the term “increasing” they mean only (and precisely) the math-

ematical definition, forgoing any real-life spontaneous conceptions, even if that means

some objects that intrinsically do not seem to be increasing are now classified as such, or

vice-versa. It is not straightforward to move from using the everyday meaning of words

to using the content of formal definitions to define objects, and I enjoy helping students

through this transition.

The thesis has also helped me become more aware of representation-type errors students

might make. This is the case not just in Real Analysis, but in all areas of mathematics

that I teach and support. For instance, a student studying a basic statistics course
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recently wrote the following statement:

P (A) + P (B) = C

where A, B, and C are sets, and P (X) is the probability that any element in the set X

occurs. Although this is unconnected with real sequences, it is a typical representation-

type error. Rather than just say that the right hand side of the equality needs to also be

a probability, we discussed what each object in the equation represents, and the student

noticed their own error.

9.5 Implications for research

In this chapter, there have been various ideas which could form the basis of future

research. Many of these are briefly recapitulated and discussed here.

It would be very useful to make a systemic comparison of the different ways in which

undergraduate students are exposed to definitions. This study has explored the variation

between simple definitions involved with sequences, and speculated that there are three

types (term-by-term, sequence-wide, and long-term), and that some of the difficulties

faced by students are a result of students treating these definition types inappropriately

(possibly because of spontaneous conception resulting from the everyday use of words).

Perhaps this schema could be extended to include definitions in Analysis and more

generally in undergraduate mathematics? For instance, the definition of a sequence

converging to a finite limit involves an ε−δ combination that constrains the long-term

behaviour of the sequence, but the way one interacts with the definition may be different

when ε is treated as a fixed number, or as an arbitrary (but particular) constant. Might

such a classification be related to ways one can prove or find counter-examples for

statements involving these definitions?

On a similar theme, there is often a discrepancy between similar-looking (or indeed

similar-sounding) types of definition, and the way these definitions should be treated

in mathematics. For instance “increasing” and “tending to infinity” may both con-

jure up mental images associated with going up. In a similar way to Kirshner and

Awtry’s (2004) exposition of mal-rules in algebra based on the visual salience of alge-

braic transformations (e.g. that rules like (ab)2 = a2b2 are fine, but the similar looking
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(a+b)2 6= a2+b2 is not), perhaps a similar study can be made between definitions which

look (or sound) like they are term-by-term, sequence-wide and long-term. A study that

systematically explores spontaneous conceptions related to the everyday meaning of

definitions in mathematics would be very useful for both those teaching and studying

undergraduate mathematics.

With regards to the object type of answers, the first pilot study suggested that for some

students, a variety of objects are considered as sequences (including intervals of the

real line, series, and functions defined on all real numbers). The second pilot and main

study provided evidence that such answers were not the result of a student trying to get

partial credit on their answer; in the interview for that moment the student treated the

INS response as a sequence. Does this mean that students would classify such objects

as sequences before such an example generation task? What about immediately after

an example generation task? What if they are first asked to reflect upon the question

“what is a sequence?”

From an example generation perspective, there is a question as to the relationship be-

tween those students that are successful at generating examples and those that are

successful by other measures (e.g. examination results). Authors such as Dahlberg and

Housman (1997) suggested that those students who spontaneously generated examples

were more successful, but the direction of causation is unknown. Given that so many

researchers believe asking students to generate examples is a good pedagogical strategy,

it is surprising that there only seems to be empirical grounding for this belief (a recent

study by Iannone et al. (in press) attempted to examine links between students asked

to generate examples and success in proof production, but they found no clear link).

With respect to the dimensions of variation presented in Chapter 6, is there a relationship

between being successful at example generation of sequences, and being predominantly

‘located’ on sophisticated categories of description within the dimensions? Other phe-

nomenographic studies have devised questionnaires based on the dimensions in which to

categorise students (‘this answer is typical of a Def-C student’), and then explored the

types of answer they give to questions (e.g. Crawford et al., 1998). In particular, is it

the case that students who use the more sophisticated sequence construction strategies

have a better grasp of definitions, and do such students produce more correct examples?
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For this research, a researcher would first need to design a task or survey that would

target the different categories of description within dimensions.

Finally, it would be interesting to conduct further exploratory studies that would con-

sider the extent to which the dimensions of variation from the main study data are

invariant across similar tasks in other areas of mathematics. Would an example genera-

tion involving an object in linear algebra (bases perhaps) result in similar categories of

description? If so would there be more incidents for certain categories?

9.6 Final remarks

The purpose of this thesis has been to give a phenomenographic account of how students

completed an example generation task focused on sequences. The work reported here has

contributed to what is known about how students deal with sequences, formal definitions

of sequences properties, and also how students interact with example generation tasks. It

has contributed to the wider body of research on Real Analysis, in particular examining

how students interact with simple definitions in the context of an example generation

task. Research such as this is important if we as a community of mathematics education

researchers are to understand how undergraduates think about, and understand, the

mathematics they meet during their degrees.
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A.1 Participant information sheet
First Year Analysis Student – Warwick 

 
 
 
 

PARTICIPANT INFORMATION SHEET 
(to be read before Informed Consent Form is completed) 

 
 

Purpose of study 
• To investigate the transition from school-level mathematics to 

university study from a student’s perspective 
• To explore the types of answer given to typical problems in introductory 

analysis 
 
You are not expected to prepare for the study in any way; indeed it is 
preferable if you do not prepare at all. 

 
The interview will be recorded (to help maintain an accurate record for when I 
review the interviews), unless you request for this not to happen. The 
recordings will be treated in strict confidence and any reference to them shall 
hide the identity of the student in question. 
 
All data obtained from this interview will be destroyed in 6 years, or sooner if 
the participant wishes. 
 
If you have any further questions about the study please ask! 
 
Now please read and sign the Informed Consent Form. 

Figure A.1: The participant information sheet presented to students taking part in
the main study (based on Loughborough University’s 2008 template, the latest version
of which may be found at http://www.lboro.ac.uk/admin/committees/ethical/).

http://www.lboro.ac.uk/admin/committees/ethical/
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A.2 Informed consent form
Insert Name of Research Proposal 

 
 
 
 

INFORMED CONSENT FORM  
(to be completed after Participant Information Sheet has been read) 

 
 

The purpose and details of this study have been explained to me.  I 
understand that this study is designed to further scientific knowledge and that 
all procedures have been approved by the Loughborough University Ethical 
Advisory Committee. 
 
I have read and understood the information sheet and this consent form. 
 
I have had an opportunity to ask questions about my participation. 
 
I understand that I am under no obligation to take part in the study. 
 
I understand that I have the right to withdraw from this study at any stage for 
any reason, and that I will not be required to explain my reasons for 
withdrawing. 
 
I understand that all the information I provide will be treated in strict 
confidence. 
 
I agree to participate in this study. 
 
 
 
                    Your name 
 
 
 
              Your signature 
 
 
 
Signature of investigator 
 
 
 
                               Date 

Figure A.2: The informed concent form completed by students taking part in the
main study (based on Loughborough University’s 2008 template, the latest version of

which may be found at http://www.lboro.ac.uk/admin/committees/ethical/).

http://www.lboro.ac.uk/admin/committees/ethical/
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Transcripts and Task Sheets Used

in the Validation Exercise

B.1 Transcript for Student A

[Task phase begins]

Student A: You just want an example, right?

Interviewer: Yeah any example you like.

[Student completes the first four questions]

Interviewer: So what were you thinking as you did those four?

[Students begins to write]

Interviewer: Feel free to say it out loud, you don’t have to write it down.

Student A: Oh, it increases like by a greater amount each time, by a lot more,

than just like the same amount.

Student A: And this one, isn’t increase that much, it just increasing the se-

quences, not greatly increasing.

Student A: Increasing/decreasing, like 1,−1, 1,−1, keeps going up and down.

Student A: And then a sequence that isn’t increasing or decreasing, that is just

constant.

[Student moves on to the second page]
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Student A: I don’t know these.

Interviewer: Ok. If you want to have a look at the definition sheet to help you

out.

[Student looks at definition sheet]

Interviewer: So what are you thinking as you read that definition.

Student A: I’m thinking what U is. So an could be anything less than U . But

I don’t know. Is it like when you go up to a point, that’s up to U?

But only all the points before that?

Interviewer: I don’t want to say until you feel you’re done. I’m happy to go

through anything afterwards of course.

Student A: No, I don’t know that one.

[Student moves on to question 6]

Student A: And here there’s an L. So maybe that’s like an’s in beween U and

L. But I don’t know if the U counts.

[Student moves on to Question 7, writes answer]

Interviewer: So what did you think about that Question 7 then?

Student A: It’s, where is it, it’s monotonic if it’s increasing or decreasing, but it

doesn’t have to be constant though does it? I don’t think so.

[Student moves on to third sheet, answers question 8 and 9]

Interviewer: So what did you think during that question?

Student A: Because it can become negative infinity as well, can’t it?

Interviewer: For this question actually it can’t, it has to be positive. Can you

not cross it out, draw a line underneath if you want to think about

something else.

Interviewer: But for that one you were making it go less and less, were you?

Student A: Yeah.

Interviewer: So what have you got there, 1000, 100, 10, 0.1, what was the next

term going to be?

Student A: 0.01, then 0.001 and so on.

Interviewer: Right, ok. Yeah, sadly it can’t tend to minus infinity, it just means

positive infinity in this case.
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Student A: It can also be a number like, 2, 2, you can keep going on and on.

Interviewer: What do you mean, you kind of moved you hand there, so are you

thinking of a picture?

Student A: Yeah.

Interviewer: Do you want to sketch what you mean?

Student A: Like it keeps going on and on to infinity this way.

Interviewer: So you mean/

Student A: But infinity probably means that way here.

Interviewer: Oh I see what you mean, which one do you think,

Student A: If it’s not increasing it can’t really go up, to go like that on a graph.

So this is the only possible way isn’t it?

Interviewer: So if it were like a constant sequence?

Student A: Just like a number, like say 2, it keeps going to infinity.

[Student moves on to question 10]

Student A: I don’t understand that one.

Interviewer: Ok.

[Student moves on to question 11, sketches]

Student A: I’m just thinking what numbers that would go with.

Interviewer: Ok, so what have you done there?

Student A: This is not going, does not tend to infinity, so it just levels out and

it’s/

Interviewer: So you’re thinking of some numbers that might fit that?

Interviewer: Have you seen that shape of graph before?

Student A: Yeah.

Interviewer: What sort of things?

Student A: I can’t remember.

Student A: Oh, it’s kind of like the x cubed graph.

Interviewer: Do you feel you’ve done them, do you want to look through them at

all?

Student A: I think that’s the best I can do.
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B.2 Task sheet for Student A

Please give an example of each of the following, or state that this Is Impossible

You can write your sequence in any way you choose:
As a of numbers, as a formula, etc.

You do no need to prove your answers

1. A strictly increasing sequence

l ('t" q

"

2. An increasing sequence that is not strictly increasing

3. A sequence that is both increasing and decreasing

\ \ -Irl,rl,\,rf._.-- (

4. A sequence that is neither increasing nor decreasing

I
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i .

i.;

Please give an example of each of the following, or state that this Is Impossible

You can write your sequence in any way you choose:
As a list of numbers, as a formula, etc.

You do no need to prove your answers

5. A sequence that has no upper bound

6. A sequence that has neither an upper bound nor a lower bound

7. A bounded, monotonic sequence

L., 6,8,10.--

I 0, f 6>, t.f-( 2... -' ..

"-,-.,;" _ f,'

":r I

.. '"
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Please give an example of each of the following, or state that this is impossible

You can write your sequence in any way you choose:
As a list of numbers, as a formula, etc.

You do no need to prove your answers

8. A sequence that tends to infinity

(0 ( (() 0 ( (000 -. . ..

9. A sequence that tends to infinity that is not increasing

le)O I to I O· 1,l]·0 " 0, 001
I

10. A sequence that tends to infinity that is not bounded below

11. A sequence that does not tend to infinity..'

>,'



Transcript for Student B 267

B.3 Transcript for Student B

[Task phase begins]

[Student starts Question 1]

Student B: Strictly increasing sequence. Alright, strictly increasing sequence,

that mean it just increases so you want, strictly increasing sequence,

that’s if an+1 is more, exactly more than an. So this means that,

well.

[Student starts Question 2]

Student B: Strictly increasing sequence [whispers definition]. Well, strictly in-

creasing sequence, I suppose, maybe xn+1 is equal to xn + 1. If

that’s maybe, yes that’s a nice example, I think. I think that’s a nice

example.

[Student starts Question 3]

Student B: An increasing sequence that is not strictly increasing. Well, it’s not

strictly increasing, not strictly increasing. Then it just increases. So,

what? So there must be a number where an+1 = an. So, [begins

whispering]: So a sequence of an + 1 maybe, n+ 1, a sequence. No.,

A sequence of numbers, a sequence of numbers, an = 1/n2 [back to

normal volume] n squared, maybe an over n2, no. [inaudible]

[Student starts Question 4]

Student B: A sequence that is both increasing and decreasing, a sequence which

is neither increasing nor decreasing. Ah, right. Well a sequence of.

Dirichlet’s function I think. Yeah, it’s not a sequence actually, but.

It’s not even a sequence, but, it should be [inaudible].

[Student starts Question 5]

Student B: A sequence that has no upper bound. There is no upper bound. A

sequence of real numbers, a sequence of natural numbers, natural

numbers.

[Student starts Question 6]
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Student B: A sequence that has neither an upper bound nor a lower bound. Nor

a lower bound, and no upper bound, one which goes to infinity and

negative infinity. What goes to infinity and negative infinity?

[Student starts Question 7]

Student B: Bounded monotonic sequence, monotonic is of course increasing or

decreasing. So in this case, well I could give one decreasing and

one increasing. I suppose my increasing will be one as an = n, and

an = 1/n, or whatever.

[Student starts Question 8]

Student B: A sequence that tends to infinity. Oh wow. Maybe. A sequence that

tends to infinity. Positive numbers, for n in the natural numbers,

even in the real numbers. Even in the real numbers is ok.

[Student starts Question 9]

Student B: A sequence that tends to infinity that is not increasing. Oh. When

you state infinity, do you also mean negative infinity as well

Interviewer: For these questions, always positive.

Student B: Always positive, and erm. Not possible I think. I could be wrong,

but.

[Student starts Question 10]

Student B: A sequence that tends to infinity that is not bounded below. [Repeats

question]. Sequence of real numbers, sequence of rational, or real

numbers. Yep.

[Student starts Question 11]

Student B: Strictly increasing that does not tend to infinity. [repeats question].

Tends to a certain, tends to a certain upper bound. Certain upper

bound, which means. Maybe, I need to see this. [inaudible]. [Writes]

Yes. Ok.

[Student returns to the second sheet, Question 5]
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Student B: A sequence that has neither an upper bound nor a lower bound. A

sequence that is both increasing and decreasing. A sequence, not

possible.

[Student returns to the first sheet, Question 2]

Student B: A sequence that is not strictly increasing. That means that there is

something that [reads definition]. Need to find an an such that it is

the same. It is not strictly increasing so an + 1 = an. What number?

Yes. Maybe an equals 1 − 1/n?. That’s not strictly going plus one

way. 1 + 1/n, yes, so limit an, n tends to infinity is just 1.

[Student turns to the second sheet, Question 6]

Student B: A sequence that has neither an upper bound nor a lower bound.

[repeats question twice]. If there is a sequence then it’s completely

not bounded at all. What sequence is not completely not bounded

at all.

Student B: Ok, 1/n, where n is in the real numbers. Yes.

Student B: Right, well it’s not as easy, I’m sort of finished but, strictly increasing

sequence, need to set my parameters, n equals, n is in the natural

numbers. And well, some are in the natural numbers, some are not.

[Student goes through each question adding domains]

Student B: So neither increasing nor decreasing, that’s a function actually,

Dirichlet’s function. But then again a function is from n, a sequence

as well.

Interviewer: What was that, sorry? I missed that

Student B: I mean a function is merely a sequence as well, yes.

Student B: I think I’m finished, but I know it’s probably wrong.

[Discussion phase begins]
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Interviewer: So, ok. Of the eleven questions, which are you most sure about and

which are you least sure about?

Student B: Well, most sure about. [Turns to Question 6] Actually, natural num-

bers. Upper bound nor a lower bound. This one is ok, but n is in

the real numbers not in the natural numbers. This one, [Question 7]

increasing, monotonic, this one, with n in the natural numbers.

Interviewer: So which answer?

Student B: One of the, it could be increasing or decreasing. So I’m just giving

one example for increasing and decreasing.

Interviewer: Ok. A sequence that tends to infinity, well. Yeah, basically this one

I think. I suppose it tends to infinity, yeah it does. It does because

it is a positive power.

Student B: A sequence that tends to infinity that is not increasing. Can’t think

of anything.

Student B: A sequence that tends to infinity that is not bounded below. Well,

not bounded below, I suppose the sequence of rational numbers or

real numbers, and then yeah it wouldn’t be bounded below.

Student B: A strictly increasing sequence that does not tend to infinity. Ok, so

I gave an = (2n + 4)/n, which means the limit of an is 2, basically.

Yeah you can work this out, it’s 2 as n tends to infinity. And, is it

increasing, well, is it increasing? Might not be increasing, well let

me see. This is actually decreasing.

Student B: Err, well one thing that actually does not tend to infinity but actually

has a strict upper bound. You want a sup, a sup.

Interviewer: What are you imagining, your eyes are close, so are you thinking

about something?

Student B: I’m just visualising the numbers. Let me see, if I had n2, if I had

n = 2.

Student B: Actually no, this is increasing actually. it is increasing. This is

increasing actually. Let me see 2 + 4/n becomes smaller, so no it’s

still decreasing.
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Student B: Erm, minus. Minus? Yes, instead an = (2n− 4)/n. Yes, this one, it

means −4, −2 yes, but. It’s increasing, but the limit of an is still 2.

And yes, increasing. Sorry about this.

Interviewer: No that’s alright, it’s good to see people thinking about things, lovely.

Student B: Strictly increasing sequence for n2. Strictly increasing. Yes.

Interviewer: So/

Student B: It depends on the parameters of course but, yes. I should write the

parameters for this, n in the natural numbers. For the others it’s n

in the natural numbers.

Interviewer: So, as you’ve notice yourself, some of them you’ve chosen n in the

natural numbers, and some, well [Question 4] we’ve got the real over-

all because we’ve got rational and irrational so together they’re the

real numbers, and we’ve got the reals here. So what influenced which

one you chose?

Student B: Well, the negative basically. I needed a negative, and for sequences

normally you use the natural numbers: sequence number 1, sequence

number 2, by iterations 1,2,3, follow the natal numbers. But, in some

cases I want, it says here neither an upper nor a lower bound I know

that the natural numbers has a lower bound, which is zero. Well,

not exactly zero, but it is,

Interviewer: It depends I guess how you define it

Student B: Yeah, and well, I just needed a negative basically, so it’s probably a

little bit, maybe it’s not exactly right but it, I used the properties

that I know to suit the situation. Which is, I suppose, isn’t all that

unique, because you do it all the time for any decision you make, so.

Interviewer: Yeah, that makes sense. So when you were thinking about these, did

you have any pictures in your head, or were you thinking. When I

asked you before, you said ”the numbers”,

Student B: Yes, the numbers

Interviewer: So you were imagining the terms of the sequence?

Student B: Yes

Interviewer: Is this the case with all of them?

Student B: Erm, more or less, yes.



Transcript for Student B 272

Interviewer: Great, and so, but you didn’t really think of any graphs or any

pictures?

Student B: Erm

Interviewer: Please don’t pretend if you didn’t, I’m actually interested in whether

you did or not?

Student B: Well, not all of them. But let’s see, for the Dirichlet function I did,

because I know the graph. And for 1/n I did, and yeah. I suppose

not all, about 30-40% you do think of a graph, but the other 60-70%

probably not. So the majority, to summarise, the majority of time no,

but occasionally I think it’s nice to have a geometric representation.

Interviewer: And have you ever been asked to do things like this before? To give

examples?

Student B: Well not like this, I mean, not all in one go. I suppose informally

yeah.
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B.4 Task sheet for Student B

Please give an example of each of the following, or state that this is impossible

You can write your sequence in any way you choose:
As a list of numbers, as a formula, etc.

You do no need to prove your answers

1. A strictly increasing sequence

(

::.If
I•

2. An increasing sequence that is not strictly increasing

l( f:}c

3. A sequence that is both increasing and decreasing

4. A sequence that is neither ihcr,easing nor decreasing

I".,
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Please give an example of each of the following, or state that this is impossible

You can write your sequence in any way you choose:
As a list of numbers, as a formula, etc.

You do no need to prove your answers

5. A sequence that has no upper bound

6. A sequence that has neither an upper bound nor a lower bound

r

.r-

7. A bounded, monotonic sequence----
---

\,'

-Yl
-'.- _",.J

r)
.<.-.

I"
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Please give an example of each of the following, or state that this is impossible

You can write your sequence in any way you choose:
As a list of numbers, as a formula, etc.

You do no need to prove your answers

8. A sequence that tends to infinity

(

9. A sequence that tends to infinity that is not increasing

, . " j,
11. A lttrictly incre'asing sequence that does not tend

rl
,.f

tj.-

10. A sequence that tends to infinity that is not bounded below

i
"
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Data from Validation Study

Student Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

WA01 C C C C C C C C IS C C

WA02 C C C C C C C C C C C

WA03 C C C C C C C C C C C

WA04 C C C C C C C C C C C

WA05 C C C C C C C C C C C

WA06 C C C C C C C C C C C

WA07 C C C C C IS B C B B B

WA08 C IS C C C C C C II C C

WA09 C IS C C C IS C C II IS C

WA10 C C C C C C C C II C C

WA11 C C C C C C C C C C IS

WA12 C C C C C II IS C B B IS

WA13 C C C C C C C C C C II

WA14 C IS C C C C C C II C C

WA15 INS IS IS C C C C C IS IS B

WA16 C C IS IS C C IS C C C IS

WA17 C C C C C C C C IS IS IS

WA18 C C C C C C C C C C IS

WA19 C C C C C C C C C C C

WA20 C C C C C C C C C C C

WA21 C C II C C C C C C C IS

WA22 C IS C C C C C C II C C

WA23 C C C C C C C C C C C

WA24 C C C C C C C C C C C

WA25 C C C C C C C C C C C

WA26 C C C C C C C C IS C C

WA27 C C C C C C C C C C C

WA28 C C C C C C C C C C C

WA29 INS INS INS C C IS C C B IS IS

WA30 C C C C C C C C II C C

WA31 C C C C C C C C II C C

WA32 C C C II C IS IS C C IS IS

WA33 C C C C C C C C C C C

Continued on next page

276
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Student Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

WA34 C B C C C C C C C C C

WA35 C C II C C B B C IS B B

WA36 C C C C C C C C C C C

WA37 C C IS C C IS IS C C IS C

WA38 C C C C C C C C C C C

WB01 C C C C C C C C C C C

WB02 C C C C C C C C C C C

WB03 C C C C C C C C II C C

WB04 C C C C C C C C IS C C

WB05 C C C C C C C C C B C

WB06 C IS C C C IS IS C C C C

WB07 C C C C C C C C II C II

WB08 C C C C C C C C IS IS C

WB09 INS INS INS INS INS INS INS INS INS B INS

WB10 C C C C C C C C II C C

WB11 C C C C C C C C II C C

WB12 C C C C C II C C II C C

WB13 C C C C C C C C II C B

WB14 C C IS IS C IS C C IS IS II

WB15 C C C C C C C C IS C C

WB16 C C C C C C C C IS C C

WB17 C C C C C C C C C C C

WB18 C C C C C C C C II C C

WB19 C C C C C C C C C C C

WB20 C C IS IS C C C C II C II

WB21 C C IS II C IS C C IS IS IS

WB22 C C IS II C C C C IS IS C

WB23 C C C C C C C C C C C

WB24 C C C C C C C C C C C

WB25 C IS IS C C C C C IS C B

WB26 C C C C C C C C C C C

WB27 C C IS IS C C IS C IS IS C

WB28 C C IS C C C C C II IS IS

WB29 C C C C C C C C C C C

WB30 C IS C C C C C C IS C C

WC01 C C C II C C IS C C C II

WC02 C C C C C C C C II C C

WC03 C C C C C IS C C IS C C

WC04 C C C C C C C C C C C

WC05 C C C C C C C C C C C

WC06 C C C C C C C C C C C

WC07 C C C C C C C C IS C C

WC08 C C IS IS C II C C II C C

WC09 C C C C C C C C IS C C

WC10 C C C C C C C C C C C

WC11 C C C C C C C C IS C C

WC12 C C C C C C C C C C C

WC13 C C C C C C C C C C C

WC14 C C C C C C C C II IS C

WC15 C C C C C C C C C C C

Continued on next page
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Student Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

WC16 C C C C C C C C C C C

WC17 C C C C C C C C II C C

WC18 C C C C C C C C IS C C

WC19 C C C C C C C C C B C

WC20 C C C C C C IS C II C C

WC21 C C C C C C C C II C C

WC22 C C C C C C C C C C C

WC23 C C C C C C C C II C C

WC24 C C C C C C C C II C C

WC25 C C C C C C C C II C C

WD01 C C C C C C IS C II C C

WD02 C C C C C C C C II C C

WD03 C C C C C C C C C C C

WD04 C C INS C C C C C C C C

WE01 C C C C C C C C C C C

WE02 C C C C C C C C C C C

WE03 C C C C C C C C C C C

WE04 C C C C C C C C II C C

WE05 C C C C C C C C II C C

WE06 C C C C C C C C C C C

WE07 C C C C C II C C C C INS

WE08 C C B IS C IS IS C II IS C

WE09 C C C C C C C C B C B

WE10 C C C C C C C C IS IS C

WE11 C IS IS IS C IS C C IS IS II

WE12 C C C C C C C C C C C

WE13 C C C C C C C C C C II

WE14 C C C C C C C C C C IS

WE15 C C C C C C C C IS IS C

WE16 C B C IS C C C C C C C

WE17 C C IS IS C C IS C II C C

WE18 C C IS IS C C C C II C C

WE19 C C C C C IS C C IS IS C

WE20 C C C C C C C C C C C

WE21 C C C C C C C C C C IS

WE22 C C C C C C C C C C C

WE23 C C C C C IS C C II IS C

WE24 C C IS IS C C C C II C C

WE25 C C C C C C IS C C C IS

WE26 IS C C C C C C C C C C

WE27 IS C IS IS C INS C C C C C

WE28 C C C C C C C C C C C

WE39 C C C C C IS C C C IS IS

WE30 C C C C C II C C II C C

WE31 C C IS IS C C C C II C IS

WF01 IS IS IS C INS INS B B B B B

WF02 C C C C C C C IS B B B

WF03 C IS II C C C C C II C II

WF04 C C II II C C C C IS B B

WF05 C C C C C C C C B C B

Continued on next page
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Student Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

WF06 C IS C C C C C C C C C

WF07 C C C C C C C C C C C

WF08 C IS C C C C C C II C C

WF09 C C C C C C C C C C C

WF10 C B C C C C C C II C C

WF11 C C C C C C C C C C C

WF12 C C C C C C C C C C C

WF13 C INS C IS C C C C IS C C

WF14 C IS C C C C C C IS C C

WF15 C C C C C C C C C C C

WF16 C C C C C C C C IS IS C

WF17 C C IS IS C C C C II B IS

WF18 C C IS IS C C C C II C B

WF19 C C C C C C C C IS C C



Appendix D

MATLAB Code Used in

Subsection 8.3.2

D.1 Code for the bootstrap

%Sets up how big the data set, and how many runs

[persons,items]=size(data);

times=1000000;

%Sets up dummy matrices to hold final and working data

AS=ones(times,1);

%Routine to fill up AS

for x=1:times

R= randi(persons,persons,1);

A=ones(persons,items);

j=ones(items,1);

for i=1:persons,

A(i,:)=data(R(i),:);

end

COV=cov(A);

AS(x)=(items/(items-1))*(1-(trace(COV))/(j’*COV*j));

end

%Outputting statistics

avg=mean(AS)

var=std(AS)

%Draw a histogram

hist(AS)

280
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D.2 Code for Duhachek and Iaobucci’s formula

% Setting up variables

p=11

n=147

j=ones(p,1)

V

% Entering the formula

Q=((2*p^2)/((p-1)^2*(j’*V*j)*3))*((j’*V*j)*(trace(V^2)+trace(V)^2)-

2*(trace(V))*(j’*V^2*j))

ASE=sqrt(Q/n)

conint=1.96*ASE

% Computing alpha

Alpha=(p/(p-1))*(1-(trace(V))/(j’*V*j))

Alpha_plus=Alpha+conint

Alpha_minus=Alpha-conint



Appendix E

Rasch analysis Output of all

Person Statistics

Produced Jul 22 15:55 2010

ENTRY INFIT OUTFIT

NUMBER MEASURE COUNT SCORE S.E. MNSQ STD MNSQ STD

1 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

2 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

3 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

4 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

5 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

6 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

7 0.46 11.0 6.0 0.75 1.01 0.14 0.71 0.12

8 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

9 1.02 11.0 7.0 0.76 1.12 0.51 0.78 0.30

10 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

11 3.58 11.0 10.0 1.25 1.79 1.04 0.89 0.39

12 0.46 11.0 6.0 0.75 1.01 0.14 0.71 0.12

13 3.58 11.0 10.0 1.25 1.79 1.04 0.89 0.39

14 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

15 −0.12 11.0 5.0 0.78 1.25 0.75 1.04 0.39

16 1.02 11.0 7.0 0.76 1.60 1.92 2.39 1.18

17 1.64 11.0 8.0 0.82 0.63 −0.97 0.39 −0.10

18 3.58 11.0 10.0 1.25 1.79 1.04 0.89 0.39

19 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

20 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

21 2.40 11.0 9.0 0.95 1.76 1.22 1.10 0.54

22 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

23 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

24 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

25 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

26 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

27 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

28 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

29 −0.77 11.0 4.0 0.84 1.27 0.68 0.92 0.32

Continued on next page

282
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ENTRY INFIT OUTFIT

NUMBER MEASURE COUNT SCORE S.E. MNSQ STD MNSQ STD

30 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

31 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

32 0.46 11.0 6.0 0.75 1.48 1.61 3.47 1.70

33 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

34 3.58 11.0 10.0 1.25 2.02 1.21 2.48 1.22

35 −0.12 11.0 5.0 0.78 0.86 −0.27 0.60 −0.09

36 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

37 1.02 11.0 7.0 0.76 1.77 2.35 2.52 1.24

38 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

39 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

40 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

41 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

42 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

43 3.58 11.0 10.0 1.25 1.86 1.09 1.07 0.52

44 1.64 11.0 8.0 0.82 2.25 2.50 2.32 1.16

45 2.40 11.0 9.0 0.95 0.62 −0.51 0.34 −0.16

46 2.40 11.0 9.0 0.95 0.70 −0.35 0.41 −0.08

47 −5.58 11.0 0.0 1.99 1.00 0.00 1.00 0.00

48 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

49 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

50 2.40 11.0 9.0 0.95 0.95 0.12 0.91 0.41

51 2.40 11.0 9.0 0.95 0.62 −0.51 0.34 −0.16

52 −0.12 11.0 5.0 0.78 0.63 −1.07 0.44 −0.33

53 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

54 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

55 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

56 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

57 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

58 1.02 11.0 7.0 0.76 0.78 −0.74 0.53 0.07

59 −0.12 11.0 5.0 0.78 0.63 −1.07 0.44 −0.33

60 1.02 11.0 7.0 0.76 0.85 −0.49 0.57 0.11

61 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

62 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

63 1.02 11.0 7.0 0.76 0.88 −0.36 0.60 0.14

64 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

65 0.46 11.0 6.0 0.75 1.03 0.21 0.76 0.18

66 1.02 11.0 7.0 0.76 0.61 −1.51 0.42 −0.06

67 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

68 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

69 1.64 11.0 8.0 0.82 1.82 1.82 1.90 0.98

70 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

71 2.40 11.0 9.0 0.95 0.95 0.12 0.91 0.41

72 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

73 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

74 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

75 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

76 1.02 11.0 7.0 0.76 1.13 0.53 0.77 0.29

77 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

78 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00
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ENTRY INFIT OUTFIT

NUMBER MEASURE COUNT SCORE S.E. MNSQ STD MNSQ STD

79 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

80 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

81 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

82 2.40 11.0 9.0 0.95 0.70 −0.35 0.41 −0.08

83 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

84 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

85 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

86 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

87 3.58 11.0 10.0 1.25 1.86 1.09 1.07 0.52

88 2.40 11.0 9.0 0.95 1.01 0.22 1.30 0.67

89 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

90 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

91 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

92 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

93 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

94 2.40 11.0 9.0 0.95 1.01 0.22 1.30 0.67

95 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

96 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

97 3.58 11.0 10.0 1.25 1.93 1.15 1.44 0.75

98 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

99 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

100 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

101 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

102 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

103 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

104 2.40 11.0 9.0 0.95 1.91 1.38 1.48 0.77

105 −0.12 11.0 5.0 0.78 1.04 0.22 0.88 0.23

106 2.40 11.0 9.0 0.95 0.62 −0.51 0.34 −0.16

107 2.40 11.0 9.0 0.95 0.70 −0.35 0.41 −0.08

108 −0.77 11.0 4.0 0.84 0.51 −1.06 0.34 −0.39

109 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

110 3.58 11.0 10.0 1.25 1.79 1.04 0.89 0.39

111 3.58 11.0 10.0 1.25 1.79 1.04 0.89 0.39

112 2.40 11.0 9.0 0.95 0.70 −0.35 0.41 −0.08

113 2.40 11.0 9.0 0.95 2.14 1.62 1.73 0.90

114 1.02 11.0 7.0 0.76 1.22 0.83 0.88 0.38

115 1.64 11.0 8.0 0.82 0.98 0.08 0.64 0.18

116 1.64 11.0 8.0 0.82 0.97 0.07 0.70 0.23

117 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

118 3.58 11.0 10.0 1.25 1.79 1.04 0.89 0.39

119 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

120 1.64 11.0 8.0 0.82 0.97 0.07 0.70 0.23

121 1.64 11.0 8.0 0.82 0.98 0.08 0.64 0.18

122 2.40 11.0 9.0 0.95 1.97 1.45 1.87 0.97

123 3.58 11.0 10.0 1.25 2.13 1.29 9.90 4.05

124 1.02 11.0 7.0 0.76 2.15 3.22 3.84 1.67

125 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

126 1.64 11.0 8.0 0.82 1.56 1.36 1.58 0.82

127 2.40 11.0 9.0 0.95 0.95 0.12 0.91 0.41
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ENTRY INFIT OUTFIT

NUMBER MEASURE COUNT SCORE S.E. MNSQ STD MNSQ STD

128 1.02 11.0 7.0 0.76 0.78 −0.74 0.53 0.07

129 −3.92 11.0 1.0 1.30 2.32 1.58 9.26 2.81

130 1.02 11.0 7.0 0.76 1.14 0.58 4.37 1.82

131 1.02 11.0 7.0 0.76 0.88 −0.36 0.60 0.14

132 0.46 11.0 6.0 0.75 0.60 −1.61 0.42 −0.24

133 2.40 11.0 9.0 0.95 0.62 −0.51 0.34 −0.16

134 3.58 11.0 10.0 1.25 2.02 1.21 2.48 1.22

135 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

136 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

137 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

138 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

139 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

140 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

141 1.64 11.0 8.0 0.82 1.14 0.46 0.81 0.32

142 2.40 11.0 9.0 0.95 0.94 0.10 0.86 0.37

143 5.21 11.0 11.0 1.98 1.00 0.00 1.00 0.00

144 2.40 11.0 9.0 0.95 0.70 −0.35 0.41 −0.08

145 0.46 11.0 6.0 0.75 0.60 −1.61 0.42 −0.24

146 1.02 11.0 7.0 0.76 0.78 −0.74 0.53 0.07

147 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

Anna 1.02 11.0 7.0 0.76 1.11 0.47 0.75 0.28

Ben 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

Valter 2.40 11.0 9.0 0.95 0.70 −0.35 0.41 −0.08

David 1.02 11.0 7.0 0.76 0.78 −0.74 0.53 0.07

Edha −2.56 11.0 2.0 1.07 1.52 0.90 1.73 0.90

Phalgun 1.64 11.0 8.0 0.82 0.63 −0.97 0.39 −0.10

Guan 1.64 11.0 8.0 0.82 0.80 −0.41 0.53 0.06

Haaroon −0.77 11.0 4.0 0.84 0.51 −1.06 0.34 −0.39

Ian −0.12 11.0 5.0 0.78 1.02 0.16 0.86 0.22

Joe 0.46 11.0 6.0 0.75 0.90 −0.28 0.67 0.08

Ken 3.58 11.0 10.0 1.25 0.33 −0.80 0.11 −0.64

Laura 1.64 11.0 8.0 0.82 0.80 −0.41 0.53 0.06

Mike 3.58 11.0 10.0 1.25 1.86 1.09 1.07 0.52

Nicola 1.02 11.0 7.0 0.76 0.89 −0.31 0.67 0.20

Oksana 3.58 11.0 10.0 1.25 1.86 1.09 1.07 0.52
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