
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



Unsteady Fluid Mechanics of

Annular Swirling Shear Layers

by

David Dunham

A Doctoral Thesis

Submitted in partial fulfillment of the requirements for the award of

Doctor of Philosophy of Loughborough University

Department of Aeronautical and Automotive Engineering

c© D Dunham

June 2011



Abstract

The vast majority of gas turbine combustor systems employ swirl injectors to produce a central

toroidal recirculation zone (CTRZ) which entrains and recirculates a portion of the hot com-

bustion gases to provide continuous ignition to the incoming air-fuel mix. In addition to these

primary functions, swirl injectors often generate multiple aerodynamic instability modes which

are helical in nature with characteristic frequencies that can differ by many orders of magnitude.

If any of these frequencies are consistent with prevalent acoustic modes within the combustor

there is a potential for flow-acoustic coupling which may reinforce acoustic oscillations and drive

combustion instabilities via the Rayleigh criterion. The aerodynamic performance of the swirl in-

jector is thus of great practical importance to the design and development of combustion systems

and there is a strong desire within industry for reliable computational methods that can predict

this highly unsteady behaviour. This assessment can be made under isothermal conditions which

avoids the complex interactions that occur in reacting flow.

The goal of the present work was to compare and contrast the performance of Unsteady Reynolds-

Averaged Navier-Stokes (URANS) and Large-Eddy Simulation (LES) CFD methodologies for a

combustion system equipped with a derivative of an industrial Turbomeca swirl injector as this

exhibits similar unsteady aerodynamic behaviour under reacting and isothermal conditions. The

influence of the level of swirl, SN = 0.51−0.8, was first investigated experimentally using Particle

Image Velocimetry (PIV) by varying the inlet swirl vane angle. Based on a qualitative assess-

ment of instantaneous velocity data, and a range of coherent structure eduction techniques, it was

found that α1 = 30◦ (SN ≈ 0.8) would be the most challenging test case for LES and URANS as

this contained near and far-field instability modes that differ in frequency by around two orders

of magnitude and the highest levels of normal Reynolds-stress anisotropy. Based on extensive

simulations performed with both in-house (LULES and Delta) and commercial (Fluent) CFD

codes it was found that, despite the relative modest computational cost of URANS which is

between one-third (RST) to an order of magnitude (k− ε) less than that demanded by LES, only

LES captures the all-important frequency content in accordance with experimental evidence and,

thus, only LES can be recommended for use in swirl injector flows. The increased cost is believed

to be an absolutely worthwhile expense because of the high fidelity of the predicted results in

the important area of flow instabilities.
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averaging, ui unless indicated by subscript
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〈u′iu′j〉 Components of Reynolds stress tensor
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Up Particle velocity lag

x, y, z Cartesian coordinates

x, r, θ Polar cylindrical coordinates

∆x Particle image displacement (PIV), computational cell size (CFD)
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Chapter 1

Introduction

1.1 Design and Development of Combustion Systems

A fundamental issue affecting gas turbine design is the stage of the development process at

which combustion instabilities become apparent [2]. As a certain degree of unsteadiness is always

present in practical systems it is important to make a distinction between stable and unstable

combustion. Stable combustion is associated with small-amplitude pressure (including acoustic)

oscillations which are typically less than ≈ 5% of the mean chamber pressure [3]. Combustion

with large-amplitude pressure oscillations exhibiting strong periodic frequencies is classified as

unstable. Instabilities may develop spontaneously within the system or be initiated by pertur-

bations external to it. In both cases they can be an undesirable feature which can generate an

externally auidible tone at intolerable levels and, if allowed to reach a certain amplitude, interfere

with engine operation. In extreme cases, combustion instabilities can result in system failure due

to excessive vibration and heat transfer to the chamber wall as shown in Figure 1.1. It is well

known that acoustic pressure oscillations can be excited and sustained by the addition of heat

energy. This is known as the Rayleigh criterion and is expressed mathematically by Putnam [4]

as:

1
T

∫ T

0
p′(t)q′(t)dt > 0 (1.1)

where p′ and q′ are fluctuating pressure and heat release respectively and T is the time period

of one acoustic cycle. Equation 1.1 implies that the instability will be amplified when heat is

supplied while the pressure is maximum and that suppression occurs for the reverse condition.

In addition to the Rayleigh criterion, the rate of heat addition must exceed the rate of acoustic

energy dissipation. Thus, by increasing the absorption (i.e. damping) of acoustic waves, no-self

sustaining thermo-acoustic oscillation (of large enough amplitude to be problematic) will result.

In conventional diffusion-flame combustors acoustic damping can be achieved through changes to

the fueling system and operating characteristics [2] and instabilities are not considered to be an
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issue of heightened concern. Unfortunately, this type of combustor usually produces unacceptably

high levels of thermal NOx and increasingly strict regulation for pollutant emission has recently

led engine manufacturers to develop combustors that meet various regulatory requirements 1.

It is unfortunate that these systems, such as the lean premixed prevapourised (LPP) concept,

suffer from persistent instability problems that are only partially alleviated with the application

of empirical tools and controls. Figure 1.2 shows schematics comparing diffusion-flame and LPP

combustors for aeronautical applications.

Although many thermo-acoustic problems are not aerodynamically related, since the late 1970’s

there has been a growing interest in what are variously referred to as large eddies, organised

structures, coherent structures, or simply turbulent vortices [6]. Although quite difficult to de-

fine rigorously, an eddy, according to Pope [7], is a turbulent motion, localised within a region

of size `, that is at least moderately coherent over this region. For the remainder of this thesis,

coherent structures, referred to for brevity as CS, is the preferred nomenclature. Although earlier

indications of the importance of CS in combustion systems exist (for example, see Rogers and

Marble [8]), Coats [6] identifies several factors that have lead to a renewed interest in them.

These include:

• The discovery that, under appropriate conditions, free turbulent shear-layers of the type

found in many practical combustion system naturally contain large quasi-two-dimensional

vortical structures which grow in size as they convect with the flow and persist to the

highest Reynolds numbers accessible by experiments.

• Environmental pressures to develop cleaner and more efficient combustion systems which

retain good ignition, flame stability and turn-down characteristics.

• The availability of supercomputers and methodologies which allow the development of vor-

tical motions and their interaction with the combustion process to be simulated numerically.

In practice, most emission-control strategies depend on the control of air-fuel mixing in the pri-

mary zone and the vast majority of systems employ swirl injectors with axial or radial vanes

(Figure 1.3) to achieve this. These produce a central toroidal recirculation zone (CTRZ) such

as that shown in Figure 1.4, which entrains and recirculates a portion of the hot combustion

gases to provide continuous ignition to the incoming air-fuel mix. In addition to this primary

function, swirl injectors often generate multiple aerodynamic instability modes which are helical
1For aeronautical applications the standard for NOx was adopted by the International Civil Aviation Organisa-

tion (ICAO) in 1981 and became effective in 1986. Since then ICAO has increased the stringency of international

NOx standards by about 40% for newly certified aircraft engines [5]. The most recent standard, CAEP/7, sets

out medium- and long-term technology goals, of 10 and 20 years respectively, for NOx reduction. In relation

to mid-term goals (2016) the group estimated a 45% reduction on current standards. As for the long-term goal

(2026), it estimated that a reduction of some 60% would be attainable.
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in nature and exhibit characteristic frequencies that can differ by many orders of magnitude. An

example of a typical swirl injector helical instability is shown in Figure 1.5. The interaction of

these instabilities with combustion and heat release has been investigated experimentally by nu-

merous authors for swirl-stabilised systems. For example, Paschereit et al. [9] identified several

axisymmetric and helical instability modes for fully premixed and partially premixed/diffusion

combustion. The axisymmetric mode showed a large variation of heat release during one cycle

of oscillations, while the helical modes showed variations in the radial location of maximum heat

release. Similarly, Li and Gutmark [10] detected large vortices which were closely coupled with

flame and pressure oscillations. In the context of non-swirling flows, Schadow and Gutmark [11]

have suggested that fluctuating heat release, which can be associated with burning inside vor-

tices, can feed energy into acoustic pressure oscillations via the Rayleigh criterion and as these

are amplified they can drive the velocity field (flow-acoustic coupling) which futher enhances the

generation of CS. In this way a self-sustaining feedback loop of thermo-acoustic instability is

established which also depends on the aerodynamic characteristics of the system.

The aerodynamic performance of swirl injectors, particularly the role of associated CS, is clearly

of great practical importance and directly affects the pollutant emissions and stability characteris-

tics of gas turbine combustion systems. Traditionally, the design and development of combustion

systems has relied heavily on extensive rig testing programs conducted at engine representative

temperatures and pressures. Although this is essential at some point during the design cycle it

is undesirable at a preliminary stage since it is both extremely expensive and time consuming.

Furthermore, when combustion occurs, the flow is complicated by the variations in the air-fuel

distribution, local combustion intensity and temperature field. As an alternative, isothermal

testing based on appropriate experimental and computational methods allows the aerodynamic

behaviour of the system to be isolated and understood, without the complex interactions that

occur in reacting flow. However, it should be noted that reaction may alter aerodynamically

related processes. This is highlighted by Janus et al. [12] who performed point-based Laser

Doppler Anemometry (LDA) measurements on a slightly modified version of an industrial Tur-

bomeca swirl injector (original and modified designs are shown schematically in Figure 1.6(a)

and (b)) under isothermal and reacting conditions. A similar unsteady behaviour was observed

in both cases and characterised by distinct peaks appearing in near-field velocity spectra at

St = 0.84 and 1.78 (see Equation 1.5) as shown in Figure 1.6(c). In the reacting case an addi-

tional frequency of St = 0.31 not observed under isothermal conditions was also present which

may be related to thermo-acoustic instabilities. In this example, isothermal testing is clearly not

able to capture all instabilities frequencies that occur under reacting conditions, however, those

attributed to purely aerodynamic modes (i.e. St = 0.84 and 1.78) that may prove problematic at

later stages of development are identified. Particle Image Velocimetry (PIV), which is considered

further in Section 2.3, is an optically-based measurement technique that holds a considerable
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advantage over LDA in the sense that it has the ability to provide spatially and temporally re-

solved velocity data. This was used extensively by Midgley [13] and Midgley et al. [14, 15] to

investigate the Turbomeca design reported in [12] under a variety of isothermal test conditions.

Unlike [12] these measurements were able to link directly peaks appearing in velocity spectra to

near-field CS emerging from within the swirl duct.

One of the limitations of PIV, indeed shared by all optically-based methods, is that access

to particular regions of the flow may be extremely difficult. In such cases the ability to perform

complete measurements is lost and important information may be unavailable. Other techniques

are also difficult because of the hostile environment. Furthermore, it is also difficult to extrapo-

late from necessarily incomplete planar data to explain fully 3D flow behaviour. Computational

fluid dynamics (CFD), which is discussed in Section 3.1, is a numerical approach that has the

potential to predict this complex behaviour on both an instantaneous and a time-mean basis. An

attractive property of CFD is that full volumetric information is available and issues regarding

access do not arise (though data handling does). In an attempt gain an improved understand-

ing of the role of CS within combustion systems and reduce initial development costs there is a

strong desire within industry to utilise CFD. Following a comprehensive literature review pre-

sented in Section 1.3 it was found that the suitability of various CFD methodologies in relation

to swirl-stabilised systems is still a matter of fundamental debate and it is this topic that forms

the central theme of this thesis.

1.2 Swirling Flows

According to Gupta [16], swirling flows always possess a central core of solid body rotation in

which tangential velocity, uθ, increases linearly with radius. Outside the central region, free

vortex conditions may prevail in which the flow is irrotational. The central forced vortex region

exhibits flowfield and turbulence characteristics which appear to be significantly different from

those displayed by the surrounding irrotational vortex flowfield. Specifically, the vortex core

is described as being shear or strain free but not vorticity free [17]. Assuming axisymmetric

conditions with zero axial and radial velocity components, ux and ur respectively, uθ is a function

of radius, r, only and represented by the following Rankine distribution:

uθ =




ûθ

r
R if 0 ≤ r < R,

ûθ
R
r if r ≥ R.

(1.2)

where R is the radius of the central vortex core and ûθ is the maximum tangential velocity

component at R. In a simple swirling flow, radial pressure gradients are necessary to balance

centripetal acceleration:
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∂p

∂r
= −ρu

2
θ

r
(1.3)

The level of swirl intensity is usually assessed via the non-dimensional swirl number, SN, which

is defined as the ratio of tangential momentum flow rate, Ġθ, to the product of axial momentum

flow rate, Ġx, and a characteristic radius, R. Assuming no density variation and a negligible

pressure contribution, the following equation proposed by Kerr and Fraser [18] is widely used in

swirl injector design:

SN =
Ġθ

RĠx

=

∫ R
0 〈ux〉〈uθ〉r2dr∫ R

0 〈ux〉2rdr
(1.4)

Sufficiently high levels of swirl (SN > 0.6 [16]) leads to the phenomenon of vortex breakdown

which is described in the following subsection.

1.2.1 Vortex Breakdown

The vortex breakdown phenomenon is defined by Ruith et al. [19] as an abrupt change in the

structure of the nominally axisymmetric core of a swirling jet. For relatively low levels of swirl,

SN < 0.6, although significant radial pressure gradient may exists (see Equation 1.3), they only

give rise to a slight axial pressure gradient which is not sufficient to cause axial recirculation.

Under these conditions there is no coupling between axial and tangential velocity components

[20]. For increased levels of swirl, i.e. SN > 0.6, a strong coupling develops between axial and

tangential velocity components and a point is reached where the axial pressure gradient is such

that the kinetic energy of the approaching flow is not sufficient to overcome it, resulting in the

formation of a CTRZ as shown in Figure 1.4. Figure 1.7 shows a series of images obtained by Es-

cuider [21] describing the evolution of a bubble-type breakdown resulting from an axisymmetric

swelling of the vortex core in a confined cylindrical tube. Gupta [16] states that in a gas turbine

combustor application, a stable recirculation bubble will generally be established if SN > 0.6 and

Re > 1.8× 104. Further increases in Re yield no significant change in the flowfield, as shown by

Li and Tomita [22] and Dellenbeck et al. [23]. The formation of the CTRZ is a form of vortex

breakdown as a change in flow structure (the appearance of a vortex) is initiated by a variation

in the characteristic ratio of tangential to axial velocity components. Experimentally, Sarpkaya

[24] [25] observed three types of vortex breakdown in laminar swirling pipe flows: axisymmetric,

spiral and double helix. The bubble mode usually prevails at high SN, while the spiral mode

occurs at low SN [3]. Further work by Leibovich [26] and Faler and Leibovich [27] [28] revealed

seven distinct modes of vortex breakdown over a wide range of Re and SN. At higher Re, such

as those considered in this thesis (Re = O[104 − 105]), the only characteristic geometric forms
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are the bubble and spiral modes which are shown in Figure 1.8 in cylindrical and diverging tubes.

The widespread occurance of vortex breakdown in high SN flows has resulted in considerable

efforts being devoted to achieving a better understanding of the phenomenon. This has lead to

the emergence of several different theories which can roughly be categorised according to the

following underlying ideas. Due to the abruptness of vortex breakdown, Benjamin [29] proposed

the existence of a critical state which separates a supercritical and subcritical flow state. In

supercritical flows, disturbances can only propagate downstream, whereas in subcritical flows,

standing waves exist with disturbances propagating both upstream and downstream. Hall [30]

considered vortex breakdown to be analogous to boundary separation or flow stagnation under

the influence of an adverse pressure gradient. Finally, the concept of hydrodynamic instabilities

has been proposed by numerous authors, including Howard and Gupta [31] and Leibovich and

Stewartson [32]. This is based on the observations of Rayleigh [33] that a system is stable if ρuθr

increases locally with r (isothermal forced vortex), neutrally stable if ρuθr is constant (isothermal

free vortex) and unstable if ρuθr decreases with r. Although the above theories have improved

understanding of vortex breakdown, none of them is able to completely and accurately describe

all of its features. Comprehensive reviews of the literature available on vortex breakdown are

given by Hall [34], Leibovich [35] and more recently by Lucca-Negro and O’Doherty [20].

1.2.1.1 Precessing Vortex Core

The precessing vortex core (PVC) is a three-dimensional unsteady asymmetric flow structure

which develops when the central vortex core starts to precess about the axis of symmetry. Figure

1.9 shows an example PVC deduced from the PIV data of Grosjean et al. [36] in a confined pipe

flow. In Figure 1.9, it can be seen that the aerodynamic centre of the PVC does not coincide

with the geometric centre of the pipe which is indicated by the red cross. At other instants

in time the aerodynamic centre of the PVC was observed to move circumferentially about the

geometric centre with a precessional frequency that is a function of SN and chamber configuration

and increases linearly with flow rate. The non-dimensional Strouhal number, St, is often used to

characterise the precessional frequency, f , and is defined as:

St = f
Dref

Uref
(1.5)

where f is the PVC precession frequency and Uref and Dref are reference velocity and length scales

respectively. Based on previous work by Claypole and Syred [37], Syred et al. [38] plotted the

Strouhal number of the PVC as a function of Re and SN for a tangential inlet swirl burner as

shown in Figure 1.10. The Strouhal number used in [38] is based on volumetric flow rate, Q̇, and

is a factor of 4/π greater than that defined in Equation 1.5:
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StQ̇
= f

D3
ref

Q̇
=

4
π
St (1.6)

Figure 1.10 shows that StQ̇
increases with SN but is independent of Re at values greater than

1.5×104. In diffusion-flame systems, combustion tends to damp the PVC instability to the extent

that it ceases to be of any practical importance [6]. However, when reactants are premixed,

combustion tends to increase both the amplitude and frequency of the precession. A recent

review on PVC oscillation mechanisms in swirl combustors is given by Syred [39].

1.2.2 Shear Layers

As flow expands from the injector and evolves downstream, strong shear-layers develop due to

the velocity difference between the jet flow and CTRZ. CS are generated in these regions due to

various instability mechanisms, such as Kelvin-Helmholtz (K-H) instabilities. As already noted in

Section 1.1, these aerodynamic modes can exert a significant influence on the combustion process

by modulating the mixing process between fuel, air and hot combustion products. Unlike shear-

layer instabilities in non-swirling flows, which are usually predominantly axisymmetric, swirl

enhances asymmetric flow structures. These differences are highlighted by the experimental

work of Liang and Maxworthy [40] who investigated swirling jets at Re = 1000 for a range of

SN. Without swirl, K-H instabilities caused the laminar shear-layer shed from the nozzle exit to

roll up into discrete axisymmetric vortex rings which grew in the streamwise direction. However,

after the introduction of swirl the combined axial and azimuthal shear-layers became unstable

to a modified K-H instability and strong helical waves with windings opposed to the bulk flow

replace the vortex rings as the dominant structure. Midgley [13] and Midgley et al. [15] also

observed the near-field frequency characteristics of a derivate of an industrial Turbomeca swirl

injector to be highly dependent on SN.

1.3 Numerical Simulation of Swirling Flows

Due to the high Re encountered in swirl-stabilised combustors (O[104 − 105]), Direct Numerical

Simulation (DNS) is not realistic given current and near future computing power. Unsteady

Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulation (LES) are two widely

used and well established CFD methodologies that provide a more economical alternative to

DNS and are more relevant to industrial applications. The inherent difference between LES and

URANS is that whilst the former preserves the stochastic nature of turbulence through a low-

pass spatial filter (∆), the latter only provides the coherent, or phase-averaged, component of

fluctuating motion with the stochastic contribution accounted for via a turbulence model. For a

detailed discussion of the mathematical background of URANS and LES the reader is referred

to Sections 3.1.1 and 3.1.2. The purpose of this section is to provide a comprehensive literature
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review of studies which have sought to simulate swirling flowfields using these approaches. Par-

ticular emphasis is placed on the complex CS associated with swirl flow discussed in Section 1.2

and the level of fidelity to which they can be resolved.

1.3.1 Unsteady Reynolds-Averaged Navier-Stokes

Guo et al. [41] used the standard k-ε model to investigate the effect of SN on the unsteady be-

haviour of a swirling round jet in an axisymmetric geometry with an expansion ratio of E = 1.96.

It was found that for SN < 0.044, initial disturbances were damped and a steady state solution

was reached. However, for 0.044 < SN < 0.13, time traces of velocity and pressure recorded down-

stream of the expansion at the geometric centre exhibited strong oscillatory behaviour, indicating

the presence of a PVC. When SN = 0.13, a higher-order frequency oscillation, approximately an

order of magnitude greater than the PVC, was also present and thought by the authors to be

associated with eddy shedding. Further increases in SN resulted in a variation of the observed

unsteady flow dynamics, which included an almost complete suppression of the low frequency

precession and a change in rotational direction of the PVC at SN = 0.17 and 0.22 respectively.

At SN = 0.48, the formation of a CTRZ due to vortex breakdown completely eliminated any

precessional motion. The authors report these observations to be in good agreement with the

experimental investigations of Hallett and Gunther [42] and Dellenback et al. [43]. A later study

by the same authors [44], again using the standard k-ε model, investigated an identical SN range

for a similar axisymmetric geometry but with the expansion ratio increased from E = 1.96 to

E = 5. In contrast to that reported in [41] the flow was found to be highly unstable for all SN,

even after the vortex breakdown event. Although these studies [41, 44] provide an interesting

insight into the performance of URANS, the practical significance is questionable given that the

highest SN investigated is below that given by Gupta [16] (SN > 0.6) as being sufficient for a sta-

ble recirculation bubble in gas turbine applications. Furthermore, no comparison of time-mean

flow statistics against experiment was given.

Wegner et al. [45] evaluated the performance of URANS (standard k − ε and RST turbulence

closures) and LES against LDV in predicting a PVC for an unconfined swirling flow based on

the TECFLAM experiment (see, for example Schneider [46]) at SN = 0.75. Although simulations

performed using the standard k-ε model showed some periodic behaviour during an early stage,

the initial instabilities decayed and a steady-state solution was eventually reached. The authors

report similar observations by Bowen et al. [47]. For LES calculations, a sequence of instanta-

neous axial velocity isosurfaces revealed a CRTZ that reached upstream into the swirler device

together with two helical vortices shed off the outside edge of the swirler exit. A similar plot was

not presented for the RST model, however velocity vectors in a plane downstream of the swirler

exit (x/Ds = 0.5 based on Ds = 0.06m from schematic in [45]) indicate a time-dependent vortex

structure. For the RST model, mean velocity profiles (〈ux〉 and 〈uθ〉) were in reasonable agree-
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ment with experiment but levels of turbulent kinetic energy were found to be much lower than

expected. The authors attribute this to the fact that the coherent velocity fluctuations obtained

from URANS were considerably lower than those obtained from phase-averaged LES. Spectral

analysis, based on velocity time-series obtained close to the swirler exit (x = 1mm, r = 20mm)

revealed the presence of coherent motions represented by discrete spikes in the frequency spectra

at ≈37 and 75Hz for LES, URANS and LDV.

Jochman et al. [48] employed the standard k-ε and an RST model (Speziale, Sakar and Gatski

[49]) to perform URANS simulations of a swirling flow with a confinement ratio of E = 5 at

SN = 0.52. It is interesting to note that, unlike the unconfined results of Wegner et al. [45],

both k-ε and RST models were now able to reproduce the spatial and temporal dynamics of the

flow. These were characterised by a CTRZ due to the vortex breakdown phenomenon, which

exhibited both axisymmetric and spiral modes close the centreline, and a single helical structure

emerging from within the swirler. This high degree of similarity is despite the fact that turbulent

viscosity (µt = ρCµk
2/ε2) was three to four times higher for the k − ε model compared to the

SSG model. It is argued by the authors that one of the reasons for the similar results between

the two turbulence models is due to the fact that vortex breakdown is an inviscid phenomenon

dominated by inertial terms and, therefore, details of the models may not be important. The

presence of both a PVC and rotating helical structures were evident in power spectral density

(PSD) plots deduced from LDA measurements and URANS solutions, occurring at St = 0.15,

0.51 and 0.66. These were interpreted as the lower St being due to an axial oscillation of the

front stagnation point of the CTRZ and the highest being the precession frequency. Although

St obtained from URANS were in good agreement with measured data; the energy associated

with the periodic fluctuations was much lower. This was correctly assigned to the fact that in

the URANS approach the main part of the turbulent spectrum is modelled and, therefore, this

fraction is not included in the spectra. Profiles of axial velocity were compared against LDA

for the RST model at a number of locations downstream of the swirler exit. Although these

displayed similar overall characteristics, deviations of up to 15% existed.

Recently, Dunham et al. [50] used the standard k − ε model and LES to investigate an in-

dustrial Turbomeca gas turbine combustor (see Figure 1.6(b)) based on the experimental data

(2C-PIV and HWA) of Midgley [13] and Midgley et al. [14]. Two test conditions were considered

and termed with-jet and no-jet respectively. In the with-jet condition, a non-swirling axial jet

surrounded by an annular swirl flow of SN = 0.78 issued into a dump expansion chamber of

expansion ratio E = 3.72. In the no-jet condition, an identical geometry and SN was applied

with the central jet flow isolated. In both cases, radial profiles of 〈ux〉 downstream of the swirler

exit from URANS were in reasonable agreement with experiment, however, 〈uθ〉 provided a poor

representation tending towards an incorrect solid body rotation rather than the expected Rank-
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ine distribution. Under with-jet conditions, a Reynolds-decomposition of the PIV velocity field

(i.e. subtraction of the time-mean flow from each instantaneous realisation) in a plane normal

to the injector exit at x/Ds = 0.02 revealed the presence of four vortical structures with dis-

tinct characteristic frequencies of St = 1.24 and 2.48 which were postulated [13] to form due

to flow separation from the inner wall of the swirl duct. Although similar vortical structures

were also observed under no-jet conditions, their characteristic frequencies were St = 0.62 and

1.24. These differences were attributed to the presence of a low-frequency PVC in the no-jet

condition which interacted with the near-field vortices and reduced their spatial and temporal

coherence. Initially, it was found that k − ε- based URANS was able to capture the experimen-

tally observed vortex structure emerging from within the swirler, however, the fully-developed,

self-sustained solution reached after further timesteps did not reflect measured dynamics with no

spectral differences between test cases. Moreover, spectral analysis of near-field velocity traces

suggested that URANS was not able to capture the expected PVC under no-jet conditions which

is characterised by an accumulation of energy at low frequencies (St ≈ 0.01 in the present case).

This was in stark contrast to LES in which profiles of 〈ux〉 and 〈uθ〉 and spectral characteristics

observed experimentally were faithfully reproduced for both test cases.

1.3.2 Large Eddy Simulation

A preliminary study by Tang et al. [51] investigated the application of LES to an LPP-type

geometry which consisted of a central non-swirling axial jet and two radially-inflowing swirl

streams. Random perturbation prescribed at the inlet were found to decay rapidly and large-

scale unsteadiness observed downstream in the pre-mixing duct was attributed to instabilities

arising in shear layers formed between incoming swirl-streams and between the central jet and

annular swirling flow. Wang et al. [52] also found the effect of broadband inlet turbulence on the

downstream flow development to be relatively modest in comparison to the influence of strong

shear-layers inherent in swirling flowfields. Despite not having reached a statistically-stationary

state, reasonable agreement with LDA data was obtained in the pre-mixing duct with discrepan-

cies thought to be due to inlet conditions, in particular the level of inlet swirl which is difficult to

prescribe accurately in the absence of experimental data in this region. Other features associated

with confined swirl flow, such as the formation of a corner recirculation zone (CRZ) and CTRZ,

were present in the mean field. A more detailed assessment of the time-dependent flow features

arising in the LPP-type geometry considered in [51] is presented by the same authors in a later

work [53]. It was found that although negative velocities associated with the CTRZ did not enter

the pre-mixing duct on a time-mean basis; instantaneous realisation of the velocity field revealed

‘tongues’ of negative axial velocity penetrating this upstream region. Time-traces of velocity

recorded within the pre-mixing duct and close to the centreline in the recirculation region proved

particularly insightful as they clearly indicate the broadband frequency content present across

the flow domain. Spectral analysis, based on a somewhat limited record of velocities obtained
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within the pre-mixing duct, showed signs of coherent motion at relatively low frequency (several

hundred hertz) in addition to the more familiar turbulent shape (-5/3) in the kilohertz range.

Due to the limited duration considered, it is difficult to precisely deduce the underlying mecha-

nisms of the coherence but it is suggested by the authors that it may be indicative of flowfield

precession. Once again reasonable agreement with experimental velocity profiles was obtained.

Garcia-Villalba and Fröhlich [54] used LES to investigate the influence of SN and the presence of

a central round jet on the CS associated with unconfined annular swirl flow. Initially, the central

jet was not considered and the central inner body consisted of a solid cylinder. The level of swirl

was varied from SN = 0−1.2 which lead to the formation of a CTRZ whose front stagnation point

moved further upstream with increasing SN. For SN = 1.2 radial profiles of mean and r.m.s ve-

locities (axial and tangential components) were in good agreement with experiment downstream

of the swirler exit. Iso-surfaces of fluctuating pressure (p′ = p − 〈p〉) at SN = 0.55 revealed

the presence of two spiral structures embedded within the inner shear-layer formed between the

annular swirl jet and CTRZ. For SN < 0.55 no spiral structures were detected and increasing to

SN = 0.7 resulted in only a single spiral structure within the inner shear-layer with an additional

spiral structure in the outer shear-layer. At SN = 1 and 1.2, the irregularity of the flow increased

which was characterised by a variation in the number of CS. In Garcia-Villalba et al. [55] the

authors suggests that both families of structures are the result of K-H instabilities as they are

perpendicular to the mean streamlines. Investigations by Wang et al. [52], Huang and Yang

[56] also cite K-H instabilities as a fundamental mechanism for the formation of CS arising in

swirling flowfields. A quantitative assessment of the observed structures was provided by a PSD

of axial velocity fluctuations recorded within the inner shear-layer at the swirler exit although

no comparison was given with experiment. For SN ≥ 0.7, a dominate peak at St = 0.24 − 0.28

(based on the swirler exit radius) and associated higher harmonics appeared in the spectrum.

The introduction of an un-swirled central jet at an annular jet SN = 1.05 had the effect of re-

ducing the coherence of the inner and outer spiraling structures. It is interesting to note that

this is in stark contrast to the experiments of Midgley [13] and Midgley et al. [14] who observed

that the introduction of an un-swirled central jet in a confined swirl flow exerted a stabilising

influence on structures emerging from within the swirler. However, it is difficult to make direct

comparisons as the simulations reported in [54] are unconfined whilst the experiments in [13, 14]

were conducted at a confinement ratio of E = 3.72. Furthermore, different SN were investigated

in both cases which also influence the stability of the structures. The addition of swirl to the

central jet (SN = 1) had an even more dramatic impact on the flow, with the appearance of the

structures becoming increasingly random and any regularity all but lost. Garcia-Villalba [57]

further investigated the influence of the central jet by varying its location relative to the main

annular duct for co-annular swirl flow. The swirl number of the main annular flow was set to

SN = 0.93 and the central jet to SN = 2. When the central jet and main annulus exit planes were
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coplanar at x/Ds = 0, no CS were observed which is consistent with that reported in [54]. The

effects of retracting the central jet upstream of the main annulus exit plane to x/Ds = −0.37

had a dramatic influence, with the appearance of CS similar to those in [54] with the central jet

was blocked. It is thought that with the central jet retracted it is only able to hit the upstream

front of the CTRZ and cannot penetrate the inner shear-layer and impact on the CS.

Wegner et al. [58] investigated an LPP-type geometry based on a generic Turbomeca design

using LES. Streamlines of time-mean velocity indicated that the furthest upstream point of the

CTRZ due to the vortex breakdown phenomenon interacted with the main annular flow, result-

ing in separation from the inner wall upstream of the exit plane. A thorough assessment of

first and second-order statistics yielded a good overall level of agreement with LDV. Using the

λ2 criterion of Jeong and Hussian [1] the presence of two helical vortices emerging from within

the swirler were clearly visible. Spectral analysis based on time-traces of velocity and mixture

fraction resulted in discrete spectral spikes directly related to the coherent motions at frequencies

of approximately 1370Hz and 2900Hz respectively. A reasonable agreement with experimental

LDV data was obtained (1280Hz and 2990Hz respectively) with discrepancies attributed to the

boundary conditions specified at the domain inlet. Phase-averaging was used to provide insight

into the influence of the observed helical structures on mixture fraction. In contrast to the more

or less axisymmetric contours of time-mean mixture fraction, phase-averaged results exhibited a

large degree of asymmetry, suggesting that the entrainment of air by the helical vortices allows

them to impose their helical structure on the spreading fuel jet. Roux et al. [59] also inves-

tigated a similar configuration using a combination of compressible LES, acoustic analysis and

LDA for both cold and premixed reacting flows. Under cold conditions, acoustic analysis using

a Helmholtz solver found the first three longitudinal modes to be 172, 363 and 1409 Hz respec-

tively. Of these, only the second acoustic mode was identified in experiments (around 340 Hz)

and LES (around 360 Hz). Inside the combustion chamber, LES predictions and LDA measure-

ments found the dominant instability mode to occur at 540Hz and 510Hz respectively. As this

frequency did not appear as an acoustic eigenmode, the authors attributed it to hydrodynamic

instability due to the presence of a PVC. Isosurfaces of pressure revealed the presence of a spiral

structure in the vicinity of the swirler exit. Under reacting conditions at φ = 0.75, the first three

longitudinal acoustic eigen-modes shifted to 265, 588 and 1440Hz respectively. This time, both

first and second acoustic modes where detected by LES (290 and 500Hz respectively) and exper-

iment (300 and 570Hz respectively), whilst the third was suppressed. The major consequence of

combustion is to damp the dominant hydrodynamic instability observed under cold-flow condi-

tions and cause the pressure fluctuation in the chamber to lock onto the second acoustic mode

of the device. The Turbomeca geometry was also investigated recently by Dunham et al. [50]

under isothermal conditions using LES and has already been alluded to in the previous section.
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Wang et al. [52] used LES to focus on the internal flow through a fuel injector at SN = 0.35 and

0.49. The geometry consisted of three radial-entry slots used to generate counter-rotating inlet

flow and resulted in an extremely complex flowfield. A PVC was present in both cases but its

size and behaviour, particularly in regard to its interaction with other instabilities, varied. For

SN = 0.35, vortex shedding of highly organised hairpin-type structures was observed in the outer

shear-layer from the trailing edge of the guide vanes. The authors attribute this occurance to

K-H instabilities in axial and azimuthal directions and estimated a dominant frequency in the

streamwise direction of approximately 10kHz. This was found to be comparable with that ob-

tained from spectral analysis based on time-traces of pressure within the injector which indicated

a dominant frequency at 13kHz. Further PSD plots, this time based on the time-varying coef-

ficients of Proper Orthogonal Decomposition (POD) analysis, were also in excellent agreement;

with the first two modes, accounting for 40% of the total streamwise turbulent kinetic energy,

yielding discrete spikes at 13kHz. The effect of increasing SN resulted in a growth of the CRZ

in the radial direction, causing it to interact with the outer-shear layer. This, in addition to an

increased dominance of helical instabilities, contributed to the eddy breakup and mixing process

and the formation of streamwise CS was largely suppressed. POD analysis performed on a longi-

tudinal plane showed a much more even distribution of turbulent kinetic energy; with the first two

modes containing approximately 12% of the in-plane turbulent kinectic energy. For SN = 0.49

spectral analysis revelaed the dominant mode to be assocciated with the PVC rather than highly

organsied structures resulting from shear-driven instabilities. No comparison of time-mean flow

statistics, spectra or the distribution of POD modes was made with experiment.

1.4 Thesis Objectives

The primary objectives of this thesis are driven by the industrial requirement for reliable compu-

tational methods that can aid the design and development of swirl-stabilised combustion systems.

LES is well suited to the calculation of swirling flows, however very small timesteps used by ex-

plicit schemes are required for solution stability (CFL< 1) and the computational cost may prove

prohibitive for routine industrial applications. The alternative URANS approach is much more

computationally affordable (one to two orders of magnitude [50]), but questions still exist as to

whether the statistical turbulence models used in URANS (mainly calibrated against 2D, steady,

near equilibrium shear flows) are capable of adequate performance in fundamentally unsteady

and 3D swirl injector flowfields. The suitability of these methods to flowfields characteristics of

swirl-stabilised combustion system is still a matter of fundamental debate and it is of current

interest to continue to assess their relative merits.

Combustion systems utilising swirl injectors are often characterised by helical instability modes

of varying frequencies. An essential requirement of URANS and LES is that the characteristic

frequencies of all aerodynamic modes should be predicted with a high degree of fidelity. This
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is because if any of these frequencies are consistent with prevalent acoustic modes within the

combustor there is a potential for flow-acoustic coupling which may reinforce acoustic oscilla-

tions and drive combustion instabilities via the Rayleigh criterion (Equation 1.1). Clearly, this

assessment can be made under isothermal conditions which avoids the complications that arise

in reacting flows. Turbomeca has a low emissions industrial swirl injector (see Figure 1.6) which

is well suited to these purposes as this exhibits similar unsteady behaviour under reacting and

isothermal conditions [12].

The level of swirl (quantified via SN) is known to exert a strong influence on the aerodynamic

instability modes and characteristic frequencies of combustion systems. Therefore, another cen-

tral aspect of this thesis is to explore a range of SN by varying the inlet swirl vane angle, α1, of

a derivative of the Turbomeca design. PIV was selected as the most appropriate experimental

measurement technique for this purpose as it provides a wealth of time-mean statistics and a

suitable basis for CS analysis which are also both useful for CFD test case selection and vali-

dation. Although a vortex may elude a precise definition; Kline and Robertson [60] have stated

that: ‘A vortex exists when instantaneous streamlines mapped onto a plane normal to the core

exhibit a roughly circular or spiral pattern, when viewed in a reference frame moving with the

centre of the vortex core’. This provides a valuable means of identifying and characterising CS,

however it constitute a subjective approach which, as noted by Pope [7], can lead to controversy

over their nature and significance. It is therefore essential that qualitative measures and eduction

techniques are also used. The subject of CS eduction has received much attention (see, example,

[61, 62]) and the techniques adopted in this thesis are detailed in Addendix A-2. In order to op-

timise key instrumentation setup parameters, such as inter-frame time, PIV measurements were

performed in water under isothermal conditions. Once thoroughly validated, it is also of interest

to utilise the available volumetric information from CFD to understand further the complex 3D

behaviour of aerodynamic modes which cannot be extrapolated from planar PIV.

1.5 Thesis Structure

This thesis will be organised as follows:

• Chapter 2 discusses the experimental aspects of this thesis. This includes a description

of the water facility, the various swirl injector geometries investigated (‘modular’ swirler

design) and a derivation of realistic test conditions. An overview of the PIV technique is

given with a particular focus on measurement optimisation and how inherent sources of

error can be minimised during acquisition. In order to utilise PIV data as a benchmark for

validating CFD predictions presented in Chapters 5 and 6 the accuracy of derived statistics

are quantified.

• Chapter 3 discusses the numerical aspects of this thesis. A general discussion of the
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mathematical background of CFD is given followed by specific details regarding URANS

and LES methodologies and their implementation within the various CFD codes (in-house

and commercial) utilised during this thesis. The generation of a suitable computational

mesh and realistic boundary conditions is discussed.

• Chapter 4 presents PIV results for the modular swirler with varying swirl vane angle.

Particular attention is paid to the various CS arising in both the near and far-field using a

range of eduction techniques which are described in Appendix A. Based on this analysis a

suitable test case for CFD is selected.

• Chapters 5 and 6 presents LES and URANS results of the selected test case respectively.

A range of computational meshes are investigated and results validated against experiment.

Following validation, available volumetric information is then utilised to gain an improved

understanding of CS observed experimentally.

• Chapter 7 provides a summary, conclusions and recommendations for further work.
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Figure 1.1: Burner assembly (left) damaged by combustion instability and new burner assembly
(right) [63].
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(a) Diffusion-flame - approximately 20% of delivery air from the HP compressor passes through swirl injector
modules where it is mixed with fuel supplied via the burner arm and administered into the primary zone. Large
quantities of NOx are formed in the central hot region of the combustor due to oxidation of atmospheric nitrogen
at temperatures over 1900K. The flame temperature, and thus NOx production, can be reduced by the addition of
more air into the primary zone, however this leads to a corresponding increase in CO and UHC due to low burning
rates. As fuel preparation takes place in the hot environment of the primary zone, high level of NOx may also
result from buring at φPZ ≈ 1 in the presence of large droplets due to poor atomisation.

(b) LPP - fuel and air are premixed upstream of the primary zone to eliminate droplet
combustion and supply the combustion zone with a low φPZ homogeneous mixture.
This allows the combustion process to proceed at a uniformly low temperature, thus
minimising NOx formation. At reduced flame temperatures the amount of NOx does
not increase with residence time [64] and this can be taken advantage of to ensure that
CO and UHC levels are minimised. In comparison to diffusion-flame systems which
are relatively well understood, LPP systems suffer from more persistent instability
problems.

Figure 1.2: Schematic of diffusion-flame and lean premixed prevaporised (LPP) combustors for
aeronautical applications [65]
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Figure 1.3: Schematic of axial and radial swirl injectors [64]
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Figure 1.4: Streamlines of CTRZ in an unconfined swirling jet flow SN = 1.57 [66]. When the
level of swirl is sufficiently high (SN > 0.6 for a round jet [16]), the forward momentum of the
approach flow is insufficient to overcome the axial pressure gradient and reverse flow occurs. The
resulting CTRZ causes the outer boundaries of the jet to expand rapidly soon after it emerges
from the burner exit.
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Figure 1.5: Typical swirl injector helical instability mode. Static pressure iso-surface at p =
99, 500Pa [67]
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(a) Schematic of original Turbomeca design [68]

(b) Schematic and 3D view of modified design [12]. In an effort to reduce the complexity of generating block-
structured computational meshes and to control separation points it was agreed by all MOLECULES [69] partners
that the internal geometry in the swirl duct should be simplified. The curvature of the inner wall was replaced
with a constant angle of 17◦ from the swirl vanes to the exit plane. The curvature of the outer wall was replaced
with a constant angle of 12.5◦ until 10mm from the exit plane, after which the radius of the outer wall remained
constant. This replaced the flare on the outer wall of the swirl duct, thus making it co-planar with the central jet
at the exit plane

(c) Near-field PSD of velocity from isothermal (left) and reacting (right) test cases at 2 bar combustor pressure for
modified design [12]. Monitor point in shear-layer between forward flow and CTRZ 1mm downstream of swirler
exit

Figure 1.6: Geometry and spectral characteristics of industrial Turbomeca swirl injector
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Figure 1.7: Formation of an axisymmetric bubble by core swelling [21].
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Figure 1.8: Various breakdown forms observed in a slit-tube arrangement [70].
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Figure 1.9: Instantaneous streamlines showing a precessing vortex core [36].
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Figure 1.10: Variation of volumetric Strouhal number as a function of swirl number and Reynolds
number [38].
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Chapter 2

Experimental Facilities and

Measurement Techniques

All measurements presented in this thesis were conducted in a water facility under isothermal

conditions, utilising Particle Image Velocimetry (PIV) as the chosen measurement technique. No

modifications to the existing facility were necessary during this project and a concise overview,

particularly in regards to flow conditioning and optical access, is given in Section 2.1. Water was

selected as the working medium as, for the same model size and Reynolds number, velocities are

significantly reduced compared to equivalent airflow experiments due to the ratio of kinematic

viscosities (νair/νwater ≈ 14.6). For dynamic similarity, testing was performed at Re ≈ 7.5× 104

to ensure a stable CTRZ (Re > 1.8 × 104 [16]) and for SN independent of Re (Re > 1.5 × 104

[38] Figure 1.10). The reduction in working velocities is well suited to PIV since key parame-

ters, such as inter-frame time, are more readily optimised. Furthermore, errors associated with

particle response time and velocity lag are significantly reduced using neutrally buoyant tracer

particles, which can be achieved in water but not in air.

A slightly modified version of an industrial Turbomeca swirler (Figure 1.6(b)) was selected as a

suitable test case as this exhibits similar unsteady behaviour under isothermal and combustion

consditions [12] and its many complex aerodynamic characteristics make it a challenging test

case for CFD methodologies. To explore the effect of SN on CS development a modular version

of the Turbomeca design which allows the inlet swirl vane angle, α1, to be varied was utilised

and is described in Section 2.2.

Although PIV is well suited to the class of flow studied in this thesis the technique in gen-

eral can suffer from a number of error sources which can affect the quality of the resulting data.

The vast majority of errors can be minimised by refining the experimental setup and user-defined

parameters but in practice it is almost impossible to adhere to every required constraint and con-

tamination of the recorded data is inevitable to some extent. Fortunately, certain ‘types’ of error,
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such as those with a known bias, can be remedied through post-processing which can eliminate

spurious data and apply suitable correction factors. The theoretical background of PIV and the

optimisation of the technique in relation to the water facility is discussed in detail in Sections

2.3 and 2.4.

2.1 Water Flow Facility

The vertical water rig used during this investigation is a well-established test facility within the

Aeronautical and Automotive department at Loughborough University that has contributed to

three Ph.D. theses, namely Spencer [71], Hollis [72] and most recently Midgley [13]. The facility

was originally designed to investigate multiple impinging jets in a confined cross-flow [71] but

has since undergone a number of modifications to accommodate swirl injector geometries such

as those studied in this thesis. For a detailed discussion of all the necessary modifications and

their implementation the reader is referred to Midgley [13].

2.1.1 Flow Supply

The test facility, shown schematically in Figure 2.1, forms a closed-loop circuit and uses a pump

to provide a continuous supply of water to an elevated header tank from a ground level sump

tank. To maintain a constant level of water within the header tank, and therefore a steady

driving force through the test section, it is housed within a larger overflow tank. This allows the

pump to deliver a slightly higher mass flow than is required through the test section, ensuring

a slight but continuous overflow that is returned to the sump tank in the manner illustrated.

The mass flow rates through the test section are controlled by flow valves in the return pipes

and measured using BS1042 orifice plates connected to manometers. Hollis [72] estimated the

manometer calibration from test section inlet mass flow rates calculated from area integration of

velocity profiles measured using the PIV technique. It was found that manometer based readings

were repeatable and accurate to within ±2% of the desired values (to a confidence level of 95%).

Immediately downstream of the header tank the flow is split into two paths using concentrically

mounted pipes which have inner diameters of 90mm and 140mm respectively and are manufac-

tured from 5mm thick cast Acrylic. Flow within the inner pipe is referred to as the core flow

and flow within the gap between the outer wall of the inner pipe and the inner wall of the outer

pipe is referred to as the annular flow. The core flow develops over a distance of 18 core pipe

diameters prior to the test section, and the annular flow over 53 annulus pipe heights. Flow

straighteners are used to remove any residual tangential velocity components from both flows.

As the swirl injectors studied in this thesis are fed only from the annular flow no further con-

sideration will be given to the core flow. To ensure that the annular flow had reached a fully

developed state before entering the test section Midgley [13] used PIV to measure the mass flow

rate to peak velocity ratio (ṁ/〈ûx〉) 100mm (x/Ds = −2.65) upstream of the injector exit plane
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for a range of Re based on an annular gap height of 20mm and a bulk average axial velocity

which varied depending on mass flow rate. It was found that ṁ/〈ûx〉 becomes approximately

constant and hence the flow fully developed at Re > 3000, which corresponds to a mass flow rate

of ṁ > 1.13kg/s. To ensure measurement accuracy and repeatability, all measurements reported

in this thesis were conducted using annulus mass flow rates above this value.

2.1.2 Test Section

After reaching a fully developed state the annular flow enters the test section, consisting of a

model fuel injector, dump expansion chamber and a downstream blockage before passing through

an exhaust manifold as shown in Figure 2.2. The purpose of the model injector, which is dis-

cussed in detail in Section 2.2, is to impart a tangential velocity component on to the annular

flow. As discussed previously in Section 1.2.1 when a strongly swirling flow exhausts into a

dump expansion chamber a long stable backflow region is produced and forward flow can only

be re-established when the axial pressure gradient diminishes in strength sufficiently for it to be

overcome by the forward momentum of the approach flow. In an engine gas turbine combustion

system, the length of the CTRZ is controlled by radially impinging jets which are issued from

primary ports that act as an aerodynamic blockage and reduce the level of swirl. Due to the

impracticality of incorporating rows of impinging jets into the test facility, a blockage placed

x/Ds = 4.25 downstream of the injector exit is used to physically impose the position of pressure

recovery. For this purpose a cylindrical hollow tube with an outer diameter of 100mm is centrally

mounted on the geometric centreline of the test section. By manufacturing the blockage from

Perspex a convenient optical path allowing measurements to be acquired in planes parallel to

the swirler exit is provided. The issue of optical access to the principle measurement planes

investigated in this thesis is detailed further in Section 2.1.4. Midgley [13] found that placing

the blockage x/Ds < 3 downstream of the exit plane had a tendency to damp the PVC. The

final location was therefore chosen such that it imposed no significant influence on the upstream

flow. A similar strategy was adopted by Khezzar [73] who placed a baffle plate 5.4 swirl passage

diameters downstream of a radially fed swirler.

To assess the behaviour of the flow in the vicinity of the downstream blockage, Midgley [13]

performed PIV measurements in the exhaust flow annular gap between the downstream blockage

and test section wall. Time-mean velocity vectors in this region indicated a smooth channel flow,

however high levels of axial r.m.s velocity (associated with an instantaneous separation of the flow

in the annular exhaust duct) were detected close to the downstream blockage that persisted until

x/Ds ≈ 5.25. As the observed unsteadiness exerts an influence on the flow up to x/Ds ≈ 5.25 it

is clear that CFD boundary conditions should be set below this location.
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2.1.3 Flow Exhaust

To exhaust the flow once it has passed the downstream blockage, a series of small circumferential

gaps are used as shown in Figure 2.2. This arrangement ensures that the discrete pressure fields

of the return pipes cannot influence what is designed to be an axisymmetric test section exit

boundary plane.

2.1.4 Principle Measurement Planes

In strongly swirling flows, axial and tangential velocities are of similar magnitude and it is

extremely important that both are measured accurately as they contain valuable information

that can facilitate understanding of physical processes. In the 2C-PIV setup used during this

project (see Figure 2.5), which is discussed in Section 2.3, it was not possible to capture both

these velocities simultaneously. It was therefore necessary to conduct multiple PIV experiments

in two principle measurements planes which were orthogonal with respect to each other. The first

measurement plane was obtained by aligning the laser light sheet with the geometric centreline

of the dump expansion chamber and a reference diameter of the injector which allowed the

simultaneous capture of axial, ux, and radial, ur, velocities and as such is termed the x−r plane.

The second, referred to as the r− θ plane, was obtained by rotating the laser light sheet through

90◦ to be perpendicular to the geometric centreline, allowing illumination parallel to the swirler

exit plane and the simultaneous capture of radial, ur, and tangential, uθ velocities. As PIV

measures velocities on a Cartesian basis (see Section 2.3), the following transformation matrix

was required in the r − θ plane:


 ur

uθ


 =


 cos θ sin θ

− sin θ cos θ





 ui

uj


 (2.1)

where θ = arctan(z/y). Both principle measurement planes are shown in Figure 2.3 and further

details regarding their optimisation are give in Section 2.4. With the camera positioned beneath

the rig in the r− θ plane arrangement the flow is observed to rotate in a clockwise direction, i.e.

when viewed from x/Ds > 0. Throughout this thesis a number of statistical quantities and CS

eduction techniques are used and are detailed in Appendix A. The availability of mean velocity

data and statistics from the principle measurement planes are summarised below in Table 2.1.
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x-r r-θ Unavailable

Mean velocity 〈ux〉, 〈ur〉 〈ur〉, 〈uθ〉 -

Reynolds-stress 〈u′xu′x〉, 〈u′xu′r〉, 〈u′ru′r〉 〈u′ru′r〉, 〈u′ru′θ〉, 〈u′θu′θ〉 〈u′xu′θ〉
Spatial velocity correlation Rxx, Rxr, Rrr Rrr, Rrθ, Rθθ Rxθ

Integral lengthscale xLxx, xLrr, rLxx, rLrr
rLrr, rLθθ, θLrr, θLθθ

xLθθ, θLxx

Vorticity ωθ ωx ωr

Table 2.1: Summary of available quantities from 2C-PIV

Although quantities such as swirl number, SN (Equation 1.4), and total turbulent kinetic energy,

k (Equation A-5), cannot be obtained directly from either measurement plane (this would require

ux, ur and uθ to be measured simultaneously) it is possible to do so by combining x − r and

r − θ data. Clearly, it is necessary for data points in both planes to be colocated. This was

achieved by adopting a polar frame of reference in the r − θ plane whereby 〈uθ〉 and 〈u′θu′θ〉
were interpolated from the original Cartesian PIV grid onto a polar-type mesh (see, for example,

Figure 3.4(b)) with an identical radial resolution i.e. ∆r = ∆x = ∆y as the x − r plane. As

interpolation is not an error-free procedure, it was only performed once statistical quantities had

been calculated in the original Cartesian basis rather than at each time-instant which would

introduce a cumulative interpolation error. This was performed using the MATLAB function

interp2 and to assess the sensitivity to the grid resolution of the polar mesh the number of nodes

in each direction were varied (Nr = 40, 80, 160 and Nθ = 40, 80, 160) whilst maintaining a linear

interpolation scheme. Inspection of circumferentially-averaged profiles (i.e. statistics averaged

along lines of constant r from 0 ≤ θ ≤ 2π) indicated that first and second-order statistics were

not influenced by the resolution of the polar mesh. The influence of the available interpolation

schemes provided by Matlab (linear, nearest, cubic spline) were also investigated using a fixed

grid resolution of Nr = 42 and Nθ = 80 nodes and also found to have no significant influence

on circumferentially averaged mean and r.m.s velocities. All combined data presented in this

thesis uses a linear interpolation scheme with a grid resolution of Nr = 42 (∆r = 0.45mm) and

Nθ = 80.

2.2 Modular Swirler

The modular swirler has been investigated previously by Midgley [13] and Midgley et al. [15] and

is shown schematically in Figure 2.4. It is based on the industrial Turbomeca design shown in

Figure 1.6(b) and allows the effect of swirl vane angle (α1 = 0◦, 10◦, 15◦, 20◦, 25◦, 30◦) and swirl

duct shape (α2 = 0◦, 13.5◦, 17◦, 20.5◦ and α3 = 0◦, 8.5◦, 9.5◦, 11.5◦) to be investigated. The most

significant modification made to the modular swirler was the removal of the outer wall corner

present in the Turbomeca design. However, through a combination of PIV and HWA this has

been shown in [13] not to be responsible for the initiation of any large-scale unsteadiness, sug-

gesting this source has a more fundamental fluid dynamic origin. The absence of the central jet
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from the modular swirler has been shown [13, 14, 15] to result in the formation of a low-frequency

PVC which presents a more challenging test case for CFD. During this thesis only the influence

of swirl vane angle is investigated (α1 = 10◦, 15◦, 20◦, 30◦) with α2 = 17◦ and α3 = 9.5◦ selected

to give a similar swirl duct definition as the Turbomeca design.

The isothermal test conditions used in this thesis, which are summarised below in Table 2.2

are based on those described by Midgley [13] which attempt to match as closely as possible

the combusting conditions of Janus et al. [12]. For a detailed discussion of the derivation of

these conditions the reader is referred to [13]. In order to maintain a similar expansion ratio

as [12] (E = 3.72) in the water facility (Dex = 140mm Figure 2.2), Ds,outer = 37.63mm and

Ds,outer = 6.76mm leading to a scale factor of 1.35 relative to [12].

Swirl stream parameters

Mass flow rate, ṁs[kg/s] 2.14

Temperature, Ts [K] 20

Density, ρs [kg/m3] 998.2

Molecular viscosity, µs [Ns/m] 1.002× 10−3

Bulk average axial velocity, Ux,s [m/s] 1.99

Reynolds number, Res 7.48× 104

Table 2.2: Isothermal test conditions

Throughout this thesis Ds,outer (Ds for brevity) and Ux,s are selected as suitable length and

velocity scales for normalisation.

2.3 Particle Image Velocimetry

Particle Image Velocimetry (PIV) is an optically-based 1 measurement technique that has the

ability to provide spatially and temporally resolved velocity data. It has been previously cate-

gorised by Adrian [74] as a form of ‘pulsed light velocimetry’ that utilises the local displacement

of a group of particle images to infer the components of a velocity vector. Unlike probe-based

measurements, such as pitot tubes and hot wires, PIV is an non-intrusive technique, ensuring

that local flow conditions are not influenced by potential blockage effects.

To facilitate discussion of the PIV process a generic experimental setup consisting of several
1During this thesis two-component (2C) planar PIV measurements were performed which use a single camera to

capture in-plane velocity components parallel to a laser light sheet as shown in Figure 2.5. There are other ‘forms’

of PIV such as three-component (3C or stereoscopic) planar PIV which uses two cameras to capture both in-plane

and out-of-plane velocity components and tomographic volumetric PIV which is able to measure all three velocity

components within a 3D domain. In the present case only 2C-PIV was used and for the purposes of brevity will

be simply referred to as PIV.
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sub-systems (Figure 2.5), is considered. A light source, which is predominately provided by a

monochromatic pulsed laser, together with suitable sheet optics, illuminates a plane of interest

within the flow at least twice in quick succession. The interval between laser pulses, referred to

as the inter-frame time, ∆t, is a user-defined parameter and specification of a suitable value is

absolutely crucial to ensuring that meaningful and accurate data is captured. The topic of PIV

optimisation in relation to the water facility is covered in detail in Section 2.4. Incident light

from each laser pulse is scattered by tracer particles seeded within the flow and focused through

a lens onto the imaging plane of the recording device (digital CCD camera in the present case)

which is arranged to view orthogonal to the lightsheet. If the shutter of the camera remains open

for the duration of multiple laser pulses a single-frame multiple-exposure image is produced. If

the shutter is quick enough to open and close to capture the incident light scattered by the first

laser pulse and reopen to capture the incident light from the second laser pulse the result is two

single-frame single-exposure images which form an image pair. During this thesis only single-

frame single-exposure images are used.

In a manner analogous to CFD, the recorded digital images are divided up, or discretised, into

a number of smaller regions known as interrogation cells which may either be contiguous or

overlapping. In general, all interrogation cells are of equal size with dimensions ∆X = ∆Y

pixels (usually ∆X = 2n as described in Section 2.3.2.1), thus forming a regular Cartesian grid.

This allows the displacement, ∆x, of a group of particle images within each interrogation cell

to be determined on a statistical basis using either auto-correlation algorithms for single-frame

multiple-exposure images or cross-correlation algorithms for single-frame single-exposure image

pairs which is discussed in Section 2.3.2.1. An example illustration of the particle displacement

within an individual interrogation cell of a discretised image pair is shown in Figure 2.6. Once the

local displacement has been calculated, the inter-frame time, ∆t, specified during the experiment

can be used to determine the components of the local velocity vector in the following way:

u(xi, t) =
∆x
∆t

v(xi, t) =
∆y
∆t

(2.2)

thus providing an Eulerian description of the flow. The implicit assumption in Equation 2.2 is

that all particles move homogeneously within an interrogation cell but, as illustrated in Figure

2.6, this is not necessarily the case. Instantaneous velocity vectors calculated by the PIV tech-

nique are based on the displacement of a group of particles with the interrogation cell acting

as a low pass spatial filter. This is known as sub-grid filtering (SGF) and can seriously affect

higher-order statistics, such as r.m.s velocities, if it is not properly accounted for. The subject

of sub-grid filtering is consider in detail in Section 2.3.4.
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In general, a series of single-frame multiple-exposure images or single-frame single-exposure im-

age pairs are captured over a period of time so statistical quantities such as mean and r.m.s

can be computed. Each image pair is separated by a temporal interval, ∆T , know as the data

acquisition rate and is another user-defined parameter. The following subsections consider image

acquisition, image processing and vector validation in more detail.

2.3.1 Image Acquisition

The acquisition of high-quality images is arguably the most important aspect of the PIV process

as they form the basis on which all subsequent analysis is performed. Assuming that the physical

test rig and flow conditions in a particular area of interest (AoI) have been correctly defined

prior to the PIV process, Hollis [72] identifies tracer particles, flow illumination, image recording

parameters and timing parameters as being fundamental to successful image acquisition and

these are the subjects of the following subsections.

2.3.1.1 Tracer Particles

As the PIV technique relies upon the displacement of a group of particle images within a single

interrogation cell to infer the components of a local velocity vector, it is essential that they follow

the flow faithfully in order to ensure a high level of measurement accuracy. The ability of tracer

particles to follow the flow can be assessed in terms of two parameters: the particle response

time, τp, which quantifies a particle’s response to a step input, given as (Elghobashi [75]):

τp =
ρp

ρ

d2
p

18ν
(2.3)

and velocity lag, Up, which is a measure of the particle’s ability to match the acceleration of

a fluid particle when experiencing a constant acceleration, a, calculated from Stokes drag law,

given as (Raffel et al. [76]):

Up = d2
p

ρp − ρ

18µ
a (2.4)

Clearly, selection of neutrally buoyant (ρp = ρ) tracer particles eliminates Up and reduces τp to

a function of particle diameter, dp, and the kinematic viscosity, ν, of the surrounding medium.

In general, tracer particles typically used in water flow experiments, such as Polyamid spheres

which are detailed in Table 2.3, are approximately neutrally buoyant, whereas those used in air

flow experiments, such as oil particles, have densities greater than the surrounding fluid medium.

For a particle to respond to all of the turbulent motions of a high Re flow, τp should be smaller

than the smallest timescales of the flow, i.e. the Kolmolgorov scales. Midgley [13] has previously

calculated τη ≈ 40µs in the vicinity of the swirler exit in flows similar to those studied in this
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thesis. Whilst it is possible to minimise the τp by reducing dp it should be borne in mind that

another essential requirement of the tracer particle is that it scatters a sufficient amount of light

to be detectable to the recording device and that its ability to do so is, amongst other things,

proportional to its diameter. For spherical particles with diameters larger than the wavelength of

the incident light (λ = 532nm in the present case), MIE’s scattering theory [77] can be applied:

q =
(
πdp

λ

)2

(2.5)

From the above discussion it is clear that as there is a conflict of interest regarding dp a compro-

mise must be sought in practice as it is not possible to fulfill every theoretical ideal. Following

Raffel et al. [76], Hollis [72] and Midgley [13], who performed PIV experiments under similar

conditions to those considered in this thesis, Polyamid (polystyrene) particles of dp = 20µm were

selected as being the most suitable tracer particle, the properties of which in comparison to the

surrounding medium are summarised in Table 2.3.

Parameter

Particle diameter, dp [µm] 20

Particle density, ρp [kg/m3] 1003

Fluid density, ρ [kg/m3] 998.2

Fluid molecular viscosity, µ [Nm/s2] 8.904×10−7

Fluid kinematic viscosity, ν [m2/s] 8.920×10−4

Particle velocity lag, Up [m/s] 0

Particle response time, τp [µs] 24.9

Kolmolgorov time scale*, τη [µs] 40

Table 2.3: Flow properties and tracer particle characteristics. *In vicinity of swirler exit [13]

2.3.1.2 Flow Illumination

In the majority of PIV experiments, pulsed, rather than continuous wave (CW), lasers are prefer-

able due to their ability to emit monochromatic light of high energy density at desired intervals

with a very short pulse duration (≈ 6ns [72]). Unlike CW, pulsed lasers allow energy to build

up in the pump cavity before opening a device know as the Q-switch, discharging a very short

burst of high intensity laser light. A typical 2.5W argon-ion CW laser has a power density of

order 1× 106W/m2 whereas a 50mJ pulsed laser with a pulse length of 9ns has a power density

of 5.7× 1011W/m2, five orders of magnitude greater [78].

The beam emitted by the laser is shaped into a light sheet, which is necessary for illuminat-

ing an area of interest (AoI) within the flow, by sheet optics. Typically, this involves the use of
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a spherical (diverging) lens to focus the beam and a cylindrical lens to form the light sheet. By

adjusting the distance of the spherical and cylindrical lenses, the position of the cylindrical lens

relative to the focal point of the beam is altered and thus the thickness of the light sheet too. In

most scenarios it is desirable to keep the thickness of the light sheet to a minimum (≈ 1mm) to

reduce the chances of capturing any through plane particle motion.

2.3.1.3 Recording

The illuminated flowfield is recorded onto an electronic Charged Coupled Device (CCD) sensor

within the camera housing. The CCD sensor is typically a rectangular array of individual CCD

elements, referred to as pixels, which are able to register the intensity of the incident light in the

form of charged electrons. The charge represents the digital intensity at each pixel, providing a

digitised and rescaled version of the real object plane. The Imager Intense, which is detailed in

Table 2.4, uses a full-frame interline transfer CCD sensor to allow the short inter-frame times

required by the PIV technique. The operation of CCD devices can be found in Raffel et al. [76].

One of the first things to consider in any PIV experiment is the physical field of view (FoV)

size. Whether or not the FoV can be accurately imaged on the CCD array depends on the

particle image diameter, given as [76]:

dτ =
√
M2d2

p + d2
diff (2.6)

where M is the magnification of the image, defined as the ratio of the focal length, z0, to the

object distance, Z0, or alternatively, the ratio of CCD sensor size, b0, to the actual FoV size, B0,

dp is the diameter of the tracer particle and ddiff is the diffraction limited image diameter, which

is given as:

ddiff = 2.44
(
1 +M2

)
f#λ (2.7)

where f# is the F-number given as the ratio of the focal length, z0, to the aperture diameter and

λ is the wavelength of the incident light, which is 523nm in the present case. As will be shown in

Section 2.3.2, an optimum dτ = 2.3 pixels is required for accurate vector field calculation but this

may not be possible if the FoV is too large as the magnification will be insufficient. A potential

solution to this is to increase the physical size of the tracer particle, however, as discussed in Sec-

tion 2.3.1.1, this has an effect on both τp and Up and could be detrimental to results if the tracer

particle can no longer follow the flow faithfully. In some instances dτ is artificially increased by

slightly defocussing and thus blurring the image. This, however, is not a particularly favorable
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method as it leads to a degradation in image quality and may adversely affect results. A more

suitable alternative is to decompose the overall target FoV into a series of smaller regions where

experimental parameters may be more readily optimised and this is the method of choice for

results presented in this thesis.

Another important parameter that depends on M and f# is the depth of field, δz, which is

given by the following equation [76]:

δz = 4
(
1 +M−1

)2
f#2

λ (2.8)

The depth of field is essentially the object focal depth and in practice should be slightly greater

than the light sheet thickness (≈1mm) to ensure that all particles remain in focus in both frames

of an image pair.

2.3.1.4 Timing

The ‘quarter-rule’ of Keane and Adrian [79] states that the spatial displacement of a particle

image group within each interrogation cell should be less than one quarter of the cell dimensions

(∆x = ∆X/4). This reduces the chance of in-plane particle loss or gain. In practice an initial ∆t

is set by the user and then either increased or decreased depending on the resultant displacement.

This process may go through several iterations until an optimum inter-frame time has been es-

tablished. It is a mistake to interpret the quarter-rule as a freedom to set ∆t to an extremely

small value as it must be borne in mind that algorithms employed at the processing stage are

typically able to detect the position of a particle only to within ±0.1 pixels [72]. Therefore,

for small particle displacements, say 1 pixel, the relative positional error will be large, ±10% in

this case, compared with a particle displcement of 8 pixels, which would have a relative error

of ±1.25% in the example cited. Clearly, there are advantages to maximising ∆t in order to

maximise the particle group displacement.

Dynamic averaging is the extent to which the true motion of a particle is averaged as a result

∆t. It is a direct result of using Eulerian velocities to approximate Lagrangian particle displace-

ments and the effect, as shown in Figure 2.7, is to reduce the recorded levels of turbulence as

all curvature information is lost between images and approximated by a linear displacement. In

addition to setting ∆t to satisfy the quarter-rule, consideration must also be given to the Kol-

mogorov timescale and ∆t set less than or, at most, equal to it in order to minimise the effect of

dynamic averaging. In highly turbulent flow, such as those studied in this thesis, it is likely that

a given FoV will contain a wide range of velocities and it may not be possible to optimise every

parameter. In such cases trade-offs must be made and compromises sought in order to obtain

the most accurate measurements possible.
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If there is significant through plane velocity, uk, such as in the swirling flow studied in this

thesis, Raffel [76] gives the following for determining an acceptable out of plane motion:

uk∆t
δz

≥ 0.3 (2.9)

In other words, the maximum through plane displacement should be less than 30% of the depth

of field, δz, which is typically ≈ 1mm. The presence of through plane motions can result in

perspective projection errors which are considered in Seciton 2.4.3 and decreased Q-ratio or SNR

as defined later.

2.3.2 Image Processing

The previous section has considered the practical aspects necessary for the acquisition of high

quality PIV images. The next stage in the PIV process involves discretisation of these images

into a number of smaller regions know as interrogation cells to allow the displacement of a group

of particle images to be determined. The following subsections explain in more detail the basic

methodologies for determining the displacement of a group of particle images and how additional

algorithms are employed to improve accuracy.

2.3.2.1 Basic Vector Calculation

In practice, the displacement of a group of particle images between PIV frames is achieved by

determining the best match between images provided by a local displacement between them in a

statistical sense using auto-correlation in the case of single-frame multiple-exposure images and

cross-correlation in the case of single-frame single-exposure image pair. Cross-correlation has

been adopted during this thesis and is preferable to auto-correlation in nearly every instance for

the following reasons [80]:

1. It produces only one correlation peak thus removing directional ambiguity.

2. It can measure zero displacements.

3. Relative to auto-correlation the signal to noise ratio (SNR) is increased, where the higher

the SNR the higher the probability of the detection of the correct correlation peak.

In practice the cross-correlation is performed in Fourier space using an FFT algorithm (hence

the reason individual interrogation cells typically have base-2 dimensions) and for details of this

procedure the reader is referred to Raffel et al. [76]. The result is a correlation plane in each

interrogation cell (Figure 2.8) with a maximum value, P1, at the point where particle images

from a single-exposure image pair align.
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2.3.2.2 Practical Considerations

To determining the cross-correlation between image pairs a sufficient number of particle images,

NPI, are required within each interrogation cell at any given moment. The recommended mini-

mum NPI required to achieve a 95% valid detection probability varies quite significantly in the

availiable literature. To ensure the accuracy of meausrements presented in this thesis it was

ensured that NPI ≥ 5 in each interrogation cell at all times which is in line with the recommen-

dation 3 - 4 required by DaVis 7.2 [81]. The number of particle images within an individual

interrogation cell is dependent on the cell size, the level of magnification and the volumetric

seeding density of the flow.

Magnification has already been discussed in Section 2.3.1.3, and an optimum value is governed

by the resulting dτ , which should be approximately 2.3 pixels. This is due to the fact that for

dτ < 2.3pixels the phenomena of peak locking can occur, whereby particle image displacements

are biased towards integer values as shown in Figure 2.9. Selection of an appropriate ∆X is

complicated by the fact that in addition to being large enough to contain a sufficient number

of particle images, it should be small enough to result in the homogeneous movement of groups

of particle images. This, in theory, requires ∆X to be less than, or at least equal to, the Kol-

mogorov lengthscale, η. Midgley [13] has previously calculated η ≈ 2µm in the vicinity of the

swirler exit in flows similar to those studied in this thesis. The ability to achieve this level of

spatial resolution requires extremely small FoVs (0.5mm2) and high magnifications (4.6) which

could not be realised using the available experimental apparatus detailed in Table 2.4. Although

the non-resolution of the Kolmogorov scales leads to a smearing of the smallest eddies it will

be seen in Section 2.3.4 that in order to capture the majority (≈ 80%) of turbulent energy ∆X

should be suitbaly small in relation to the integral lengthscale, kLij (see Equation A-13), sug-

gesting that this, rather than the dissipative scale, is a more suitable measure for real engineering

flows.

2.3.2.3 Advanced Methods

As cross-correlation methods used to determine the displacement of a group of particle images

rely on discrete input data, correlation values exist only for integer pixel shifts. The highest value

in the correlation plane then permits the displacement to be determined with an uncertainty of

±0.5 pixel. It is possible to determine the position of the correlation peak to sub-pixel accuracy

by fitting a continuous analytical function to the discrete correlation map. It has been shown

that three-point estimators, such as a Gaussian peak fit, work best for rather narrow correlation

peaks based on dτ = 2.3 pixels [82] and are typically able to determine pixel displacement with

an accuracy of ±0.1 pixel.

During discretisation it is common practice to create a regular grid of overlapping, rather than
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contiguous, interrogation cells. Cell overlap is defined as the amount by which a given inter-

rogation cell overlaps adjacent ones and is a way to increase the vector grid density and the

perceived amount of flow information. For example, using a typical overlap of 50% increases the

data yield fourfold. It should be stressed that such an approach does not increase the spatial

resolution of the data as it is the final ∆X that determines which flow scales are resolved. By

using a cell overlap the raw image data is used more than once at each location and this is very

important to vector validation which is discussed in Section 2.3.3. The argument is that if a

single vector, which is surrounded by valid vectors, is deemed to be spurious, replacement by

linear interploation is justified on the basis that raw image information has already been utilised

in producing the adjacent vectors.

Although a final interrogation cell size of ∆X = ∆Y = 32 pixels provides an optimum setup,

for most practical levels of magnification [72] an initial pass using a larger interrogation cell of

∆X = ∆Y = 64 pixels is often performed on the particle images. This provides an estimate of

the particle image displacement and allows subsequent smaller interrogation cells to be shifted

by a given amount which helps to reduced the loss of in-plane particle pairs. This increases the

likelihood that the correct particle pairs are correlated and allows smaller interrogation cells to

be used than would otherwise be possible, thus increasing spatial resolution. All results pre-

sented in this thesis used an initial pass using a interrogation cell of 64×64 pixels followed by

two subsequent passes using an interrogation cell of 32×32 pixels.

2.3.3 Vector Validation

Once high-quality images have been captured and processed using the techniques described in

Section 2.3.2, calculated vectors fields are subjected to rigorous validation procedures that are

able to detect, remove and replace spurious data points. Validation is an extremely important

part of the PIV process as failure to account for questionable data at an early stage can have

dire consequences on any subsequent results which are often statistical quantities, such as mean

and r.m.s, and easily contaminated. There are a variety of methods available for the detection,

removal and replacement of spurious data and are the subject of the following subsections.

2.3.3.1 Pre-Defined Limits

This approach essentially imposes hardwired limits on the flow and includes geometry masking

and allowable velocity limits. Masking is used in regions where the user knows that no vectors

appear, such as in the vicinity of near wall regions where vectors may be generated because of

reflections. The definition of global limits on velocity should be used with extreme caution and

requires extensive knowledge of the flowfield. If the experimental setup is well defined and FoVs

optimised to local flow condition they should not be necessary and were not employed on data

presented in this thesis.
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2.3.3.2 Vector Quality

The quality of data calculated within an interrogation cell can be assessed in terms of the peak Q-

ratio which is defined as the ratio of the strongest correlation peak, which is assumed to represent

the true displacement, and the the next highest peak, which is assumed to be background noise.

This measurement, referred to as the Q-ratio, is therefore a signal to noise ratio, given as [81]:

Q =
P1 −min
P2 −min

(2.10)

where P1 is the highest correlation peak and P2 is the second highest correlation peak as shown

in Figure 2.8. A Q-ratio of greater than 2 indicates a reasonably strong confidence that the

vector is valid, whereas values closer to 1 indicate that the vector is probably false. By setting a

lower limit on the Q-ratio it is possible to eliminate vectors that are more than likely a result of

measurement noise. There is a risk that this method may result in the removal of valid vectors

but if the quality of the data is high to begin with then this issue is largely negated. In this

project a threshold value of (Q=1.5) was used.

2.3.3.3 Consideration of Local Flow Conditions

Consideration of a vector in relation to its neighbours is the most trusted method of validation

as it is derived directly from physical reasoning. The method was first proposed by Westerweel

[83], who stated that if a vector deviates substantially in direction or magnitude compared to its

neighbouring vectors, flow continuity is not satisfied and the vector must be spurious. At each

vector location, the average magnitude and standard deviation, σ, based on its 8 surrounding

vectors, is calculated. If the vector differs from the average magnitude by some factor times by

the standard deviation (a factor of 2 was used in this thesis as detailed in Table 2.9) it is deemed

to be spurious and removed.

2.3.3.4 Replacing Removed Data

If a vector is deemed to be spurious through any of the methods discussed previously it is ex-

tremely important that it is replaced as this can affect the computed statistics in the event that

zeros are included. Linear interpolation is a simple method that calculates the magnitude of the

surrounding vectors and replaces the removed one with such a value. Although linear interpo-

lation ensures continuity, if too many vectors are removed it can overly smooth the resultant

flowfield.

Another method used by DaVis, which is preferable to linear interpolation, is to consider the

next highest correlation peak if the vector associated with the first is deemed to be spurious.

This process can also be repeated for the third and fourth highest peaks, but no further than this
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as these are almost certainly due to measurement noise. If none of the peaks satisfy validation

criteria then linear interpolation can be used.

2.3.4 Sub-grid Filtering

The issue of sub-grid filtering, SGF, was first introduced in Section 2.3 and is a direct result of

the way in which instantaneous velocity vectors are calculated using the PIV technique. As the

cross-correlation algorithm used to determine the displacement of groups of particles is performed

over a finite area it is only possible to resolve the modal displacement as the interrogation cell

acts as a low pass spatial filter. As a result measured r.m.s velocities, 〈u′i,meas〉, can be lower than

actual or ‘true’ values, 〈u′i,true〉. The level of SGF depends on the size of ∆X relative to local

turbulent lengthscales which, in real engineering flows, cover an extremely broad range. It is well

know that the majority of turbulent motions contributing to flow statistics are contained within

a relatively small wavenumber range of the energy spectrum, specifically, Pope [7] states that the

energy containing scales which are responsible for approximately 80% of r.m.s velocities are in

the range of motions 1/6 ≥ `0 < 6 in size. In this case, `0, is taken as the integral lengthscale,
kLij , which is characterisitc of the larger eddies present within the flow. It is therefore logical

that in order to record the majority of fluctuating velocities ∆X ≤k Lij .

The method of accounting for SGF effects on PIV measurements used in this thesis is that

proposed by Hollis [72] which is based on a theoretical examination of the phenomenon first pre-

sented by Hoest-Madsen and Nielsen [84] (to be referred to as HMN). This approach is based on

an assumption of two-dimensional homogeneous isotropic turbulence (i.e. statistically invariant

under translations, rotations and reflections of the coordinate system [7]) and attempts to relate

the effect of SGF on r.m.s velocities (quatified via 〈u′i,meas〉/〈u′i,true〉) to ∆X/kLij . For a detailed

discussion of the theoretical background and implementation in respect to PIV applications the

reader is referred to HMN [84] and Hollis [72] respectively, however, the most pertinent aspects

are presented in the following.

Although exact isotropic turbulence does not exist in shear containing flows [85] isotropy is

approached on a local (sub-grid) scale for many non-trivial flow problems and it is argued in

HMN that the assumption of homogeneity and isotropy need only be true inside individual

interrogation cells. The methodology proposed by HMN hinges on correlation functions which

provide a statistical model relevant to the early and final stages of decay of homogeneous isotropic

turbulence quoted by Hinze [85] which are given in terms of kLij :

Rij = e(−∆Xk/kLij) (2.11)

and Taylor micro-scale, kλij :
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Rij = e(−∆X2
k/kλij) (2.12)

These equations are then used in formulae representing the volume weighting and random errors

in PIV measurements to derive the theoretical curves shown by the solid lines in Figure 2.10(a).

To make an independent comparison with HMN, Hollis used a series of ‘synthetically generated’

velocity fields with prescribed kLij and correlation models (exponential and quadratic). Variation

in the level of SGF was achieved by spatial averaging using an N×N box filter to imitate the in-

fluence of the interrogation cell. In order to fit trendlines to the discrete data points investigated,

the following empirical laws were proposed [72] based on the exponential model:

〈u′i,meas〉/〈u′i,true〉|∆X/kLij,true<1 = e−0.3235(∆X/kLij,true)

〈u′i,meas〉/〈u′i,true〉|∆X/kLij,true≥1 = −0.2181 ln(∆X/kLij,true) + 0.7501 (2.13)

and are shown by the dashed black line in Figure 2.10(a). From 2C-PIV measurements which

are shown by the discrete points in Figure 2.10(a) it was confirmed [72] that trendlines based on

the exponential model provided a reliable means of correcting for SGF effects. This is becuase

high Re flows such as those considered in this thesis tends to exhibit exponential correlations,

whilst the quadratic model is more appropriate for flow with homogeneous turbulence associated

with low Re.

An important development by Hollis necessary for the proposed correction methodology to be

applied to real PIV data is to account for the fact that kLij is not known a priori as has been the

case thus far. In reality, kLij calculated directly from PIV data (kLij,meas) are also contaminated

by SGF effects as the spatial correlations from which they are derived are based on measured

fluctuating velocities which are, in most cases, lower than the actual ‘true’ value, (kLij,true). The

result is to smooth the spatial correlation and kLij,meas >
k Lij,true. In a similar way to HMN,

Hollis used synthetic velocity data with known statistical properties to provide a correlation that

relates kLij,true/∆X to kLij,true/
kLij,meas. Again, by fitting trendlines to the discrete data points

investigated, Hollis was able to provide the following empirical laws based on an exponential

model:

kLij,true/
kLij,meas|∆X/kLij,true<0.65 = e−0.5151(∆X/kLij,true)

kLij,true/
kLij,meas|∆X/kLij,true≥0.65 = −0.23 ln(∆X/kLij,true) + 0.623 (2.14)
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which are shown by the dashed black line in Figure 2.10(b). With kLij,true appearing on both sides

of the equation an iterative approach is required with an initial estimation of kLij,true =k Lij,meas.

It has been found [72] that convergence is obtained (usually within 10 iterations) except in cases

where ∆X/kLij exceeds 1.5 and divergence may occur. As a result a lower correction limit of
kLij,true/

kLij,meas = 0.3 is recommended [72].

2.3.5 PIV System

The PIV hardware and software used during this thesis was purchased as a complete proprietary

system from LaVison GmbH and are detailed below in Table 2.4. To allow the capture of multiple

FoVs and expedite the data acquisition sequence a Dantec 3-axis traverse was implemented

around the test facility and is also detailed below. Raw PIV images were processed using DaVis

7 [81] and the resulting vector fields analysed using in-house MATLAB (Xact [86]) and Fortran

codes.

Illumination Dual Head New Wave Solo Nd:YAG

Wavelength (λ) 532nm (green)

Pulse Length 9ns

Maximum Repetition Rate 18Hz

Maximum Energy 50mJ

Recording Imager Intense

CCD 12-bit monochrome

CCD Size 8.88mm×6.71mm

Resolution 1376×1040 pixels

Pixel Width (dr) 6.45µm

Maximum Frame Rate 10Hz

Minimum Inter-Frame Time 500ns

Lens Nikon Nikkor Macro

Focal Lengths (z) 50mm, 105mm

F-Number f# 1.8 - 32

Traverse 3-axis Dantec

Resolution 6.25µm

Table 2.4: PIV system details

2.4 PIV Optimisation in Water Facility

For high Re flows the range of turbulent length and timescales is extremely broad and in order

to ensure a high level of data quality and eliminate potential sources of error it is necessary

to optimise experimental arrangements to suit local flow conditions. This requires a careful
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selection of camera lenses in terms of focal length and operating parameters such as f#. For

this thesis high-quality Nikon lenses with negligible aberrations were used with focal lengths of

50mm to 105mm and an f# range of 1.8 to 32. Full details of the cameras and lenses used are

provided in Table 2.4. Whether or not optimisation of all the various PIV operating parameters

discussed in the preceding sections is realised is extremely dependent on the physical FoV size

which is intimately linked to camera positioning and lens selection. These issues are considered

in relation to the vertical water facility in the following subsections. The physical FoV size and

positioning within the measurement domain were based on guidelines proposed by Midgley [13]

designed to ensure the optimisation of PIV operating parameters and minimise the effects of SGF

on recorded turbulence levels. The latter condition was verified by Midgley [13] who compared

r.m.s velocities from optimised PIV experiments with LDA measured profiles which, due to the

Lagrangian nature of the technique, do not suffer from SGF effects. Overall excellent agreement

indicates that the experimental arrangement used in this thesis is suitable for capturing the

majority of turbulent motions.

2.4.1 Axial-Radial Plane

As mentioned in Section 2.1.4, the x − r plane was obtained by aligning the laser light sheet

along the geometric centreline of the dump expansion chamber and illuminating a region that

extended from the swirler exit plane, x/Ds = 0.0, to a downstream location of approximately

x/Ds = 2.76. From the previous work of Midgley [13], it was known that many complex and

diverse processes occur within this region that require varying levels of spatial resolution and

optimisation of user-defined parameters to ensure a high level of measurement accuracy. For

example, in the near-field, x/Ds ≤ 1.0, the flow is dominated by complex shear-layers which ex-

hibit relatively large characteristic velocities and require a high level of spatial resolution, whilst

in the far field, x/Ds > 1.0, characteristic velocities associated with features such as the CTRZ

are perhaps an order of magnitude less and clearly require quite different timing parameters if

aspects such as the quarter-rule discussed in Section 2.3.2 are to be adhered to.

The FoVs size and position are shown schematically in Figure 2.11 and detailed in full in Tables

2.5 and 2.6.

FoV / Ds z0 M ∆x (mm) f#

1.02×0.77 105 0.23 0.9 4.0

Table 2.5: x-r FoV details
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Region r/Ds,min : r/Ds,max x/Ds,min : x/Ds,max

B1 -0.07 : 0.95 0.0 : 0.77

B2 0.78 : 1.8 0.0 : 0.77

B3 -0.07 : 0.95 0.66 : 1.43

B4 0.78 : 1.8 0.66 : 1.43

B5 -0.07 : 0.95 1.32 : 2.1

B6 0.78 : 1.8 1.32 : 2.1

B7 -0.07 : 0.95 1.99 : 2.76

B8 0.78 : 1.8 1.99 : 2.76

Table 2.6: x-r plane FoV size and arrangement

To assess the suitability of the FoV arrangement in the x − r plane shown in Figure 2.11 the

level of SGF was quantified by comparing the ratio of measured, 〈u′i,meas〉, to ‘true’, 〈u′i,true〉,
r.m.s velocities in both axial and radial directions for α1 = 30◦. The true r.m.s values are based

on Equation 2.13 and the required ‘true’ integral lengthscale was determined iteratively using

Equation 2.14. Figure 2.12 indicates that within the region considered the majority of turbulent

energy has been captured as 〈u′x,meas〉/〈u′x,true〉 and 〈u′r,meas〉/〈u′r,true〉 ≥ 0.9 almost everywhere.

In the axial direction the level of SGF filtering is highest in the vicinity of the inner body of the

swirler and the end wall of the expansion chamber. These regions are located at x/Ds ≈ 0.0

and extend from 0 ≤ r/Ds ≤ 0.09 and 0.5 ≤ r/Ds ≤ 1.8 respectively. In the radial direction the

level of SGF is largely unaffected in these regions and reaches a maximum in the vicinity of the

outer wall of the expansion chamber at r/Ds = 1.8. In a physical sense these observations are

due to the fact that as the wall is approached the size of the eddies normal to it diminish and

the corresponding integral lengthscale becomes small in relation to the interrogation cell. The

increased levels of SGF in these flow regions are thus not an unexpected result and as they are

not of immediate concern to the objectives of this thesis no further FoV refinement was deemed

necessary.

2.4.2 Radial-Circumferential Plane

To capture the complex flow dynamics arising in the near-field of the dump expansion chamber

PIV measurements were performed at four r − θ planes located at x/Ds = 0.02, 0.27, 0.53, 1.06.

An additional r−θ plane was captured at x/Ds = 2.39 as the flowfield is known to be dominated

by a PVC in this region [13]. These measurement locations are indicated by the numbered radial

lines shown in Figure 2.11. It was mentioned in Section 2.1.4 that in order to gain access to the

r−θ plane the camera was mounted beneath the test rig. Although the ability to manoeuvre the

camera was largely restricted by the base of the exhaust manifold and test facility floor, it was

possible to capture two FoV sizes by using 105mm and 50mm focal length lenses, further details

of which are provided in Table 2.7. This was important for ensuring that PIV parameters could
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be fully optimised in the central core of solid body rotation where large gradients in tangential

velocity exist. Although the Imager Intense CCD camera itself was too large, the lens could be

positioned within the downstream blockage as illustrated in Figure 2.3. This allowed the entire

swirler exit plane to be captured with an optimum magnification using a 105mm focal length

lens and also a large extent of the dump expansion chamber using a 50mm focal length lens as

shown in Figure 2.13. The inner radius of the downstream blockage of r/Ds ≈ 1.2 imposes a

limit on the maximum FoV size that can be captured in the r − θ plane without experiencing

major optical distortion.

FoV / Ds z0 (mm) M ∆x (mm) f#

1.51×1.07 105 0.16 1.25 4.0

3.15×2.35 50 0.07 2.76 5.6

Table 2.7: r − θ FoV details

In principle it is possible to assess the level of SGF on 〈u′r,true〉 and 〈u′θ,true〉 in the r − θ plane

in a similar way to the x − r plane as shown in Figure 2.12, however, in practice this is not

straightforward. The reason for this is that the correction methodology detailed in Equations

2.13 and 2.14 requires the longitudinal and lateral, or alternatively the streamwise and cross-

streamwise, integral lengthscales, iLii and jLjj . In the x−r plane this is trivial as the longitudinal

and lateral lengthscales, xLxx and rLrr, are naturally orientated along the Cartesian grid lines

that result from the discretisation of the PIV domain. In the r− θ plane longitudinal and lateral

lengthscales, θLθθ and rLrr, are orientated along circumferential and radial directions respectively

and naturally require a cylindrical-polar bases for both velocities and coordinates. Whilst the

conversion from Cartesian to cylindrical-polar velocities is error free the conversion from the

original Cartesian PIV coordinate system to a polar-cylindrical one is not so. This is due to the

fact that the method used to determine integral lengthscales in this thesis, which is detailed in

Section A-1.2.1, requires instantaneous velocity components at all points directed along constant

coordinate lines. As points along lines of constant r or θ within a cylindrical-polar coordinate

system are unlikely to exactly coincide with ones with the original Cartesian system a procedure

such as interpolation is required. Clearly, such a process is unsuitable as it essentially introduces

an additional level of SGF on the same order of magnitude as that trying to be determined, thus

raising questions as to the validity of any corrected values. An additional complication arises

due the fact the original Cartesian spatial resolution, ∆X, is essentially ’lost’ in the coordinate

conversion and, as discussed in the proceeding sections, it is precisely this which determines the

level of SGF in the first place and Equations 2.13 and 2.14 would require modifications to account

for this. As it is felt that these issues would introduce too many unknowns into the correction

methodology the level of SFG in the r − θ plane was not assessed globally as in Figure 2.12 but
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rather by comparing radial profiles of measured radial r.m.s velocity, 〈u′r,meas〉, obtained from

the r− θ plane with corrected, or ‘true’, radial r.m.s velocity, 〈u′r,true〉, taken from corresponding

axial locations in the x− r plane. This comparison is made in Section 2.4.3.

2.4.3 Field of View Alignment

To assess further the quality of the experimental setup shown in Figure 2.12, radial profiles of

mean and r.m.s velocities were compared across adjacent FoVs in the x−r plane at axial locations

of x/Ds = 0.27, 0.53 and 1.06 for α1 = 30◦. These particular axial locations were chosen as they

coincide with the r− θ measurement planes shown in Figure 2.12. As 〈ur〉 and 〈u′r〉 are common

to both x − r and r − θ measurement planes further assessments could be made regarding the

consistency of the experimental setup and the level of SGF in the r − θ plane as discussed in

Section 2.4.2.

Figure 2.14 shows a very good overall agreement in both 〈ux〉 and 〈u′x〉 within the FoV over-

lap region which extends from x/Ds ≈ 0.8− 1.0 as shown in Figure 2.14(a). There is however a

slight trend apparent in 〈ux〉 whereby the left hand FoV (Regions B1 at x/Ds = 0.27 and 0.53

and B3 at x/Ds = 1.06) is marginally higher than the right hand FoV (Region B2 at x/Ds =

0.27 and 0.53 and Region B4 at x/Ds = 0.27 and 0.53). In Figure 2.15 the overall agreement

of 〈ur〉 in the x − r plane across adjacent FoVs is reasonably good apart from at x/Ds = 0.27

where considerable discrepancies exist. Within this region the opposite to the trend noted in 〈ux〉
occurs as 〈ur〉 measured in the left hand FoV is lower than that in the right hand FoV. This is

also the case at x/Ds = 0.53 and 1.06 although much less pronounced. The radial r.m.s velocity

does not seem to suffer in the same way, exhibiting excellent agreement across the interface region.

As should be expected, 〈ur〉 from both x − r and r − θ measurement planes exhibits similar

trends, however, the magnitude and position of the peak value differs notably at x/Ds = 0.27

and 0.53. At the furthest downstream location considered, x/Ds = 1.06, these discrepancies

lessen to the extent that data from all FoVs and measurement planes collapse to form a more

or less constant radial profile. Comparisons made between 〈u′r〉 obtained from x − r and r − θ

measurement planes yield observations that are consistent with the discussions regarding SGF

presented throughout this chapter. It can be seen that measured data using a 105mm focal

length lens are at least equal to, or greater than, that obtained using a 50mm focal length lens

and both are lower than x − r plane measurements. The reason for this is due to the level of

magnification (spatial resolution) at each measurement location, which is detailed in Tables 2.5

and 2.7. In the x − r plane it was possible to achieve a higher level of spatial resolution and

therefore recover a greater portion of the turbulent kinetic energy than in the r − θ plane and

this is clearly reflected in Figure 2.15. It was shown in Figure 2.12 that in the x − r plane

〈u′r,meas〉/〈u′r,true〉 ≥ 0.9 across the majority of the measurement domain. As x − r plane r.m.s
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velocities presented in Figures 2.14 and 2.15 are corrected or ‘true’ values the level of SGF in the

uncorrected (the reasons for this were given in Section 2.4.2) r−θ plane is not too severe as peak

values are under-predicted by a maximum of approximately 10%. This illustrates that SGF is a

second-order statistical error and a sufficient resolution has been adopted for first-order statistics.

Many of the differences discussed above regarding inconsistencies across adjacent FoVs and prin-

ciple measurement planes can be attributed to perspective projection error which is a function of

the camera viewing angle and the magnitude of the out-of-plane velocity component. The aim of

the 2C-PIV setup used during this thesis is to recover the true in-plane velocity components, i.e.

those parallel to the laser light sheet. This, however, is only realised in the case of truly 2D flows

which are rarely found in engineering applications. If out-of-plane motions are present, Figure

2.16 shows that the measured displacement, x2 − x1, does not represent the ‘true’ real-world

in-plane particle displacement, X ′
2 − X1, but rather is some factor, ∆x, either higher or lower

than the actual value. The direction of the out-of-plane motion, which appears to move away

from the camera is consistent with test conditions and the FoV arrangement used during this

thesis. From Figure 2.16 it can be seen that ∆x is completely defined by the magnitude and

direction of the out-of-plane velocity component and the angle subtended by the particle posi-

tion to the axis of the recording device, α, which will be referred to simply as the viewing angle.

Raffel et al. [76] provide geometric expressions which relate the measured displacement and the

true real-world in-plane particle displacement to the camera viewing angle and the out-of-plane

particle displacement. Using the notation adopted in Figure 2.16 these are given as:

x2 − x1 = −M [(
X ′

2 −X1

)
+ ∆z tanα

]

y2 − y1 = −M [(
Y ′2 − Y1

)
+ ∆z tanβ

]
(2.15)

The second line of Equation 2.15 describes the effect of perspective projection on displacements

orthogonal (i.e. out of the page) to that shown in Figure 2.16. If Equation 2.15 is divided through

by ∆t the following expressions are derived:

ui,true = ui,meas − uk tanα

uj,true = ui,meas − uk tanβ (2.16)

where ui,true and uj,true are the actual real-world in-plane velocities, ui,meas and uj,meas are the

measured velocities which are contaminated by perspective projection error, uk is the out-of-plane

velocity component and α and β are the camera viewing angles. For a more concise description,

the notation εi and εj is used to refer to the terms uk tanα and uk tanβ. Although the above
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discussion relates to perspective projection error on the in-plane Cartesian velocity components

it is also possible to derive expressions which relate these to radial and tangential components

as follows:


 εr

εθ


 =


 cos θ sin θ

− sin θ cos θ





 εi

εj


 (2.17)

To illustrate the effect of perspective projection error, Figure 2.17 shows εi, εj , εr and εθ for

Z0 = 0.5m, uk = 1m/s (assumed to be uniform within the FoV) and a FoV of y/Ds = z/Ds = 1

which is fairly typical of test conditions. As would be expected, the perspective projection error

based on Cartesian velocity components, εi and εj , increases towards the edge of the FoV with

signs dependent on α and β respectively. It is interesting to note that whilst εr increases radially

outwards, εθ is negligible everywhere suggesting that uθ,meas = uθ,true. From Equation 2.16, it is

possible to recover ui,true and uj,true if uk is known. In the 2C-PIV setup used during this thesis it

is not possible to do this on an instantaneous basis as uk remains unknown. However, if Equation

2.16 is applied to time-mean data, 〈uθ〉 from the r − θ plane can be used to obtain 〈ux〉true and

〈ur〉true from the x−r plane. Furthermore, 〈ux〉true can then be used to obtain 〈ur〉true in the r−θ
plane. From Figures 2.14 and 2.15 the largest discrepancies between adjacent FoVs and principle

measurement planes were present in 〈ur〉 at x/Ds = 0.27 and x/Ds = 0.53. After application of

Equation 2.16 at these locations, Figure 2.18 shows that the agreement of the peak magnitude

obtained from x − r and r − θ planes and also values across adjacent FoVs in the x − r plane

is markedly improved. At x/Ds = 0.53 some discrepancies still persist, however, these can be

partly attributed the experimental set-up. For example at r/Ds = 0.0, which coincides with the

geometric centre of the dump expansion chamber, 〈ur〉 should be zero such as at x/Ds = 0.27

and 1.06 in Figure 2.15. Whilst extreme care was taken to align the laser light sheet correctly,

large tangential velocity gradients exist in the central core of solid body rotation and even very

small positional errors can result in non-zero mean radial centreline velocities.

Figure 2.19 shows PDFs of instantaneous and fluctuating radial velocity from Regions B1 and

B2 within the FoV overlap region at x/Ds = 0.27, r/Ds = 0.9. Although the shape of instan-

taneous PDFs (Figure 2.19(a)) are extremely similar they are shifted with respect to each other

along the horizontal axis and centred about different mean values. This is consistent with Figure

2.15(a) which shows 〈ur〉 in Region B2 exceeds 〈ur〉 in Region B1 from r/Ds ≈ 0.8 − 1 and is

due to the fact that instantaneous velocities (and thus the resulting time-mean value) in each

region will be either higher or lower than actual ‘true’ values depending on the camera viewing

angle and direction and magnitude of uk (Equation 2.15). Despite this shift, the good agreement

of PDFs in Figure 2.19(b) suggests that the effect on instantaneous fluctuations (and thus the

resulting r.m.s value) about the mean is negligible. This is consistent with evidence from Figures
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2.14(b), (d) and (f) and 2.15(b), (d) and (f) in which 〈u′x〉 and 〈u′r〉 were in excellent agreement

across adjacent FoVs. These observations explain why perspective projection appears only as a

first-order biasing error.

Overall, it is felt that the agreement of mean and r.m.s velocities and minimal scatter across

adjacent FoVs and between principle measurement planes suggests that a high degree of confi-

dence can be placed in the consistency and repeatability of the experimental setup used here.

2.4.4 Statistical Convergence

As described in the preceding sections, it is possible to minimise errors associated with the PIV

technique by careful selection and refinement of the experimental setup but this alone does not

guarantee the acquisition of accurate and meaningful data. In common with point based measure-

ment techniques, such as HWA or LDA, the effect of sample size on computed PIV statistics must

be considered. It is well known that statistical quantities, such as mean and r.m.s velocities, are

dependent on the number of statistically independent samples, NI, and convergence is obtained

given this is sufficiently large as long as the flow is statistically stationary. The likelihood that

a particular sample is statistically independent is increased if the associated integral timescale,

Tij , (Equation A-17) is small compared to the sampling interval, ∆T . Midgley [13] has shown

Tij,max ≈ 60ms for flows similar to those studied in this thesis which is approximately a factor

of 4 smaller than the sampling interval of ∆T = 0.25s. An increased confidence can therefore be

placed on a given sample at any point within the flow being statistically independent.

Convergence of statistical quantities can be observed by plotting computed values against NI.

This, however, is only partly useful since, although convergence may be obtained in the limit of

NI, the result is only an estimate of the population, or ‘true’, parameter. If it is assumed that

estimated values follow a normal distribution their reliability can be assessed using confidence

intervals which produce a range of values likely to include a given population parameter. This

requires the selection of a confidence level which specifies the proportion of estimates based on NI

likely to include the population parameter within the calculated confidence interval. Confidence

intervals for mean and r.m.s quantities are gives as [87]:

εu,i = ±zσ
√

1
NI

(2.18)

εu′,i = ±zσ
√

1
2NI

(2.19)

In practice a 95% or 99 % confidence level is commonly used which correspond to z = 1.96
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and z = 2.576 respectively. The value of σ is by definition the population standard deviation

which is usually unknown and in its absence is replaced by an estimation calculated from the

finite sample. To demonstrate convergence of mean and r.m.s velocities, time-series acquired at

x/Ds = 0.02, r/Ds = 0.4 and x/Ds = 1.06, r/Ds = 0.0 for α1 = 30◦ were divided up into subsets

consisting of 5, 10, 25, 50, 130 and 650 2 independent samples and plotted against confidence

intervals described in Equations 2.18 and 2.19 for confidence levels of 95% (z = 1.96) and 99%

(z = 2.576). The results of this are shown in Figures 2.20 and 2.21 where 〈ui〉N and 〈u′i〉N are

mean and r.m.s velocities based on the the number of members of the subset, whilst 〈ui〉P and

〈u′i〉P are the estimated population parameters based on 650 independent samples detailed below

in Table 2.8.

x/Ds r/Ds 〈ux〉/Ux,s 〈ur〉/Ux,s 〈uθ〉/Ux,s 〈u′x〉/Ux,s 〈u′r〉/Ux,s 〈u′θ〉/Ux,s

0.02 0.4 1.43 0.21 1.43 0.32 0.36 0.36

1.06 0.0 -0.1 -0.03 0.08 0.22 0.37 0.4

Table 2.8: Mean and r.m.s velocities at selected locations for α1 = 30◦, NI = 650

At both locations considered, mean and r.m.s velocities are observed to converge within the

specified confidence intervals as NI is increased.

2.4.5 Measurement Accuracy

Throughout the preceding sections of this thesis a number of sources of experimental error that

affect the accuracy of PIV measurements have been identified. These include pixel displacement

uncertainties (Section 2.3.2.3), SGF (Section 2.3.4), perspective projection (Section 2.4.3) and

statistical convergence (Section 2.4.4). Of these, SGF and perspective projection are essentially

bias errors that can be accounted for after data acquisition and, in the case of the former, min-

imised through FoV refinement. SGF affects second-order statistics and is most severe in regions

in which kLij < ∆X. In contrast, perspective projection error affects first-order statistics and is

dependent on both the magnitude and direction of the out-of-plane velocity component and the

camera viewing angle.

Throughout this thesis it has been customary to refer to statistical quantities in which bias

errors have been accounted for as ‘true’ values. In reality, these remain estimates of unknown

actual values and in order to quantify the accuracy of these, a number of factors must be consid-

ered. As it is only possible to determine instantaneous pixel displacements to within ±0.1 pixels

a degree of uncertainty always persists which can be expressed as:

εds = ±0.1dr∆t/M (2.20)
2It has been shown previously by Midgley [13] that 650 independent samples yield sufficient accuracy for flows

similar to those studied in this thesis.
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where dr is the pixel width. As εds is a random error, the ensemble average should approach

zero as NI → ∞ and therefore the effect on time-mean statistics is negligible. This, however,

is not the case for r.m.s quantities and the influence of εds on this statistic must be accounted

for. Figures 2.22(a) and (b) show εu,i/Ux,s (Equation 2.18) for 〈ux〉 and 〈ur〉 for all FoVs in

the x − r measurement plane based on a confidence level of 99% (z = 2.576) and NI = 650 for

α1 = 30◦. In the swirl stream εu,i/Ux,s ≈ ±0.03 − 0.07, whilst in the vicinity of the centreline

εu,i/Ux,s ≈ ±0.01−0.03 and elsewhere εu,i/Ux,s ≈ ±0.01. In order to quantify the effect of εds on

the accuracy of r.m.s velocities it has been combined with εu′,i (Equation 2.19) in a Pythagorean

manner to arrive at a ‘total’ relative error, εu′,i,tot:

εu′,i,tot

Ux,s
=

√(
εu′,i
Ux,s

)2

+
(
εds

Ux,s

)2

(2.21)

Figures 2.22(c) and (d) show εu′,i,tot/Ux,s for 〈u′x〉 and 〈u′r〉 for all FoV in the x − r mea-

surement plane based on a confidence level of 99% (z = 2.576) and NI = 650. It should be

noted that the jumps in contour level observed in Figures 2.22(c) and (d) are a result of the

varying ∆t used in each FoV to optimise particle image displacement. In the swirl stream

εu,i,tot/Ux,s ≈ ±0.03 − 0.06, whilst in the vicinity of the centreline εu,i,tot/Ux,s ≈ ±0.01 − 0.03

and elsewhere εu,i,tot/Ux,s ≈ ±0.01− 0.02.

The above comments regarding the accuracy of mean and r.m.s velocity estimates are perhaps

rather pessimistic and should be treated as a worst case scenario. Strong evidence has already

been presented in Figures 2.14 and 2.15 to suggest a high degree of consistency and repeatability

with minimal data scatter in overlapping regions between adjacent FoVs in the x− r plane and

at locations at which x − r and r − θ planes coincide with discrepancies attributed to biasing

errors such as SGF and perspective projection. It is possible that the convergence of first and

second-order statistics is aided by the inherent spatial averaging of the PIV technique. As cross-

correlation algorithms determine the modal displacement of groups of particles within individual

interrogation cells, it is less likely that extreme values are present in ensemble data. Further-

more, each instantaneous measurement is then validated using a range of methods to ensure that

spurious data points are unable to contaminate derived statistics.

2.4.6 Summary of PIV Operating Parameters

Throughout the preceding sections of this chapter numerous statements have been made regarding

the user-defined PIV processing parameters available within the DaVis 7 [81] software used during

this thesis. For clarity these are presented below in Table 2.9.
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Parameter Setting

Processing

Adaptive multi-pass Grids Yes

Initial cell size [pixels] 64

Final cell size [number of iterations] 32 [2]

Cell overlap 50%

Validation

Remove vectors with Q-ratio <1.5

Remove vectors outside range > 2σ

Replace removed vectors With 2nd, 3rd or 4th choice peaks

or interpolated data where no peak

fits surrounding fluid dynamic behaviour.

Table 2.9: Optimised PIV operating parameters

2.5 Closure

During this chapter an overview of the water facility has been given, particularly in regard to

the operating ranges necessary for ensuring the accuracy and repeatability of flow measurements.

A comprehensive overview of the PIV technique has been given, including its main sources of

error and how these can be minimised through refinement of user-defined parameters and the

experimental setup during the image acquisition stage. It was emphasised that in all but the

most ideal scenarios it is unlikely that every theoretical ideal is achievable in the experimental

setup and as a result various errors, such as those caused by SGF, may persist. In such cases

it is possible to account for these errors through various post-processing operations. The final

experimental setup and user-defined parameters adopted in this thesis have been shown to be

capable of capturing the majority of turbulent kinetic energy in both principle measurement

planes with only minimal levels SGF. The consistency of data within the overlap region of adjacent

FoVs and between measurement planes is good and discrepancies are attributed to perspective

projection error which are a function of viewing angle and the magnitude of the out-of-plane

velocity component. A methodology has been developed to account for this which utilises time-

mean data from both principle measurement planes to quantify the effect of out-of-plane motion

on recorded in-plane velocities. Measured first and second order statistics have been shown to

converge within theoretical confidence intervals for a given number of independent samples. This

allows the level of precision of the measured quantities to be defined and thus facilitate the

validation of computational predictions presented in Chapters 5 and 6.
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Figure 2.1: Schematic of vertical water facility [71]
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Figure 2.2: Schematic of test section [13]
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(a) x− r plane

(b) r − θ plane

Figure 2.3: Component arrangement in principle measurement planes
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Figure 2.4: Exploded view of modular swirler [13]
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Figure 2.5: Typical arrangement of a 2C PIV experiment [81]
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Figure 2.6: Image discretisation and individual cell illustration [72]
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Figure 2.7: Effect of inter-frame time on dynamic averaging [13]

60



Experimental Facilities and Measurement Techniques

Figure 2.8: 3D visualisation of correlation map intensities [72]
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Figure 2.9: Examples of no peak locking (top) and strong peak locking (bottom) [72]
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(a) 〈u′i,meas〉/〈u′i,true〉

(b) Lmeas/Ltrue

Figure 2.10: Theoretical [84] and measured (2C-PIV) [72] effect of sub-grid filtering on r.m.s
quantities and integral lengthscales
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Figure 2.11: x− r plane 40mm×30mm FoV arrangement

64



Experimental Facilities and Measurement Techniques

x / Ds

r
/D

S

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5 <u’x>mean / <u’x>true
1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

(a) 〈u′x,meas〉/〈u′x,true〉

x / Ds

r
/D

S

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5 <u’r>meas / <u’r>true
1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

(b) 〈u′r,meas〉/〈u′r,true〉

Figure 2.12: Ratio of measured to true axial and radial r.m.s velocities in x−r plane for α1 = 30◦
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Figure 2.13: r − θ plane FoV arrangement
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Figure 2.14: Comparison of x− r plane mean and r.m.s axial velocities at various axial location
for α1 = 30◦
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Figure 2.15: Comparison of x − r and r − θ plane mean and r.m.s radial velocities at various
axial location for α1 = 30◦
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Figure 2.16: Schematic of perspective projection in 2C-PIV
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(a) εi (b) εj

(c) εr (d) εθ

Figure 2.17: Theoretical perspective projection error on Cartesian and polar velocity components
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Figure 2.18: Corrected mean radial velocities in x− r and r − θ plane at various axial locations
for α1 = 30◦
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Figure 2.19: PDF of x− r plane instantaneous and fluctuating radial velocities at x/Ds = 0.27,
r/Ds = 0.9 for α1 = 30◦
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(f) r.m.s tangential velocity

Figure 2.20: Statistical convergence of mean and r.m.s velocities at x/Ds = 0.02, r/Ds = 0.4 for
α1 = 30◦
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Figure 2.21: Statistical convergence of mean and r.m.s velocities at x/Ds = 1.06, r/Ds = 0.0 for
α1 = 30◦

74



Experimental Facilities and Measurement Techniques

(a) ±εu,x/Ux,s (b) ±εu,r/Ux,s

(c) ±εu′,x,tot/Ux,s (d) ±εu′,r,tot/Ux,s

Figure 2.22: Total measurement error on x− r plane first and second-order PIV statistics based
on NI = 650 and z = 2.576 (99% confidence) for α1 = 30◦
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Chapter 3

Numerical Methods and

Computational Implementation

Computational fluid dynamics (CFD) is a numerical approach that has the ability to predict

complex flow behaviour on both an instantaneous and a time-mean basis. Given that all numer-

ical and physical modelling components of the simulation are adequate, CFD predictions are an

excellent companion to measured data and in many cases the combination leads to an improved

understanding of the flow. An attractive property of CFD is that full volumetric information

is available and issues regarding access do not arise. This allows analysis of regions of the flow

not available from experimental data. It is in this complimentary spirit that CFD is used in the

present work. An overview of the governing equations of CFD are given in Section 3.1 along

with the particular methodologies adopted in this thesis, namely: Unsteady Reynolds-Averaged

Navier-Stokes (RANS) and Large Eddy Simulation (LES). In order to solve the governing equa-

tions a suitable computer code is required. During this project both in-house (LULES and Delta)

and commercial (Fluent) CFD codes were utilised, details of which are provided in Section 3.2.

Other computational details, e.g. boundary conditions, are discussed in Section 3.4.1. The suit-

ability and quality of the computational mesh used to approximate the governing equations exerts

an important influence on the success of any CFD prediction, hence the topic of mesh generation

is covered in Section 3.4.

3.1 CFD Methodology

The motion of all single phase, single species fluids is fully described by a set of coupled, non-

linear, partial differential equations known as the Navier-Stokes equations, which are generalisa-

tions of the conservation laws of mass (continuity), momentum (Newtons 2nd law) and energy.

For the incompressible, isothermal flows (i.e. constant fluid property flow) studied in this thesis

the continuity equation can be written using Cartesian tensor notation as follows:
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∂uj

∂xj
= 0 (3.1)

and the momentum equations can be written as:

∂ui

∂t
+

∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+
∂τν

ij

∂xj
(3.2)

ui and p are instantaneous values of velocity and static pressure respectively. For Newtonian

fluids the constitutive relationship is chosen to assume a linear relationship between the viscous

stress tensor, τν
ij , and strain rate tensor, Sij :

τν
ij = 2νSij (3.3)

where ν (µ/ρ) is the kinematic fluid viscosity. The strain rate tensor, Sij , is given by:

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(3.4)

In general the Navier-Stokes equations cannot be solved analytically and this must thus be

accomplished numerically. This approach is known as Computational Fluid Dynamics (CFD),

in which the continuous governing equations are discretised in both time (∆t) and space (∆xi)

to produce a system of linear algebraic equations which can then be solved numerically on a

computer. In order to achieve a complete and accurate realisation of a turbulent flow the spatial

and temporal discretisation employed must be sufficient to resolve the Kolmogorov length (η) and

time (τη) scales respectively as these represent the smallest dynamically active scales [88]. This is

known as Direct Numerical Simulation (DNS) and is, in principal, the most straightforward CFD

methodology as no approximation, other than numerical discretisation, is involved. In practice,

however, DNS is rarely a viable approach as high Re turbulent flows contain an extremely

broad range of length and timescales that can only be fully resolved at considerable, and often

prohibitive, computational expense. For example, the ratio of the most energetic lengthscale, `0,

to that of the smallest dynamically active lengthscale, η, is [88]:

`0
η

= O(Re3/4) (3.5)
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Since turbulent flow is always 3D, numerical mesh sizes will be proportional to Re9/4. Clearly,

for the engineering flows considered in this thesis with typical Re of O[104− 105] (see Table 2.2)

DNS is not realistic given current and near future computing power.

In order to overcome the restrictions imposed by DNS it is necessary to reduce the number

of computational operations such that the dynamics of all the scales of motion do not have to

be calculated directly. This requires the introduction of a new (coarser) level of description of

the flow and a decision as to which scales will represented directly (numerically resolved) and

which will not. In practice, Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simula-

tion (LES) methodologies are two widely used and well established means of providing a more

economical alternative to DNS. They are the subject of the following subsections.

3.1.1 Unsteady Reynolds-Averaged Navier-Stokes Methods

The most straightforward method of reducing the number of computational operations required

in a turbulent flow calculation is to compute only a few statistically averaged properties of the

solution directly rather than attempt to resolve all details of the instantaneous flow. This is

achieved by decomposing each instantaneous variable, φ(xi, t), of the turbulent system into the

sum of a statistical average, 〈φ(xi, t)〉, and a fluctuation, φ′(xi, t), about that average. Such an

operation is known as Reynolds decomposition and is expressed mathematically as:

φ(xi, t) = 〈φ(xi, t)〉+ φ′(xi, t) (3.6)

Note that at this stage the statistical average 〈 〉 is allowed to depend on time. This implies

the averaging is ensemble averaging over many repeated realisations of the same flow. In many

instances, this average can be assumed to be independent of time (statistically stationary flow),

or it may be further decomposed into a time independent part and a coherent time-dependent

part not correlated with the fluctuating part. These represent traditional RANS and URANS

formulations as described below.

The Reynolds-Averaged form of the governing equations is obtained by substituting Equation

3.6 for ui and p into Equations 3.1 and 3.2 and averaging, which gives:

∂〈uj〉
∂xj

= 0 (3.7)

∂〈ui〉
∂t

+
∂

∂xj
(〈ui〉〈uj〉) = −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

[
〈τνt

ij 〉 − 〈u′iu′j〉
]

(3.8)
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The additional terms appearing in Equation 3.8, −〈u′iu′j〉, are known as the Reynolds stresses and

are the components of a second-order, symmetric tensor containing in general 6 independent un-

knowns [7]. The elements along the leading diagonal are referred to as turbulent normal stresses,

whilst the off-diagonal elements are turbulent shear stresses. The presence of the Reynolds

stresses means that the conservation equations are not closed, i.e. they contain more variables

than equations. To obtain closure the Reynolds stresses are determined from a turbulence model,

either via the eddy-viscosity hypothesis or more directly from modelled Reynolds-stress trans-

port (RST) equations. Both approaches are considered in Sections 3.1.1.1 and 3.1.1.2 respectively.

As noted above, the form of the governing equations in Equations 3.7 and 3.8 is relevant to

both RANS and URANS formulations. As pointed out by Wegner et al. [45], the application

of RANS-based methods to statistically unsteady flows is still a matter of fundamental debate.

Durbin [89] has stated that one criterion allowing valid use of URANS decomposition is that

the temporal spectrum should contain a very narrow spike, representing a periodical or coherent

unsteadiness which is not correlated with the turbulent (broadband) unsteadiness at the same

frequency. This then allows a form of triple decomposition to be used:

φ(xi, t) = φ(xi) + φ̂(xi, t)︸ ︷︷ ︸
〈φ(xi,t)〉

+φ′(xi, t) (3.9)

where φ(xi) represents the long-time statistical average which is independent of time, φ̂(xi, t)

represents the coherent (perhaps periodic) unsteadiness and φ′(xi, t) is the broadband (incoher-

ent) turbulent unsteadiness. The source of the unsteadiness is unimportant and may be imposed

externally, as in rotor-stator interactions; or it can be internally self-generated unsteadiness, as

in vortex shedding. It is more important that the unsteadiness is of a deterministic nature (and

not correlated with φ′(xi, t)) for URANS-based methods to be applied successfully. Flows which

do not exhibit a spike in the temporal spectrum, are more likely to be statistically stationary and

the ensemble average is not a function of time [89]. In this case, even if the URANS equations

are solved, they should produce a steady solution despite the inclusion of a time-dependent term

and an appropriate definition for the statistical mean, 〈φ(xi, t)〉, used in Equation 3.6 is then the

temporal mean [90], φ(xi), given as:

〈φ(xi, t)〉 ⇒ φ(xi) = lim
T→∞

1
T

∫ t+T

t
φ(xi, t)dt (3.10)

where T is the averaging interval which should be large enough to eliminate the effects of the fluc-

tuations. Clearly, where it is known that no coherent unsteady component exists, a steady RANS
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formulation, in which the time-dependent term is omitted from the governing equations, is justi-

fied on the basis of avoiding unnecessary computational expense. For statistically unsteady flows

Reynolds averaging is not synonymous with time-averaging [91] and a time dependent solution

is required to ensure any potentially present coherent motions are resolved. This is highlighted

in simulations over a wall-mounted cube performed by Iaccarino et al. [91] using both steady

and unsteady RANS formulations. The URANS calculations were found to be in much better

agreement with experiment, particularly in regard to the size of the recirculation area in the wake

of the cube which was overpredicted by 100% in the RANS calculations. Durbin [89] attributes

this difference due to the omission of the coherent spike from the mean flow (due to strong vortex

shedding being present in the cube flow).

One contentious issue regarding the URANS approach is whether there should be a ‘spectral

gap’ between any coherent unsteadiness spikes and the broadband turbulent contributions to the

spectrum, or alternatively, an appropriately significant difference in time scales [48]. According

to Durbin [89], this is not required because it is based on an insistence that Reynolds averaging

equals temporal averaging which it does not. Wegner et al. [45] further point out that this

insistence would require the averaging period, T , to be much smaller than the timescale of the

coherent unsteady motion and at the same time orders of magnitude larger than the timescale

range of all turbulent fluctuations. A better view of URANS validity is perhaps that it is appro-

priate when coherent and turbulent unsteady components are weakly correlated. Two motions

will be well correlated if they share similar time and length scales. Hence even if there is no

spectral gap (motions share similar timescales), if their dominant spatial scales are not closely

comparable, the URANS approach should still be acceptable. Further, with weak correlation,

the turbulence models which have been developed and calibrated in statistically stationary flows

may well still perform adequately in the presence of uncorrelated coherent unsteadiness. Of

course if the correlation is not weak, the inverse of these statements holds. For flows in which

the coherent unsteadiness is due to internal instabilities the so-created vortical structures can

sometimes share similar time and length scales to the energetic turbulent scales and a substantial

amount of interaction may occur [90]. For example, the unresolved fluctuating term, φ′(xi, t), in

Equation 3.6 may contain a contribution due to a change in position and strength of a coherent

vortical structure (i.e. correlated with φ̂i(xi, t)) and exhibit significant energy at the coherent

shedding frequency [89].

3.1.1.1 Turbulence Closure - k − ε Model

The k−ε turbulence model represents the most widely used RANS turbulent closure and is based

on the eddy-viscosity hypothesis, first introduced by Boussinesq [92], which is mathematically

analogous to the stress-strain relation for a Newtonian fluid given in Equation 3.3. The intrinsic

assumption of the hypothesis is that the level of the anisotropy of the Reynolds stresses (−〈u′iu′j〉+
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2
3δijk) [7] is proportional to the mean strain rate. The specific assumption can be written:

−〈u′iu′j〉 = 2νt〈Sij〉 − 2
3
δijk = 〈τνt

ij 〉 −
2
3
δijk (3.11)

where the constant of proportionality, νt, is referred to as the kinematic eddy-viscosity and k

is the turbulent kinetic energy which is equal to half the trace of the Reynolds stress tensor,

k = 1
2〈u′iu′i〉 [7]. Incorporating the eddy-viscosity hypothesis into the mean-momentum equations

(i.e. substitution of Equation 3.11 into Equation 3.8) gives:

∂〈ui〉
∂t

+
∂

∂xj
(〈ui〉〈uj〉) = −1

ρ

∂〈p∗〉
∂xi

+
∂〈τνeff

ij 〉
∂xj

(3.12)

where νeff is the effective viscosity, equal to the sum of kinematic and eddy viscosities and 〈p∗〉
is a modified mean pressure term which includes the isotropic stress contribution.

〈p∗〉 = 〈p〉+
2
3
k (3.13)

Note that Equation 3.12 has been written in a form suitable for both RANS and URANS. For

RANS ∂〈ui〉/∂t = ∂ui/∂t = 0, for URANS ∂〈ui〉/∂t = ∂ûi/∂t. This practice is followed in all

equations in Section 3.1.1.1. Unlike kinematic viscosity, ν, which is a fluid property and remains

constant everywhere under isothermal conditions, νt is a flow property which varies from point

to point and needs to be specified. Using dimensional analysis an appropriate form for νt is:

νt = Cµ
k2

ε
(3.14)

where ε is the dissipation rate of turbulent kinetic energy and Cµ is an empirical constant defined

in Table 3.1. Although it is possible to derive exact transport equations for k and ε (see, for

example Smith et al. [17]) these include many additional unknowns that require further modelling

assumptions. For high Re flow far removed from the near-wall region, two modelled equations

for k and ε, which form the standard k-ε, are given by Launder and Spalding [93] as:

∂k

∂t
+

∂

∂xj
(〈uj〉k) =

∂

∂xj

(
νt

σk

∂k

∂xj

)
+ Pk − ε (3.15)

∂ε

∂t
+

∂

∂xj
(〈uj〉ε) =

∂

∂xj

(
νt

σε

∂ε

∂xj

)
+
ε

k
(Cε1Pk − Cε2ε) (3.16)
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where Cµ, Cε1, Cε2, σk and σε are empirical constant identified by Launder and Spalding [93]

and given in Table 3.1. The production of turbulent kinetic energy, Pk, is given by:

Pk = 2νt〈Sij〉〈Sij〉 ≥ 0 (3.17)

Cµ Cε1 Cε2 σk σε

0.09 1.44 1.92 1.0 1.3

Table 3.1: Standard k − ε turbulence model coefficients [93]

In the presence of a wall the turbulent stresses fall rapidly to zero and the flow is strongly

influenced by molecular viscous stresses. The standard k − ε model described above assumes a

high turbulent Re (νt >> ν) and cannot capture these effects. Low Re variants of the k−ε model

do exist (for example Jones and Launder [94]), however, they require a large number of near wall

cells due to large gradients in both velocity and turbulence. An alternative to this is retention

of the high Re model and the use of wall-functions which are a collection of semi-empirical

formulae that link the solution variables at the wall-adjacent cells with relevant quantities on the

wall (i.e. the wall shear stress). In order to apply wall-functions successfully it is necessary for

the wall-adjacent cells to be located within the fully-turbulent region of the boundary layer. In

the wall-function approach a transport equation for k (Equation 3.15) is solved throughout the

entire computational domain including the wall-adjacent cells but the value of ε is fixed in these

wall adjacent cells on the basis of the local equilibrium hypothesis [7].

εP =
C

3/4
µ k

3/2
P

κyP

(3.18)

where the subscript P refers to wall-adjacent values and κ is the von Karman constant (taken to

be ≈ 0.41). A modification to the production of turbulent kinetic energy, Pk, in Equation 3.15

is required that is consistent with the log-law assumption and the local equilibrium hypothesis

and an appropriate form is:

Pk =
C

1/2
µ kP〈uP〉
yPln (Ey∗)

(3.19)

where y∗ is a non-dimensional near-wall distance given by:

y∗ =
C

1/4
µ k

1/2
P yP

ν
(3.20)
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Although the k − ε turbulence model is widely used, there are a number of deficiencies arising

from both the intrinsic and specific assumptions in the eddy-viscosity hypothesis that have been

identified by numerous authors (see, for example, Pope [7] and Smith et al. [17]). The majority

of these stem from the use of an isotropic eddy viscosity and an invariant Cµ (same for all flows

and all stress components) coefficient in Equation 3.14. This requires, in an analogous manner to

the isotropic laminar viscosity, that the principal axes of the anisotropic Reynolds stress tensor

and mean rate-of-strain tensor coincide. Pope [7] has shown that even in simple homogeneous

turbulent shear flow the normal Reynolds stresses may be significantly different from each other

despite the normal rates of strain being zero (〈S11〉 = 〈S22〉 = 〈S33〉 = 0) and hence a consider-

able misalignment of principal axes exists. Moreover, the existence of non-zero Reynolds-stress

anisotropies in the presence of zero local strain rates is also possible in real flows due to the

prior history of straining to which the turbulence has been subjected. These anisotropies decay

slowly on the turbulence timescale (τ = k/ε) and are not properly described by the eddy-viscosity

hypothesis. A further requirement of alignment of principal axes and an algebraic stress/strain

relation is that shear stresses respond immediately to changes in the mean rate of strain. In

simple laminar flows the ratio of the molecular timescales to shear timescales is very small and

molecular motions adjust rapidly to imposed straining. However, in turbulent shear flow the

turbulence timescale and mean flow timescales are of the same order implying that Reynolds

stresses take time to adjust to the imposed rates of strain. Finally, in complex flows, forces

that act in preferred directions, for example the pressure gradients which balance the centripetal

accelerations due to the streamline curvature present in the swirling flows studied in this thesis,

exert a large influence on the turbulent structures. In such cases the fact that both shear and

normal stresses should be calculated from the same eddy-viscosity is invalid as individual stress

components may develop quite differently in the flowfield [17].

Despite the above shortcomings associated with the linear eddy-viscosity hypothesis the review of

the available literature presented in Section 1.3.1 found that it has been utilised, exclusively with

the k − ε turbulent model, in the limited number of URANS-based studies dedicated to investi-

gating time-dependent swirling flows. Although there are numerous modelling alternatives, such

as non-linear eddy-viscosity models, which attempt to eliminate the deficiencies associated with

the linear eddy-viscosity model discussed above; none of these, as yet and to the knowledge of the

author, have been applied to unsteady swirl flows (the alternative option of adopting Reynolds

Stress Transport closure has in general been adopted, see below). Probably the most striking

(and surprising) aspect of the studies reviewed in Section 1.3.1 was either the complete failure or

remarkable success of the model in predicting CS such as the PVC. These findings highlight the

uncertainty as to whether or not URANS-based approaches founded on the linear eddy-viscosity

can be recommended for the types of flows characteristic of gas turbine swirl injectors. It is
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for these reasons that it is felt that further investigation utilising both a linear eddy-viscosity

hypothesis and the k − ε turbulence model is warranted.

3.1.1.2 Turbulence Closure - Reynolds-Stress Transport Model

A Reynolds Stress Transport (RST) closure provides a modelled transport equation for each

of the non-zero Reynolds stresses, 〈u′iu′j〉, abandoning the isotropic eddy-viscosity hypothesis of

Equation 3.11. Additional transport equations for k and ε, similar to those given in Equations

3.15 and 3.16, are also solved to implement boundary conditions and provide a timescale of

the turbulence. The difference is that the transport equations for k and ε used in RST models

calculate the production of turbulent kinetic energy, Pk, directly from the Reynolds-stresses

(Pk = 〈u′iu′j〉∂〈ui〉/∂xj) rather than from 2νt〈Sij〉〈Sij〉 as in Equation 3.17. The ε turbulent

transport (diffusion) term may also involve an anisotropic diffusivity as opposed to the scalar

diffusivity (νt/σk) used in Equation 3.16. Unlike models founded on the eddy-viscosity hypothesis,

the RST model correctly reflects the fact that individual stresses are generated, dissipated and

transported at different rates. It is able to predict anisotropy in the flow and is significantly more

sensitive to streamline curvature than the standard k − ε model. The modelled Reynolds-stress

transport equations, which are discussed in the following, provide simulations of the dissipative,

diffusive and redistributive processes appearing in the exact equations for 〈u′iu′j〉. For high Re

flows removed from the near-wall region these can be written as [7]:

∂

∂t
(〈u′iu′j〉)︸ ︷︷ ︸

transient

+
∂

∂xk
(〈uk〉〈u′iu′j〉)

︸ ︷︷ ︸
Cij

= −
[
〈u′ju′k〉

∂〈ui〉
∂xk

+ 〈u′iu′k〉
∂〈uj〉
∂xk

]

︸ ︷︷ ︸
Pij

−εij + φij − dijk (3.21)

The transient term, mean flow convection, Cij , and the production tensor, Pij , are in closed

form. However, models for the dissipation tensor, εij , the pressure-rate-of-strain tensor, φij , and

the diffusion tensor, dijk are required. For high Re flows far removed from the near-wall region

εij is modelled assuming the dissipative motions to be isotropic [95].

εij =
2
3
δijε (3.22)

The diffusion tensor, dijk, is generally modelled by the gradient-diffusion hypothesis proposed

by Daly and Harlow [96] which uses the Reynolds-stress tensor to define an anisotropic diffusion

coefficient:

dijk = Cs
k

ε
〈u′ku′l〉

∂〈u′iu′j〉
∂xl

(3.23)
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The classical approach to modelling the pressure-rate-of-strain tensor, φij , uses the following

decomposition [7]:

φij = φij,1 + φij,2 + φij,w (3.24)

The first term in Equation 3.24, φij,1, is often referred to as the slow-pressure term and is usually

modelled based on Rotta’s proposal [97], which may be written as:

φij,1 = −C1

( ε
k

)(
〈u′iu′j〉 −

2
3
δijk

)
(3.25)

The sign of φij,1 is always such as to promote a change towards isotropy. The second term in

Equation 3.24, φij,2, is often referred to as the rapid-pressure terms as it responds immediately

to changes in the mean velocity gradient. According to Launder [98] φij,2 can be written as:

φij,2 = −C2

[(
Pij − 1

3
δijPkk

)
−

(
Cij − 1

3
δijCkk

)]
(3.26)

The last term in Equation 3.24, φij,w, is also know as the wall reflection term and is given as

[98]:

φij,w = C ′1
ε

k

(
〈u′ku′m〉nknmδij − 3

2
〈u′iu′k〉njnk − 3

2
〈u′ju′k〉nink

)
k3/2

C`εd

+ C ′2

(
φκm,2nknmδij − 3

2
φik,2njnk − 3

2
φjk,2nink

)
k3/2

C`εd
(3.27)

where C` = C
3/4
µ /κ, nk is the xk component of the unit normal to the wall, d is the normal

distance to the wall and κ = 0.41. The constants appearing above are summarised below in

Table 3.2. For completeness, constants used in k and ε transport equations are also included.

C1 C2 C ′1 C ′2 Cs Cµ Cε1 Cε2 σk σε

1.8 0.6 0.5 0.3 0.09 0.22 1.44 1.92 1.0 1.3

Table 3.2: Reynolds-Stress Turbulence Model Coefficients
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In general, when the turbulent kinetic energy is needed, it is obtained by taking the trace of the

Reynolds stress tensor, i.e. k = 1
2〈u′iu′j〉. However, a transport equation for k (Equation 3.15) is

sometimes solved in order to implement the wall boundary conditions for the individual Reynolds

stresses. This approach has been adopted for RST calculations presented in Chapter 6 with the

near-wall anisotropy of the Reynolds stress fixed at wall adjacent cells according to the following

[99]:

〈u′2τ 〉
k

= 1.098
〈u′2η 〉
k

= 0.47
〈u′2λ 〉
k

= 0.655
〈u′2τ u′2η 〉

k
= 0.255 (3.28)

The notation used above refers to a wall-local coordinate system where τ is the tangential coor-

dinate, η is the normal coordinate and λ is the binomial coordinate as shown in Figure 3.1. In a

similar way as described for the high-Re k − ε model in Section 3.1.1.1, in the vicinity of a wall

a value of εP is specified for all wall-adjacent cells according to Equation 3.18.

3.1.2 Large Eddy Simulation (LES) Method

Unlike the RANS-based methods of Section 3.1.1 which are based on ensemble or time-averaging

at a point, LES employs a low-pass spatial filter to reduce the number of computational operations

required for turbulent flow calculations. The philosophy behind LES is founded on the observation

that whilst large-scale turbulent motions are highly anisotropic and flow-dependent, small-scale

ones are more universal, tending towards isotropy [7]. The purpose of the spatial filter is to

separate instantaneous variables, φ(xi, t), into filtered, φ̃(xi, t), and residual, φ′(xi, t) components,

which is expressed mathematically as:

φ(xi, t) = φ̃(xi, t) + φ′(xi, t) (3.29)

In order to perform the decomposition of the primitive variables in Equation 3.29 a filter must

be used. For any space-time variable, φ(xi, t), the filtering procedure is defined by:

φ̃(xi, t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
φ(ξi, t)G(xi − ξi)dξ1dξ2dξ3 (3.30)

where the convolution kernel, G, is characteristic of the filter employed. In practice the box or top-

hat filter, the Gaussian filter and the spectral or sharp cutoff filter [7] are used. Filtering in LES

can be explicit or implicit. When explicit, all primitive variables are convolved by G, according

to Equation 3.30. In the latter case, the role of the filter is performed by the computational grid

and the resulting filter has the form of the box filter:
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G(xi − ξi) =





1
∆ for −∆/2 ≤ xi − ξi ≤ ∆/2

0 otherwise
(3.31)

where ∆ is related to the local mesh spacing at xi. The box filter is described in physical space

and the filtered variable is interpreted as a volume average, where ∆ is, for example, the cube

root of the cell volume (∆x∆y∆z)1/3. Eddies larger than ∆ are thus the resolved scales which

are computed directly and ones smaller than ∆ are the residual, or sub-grid, scales and require

modelling. Filtered versions of the governing equations (Equations 3.1 and 3.2) are:

∂ũi

∂xi
= 0 (3.32)

∂ũi

∂t
+

∂

∂xj
(ũiũj) = −1

ρ

∂p̃

∂xi
+

∂

∂xj

[
τ̃ν
ij − ũ′iu

′
j

]
(3.33)

The additional term −(ũiuj − ũiũj) appearing in Equation 3.33 is known as the residual-stress

tensor and is a result of the nonlinear convective term in Equation 3.2. In a similar way to

the RANS equations given in Section 3.1.1 its presence means that the filtered versions of the

governing equations are not closed and some modelling approximations are required and are

considered in the following section.

3.1.2.1 Sub-Grid Scale Modeling

In an analogous manner to the Boussinesq hypothesis give in Equation 3.11, the Smagorinsky

model [100] relates the anisotropic residual-stress tensor to the filtered rate of strain in the

following way:

−ũ′iu′j = −(ũiuj − ũiũj) = τ̃
νsgs

ij (3.34)

τ̃
νsgs

ij = 2νsgsS̃ij − 2
3
δijksgs (3.35)

where νsgs and ksgs (= 1/2〈ũ′iu′i〉) are the eddy-viscosity and the kinetic energy of the residual

motions respectively and S̃ij is the filtered rate of strain defined as:

S̃ij =
1
2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
(3.36)
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By analogy to the mixing-length hypothesis, νsgs is modelled as:

νsgs = (Cs∆)2S̃ (3.37)

where S̃ is the characteristic filtered rate of strain given as:

S̃ =
√

2S̃ijS̃ij (3.38)

The length scale in the νsgs is taken to be proportional to the filter width, ∆ = (∆x∆y∆z)1/3,

where the constant of proportionality is the coefficient, Cs.

One difficulty or weakness of implementing the simple Smagorinsky model is that Cs remains

constant throughout the entire computational domain. A theoretical value of Cs can be calcu-

lated from an assumption of local equilibrium as described by Sagaut [88], however, in practice

it is highly flow dependent and is adjusted accordingly. For example, Clark et al. [101] used

Cs = 0.2 for a case of isotropic homogeneous turbulence, while Deardorff [102] used Cs = 0.1 for

a plane channel flow. The swirl flow simulation of Tang et al. [53], which is of more relevance

to this thesis, used Cs = 0.1. This was based on previous observations by Yang and McGuirk

[103] who found that the more advanced dynamic model of Germano et al. [104] did not provide

any better representation of the swirl effects on turbulence. A similar conclusion was reached

by Garcia-Villalba [105], also using Cs = 0.1 after comparing mean and turbulence statistics

of swirling flows from both approaches. Based on these studies Cs = 0.1 is used throughout

this thesis. An explanation of the good performance in general of such a simple model as the

standard Smagorinsky model is provided by Pope [7], who has shown from work originated in

Lilly [106] that, within inertial sub-range, in which the mean transfer of energy to the residual

scales is balanced by dissipation, `s does in fact scale with ∆. If it is ensured that ∆ lies in the

inertial sub-range (this is determined mainly by the Re of the flow and the mesh density) then

the Smagorinsky model should be sufficient to obtain satisfactory results. Further consideration

is given to this topic in Section 5.1.3.

In the presence of a solid boundary, the SGS eddy viscosity should vanish to zero. Since the

Smagorinsky model does not display this behaviour it is necessary to apply corrections such as

the van Driest damping function:

Cs = Cs0

(
1− e

−y+

A+

)
(3.39)
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where y+ is the non-dimensional distance from the wall and is defined as:

y+ =
uτyP

ν
(3.40)

and A+ is a constant usually taken to be approximately 25. Incorporating the Smagorinsky

model into the filtered momentum equations (i.e. substitution of Equation 3.37 into Equation

3.33) gives:

∂ũi

∂t
+

∂

∂xj
(ũiũj) = −1

ρ

∂p̃∗

∂xi
+
∂τ̃νeff

ij

∂xj
(3.41)

where νeff is the sum of sub-grid and kinematic viscosities, i.e. νeff = ν + νsgs and p̃∗ is the

modified filtered pressure which includes the isotropic residual stress.

p̃∗ = p̃+
2
3
ksgs (3.42)

3.2 Numerical Implementation

The previous sections of this chapter has described in detail the mathematical background of

CFD and in particular RANS and LES methodologies used in the work contained in this the-

sis. In order to apply these approaches to a particular flow problem a suitable computer code

is required. During this project both in-house and commercial CFD codes were utilised: for

URANS predictions the in-house code Delta and the commercial code Fluent were applied, for

LES predictions, the in-house code LULES was applied. The following subsections describe the

pertinent aspects of each code used.

3.2.1 LULES CFD Code

LULES is a structured multi-block LES code developed at Loughborough University which em-

ploys a finite volume discretisation to solve spatially filtered versions of the governing equations.

The suitability of an incompressible, isothermal version of the code in respect to swirl flow ap-

plications has been demonstrated previously by Dunham et al. [50] and Tang et al. [107, 53].

Based on these previous successful applications it was used for all the LES calculations presented

in this thesis. It should be noted that LULES does not included any grid generation capabilities

or post-processing routines. In order to generate the computational domain the commercial soft-

ware ICEMCFD was used and the output converted to the native format required by LULES.

Post-processing routines were executed using an in-house Fortran computer code. In order to

reduce the number of CPU hours required for numerical simulation a parallelised version of the
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code was used during this thesis. Only a brief overview of the code will be provided here, a more

detailed assessment can be found in Tang et al. [53, 108] and Wang [109].

The code is based on an orthogonal coordinate system formed by rotating or translating a 2D

curvilinear orthogonal mesh in the 3rd co-ordinate direction. The velocity vector is decomposed

into grid-oriented (contravariant) physical components. In order to avoid pressure-velocity decou-

pling, a staggered gird arrangement is used which avoids the need for any pressure smoothing to

prevent checkerboard oscillations and also ensures that velocities are stored at the exact locations

required for the calculation of cell face flux terms. A schematic of the staggered grid arrangement

used by LULES is shown in Figure 3.2 showing a computational (transformed) space view in 2D.

Filtering is achieved implicitly through the spatial resolution of the computational domain and

velocities at the corresponding grid points are interpreted as volume averages. The resulting

filter has therefore the form of a top-hat filter described in Equation 3.31. The instantaneous

filtered governing equations given in Cartesian tensor notation, xj and ũj , in Equations 3.32 and

3.33, are converted to general orthogonal coordinates using transformations as proposed by Pope

[110]. Retaining the notation adopted by Pope [110], Tang et al. [108] give the continuity and

momentum equations as:

∇(i)ũ(i) = 0 (3.43)

and:

∂ũ(j)

∂t
+∇(i)

[
ũ(i)ũ(j) + τ̃νeff

(ij)

]
= −1

ρ

∂p̃

∂x(j)
+Hi(j)

[
ũ(i)ũ(j) + τ̃νeff

(ii)

]
−Hj(i)

[
ũ(i)ũ(j) + τ̃νeff

(ij)

]
(3.44)

where

τ̃νeff

(ij) = −νeff

(
∂ũ(i)

∂x(j)
+
∂ũ(j)

∂x(i)
− ũ(i)Hi(j)− ũ(j)Hj(i) + 2δij ũ(l)Hj(l)

)
(3.45)

Definitions of the vector operators and the co-ordinate curvature terms, Hi, are given below

for the particular orthogonal system used in LULES. The contribution of the sub-grid scale mo-

tions to the effective kinematic viscosity, νeff, is obtained from the Smagorinsky model detailed

in Equation 3.37, however, the filtered rate of strain, S̃ij , now becomes:

S̃ij =
1
2

(
∂ũ(i)

∂x(j)
+
∂ũ(j)

∂x(j)
− ũ(i)Hi(j)− ũ(j)Hj(i) + 2δij ũ(l)Hi(l)

)
(3.46)
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In the notation used x(i) represents physical displacements measured along curvilinear coordinates

lines and is related to a Cartesian displacements (dxi) between the same two grid points via:

(dxi)2 = (hidx
i)2 = (dx(i))

2 (3.47)

where dxi represents the orthogonal coordinate system and hi are scale factors obtained from the

metric tensor, gij , which relates distances in the orthogonal coordinate system to the Cartesian

system. Similarly, ũ(i) represents the physical components of a filtered contravariant vector, ũi,

in the direction of the coordinate lines and is determined from:

ũ(i) = hiũ
i (3.48)

The divergence operator, ∇(i), and the coordinate curvature terms, Hi(j) are given as:

∇(i) =
hi

|h|
∂

∂x(i)

( |h|
hi

)
(3.49)

Hi(j) =
1

hihj

∂hi

∂xj
(3.50)

where |h| is the product of scale factors, representing the volume ratio between curvilinear and

Cartesian coordinate systems. The coordinate variation terms, Hi(j), represent the inverse of

the radius of curvature of the j coordinate line and the suffix i is excluded from the summation

convention. In the present code, the 3D computational domain is generated by either translating

or rotating 2D (x1, x2) orthogonal grids. This results in fewer geometric quantities which only

need to be calculated in the x1/x2 plane. The non-zero Hi(j) terms in the present case are

therefore H1(2), H2(1), H3(1) and H3(2), which can be computed numerically as follows:

H1(2) =
∆xj+1 −∆xj

∆xj+ 1
2
∆yj+ 1

2

(3.51)

H2(1) =
∆yi+1 −∆yi

∆xi+ 1
2
∆yi+ 1

2

(3.52)

H3(1) =
∆ri+1 −∆ri
∆xi+ 1

2
∆ri+ 1

2

(3.53)

91



Numerical Methods and Computational Implementation

H3(2) =
∆rj+1 −∆rj
∆yj+ 1

2
∆rj+ 1

2

(3.54)

where r denotes radius when the third dimension is rotated as is the present case.

An essential requirement of any numerical scheme used for LES is that it is both conserva-

tive and non-dissipative of mass, momentum and kinetic energy [108]. This is achieved in the

present case using second-order central differencing for the spatial discretisation of all variables,

which avoids difficulties associated with higher-order upwind or upwind-biased schemes which

are difficult to implement and can produce too much numerical dissipation [111]. Temporal dis-

cretisation is also second-order accurate and uses an explicit Adams-Bashforth scheme which is

described in Tang et al. [108] as:

̂̃ui − ũn
i

∆t
=

3
2
ψn

i −
1
2
ψn−1

i +
1
2ρ
∂p̃n−1

∂xi
(3.55)

∇2p̃n =
2ρ

3∆t
∂̂̃uj

∂xj
(3.56)

ũn+1
i − ̂̃ui

∆t
= − 3

2ρ
∂p̃n

∂xi
(3.57)

where ̂̃ui is the intermediate velocity and ψi denotes the contribution of convective and diffusive

terms. Equation 3.55 is solved first to get the intermediate velocity, ̂̃ui, then the Poisson equation

for pressure (Equation 3.56), derived by imposing the divergence free condition for the new

velocity field at n + 1 time-level is solved to obtain pressures, finally the velocity field at the

n+ 1 time-level is obtained from Equation 3.57. To ensure the numerical stability of the explicit

Adams-Bashforth scheme the time step is restricted by the usual explicit method constraint that

information propagates less than one cell spacing per time step. Both the CFL and DFS number

should be less than unity and are:

CFL = ∆tmax

( |ux|
∆x

+
|uy|
∆y

+
|uz|
∆z

)
(3.58)

DFS = ∆tmaxνeff

(
1

∆x2
+

1
∆y2

+
1

∆z2

)
(3.59)
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The solution of the Poisson equation for pressure plays a vital role in computational efficiency,

consuming up to 80% of the total CPU time [53]. To accelerate the solution of the pressure

equation a multi-grid V-cycle is used which has been demonstrated by Tang et al. [108] to

achieve a reduction of approximately 50% in computational effort in the calculation of a 180◦

bend square duct flow. The convergence criterion of the code is that based on the residual of the

pressure equation defined as:

φ =

√√√√∑

ii

(
b+

∑

nb

AnbPnb −ApPp

)2

ii

(3.60)

(where nb=E,W,N,S,R,L and ii runs over all of the computational nodes). This residual is iter-

ated to be less than at the end of each time step.

The boundary conditions used in LULES are fairly standard and include inflow, outflow, centre-

line, periodic and solid wall types. In order to implement the boundary conditions an additional

row of halo cells is automatically generated by the solver through a linear extrapolation.

Inflow Condition: At inflow planes, a specified velocity condition is used, which requires

values of the three velocity components at each time step. In the present case this is achieved

by specifying uniform profiles of velocity such that the conservation of mass and tangential mo-

mentum flow rate is ensured. A random perturbation, obtained from a normal distribution with

zero mean and unit variance and then scaled by a specified level of turbulence intensity, is then

superimposed on the uniform velocity components. Although such a method is not representative

of real turbulence (the disturbances have no correlation in space or time, usually exhibit a flat

spectrum similar to that of white noise and hence will decay rapidly as they pass through the

solution domain) justification for this approach, along with further details regarding the calcu-

lation of appropriate boundary values, will be presented in Section 3.4.1.

Outflow Condition: At outlet boundaries a convective outflow condition is applied [109]:

∂ũi

∂t
+ Ũ

∂ũi

∂x
= 0 (3.61)

where Ũ is the bulk velocity defined at the outflow plane as:

Ũ =
1
A

∫
ρũn

i · d ~A (3.62)
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In practice the outflow boundary condition is applied at every timestep and carried out in two

stages to be compatible with the Adams-Bashforth scheme (Equations 3.55 to 3.57):

̂̃ui − ũn
i

∆t
− 3

2
Ũ
∂ũn

i

∂x
+

1
2
Ũ
∂ũn−1

i

∂x
= 0 (3.63)

ũn+1
i − ̂̃ui

∆t
= 0 (3.64)

To ensure overall mass conservation a velocity scaling is used which is applied after each stage

of the above procedure:

ũi = ũi
ṁin

ṁout
(3.65)

where ṁin and ṁout are inlet and outlet mass flow rates respectively.

Wall: In turbulent wall-bounded flow, as the Re increases and the viscous sub-layer shrinks,

the number of grid points required in LES CFD to resolve the near-wall eddies increases dra-

matically and the mesh resolution for LES approaches that of DNS. In order to avoid this large

computational penalty, it is necessary to apply approximations such as wall-functions. In LULES

the simplest possible approach as proposed by Schumann [112] is implemented. This relies on

a log-law relation between the wall stress and the velocity component at the first grid point

in the near-wall region. The mean wall shear-stress is calculated in an iterative way from the

logarithmic law of the wall and the mean velocity at the nearest mesh point to the wall. The

non-dimensional near-wall distance 〈y+〉 is determined from Equation 3.40 using the currently

available estimate for 〈uτ 〉. The mean wall shear stress is updated using the current estimate of

the mean near-wall velocity, 〈u〉, calculated from:

〈u〉 =
〈uτ 〉
κ

ln(Ey+) (3.66)

where κ = 0.41 and E = 9. The instantaneous wall shear-stress is then calculated by assuming

it to be in phase with the instantaneous velocity, i.e.

τw =
u

〈u〉〈τw〉 (3.67)
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Periodic Conditions and Block Interfaces: The boundary condition treatment for block-

to-block interfaces and periodic boundaries is very similar. With reference to Figure 3.2, the

variables φ(1) and φ(nip1) are not calculated directly but rather solution information is trans-

ferred according to:

φ1 = φni

φ2 = φnip1

The same treatment is applied in the i and k directions.

Centreline Treatment: As mentioned above, 3D computational domains for use by LULES

are generated by either rotating or translating 2D orthogonal grids. During this thesis rotation

was employed in order to create geometries representative of swirl injectors. The result is a polar-

type mesh such as that shown in Figure 3.4. At r/Ds = 0 the mesh collapses to a single point,

resulting in a centreline which requires special treatment. All quantities except for the radial

velocity component are staggered with respect to the centreline, whilst the radial component

itself is collocated on the centerline. For axial velocity and pressure the centreline value (j = 1)

is defined as the mean of the surrounding nodes stored at j = 2 and is computed in the following

way:

φ̃cl =
1
Nk

Nk∑

k=1

φ̃k,j=2 (3.68)

where Nk is the number of circumferential nodes and φ̃cl is the centreline value which is then

used to set explicitly values for the boundary conditions:

φ̃k,j=1 = 2φ̃cl − φ̃k,j=2 (3.69)

The approach used to calculate the radial and tangential velocity component at the centreline

makes use of the fact that there is only one vector at this location, which has to be identical in

each k plane. In order to obtain this vector all neighbouring radial, ũr, and tangential velocities,

ũθ, stored at j = 3 and j = 2 respectively, are transformed into Cartesian components and

averaged to define a single ũy and ũz at the centreline in the following way:
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ũy,cl =
1
Nk

Nk∑

k=1

(−ũθ,k,j=2 sin(θk) + ũr,k,j=3 cos(θ′k))

ũz,cl =
1
Nk

Nk∑

k=1

(ũθ,k,j=2 cos(θk) + ũr,k,j=3 sin(θ′k)) (3.70)

where θk = (2π/Nk)k and θ′k = θk + (π/Nk).

The radial and tangential components at the centreline are then obtained by transforming these

components back into cylindrical components.


 ũr,cl

ũθ,cl


 =


 cos θ sin θ′

− sin θ cos θ′





 ũy,cl

ũz,cl


 (3.71)

Equation 3.69 is then used to define boundary values for ũθ,k,j=1.

3.2.2 Delta CFD Code

Like LULES, Delta is a finite volume CFD code developed at Loughborough University. It is

based on a curvilinear non-orthogonal grid system that allows a wide range of complex geome-

tries to be simulated using a multi-block structured mesh. In its original form, Delta was an

Euler code but was later developed for the computation of compressible turbulent flows using

the standard high-Re k − ε turbulence model as described in Page and McGuirk [113]. More

recent developments include the addition of a low-Re turbulence model to investigate bound-

ary layer relaminarisation [114] and an LES version of the code as described by Veloudis [115].

Since Delta was primarily written to simulate turbulent compressible flows, density-weighted

ensemble-averaged conservation equations are solved for mass and momentum. However, for the

incompressible flows considered in this thesis, the use of density-weighting, often referred to as

Favre-averaging, reduces to conventional Reynolds-averaging [17] as described in Section 3.1.1.

Furthermore, the Cartesian vector basis adopted by Delta results in forms of the governing equa-

tions and transport equation for k and ε as described in Sections 3.1.1 and 3.1.1.1 respectively.

The application of Delta to fully incompressible flows has been demonstrated by Salman et

al. [116], who investigated vortical structures characteristic of lobed mixer devices. An impor-

tant aspect of Delta relevant to the aims of this thesis is that it solves time-dependent forms of

the governing equations. In the discussion regarding the application of URANS-based models to

unsteady flows presented in Section 3.1.1 it was noted that the source of the unsteadiness may

be imposed externally, as in rotor/stator interactions; or it can be spontaneous, self-generated

unsteadiness, as in vortex shedding. Evidence of Delta’s ability to capture self-excited unsteadi-

ness using a standard k− ε turbulence model can be found in Birkby and Page [117]. This study
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focused on underexpanded sonic jets and for Nozzle Pressure Ratios in excess of 6 unsteady solu-

tions were observed (periodically repeating fluctuating pressure fields) with Strouhal numbers in

reasonable agreement with experiment. From the studies mentioned above it is clear that Delta

has previously been extremely successful in simulating a diverse range of flows. These include

vortex dominated flows [116] and flows exhibiting strong unsteadiness [117], both of which are

relevant to this thesis. Based on these previous successes Delta was selected as an suitable re-

search code with which to investigate the application of URANS-based models to statistically

unsteady swirl flows. A comprehensive overview of Delta is provided in an accompanying user’s

guide [118] and details of the numerical scheme can be found in Birkby and Page [117], however,

a brief overview is provided in the following.

For grid generation and input Delta is able to read a number of common formats, for exam-

ple Plot3d and a multi-block neutral format created by the commercial software ICEMCFD, and

convert them to a native format. Post-processing facilities are included which allow full volumet-

ric information of primary flow variables to be exported in Plot3d and Tecplot formats. A parallel

version of Delta is available developed in order to accelerate computation, and full use of this

was made during this project. As Delta adopts a colocated storage, Rhie-Chow [119] smoothing

is used to avoid pressure-velocity decoupling. Delta follows a pressure-correction methodology,

by default, the standard SIMPLE approximation of Patankar and Spalding [120] is used where

a velocity / pressure linkage coefficient is constructed based upon the discretised momentum

equations. In order to limit numerical diffusion errors a second-order accurate upwind spatial

discretisation scheme is used for the convective fluxes in momentum, k and ε transport equa-

tions. The basic numerical scheme is first-order upwind, a higher-order discretisation using the

total variation diminishing (TVD) principle is implemented as an explicit deferred correction

to the basic upwind scheme. This essentially leads to a limited form of the Quadratic Upwind

Interpolation Scheme for Convective Kinetics (QUICK) [121]. All diffusive terms are discretised

using central differencing. A first-order backward Euler implicit method is used for temporal

discretisation. For further details the reader is referred to Birkby et al. [117].

The boundary conditions used in Delta are implemented using two additional rows of halo cells

which are automatically generated by the solver. The boundary conditions used during this the-

sis are described briefly in the following.

Fixed Velocity Inlet: As described in Section 3.2.1, the specification of all velocity com-

ponents is required for this type of boundary condition. For URANS calculations where the

inlet plane is some distance upstream from the region where significant turbulence production

and / or unsteadiness takes place, the most straightforward way is to specify uniform distribu-

tions that ensure integral quantities such as the flow rates of mass and tangential momentum are
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correctly represented and quantities like k and ε assume values reasonable for high Re duct flows.

Outflow Condition: The outflow condition used in Delta for RANS CFD specifies a zero

gradient normal to the boundary for all flow variables, such that:

∂φ

∂n
= 0 (3.72)

where n denotes the normal direction.

Symmetry (Centreline) Conditions: The symmetry boundary condition ensures no flow,

convective or diffusive flux of any quantity across the boundary and can be described by:

un = 0 (3.73)

and

∂φ

∂n
= 0 (3.74)

where n is normal to the symmetry boundary or centreline.

Wall: For the high-Re k− ε model, Delta employs the near-wall treatment described in Section

3.1.1.1.

3.2.3 Fluent CFD Code

Fluent is a well-known finite volume commercial CFD code that provides an extremely broad

range of modelling capabilities. This includes numerous turbulence modelling options, spatial

and temporal discretisation schemes and the ability to simulate both steady and transient flows.

Due to the sheer number of numerical options available within Fluent the interested reader is

referred to the user manual which accompanies the software [99]. Although the version of Flu-

ent (6.3.26) used during this project is a fully unstructured solver all computational grids were

generated in a structured manner as described in Section 3.4.

One of the difficulties of using commercial CFD software for a research based project stems

from the closed-source nature of the code. This can at times raise questions as to whether par-

ticular characteristics of a calculation are to be attributed to the fundamentals of a numerical
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scheme or to the manner in which they are implemented in the commercial code. Despite the

uncertainties arising from closed-source codes a number of the studies ([48, 41, 44]) reviewed in

Section 1.3.1 have utilised commercial software (in these cases CFX) to simulate unsteady swirl

flow using RANS-based approaches. To circumvent these uncertainties an approach was adopted

whereby the numerical schemes and computational parameters of Fluent were configured such

that they matched as closely as possible those used within Delta. Although Fluent was used pri-

marily for the RST calculations presented in this thesis, predictions using the standard high-Re

k − ε turbulence model were also performed. In this way a comparison could be made between

Fluent and Delta results obtained using, in principle, identical turbulence models, boundary con-

ditions, numerical schemes and computational parameters.

The standard high-Re k − ε model used by Fluent is identical to that described in Equations

3.15 and 3.16 of Section 3.1.1.1. The RST model used by Fluent is identical to that described

in Equation 3.21 if the additional terms in Fluent describing production due to buoyancy and

co-ordinate system rotation (which are absent in the present flow) are neglected. The pressure-

rate-of-strain tensor, φij is modelled according to Equations 3.25, 3.26 and 3.27 again ignoring

terms relating to buoyancy and system rotation. To avoid numerical instabilities [99] associated

with the gradient diffusion hypothesis proposed by Daly and Harlow [96] given in Equation 3.23

Fluent use the simplified scalar diffusivity of Lien and Leschziner [122]:

〈u′iu′ju′k〉 =
νt

σrs

∂〈u′iu′j〉
∂xk

(3.75)

where νt is computed from Equation 3.14 and σrs = 0.82, this differs slightly from the standard

Daly Harlow model, but it is not believed to be significant of the flows of interest here.

Fixed velocity inlet, outflow and wall boundary conditions are all modelled in a similar fash-

ion within Fluent as described in Section 3.2.2.

3.2.4 Summary of CFD Codes

The previous subsections have described the CFD codes used during this thesis and their partic-

ular numerical schemes. These details are summarised below in Table 3.3.
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LULES Delta FLUENT

Temporal discretisation Second-order explicit First-order implicit First-order implicit

Adams-Bashforth Euler Euler

Spatial discretisation Central QUICK QUICK

Turbulence / sub-grid model Smagorinsky k − ε k − ε / RST

Pressure-velocity coupling N / A SIMPLE SIMPLE

Table 3.3: Summary of Numerical Schemes

3.3 Computational Set-Up

Geometry definition, mesh generation and boundary condition specification are some of the most

important aspects to consider during a CFD calculation. The following subsections consider each

of these in more detail.

3.3.1 Geometry Considerations

Previous experimental work by Midgley [13] identified the presence of two families of coherent

structures in radial swirler injectors similar to those considered here. These included a low-

frequency precessing vortex core (PVC) oscillation about the centreline of the dump expansion

chamber, and high-frequency shear-layer vortices which originated within the annular swirl duct

and propagated downstream with the bulk flow. In Figure 2.2 the dump expansion chamber is

the region that extends from the datum plane (x = 0.0mm, x/Ds = 0.0) to the downstream

blockage (x = 160mm, x/Ds = 4.25). The exit plane of the annular swirl duct coincides with the

datum plane and extends upstream to x = −52.7mm or x/Ds = −1.4 as shown in Figure 2.4.

Clearly, in order to capture these features in CFD predictions the computational domain must

include the annular swirl duct, the dump expansion chamber and a portion of the exhaust duct.

As shown in Figure 2.4, the modular swirler used in the current experiments consists of 12 radial

slots which impart a swirl component to the initially radial flow before entry to the annular swirl

duct. Conceptually, the most straightforward way of simulating the modular swirler geometry

would be to capture the entire geometry including swirl vanes. Previous computational studies,

for example Lartigue et al. [68] and Wegner et al. [58], have adopted this approach to simulate

a Turbomeca industrial swirl-driven fuel injector using LES (Figure 3.3). These studies also

included a portion of the upstream feed pipe in order to provide realistic inlet conditions to the

radial slots. This approach demands a complex mesh generation process requiring additional

blocks and significantly increases the computational effort. In considering this problem at the

start of the present work, it was realised that a computationally cheaper and sufficiently accurate

alternative would be to begin the calculation at the exit plane of the radial slots. Midgley [13]

has shown from r − θ plane PIV measurements inside the annular swirl duct of a Turbomeca

fuel injector that, although the blockage effects are clearly visible at x/Ds = −0.53 they had
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completely mixed out by x/Ds = −0.43. Further investigations [13] found that the high-frequency

shear-layer vortices that originate in the annular swirl duct do so between x/Ds = −0.43, x/Ds =

−0.27. This evidence suggests that the radial slots do not exert any significant influence on

the formation of the large-scale periodic structures found downstream within the annular swirl

duct. An alternative approach is considered below which is to specify computational domain

inlet velocities (just downstream of the swirler vanes) such that quantities such as mass and

tangential momentum flow rates (and hence the overall swirl number) derived from experimental

measurements are fixed. A number of authors investigating swirl devices with radial entry, such

as: Wang et al. [52], Tang et al. [53], Dunham et al. [50] and Garcia-Villalba et al. [55],

have opted not to model the discrete effects of the radial slots. Despite this simplification the

formation of large-scale unsteady structures within the swirl duct was not hindered, and hence

this simpler approach is adopted here.

3.4 Mesh Generation

In addition to reducing the computational effort, neglecting the radial slots also simplifies the

grid generation procedure. It was mentioned in Section 3.2.1 that the in-house LES code LULES

used here is applicable to 3D geometries formed by rotating a 2D orthogonal grid formed in an

x − r plane. In the present case this imposes no restrictions as the annular swirl duct, dump

expansion chamber and exhaust duct are all axisymmetric. The modular injector geometry is

well described by generating a single x − r plane mesh and rotating this about the geometric

centreline (r = 0). To generate the x − r plane mesh the commercial software ICEMCFD was

used as it incorporates a wide range of meshing schemes that provide the user with the necessary

control to ensure a high level of mesh quality. To define the computational domain completely,

LULES requires three separate files specifying x, r and θ coordinates in a particular native

format. To simplify the translation procedure, Plot3d was selected as the output format from

ICEMCFD as it is broadly similar to that required by LULES. To facilitate comparison between

LES and RANS-based methods it was convenient to use an identical computational mesh for

all calculations. This was achieved by taking further advantage of the Plot3d format which can

be read by both Delta and Fluent CFD codes described in Sections 3.2.2 and 3.2.3 respectively.

It was then possible to utilise the coordinates obtained from the x − r plane together with an

in-house Fortran code to complete the geometry definition. For LULES this simply involved

generating θ coordinates, where the kth coordinate was obtained from θk = (2π/nk)(k − 1). A

different routine was required for Delta and Fluent as 3D geometries are specified in terms of

x, y and z coordinates, rather then x, r and θ. Using single index notation to relate locations

in 3D Cartesian space (ijk) to locations in the 2D x − r plane (ij), together with the kth θ

coordinate, the following relationships were used: x(ijk) = x(ij), y(ijk) = r(ij) cos θ(k) and

z(ijk) = r(ij) sin θ(k). The result is a polar-type structured mesh such as that shown in Figure

3.4. This consists of 25 individual blocks which help to ensure that mesh quality is maintained
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and are necessary for utilising the parallel capability of the CFD code. In Section 2.1.2 it was

mentioned that previous experimental work by Midgley [13] indicated that vortex shedding from

the corner of the downstream blockage exerted an influence on the flow up to x/Ds ≈ 5.25.

As a result the computational outlet plane was positioned downstream of the this location at

x/Ds = 5.58. During the course of this study a number of grid densities were investigated. It

was found that the nodal distribution in the near-wall region was critical to the formation of

coherent structures. As a result any further discussion regarding the computational mesh is left

until Chapter 5 following a fuller discussion of experimental observations presented in Chapter

4.

3.4.1 Inlet Boundary Conditions

It was emphasised in Section 3.2 that the boundary conditions required by LES and RANS

CFD codes differ. LES predictions require the specification of all three instantaneous velocity

components (ux, ur, uθ) at each time step whilst URANS-based methods use ensemble (time)

averaged velocity components (〈ux〉, 〈ur〉, 〈uθ〉) in addition to statistical quantities, such as k and

ε, representative of the turbulence. For LES calculations, although more refined methods are

available, and much research is underway to develop these (see, for example Robinson [86]), a

simple random noise superposition approach was used. Any instantaneous quantity is obtained

by the addition of a disturbance to its statistically averaged time-mean value in the following

way:

φ(xi, t) = 〈φ(t)〉+ φ′(xi, t) (3.76)

In the present case, time-averaged quantities, φ(xi), were calculated based on a knowledge of

mass and tangential momentum flow rate, ṁ and Ġθ respectively, derived from PIV data at the

swirler exit, x/Ds = 0.02. Since mass flow rate is a conserved quantity and tangential momentum

flow rate decays only as a result of wall friction [123], these are suitable system properties with

which to specify physically realistic velocity components at the inlet plane. Both ṁ and Ġθ can

be expressed as generalised surface integrals in the following way:

∫
ρφ~u · d ~A

∣∣∣
in

=
∫
ρφ~u · d ~A

∣∣∣
x/Ds=0.02

(3.77)

In order to provide the three instantaneous velocity components required by LES a random dis-

turbance was added at each time step. A library routine was used to generated a random number

from a distribution with zero mean and unit variance. This was then scaled by an r.m.s velocity

magnitude, 〈u′tot,in〉, obtained from an assumed turbulence intensity, TI, of 5%. It should be
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noted that although a number of simplifications have been made leading to a highly ideaised

scenario there is sufficient evidence in the avaliable literature [52, 50, 53, 55] to suggest that

precise details, such as modelling the discrete blockage effects of the radial slots or specifying

turbulence with particular spatial / temporal correlations at the inlet plane, do not influence

the development of coherent structures within the swirl duct provided the computational inlet

plane is sufficiently far upstream of the important region of the flow as in the present case. As

reasoned by Wang et al. [52] this is most likely due to the fact that the incoming turbulence

is overshadowed by the strong shear-layer and high turbulent intesnity generated by swirling

flowfields.

For RANS calculations identical values of 〈ur〉in and 〈uθ〉in were used. Values of kin and εin

were prescribed at the inlet plane in order to provide a statistical representation of the turbu-

lence using the following:

kin =
3
2

(√
〈ur〉2in + 〈uθ〉2inI

)2

(3.78)

εin = C3/4
µ

k
3/2
in

`
(3.79)

where ` = 0.07xin and Cµ = 0.09

3.5 Closure

This chapter has described the mathematical background of LES and URANS (k − ε and RST)

CFD methodologies along with the implementation of these within the in-house and commercial

CFD codes utilised during this thesis. The topics of mesh generation, assumptions made regard-

ing the modular swirler geometry and the calculation of appropriate boundary conditions were

also discussed.
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Figure 3.1: Local wall coordinate system of Fluent
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Figure 3.2: LULES staggered grid arrangement [109]
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(a) Cross-section of computational domain with Turbomeca swirl injector

(b) Detail of Turbomeca swirl vanes

Figure 3.3: Computational domain of Lartigue et al. [68]
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Figure 3.4: Typical LPP swirler computational mesh
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Chapter 4

Experimental Results

The modular swirler with varying swirl vane angle, α1, has been investigated previously and

reported in Midgley [13] and Midgley et al. [15] utilising a combination of PIV and HWA. In

order to optimise key instrumentation setup parameters, such as ∆t, PIV measurements were

performed in water and were used primarily to acquire statistical information and provided the

basis for CS eduction methods. As PIV measurements were performed at a relatively low sam-

pling frequency of 15Hz, companion HWA data with a temporal resolution of 25kHz were used

to deduce spectral information from velocity time-histories acquired in the vicinity of the CS.

Although these complementary measurements provide a valuable insight into the influence of SN

on CS development, there are a number of limitations of the Midgley data with regard to CFD

validation. For example, PIV measurements in x− r and r− θ planes were performed with rela-

tively large FoVs (approximately 80×80mm in size). As already highlighted in Section 2.3.4, this

can lead to significant levels of SGF which contaminates second-order statistics such as r.m.s ve-

locities and shear-stresses. In order to validate the computational predictions to be presented in

Chapters 5 and 6 it was argued it is necessary to refine the FoV size (in Section 2.4.1 it was shown

that a FoV of approximately 40 × 30mm yielded 〈u′x,meas〉/〈u′x,true〉 and 〈u′r,meas〉/〈u′r,true〉 ≥ 0.9

remote from the walls of the test section) such that the influence SGF on reported second-order

statistics was minimised. In the r−θ plane, the Midgley PIV measurements were only performed

at the swirler exit (x/Ds = 0.02), therefore additional measurements were acquired in the present

study at x/Ds = 0.27, 0.53, 1.06 and 2.39 with the latter being useful for understanding far-field

behaviour, which is often characterised by the presence of a PVC. From HWA spectra presented

in [15] characteristic frequencies, and thus dominant instability modes, were seen to be a strongly

dependent on swirl vane angle. No PIV measurements were performed for α1 = 15◦ and therefore

gaining an insight into this flowfield through CS eduction techniques is of current interest.

In order to establish a complete understanding of the influence of SN, Section 4.1 utilises first

and second order statistics to explore global flow features such as central and corner recircula-

tion zones and identify regions of high turbulence which may be indicative of the presence of
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CS. Subsequent analysis in Section 4.2 then uses a combination of instantaneous PIV measure-

ments, HWA measurements presented in [13] and CS eduction techniques, such as conditional

and rotational-averaging, to investigate further their nature and significance. Finally, based on

this analysis, a suitable test case is selected with which to assess the ability of Large Eddy Sim-

ulation (LES) and Unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD methodologies

(Chapters 5 and 6 respectively) to capture the observed physics.

4.1 Time-Averaged Velocity Field

First and second-order statistics presented in this section were acquired from two orthogonal PIV

measurement planes (x−r and r−θ) as detailed in Table 2.1. Comparisons between 〈ur〉 and 〈u′r〉
which are common to both measurement planes have already been made at various axial locations

(see Section 2.4.3) and have been shown to be in good agreement. For information regarding the

convergence and accuracy of statistics presented here the reader is referred to Sections 2.4.4 and

2.4.5. All r − θ plane statistics (〈uθ〉, 〈u′θ〉 and 〈u′ru′θ〉) have been circumferentially-averaged as

described in Section 2.1.4.

Figure 4.1 shows time-mean streamtraces in the expansion chamber superimposed on contours of

time-mean axial velocity for varying swirl vane angle, α1. There are many similarities between

Figures 4.1(a)-(d) which are characteristic of confined swirl flows, such as the CRZ and CTRZ.

Clearly, α1 exerts a notable influence on the swirl cone deflection angle and the size and shape

of the CRZ which is defined by the reattachment location of the outer swirler shear-layer on the

outer wall of the expansion chamber, xL/Ds. For α1 = 30◦, this is located at xL/Ds ≈ 1.45 whilst

reducing the swirl vane angle to α1 = 10◦ results in a downstream movement to xL/Ds ≈ 2.5.

These observations are due to a reduced radial pressure gradient (∂p/∂r) which balances cen-

tripetal accelerations (ρu2
θ/r) as defined in Equation 1.3. Despite this reduction in radial pressure

gradient at α1 = 10◦, the corresponding axial pressure gradient to which it gives rise is still suf-

ficient for vortex breakdown within the expansion chamber which is characterised by strong

negative velocities in the vicinity of the centreline, indicated by blue contour values.

Figures 4.2 to 4.4 show radial profiles of time-mean axial, radial and tangential velocity ob-

tained at x/Ds = 0.02, 0.27, 0.53 and 1.06 for varying α1. Axial and radial velocities have been

corrected for perspective projection error using the procedure outlined in Section 2.4.3. In order

to quantify levels of swirl intensity, the non-dimensional swirl number, SN (Equation 1.4), was

computed based on axial and tangential velocity profiles at the swirler exit (x/Ds = 0.02) as

detailed below in Table 4.1.
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α1 ṁ Ġx Ġθ SN Ux,s Ts

30 2.15 5.26 7.82× 10−2 0.80 2.0 0.02

20 2.15 4.77 6.39× 10−2 0.71 2.0 0.03

15 2.15 4.47 5.22× 10−2 0.62 2.0 0.04

10 2.15 4.27 4.12× 10−2 0.51 2.0 0.05

Table 4.1: Swirler exit flow rates calculated at x/Ds = 0.02

To ensure the best possible estimate of the swirl duct conservative quantities, integration was

performed from 0.09 ≥ r/Ds ≤ 0.5. Furthermore, axial velocities of less than zero were not

included in the integral as these are associated with reverse flow due to vortex breakdown in the

expansion chamber and not the forward flow from the swirl duct. It was found that exclusion of

these points had a negligible effect (≈ 2%) as they are located at small radii. In Table 4.1, Ts

is a timescale based on tangential momentum flow rate, Ġθ (from Equation 1.4), which is useful

for characterising the rotation rate of the flowfield in the vicinity of the swirler exit. It has been

derived from the following relationship:

Ts =
πDs,mid

Uθ,s
=
πDs,midUx,s

Gθ

∫ r2

r1

r2dr =
πDs,midUx,s

3Gθ

(
r3outer − r3inner

)
(4.1)

At x/Ds = 0.02 increasing α1 from 10◦ to 30◦ results in the axial velocity distribution moving

from a close to uniform profile to a heavy outer wall bias as shown in Figure 4.2(a). The negative

axial velocities observed at r/Ds > 0.09 for α1 = 20◦ and 30◦ indicate a time-mean penetration

of the CRTZ into the swirl duct which extends from 0.09 ≥ r/Ds ≤ 0.5. The corresponding

radial velocities shown in Figure 4.3(a) exhibit a peak value that increases in magnitude and

moves further inboard as a function of α1. For α1 = 15◦, 20◦ and 30◦ positive radial velocities

at x/Ds = 0.02 indicate that the radial pressure gradient experienced by the swirl duct exit flow

is sufficient to deflect it outwards away from the centreline. This is in contrast to α1 = 10◦

in which negative radial velocities suggest a significant decrease in radial pressure gradient and

the flow continues on a path defined by the inner wall of the swirl duct. The combination of

negative axial velocity and positive radial velocity at x/Ds = 0.02, r/Ds > 0.09 is indicative of

flow separation from the inner wall of the swirl duct. This is shown more clearly in Figure 4.5

which displays time-mean velocity vectors superimposed on contours of time-mean axial velocity

in the near-field of the swirler exit (x/Ds < 1). Profiles of tangential velocity at x/Ds = 0.02

shown in Figure 4.4(a) are of a Rankine-type distribution for all α1. Further downstream in the

expansion chamber at x/Ds = 0.27, 0.53 and 1.06, Figures 4.2(b)-(d) and 4.3(b)-(d) show that

the location of peak axial and radial velocity moves radially outwards as a function of α1. This

is consistent with Figure 4.1 in which the swirl cone deflection angle was observed to increase

with α1. Negative axial velocities are observed at the geometric centre of the expansion chamber
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(r/Ds = 0) for all axial stations investigated. Again, this is a result of the vortex breakdown

phenomena described in Section 1.2.1 caused by a strong coupling between axial and radial pres-

sure gradients. It should be noted that downstream tangential velocities presented in Figures

4.3(b)-(d) do not extend to the outer wall of the expansion chamber and terminate at r/Ds ≈ 1.2.

This is a result of limited optical access in the r − θ measurement plane as discussed in Section

2.4.2. The overall agreement of 〈ux〉 and 〈ur〉 in the FoV overlap region (r/Ds ≈ 0.8 − 1.0) is

good apart from at x/Ds = 1.06 for α1 = 20◦ and 30◦. The reason for these discrepancies is not

immediately clear, however they could be related to the fact that, in comparison to x/Ds = 0.27

and 0.53, all time-mean and r.m.s (Figures 4.6(d), 4.7(d) and 4.8(d)) velocity components are

of considerable magnitude and approach a local maximum in this region which may have some

cumulative influence.

Figures 4.6 to 4.8 show radial profiles of axial, radial and tangential r.m.s velocities for varying α1.

It should be noted that axial and radial r.m.s velocities shown in Figure 4.6 and 4.7 respectively

were obtained from the x− r measurement plane and have been corrected for SGF effects using

the correction methodology presented in Section 2.3.4 and are therefore taken as a best estimate

of the ‘true’ values. The difficulties associated with implementing this correction methodology in

the r−θ plane were discussed in Section 2.4.2 and, as a result, r.m.s tangential velocities shown in

Figure 4.8 remain uncorrected. As flow from the swirl duct enters the expansion chamber, inner

and outer shear-layers are formed as a result of the velocity difference between it and the CTRZ

and CRZ respectively. The inner shear layer is characterised by peak axial and radial r.m.s veloc-

ities (Figures 4.6 and 4.7) which are observed to move radially outwards as a function of α1 and

downstream distance from the swirler exit. The outer shear layer is identified as the secondary

peak located at relatively large radii which is observed most clearly at x/Ds = 0.27, r/Ds ≈ 0.6

in Figures 4.6(b) and 4.7(b). In general, the magnitude of peak axial and radial r.m.s velocities

associated with the inner shear layer increases as a function of α1, however, at x/Ds = 0.02 Fig-

ures 4.6(a) and 4.7(a) indicate that α1 = 15◦ exceeds α1 = 20◦. At x/Ds = 0.02, a distinct peak

in tangential r.m.s velocity is only observed away from the centreline for α1 = 20◦ and 30◦ which

suggests that the strength of the inner azimuthal shear layer is diminished for α1 = 10◦ and 15◦.

Further downstream at x/Ds = 0.27, 0.53 and 1.06, the distribution of tangential r.m.s velocity

is also quite different to axial and radial counterparts in the sense that distinct peaks indicative

of inner and outer shear layers are not such a prominent feature. Although axial, radial and tan-

gential r.m.s velocity levels are broadly similar at x/Ds = 0.02, comparison of Figures 4.6(b)-(d)

and 4.7(b)-(d) with Figure 4.8(b)-(d) shows that the tangential component decays more rapidly

than axial and radial counterparts. In the vicinity of the centreline (r/Ds ≈ 0) at x/Ds = 1.06,

similar levels of axial r.m.s velocity are observed for all α1, however, there is a notable increase

in both radial and tangential r.m.s components at this location for α1 = 30◦. This is evidence of

a highly turbulent flow structure with a strong dependence on the level of swirl. In a similar way
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to 〈ux〉 and 〈ur〉, the overall agreement of 〈u′x〉 and 〈u′r〉 in the FoV overlap region is good with

the exception of at x/Ds = 1.06 for α1 = 20◦ and 30◦. This may be attributed to the fact that

all three time-mean and r.m.s velocity components approach a local maximum in this region as

discussed above.

Figures 4.9 and 4.10 show radial profiles of 〈u′xu′r〉 and 〈u′ru′θ〉 for varying α1 (〈u′xu′θ〉 cannot be ob-

tained from 2C-PIV applied in two orthogonal planes as detailed in Table 2.1). At x/Ds = 0.02,

a strong coupling exists between u′x and u′r which produces a region of negative 〈u′xu′r〉 across the

extent of the swirler exit. In a similar way to peak r.m.s levels (Figures 4.6 to 4.8), the location

of maximum 〈u′xu′r〉 moves radially outwards as a function α1. Regions of negative 〈u′xu′r〉 persist

further downstream at x/Ds = 0.27, 0.53 and 1.06, however, in the vicinity of the outer shear

layer an area of positive correlation can be observed. In comparison to 〈u′xu′r〉, peak levels of

〈u′ru′θ〉 (Figure 4.10) are reduced by between one-half (α1 = 15◦) and one-sixth (α1 = 30◦) at

the swirler exit. At x/Ds = 0.02, reducing α1 results in the appearance of a region of positive

〈u′ru′θ〉 across the swirler exit (0.09 ≤ r/Ds ≤ 0.5) indicating a fundamental change in the spatial

structure of turbulence. It is interesting to observe that, despite notable levels of r.m.s velocity

in the vicinity of the centreline, 〈u′xu′r〉 and 〈u′ru′θ〉 are negligible. This is particularly notable

at x/Ds = 1.06 and is consistent with the Rankine-type distribution of time-mean tangential

velocity (Figure 4.4(d)) in which the inner forced region is expected to be shear or strain free

[17].

Observed differences in Reynolds-stress distribution and magnitude indicate a high level of

anisotropy in the flows currently under consideration. In order to characterise the local state of

Reynolds-stress anisotropy the ‘flatness parameter’ or ‘anisotropy index’ introduced by Lumley

[124] is often used. To compute this 〈u′xu′θ〉 is required which is unavailable in the present case

as discussed above. As an alternative, the anisotropy of the normal Reynolds-stresses is assessed

in the swirl cone at x/Ds = 0.27 and in the CTRZ at x/Ds = 1.06 for varying α1 from the ratio

〈u′iu′i〉/k. The swirl cone is bounded by the CRTZ and CRZ with inner and outer radii (rSC,inner

and rSC,outer) which are defined here as the peaks observed in u′x and u′r in Figures 4.6(b) and

4.7(b). The mid-radius of the swirl cone is thus defined as rSC,mid = rSC,inner+1/2(rSC,outer−rSC,inner).

The radius of the CTRZ (rCRTZ) is defined as the first radial point from the centreline at which

〈ux〉 = 0 at x/Ds = 1.06. Figure 4.11 shows rSC,inner, rSC,outer, rSC,mid and rCRTZ for α1 = 30◦.

In order to compare varying α1 across the swirl cone at x/Ds = 0.27 radial distances in Figure

4.12 have been normalised by (r − rSC,mid)/(rSC,outer − rSC,inner). Similarly, for comparisons across

the CTRZ at x/Ds = 1.06 radial distances in Figure 4.13 have been normalised by r/rCRTZ.

The horizontal dashed line in Figures 4.12 and 4.13 corresponds to isotropic turbulence in which

〈u′xu′x〉/k = 〈u′ru′r〉/k = 〈u′θu′θ〉/k = 2/3. From Figure 4.12 〈u′xu′x〉/k and 〈u′ru′r〉/k follow a

similar trend across the majority of the swirl cone (−0.5 ≤ r − rSC,mid/rSC,outer − rSC,inner ≤ 0.25)
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for α1 = 30◦, 20◦ and 15◦ and deviate quite significantly from the line of isotropic turbulence.

Although 〈u′θu′θ〉/k is similar for all α1, 〈u′xu′x〉/k and 〈u′ru′r〉/k are quite different for α1 = 10◦

with the former tending towards the line of isotropic turbulence at rSC,mid and the latter away

from it at this location. From Figure 4.13 〈u′xu′x〉/k, 〈u′ru′r〉/k and 〈u′θu′θ〉/k follow a similar

trend across the CTRZ for α1 = 20◦, 15◦ and 10◦ and are closely distributed around the line of

isotropic turbulence. This is in contrast to 30◦ which deviates more significantly from isotropy.

Figures 4.12 and 4.13 imply significant levels of normal Reynolds-stress anisotropy for all α1 in

the swirl cone, whilst in the vicinity of the CRTZ these levels are largest for α1 = 30◦ and lower

levels of swirl (α1 = 20◦, 15◦ and 10◦) display a more isotropic behaviour. These observations

will have implications for companion computational predictions presented in Chapters 5 and 6

particularly the k − ε model in which each of the turbulent normal and shear stresses should be

calculated from the same (isotropic) eddy-viscosity.

In order to make a global assessment of regions of peak turbulence, Figure 4.14 shows contours

of time-mean turbulent kinetic energy (based on u′x and u′r) for varying α1. In each case, peak

levels of turbulence are observed in the near-field of the swirler exit (x/Ds < 1) at the interface

of the swirl stream and CTRZ. The decay of peak turbulence with α1 is consistent with trends

identified in profiles of r.m.s velocity components (Figures 4.6 to 4.8). For α1 = 30◦, considerable

levels of turbulence (k/U2
x,s ≈ 0.1) are present along the centreline of the expansion chamber.

This is in contrast to α1 = 10◦, 15◦ and 20◦ in which negligible turbulence is observed at this

location at downstream distances of x/Ds > 0.5. To complement Figure 4.14, Figures 4.15 and

4.16 show the distribution of time-mean turbulent kinetic energy (based on u′r and u′θ) in r − θ

planes at x/Ds = 0.02 and 2.39 respectively. At x/Ds = 0.02, there is a close to axisymmetric

distribution of turbulence with peak magnitudes comparable to those in the x−r plane shown in

Figure 4.14. For α1 = 30◦, Figure 4.16 reveals an axisymmetric distribution of turbulence in the

far-field with peak maxima concentrated at the geometric centre of the expansion chamber. A

similar axisymmetric distribution is also observed for α1 = 20◦ although levels are much reduced

relative to α1 = 30◦. For α1 = 10◦ and 15◦ the situation is quite different with a more or less

uniform distribution of turbulence of comparatively negligible magnitude.

The first and second-order single-point statistics presented above provide a valuable insight into

the influence of α1 on many fundamental aspects of flowfields typical of swirl injectors. The

regions of high turbulence and shear identified through this analysis are of particular interest as

these are often indicative of the presence of CS. In order to gain an improved understanding of

these regions, the following section utilises a combination of instantaneous PIV velocity fields,

CS eduction techniques and spectral information deduced from HWA presented in Midgley [15].
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4.2 Coherent Structure Analysis

Within Figures 4.14 to 4.16, high levels of time-mean turbulent kinetic energy were observed at

the interface of the swirl stream and CTRZ and, for α1 = 20◦ and 30◦, in the vicinity of the

expansion chamber centreline. These regions are investigated further in Sections 4.2.1 and 4.2.2

respectively.

4.2.1 Near-Field

An important point raised by Adrian et al. [61] with regard to the analysis of instantaneous

velocity fields is the influence of convection velocity. This is intimately linked to the definition

of a vortex proposed by Kline and Robertson [60] which states that: “A vortex exists when

instantaneous streamlines mapped onto a plane normal to the core exhibit a roughly circular or

spiral pattern, when viewed in a reference frame moving with the centre of the vortex core”. This

implies that a velocity field must be viewed in a frame of reference that moves at the same speed

as the core of the vortex, i.e. at the local convection velocity. For flows similar to those con-

sidered here Midgley [13] has shown that a classical Reynolds-decomposition (i.e. subtraction of

the time-mean flow from each instantaneous realisation) is suitable for these purposes. A second

key condition proposed in [61] is that the vorticity is concentrated in a ‘core’. Based on these

considerations, Figure 4.17 shows instantaneous (Figures 4.17(a), (c) and (e)) and Reynolds-

decomposed (Figures 4.17(b),(d) and (f)) streamtraces on contours of azimuthal vorticity, ωθ,

(Equation A-19) for α1 = 30◦ at three arbitrary time-instants (I, II and III) in an x− r measure-

ment plane within the near-field of the swirler exit (region B1 in Table 2.6). Similarly, Figure 4.18

shows instantaneous (Figures 4.18(a), (c) and (e)) and Reynolds-decomposed (Figure 4.18(b), (d)

and (f)) streamtraces on contours of axial vorticity, ωx, in an r − θ plane at x/Ds = 0.02 at ar-

bitrary time-instants for α1 = 30◦. It should be noted that the time-instants shown in Figure

4.17 do not correspond to those in Figure 4.18 as these were acquired during separate tests in

different measurement planes. From Figure 4.17, the presence of CS in both inner and outer

shear-layers shed from the swirler exit are clearly visible and coincide with regions of peak ωθ.

It is reasonable to assume that these are responsible for the regions of high time-mean turbulent

kinetic energy (Figure 4.14(a)), particularly in the vicinity of the inner shear-layer. Although

removal of the time-mean velocity field alters the observed x − r plane vortical structures to

some extent, the influence is much more pronounced in the r − θ plane as shown in Figure 4.18.

In general, the instantaneous velocity field (Figures 4.18(a), (c) and (e)) is characterised by a

turbulent structure consisting of two large vortices separated by approximately π radians which

rotate about their own axes in the direction of the bulk flow, i.e. counter-clockwise with positive

ωx when viewed from x/Ds > 0. Following a thorough qualitative analysis of all 650 instanta-

neous velocity fields, this mode shape appeared in the majority of cases, however, there was some

degree of variability such as that shown in Figure 4.18(e) in which no CS were detected. This

suggests a bimodal switching between flow states, however the PIV measurements presented in
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this thesis do not have the necessary temporal resolution to further investigate this transition.

In addition to the vortex pair deduced from instantaneous streamtraces in a laboratory frame

of reference, the Reynolds-decomposition (Figures 4.18(b), (d) and (f)) reveals the presence of a

secondary vortex pair also separated by π radians and π/2 out of phase with the primary pair.

In contrast to the primary pair which rotate about their axes in the same direction as the bulk

flow, the secondary pair rotate about their respective axes in a clockwise direction with negative

ωx which is opposed to the bulk flow. It is suggested that these could not be detected from

instantaneous streamtraces due to high levels of distortion caused by the presence of the mean

flow, therefore, for the remainder of this thesis the majority of CS analysis will be performed on

a Reynolds-decomposed, rather than instantaneous, basis.

Figures 4.19 and 4.20 show Reynolds-decomposed streamtraces in x − r and r − θ measure-

ment planes (x/Ds = 0.02) respectively at two arbitrary time-instants (I and II) for α1 = 10◦,

15◦ and 20◦. Although there is clear evidence of the presence of CS, the spatial coherence of the

resulting vortex structure was found to decrease (relative to α1 = 30◦) as a function of α1 which is

consistent with the reduced levels of time-mean turbulent kinetic energy (Figure 4.15). Although

a qualitative assessment of instantaneous and Reynolds-decomposed velocity fields provides a

means of identifying and characterising CS it constitutes a subjective approach which, as noted

by Pope [7], can lead to controversy over their nature and significance. It is therefore essential

that they are combined with qualitative measures and eduction techniques which are considered

in the following.

The HWA measurements presented in Midgley [15] used a 5µm Dantec 55P11 miniature sin-

gle hotwire with a maximum sampling frequency of 25kHz and frequency resolution of 6.1Hz.

These measurements were performed in air and the reference scales of Ds = 0.03763m and

Ux,s = 27.19m/s [13] give a Strouhal number range of St,min = 8.4 × 10−3 to St,max = 34.6.

Instantaneous velocities measured with a single hotwire are sensitive to all flowfield velocity

components normal to it, i.e. u =
√

(u2
n,1 + u2

n,2). As a result it is not possible to recover in-

dividual velocity components from this arrangement; however, spectral analysis still allows any

characteristic (tonal) frequencies of the velocity field to be identified. Figure 4.21 shows the

PSDs of velocity presented in [13] for varying α1 at x/Ds = 0.27 for various radial locations.

It should be noted that the amplitude normalisation used in [13] is not clear and the following

discussion focuses on the frequency content of the PSDs. The issue of PSD amplitude is ad-

dressed in Section 5.4.1. The majority of spectra for α1 = 30◦ are characterised by primary and

secondary peaks occurring at St ≈ 0.62 and 1.24 respectively. Similar trends are also observed

for α1 = 20◦ although the secondary peak is not such a prominent feature and can only be

identified at r/Ds = 0.24, 0.32 and 0.4. The prominence of the secondary peak continues to

decrease as a function of α1 and does not appear at all in spectra derived from α1 = 15◦. For
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this particular level of swirl, a primary peak at St ≈ 0.62 is clearly visible at all radii with an

amplitude comparable to spectra derived from α1 = 20◦ and 30◦. The most dramatic change in

spectral characteristics is observed for α1 = 10◦. For this level of swirl distinct peaks occurring

at St ≈ 0.62 and 1.24 are not a dominant feature and spectra are more reminiscent of high Re

broadband turbulence.

The link between CS observed in the inner shear-layer of the swirl stream and the strongly

periodic events observed in the spectra is clarified via spatial velocity correlations in x− r (Ruu

and Rrr) and r − θ (Rrr and Rθθ) measurement planes for α1 = 30◦ shown in Figures 4.22 and

4.23. In order to gain further insight into flow behaviour across the swirler exit, a number of

reference points were selected at r/Ds = 0.15, 0.25 and 0.38 and are indicated by the yellow dot.

To identify only the high energy turbulent events, a conditionally-averaged sub-set of data (Sec-

tion A-2.3) was created by selecting only instantaneous velocity fields that exhibited fluctuating

velocities greater than 1.5 standard deviations at each reference point (e.g. u′i > 1.5〈u′i〉). In all

cases, the number of samples, Nc, of the ensemble-averaged sub-set has been indicated. In the

x− r plane (Figure 4.22), both Ruu and Rrr exhibit sequential regions of positive and negative

correlation indicating highly coherent events in this region. Conditionally-averaged velocity fields

based on u′x clearly reveal the presence of multiple CS, however, these appear disordered in com-

parison to those conditioned by u′r which are characterised by three counter-rotating vorticies

with an axial separation wavelength of d/Ds ≈ 0.32 (see Figure 4.22(d)). In the r − θ plane

(Figure 4.23), Rrr and Rθθ also exhibit distinct regions of positive and negative correlations and

the conditionally-averaged velocity fields confirm the vortex structure previously identified in

Figure 4.18. From Figure 4.23, the conditionally-averaged radial location of the vortex ‘eyes’ is

at r/Ds ≈ 0.25. At this location, Figure 4.4(a) shows that 〈uθ〉/Ux,s ≈ 1.1. If it is assumed that

a single vortex is convected at this velocity along a circular path of radius r/Ds = 0.25, this

gives an angular velocity of ω = 〈uθ〉/r = 230r/s and a corresponding St = ωDs/2πUx,s = 0.7

which is close to the primary peak of St = 0.62 presented in Figure 4.21. From this evidence the

secondary peak of St = 1.24 must be associated with a vortex pair passing a fixed point and the

appearance of higher harmonics at St = 1.86 and 2.48 are a result of the secondary pairing.

Based on Figures 4.22 and 4.23 u′r appears to be a more suitable conditioning signal than u′x in

the x−r plane and yields very similar results to u′θ in the r−θ plane. Furthermore, as u′r is com-

mon to both measurement planes and the location of the reference point exerts only a negligible

influence on spatial correlations and CS; analysis for α1 = 20◦, 15◦ and 10◦ presented in Figures

4.24 and 4.25 is based only on r/Ds = 0.25 and u′r. For α1 = 20◦ and 15◦ in the x − r plane,

Rrr exhibits similar trends to α1 = 30◦ and conditioned velocity fields are also characterised by

counter-rotating vortices. However, the level of correlation between these is reduced relative to

α1 = 30◦ and the separation wavelength is increased (d/Ds ≈ 0.47 for α1 = 15◦ in Figure 4.24(b))
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with only two visible within the experimental FoV. In the r− θ plane the conditionally-averaged

velocity field reveals the presence of two vortical structures for α1 = 20◦, however for α1 = 15◦ it

is increasingly difficult to identify any coherent motion. In a similar way to the x−r plane, levels

of Rrr for α1 = 20◦ and 15◦ are reduced relative to α1 = 30◦. From Figures 4.24(c) and 4.25(c)

spatial correlations and conditional-averages suggest that no dominant CS exist for α1 = 10◦.

This is consistent with qualitative analysis presented in Figures 4.19(e)-(f) and 4.20(e)-(f) and

velocity spectra in Figure 4.21.

Although conditional-averaging provides a valuable insight into CS the number of samples within

each sub-set is relatively low (Nc ≤ 54). In order to avoid this issue a rotational-averaging proce-

dure (see Section A-2.2) was applied for varying α1 at x/Ds = 0.02 in the r−θ plane. In keeping

with analysis presented above, a Reynolds-decomposition was performed on each instantaneous

velocity field to isolate turbulent motions. In order to track the motion of a single reference

vortex (see Figure A-2) from low-speed PIV (∆T = 0.25s) its initial angular location (θ(t0)) was

determined by applying Equation A-24 to the entire FoV, i.e. from θ = 0 − 2π. At subsequent

times its location was first estimated based on θ(tn) ≈ θ(tn−1)+ω∆T (where tn−1 is its previous

location, ω is the angular velocity of a single vortex defined above and ∆T is the PIV sampling

interval) and then Equation A-24 applied to either 0 ≤ θ ≤ π or π < θ < 2π depending on the

estimated location within the FoV. The instantaneous velocity field from the original Cartesian

PIV was then interpolated onto a polar-type mesh (see, for example, Figure 3.4(b)) and rotated

by θ radians.

Figure 4.26 shows rotationally-averaged Reynolds-decomposed streamtraces at x/Ds = 0.02 su-

perimposed on contours of 〈u′r〉rot and 〈u′θ〉rot for α1 = 30◦. The vortex pattern identified through

qualitative analysis and conditional-averaging (Figures 4.18 and 4.23 respectively) consisting of

two pairs of counter-rotating vortices is clearly visible. These are centred on regions defined by

〈u′r〉rot = 〈u′θ〉rot = 0 and the large circumferential gradients of 〈u′r〉rot and large radial gradients

of 〈u′θ〉rot in the vicinity of the vortices gives rise to a component of rotationally-averaged axial

vorticity, 〈ωx〉rot (calculated from Equation A-20 due to the polar-cylindrical coordinate basis

used for rotational-averaging), as shown in Figure 4.27(a). The regions of positive and negative

〈ωx〉rot result from the clockwise or counter-clockwise rotation of each vortex about its centre as

discussed above. It is interesting to note that for α1 = 20◦ (Figure 4.27(b)) rotational-averaging

reveals an instability mode similar to α1 = 30◦ which was not identified using the conditional-

averaging technique. It is possible that this is due to the limited number of samples of the

ensemble-averaged sub-set in the case of the latter. In comparison to α1 = 30◦, the streamtrace

distribution for α1 = 20◦ is less smooth which suggests an increasing degree of incoherent mo-

tions and a reduced spatial coherence which has already been observed in Rrr. This is consistent

with spectral analysis presented in Figure 4.21 in the sense that although α1 = 30◦ and 20◦ both
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exhibit broadly similar frequency characteristics the appearance of higher-order spikes associated

with vortex parings is diminished in the case of the latter. For α1 = 15◦ (Figure 4.27(c)) a quite

different instability mode is apparent which is dominated by two vortex-like structures. Unlike

for α1 = 30◦ and 20◦ in which each vortex is defined by an approximately circular streamline

distribution, these appear significantly more distorted and are consistent with those educed from

conditional-averaging in Figure 4.25(b). The variation in the characteristic instability mode for

α1 = 15◦ relative to α1 = 30◦ and 20◦ is again in accordance with the spectral analysis of Figure

4.21 in which only a single dominant spike appeared at St ≈ 0.62. Although a number of vortical

structure result from the application of rotational-averaging to α1 = 10◦ (Figure 4.27(d)) this

can not be classified as constituting a global instability mode.

Figure 4.28 shows rotationally-averaged Reynolds-decomposed streamtraces on contours of the

ratio of rotationally-averaged to time-averaged (i.e. in a laboratory frame of reference) turbulent

kinetic energy, 〈k〉rot/k, for varying α1. In a laboratory frame of reference at a particular spatial

location k is a function of coherent and incoherent velocity fluctuations of varying magnitude.

In a rotating frame of reference there is a bias to both the magnitude and nature of the velocity

fluctuations (i.e. whether they are coherent or incoherent) at a particular spatial location as the

averaging procedure is necessarily ‘locked’ to a particular flow feature. This is highlighted in

Figure 4.29 which shows a PDF of u′r and u′θ extracted at x/Ds = 0.02, r/Ds = 0.25, θ = π

from laboratory and rotating frames of reference for α1 = 30◦. In both cases, the distribution of

u′r is extremely similar. However, in the rotating frame reference, the distribution of u′θ is much

broader with the probability of encountering extreme values significantly increased relative to

the laboratory frame of reference. For α1 = 30◦, 〈k〉rot exceeds k in the vicinity of the clockwise

vortex pair located at θ = 0 and π which indicates that this localised feature will contribute

significantly to the regions of high time-averaged turbulence levels observed in Figure 4.15. Sim-

ilar trends are also observed for α1 = 20◦, however 〈k〉rot/k is diminished across the majority of

swirler exit plane and continues to reduce for α1 = 15◦ before reaching an approximately uniform

distribution for α1 = 10◦.

4.2.2 Far-Field

In a similar way to the analysis of near-field CS presented in the previous section, a valuable

insight into far-field behaviour is gained through a qualitative analysis of instantaneous and

Reynolds-decomposed streamtraces. Figure 4.30 shows instantaneous streamtraces at x/Ds =

2.39 at three arbitrary time-instants (I, II and III) for varying α1. For α1 = 30◦, a significant

displacement of the aerodynamic centre from the geometric centre (highlighted by a red dot) is

observed which is indicative of a PVC. This rotates counter-clockwise about its own axis and

has a time-dependent counter-clockwise rotation in the direction of the time-mean flow. For

SN = 0.75, Syred et al. [38] measured a volumetric flow rate Strouhal number based on duct
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diameter of StQ̇
≈ 0.9 (Figure 1.10) for a tangential entry swirl burner. A similar broadband

frequency spike of St = 0.66 − 0.78 has also been confirmed for the Turbomeca swirler with

α1 = 30◦ by Midgley [13] using HWA. This corresponds to StQ̇
= 0.84− 0.99 based on Equation

1.6 and St = 1.24 × 10−2 − 1.47 × 10−2 based on Ds and Ux,s = 1.99m/s as given in Table

2.2. Similar behaviour is also observed for α1 = 20◦ and α1 = 15◦, however for α1 = 10◦ it

is increasingly difficult to identify a clear aerodynamic centre. In order to further quantify the

behaviour of the PVC, Equation A-24 was used to determine its radial (rPVC) and angular (θPVC)

location at each time-instant. The computed location of the PVC is indicated by the blue dot

in Figure 4.30 and is in excellent agreement with streamtraces from α1 = 30◦, 20◦ and 15◦.

Although Equation A-24 clearly locates a vortex centre for α1 = 10◦ these structures cannot be

classified as a PVC and no further analysis is performed for this swirl vane angle. Figure 4.31

shows a PDF of the radial displacement of the PVC from the geometric centreline for α1 = 30◦,

20◦ and 15◦. It should be noted that the expansion chamber diameter, Dex, has been used for

normalisation rather than the swirler exit diameter, Ds, as in preceding sections. Interestingly,

the mean radial displacement of the PVC, 〈rPVC〉/Dex, is inversely proportional to α1 as detailed

below in Table 4.2. It is possible that this is due to the influence of features such as the CRTZ

(see Figure 4.1) which surround the PVC and may interact with it on an instantaneous basis.

α1 〈rPVC〉/Dex

30 3.49×10−2

20 5.17×10−2

15 6.47×10−2

Table 4.2: Mean radial displacement of PVC at x/Ds = 2.39 for varying swirl vane angle

Figure 4.32 shows Reynolds-decomposed streamtraces at x/Ds = 2.39 at identical time-instants

as Figure 4.30 for varying α1. For α1 = 30◦ and 20◦ the turbulent field forms two counter-rotating

vortices which have been previously observed by Midgley [13] and Graftieux et al. [125]. It is

these large fluctuations in the centreline region which contribute to the axisymmetric distribution

of turbulence identified previously in Figure 4.16 for α1 = 30◦ and 20◦. Clearly, for α1 = 15◦

and 10◦ a similar level of coherence is not observed and explains the relatively negligible levels

of turbulence observed in Figures 4.16(c) and (d).

4.3 Closure

From the analysis presented in this chapter, the influence of swirl number on both near and far-

field instability modes has been clearly established. For α1 = 30◦, 20◦ and 15◦ CS were identified

in the vicinity of the swirler exit whose spectral characteristics have a strong dependence on the

level of swirl. In the case of α1 = 10◦, no distinct peaks indicative of coherent vortex motion

were identified in velocity spectra and these observations were confirmed through a combination
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of spatial correlations and conditional-averaging techniques. In the far-field, turbulence levels at

x/Ds = 2.39 were only notable for α1 = 30◦ and have been shown to be due to the presence of a

PVC. If computational methods, such as URANS and LES, are to become integral to the design

and development of swirl combustors it is of paramount importance that frequency components

associated with CS are predicted with a high degree of fidelity. The most challenging test case

with which to assess the suitability of these approaches is therefore α1 = 30◦ as this features both

near and far-field instability modes exhibiting a wide range of characteristic frequencies and the

highest levels of normal Reynolds-stress anisotropy. Large Eddy Simulation (LES) and Unsteady

Reynolds-Averaged Navier-Stokes (URANS) calculations for α1 = 30◦ are presented in Chapters

5 and 6 respectively. When making comparisons it is informative to remember the experimental

accuracy presented in Figure 2.22.
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(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.1: Time-mean streamtraces on contours of time-mean axial velocity, 〈ux〉/Ux,s, in dump
expansion chamber for varying swirl vane angle.
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Figure 4.2: Radial profiles of time-mean axial velocity for varying swirl vane angle at various
axial locations in expansion chamber.
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Figure 4.3: Radial profiles of time-mean radial velocity for varying swirl vane angle at various
axial locations in expansion chamber.
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Figure 4.4: Radial profiles of time-mean tangential velocity for varying swirl vane angle at various
axial locations in expansion chamber.
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(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.5: Time-mean velocity vectors on contours of time-mean axial velocity, 〈ux〉/Ux,s, in
near-field of expansion chamber for varying swirl vane angle.
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Figure 4.6: Radial profiles of r.m.s axial velocity for varying swirl vane angle at various axial
locations in expansion chamber.
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Figure 4.7: Radial profiles of r.m.s radial velocity for varying swirl vane angle at various axial
locations in expansion chamber.
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Figure 4.8: Radial profiles of r.m.s tangential velocity for varying swirl vane angle at various
axial locations in expansion chamber.
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Figure 4.9: Radial profiles of axial-radial shear stress for varying swirl vane angle at various axial
locations in expansion chamber.
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Figure 4.10: Radial profiles of radial-tangential shear stress for varying swirl vane angle at various
axial locations in expansion chamber.
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Figure 4.11: Swirl cone and CTRZ locations for α1 = 30◦. Mean velocity vectors on contours of
〈ux〉/Ux,s
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Figure 4.12: Radial profiles of 〈u′xu′x〉/k, 〈u′ru′r〉/k and 〈u′θu′θ〉/k across swirl cone at x/Ds = 0.27
for varying swirl vane angle. Horizontal dashed line indicates isotropic turbulence in which
〈u′xu′x〉/k = 〈u′ru′r〉/k = 〈u′θu′θ〉/k = 2/3
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Figure 4.13: Radial profiles of 〈u′xu′x〉/k, 〈u′ru′r〉/k and 〈u′θu′θ〉/k across CTRZ at x/Ds = 1.06
for varying swirl vane angle. Horizontal dashed line indicates isotropic turbulence in which
〈u′xu′x〉/k = 〈u′ru′r〉/k = 〈u′θu′θ〉/k = 2/3
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(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.14: Contours of time-mean in-plane turbulent kinetic energy, k/U2
x,s (based on u′x and

u′r), in dump expansion chamber for varying swirl vane angle.
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(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.15: Contours of time-mean in-plane turbulent kinetic energy, k/U2
x,s (based on u′r and

u′θ), at x/Ds = 0.02 for varying swirl vane angle.
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(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.16: Contours of in-plane turbulent kinetic energy, k/U2
x,s (based on u′r and u′θ), at

x/Ds = 2.39 for varying swirl vane angle.
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(a) Instantaneous - time I (b) Reynolds-decomposed - time I

(c) Instantaneous - time II (d) Reynolds-decomposed - time II

(e) Instantaneous - time III (f) Reynolds-decomposed - time III

Figure 4.17: Instantaneous and Reynolds-decomposed streamtraces on contours of azimuthal
vorticity, ωθ, in Region B1 at arbitrary time-instants for α1 = 30◦.
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(a) Instantaneous - time I (b) Reynolds-decomposed - time I

(c) Instantaneous - time II (d) Reynolds-decomposed - time II

(e) Instantaneous - time III (f) Reynolds-decomposed - time III

Figure 4.18: Instantaneous and Reynolds-decomposed streamtraces on contours of axial vorticity,
ωx, at x/Ds = 0.02 at arbitrary time-instants for α1 = 30◦.
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(a) α1 = 20◦ - time I (b) α1 = 20◦ - time II

(c) α1 = 15◦ - time I (d) α1 = 15◦ - time II

(e) α1 = 10◦ - time I (f) α1 = 10◦ - time II

Figure 4.19: Reynolds-decomposed streamtraces on contours of azimuthal vorticity, ωθ, in Region
B1 at arbitrary time-instants for α1 = 20◦, α1 = 15◦ and α1 = 10◦.
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(a) α1 = 20◦ - time I (b) α1 = 20◦ - time II

(c) α1 = 15◦ - time I (d) α1 = 15◦ - time II

(e) α1 = 10◦ - time I (f) α1 = 10◦ - time II

Figure 4.20: Reynolds-decomposed streamtraces at on contours of axial vorticity, ωx, x/Ds = 0.02
at arbitrary time-instants for α1 = 20◦, α1 = 15◦ and α1 = 10◦.
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(c) r/Ds = 0.24

St

(m
2 /s

2 )
/H

z

10-2 10-1 100 10110-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2 α = 30o

-5/3

St

(m
2 /s

2 )
/H

z

10-2 10-1 100 10110-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2 α = 20o

-5/3

St

(m
2 /s

2 )
/H

z

10-2 10-1 100 10110-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2 α = 15o

-5/3

St

(m
2 /s

2 )
/H

z

10-2 10-1 100 10110-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2 α = 10o

-5/3

(d) r/Ds = 0.32
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(f) r/Ds = 0.42

Figure 4.21: PSDs of velocity at x/Ds = 0.27 for varying swirl vane angle at various radial
locations [13].
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(a) Rxx and u′x > 1.5〈u′x〉 at reference point x/Ds =
0.02, r/Ds = 0.15 based on Nc = 8

(b) Rrr and u′r > 1.5〈u′r〉 at reference point x/Ds =
0.02, r/Ds = 0.15 based on Nc = 41

(c) Rxx and u′x > 1.5〈u′x〉 at reference point x/Ds =
0.02, r/Ds = 0.25 based on Nc = 47

(d) Rrr and u′r > 1.5〈u′r〉 at reference point x/Ds =
0.02, r/Ds = 0.25 based on Nc = 34

(e) Rxx and u′x > 1.5〈u′x〉 at reference point x/Ds =
0.02, r/Ds = 0.38 based on Nc = 41

(f) Rrr and u′r > 1.5〈u′r〉 at reference point x/Ds =
0.02, r/Ds = 0.38 based on Nc = 45

Figure 4.22: Conditionally-averaged velocity fields on contours of spatial velocity correlations for
α1 = 30◦ at various reference points indicated by yellow circle.
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Experimental Results

(a) Rrr and u′r > 1.5〈u′r〉 at reference point r/Ds =
0.15, θ = π based on Nc = 44

(b) Rθθ and u′θ > 1.5〈u′θ〉 at reference point r/Ds =
0.15, θ = π based on Nc = 41

(c) Rrr and u′r > 1.5〈u′r〉 at reference point r/Ds =
0.25, θ = π based on Nc = 54

(d) Rθθ and u′θ > 1.5〈u′θ〉 at reference point r/Ds =
0.25, θ = π based on Nc = 31

(e) Rrr and u′r > 1.5〈u′r〉 at reference point r/Ds =
0.38, θ = π based on Nc = 43

(f) Rθθ and u′θ > 1.5〈u′θ〉 at reference point r/Ds =
0.38, θ = π based on Nc = 55

Figure 4.23: Conditionally-averaged velocity fields on contours of spatial velocity correlations at
x/Ds = 0.02 for α1 = 30◦ at various reference points indicated by yellow circle.
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(a) α1 = 20◦ based on Nc = 39

(b) α1 = 15◦ based on Nc = 48

(c) α1 = 10◦ based on Nc = 32

Figure 4.24: Conditionally-averaged velocity fields (u′r > 1.5〈u′r〉) on contours ofRrr at a reference
point of x/Ds = 0.02, r/Ds = 0.25 for varying swirl vane angle
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Experimental Results

(a) α1 = 20◦ based on Nc = 44

(b) α1 = 15◦ based on Nc = 36

(c) α1 = 10◦ based on Nc = 51

Figure 4.25: Conditionally-averaged velocity fields (u′r > 1.5〈u′r〉) on contours of Rrr at x/Ds =
0.02 at a reference point of x/Ds = 0.02, r/Ds = 0.25 for varying swirl vane angle
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Experimental Results

(a) 〈u′r〉rot

(b) 〈u′θ〉rot

Figure 4.26: Rotationally-averaged Reynolds-decomposed streamtraces on contours of
rotationally-averaged velocities at x/Ds = 0.02 for α1 = 30◦.
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Experimental Results

(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.27: Rotationally-averaged streamtraces on contours of rotationally-averaged axial vor-
ticity at x/Ds = 0.02 for varying swirl vane angle.
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Experimental Results

(a) α1 = 30◦ (b) α1 = 20◦

(c) α1 = 15◦ (d) α1 = 10◦

Figure 4.28: Rotationally-averaged streamtraces on contours of rotationally-averaged to time-
averaged turbulent kinetic energy ratio at x/Ds = 0.02 for varying swirl vane angle.

148



Experimental Results

v’r / Ux,s

P

-2 -1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 Time-averaged
Rotationally-averaged

(a) Radial velocity

v’θ / Ux,s

P

-2 -1 0 1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 Time-averaged
Rotationally-averaged

(b) Tangential velocity

Figure 4.29: PDF of fluctuating velocity components in laboratory and rotating frame of reference
at x/Ds = 0.02, r/Ds = 0.25, θ = π for α1 = 30◦
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Experimental Results

(a) α1 = 30◦ - Time I (b) α1 = 30◦ - Time II (c) α1 = 30◦ - Time III

(d) α1 = 20◦ - Time I (e) α1 = 20◦ - Time II (f) α1 = 20◦ - Time III

(g) α1 = 15◦ - Time I (h) α1 = 15◦ - Time II (i) α1 = 15◦ - Time III

(j) α1 = 10◦ - Time I (k) α1 = 10◦ - Time II (l) α1 = 10◦ - Time III

Figure 4.30: Instantaneous streamtraces at x/Ds = 2.39 at arbitrary time-instants for varying
swirl vane angle •- geometric centre •- aerodynamic centre from Equation A-24
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Figure 4.31: Probability density function of radial displacement of PVC for varying swirl vane
angle.
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Experimental Results

(a) α1 = 30◦ - Time I (b) α1 = 30◦ - Time II (c) α1 = 30◦ - Time III

(d) α1 = 20◦ - Time I (e) α1 = 20◦ - Time II (f) α1 = 20◦ - Time III

(g) α1 = 15◦ - Time I (h) α1 = 15◦ - Time II (i) α1 = 15◦ - Time III

(j) α1 = 10◦ - Time I (k) α1 = 10◦ - Time II (l) α1 = 10◦ - Time III

Figure 4.32: Reynolds-decomposed streamtraces at x/Ds = 2.39 at arbitrary time-instants for
varying swirl vane angle •- geometric centre.
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Chapter 5

Large Eddy Simulation Results

This chapter presents Large Eddy Simulation (LES) calculations of the modular swirler with

α1 = 30◦. This has been shown experimentally to exhibit both near and far-field instability

modes with a broad range of characteristic frequencies that differ by approximately two orders

of magnitude (St ≈ 0.01 − 1.2). In order to capture these features the grid, or spatial filter

(∆), required by LES must be sufficiently fine and is considered in Sections 5.1 and 5.2. Since

LES provides a spatially-averaged representation of the instantaneous flowfield long integration

times are necessary to obtain statistically-converged ensemble-averaged statistics. Furthermore,

since the far-field of the current flow is characterised by a low-frequency PVC (St ≈ 0.01) an

adequate number of samples in relevant regions must be captured for spectral analysis. The

acquisition of a suitable LES ensemble dataset and a comparison with first and second-order

PIV statistics are detailed in Section 5.3. If LES-based methods are to become integral to

the design and development of swirl-stabilised combustors it is of paramount importance that

frequency components associated with both near and far-field CS are predicted with a high

degree of fidelity. In order to validate the frequencies predicted by LES, comparison are made

with expected frequencies derived from experiment [13, 38] in Section 5.4. An attractive property

of CFD is that full volumetric information is available which can be utilised to explore regions

unavailable experimentally. Conditional-averaging techniques, such as rotational-averaging, that

were applied to 2C-PIV in the previous chapter can also be extended to explain complex 3D flow

behaviour. A volumetric analysis of near and far-field CS is performed in Section 5.5.

5.1 Computational Domain

In Section 3.3.1 it was argued that in order to capture the unsteady dynamics of the modular

swirler, the computational domain must include the swirl duct, expansion chamber and a portion

of the exhaust. To simplify the mesh generation procedure and reduce the computational effort,

it was decided to begin the calculation just downstream of the radial vanes rather than model

them explicitly. This decision was based on previous experimental [14] and computational studies

[52, 50, 53, 55] which have shown that to include the vanes in the swirler does not exert any
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significant influence on the formation of any unsteady periodic structures. Hence, the computa-

tional geometry and domain used here for LES calculations is axisymmetric with respect to the

geometric centreline, allowing a polar-type mesh (Figure 3.4) to be used. To ensure the quality

and suitability of the meshes used in this thesis a number of factors considered are covered in

the following subsections.

5.1.1 Near-Wall Resolution

Initially, consideration had to be given to the appropriate resolution requirements of the high Re

wall-bounded flow within the swirl duct. As already discussed in Section 3.2.1, wall-dominated

flows require extensive mesh refinement to resolve energy-containing near-wall eddies and the

associated computational cost is often considerable. Furthermore, as LULES adopts a structured

multi-block approach requiring conformal mapping between connecting blocks, it is clear from

Figure 3.4 that high levels of local mesh refinement within the swirl duct would then be imposed

throughout the expansion chamber. In order to avoid this large computational penalty, it was

decided to adopt the wall-function approach. (Equation 3.66). For this to be implemented

correctly, Sagaut [88] recommends that the near-wall radial spacing should be such that y+ ≈
20− 200. The procedure adopted to achieve this is considered in the following subsection along

with considerations regarding an adequate mesh density.

5.1.2 Mesh Density

Previous LES calculations of swirl injector flows reviewed in Section 1.3.2 have utilised a range of

grid densities on both structured and unstructured meshes. Wegner et al. used a 0.8×106 node

structured mesh to investigate a non-premixed swirl-burner previously studied in the TECFLAM-

project (Schneider et al. [46]). The entire swirler, including radial vanes, was included in the

calculation and 16 radial nodes were used across the swirl duct. Studies by Tang et al. [51, 108]

used a polar-type grid to investigate a multi-stream swirler consisting of ≈ 0.5× 106 nodes with

66 in the azimuthal direction. For these simulations 52 radial nodes were used from the centreline

to the outer wall of the expansion chamber, however, it is not clear how many of these were used

across the swirl duct. Polar-type meshes have also been employed by Lu et al. [126], Dunham

et al. [50] and Wang et al. [52]. The studies of Lu et al. [126] investigated turbulent swirling

flows in a dump chamber (E = 1.5), whilst Dunham et al. [50] simulated the current Turbomeca

swirler geometry (E = 3.72) under various conditions. Both used ≈ 0.9 × 106 nodes with 81 in

the azimuthal direction. In Lu et al. [126] 75 radial nodes were used from the centreline to the

outer wall of the expansion chamber, however, it is not clear how many of these were used across

the swirler exit. In Dunham et al. [50], a total of 180 radial nodes were used with 39 across the

swirl duct. The flows considered in Wang et al. [52] were extremely complex, featuring three sets

of counter-rotating swirl vanes requiring a somewhat denser mesh consisting of ≈ 2× 106 nodes

with around half situated within the swirler. The major disadvantage of polar-type meshes, as

noted by Tang et al. [51], is the time-step restriction imposed on explicit LES methods by the
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small cell size in the vicinity of the centreline. To overcome this restriction, a number of authors

have utilised structured O-grids which also avoid the necessity of specifying centreline boundary

conditions. For example, Wegner et al. [58] used this approach to perform a calculation of the

Turbomeca injector geometry, including the radial vanes, consisting of 3.5×106 nodes. Although

the overall mesh density of Wegner et al. [58] is considerably higher than Dunham et al. [50], a

similar radial resolution was used within the swirl duct (30 and 39 nodes respectively). Garcia-

Villalba et al. [55] used an O-grid mesh consisting of around 6× 106 hexahedral cells with 160

nodes in the azimuthal direction to investigate an annular swirling jet issuing into an unconfined

ambient fluid. Roux et al. [59] also investigated the Turbomeca swirler using a similar grid

density as Wegner et at. [58] with an unstructured mesh consisting of 3 × 106 elements. Of

these, 20% (0.6× 106) of the elements were located in the upstream plenum and swirler and 50%

(1.5× 106) in the upstream half of the combustion chamber.

To assess the sensitivity of the solution to the selected numerical grid, a refinement study was

undertaken. An initial mesh was designed with 81 azimuthal nodes. For clarity this will be

referred to as the datum mesh and is shown in Figure 5.1. Since y+ includes uτ it was necessary

to perform a number of preliminary simulations (based on 35 radial nodes across the swirl duct

similar to Dunham et al. [50] and Wegner et al. [58]) with varying near-wall spacing, yP. The

final yP = 0.3 × 10−3m gave y+ ≈ 20 along the inner wall of the swirl duct which is consistent

with the recommendation [88] given above. To limit discretisation errors, great care was taken

to ensure that the grid expansion ratio did not exceed 5% in any direction. To investigate the

effect of axial refinement on the datum mesh, the nodal distribution in the radial and circum-

ferential directions was fixed and the number of nodes doubled in the axial direction throughout

the swirl duct and the near-field of the expansion chamber (0 ≥ x/Ds ≤ 1.0). To investigate

the effect of circumferential refinement on the datum mesh the nodal distribution in the axial

and radial directions was fixed and the number of nodes doubled in the circumferential direction.

The resulting meshes will be referred to as the datum mesh with axial refinement (w.a.r) and the

datum mesh with circumferential refinement (w.c.r) respectively (see Figure 5.2). Further details

regarding the computational meshes used in the refinement study are provided below in Table 5.1.

Swirl Duct Expansion Chamber Exhaust Duct Domain Total

ni nj nk Total ni nj nk Total ni nj nk Total ni×nj×nk

Datum 89 35 81 0.25× 106 116 123 81 1.16× 106 28 25 81 56.7× 103 1.46×106

Datum w.c.r 89 35 161 0.5× 106 116 123 161 2.3× 106 28 25 161 112.7× 103 2.91× 106

Datum w.a.r 175 35 81 0.5× 106 166 123 81 1.65× 106 28 25 81 56.7× 103 2.2×106

Table 5.1: Details of computational grids used in refinement study (ni: axial direction, nj: radial

direction, nk: circumferential direction)
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5.1.3 Filter Width

The concept and mathematical background of LES was introduced in Section 3.1.2, however, to

make a distinction between its variants Pope [7] suggests the following definitions:

• LES with full near-wall resolution - the filter (usually the grid) are sufficiently fine to resolve

80% of the energy everywhere.

• LES with near-wall modelling - the filter and grid are sufficiently fine to resolve 80% of the

energy remote from the wall, but not in the near-wall region.

• VLES - the filter and grid are too coarse to resolve 80% of the energy in any region of the

flow.

Pope [7] has shown that for high-Re homogeneous isotropic turbulence and an isotropic filter of

width ∆ = 1/6iLii, where iLii is the integral lengthscale, the filtered field contains 80% of the

energy. Clearly, iLii, which is readily availiable from the PIV data presented in Chapter 4 for

the current flow, can be utilised to assess the adequacy of the numerical grids detailed above.

For the inhomogeneous flows considered in this thesis, the LES transport equations are solved

on anisotropic grids with spacings ∆x, ∆r and r∆θ in the three coordinate directions. The filter

is then anisotropic and the characteristic width is generally taken as ∆ = (∆x∆θr∆r)1/3 as sug-

gested by Deardorff [102]. In practical LES applications, iLii is likely to vary over an extremely

broad range and a strict adherence to Pope’s criterion may result in excessively large numerical

grids. Moreover, if characteristic timescales of the flow are large in comparison to the timestep

required for numerical stability (see Section 5.1.4) the associated computational cost may prove

prohibitive. Since the current aim of this thesis is to assess the fidelity with which LES captures

important quantitative details of the near-field and far-field CS reported in Chapter 4, it was

decided that the most suitable approach would be to choose grids that enforce Pope’s criterion

in these critical regions and introduce a degree of relaxation elsewhere. In this way, overall com-

putational requirements could be minimised, thus allowing calculations to proceed for a duration

sufficient to provide a frequency resolution (fres = 1/NT∆t) suitable for making a quantitative

assessment of near-field (high frequency) and far-field (low frequency) CS with the available com-

putational resources. From the x − r plane PIV measurements for α1 = 30◦ shown in Figure

4.14(a), near-field CS may be identified from maxima of in-plane turbulent kinetic energy in the

region defined approximately as 0 ≥ x/Ds ≤ 0.7, 0.1 ≥ r/Ds ≤ 0.6. Far-field CS are located in

the vicinity of the expansion chamber centreline, say r/Ds ≤ 0.1, which can also be observed in

Figure 4.14(a). Figure 5.3 shows the characteristic filter width (∆ = (∆x∆θr∆r)1/3) for various

meshes compared with one-sixth axial, radial and circumferential lengthscales (1/6 xLxx, 1/6 rLrr

and 1/6 θLθθ respectively) derived from PIV at various axial locations. At x/Ds = 0.02, all grids

are fine enough to resolve the majority of energy containing scales across the majority of the swirl

duct. The grids are not sufficiently fine to resolve 80% of the energy in the outer region, however,
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it is argued that this is not so important as this is outside of the region containing the near-field

CS emerging from the swirl duct. Further downstream at x/Ds = 0.27 and x/Ds = 0.53, the

datum w.c.r and the datum w.a.r meshes are finer than, or at worst equal to, all the one-sixth

lengthscales in the region 0 ≥ r/Ds ≤ 0.5 which includes the area directly influenced by near-

field CS identifed above. Although the datum mesh slightly exceeds one-sixth lengthscales at

x/Ds = 0.53, r/Ds ≈ 0.32, it is at least comparable and should not prove detrimental to the

fidelity of the simulation. At larger radii (r/Ds ≥ 0.5), decreases in one-sixth lengthscale are

observed at x/Ds = 0.27 and x/Ds = 0.53, partially attributable to the presence of solid bound-

aries such as the end wall of the expansion chamber. From Figure 4.1(a), which shows time-mean

streamtraces from x − r plane PIV measurements in the expansion chamber for α1 = 30◦, this

region is characterised by a CRZ and the levels of grid refinement required to resolve 80% of the

energy associated with this feature are considered not crucial to the present aim. The fact that all

grids are sufficiently fine in comparison to one-sixth lengthscales downstream of the swirl exit in

the vicinity of the expansion chamber centreline suggests that far-field CS should be well resolved.

To assess further the adequacy of the meshes used it is informative to examine the ratio of

sub-grid to molecular viscosity, νsgs/ν (νsgs from Equation 3.37). Figure 5.4 shows time-averaged

contours of νsgs/ν for the various meshes. According to Durbin and Medic [127], values of νsgs/ν

up to around 20 are in the well-resolved LES regime. A maximum of νsgs/ν ≈ 20 is reported in

Garcia-Villalba [105] in the near-field of the swirler exit using the Smagorinsky model. Inside

the swirl duct (x/Ds ≤ 0) and in the vicinity of the swirler exit (x/Ds = 0.0, 0 < r/Ds < 0.5),

νsgs/ν ≤ 10 for all grids. Further downstream in the expansion chamber, a similar ratio of νsgs/ν

is also observed close to the centreline. At larger radii, increased levels of sub-grid scale viscosity

persist in regions of the flow characterised by the presence of the CRZ with νsgs,max/ν ≈ 20 in the

case of the datum mesh. It can be concluded that, based on the criterion of Durbin and Medic

[127], regions identified as being critical to the fidelity of near-field and far-field CS analysis are

adequately well resolved.

5.1.4 Computational Requirements

Due to the explicit Adams-Bashforth scheme used by LULES the maximum timestep, ∆tmax, is

restricted by the CFL and DFS numbers defined in Equations 3.58 and 3.59. For the datum mesh

it was found that ∆tmax = 2.0 × 10−6 gave a maximum average CFL number of approximately

0.25 and an maximum average DFS number of approximately 0.055. Although the axial and

circumferential location of the maximum CFL and DFS numbers varied during the simulation

the radial location always coincided with the centreline (j = 2) node. For the datum mesh

with axial refinement ∆tmax = 2.0 × 10−6 was also suitable for solution stability, however, for

the datum mesh with circumferential refinement it was necessary to reduce the time step to

∆tmax = 1.0× 10−6 to achieve stability.
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To improve the computational efficiency of the code, the solution of the Possion equation for

pressure is accelerated using a multi-grid V-cycle as described in Section 3.2.1. An appropriate

number of multi-grid cycles was determined by examining the residual of the pressure equation

(defined in Equation 3.60). By comparing the ratio of the residual at cycle i, φi, to that of the

previous cycle, φi−1, it was found that φi/φi−1 asymptotes to approximately unity after 15 cycles

and this was taken as a sufficient indication of solution convergence. This was also found to be

the case for meshes with axial and circumferential refinement. All calculations were performed

on a PC cluster comprising 16 64-bit Itanium processors. Since some processors treated more

than one block, a weight function was used to obtain an appropriate load balance to achieve

optimum computational efficiency. This is an important feature for a numerical solver dealing

with block-based structured grids in a distributed computing environment.

To assess the impact of the numerical settings required for solution stability and convergence

on the number of CPU hours required for a simulation it is instructive to use characteristic

timescales of the flow being simulated. The timescale, Ts (Equation 4.1), is characteristic of bulk

flowfield rotation in the vicinity of the swirler exit. Another important timescale, particularly for

ensuring initial transients of the solution have propagated through the computational domain,

is the residence or flow-through time which will be denoted Tr. In the present case since fluid

elements follow helical paths the following practice was adopted to compute Tr. An estimate for

Tr was obtained (using Tecplot) from the length of a streamtrace released from the inlet plane of

a time-mean dataset and the average velocity magnitude along it (see Figure 5.5). This gave a

characteristic length and velocity of 0.88m and 1.31m/s respectively, and thus, Tr ≈ 0.67s. Table

5.2 compares the ratio of Ts and Tr relative to ∆tmax for all computational meshes based on 15

multi-grid pressure cycles and 16 64-bit Itanium processors.

∆tmax Ts/∆tmax CPU Hrs. / Ts Tr/∆tmax CPU Hrs. / Tr % Increase CPU Hrs. (approx)

Datum 2.0×10−6 10×103 5.9 670× 103 195 -

Datum w.c.r 1.0×10−6 20×103 23.4 1.34× 106 782 300

Datum w.a.r 0.5×10−6 10×103 8.9 670× 103 298 50

Table 5.2: LES computational requirements - calculations performed on 16 64-bit Itanium pro-

cessors with 15 multi-grid pressure cycles

This highlights the increase in computational expense resulting from finer numerical grids. The

increase associated with axial refinement relative to the datum mesh (≈ 50%) is relatively modest

in comparison with that associated with circumferental refinement (≈ 300%). There are two

reasons for this. Firstly, in the former case it was possible to maintain soultion stability with a

computational timestep identical to that of the datum mesh, whilst in the latter case this had

to be halved. Secondly, axial refinement could be undertaken locally in regions of high spatial
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gradients, i.e. inside the swirler and the near-field of the expansion chamber, resulting in ≈ 50%

more nodes relative to the datum mesh. Circumferential refinement is performed on a global basis

and the required number of nodes is double that of the datum mesh. Careful consideration must

be given as to whether or not the additional levels of refinement are necessary. In the present

case this is achieved through a qualitative assessment of near and far-field CS development and

is considered in the following seciton.

5.2 Coherent Structure Development

An essential requirement of the numerical grids detailed in Table 5.1 is that they are capable

of capturing the main flow features and unsteady dynamics of the modular swirler observed

experimentally in Chapter 4. The importance of SN on the flow has already been demonstrated

and, thus, in order to perform a comparable analysis between simulation and experiment it

was essential to match this parameter as closely as possible. Appropriate inlet conditions were

calculated using Equation 3.77 together with measured ṁ and Ġθ from Table 4.1 applicable to

α1 = 30◦. This lead to mean radial and tangential swirl duct inlet velocities of 〈ur〉in = 0.78m/s

and 〈uθ〉in = 1.38m/s respectively. It was found that in order to match Gθ = 0.078kgm/s2 at

x/Ds = 0.02 it was necessary to increase 〈uθ〉in by ≈ 7% to 1.484m/s. Due to the action of

wall-shear within the swirl duct Ġθ decays and hence the need for this adjustment. Table 5.3

details flow rates at swirler exit obtained through direct integration of mean profiles of axial and

tangential velocity at x/Ds = 0.02. In keeping with the approach adopted for experimental data

presented in Chapter 4, to ensure these were representative of only the swirl stream, integration

was performed from 0.09 ≥ r/Ds ≤ 0.5 and negative axial velocities associated with the CTRZ

excluded from the summation.

ṁ Ġx Ġθ SN Ux,s

PIV 2.15 5.26 7.82× 10−2 0.80 2.0

LES 2.11 5.28 7.87× 10−2 0.79 1.96

Table 5.3: Swirler exit flow rates x/Ds = 0.02 for α1 = 30◦

Following Tang et al. [108], each simulation was run for approximately 3Tr to allow initial tran-

sients to propagate through the computational domain and for the flow to reach a statistically-

stationary state. As already shown in Chapter 4, the presence of CS can be determined qualita-

tively by examining instantaneous velocity vectors or streamtraces in x−r and r−θ measurement

planes. Figure 5.6 shows instantaneous streamtraces for the three computational grids investi-

gated at an arbitrary time instant after the initial transient period (t > 3Tr). It should be noted

that, in order to provide a clearer picture of the flowfield, azimuthal averaging has been applied

to Figure 5.6. After a period of 3Tr the flow is well developed and large-scale features such as

CRZ and CTRZ are well established. These features dominate the expansion chamber and the
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strong shear-layers they form with the swirl cone issuing from the swirl duct are clearly visible.

In Chapter 4 it was shown that the near-field of the expansion chamber (0 ≥ x/Ds ≤ 1) is

dominated by a pair of high-frequency vortical structures, whilst in the far-field (x/Ds > 1) a

low-frequency PVC exists. To examine the ability of the various computational grids to capture

these important unsteady features, the instantaneous flow was examined at two r − θ planes

extracted from the computational volume located at x/Ds = 0.02 (Figure 5.7) and x/Ds = 2.39

(Figure 5.8). It should be noted that although these Figures were obtained at arbitrary time in-

stants, computational predictions were constantly monitored before (t < 3Tr) and after (t > 3Tr)

the initial transient period to ensure that the examples presented here are representative of the

statistically stationary flowfield. Clearly, evidence from Figure 5.7 suggests that none of the

computational grids are able to adequately capture the expected CS in the vicinity of the swirler

exit. Further downstream, Figure 5.8 shows a significant displacement of the aerodynamic centre

of the flow from the geometric centre as highlighted by the red dot. As noted previously, this

behaviour is strongly associated with a PVC phenomenon thus demonstrating the suitability of

all computational grids in this region of expansion chamber.

From the discussion presented above it can be concluded that axial or circumferential refine-

ment on the datum mesh does not exert a significant influence on the formation (or not) of CS

in the vicinity of the swirler exit. Previously, Midgley [13] has suggested that these are formed

as a result of flow separation from the inner wall of the swirl duct. To avoid the large computa-

tional penalty associated with resolving the near-wall dynamics of high-Reynolds turbulent flow

it should be recalled from Section 5.1.1 that all computational grids detailed in Table 5.1 were

designed with a near-wall resolution such that the wall-function approach described in Equation

3.66 could be implemented. It is likely that this approach, developed within the ideal framework

of attached equilibrium turbulent boundary layers without pressure gradient, is not immediately

relevant to the complex near-wall dynamics associated with the types of flows considered here.

A number of studies reviewed in Section 5.1.2 have reported near-wall resolutions that fall in

both the viscous sublayer (y+ < 5) and buffer layer (5 < y+ < 30). For example, Lu et al. [126]

used y+ ≈ 2 − 6, Wegner et al. [58] and Wang et al. [52] both used y+ ≈ 3 − 10 without a

near-wall model, whilst Tang et al. [108] used y+ ≈ 1.5− 50. Although these do not have suffi-

cient mesh densities to faithfully represent all of the near-wall dynamics (such as boundary-layer

streaks), they do however suggest that increased resolution and, in particular use of the no-slip

condition rather than a near-wall model, may be more suitable in the present situation. In order

to minimise computational expense, it was decided therefore to investigate the effect of radial

refinement on the datum mesh in the near-wall region of the swirl duct since increased axial or

circumferential refinement have been shown not to be significant. In keeping with the conven-

tions adopted in Section 5.1.2, this will be referred to as the datum mesh with radial refinement

(w.r.r) and was generated with an identical number of axial, radial and circumferential nodes
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as the datum mesh detailed in Table 5.1. The axial and circumferential nodal distribution was

kept constant whilst the radial distribution was clustered towards the inner wall of the swirl duct

with a near-wall spacing of 0.1 × 10−3m (y+ = 2 − 11) as shown in Figure 5.9. By employing

an identical number of nodes, the solution from the datum mesh could be utilised as a starting

solution to avoid the considerable computational effort if starting from a basic level of initial

conditions. To allow the flowfield to adjust to the imposed changes, the simulation was run for

one additional flow-through time.

Figure 5.10 shows instantaneous and Reynolds-decomposed streamtraces in an r − θ plane at

the swirler exit (x/Ds = 0.02) for the datum mesh with radial refinement. The turbulent struc-

tures identified in Figure 5.10 are in good agreement with experimental observations (Figure

4.18), indicating the importance of an increased near-wall resolution within the swirl duct. The

ability of LES to capture the unsteady dynamics of the modular swirler are presented in Sections

5.4 and 5.5 following a statistical analysis of the predictions considered in the next section.

5.3 Large-Eddy Simulation Ensemble Data

LES simulations were performed for approximately 4Tr to allow initial transients to propagate

through the computational domain. At this point the flowfield is statistically stationary as shown

in Figure 5.6 and data sampling can begin. In order to validate LES calculations against the

PIV data presented in Chapter 4, consideration had to be given to the total number of samples,

NT, and sampling frequency, fs (or sampling interval ∆T = 1/fs), required. To investigate

the spectral characteristics of the Turbomeca injector considered here, Midgley [13] used a 5µm

Dantec 55P11 miniature single hotwire with a maximum sampling frequency of 25kHz. These

measurements were performed in air and the reference scales of Ds = 0.03763m and Ux,s =

27.19m/s [13] therefore give a maximum Strouhal number of St,max = 34.6. At x/Ds = 2.65,

r/Ds = 0.19 a PVC frequency of St ≈ 13.2× 10−3 was measured [13]. For the LES calculations

presented here which utilise water as the working medium, a sampling frequency of 2kHz (∆T =

0.5ms) leads to St,max = 38.4 based on the reference scales in Table 5.3. To capture O[5]

PVC cycles for spectral analysis, a total of 16384 (214) samples were collected at 2kHz giving

a frequency resolution of 0.12Hz and a corresponding minimum Strouhal number of St,min =

2.3× 10−3. In order to utilise fully the available volumetric information from LES, complete 3D

velocity and pressure fields were exported at each sampling interval, requiring a total storage

capacity of 439GB. Details of the LES ensemble are summarised in Table 5.4.
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NT ∆T NT∆T (NT∆T )/Ts (NT∆T )/Tr St,min St,max CPU Hrs.

16384 0.5ms 8.192s 409.6 12.2 2.3×10−3 38.4 2379*

Table 5.4: Summary of LES ensemble data - calculations performed on 16 64-bit Itanium pro-

cessors with 15 multi-grid pressure cycles. *It should be noted that an additional 4 flow through

times were required prior to sampling to obtain a fully-developed flowfield (see Section 5.2)

increasing the overall walltime to approximately 3160 CPU hours.

As already highlighted in Section 2.4.5, the accuracy of estimates for statistical quantities, such

as mean and r.m.s velocities, is dependent on the number of (statistically) independent samples,

NI and is considered in the following subsection.

5.3.1 Statistical Convergence

In Section 2.4.4, two points were selected, x/Ds = 0.02, r/Ds = 0.4 and x/Ds = 1.06, r/Ds = 0.0

to investigate the statistical convergence of PIV data based on 650 independent samples. In

order to determine the number of statistically independent samples available from the total LES

ensemble of NT = 16384 samples it was necessary to determine local integral timescales at these

locations. The integral timescale, Tij , is defined in Equation A-17 and is taken as the integral of

the autocorrelation function (ACF) from zero temporal offset (τ = 0) to the first zero crossing

(FZC) of the time axis. At this point, a property at t = t0 + τ is statistically independent, or

uncorrelated, with that at t0. Figure 5.11 shows ACFs obtained at x/Ds = 0.02, r/Ds = 0.4,

θ = π and x/Ds = 1.06, r/Ds = 0.0, θ = π based on the above selected sample rate (2kHz,

∆T = 0.5ms). In Figure 5.11, the range of the temporal offset axis has been adjusted from

t/Ts = 0− 10 at x/Ds = 0.02 to t/Ts = 0− 100 at x/Ds = 1.06 in order to account for the large

variation in local timescale. Figure 5.11 was obtained at θ = π but subsequent analysis performed

at all circumferential nodes from θ = 0 − 2π revealed some degree of variation in the ACF and

corresponding integral timescale. To account for this, integral timescales were computed from

θ = 0 − 2π and then circumferentially averaged. These are detailed below in 5.5 relative to the

sampling interval, ∆T , and total duration of the LES ensemble, NT∆T .

x/Ds r/Ds 〈Txx〉/∆T 〈Trr〉/∆T 〈Tθθ〉/∆T NT∆T/〈Txx〉 NT∆T/〈Trr〉 NT∆T/〈Tθθ〉
0.02 0.4 4 3 4 4602 5980 4428

1.06 0.0 79 90 88 207 182 186

Table 5.5: Integral timescale relative to ∆T and NT∆T at selected locations

At the first point approximately 1 in 4 samples are statistically independent, whilst at the second

point only 1 in every 90 samples is uncorrelated since the integral timescale is approximately one

order of magnitude larger. In Section 2.4.5, statistical convergence of PIV data was demonstrated
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by dividing datasets at each location into subsets and plotting against confidence interval curves

(Equations 2.18 and 2.19) for confidence levels of 95% and 99%. A similar analysis was performed

on the LES data and is shown in Figures 5.12 and 5.13. In the notation used, 〈ui,N〉 and 〈u′i,N〉
are the mean and r.m.s velocities based on the number of members of the subset, whilst 〈ui,P〉
and 〈u′i,P〉 are the estimated population parameters based on the maximum number of samples.

In the vicinity of the swirler exit (Figure 5.12), all statistical quantities are observed to converge

within the specified confidence intervals as NI is increased. Due to the integral timescale at

x/Ds = 1.06, r/Ds = 0.0, it was only possible to obtain ≈ 180 statistically independent samples.

To increase NI and fully utilise the volumetric information provided by CFD, spatial averaging

in a statistically homogeneous direction is often used. The polar-type computational grids used

here are well suited to this form of averaging in the azimuthal direction and this has been adopted

throughout this thesis. The increase in independent samples depends on the integral lengthscale

defined in Equation A-13 which is a measure of the distance over which two points are correlated

in space. In direct analogy to the integral timescale, only one statistically independent sample

exists per integral lengthscale. Unfortunately, this approach does not significantly increase NI in

the vicinity of the geometric centreline as phenomena here are hightly correlated and the spatial

separation between grid points is small.

5.3.2 Single Point Statistics

In this subsection direction comparison between mean, rms and shear stresses extracted from

LES at axial stations of x/Ds = 0.02, 0.27, 0.53 and 1.06 are made with PIV. From Figure 4.1(a),

the outer shear-layer shed from the swirler has a time-mean reattachment location on the outer

wall of the expansion chamber of xL/Ds ≈ 1.45. Regular monitoring of LES revealed a large

variation in the instantaneous reattachment location as shown for various time instants in Figure

5.14. It should be noted that in Figure 5.14, and for the remainder of this Chapter, t/Ts = 0

refers to the beginning of the sampling period after the flow had reached a statistically sta-

tionary (i.e. after 4Tr) state not the beginning of the simulation at initial conditions. Figure

5.15 shows the instantaneous reattachment location of the outer shear-layer on the outer wall

of the expansion chamber as a function of non-dimensional time, t/Ts. This fluctuates around

xL/Ds ≈ 1.4 from t/Ts ≈ 0 − 100 and xL/Ds ≈ 1.8 from t/Ts ≈ 100 onwards. Throughout this

period the instantaneous flowfield was continuously monitored at x/Ds = 0.02 as shown in Figure

5.16. The vortex pattern identified in Figure 5.10 is clearly visible from t/Ts ≈ 0− 125 (Figures

5.16(a)-(f)) and t/Ts ≈ 300 − 325 (Figures 5.16(j) and (k)) whilst at other times no CS are

detected. Similar behaviour has already been observed experimentally (Figure 4.18) suggesting

a similar bimodal switching between flow states has been captured by LES. It is interesting to

note that the reattachment location appears to be intimately linked to the presence of CS at the

swirler exit. For example, when these are observed from t/Ts ≈ 0− 100 the reattachment point

is located significantly further upstream than when no CS were detected. To ensure a statistical
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analysis of LES comparable with experiment some consideration had to be given to these issues.

From the available LES ensemble data, two sets of single point statistics were created. The

first used only samples from t/Ts = 0− 125 which corresponds to the period during which LES

captures the experimentally observed vortex structure at the swirler exit. This will be referred

to as the conditioned set and has a time-mean reattachment location identical to experiment,

i.e. xL/Ds = 1.45. The second utilised all members of the ensemble from t/Ts = 0− 409.6 which

gives a time-mean reattachment location of xL/Ds = 1.72 (19% larger than PIV) and will be

referred to as the complete set.

Figure 5.17 shows axial velocity profiles from both sample sets are in reasonable agreement with

experiment, however the conditioned set reproduces overall measured trends more faithfully. At

x/Ds = 0.02, the complete set deviates slightly from experiment between 0 ≥ r/Ds ≥ 0.15 and

discrepancies in this region remain with increased downstream distance. This is most notable at

x/Ds = 1.06 in which the peak axial velocity within the swirl stream is located further inboard

(r/Ds = 0.72) relative to PIV (r/Ds = 0.92). Broadly, these disparities can be attributed to

differences in gross flow features such as the size and shape of the CRZ and trajectory of the swirl

cone which have already been discussed above. It is interesting to note the variation in centreline

(r/Ds = 0) axial velocity between the two sample sets at x/Ds = 0.53 and x/Ds = 1.06. It is

reasonable to assume that this is the result of the limited number of statistically independent

samples available in this region as characteristic timescales are large in comparison to the sam-

pling interval.

Examination of predicted radial velocity distributions presented in Figure 5.18 reveals the condi-

tioned set is again in overall better agreement with experiment in comparison to the complete set.

At x/Ds = 0.02, both sets are in reasonable qualitative agreement with experiment, however,

neither capture the lower radial velocities measured by PIV which begin at r/Ds = 0.08 and re-

sults in a minimum at r/Ds ≈ 0.17. In the vicinity of the experimental minimum, LES predicts a

more constant distribution of radial velocity of 〈ur〉/Ux,s ≈ 0.2 which, given the good agreement

of axial velocity at this location shown in Figure 5.17(a), suggests that the computed flow angle

is too steep in comparison to experiment. It is reasonable to assume that these difference are

due to the time-mean location of flow separation from the inner wall of the swirl duct. The

location of peak radial velocity obtained from the conditioned set is in excellent agreement with

experiment at all locations within the expansion chamber. Apart from a slight underprediction

at x/Ds = 0.27, the peak magnitude is also well represented. This is contrast to the complete

set in which the peak is underpredicted at all axial stations. In a similar way to axial velocity

trends discussed above, the location of peak radial velocity deviates furthest from experiment at

x/Ds = 1.06 which is again attributed to differences in gross flow features.
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Although axial and radial velocity distributions differ only slightly between sample sets at

x/Ds = 0.02, Figure 5.19(a) indicates that greater discrepancies exist in the predicted tan-

gential velocity component. In comparison to experiment and the conditioned set (which exhibit

good agreement), the complete set predicts a consistently higher tangential velocity in the region

0 ≥ r/Ds ≥ 0.25. Further downstream at x/Ds = 0.27 and x/Ds = 0.53, both sample sets

predict a similar Rankine-like distribution of tangential velocity in accordance with measured

trends. At these locations, the predicted position of peak tangential velocity, which is the demar-

cation between forced and free vortex regions, is in reasonable agreement with PIV. However, at

x/Ds = 0.53 the predicted magnitude is approximately 10% higher and located slightly inboard.

Furthmore, at this location the gradient of tangential velocity across the forced vortex region

predicted by both conditioned and complete sets is steeper than that obtained from PIV. At

x/Ds = 1.06, notable differences exist between simulation and experiement which include an

overprediction in peak tangential velocity at r/Ds ≈ 0.2 by LES and a steeper gradient across

the inner forced vortex region. In a similar way to axial and radial velocities, it is suggested

that discrepancies between LES sample sets close to the centreline are attributed to variations

in the number of statistically independent samples, whilst those at larger radii, for example at

r/Ds ≈ 0.6, are a result of differences associated with gross flow features.

Figures 5.20 to 5.22 show radial profiles of all 3 r.m.s components. As r.m.s velocities mea-

sured by PIV are contaminated by sub-grid filtering effects (see Section 2.3.4), Equation 2.13 has

been employed to recover actual or ‘true’ values for axial and radial components in the x−r plane.

The difficulties associated with implementing this correction methodology in the r−θ plane were

discussed in Section 2.4.2 and, as a result, r.m.s tangential velocities remain uncorrected. Over-

all, measured trends of r.m.s axial velocity are faithfully reproduced by the conditioned set as

shown in Figure 5.20. This includes the location and magnitude of peak values arising at the

interface of the CTRZ and swirl stream, suggesting that the inner axial shear-layer is well re-

solved. Similarly, conditioned r.m.s radial velocities shown in Figure 5.21 are in good agreement

with experimental observations. The radial location of peak values is well represented at all

axial stations, however at x/Ds = 1.06 the corresponding magnitude is underpredicted relative

to PIV. Despite the limited number of statistically independent samples, profiles of conditioned

axial and radial r.m.s velocity exhibits a good agreement with experiment in the vicinity of the

centreline. Although profiles of conditioned r.m.s tangential velocity shown in Figure 5.22 do

not compare as favourably with experiment, the overall agreement is adequate. At x/Ds = 0.02,

the location of the peak value is inboard of experiment, however the corresponding magnitude is

comparable. In a similar way to r.m.s radial velocities at x/Ds = 1.06 shown in Figure 5.21(d),

the magnitude of the peak tangential components is less than that derived from PIV. Note the

peak in 〈u′θ〉 at x/Ds = 1.06, which is typical of a PVC. Clearly, there are pronounced differ-

ences between samples sets and the agreement of the complete set with experiment is not as
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favourable. This is highlighted by notable discrepancies in the location and magnitude of peak

quantities in all 3 components at the majority of axial stations. Although this can be partially

attributed to differences in the time-mean velocity field discussed above, it is more likely that

this is due to the details of CS from within the swirler. Experimentally, these are observed to

contribute significantly to turbulence levels and exhibit some bimodal behaviour (Figure 4.18)

over a duration ≈ 20 times larger than that captured by LES. Although PIV data presented

in Chapter 4 does not have the necessary temporal resolution to investigate the transition be-

tween flow states, inspection of instantaneous flowfields revealed that the turbulent structure

observed in Figures 4.18(a) and (b) appeared in the majority of cases. Evidence presented in

Figure 5.16 suggests that this transition takes place over a timescale which is perhaps up to four

order of magnitude larger than the LES sampling interval, or six orders of magnitude larger than

∆t. As this places severe restrictions on the number of transition cycles that can be captured

computationally, the conditioning of statistics undertaken here is justified on the basis that this

provides the most representative comparison with experiment. Further analysis presented in this

subsection is therefore based on the conditioned LES set.

From the literature reviewed in Chapter 1 it was found that Reynolds shear-stresses are a

largely unreported LES statistic, even in validation calculations. Given that momentum mixing is

strongly influenced by cross correlations, this is quite surprising. It was therefore of great interest

to assess the performance of LES in this regard and Figures 5.23 to 5.25 show radial profiles of all

3 shear-stress components. Regions of positive and negative correlation between fluctuating axial

and radial velocity components at x/Ds = 0.02, 0.27 and 0.53, including the location and magni-

tude of peak values, are faithfully reproduced by LES at all axial stations (Figures 5.23(a)-(c)).

Since the shear-stress distribution at these locations is firmly linked to CS emerging from within

the swirl duct, the favourable agreement between simulation and experiment suggests that the

former is able to capture the essential details of their spatial characteristics. Further downstream

at x/Ds = 1.06, the expected region of zero shear in the forced vortex region (0 ≥ r/Ds ≥ 0.2

from Figure 5.19) is also predicted by LES. In terms of radial-tangential stresses (Figure 5.24),

the overall level of agreement between LES and PIV is satisfactory. At x/Ds = 0.02, there are

notable discrepancies in terms of the location and magnitude of peak values, however, it should

be noted that these are somewhat magnified due to the fact that the vertical scale resolution

of Figure 5.24 is approximately one-quarter of that used in Figures 5.23. From 2C-PIV it is

only possible to obtain 5 out of 6 independent Reynolds-stress as ux and uθ cannot be measured

simultaneously. As a result, no comparison of 〈u′xu′θ〉 with experiment is made in Figure 5.25.

In Figure 5.3, LES filter widths (∆ = (∆x∆θr∆r)1/3) for various numerical grids were com-

pared with one-sixth integral lengthscales (1/6 iLii) obtained from PIV measurements to assess

the expected level of resolved turbulent kinetic energy from LES predictions prior to computa-
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tion. From Figure 5.3 it was concluded that ∆ for the datum mesh with radial refinement used in

the present simulation should be adequate. To provide a definitive answer to this question, it is

necessary to evaluate resolved and SGS energy. kres can be obtained from 2C-PIV by combining

data obtained from both x − r (〈u′xu′x〉 and 〈u′ru′r〉) and r − θ (〈u′θu′θ〉) measurement planes.

Figure 5.26 shows resolved levels of turbulent kinetic energy obtained from LES are comparable

to values from experiment at x/Ds = 0.02 and further downstream in the expansion chamber. It

is interesting that resolved levels of turbulent kinetic energy from LES agree well with measured

values even in regions where the filter width exceeded 1/6 iLii. As a final comparison, ratios of

peak resolved turbulent kinetic energy from LES and measured turbulent kinetic energy from

PIV, denoted (k̂LES)RES and (k̂PIV)TRUE respectively, at each axial station are presented in Table

5.6.

x/Ds (k̂PIV)TRUE/U
2
x,s (k̂LES)RES/U

2
x,s (k̂LES)RES / (k̂PIV)TRUE

0.02 0.68 0.56 0.82

0.27 0.58 0.52 0.93

0.53 0.62 0.54 0.87

1.06 0.22 0.17 0.77

Table 5.6: Comparison of peak turbulent kinetic energy magnitudes from PIV and LES

This evidence suggests the choice of grid appears adequate in terms of resolved levels of turbulent

kinetic energy.

5.4 Spectral Analysis

In Section 1.1, it was reported that numerous authors attribute CS structures related to flow

instabilities, excited via acoustic resonant modes in the combustion chamber and the heat release

process as a source of combustion instability. If frequencies associated with the most unstable

aerodynamic modes are consistent with prevalent acoustic modes there is a potential for flow-

acoustic coupling which may reinforce acoustic oscillations and drive combustion instabilities via

the Rayleigh criterion defined in Equation 1.1. If LES-based methods are to become integral to

the design and development of swirl combustors it is of paramount importance that frequency

components associated with CS are predicted with a high degree of fidelity. Spectral analysis of

the LES ensemble data detailed in Table 5.4, was therefore performed through direct application

of the fast Fourier transform (FFT) algorithm of Danielson and Lanczos as described by Press

et al. [128].

5.4.1 Near Field

Near-field velocity spectra deduced from HWA measurements performed in air by Midgley [13]

were extremely similar across the radial extent of the swirler and characterised by dominant fre-

quencies of St = 0.62 and 1.24 (Figure 4.21). As these measurements were obtained using a single
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hotwire, the resulting PSDs do not correspond to individual velocity components (see Section

4.2.1 ). As a result, the expected tonal frequencies of St = 0.62 and 1.24 are indicated only by

vertical dashed lines in Figure 5.27 which shows PSDs of all 3 velocity components obtained from

LES at x/Ds = 0.27, r/Ds = 0.24. The details of CS from within the swirler have been shown

above to influence first and second-order single-point statistics. To assess the effect on frequency

characteristics, PSDs in Figures 5.27(a),(c) and (e) are based on 4096 (t/Ts = 0−102.4) samples

and Figures 5.27(b),(d) and (f) are based on 16384 (t/Ts = 0− 409.6) samples. In keeping with

the previous section these will be referred to as conditioned and complete sample sets. In both

cases, distinct peaks are predicted within the range of turbulent broadband frequencies which

line up well with HWA.

There are a number of differences between sample sets with the most notable being the ampli-

tude relationship between primary and secondary peaks. From HWA (Figure 4.21) the primary

peak is observed to dominate the secondary peak at the majority of radial locations including

r/Ds = 0.24 which is considered here. For the complete set the primary peak is greater than, or

at least equal to, the secondary peak whilst for the conditioned set the secondary peak dominates

the primary peak for all velocity components. These differences are clearly linked to the the tem-

poral variation of CS from within the swirler shown in Figure 5.16. From t/Ts = 0−100 (Figures

5.16(a)-(e)) there is evidence of a strong pairing between vortices and hence the prominence of the

secondary peak in the conditioned set which is derived from samples between t/Ts = 0− 102.4.

For the complete set, spectral characteristics are altered by the bimodal behaviour of the flow-

field which, in addition to the vortex pair, is characterised by the appearance of a single vortex

(Figure 5.16(f)) and the absence of any CS (Figures 5.16(g)-(i) and (l)). Although the presence

of higher harmonics are observed in both cases, they are a much more prominent feature of the

conditioned set. It is reasonable to assume that this a result of an increased spatial coherence of

the vortical structure from t/Ts = 0− 100 in comparison to other time-instants. PSDs deduced

from tangential velocity are broadly similar to those based on axial and radial velocities, however

examination of the lower end of the spectra (0.02 < St < 0.1) from both sample sets reveals no-

table differences. In this region PSD amplitudes obtained from axial and radial velocity remain

relatively constant. This is in contrast to PSDs of tangential velocity which show a notable rise

in energy; reaching an amplitude approximately an order of magnitude greater than the axial

and radial velocity counterparts at St = 0.01. Similar spectral characteristics were observed in

Dunham et al. [50] in which it was suggested that this behaviour is a consequence of additional

unsteadiness due to the presence of a PVC. As this feature has a relatively low characteristic

frequency (St ≈ 13.2 × 10−3 [13]) only O[1] PVC cycles are captured by the conditioned set in

comparison to O[5] for the complete set. This explains the differences in amplitude at St = 0.01

in Figures 5.27(e) and (f).
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In Section 4.2.1 it was noted that the PSD amplitude normalisation used in Midgley [13] was

uncertain. To address this issue, high-speed 2C-PIV (HS 2C-PIV) data acquired in water for

the Turbomeca injector in a ‘no-jet’ configuration (also presented in [13]) was utilised as this has

identical spectral characteristic to the modular injector studied here. These measurements were

acquired in an x− r plane (FoV≈ 40× 40mm, ∆X ≈ 1.4mm) at a sampling frequency of 500Hz

with a frequency resolution of 0.24Hz and, based on the reference scales of Ds = 0.03763m and

Ux,s = 1.99m/s [13], give a Strouhal number range of St,min = 4.6× 10−3 to St,max = 9.5. Figure

5.28 shows PSDs of axial and radial velocity obtained from both conditioned and complete LES

sets against high-speed PIV at x/Ds = 0.27, r/Ds = 0.27. Aside from the differences in the

frequency relationship between primary and secondary peaks discussed above, the overall agree-

ment in PSD amplitude between PIV and both sample sets across the entire frequency range is

reasonable.

5.4.2 Far Field

In order to capture O[5] PVC cycles (see Section 5.3), far-field spectral analysis presented in

this subsection is based on the complete LES sample set (t/Ts = 409). For SN = 0.75, Syred et

al. [38] measured a volumetric flow rate based Strouhal number of StQ̇ ≈ 0.9 for a tangential

entry swirl burner as an indication of the PVC frequency. From Equation 1.6 and based on Ds

and Ux,s from Table 5.3 this becomes St = 1.35 × 10−2. This is indicated on Figures 5.29 to

5.31 which show PSDs of axial, radial and tangential velocity components at x/Ds = 2.65 for

various radial locations. From PSDs of axial velocity shown in Figure 5.29 there is no evidence

to suggest coherent motion occurring at St = 1.35 × 10−2 at any of the radial locations consid-

ered. This is in contrast to PSDs deduced from radial velocity shown in Figure 5.30 in which

a significant increase in amplitude localised around St = 1.35 × 10−2 is observed at all radii. A

similar increase is apparent in a PSD obtained from tangential velocity at r/Ds = 0.08 shown

in Figure 5.31(a). Given that the PVC is aligned predominantly in the streamwise direction, it

is not surprising that the expected frequency is only exhibited in radial and tangential PSDs.

Additionally, the average amplitude in the region St < 0.05 in PSDs deduced from radial and

tangential velocities (O[10−1]) is approximately two orders of magnitude greater than those from

axial velocity (O[10−3]). Unlike near-field spectra presented in Section 5.4.1 in which charac-

teristic frequencies linked to coherent vortex motion could be readily identified, the relatively

coarse frequency resolution and limited number of PVC cycles included in the LES ensemble

negates a more precise definition of its characteristic frequency. Despite these limitations, the

localisation of significant energy at St = 1.35×10−2 suggests that important qualitative details of

the PVC phenomena predicted by LES is consistent with previous experimental observations [38].

In addition to the presence of the expected PVC frequency of St = 1.35 × 10−2, prominent

peaks occurring at St = 3.5 × 10−2 and 4.9 are observed in Figures 5.29 to 5.31. As these fre-
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quencies do not appear to be harmonics associated with the PVC (within the limits of accuracy

imposed by the frequency resolution), further time-dependent analysis was undertaken using the

vortex detection algorithm of Grosjean et al. [36]. For validation purposes, the computed loca-

tion of the PVC using this methods was compared with its location deduced from instantaneous

streamtraces at various time-instants. In all cases considered, both approaches were in excellent

agreement as shown from the examples presented in Figure 5.32. At a given axial station, the

location of the PVC is defined by its radial distance, rPVC and angular displacement measured

relative to some datum plane, θPVC. In this case, θPVC = 0 is taken along the line z/Ds = 0,

y/Ds ≥ 0 and is positive in an anti-clockwise direction. Figures 5.33 and 5.34 show the PVC

location as a function of θPVC, rPVC/Dex and non-dimensional time, t/Ts, at x/Ds = 2.39. For

clarity, the total record length of the LES ensemble has been divided into two segments from

t/Ts = 0−205 and t/Ts = 205−409 respectively. Large portions of Figure 5.33 are dominated by

a well defined sawtooth waveform indicative of precessional motion. In general, θPVC, increases

as a function of time, and, therefore, the PVC precesses in an anti-clockwise direction with the

bulk flow. Interestingly, there is a considerable degree of variability in the waveform period,

defined here as the temporal interval between θPVC = 0 − 2π, throughout the time series. It is

reasonable to assume that it is this variation that is responsible for the various frequency com-

ponents noted in PSDs above. For example, the expected PVC frequency of St = 1.35 × 10−2

has a corresponding non-dimensional timescale of t/Ts ≈ 71, whilst, for example, the higher

frequency peak occurring at St = 4.9 × 10−2 has an associated non-dimensional timescale of

t/Ts ≈ 20. Both these timescales are clearly distinguishable in Figures 5.33(a) and (b) as indi-

cated by the dashed lines. An explanation for the variation in waveform period is provided in

Figure 5.34 which shows the radial displacement of the PVC. The average radial displacement

of the PVC, 〈rPVC〉/Dex = 2.3e−2, is indicated by the horizontal dashed line. Given the limited

number of PVC cycles included in the LES ensemble, this agrees favourably with PIV measure-

ments (Table 4.2) at 3.5% of the duct diameter. Between t/Ts = 0 − 205 each instantaneous

radial displacement of the PVC is, in general, less than the average displacement, whilst between

t/Ts = 205− 409 the majority of instantaneous displacements exceed this value. Thus, between

t/Ts = 205− 409 the characteristic in-plane path length of the PVC is increased relative to that

between t/Ts = 0 − 205 which, assuming a similar convection velocity throughout, results in

a corresponding increase or decrease in waveform period and hence the appearance of various

frequency components in Figures 5.29 to 5.31.

5.4.3 Frequency Contours

Spectra presented above have demonstrated the ability of LES to capture the broad range of

frequencies present in the current flow and shown excellent agreement with experiment. Volu-

metric information available from LES can then be utilised to gain an improved understanding

of how the instability modes identified as strong peaks in the spectra are distributed and develop

170



Large Eddy Simulation Results

throughout the swirl duct and expansion chamber. Figure 5.35 shows contours of peak St for all

three velocity components extracted from an x− r plane at θ = π based on the conditional LES

sample set (t/Ts = 102). In order to distinguish more clearly between the broad range of fre-

quencies within the domain, a log-scale (log10(St)) has been adopted. Although not shown here,

a similar analysis was performed based on the complete LES sample set (t/Ts = 409). It was

found that the general trends were in accordance with Figure 5.35 in that high frequency modes

are most prevalent in the fuel injector near-field whilst low frequency ones dominate the far-field.

The predominant Strouhal numbers of St ≈ 0.7 and 1.4 noted above become log10(0.7) = −0.15

and log10(1.4) = 0.15 respectively on the scale used in Figure 5.35 and are observed clearly for

all velocity components. It is interesting to note the prevalence of these frequencies throughout

the entire swirl duct. Previously, Midgley [13] postulated that vortices responsible for these

frequencies are generated as a result of flow separation from the inner wall of the swirl duct

(−0.43 ≥ x/Ds ≤ −0.27). The fact that associated frequencies are observed upstream of this

point suggests that flow within the swirl duct exists in a sub-critical state allowing disturbances

to propagate downstream and upstream.

To complement Figure 5.35 and further understand the dominant near-field frequencies, Fig-

ures 5.36 and 5.37 show PSD amplitudes ([m2/s2]/Hz) associated with St = 0.72 and 1.44 for the

conditioned LES sample set. Despite the presence of these frequencies throughout the swirl duct

they are only of significant amplitude in the region 0.25 < x/Ds < 0.75 which encompasses the

majority of the injector near-field. In general, amplitudes of St = 1.44 exceed those of St = 0.72

which is consistent with PSDs of the conditioned LES sample set (Figures 5.27(a),(c) and (e)).

Figure 5.38 shows PSD amplitudes of the expected PVC frequency (StQ̇ = 0.9) for all three veloc-

ity components. Due to the relatively low characteristic frequency of this feature it was necessary

to utilise the complete LES sample set. Maximum amplitudes of St = 1.35 × 10−2 based on ur

and uθ are observed close to the centreline (r/Ds < 0.2). The fact that these frequencies have

significant amplitude as far upstream as x/Ds ≈ 1.2 (Figure 5.38(c)) supports the hypothesis of

Midgley [13] that it is the presence of the PVC that is responsible to disrupting the coherence

near-field vortices.

5.5 Coherent Structure Analysis

In order to gain further insight into near and far-field CS, the rotational averaging procedure

described in Section A-2.2 was applied to the conditional LES sample set. In the near-field an

r − θ plane extracted at x/Ds = 0.02 at each time-instant was used to located the centre of the

reference vortex (see Figure A-2) and in the far-field an r−θ plane extracted at x/Ds = 2.39 was

used. In keeping with the analysis of PIV data presented in Section 4.2.1, the long-time mean

was subtracted from each instantaneous velocity field to isolate the turbulent motions. In the

following, vorticity derived from the rotationally averaged Reynolds-decomposed velocity field
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(〈u′x〉rot, 〈u′r〉rot, and 〈u′θ〉rot) will be referred to as rotationally-averaged vorticity with individual

components 〈ωx〉rot, 〈ωr〉rot and 〈ωθ〉rot and magnitude 〈|ω|〉rot and obtained from Equation A-20.

Similarly, the Q-criterion (Equation A-21) will be denoted 〈Q〉rot.

5.5.1 Near-Field

Figure 5.39 shows rotationally averaged Reynolds-decomposed streamtraces at x/Ds = 0.02 su-

perimposed on contours of 〈u′x〉rot, 〈u′r〉rot, and 〈u′θ〉rot. These exhibit many similarities with

instantaneous fluctuating streamtraces shown in Figure 5.10(b) but allow a clearer interpretation

of the four vortical structures. From Figure 5.39, each vortex is centred on regions defined by

〈u′x〉rot = 〈u′r〉rot = 〈u′θ〉rot = 0. The large circumferential gradients of 〈u′x〉rot and 〈u′r〉rot and

large radial gradients of 〈u′θ〉rot in the vicinity of the vortices gives rise to rotationally-averaged

vorticity in the three principle directions as shown in Figure 5.40. The regions of positive and

negative 〈ωx〉rot shown in Figure 5.40(a) result from the clockwise or counter-clockwise rotation

of each vortex about its centre. Comparable values in 〈ωx〉rot, 〈ωr〉rot and 〈ωθ〉rot shown in Fig-

ures 5.40(a)-(c) indicate the strong three-dimensionality of the vortices. From Figure 5.40(d),

maxima of 〈|ω|〉rot are observed at the ‘eyes’ of the counter-rotating vortex pair located at θ = 0

and π. Although significant levels of 〈|ω|〉rot exist in the vicinity of the clockwise vortex pair

located at θ = π/2 and 3π/2, this is not sufficient to distinguish vortical motions from back-

ground shear due to large gradients in 〈u′x〉rot, 〈u′r〉rot and 〈u′θ〉rot = 0. As an alternative, 〈Q〉rot

(Equation A-21) avoids this issue by identifying vortices as regions where vorticity magnitude

prevails over strain-rate magnitude as shown in Figure 5.40(e). Figure 5.41 shows rotationally

averaged Reynolds-decomposed streamtraces superimposed on contours of 〈ωx〉rot and 〈ωθ〉rot on

a meridional slice extracted at z/Ds = 0. The dashed lines shown in Figure 5.41 indicate time-

mean inner and outer shear layers. In the upper portion of Figure 5.41(b) (z/Ds > 0), 〈ωθ〉rot is

defined as positive out of the page whilst in the lower portion it is positive into the page. The

streamtraces clearly identify a series of vortical structures with alternating signs of of 〈ωx〉rot and

〈ωθ〉rot. These are located approximately within the swirl cone bounded the by time-mean inner

and outer shear layer. The separation wavelength between these is x/Ds ≈ 0.36 as indicated in

Figure 5.41(a) which is close to x/Ds ≈ 0.32 from conditionally-averaged PIV in Figure 4.22(d).

In order to gain further insight into the three-dimensional spatial structure of the vortices shown

in Figures 5.39 to 5.41, iso-surfaces of 〈Q〉rot = 40× 103 are shown in Figure 5.42. To make clear

the rotation of each vortex about its centre, iso-surfaces of 〈Q〉rot are coloured by 〈ωx〉rot. From

Figure 5.42, each vortex is clearly visible and follows a helical path which originates inside the

swirl duct and terminates at x/Ds ≈ 0.8 for the selected value of 〈Q〉rot. This is consistent with

frequency contour maps presented in Section 5.4.3 which indicated that frequencies associated

with this vortex structure decayed by x/Ds = 1. Interestingly, Figure 5.42(b) clearly shows that

the helical paths followed by the vorticies are wound clockwise which is opposed to the counter-
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clockwise motion of the mean flow. Although not stated explicitly, iso-surfaces of λ2 presented

in Wegner et al. [58] (presumable derived from an instantaneous velocity field) also indicate a

double-helix wound opposed to the bulk flow for a derivative of a Turbomeca injector similar to

that investigated here. In the case of a plug flow axial jet/wake velocity profile with a purely

swirling cylindrical vortex sheet, Martin and Meiburg [129] have determined that for centrifugally

stabilising flows (Γc − Γ∞ < 0, where Γc is the circulation of a straight vortex filament and Γ∞

is the external circulation), dominant instabilities are of a Kelvin-Helmholtz (K-H) type, feeding

on both axial and azimuthal vorticity, and counter-rotating helical waves are the most unstable.

When the flow is centrifugally destabilising (Γc − Γ∞ > 0), the most unstable modes consist of

co-rotating helical waves. Figure 5.43(a) shows contours of time-mean streamwise circulation,

〈Γx〉, calculated as:

Γx =
∮
~u · ~dl (5.1)

To classify regions of the current flow as either centrifugally stable or unstable Figure 5.43(b)

shows contours of ∂Γ/∂r coloured as red if ∂Γ/∂r > 0, blue if ∂Γ/∂r < 0 and black if ∂Γ/∂r = 0.

Evidence from Figures 5.42 and 5.43 suggests that in the centrifugally stable regions of the mean

flow (∂Γx/∂r > 0) helices wound opposed to the mean flow are the dominant instability mecha-

nism which is consistent with [129].

In order to quantify the relationship between the helices identified by the Q-criterion and the

time-mean streamtraces shown in 5.42(a), the angle between the rotationally-averaged vorticity

vector, 〈~ω〉rot, and time-mean velocity vector, 〈~u〉, was calculated from:

θrot = arccos
〈~ω〉rot · 〈~u〉
|〈~ω〉rot| |〈~u〉| (5.2)

Figure 5.44 shows a PDF of θrot calculated from 〈~ω〉rot and 〈~u〉 extracted from iso-surfaces of

〈Q〉rot (Figure 5.42) using a bin-width of 5π/180. The most probable angle between 〈~ω〉rot and

〈~u〉 is close to π/2, suggesting that the helices shown in Figure 5.42 are a result shear dependent

K-H-like instabilities. Similar conclusions were reached by Garcia-Villalba et al. [55] although

this was based on a purely qualitative assessment.

5.5.2 Far Field

Figure 5.45 shows rotationally averaged Reynolds-decomposed streamtraces at x/Ds = 2.39

superimposed on contours of 〈u′x〉rot, 〈u′r〉rot, and 〈u′θ〉rot from which the presence of two counter-

rotating vorticies are clearly visible. The vortex located in the region of positive axial velocity

173



Large Eddy Simulation Results

shown in Figure 5.45(a) was used as a reference for rotational averaging and rotates about its

centre counter-clockwise in the direction of the bulk flow. Unlike in the near-field, gradients of

〈u′x〉rot, 〈u′r〉rot, and 〈u′θ〉rot in the far-field only give rise to an axial component of rotationally-

averaged vorticity, 〈ωx〉rot, as shown in Figure 5.46(a). This suggest that the PVC is aligned

predominantly in the streamwise direction confirmed via iso-surfaces of 〈Q〉rot = 1500 shown

in Figure 5.47. As in Figure 5.42, iso-surfaces of 〈Q〉rot are coloured by 〈ωx〉rot in order to

illustrate the clockwise or counter-clockwise rotation of each vortex about its centre. The path

of the vortical structures identified at x/Ds = 2.39 in Figure 5.45 are displaced slightly from

the geometric centre which is indicated by the horizontal dashed line. These are approximately

parallel at x/Ds ≥ 2 and begin to converge as they approach the near-field. This is consistent with

the contours of PSD amplitude corresponding to StQ̇
≈ 1.35 × 10−2 shown in Figure 5.38. The

predominant streamwise alignment of the vortices makes it difficult to determine the direction

of their winding relative to the time-mean flow from a downstream view of 〈Q〉rot as used above.

As an alternative, Figure 5.48 shows rotationally averaged Reynolds-decomposed streamtraces

extracted at various r−θ planes downstream of the swirler exit. From this sequence, the counter-

rotating vortex pair are observed to twist in a clockwise direction i.e. also opposed to the base

flow as the near-field CS.

5.6 Closure

From calculations presented in this chapter it has been shown that LES is capable of capturing the

unsteady dynamics and instability modes characteristic of swirl injectors in excellent agreement

with experiment. Using lengthscale information derived from PIV it was possible to ensure that

the spatial filter (∆) of all computational grids investigated was adequate to resolve the majority

(≈ 80%) of turbulent kinetic energy in ‘critical’ regions of the flow, such as in the vicinity of

the swirler exit. Following a preliminary investigation with these grids it was found that the

wall-function approach within the swirl duct was not suitable for capturing the near-field CS

observed experimentally, however, a further calculation performed with an increased near-wall

resolution and the no-slip condition resulted in the appearance of this feature. In order to

validate predictions against experiment, an ensemble LES dataset was collected that included a

sufficient number of independent samples for converged first and second-order statistics and an

adequate number of PVC cycles for a detailed frequency analysis. Regular monitoring of this

revealed a bimodal behaviour at the swirler exit similar to that observed experimentally which

was characterised by the presence or absence of CS. It was found that first-order statistics based

on all members of ensemble were in reasonable agreement with experiment, however second-order

r.m.s quantities were not well represented. It was argued that the most notable discrepancies

could be attributed to the details of CS from within the swirler as these contribute significantly

to turbulence levels. Since vortex transition occurred on a timescale several orders of magnitude

larger than the LES sampling interval this placed severe restrictions on the number of cycles
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that could be captured. To provide a more representative comparison with experiment a second

‘conditioned’ dataset was created corresponding to the period during which CS were observed at

the swirler exit. The agreement of first and second-order statistics (including turbulent shear-

stresses which were found to be largely unreported in the available literature) of the conditioned

set with experiment were found to be much improved. Velocity spectra derived from LES found

that the all-important frequency content of near and far-field instability modes was predicted in

accordance with experiment. Utilising volumetric information available from LES the near-field

vortex structure observed experimentally was shown to consists of four helices which rotated

about their respective axes in the same direction as the bulk flow but with a filament winding

opposed to it. Given that the angle formed between each helix and the bulk flow was close to π/2

radians it was postulated that these structures were a result of a Kelvin-Helmholtz (K-H) shear

instability. Although LES is clearly well suited to swirl injector flows the computational expense

(3160 CPU hours) is considerable. It is therefore of current interest to assess the suitability of the

computational cheaper alternative of the Unsteady Reynolds-Averaged Navier-Stokes (URANS)

CFD methodology which is considered in the following chapter based on both k − ε and RST

turbulence models.
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Figure 5.1: Datum mesh detail
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Figure 5.2: Mesh refinement detail
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Figure 5.3: Comparison of characteristic LES filter width ∆ (∆ = (∆x∆θr∆r)1/3) against 1/6iLii

from PIV data.
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(a) Datum mesh

(b) Datum mesh with circumferential refinement

(c) Datum mesh with axial refinement

Figure 5.4: Time-averaged contours of νsgs/ν for various mesh densities

179



Large Eddy Simulation Results

Figure 5.5: Streamtrace released from inlet plane of time-averaged dataset used to calculate Tr
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(a) Datum mesh

(b) Datum mesh with circumferential refinement

(c) Datum mesh with axial refinement

Figure 5.6: Instantaneous streamtraces in x− r plane at arbitrary time-instant for varying mesh
densities
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(a) Datum mesh

(b) Datum mesh with circumferential refinement

(c) Datum mesh with axial refinement

Figure 5.7: Instantaneous streamtraces at swirler exit (x/Ds = 0.02) at arbitrary time-instant
for varying mesh densities
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(a) Datum mesh

(b) Datum mesh with circumferential refinement

(c) Datum mesh with axial refinement

Figure 5.8: Instantaneous streamtraces at x/Ds = 2.39 at arbitrary time-instant for varying
mesh densities
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Figure 5.9: x− r plane within swirl duct - datum mesh with radial refinement
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(a) Instantaneous

(b) Reynolds-decomposed

Figure 5.10: Instantaneous and Reynolds-decomposed streamtraces at x/Ds = 0.02 at arbitrary
time-instant for datum mesh with radial refinement
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Figure 5.11: Autocorrelation function, Rij(~x, τ), at various locations
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(f) r.m.s tangential velocity

Figure 5.12: Statistical convergence of mean and r.m.s velocities at x/Ds = 0.02, r/Ds = 0.4,
θ = π
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Figure 5.13: Statistical convergence of mean and r.m.s velocities at x/Ds = 1.06, r/Ds = 0.0,
θ = π
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(a) t/Ts = 0, xL/Ds ≈ 1.6

(b) t/Ts = 50, xL/Ds ≈ 1.26

(c) t/Ts = 250, xL/Ds ≈ 2.17

Figure 5.14: Instantaneous streamtraces in x− r plane at various time-instants
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Figure 5.15: Instantaneous reattachment location of outer shear-layer at r/Ds = 1.86. Horizontal
dashed line indicates time-mean location
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(a) t/Ts = 0 (b) t/Ts = 25 (c) t/Ts = 50

(d) t/Ts = 75 (e) t/Ts = 100 (f) t/Ts = 125

(g) t/Ts = 150 (h) t/Ts = 175 (i) t/Ts = 200

(j) t/Ts = 300 (k) t/Ts = 325 (l) t/Ts = 350

Figure 5.16: Instantaneous streamlines at various time-instants at swirler exit (x/Ds = 0.02)
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Figure 5.17: Comparison of mean axial velocity for conditioned (t/Ts = 125) and complete
(t/Ts = 409) LES sample sets against PIV at various axial locations in expansion chamber
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Figure 5.18: Comparison of mean radial velocity for conditioned (t/Ts = 125) and complete
(t/Ts = 409) LES sample sets against PIV at various axial locations in expansion chamber

193



Large Eddy Simulation Results

r / Ds

<
u θ>

/U
x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.25

0.5

0.75

1

1.25

1.5 PIV
LES (t / Ts = 125)
LES (t / Ts = 409)

(a) x/Ds = 0.02

r / Ds

<
u θ>

/U
x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.25

0.5

0.75

1

1.25

1.5 PIV
LES (t / Ts = 125)
LES (t / Ts = 409)

(b) x/Ds = 0.27

r / Ds

<
u θ>

/U
x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.25

0.5

0.75

1

1.25

1.5 PIV
LES (t / Ts = 125)
LES (t / Ts = 409)

(c) x/Ds = 0.53

r / Ds

<
u θ>

/U
x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.25

0.5

0.75

1

1.25

1.5 PIV
LES (t / Ts = 125)
LES (t / Ts = 409)

(d) x/Ds = 1.06

Figure 5.19: Comparison of mean tangential velocity for conditioned (t/Ts = 125) and complete
(t/Ts = 409) LES sample sets against PIV at various axial locations in expansion chamber
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Figure 5.20: Comparison of r.m.s axial velocity for conditioned (t/Ts = 125) and complete
(t/Ts = 409) LES sample sets against PIV at various axial locations in expansion chamber
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Figure 5.21: Comparison of r.m.s radial velocity for conditioned (t/Ts = 125) and complete
(t/Ts = 409) LES sample sets against corrected PIV at various axial locations in expansion
chamber
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Figure 5.22: Comparison of r.m.s tangential velocity for conditioned (t/Ts = 125) and complete
(t/Ts = 409) LES sample sets against corrected PIV at various axial locations in expansion
chamber
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Figure 5.23: Comparison of axial-radial shear-stress for conditioned (t/Ts = 125) LES sample
set against PIV at various axial locations in expansion chamber
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Figure 5.24: Comparison of radial-tangential shear-stress for conditioned (t/Ts = 125) LES
sample set against PIV at various axial locations in expansion chamber
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Figure 5.25: Axial-tangential shear-stress for conditioned (t/Ts = 125) LES sample set at various
axial locations in expansion chamber
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Figure 5.26: Comparison of turbulent kinetic energy for conditioned (t/Ts = 125) LES sample
set against corrected PIV at various axial locations in expansion chamber
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(b) Axial velocity (t/Ts = 409)
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(c) Radial velocity (t/Ts = 102)
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(d) Radial velocity (t/Ts = 409)
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(e) Tangential velocity (t/Ts = 102)
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(f) Tangential velocity (t/Ts = 409)

Figure 5.27: PSDs of axial, radial and tangential velocity at x/Ds = 0.27, r/Ds = 0.24 for
conditioned (t/Ts = 102) and complete (t/Ts = 409) LES sample sets. Vertical dashed lines
indicated expected frequencies of Midgley [13].
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(a) Axial velocity (t/Ts = 102)
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(b) Axial velocity (t/Ts = 409)
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(c) Radial velocity (t/Ts = 102)
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(d) Radial velocity (t/Ts = 409)

Figure 5.28: PSDs of axial and radial velocity at x/Ds = 0.27, r/Ds = 0.27 for conditioned
(t/Ts = 102) and complete (t/Ts = 409) LES samples sets against high-speed PIV [13].
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Figure 5.29: PSD of axial velocity at x/Ds = 2.65 for various radial locations. Vertical dashed
line indicates expected PVC frequency of Syred et al. [38]
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Figure 5.30: PSD of radial velocity at x/Ds = 2.65 for various radial locations. Vertical dashed
line indicates expected PVC frequency of Syred et al. [38]
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Figure 5.31: PSD of tangential velocity at x/Ds = 2.65 for various radial locations. Vertical
dashed line indicates expected PVC frequency of Syred et al. [38]
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(a) t/Ts = 0 (b) t/Ts = 50

(c) t/Ts = 250

Figure 5.32: Instantaneous streamtraces at x/Ds = 2.39 at various time-instants •- geometric
centre •aerodynamic centre from Equation A-24
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Figure 5.33: Angular location of PVC at x/Ds = 2.39
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Figure 5.34: Radial displacement of PVC at x/Ds = 2.39. Horizontal dashed line indicates mean
radial displacement of PVC.
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(a) Axial Velocity

(b) Radial Velocity

(c) Tangential Velocity

Figure 5.35: Contours of peak log10 St for conditioned (t/Ts = 102) LES sample set.
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(a) Axial velocity

(b) Radial velocity

(c) Tangential velocity

Figure 5.36: Amplitude of PSD (m2/s2/Hz) at St = 0.72 for axial, radial and tangential velocities
for conditioned (t/Ts = 102) LES sample set.
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(a) Axial velocity

(b) Radial velocity

(c) Tangential velocity

Figure 5.37: Amplitude of PSD (m2/s2/Hz) at St = 1.44 for axial, radial and tangential velocities
for conditioned (t/Ts = 102) LES sample set.
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(a) Axial Velocity

(b) Radial Velocity

(c) Tangential Velocity

Figure 5.38: Amplitude of PSD (m2/s2/Hz) at St = 1.35× 10−2 for axial, radial and tangential
velocities for complete LES sample set (t/Ts = 409).
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(a) 〈u′x〉rot/Ux,s

(b) 〈u′r〉rot/Ux,s

(c) 〈u′θ〉rot/Ux,s

Figure 5.39: Rotationally averaged Reynolds-decomposed streamtraces superimposed on contours
of rotationally averaged velocities at x/Ds = 0.02
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(a) 〈ωx〉rot (b) 〈ωr〉rot

(c) 〈ωθ〉rot (d) 〈|ω|〉rot

(e) 〈Q〉rot

Figure 5.40: Rotationally averaged Reynolds-decomposed streamtraces superimposed on contours
of rotationally-averaged vorticity and Q-criterion at x/Ds = 0.02
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(a) 〈ωx〉rot

(b) 〈ωθ〉rot

Figure 5.41: Rotationally averaged Reynolds-decomposed streamtraces superimposed on contours
of rotationally-averaged axial and azimuthal vorticity. Dashed line indicates time-mean inner and
outer shear layer.
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(a) x− r view

(b) r − θ view

Figure 5.42: Iso-surface of rotationally-averaged Q-criterion 〈Q〉rot = 40×103 coloured by 〈ωx〉rot

with time-mean streamtraces (r − θ plane at x/Ds = 0.02 used as reference for rotational aver-
aging)
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(a) Contours of time-mean streamwise circulation, 〈Γx〉

(b) Contours of Rayleigh’s inviscid criterion, ∂Γ/∂r

Figure 5.43: Classification of centrifugal stability
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Figure 5.44: PDF of θrot
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(a) 〈u′x〉rot/Ux,s

(b) 〈u′r〉rot/Ux,s

(c) 〈u′θ〉rot/Ux,s

Figure 5.45: Rotationally averaged Reynolds-decomposed streamtraces superimposed on contours
of rotationally averaged velocities at x/Ds = 2.39
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(a) 〈ωx〉rot (b) 〈ωr〉rot

(c) 〈ωθ〉rot (d) 〈|ω|〉rot

(e) 〈Q〉rot

Figure 5.46: Rotationally averaged Reynolds-decomposed streamtraces superimposed on contours
of rotationally-averaged vorticity and Q-criterion at x/Ds = 2.39
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Figure 5.47: Iso-surface of rotationally-averaged Q-criterion 〈Q〉rot = 1.5×103 coloured by 〈ωx〉rot

(r − θ plane at x/Ds = 2.39 used as reference for rotational averaging)

222



Large Eddy Simulation Results

(a) x/Ds = 1.5 (b) x/Ds = 2

(c) x/Ds = 2.5 (d) x/Ds = 3

(e) x/Ds = 3.5 (f) x/Ds = 4

Figure 5.48: Rotationally averaged Reynolds-decomposed streamtraces at various axial locations
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Chapter 6

Unsteady Reynolds-Averaged

Navier-Stokes Results

This chapter presents Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations of the

modular swirler with α1 = 30◦. The previous chapter has shown that LES is capable of cap-

turing the unsteady dynamics and instability modes characteristic of this injector in excellent

agreement with experiment. To facilitate comparison between LES and URANS-based methods

it is convenient, at least initially, to use an identical computational mesh (a mesh density suf-

ficient for LES should be more than sufficient for a URANS prediction). This is considered in

Section 6.1 along with the influence of numerical settings (under-relaxation and timestep, ∆t),

computational mesh (polar and O-grid), CFD solver (Delta and Fluent) and turbulence model

(k − ε and RST) on CS development. The most appropriate parameter set derived from these

preliminary runs is then selected to compare first and second-order statistics with experiment

in Section 6.2. In a similar way to LES, the application of URANS to swirl injectors is only

valid if the frequency components associated with both near and far-field instability modes are

predicted with a high degree of fidelity. A comparison of the frequencies predicted by URANS

with expected frequencies derived from experiment [13, 38] is made in Section 6.3.

6.1 Coherent Structure Development

In Dunham et al. [50], the performance of URANS using an eddy viscosity closure was assessed

for confined swirl flows similar to those considered here under varying test conditions as discussed

in Section 1.3.1. These calculations were performed using the commercial CFD code Fluent (Ver-

sion 6.2.16) with a standard k − ε turbulence model. It was found that URANS was initially

able to capture an experimentally observed vortex structure emerging from within the swirler

similar to that shown in Figure 4.18(a); however, as the transient solution progressed the fully

self-sustaining solution did not reflect the measured unsteady dynamics. Moreover, spectral anal-

ysis of near-field velocity traces suggested that this form of URANS was not able to capture the

expected PVC as characterised by an accumulation of fluctuating energy at low frequencies (see
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Figure 5.27). One point of concern raised in Section 3.2.3 was that the closed-source nature of

commercial solvers makes it difficult to assess whether particular characteristics of a calculation,

such as the vortex transition or PVC suppression reported in [50], are to be attributed to the

particular characteristics of the selected numerical scheme or even to the manner in which this

is implemented in the commercial code. For example, given the vast range of potential end-user

applications, a degree of numerical damping or smoothing may be included to improve calcula-

tion stability. To circumvent these uncertainties, both in-house (Delta) and commercial (Fluent)

CFD codes have been utilised in this thesis as described previously in Sections 3.2.2 and 3.2.3.

Both Delta and Fluent can be selected to utilise the same backward Euler implicit method

for temporal discretisation, which offers improved stability over explicit schemes. Since implicit

schemes are not restricted by the CFL < 1 limit and it is not expected that URANS predictions

need to resolve the high frequency motions present in LES, it was decided to relax the timestep

from ∆t = 2.0×10−6 as used for the LES calculations presented in Chapter 5 to ∆t = 1.0×10−5.

Based on Equation 3.58, it was found that this gave a maximum CFL number of ≈ unity in the

vicinity of the centreline and ≈ 0.2 at the swirler exit. Following preliminary investigations with

k− ε and RST models (referred to below as URANS cases 1, 6 and 7 in Table 6.3), and based on

the reference timescales Ts = 0.02s and Tr = 0.67s used in Section 5.1.4, it was found that Fluent

required an increase in CPU time of ≈ 130% relative to Delta for the same grid and time-step

and an eddy viscosity closure (Table 6.1). An increase of ≈ 260% in CPU time was required for

an RST closure within Fluent.

Solver Turbulence Model CPU Hrs. / Ts CPU Hrs. / Tr % Increase CPU Hrs. (approx)

Delta k − ε 1.7 55.8 -

Fluent k − ε 3.9 130.3 130

Fluent RST 6.1 204.7 260

Table 6.1: Typical computational requirements for URANS simulations based on identical nu-

merical schemes and computational parameters. Calculations performed using 6 64-bit Itanium

processors with ∆t = 1.0× 10−5 (Ts/∆t = 2× 103, Tr/∆t = 67× 103).

Based on the requirements detailed in Table 6.1, it was decided to utilise Delta for initial inves-

tigations of the influence of computational parameters and numerical grids on CS development,

thus minimising the computational effort. Configuration of Fluent with the most appropriate

parameter set determined from these preliminary runs then allowed results based on the k − ε

model to be compared directly with those from Delta. In this way, uncertainties regarding

numerical implementation within Fluent are partially alleviated through verification via an inde-

pendent code allowing calculations based on the RST model to proceed with increased confidence.

Calculations performed with Fluent generally utilised desktop PCs consisting of a maximum

of 6 cores rather than the higher capacity PC cluster used for LULES which used 16 as detailed
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in Table 5.2. Assuming a 100% parallelisation efficiency, comparison between Tables 6.1 and 5.2

reveals the typical computational effort required by URANS and LES approaches. For the k− ε
model using Delta, the number of CPU hours required to capture a particular flow timescale

(Ts, Tr etc) is reduced by around an order of magnitude relative to LES, whilst for the RST

model using Fluent the cost is reduced by approximately one-third. As pointed out by Weg-

ner et al.[45], the long integration period required by LES to obtain a statistically-converged

ensemble averaged solution (see Section 5.3) is largely avoided in URANS since the solution

is of a deterministic nature and just a few periods of the unsteadiness have to be computed.

In the present case however it did not prove possible to realise this benefit as characteristic

timescales and frequencies associated with important features such as the PVC are large in com-

parison to the timestep required for temporal accuracy (i.e. such that the local CFL number

does not exceed unity) and the acquisition of sample sets of considerable duration is unavoidable.

In Section 5.2 it was found that in order to match experimentally observed values of Ġθ and

ṁ (Table 4.1) at the swirler exit mean radial and swirl velocity in the predictions should be

〈ur〉in = 0.78m/s and 〈uθ〉in = 1.484m/s. These values were also used in the URANS simu-

lations reported here together with turbulent inlet conditions of kin = 10.6 × 10−3m2/s2 and

εin = 168.4 × 10−3m2/s3 for both k − ε and RST models, these were computed from Equations

3.78 and 3.79 respectively with an assumed 5% turbulence intensity and turbulent lengthscale

of 7% of the inlet slot width (xin = 0.0153m). Integration of the mean velocity profiles of axial

and tangential velocity at x/Ds = 0.02, (Figures 6.15(a) and 6.18(a)), resulted in the following

properties:

ṁ Ġx Ġθ SN Ux,s

PIV 2.15 5.26 7.82× 10−2 0.80 2.0

k − ε 2.08 5.23 7.56× 10−2 0.77 1.94

RST 2.26 5.27 8.1× 10−2 0.82 2.1

Table 6.2: Swirler exit flow rates x/Ds = 0.02

6.1.1 k − ε Turbulence Model URANS Predictions

As discussed in Section 3.2.2, the pressure-correction approach adopted by Delta uses a linkage

coefficient, α, between pressure and velocity to reduce the computed change in pressure. Pre-

vious work [118] has found that relaxation parameters between 3 and 10 give good convergence

behaviour. Based on these recommendation, α = 10 was selected for preliminary investigations

along with ∆t = 1.0 × 10−5 and will be referred to as URANS case 1 as detailed in Table 6.3.

Following the approach adopted in Section 5.2 for LES predictions, the ability of URANS to cap-

ture the experimentally observed unsteady dynamics was assessed by monitoring the progress of

the solution at various time-instants. Unlike in LES calculations, which required a considerable
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number of timesteps for initial transients to propagate through the computational domain and

for the flow to reached a self-sustained state, it was found that in the URANS predictions, the

large-scale features such as the CTRZ and CRZ were established soon after solution initialisation.

Figure 6.1 for example shows instantaneous circumferentially-averaged streamtraces within the

swirl duct, expansion chamber and exhaust duct at various time-instants. At t/Ts = 50, which

corresponds to roughly 1.5 residence times, Tr, Figure 6.1(a) clearly shows the CTRZ and CRZ,

with the reattachment point of the outer shear-layer located at xL/Ds ≈ 1.7. Further time-steps

resulted in the reattachment location moving upstream as shown in Figures 6.1(b)-(d). Note that

this is not the large-scale oscillation of the instantaneous reattachment location predicted by LES

(see Figures 5.14 and 5.15) but rather a flow feature of the initial transient. The final location

of xL/Ds ≈ 1.2 shown in Figure 6.1(d), is upstream of the time-mean location of xL/Ds = 1.45

determined from PIV. These observations are consistent with the findings of Dunham et al. [50]

in which reattachment locations from URANS were insensitive to variations in test conditions.

In the context of plane flows over a backward facing step, the standard k−ε model underpredicts

the reattachment length by up to 20%, however, for flow in an axisymmetric sudden expansion

it is predicted to within experimental uncertainty [130]. In the present case which features an

axisymmetric expansion, it is likely that the observed underprediction is related to an incorrect

response of the k−ε model to strong streamline curvature as already discussed in Section 3.1.1.1.

Similarly, Figure 6.2 shows Reynolds-decomposed streamtraces in an r − θ plane extracted at

x/Ds = 0.02 at various time-instants. Soon after initialisation (e.g. at t/Ts = 15), Figure 6.2(c)

shows a vortex pattern appears similar to that shown in Figure 4.18(b), characterised by two

clockwise and two counter-clockwise vorticies separated by ≈ π radians. Since URANS resolves

only the coherent, or phase-averaged, component of the turbulent spectrum, Figure 6.2(c) ap-

pears much smoother than Figure 4.18(b) and more closely resembles the rotationally-averaged

structures presented in Figure 5.39. However, although these structures persisted for an extended

duration, they underwent a transitory phase between t/Ts = 100 and t/Ts = 150 from 4 to 2

vortices, as shown in Figures 6.2(g) and 6.2(h). The vortex pattern at t/Ts = 150 was found to

characterise the final self-sustaining solution as subsequent time-steps yielded no further changes

in the observed features (Figures 6.2(h) to 6.2(l)). The predicted vortical structure consists of

one clockwise and one counter-clockwise vortex separated by less than π radians. Unlike the more

familiar 4 vortex pattern in which each vortex is defined by an approximately circular streamtrace

distribution, vortices from t/Ts = 150 onwards are of a more distorted kidney shape. Clearly,

the characteristics of the URANS k− ε predicted self-sustaining vortex pattern is not consistent

with either PIV or LES. It is, however, remarkably similar to that reported in Dunham et al. [50].

Figure 6.3 shows instantaneous streamtraces in an r − θ plane at x/Ds = 2.39 at various time-

instants. Contrary to experiment and LES predictions, the aerodynamic centre is at all times

coincident with the geometric centre of the expansion chamber (indicated by the red dot). Large
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excursions of the aerodynamic centre from the geometric centre are indicative of a PVC and,

therefore, Figure 6.3 suggests that URANS (k − ε) has not captured this phenomenon. Again,

this is consistent with Dunham et al. [50] in which no PVC was observed for their URANS (k−ε)
predictions.

Further evidence to support the observations of Figures 6.1 to 6.3 is provided in Figure 6.4;

this shows time-histories of axial, radial and tangential velocity components for various points

within the computational domain. These points correspond to: flow separation from the in-

ner wall of the swirl duct (x/Ds = −0.26, r/Ds = 0.17), the rotation of CS at the swirler

exit (x/Ds = 0.02, r/Ds = 0.27), a location expected to capture evidence of a PVC (x/Ds =

2.42, r/Ds = 0.0) and the fluctuating reattachment location of the outer swirler shear-layer

(x/Ds = 1.4, r/Ds = 1.86). All point were extracted at an angular location of θ = π. Inside the

swirl duct (x/Ds = −0.26, r/Ds = 0.17) and in the near-field of the swirler exit (x/Ds = 0.02,

r/Ds = 0.27), all three velocity components oscillate regularly from t/Ts ≈ 150 onwards. Prior

to this, a transitory phase is observed which corresponds to the development of the CS emerging

from the swirler as noted in Figure 6.2. In the far-field (x/Ds = 1.4 and 2.42), an initial variation

in the axial velocity component is observed until t/Ts ≈ 150 after which no further unsteadiness

is observed. This cannot be classified as demonstrating oscillatory behaviour, but merely repre-

senting the solution transition from start-up to a self-sustaining state (consistent with Figures

6.1 and 6.3). From Figure 6.4, it can concluded that the flow has reached a fully self-sustaining

state by t/Ts = 150, which corresponds to approximately 4.5 flow through times, Tr, as discussed

in Section 5.1.4. To ensure that initial transients do not contaminate subsequent analysis the

early portion of the solution is disregarded and only that from t/Ts = 150 onwards utilised.

Following Wegner et al. [45] and Chang and Tavoularis [131], and consistent with assumptions

inherent in the URANS framework, total turbulent kinetic energy, ktot, is the sum of modelled,

kmod, and resolved, kres, turbulent kinetic energy. The former constitutes the incoherent con-

tribution from the k transport equation whilst the latter constitutes the unsteady resolved CS

contribution and is obtained from kres = 1
2〈u′iu′i〉. Both contributions have to be time-averaged

over a period that is sufficiently long to capture a significant number of CS cycles as will be dis-

cussed further in Section 6.2.1. By considering modelled and resolved contributions to the total

turbulent kinetic energy it is possible to make a quantitative global assessment of the unsteady

dynamics captured by URANS which complements the localised point-based analysis presented

so far. Figures 6.5(a)-(c) show contours of time-averaged kmod, kres and their ratio, kmod/kres.

These show that kmod dominates kres throughout the near-field of the injector. In the vicinity

of the inner wall of the swirl duct, there is a localised region at x/Ds ≈ −0.25 in which kres is

significantly greater (≈ ×4) than kmod which corresponds to a flow separation observed in Figure

6.1. The fact that there is no contribution from kmod in the vicinity of the far-field centreline
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is consistent with the conclusion that no PVC is present. The ratio of turbulent to molecular

viscosity, νt/ν, is shown in Figure 6.5(d) where νt = Cµk
2/ε as defined in Equation 3.14. Max-

imum ratios of νt/ν ≈ 1750 are observed within the expansion chamber along the inner shear

layer of the swirl stream and close to the geometric centreline. Jochmann et al. [48] quote typical

ratios of µt/µ ≈ 500 and µt/µ ≈ 150 for confined swirl flows at a lower swirl number to that

considered here (SN = 0.52) based on standard k − ε and RST (SSG) models respectively. How-

ever, they give no indication of where these ratios were observed within the flow. Comparison

between Figures 6.5(d) and 5.4(a) reveals that typical levels of URANS k− ε turbulent viscosity

are approximately two orders of magnitude greater than the LES sub-grid viscosity, νsgs. Unlike

URANS k − ε, maxima of νsgs/ν derived from LES are not observed at the centreline which

suggests a possible explanation for PVC suppression in the case of URANS (k − ε).

6.1.1.1 Influence of Computational Parameters, Numerical Grid and CFD Solver

Following the preliminary investigation described above, it is apparent that URANS (k − ε) is

not suitable for capturing even the qualitatively correct details of the unsteady dynamics ob-

served experimentally. However, in order to make a completely definite statement a number of

additional numerical tests were undertaken. Firstly, the linkage coefficient between pressure and

velocity, α, used by Delta introduces a degree of numerical damping or smoothing which could

affect the development and evolution of CS. To investigate whether the value of α = 10 used in

URANS case 1 exerted a significant influence, two additional simulations were conducted with

reduced values of α = 6 and 3. These are referred to as URANS cases 2 and 3 (Table 6.3).

Further, although the timestep of ∆t = 1.0× 10−5 used in URANS case 1 gave only a maximum

CFL number of ≈ unity, a further simulation was performed with a timestep of ∆t = 1.0× 10−6

to ensure that temporal accuracy was sufficient. For this simulation (URANS case 4) the initial

linkage coefficient α = 10 was used. Unlike LULES, which uses an explicit treatment of flow

variables at the centreline, the boundary condition available in Delta was a symmetry condition

(defined in Equations 3.73 and 3.74) which ensures no flow or scalar flux across the boundary.

To investigate whether this boundary condition might potentially suppress the development of

a PVC, an O-grid mesh was used (shown in Figure 6.6). To ensure that only minimal changes

were made, the majority of the original polar-type mesh was maintained and modifications re-

stricted to the central region from r/Ds = 0 − 0.09. This simulation is referred to as URANS

case 5. Finally, in order to answer unresolved issues regarding numerical implementation raised

in Section 6.1, a further simulation was performed using Fluent with an identical parameter set

as URANS case 1 and this is referred to as URANS case 6.

Figure 6.7 shows Reynolds-decomposed streamtraces at x/Ds = 0.02 for URANS cases 2 - 6

at t/Ts = 150 (previously determined as a sufficient duration for the solution to reached a fully

self-sustaining state). Figure 6.8 shows instantaneous streamtraces at x/Ds = 2.39 for URANS
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cases 2 - 6 also at t/Ts = 150. Clearly, based on evidence presented in these figures, it can be

concluded that the computational parameters, numerical grid and CFD solver used in URANS

case 1 do not exert any significant influence on near-field or far-field CS development. This fail-

ure must therefore be attributed to deficiencies associated with the k − ε model. The fact that

k− ε simulations performed with Delta and Fluent with an identical parameter set exhibit good

agreement is further confirmation.

6.1.2 Reynolds-Stress Transport Model URANS Predictions

In the previous section, the computational parameters and numerical grid used in URANS case

1 were not found to exert any significant influence on near-field or far-field CS. Furthermore,

Delta (URANS case 1) and Fluent (URANS case 6) confirmed that the numerical implemen-

tation of the latter played a negligible role. Hence, a further simulation was undertaken with

Fluent based on the RST model, using identical computational parameters as URANS case 1.

For the remainder of this chapter this simulation will be referred to as URANS case 7 (Table 6.3).

In Figures 5.14 and 6.1 circumferential averaging was applied to LES and URANS (k − ε) cal-

culations to provide a clearer picture of flow features in the x − r plane. As already noted,

Fluent (version 6.3.26) is a fully unstructured solver and all data outputs are also unstructured.

In order to perform a similar circumferential averaging it would be necessary to interpolate the

data on to a structured mesh, but this was not attempted due to excessive memory requirements.

As an alternative, Figure 6.9 shows instantaneous streamtraces in the x − r plane at θ = π at

identical time-instants to Figure 6.1. The transient behaviour of the instantaneous shear layer

outer wall reattachment location is quantified via Figure 6.10 which shows xL/Ds as a function

of non-dimensional time, t/Ts. Initial development of the CRZ is observed to take place from

t/Ts = 0 − 50 in which the reattachment location moves rapidly upstream from xL/Ds = 3.3

to xL/Ds = 1.5. From t/Ts = 50 − 100, the reattachment location continues to move gradually

upstream and then oscillates around a mean location of xL/Ds ≈ 1.25. Clearly, the fluctuation

of the reattachment location predicted by the RST is modest in comparison to that predicted

by LES (Figure 5.15), however, it offers some improvement on the k− ε turbulence model which

exhibited no oscillatory behaviour.

Figure 6.11 shows Reynolds-decomposed streamtraces in the r − θ plane at x/Ds = 0.02 at

identical time-instants to those in Figure 6.2 for the URANS (k − ε). The experimentally ob-

served vortex structure, consisting of two clockwise and two counter-clockwise vorticies separated

by ≈ π radians, is firmly established at t/Ts = 100. An important aspect of Figure 6.11 it that

the vortex pattern does not undergo transition between t/Ts = 100 − 150. This would suggest

that the vortex transition observed in Figures 6.2(g)-(h) is not inherent to the URANS approach

in general but is rather a specific to the k− ε model. Although the vortex structure observed at
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t/Ts = 100 is characteristic of the self-sustaining pattern, there is a small degree of variability

in the details of each instantaneous realisation. This is in contrast to the k − ε model results in

which the vortex pattern reached at x/Ds = 150 maintained a fixed spatial structure and rotated

with a constant angular velocity, thus giving a completely deterministic solution with respect to

time (see Figure 6.4).

Figure 6.12 shows instantaneous streamtraces in the r − θ plane at x/Ds = 2.39 at various

time-instants. Contrary to URANS (k− ε) predictions, the aerodynamic centre of the flowfield is

displaced radially from the geometric centre and varies as a function of time. This demonstrates,

albeit qualitatively, the ability of URANS (RST) to capture the PVC phenomenon observed

experimentally. In order to facilitate discussions presented later in Section 6.3.2, the vortex de-

tection algorithm of Grosjean et al. [36] (Equation A-24) was used to determine the centre of the

PVC and is indicated by the blue dot. Clearly, the computed location is in excellent agreement

with the qualitative location deduced from instantaneous streamtraces.

Figure 6.13 shows time-histories of axial, radial and tangential velocity components recorded

at identical points to those shown for the k − ε model in Figure 6.4. Inside the swirl duct

(x/Ds = −0.26, r/Ds = 0.17) and in the near-field of the swirler exit (x/Ds = 0.02, r/Ds = 0.27),

the most notable difference between the time-dependent behaviour from k− ε and RST models is

that the former displays a repetitive deterministic nature whilst the latter is more characteristic

of stochastic turbulence. It is interesting to note that the magnitude of the velocity fluctuations

is quite different, with the fluctuating amplitude much larger in the case of the RST model. In

the far-field (x/Ds = 1.4 and 2.42), k − ε and RST models are again in stark contrast, with the

latter demonstrating a time-dependence consistent with experimental observations.

In a similar way to that presented in Figure 6.5, a quantitative global assessment of the un-

steady dynamics captured by the RST model was made by examination of the modelled, kmod

(obtained from time-averaged modelled Reynolds-stresses transport equations), and resolved,

kres, contribution to total turbulent kinetic energy (Figure 6.14). In stark contrast to the k − ε

predictions, Figures 6.14(a)-(c) show that kres obtained from the RST model dominates kmod in

the injector near-field and inside the swirl duct. The observed difference in kres in these regions

can be attributed to the increased magnitude of velocity fluctuation shown in Figures 6.4 and

6.13. Figure 6.14(b) indicates a further zone of resolved fluctuating energy in the vicinity of the

far-field centreline which is large in comparison to the modelled contribution. This is further

evidence to support Figures 6.12 and 6.13 which suggested that URANS (RST) could capture

the PVC phenomena observed experimentally. Although the RST model abandons the eddy vis-

cosity hypothesis, Figure 6.14(d) shows the ratio νt/ν (where νt = Cµk
2/ε from Equation 3.14)

for comparison with Figure 6.5(d). It is interesting to note that although the maximum ratio of
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νt/ν ≈ 1750 is similar in both cases, levels from the k − ε model are far greater in the vicinity

of the swirl stream and far-field centreline in comparison to the RST model. It is likely that the

increased levels of νt are responsible for the observed damping of CS.

6.1.3 Summary of URANS Test Cases

Table 6.3 summaries the various turbulence models, computational grids and numerical settings

used to investigate CS structure development presented in Section 6.1.

Case Name Solver Turbulence Model Grid System Timestep Linkage Coefficient

Case 1 Delta k − ε Structured Polar 1.0× 10−5 10

Case 2 Delta k − ε Structured Polar 1.0× 10−5 6

Case 3 Delta k − ε Structured Polar 1.0× 10−5 3

Case 4 Delta k − ε Structured Polar 1.0× 10−6 10

Case 5 Delta k − ε Structured O-grid 1.0× 10−5 10

Case 6 Fluent k − ε Unstructured Polar* 1.0× 10−5 10

Case 7 Fluent RST Unstructured Polar* 1.0× 10−5 10

Table 6.3: Summary of URANS test cases. *Here unstructured refers to the fact that Fluent

treats all numerical grids in an unstructured manner and no explicit boundary conditions were

set at the centreline.

6.2 URANS Ensemble Averaged Data

As discussed in Section 6.1, time-histories of axial, radial and tangential velocity presented in

Figure 6.4 indicate that simulations performed with the k− ε model reached a self-sustaining, re-

peating state after t/Ts = 150 (≈ 4.5 residence times). Similarly, large-scale features, such as the

CRZ development shown in Figure 6.10, computed with URANS (RST) were firmly established

by this time. To ensure that initial transients did not contaminate the quantitative analysis

presented here, only the portion of the simulations from t/Ts = 150 onwards was utilised. In

order to facilitate comparison between k − ε and RST models, subsequent analysis is based on

URANS cases 6 and 7 (Table 6.3).

The LES ensemble averaged dataset used in Chapter 5 was summarised in Table 5.4 and con-

sisted of a total of 16384 samples (214) acquired at a frequency of 2kHz (∆T = 0.5ms). From

Section 5.4 this was sufficient to perform a spectral analysis of both near-field and far-field CS

which exhibit a broad range of characteristic frequencies. Furthermore, an acceptable number of

statistically independent samples were provided, including in regions in which integral timescales

were approximately two orders of magnitude larger than the sampling interval (Table 5.5). In

order to provide a comparable analysis, an ensemble averaged dataset based on URANS (RST)

was acquired with identical properties to those in Table 5.4. It is clear that the k − ε model is

not suitable for predicting the expected far-field PVC phenomena. As a result, it was decided

only to focus spectral analysis on the higher frequency near-field CS to avoid the necessity of

generating excessively large datasets.
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6.2.1 Single-Point Statistics

A detailed discussion of radial profile characteristics for mean and r.m.s velocities and shear-

stresses obtained from PIV within the dump expansion chamber was presented in Section 4.1.

In order to facilitate comparison with URANS, statistics from the conditioned LES dataset

(t/Ts = 125) presented in Chapter 5 have also been included here. At x/Ds = 0.02, both k − ε

and RST models exhibit good agreement with experiment in terms of axial velocity across the ma-

jority of the swirler exit (Figure 6.15(a)). There are some discrepancies between 0 ≤ r/Ds ≤ 0.09

which are probably due to the presence of the inner body of the swirl duct. The radial velocity

distribution at this location shown in 6.17(a) predicted by the k − ε model is consistent with

measured trends, however, in a similar way to LES, the minimum at r/Ds ≈ 1.7 and secondary

peak at r/Ds ≈ 0.35 are both overpredicted. This is in contrast to the RST model which is in

accordance with PIV across the whole radial extent of the swirler exit. In Section 5.3.2 it was

suggested that the radial velocity component at the swirler exit is sensitive to the time-mean

location of flow separation from the inner wall of the swirl duct. From the conditioned LES

sample, separation occurs at x/Ds = −0.1, whilst for k− ε and RST models it is located further

upstream at x/Ds = −0.17 and x/Ds = −0.2 respectively. Thus, the further downstream sep-

aration occurs relative to experiment −0.43 ≥ x/Ds ≥ −0.27 [13], the steeper the angle of the

exit flow.

Downstream of the swirler exit within the expansion chamber (x/Ds = 0.27, x/Ds = 0.53

and x/Ds = 1.06) the general trend of the k − ε model is an underprediction in the peak mag-

nitude of axial velocity and an overprediction in the peak magnitude of radial velocity relative

to experiment (Figures 6.15(b)-(d) and 6.17(b)-(d) respectively). The peak location in both ax-

ial and radial velocity components is located further outboard in comparison to PIV, with this

discrepancy becoming more pronounced with increasing downstream distance. Similar trends

are also observed for the RST model; however, the overall agreement with experiment in terms

of the magnitude and location of peak values is improved. The most significant improvement

offered by the RST model over the k − ε model is in terms of centreline axial velocities which

are consistently underpredicted by the latter. Figure 6.16 shows predicted axial velocity along

the centreline of the expansion chamber in comparison to PIV and LES. Close to the swirler exit

(x/Ds ≤ 0.4), the general shape of the CTRZ predicted by the RST model is in good agreement

with experiment, however, the peak minima is somewhat underpredicted and the region of rapid

axial velocity recovery from 0.4 ≤ x/Ds ≤ 1.3 is not captured. Despite these differences, RST is

more in accordance with measured trends than k − ε in which the peak minimum of the CTRZ

is too far downstream and the recovery of axial velocity is far too slow. As a result, the CTRZ

predicted by the k− ε model is much ‘stronger’ in comparison to experiment. The discrepancies

in downstream axial and radial velocity profiles can be attributed to the differences in the mean
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reattachment location of the outer shear layer on the outer wall of the expansion chamber; this

was shown in Section 5.3.2 to exert a significant influence on the agreement between experiment

and LES. The mean reattachment locations of xL/Ds = 1.2 and xL/Ds = 1.25 for k − ε and

RST models are upstream of that measured by PIV (xL/Ds = 1.45). The underprediction in

the peak magnitude of axial velocity and overprediction in the peak magnitude of radial velocity

is consistent with the findings of Section 5.3.2. The mean reattachment location from LES was

downstream (xL/Ds = 1.72) of the measured location and resulted in an overprediction in the

peak magnitude of axial velocity and underprediction in the peak magnitude of radial velocity.

Furthermore, peak values were located inboard of experiment. Unlike LES, the instantaneous

reattachment location of URANS-based predictions exhibit either no (k−ε model) or weak (RST

model) time-dependence and it is therefore not possible to condition statistics in a similar way

to that used in Section 5.3.2.

Although differences in time-mean reattachment locations undoubtedly exert some influence on

tangential velocity distributions, these are overshadowed by the global effects of the turbulence

model. At x/Ds = 0.02 and 0.27, Figures 6.18(a)-(b) indicate that in the upstream region tangen-

tial velocities predicted by the k−ε model are at least in qualitative agreement with experimental

observations, however, at x/Ds = 0.53 and 1.06, the solution tends towards a qualitatively in-

correct solid-body rotation. In contrast, the overall agreement between experiment and the RST

model is favourable. At x/Ds = 0.02, 0.27 and 0.53, the correct Rankine-like distribution is cap-

tured by the RST model across the majority of forced and free vortex regions. At the latter two

locations the peak magnitude is closer to PIV than LES which has a tendency to overpredict this

value as already discussed. It should be noted, however, that at these locations the RST model

deviates from experiment close to the centreline where the tangential velocity component should

increase linearly with radius. The reason for this is unclear, however, it is possibly related to

the large-scale unsteadiness of the PVC. In a similar way to LES, largest discrepancies between

experiment and the RST model occur at x/Ds = 1.06. At this location the magnitude of the

peak value is overpredicted relative to PIV and located further inboard.

Examination of modelled and resolved Reynolds stress components as defined above was carried

out. Since the modelled stresses are with respect to a Cartesian coordinate basis, the following

transformation matrix given by Bower [132] was used to obtain the polar-cylindrical components

used throughout this thesis:



〈u′ru′r〉 〈u′ru′θ〉 〈u′ru′x〉
〈u′θu′r〉 〈u′θu′θ〉 〈u′θu′x〉
〈u′xu′r〉 〈u′xu′θ〉 〈u′xu′x〉


 =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1






〈u′yu′y〉 〈u′yu′z〉 〈u′yu′x〉
〈u′zu′y〉 〈u′zu′z〉 〈u′zu′x〉
〈u′xu′y〉 〈u′yu′z〉 〈u′xu′x〉







cos θ − sin θ 0

sin θ cos θ 0

0 0 1




(6.1)
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All second order RST statistics presented in the following are the sum of modelled and resolved

contributions and thus can be considered as ‘total’ quantities. Figures 6.19 to 6.21 show radial

profiles of r.m.s axial, radial and tangential stresses respectively. The overall agreement in r.m.s

axial velocity between experiment and the RST model is extremely favourable (Figure 6.19).

The location and magnitude of peak values in the shear layer arising at the interface of the

CTRZ and swirl stream are consistent with measured trends at x/Ds = 0.02, 0.27 and 0.53.

Further downstream at x/Ds = 1.06, the peak magnitude is underpredicted and shifted radially

outwards. It is reasonable to assume that this may be attributed to differences in the mean

axial velocity component at this location (Figure 6.15(d)) which also exhibits a radial shift. In

general, centreline values are well represented although a degree of overprediction is observed at

x/Ds = 0.02 which again may be attributed to discrepancies in the mean axial velocity (Figure

6.19(a)). Profiles of r.m.s radial velocity from the RST model shown in 6.20 are in general ac-

cordance with experiments at all axial locations. In a similar way to LES, the peak magnitude is

underpredicted relative to PIV by the RST model at x/Ds = 1.06, however, the radial variation

is well represented. Profiles of r.m.s tangential velocity shown in Figure 6.21 do not compare as

favourably, however, the most salient features are reasonably resolved.

Figures 6.22 to 6.24 show radial profiles of axial-radial, radial-tangential and axial-tangential

shear-stresses. Regions of positive and negative correlation of 〈u′xu′r〉 at x/Ds = 0.02, 0.27 and

0.53, including the location and magnitude of peak values, are faithfully reproduced by the RST

model (Figure 6.22). As already mentioned, since shear-stress distributions in the near-field are

firmly linked to CS emerging from the swirl duct, this favourable agreement indicates that RST,

like LES, is able to capture important CS details. Further downstream at x/Ds = 1.06, the

region of zero shear in the forced vortex region is well represented by the RST model. In terms of

radial-tangential shear-stress (Figure 6.23), overall levels of agreement between the RST model

and experiment are broadly comparable to LES and, at x/Ds = 0.02, even offer some improve-

ment. Although it was not possible to obtain axial-tangential shear stress measurements from

2C-PIV, Figure 6.24 indicates a favourable agreement between LES and the RST model.

6.3 Spectral Analysis

Spectral analysis of URANS data was performed in a similar way to Section 5.4 through direct

application of the fast Fourier transform (FFT) algorithm of Danielson and Lanczos described

by Press et al. [128].

6.3.1 Near Field

For a detailed discussion of near-field spectral characteristics, the reader is referred to Section

4.2.1. Figure 6.25 shows PSDs of axial, radial and tangential velocity components obtained

from k − ε and RST models compared against conditioned LES (t/Ts = 102) predictions at
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x/Ds = 0.27, r/Ds = 0.24. The expected HWA frequencies of Midgley [13] (St = 0.62 and 1.24)

are indicated by the vertical dashed lines. From RST spectra there is evidence of a peak close

to St = 1.24 in all three velocity components. However, in contrast to LES, the primary HWA

frequency of St = 0.62 has a comparable amplitude to the surrounding turbulent broadband

frequencies and cannot be distinguished clearly. Although k − ε spectra contain peaks close to

St = 0.62 and 1.24, this should be viewed as a rather fortuitous outcome given the qualitative

differences in CS between experiment and simulation shown in above.

Differences between spectra derived from LES, which agrees well with experiment, and the RST

model can be explained by examining the temporal auto-correlations of velocity at x/Ds = 0.27,

r/Ds = 0.24, θ = π shown in Figure 6.26. For the RST model, the autocorrelation of all three

components varies sinusoidally with a period between successive peaks (for positive and nega-

tive correlation values) of τ/Ts ≈ 0.67. This corresponds to St = 1.4 which has been indicated

in Figure 6.26 and is associated with the motion of a vortex pair. Autocorrelations derived

from LES exhibit a similar periodicity, however there is evidence of an additional timescale of

t/Ts ≈ 1.34 which results from the amplitude variation between alternate peaks of positive cor-

relation values. This corresponds to a Strouhal number of St = 0.7 which can be observed most

clearly in Figure 6.26(c) and is associated with the motion of a single vortex. The absence of

this timescale in auto-correlations from the RST model implies that it is unable to distinguish

between the motion of a single vortex and a vortex pair. This is consistent with the prominence

of only the secondary HWA frequency in the velocity spectra. Unlike LES, which preserves the

stochastic nature of turbulence, URANS only provides the coherent, or phase-averaged, compo-

nent of fluctuating motion with the stochastic contribution accounted for via a turbulence model.

The absence of this contribution means that the resolved CS are more coherent in both time and

space relative to LES and hence the observed differences in velocity spectra and auto-correlations.

It is interesting to note that the amplitude of RST spectra is comparable to LES through-

out the majority of the lower frequency range, say St < 3, whereas that from the k − ε model is

much reduced and has a much smoother distribution. At relatively high frequencies, i.e. St > 3,

the RST model does not follow the -5/3 gradient within the inertial subrange suggesting that

the rate of energy transfer to successively smaller scales is too rapid. This is to be expected,

since URANS makes no attempt to resolve directly any part of the spectrum, and the eddy

viscosity levels are larger than the SGS viscosity which leads to rapid dissipation of fluctuating

motion. An explanation for the observed differences in k − ε and RST spectral amplitudes is

illustrated in Figures 6.5(c) and 6.14(c) which compare the ratio of kmod/kres. At x/Ds = 0.27,

Figure 6.5(c) shows that kmod dominates kres in the case of the k − ε model whilst the opposite

is the case for the RST model. As the modelled part of the turbulent spectrum, kmod, is not

included in Figure 6.25 variations in amplitude are to be expected. The relative smoothness of
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k− ε spectra across the frequency range can be explained from Figures 6.4 and 6.13 which show

velocity component time-histories at various points within the computational domain for k − ε

and RST models respectively. Although none of these points directly coincide with the monitor

location used for Figure 6.25 they highlight significant difference between turbulence models. For

example, at x/Ds = 0.02, r/Ds = 0.27, velocity time-histories from the k − ε model shown in

Figure 6.4 are of a repetitive deterministic nature whilst those derived from the RST model are

(perhaps surprisingly) more characteristic of broadband turbulence.

In addition to the presence of distinct spectral peaks related to coherent vortex motion at rel-

atively high frequency (St > 0.5), an increase in amplitude at the lower end of the spectra

(0.02 < St < 0.1) has previously been identified as indicative of unsteadiness due to the presence

of a PVC. In this region, no increase in k − ε spectra is observed; confirming that the PVC phe-

nomena has not been captured. Far-field spectral characteristics of the RST model are considered

in the following subsection.

6.3.2 Far Field

Figures 6.27 to 6.29 show PDSs obtained from all three velocity components at x/Ds = 2.65 for

various radial locations. The expected precessional frequency of Syred et al. [38] (St = 1.35×10−2

- see Section 5.4.2) is indicated by the vertical dashed line. As already noted, the PVC is predom-

inantly aligned in the streamwise direction and the fact that the expected precessional frequency

does not appear in RST (or LES) axial velocity spectra shown in Figure 6.27 is unsurprising.

From Figures 6.28 and 6.29, which show radial and tangential velocity spectra, a significant accu-

mulation of energy is observed at St = 1.35×10−2 at all radial locations. This confirms that, like

LES, the RST model is able to predict the frequency characteristics of the PVC. In comparison

to LES, the amplitude of far-field URANS velocity spectra is notably reduced throughout the

entire frequency range and can be attributed to an increased damping of velocity fluctuations in

the vicinity of the centreline.

The time-dependent behaviour of the PVC was investigated for the RST model again using

the vortex detection algorithm of Grosjean et al. [36] (Equation A-24). The computed loca-

tion of the PVC at x/Ds = 2.39 was compared with its location deduced from instantaneous

streamtraces at various time-instants (Figure 6.12). The angular location (θPVC) and radial dis-

placement (rPVC) of the PVC for the RST model are shown in Figures 6.30 and 6.31 as a function

of non-dimensional time, t/Ts. For clarity, the total record length of the RST ensemble has been

divided into two segments from t/Ts = 0 − 205 and t/Ts = 205 − 409 respectively. It should

be noted that t/Ts = 0 corresponds to the beginning of the sampling interval reached after the

initial transitory period (t/Ts = 0 − 125, see Section 6.1.2) rather than solution initialisation.

In Section 5.4.2, the sawtooth waveform identified was attributed to the rotational motion of
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the PVC about the geometric centreline. Similar behaviour is also observed for the RST model

and is most clearly identified between t/Ts ≈ 150 − 300. The explanation for this is provided

in Figure 6.31 which shows that the average radial displacement of the PVC from the centre of

the expansion chamber is 〈rPVC〉/Dx ≈ 0.01. When the instantaneous location of the PVC is

relatively close to the centreline, say rPVC/Dx < 〈r〉/Dx, even very slight variations in position

can lead to the detection of large angular jumps. However, when the PVC is relatively far from

the centreline its rotational motion is more clearly defined, which can be observed by examining

rPVC/Dx and θPVC from t/Ts ≈ 150−300. Clearly, the radial displacement of the PVC from RST

calculations is relatively modest in comparison to that derived from LES of 〈rPVC〉/Dx ≈ 0.023

which was in reasonable agreement with PIV measurements (Table 4.2) at 3.5% of the duct di-

ameter. This suggests a higher degree of damping by the RST model relative to LES which is

consistent with increased levels of eddy viscosity in the vicinity of the centreline shown in Figures

6.14(d) and 5.4(a) respectively.

6.4 Closure

From results presented in this chapter it can be concluded that k − ε URANS is not suitable

for capturing even the correct qualitative details of the modular swirler. Although a Reynolds-

decomposition in the near-field revealed an initial vortex structure similar to that observed ex-

perimentally this underwent a transitory phase and the final self-sustaining solution reached after

further timesteps was inconsistent with experiment. Similarly, the expected PVC in the far-field

was not predicted as the aerodynamic centre was coincident with the geometric centre at all

times. A thorough investigation into various numerics, computational grids and CFD solvers

found that these exerted no influence on CS development. It was suggested that high levels of

turbulent viscosity within shear-layers shed from the swirler and in the vicinity of the centreline

were a more probable cause of these discrepancies. As a result of qualitative differences and de-

tails of the k−ε model first-order statistics and near-field velocity spectra were in poor agreement

with experiment.

In contrast to the k − ε model, the qualitative details of the both near and far-field instabil-

ity modes predicted by the RST were in accordance with experiment. First and second-order

statistics derived from an ensemble dataset of identical length to that used for LES showed a good

overall agreement with PIV measurements. Although velocity fluctuations in the far-field were

suppressed relative to LES due to an increased turbulent viscosity a large accumulation of energy

was observed close to the expected precessional frequency of the PVC. From near-field spectral

analysis a peak close to St = 1.24 (vortex pair) was present in all three velocity components,

however the expected HWA frequency of St = 0.62 (single vortex) had a comparable amplitude

to the surrounding turbulent broadband frequencies and could not be clearly distinguished. It

was argued that since URANS only provides the coherent, or phase-averaged, component of fluc-
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tuating motion the resolved CS are more coherent in both time and space relative to LES which

was able to detect both frequencies. As a result of this increase coherence (which was quantified

via temporal auto-correlations of velocity) the RST model is unable to distinguish between the

motion of a single vortex and a vortex pair and hence the differences in velocity spectra.
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(a) t/Ts = 50

(b) t/Ts = 100

(c) t/Ts = 150

(d) t/Ts = 300

Figure 6.1: Instantaneous circumferentially averaged streamtraces in x− r plane at various time
instants for URANS case 1.
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(a) t/Ts = 5 (b) t/Ts = 10 (c) t/Ts = 15

(d) t/Ts = 25 (e) t/Ts = 50 (f) t/Ts = 75

(g) t/Ts = 100 (h) t/Ts = 150 (i) t/Ts = 200

(j) t/Ts = 250 (k) t/Ts = 300 (l) t/Ts = 350

Figure 6.2: Reynolds-decomposed streamtraces at swirler exit (x/Ds = 0.02) at various time
instants for URANS case 1.
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(a) t/Ts = 50 (b) t/Ts = 100

(c) t/Ts = 150 (d) t/Ts = 200

(e) t/Ts = 250 (f) t/Ts = 300

Figure 6.3: Instantaneous streamtraces in expansion chamber (x/Ds = 2.39) at various time
instants for URANS case 1 •- geometric centre
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Figure 6.4: Velocity time-histories at various locations for URANS case 1.
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(a) kmod/U2
x,s

(b) kres/U2
x,s

(c) kres/kmod

(d) νt/ν

Figure 6.5: Contours of time averaged turbulent quantities for URANS case 1.

244



Reynolds-Averaged Navier-Stokes

Figure 6.6: O-Grid used for URANS case 5 shown in r − θ plane.
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(a) URANS case 2. (b) URANS case 3.

(c) URANS case 4. (d) URANS case 5.

(e) URANS case 6.

Figure 6.7: Reynolds-decomposed streamtraces at x/Ds = 0.02, t/Ts = 150 for URANS cases 2
- 6.
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(a) URANS case 2. (b) URANS case 3.

(c) URANS case 4. (d) URANS case 5.

(e) URANS case 6.

Figure 6.8: Instantaneous streamtraces at x/Ds = 2.39, t/Ts = 150 for URANS cases 2 - 6.
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(a) t/Ts = 50

(b) t/Ts = 100

(c) t/Ts = 150

(d) t/Ts = 300

Figure 6.9: Instantaneous streamtraces in x−r plane at θ = π at various time instant for URANS
case 7.
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Figure 6.10: Instantaneous reattachment location of outer shear layer at r/Ds = 1.86, θ = π for
URANS case 7.
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(a) t/Ts = 5 (b) t/Ts = 10 (c) t/Ts = 15

(d) t/Ts = 25 (e) t/Ts = 50 (f) t/Ts = 75

(g) t/Ts = 100 (h) t/Ts = 150 (i) t/Ts = 200

(j) t/Ts = 250 (k) t/Ts = 300 (l) t/Ts = 350

Figure 6.11: Reynolds-decomposed streamtraces at swirler exit (x/Ds = 0.02) at various time
instants for URANS case 7.
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(a) t/Ts = 150 (b) t/Ts = 200

(c) t/Ts = 250 (d) t/Ts = 300

Figure 6.12: Instantaneous streamtraces in expansion chamber (x/Ds = 2.39) at various time
instants for URANS case 7 •- geometric centre, •- aerodynamic centre from Equation A-24

251



Reynolds-Averaged Navier-Stokes

t / Ts

u x
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

x / Ds= 2.42, r / Ds= 0.0
t / Ts

u x
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

x / Ds=0.02, r / Ds=0.27

t / Ts
u x

/U
x,

s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

x / Ds=-0.26, r / Ds=0.17

t / Ts

u x
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

x / Ds=1.4, r / Ds=1.86

(a) Axial Velocity

t / Ts

u r
/U

x,
s

0 100 200 300 400 500-1

-0.5

0

0.5

1

1.5

x / Ds= 2.42, r / Ds= 0.0

t / Ts

u r
/U

x,
s

0 100 200 300 400 500-1

-0.5

0

0.5

1

1.5

x / Ds=1.4, r / Ds=1.86
t / Ts

u r
/U

x,
s

0 100 200 300 400 500-1

-0.5

0

0.5

1

1.5

x / Ds=0.02, r / Ds=0.27

t / Ts

u r
/U

x,
s

0 100 200 300 400 500-1

-0.5

0

0.5

1

1.5

x / Ds=-0.26, r / Ds=0.17

(b) Radial Velocity

t / Ts

u θ
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

2

2.5
x / Ds=-0.26, r / Ds=0.17

t / Ts

u θ
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

2

2.5
x / Ds=0.02, r / Ds=0.27

t / Ts

u θ
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

2

2.5
x / Ds=1.4, r / Ds=1.86

t / Ts

u θ
/U

x,
s

0 100 200 300 400 500

-0.5

0

0.5

1

1.5

2

2.5
x / Ds= 2.42, r / Ds= 0.0

(c) Tangential Velocity

Figure 6.13: Time-histories at various locations for URANS case 7.
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(a) Contours of modeled turbulent kinetic energy, kmod

(b) Contours of resolved turbulent kinetic energy, kres

(c) Contours of turbulent kinetic energy ratio, kres/kmod

(d) Contours of eddy viscosity ratio, νt/ν

Figure 6.14: Contours of time averaged turbulent quantities for URANS case 7.
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Figure 6.15: Comparison of mean axial velocity against conditioned LES (t/Ts = 125) and PIV
at various axial locations in expansion chamber
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Figure 6.16: Comparison of mean axial centreline velocity against conditioned LES (t/Ts = 125)
and PIV at various axial locations in expansion chamber
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Figure 6.17: Comparison of mean radial velocity against conditioned LES (t/Ts = 125) and PIV
at various axial locations in expansion chamber
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Figure 6.18: Comparison of mean tangential velocity against conditioned LES (t/Ts = 125) and
PIV at various axial locations in expansion chamber
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Figure 6.19: Comparison of r.m.s axial velocity against conditioned LES (t/Ts = 125) and
corrected PIV at various axial locations in expansion chamber
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Figure 6.20: Comparison of r.m.s radial velocity against conditioned LES (t/Ts = 125) and
corrected PIV at various axial locations in expansion chamber
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Figure 6.21: Comparison of r.m.s radial velocity against conditioned LES (t/Ts = 125) and
corrected PIV at various axial locations in expansion chamber

260



Reynolds-Averaged Navier-Stokes

r / Ds

<
u’

xu
’ r>

/U
2 x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2 PIV
LES (t / Ts=125)
RST

(a) x/Ds = 0.02

r / Ds

<
u’

xu
’ r>

/U
2 x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2 PIV
LES (t / Ts=125)
RST

(b) x/Ds = 0.27

r / Ds

<
u’

xu
’ r>

/U
2 x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2 PIV
LES (t / Ts=125)
RST

(c) x/Ds = 0.53

r / Ds

<
u’

xu
’ r>

/U
2 x,

s

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2 PIV
LES (t / Ts=125)
RST

(d) x/Ds = 1.06

Figure 6.22: Comparison of axial-radial stress against conditioned LES (t/Ts = 125) and PIV at
various axial locations in expansion chamber
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Figure 6.23: Comparison of radial-tangential stress against conditioned LES (t/Ts = 125) and
PIV at various axial locations in expansion chamber
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Figure 6.24: Comparison of axial-tangential stress against conditioned LES (t/Ts = 125) at
various axial locations in expansion chamber
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Figure 6.25: PSDs of axial, radial and tangential velocity at x/Ds = 0.27, r/Ds = 0.24 for k− ε,
RST and conditioned LES (t/Ts = 102). Vertical dashed lines indicated expected frequencies of
Midgley [13].
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Figure 6.26: Autocorrelations for RST model and conditioned LES (t/Ts = 102) at x/Ds = 0.27,
r/Ds = 0.24, θ = π
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Figure 6.27: PSD of axial velocity for RST model and complete LES (t/Ts = 409) at x/Ds = 2.65
for various radial locations. Vertical dashed line indicates expected PVC frequency of Syred et
al. [38]
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Figure 6.28: PSD of radial velocity for RST model and complete LES (t/Ts = 409) at x/Ds = 2.65
for various radial locations. Vertical dashed line indicates expected PVC frequency of Syred et
al. [38]
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Figure 6.29: PSD of tangential velocity for RST model and complete LES (t/Ts = 409) at
x/Ds = 2.65 for various radial locations. Vertical dashed line indicates expected PVC frequency
of Syred et al. [38]
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Figure 6.30: Angular location of PVC at x/Ds = 2.39 for RST model
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Figure 6.31: Radial displacement of PVC at x/Ds = 2.39 for RST model
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Chapter 7

Summary, Conclusions and

Recommendations

7.1 Summary and Conclusions

The primary objective of this thesis was to assess the suitability of LES and URANS CFD

methodologies to flowfields characteristic of swirl-stabilised combustion systems. An essential re-

quirement of this was that frequencies of all aerodynamic modes should be predicted with a high

degree of fidelity. This is because if any of these frequencies are consistent with prevalent acoustic

modes within the combustor there is a potential for flow-acoustic coupling which may reinforce

acoustic oscillations and drive combustion instabilities via the Rayleigh criterion (Equation 1.1).

This assessment was made under isothermal conditions to avoid the complications that arise in

reacting flow. An industrial Turbomeca swirl injector was selected as a suitable test case as this

exhibits similar unsteady behaviour under reacting and isothermal conditions [12].

As the level of swirl is known to exert a strong influence on the aerodynamic modes and charac-

teristic frequencies of combustion systems, PIV was used to explore a range of SN by varying the

inlet swirl vane angle (α1 = 30◦, 20◦, 15◦ and 10◦) of a derivative of the the Turbomeca design.

To ensure the capture of high-quality experimental data, all measurements were performed in

water as the reduction in working velocities relative to air allow key instrumentation setup pa-

rameters, such as inter-frame time, to be optimised and errors such as particle response time and

velocity lag to be reduced through the use of neutrally buoyant tracer particles. Despite a careful

adherence to ‘best-practice’ guidelines [72, 13] there are a number of error sources inherent to

the PIV technique that cannot be completely eliminated during acquisition. A procedure was

developed in this thesis to account for the effect of perspective error on first-order time-mean

statistics and the methodology proposed by Hollis [72] was used to correct for sub-grid filtering

effects on r.m.s quantities. Based on a qualitative assessment of instantaneous velocity data

and a range of CS eduction techniques it was found that α1 = 30◦ contained near (shear-layer
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vortices) and far-field (PVC) instability modes which previous studies at similar SN [13, 38] have

shown to exhibit characteristic frequencies which differ by around two orders of magnitude. The

coherence of these modes and far-field normal Reynolds-stress anisotropy significantly decreased

for α1 = 20◦ and α1 = 15◦ and no coherent vortex motion was detected for α1 = 10◦. From these

observations it was decided that α1 = 30◦ would be the most challenging test case with which to

assess the suitability of LES and URANS.

Following a preliminary LES grid refinement study it was found that the wall-function approach

within the swirl duct was not suitable for capturing the near-field CS observed experimentally.

However, a further calculation performed with an increased near-wall resolution resulted in the

appearance of this feature. In order to validate LES against experiment, an ensemble dataset

was collected that included a sufficient number of independent samples for converged first and

second-order statistics and an adequate number of PVC cycles for a detailed frequency analysis.

Regular monitoring of this revealed a bimodal behaviour at the swirler exit similar to that ob-

served experimentally which was characterised by the presence or absence of CS. It was found

that first-order statistics based on all members of ensemble were in reasonable agreement with

experiment, however second-order r.m.s quantities were not well represented. It was argued that

the most notable discrepancies could be attributed to the details of CS from within the swirler as

these contribute significantly to turbulence levels. Since vortex transition occurred on a timescale

several orders of magnitude larger than the LES sampling interval this placed severe restrictions

on the number of cycles that could be captured. To provide a more representative comparison

with experiment, a second ‘conditioned’ dataset was created corresponding to the period during

which CS were observed at the swirler exit. The agreement of first and second-order statistics

(including turbulent shear-stresses which were found to be largely unreported in the available

literature) of the conditioned set with experiment were found to be much improved. Velocity

spectra derived from LES found that the all-important frequency content of near and far-field

instability modes was predicted in accordance with experiment.

From volumetric information provided by validated LES predictions it was found that frequencies

associated with near-field CS persist throughout the entire swirl duct which may have implica-

tions for air-fuel mixing. In the near-field 4 equi-distant helices were identified which formed

upstream of the swirler exit with vortex filament windings which opposed the bulk flow. A PDF

showed the most probable angle between these and time-mean velocity vectors was close to π

radians suggesting the K-H instability as a formative mechanism. A similar helical structure

(PVC) was identified in the vicinity of the far-field centreline which also had vortex filament

winding opposed to the bulk flow.

Although k−ε URANS performed on an identical grid to LES revealed an initial vortex structure
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at the swirler exit similar to that observed experimentally this underwent a transitory phase and

the final self-sustaining solution reached after further timesteps was inconsistent with experiment.

Similarly, the expected PVC in the far-field was not predicted as the aerodynamic centre was

coincident with the geometric centre at all times. A thorough investigation into various numerics

(under-relaxation and ∆t), computational grids (polar and O-grid) and CFD solvers (Delta and

Fluent) found that these exerted no influence on CS development. It was suggested that high

levels of turbulent viscosity within shear-layers shed from the swirler and in the vicinity of the

centreline were a more probable cause of these discrepancies. As a result of qualitative differences

and details of the k − ε model first-order statistics and near-field velocity spectra were in poor

agreement with experiment.

In contrast to the k − ε model, the qualitative details of the both near and far-field instabil-

ity modes predicted by the RST on an identical grid to LES were in accordance with experiment.

First and second-order statistics derived from an ensemble dataset of identical length to that

used for LES showed a good overall agreement with PIV measurements. Although velocity fluc-

tuations in the far-field were suppressed relative to LES due to an increased turbulent viscosity

a large accumulation of energy was observed close to the expected precessional frequency of the

PVC. From near-field spectral analysis a peak close to St = 1.24 (vortex pair) was present in all

three velocity components, however the expected HWA frequency of St = 0.62 (single vortex)

had a comparable amplitude to the surrounding turbulent broadband frequencies and could not

be distinguished clearly. It was argued that since URANS only provides the coherent, or phase-

averaged, component of fluctuating motion the resolved CS are more coherent in both time and

space relative to LES which was able to detect both frequencies. As a result of this increase

coherence (which was quantified via temporal auto-correlations of velocity) the RST model is

unable to distinguish between the motion of a single vortex and a vortex pair and hence the

differences in velocity spectra.

Despite the relatively modest computational cost of URANS which is between one-third (RST)

and an order of magnitude (k − ε) than that demanded by LES, only LES captures the all-

important frequency content in accordance with experiment and, thus, only LES can be rec-

ommended for use in swirl injector flows. The increased cost is believed to be an absolutely

worthwhile expense because of the high fidelity of the predicted results in the important area of

flow instabilities.

7.2 Future Work

Although 2C-PIV is generally well suited to the flows studied in this thesis, the planar na-

ture of the technique makes it difficult to explain fully 3D flow behaviour and companion CFD

predictions were necessary for a more complete understanding of the helical instability modes
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characteristic of swirl-stabilised combustion systems. Recent developments in image processing

algorithms and a continued increase in available computing power now enables the instantaneous

measurement of all three velocity components in a complete 3D measurement volume via Tomo-

graphic PIV. This technique should be utilised to explore further the highly unsteady flowfield

produced by the Turbomeca swirler and verify the CFD results presented here in terms of the

predicted spatial structure of the dominant instability modes.

A major focus of the computational work presented in this thesis has been on the ability of LES

and URANS CFD methodologies to capture the frequency content of all aerodynamic modes un-

der isothermal conditions. Although this is of great practical importance the next logical steps

have to be related to the influence of CS on mixing (passive scalar) in the near and far-field of the

swirler and how combustion affects the formation of dominant instability modes and unsteady

heat release.

Additional simulations could be performed at the lower levels of swirl investigated experimentally,

however, even in the event of an improved performance from URANS the overall suitability of the

technique to swirl injector applications would still be under scrutiny based on the calculations

presented in this thesis.

The majority of fuel injectors utilised in aeronautical applications typically employ multiple

swirl streams for fuel-air mixing and primary zone stabilisation rather than the single stream

considered here. It would be of further interest to assess to performance the CFD methodologies

for these configurations.
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sis, uviversitätsverlag karlsrue, 2006.

[106] Lilly, D. K., “The representation of small-scale turbulence in numerical simulation exper-

iments,” Proc. IBM Scientific Computing Symp. on Environmental Sciences, 1967, pp.

195–210.

[107] Tang, G., Yang, Z., and McGuirk, J. J., “LES predictions of aerodynamic phenomena in

LPP combustors,” ASME Paper 2001-GT-465 , 2001.

[108] Tang, G., Yang, Z., and McGuirk, J. J., “Numerical methods for large-eddy simulation

in general coordinates,” International Journal for Numerical Methods in Fluids, Vol. 46,

2004, pp. 1–18.

[109] Wang, K., Large eddy simulation of turbulent variable density and reacting flows, Ph.D.

thesis, Loughborough University, 2007.

282



Conclusions and Recommendations

[110] Pope, S. B., “The calculation of turbulent recirculating flows in general orthogonal coordi-

nates,” Journal of Computational Physics, Vol. 26, 1978, pp. 192–217.

[111] Moin, P., “Progress in large-eddy simulation of turbulent flows,” AIAA, 1997.

[112] Schumann, U., “Sub-grid scale model for finite difference simulations of turbulent flow in

plane channels and annuli,” Jnl. of Comp. Phys, Vol. 18, 1975, pp. 376.

[113] McGuirk, J. J. and Page, G. J., “Shock capturing using a pressure-correction method,”

AIAA Journal , Vol. 28, 1990, pp. 1751–1757.

[114] Trumper, M. T., A study of nozzle exit boundary layers in high speed jet flows, Ph.D. thesis,

Loughborough University, 2006.

[115] Veloudis, I., A study of subgrid scale modelling and inflow boundary conditions for large

eddy simulation of wall-bounded flows, Ph.D. thesis, Loughborough University, 2007.

[116] Salman, H., Page, G., and McGuirk, J. J., “Prediction of lobed mixer vortical structures

with a k − ε turbulence model,” AIAA Journal , Vol. 41, 2003, pp. 878–887.

[117] Birkby, P. and Page, G., “Numerical predictions of turbulent underexpanded sonic jets

using a pressure-based methodology,” Proc Instn Mech Engrs, Vol. 215, 2001, pp. 165–173.

[118] Page, G. J., “Delta user’s guide,” Loughborough University.

[119] Rhie, C. M. and Chow, W. L., “Numerical study of the turbulent flow past an airfoil with

trailing edge separation,” AIAA, Vol. 21, 1983, pp. 1525–1532.

[120] Patankar, S. V. and Spalding, D. B., “A calculation procedure for heat, mass and momen-

tum transfer in three-dimensional parabolic flows,” Int. J. Heat and Fluid Flow , Vol. 12,

1972, pp. 12–19.

[121] Leonard, B. P., “A stable and accurate convective modelling procedure based on quadratic

upstream interpolation,” Comput. Methods Appl. Mech. Eng., Vol. 19, 1979, pp. 59–98.

[122] Lien, F. S. and Leschziner, M. A., “Assessment of turbulent transport models including

non-linear RNG eddy-viscosity formulation and second-moment closure,” Computers and

Fluids, Vol. 23, 1994, pp. 983–1004.

[123] Kitoh, O., “Experimental study of turbulent swirling flow in a straight pipe,” Journal of

Fluid Mechanics, Vol. 225, 1991, pp. 445–479.

[124] Lumley, J. L., “Computational modeling of turbulent flows,” Advances in Appl. Mech,

Vol. 18, 1978, pp. 123–175.

283



Conclusions and Recommendations

[125] Graftieaux, L., Michard, M., and Grosjean, N., “Combining PIV, POD and vortex identifi-

cation algorithms for the study of unsteady turbulent swirling flows,” Meas. Sci. Technol.,

2001, pp. 1422–1429.

[126] Lu, X., Wang, S., Sung, H. G., Hsieh, S. Y., and Yang, V., “Large-eddy simulations

of turbulent swirling flows injected into a dump chamber,” Journal of Fluid Mechanics,

Vol. 527, 2005, pp. 171–195.

[127] Durbin, P. A. and Medic, G., Fluid dynamics with a computational perspective, Cambridge

University Press, 2007.

[128] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical recipies

in fortran, Cambridge University Press, 2nd ed., 1992.

[129] Martin, J. E. and Meiburg, E., “On the stability of the swirling jet shear layer,” Phys.

Fluids, Vol. 6, No. 424, 1994.

[130] Nallasamy, M., “Turbulence models and their applications to the prediction of internal

flows: a review,” Computers and Fluids, Vol. 15, No. 2, 1987, pp. 151–194.

[131] Chang, D. and Tavoularis, S., “Unsteady numerical simulations of turbulence and coherent

structures in axial flow near a narrow gap,” Transactions of the ASME , Vol. 127, 2005,

pp. 458–466.

[132] Bower, A. F., Applied mechanics of solids, CRC, 2009.

[133] Libby, P. A., Introduction to turbulence, Taylor & Francis, 1996.

[134] Robinson, M. D., “Xact user’s guide,” Tech. rep., Loughborough University Department of

Aeronautical and Automotive Engineering, 2008.

[135] Hunt, J., Wray, A., and Moin, P., “Eddies, stream, and convergence zones in turbulent

flows,” Center for Turbulence Research Report CTR-S88 , 1988, pp. 193–208.

284



Appendix A

Appropriate methods of presenting experimental and computational data in a concise and de-

scriptive manner are considered in the following sections:

A-1 Statistical Description of Turbulence

A fundamental property of each instantaneous variable of a turbulent flow, φ(~x, t), is that it

is a stochastic value. Several methods are used to characterise its nature based on single and

two-point statistics.

A-1.1 Single-Point Statistics

A-1.1.1 First and Second Moments

The mean, or expected value, of a finite N-point sample collected at discrete time instants, tk, is

defined as:

〈ui(~x)〉 =
1
N

N∑

k=1

ui(~x, tk) (A-1)

Reynolds stresses are the components of a symmetric second-order tensor defined as:

〈u′i(~x)u′j(~x)〉 =
1
N

N∑

k=1

u′i(~x, tk)u
′
j(~x, tk) (A-2)

where instantaneous velocity fluctuations are obtained via Reynolds decomposition:

u′i(~x, tk) = u(~x, tk)− 〈ui(~x)〉 (A-3)

Normal Reynolds-stresses, which are equal to the variance and nonnegative, are obtained by

setting i = j. Clearly, r.m.s velocities are simply the square root of the normal Reynolds-stresses,

i.e.
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〈u′i(~x)〉 =
√
〈u′i(~x)u′i(~x)〉 (A-4)

Reynolds shear-stresses are obtained when i 6= j. Turbulent kinetic energy is defined as half the

trace of the Reynolds-stress tensor [7], i.e.:

k(~x) =
1
2
〈u′i(~x)u′i(~x)〉 (A-5)

A-1.1.2 Probability Density Function

The probability density function (PDF) divides the range of a stochastic signal, φ(~x, t), into a

series of ‘bins’, a, and is defined as the probability that φ(~x, t) is greater than a lower limit, a1,

and less than an upper limit, a2. For the discrete data considered in this thesis, the PDF is

calculated from [133]:

P (a) = lim
(a2−a1)→0

1
(a2 − a1)

[
lim

N→∞
Na

N

]
(A-6)

where Na is the number of samples in bin a.

A-1.1.3 Fourier Analysis

A physical process can be described either in the time domain by specifying the value of some

quantity, h, as a function of time, e.g. h(t), or, alternatively, in the frequency domain by specify-

ing its amplitude, H, as a function of frequency, e.g. H(f), where −∞ < f <∞ for a continuous

function. Essentially, h(t) and H(f), which are both complex, are different representations of

the same function and the Fourier transform and its inverse are used to move back and forth

between them. As the data presented in this thesis is obtained from a finite sample set the

discrete Fourier transform (DFT) is appropriate and is defined as [128]:

Hn =
N−1∑

k=0

hke
−2πjkn/N n = 0, . . . , N − 1 (A-7)

and the inverse discrete Fourier transform (IDFT):

hk =
1
N

N−1∑

n=0

Hne
2πjkn/N n = 0, . . . , N − 1 (A-8)

All Fourier analysis presented in this thesis was performed using the fast Fourier transform (FFT)
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algorithm of Danielson and Lanczos [128] and a rectangular window to truncate the input signal

hk. It is often of interest to assess how much power is contained in a given frequency interval

between f and f + df . The result is referred to as the power spectral density or PSD. The PSD

can be obtained from the DFT of an N-point sample using the periodogram estimate [128] which

is defined at N/2 + 1 frequencies as:

P (f0) =
1
N2

|H0|2

P (fn) =
1
N2

[
|Hn|2 + |HN−n|2

]
n = 1, 2, . . . ,

(
N

2
− 1

)
(A-9)

P (fN/2) =
1
N2

∣∣HN/2

∣∣2

It should be noted that P (fn) does not equal its continuous counterpart P (f) but rather is

representative of a whole frequency band extending from halfway from the preceding discrete

frequency (P (fn−1)) to halfway to the next one (P (fn+1)). To correctly reflect this, each P (fk)

in Equation A-9 is divided by the width of the frequency band which is equal 1/(N∆t) giving

units of power per unit bandwidth.

A-1.2 Two-Point Statistics

Correlation is a measure which quantifies how a property in time and / or space varies in relation

to another point in time and / or space. The generalised cross-correlation function (CCF), which

is essentially a normalised covariance and denoted Rij , is defined by Hollis [72] as:

CCF = Rij(~x,~r, τ) =
〈u′i(~x, tk)u′j(~x+ ~r, tk + τ)〉

√〈u′i(~x, tk)2〉
√
〈u′j(~x+ ~r, tk)2〉

, −1 ≤ Rij(~x,~r, τ) ≤ 1 (A-10)

where ~r and τ are spatial and temporal separations respectively. The generalised CCF can be

considered in two simplified forms, namely: the spatial velocity correlation (SVC) and the auto-

correlation function (ACF). The SVC is obtained by computing the correlation between two

quantities separated in space but at the same instance in time (τ = 0):

SVC = Rij(~x,~r) =
〈u′i(~x, tk)u′j(~x+ ~r, tk)〉√〈u′i(~x, tk)2〉

√
〈u′j(~x+ ~r, tk)2〉

, −1 ≤ Rij(~x,~r) ≤ 1 (A-11)

Similarly, the ACF is obtained by computing the correlation between two quantities separated

in time but at the same spatial location (~r = 0):

ACF = Rij(~x, τ) =
〈u′i(~x, tk)u′j(~x, tk + τ)〉

√〈u′i(~x, tk)2〉
√
〈u′j(~x, tk)2〉

, −1 ≤ Rij(~x, τ) ≤ 1 (A-12)
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In addition to serving as an excellent analysis tool in their own right, correlation functions also

form the basis for the derivation of other important fluid dynamic measures. These include

integral length, kLij , and time, Tij , scales and are considered in the following subsections.

A-1.2.1 Integral Lengthscale

Integral lengthscales, kLij are the simplest measurable statistic containing information on the

spatial structure of a turbulent field and are obtained from the SVC (Equation A-11). Mathe-

matically, kLij is defined as:

kLij(~x,~r) =
∫ ∞

0
Rij(~x,~r)d~r (A-13)

In total, 27 integral lengthscales exist in 3D space. Longitudinal lengthscales are defined as the

integral of the SVC along a coordinate direction, k, parallel to that of the velocity component,

i.e i = j = k in Equation A-13, giving a total of 3 in 3D space. Lateral lengthscales are similarly

defined but now the integral is calculated along a coordinate direction normal to that of the

velocity component, i.e. i = j 6= k in Equation A-13, and 2 lateral lengthscales exist for each

velocity component in 3D space.

For isotropic turbulence the SVC is symmetric about its origin for a particular velocity com-

ponent and coordinate direction. For the high-Reynolds number flows considered in this thesis,

a combination of highly anisotropic inhomogeneous turbulence and the presence of solid bound-

aries, such as the confining walls of the swirl duct, often result in a SVC that is asymmetric about

its origin (Figure A-1(a)). Although it could be argued that in such circumstances two different

lengthscales should be quoted; the ‘upstream’ (negative part of the ∆x axis) and ‘downstream’

(positive part of the ∆x axis), it must be borne in mind that Equation A-13 refers to a lengthscale

characteristic of an eddy centred at a particular point. The approached used in this thesis is to

average the upstream and downstream parts of the integral of the SVC, i.e.

kLij =
wup

kLij,up + wdown
kLij,down

wup + wdown
(A-14)

where w refers to a weighting coefficient characteristic of the averaging and the subscripts up and

down refer to the upstream and downstream parts of the integral of the SVC respectively. From

the definition given in Equation A-13, kLij is obtained by integrating the SVC from its origin

to an infinite displacement. In practice it not possible to integrate to an infinite displacement

and instead integration is performed from the origin of the SVC to the point at which it first
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crosses the displacement axis. This point is referred to as the first zero crossing (FZC) and is

actually a very close approximation to the true definition for most practical flows with relatively

localised turbulence [72]. Practical difficulties arise when the SVC is curtailed either artificially

or naturally and the FZC is not reached (Figure A-1(b)). In the vicinity of a solid boundary

either the upstream or downstream side of the SVC is naturally curtailed. To minimise the

effects of sub-grid filtering described in Section 2.3.4 the PIV technique requires very small FoVs

as detailed in Tables 2.5 and 2.7 and as a result an artificial curtailment of the SVC is inevitable.

In order to account for both natural and artificial curtailment of the SVC, Hollis [72] found

that an exponential function of the form Rij = e−x gave a simple but reliable estimate of the

missing integral contribution. To assess the amount of real data available from the SVC [72] also

developed a confidence weighting of the following form:

C =





0, Rcurtailed > 0.9

1.125− 1.25Rcurtailed, 0.1 ≤ Rcurtailed ≥ 0.9

1, Rcurtailed < 0.1

(A-15)

If the function is curtailed at anything greater than 0.9 no confidence can be attributed to the

integral for that part of the axis as it relies too heavily on the estimated curve. If the function is

curtailed at less than 0.1, entire confidence can be placed on the integral, because the estimated

portion is so small. Between the two values, a linear relationship between confidence and the

curtailed value exists. The actual lengthscale is then calculated via a confidence weighting and

Equation A-14 becomes:

kLij =
Cup

kLij,up + Cdown
kLij,down

Cup + Cdown
(A-16)

Robinson [134] has shown the confidence weighting approach to give a consistent lengthscale

distribution close to data boundaries whilst not affecting the calculation away from boundaries.

A-1.2.2 Integral Timescale

The integral timescale is obtained via direct integration of the ACF (Equation A-12) and is given

as:

Tij(~x, τ) =
∫ ∞

0
Rij(~x, τ)dτ (A-17)

In a similar way to the integral lengthscale; as it is not possible to integrate to an infinite

temporal separation in practice the upper limit in Equation A-17 is replaced with the FZC. The
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only integral timescales considered in practice are when i = j giving a total of 3 in 3D space.

Unlike the SVC, the ACF is an even function Rij(~x, ~τ) = Rij(~x,−~τ) and no weighting, such as

that defined in Equation A-14, is required.

A-2 Coherent Structure Detection and Analysis

Although a vortex may elude a precise definition; Kline and Robertson [60] have stated that:

‘A vortex exists when instantaneous streamlines mapped onto a plane normal to the core exhibit

a roughly circular or spiral pattern, when viewed in a reference frame moving with the centre

of the vortex core’. This provides a valuable means of identifying and characterising coherent

structures, however it constitute a subjective approach which, as noted by Pope [7], can lead to

controversy over their nature and significance. It is therefore essential that this is combined with

qualitative measures and eduction techniques which are the subject of the following subsections.

A-2.1 Vorticity Based Methods

Vorticity, ~ω(~x, t), is defined as the curl of velocity [7]:

~ω(~x, t) = ∇× ~u(~x, t) (A-18)

and equals twice the rate of rotation of the fluid at (~x, t). In this thesis the components of ~ω are

calculated in a Cartesian (PIV) and polar-cylindrical (CFD) co-ordinate basis. In a Cartesian

co-ordinate basis ~ω has the components:

~ω =
[
∂uz

∂y
− ∂uy

∂z

]
îx +

[
∂ux

∂z
− ∂uz

∂z

]
îy +

[
∂uy

∂x
− ∂ux

∂y

]
îz (A-19)

and in a polar-cylindrical one:

~ω =
[
∂uθ

∂r
− 1
r

∂ur

∂θ
+
uθ

r

]
îx +

[
1
r

∂ux

∂θ
− ∂uθ

∂x

]
îr +

[
∂ur

∂x
− ∂ux

∂r

]
îθ (A-20)

Identification of vorticies in a velocity field, along with the calculation of vortex statistics (size,

strength, etc.) is normally accomplished by identifying isolated regions of significant vorticity.

However, vorticity not only identifies vortex cores but also any shearing motion present in the flow

and can be very noisy. As an alternative, the Q-criterion of Hunt et al. [135] defines vortices in

incompressible flow as regions in which vorticity magnitude prevails over strain-rate magnitude:

Q =
1
2

(
||ω||2 − ||S||2

)
> 0 (A-21)
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where ||ω|| =
√
tr (ωωT) and ||S|| =

√
tr (SST). In this thesis Sij and Ωij are only calculated

in a polar-cylindrical co-ordinate basis and have following components:

Sij =




∂ux
∂x

1
2

[
∂ux
∂r + ∂ur

∂x

]
1
2

[
1
r

∂ux
∂θ + ∂uθ

∂x

]

1
2

[
∂ur
∂x + ∂ux

∂r

]
∂ur
∂r

1
2

[
1
r

∂ur
∂θ + ∂uθ

∂r − uθ
r

]

1
2

[
∂uθ
∂x + 1

r
∂ux
∂θ

]
1
2

[
∂uθ
∂r + 1

r
∂ur
∂θ − uθ

r

]
1
r

∂uθ
∂θ + ur

r


 (A-22)

Ωij =




0 1
2

[
∂ux
∂r − ∂ur

∂x

]
1
2

[
1
r

∂ux
∂θ − ∂uθ

∂x

]

1
2

[
∂ur
∂x − ∂ux

∂r

]
0 1

2

[
1
r

∂ur
∂θ − ∂uθ

∂r − uθ
r

]

1
2

[
∂uθ
∂x − 1

r
∂ux
∂θ

]
1
2

[
∂uθ
∂r − 1

r
∂ur
∂θ + uθ

r

]
0


 (A-23)

A-2.2 Rotational Averaging

Rotational averaging is a form of conditional averaging whereby a local coordinate system (x′−y′)
is defined that rotates with a particular flow feature such as the reference vortex shown in Figure

A-2. Such an averaging procedure eliminates incoherent turbulence and provides a time-averaged

statistical representation of the coherent motions. As flows studied in this thesis are only quasi-

periodic it is necessary to determine the location of the reference vortex at each time-instant.

The method adopted here is based on that described by Grosjean et al. [36] which maximises the

normalised angular momentum according to the following expression and with respect to point

P (Figure A-2):

f(P ) =
1

(2N + 1)2
∑

i

~ri × ~u(Mi)
|~ri| |~u(Mi)| (A-24)

whereby P is the proposed vortex centre, ~u is the measured velocity vector at the point Mi and

(2N +1)2 is the number of points in the considered area around P and N is the number of layers

used. The algebraic value of the function f(P ) varies between -1 and 1 for a 2D flowfield. The

position P is chosen on the measurement grid until an extremum f(P ) is found.

A-2.3 Conditional Averaging

Conditional averaging is used to calculate the ensemble average of a fluctuating turbulent quantity

across an area or volume of interest subject to the constraint that the instantaneous fluctuation,

φ′(~x, t), at a fixed point is a factor, k, times greater than the r.m.s value, 〈φ′(~x)〉, at that

point. This highlights the fluctuations that lie in the ‘tails’ of the PDF as shown in Figure A-4.

Mathematically, the conditionally averaged fluctuations from the positive and negative regions

of the PDF, 〈φ′ca+(~x, t)〉 and 〈φ′ca−(~x, t)〉, may be described as:
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〈φ′ca+(~x)〉 =
1

Nca+

N∑

k=1

aj+(t+ k)φ′(~x, tk) aj+ Nca+ =
N∑

k=1

aj+ (A-25)

〈φ′ca−(~x)〉 =
1

Nca−

N∑

k=1

aj−(t+ k)φ′(~x, tk) aj− Nca− =
N∑

k=1

aj− (A-26)

Conditional averaging essentially phase-locks the flowfield to a high energy containing turbulent

event passing a fixed point. When combined with the SVC performed at the same point and

based on the same fluctuating quantity it provides a powerful means of identifying the large-scale

structures contributing to the correlation. It has been found that a value of k = 1.5 [72, 13, 86] is

sufficient for this purpose and corresponds to the most extreme ±10% values of the time history

[13].
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(a) Asymmetric SVC upstream of a step

(b) Artificial curtailment of SVC at domain boundary and exponential model (Rij = e−x) approximation

Figure A-1: Examples of difficulties encountered in integral lengthscale calculation in engineering
flows [72]
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(a) t = t0 (b) t = t0 + tk

(c) t = t0 + 2tk (d) t = t0 + 3tk

Figure A-2: Illustration of rotational-averaging procedure.
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Figure A-3: Method for swirl centre location using normalised angular momentum [36]
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Figure A-4: Conditional averaging of a PDF distribution [72]
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