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Abstract

Key words: compound channel flow, floodplain vegetation, one line vegetation, bluff

body drag, surface-piercing cylinder, surface mounted cylinder

This thesis examines the flow around bluff bodies placed at the floodplain edge

in a compound, open channel. The floodplain edge location is associated with a

strong shear layer between lower velocity floodplain flow and high velocity flow in

the main channel. The drag force exerted by a bluff body is dependant on the way

in which the flow separates around the body and subsequently recovers but the

drag coefficients typically used to represent the effects of bluff bodies are based on

experiments on bodies in geometrically simple channels. The differences induced

in the wake structures and therefore in the drag coefficients of bluff bodies when

they are placed in the shear layer at the floodplain edge are little understood.

In this study, experimental data is gathered that allows direct comparison of the

wakes of identical bluff bodies, both emergent (surface-piercing) and submerged,

in simple and compound open channels. For the compound channel scenarios,

for both single and multiple block arrangements, turbulence data is also reported.

These results are augmented using a computational model based on the solution of

the 3D Reynolds Averaged Navier Stokes equations, using a non-linear turbulence

model.

The results show that the changes induced in the wake structures due to their

location at the floodplain edge of the compound channel can have a significant

effect on the drag coefficient. For the emergent bodies, the proximity of the deep

main channel flow is shown to impact in a complex manner upon the processes of

reattachment and re-separation, changing the formation of vorticity in the wake.

For the submerged bodies, this is complicated by asymmetry in the same processes

on the block top. For both body types, separation on the main channel side results

in the creation of a strong axial circulation at the floodplain edge and the decay

of the wake is asymmetrically affected by the differing behaviour of the turbulence

on the two sides.
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CHAPTER 1

Introduction

The attractions of river floodplains for human colonisation cannot be disputed but

our encroachment onto them has left our lives and property vulnerable to the risk

of flooding. In order to mitigate this risk, it is essential that a sufficient under-

standing of the characteristics of river flow be achieved. A river, however, cannot

be considered in isolation from its wider environment so that the modern man-

agement of rivers and their floodplains is necessarily directly concerned with the

role of vegetation. Sub-dividing this taxon by size into small, flexible vegetation

and large, rigid vegetation and concerning ourselves solely with the latter, we can

identify a phenomenon within the UK river environment that is worthy of further

attention.

Figure 1.1 shows various examples of the pattern in question, namely that trees

can be commonly found growing at the edge of UK rivers in relatively straight

lines and often with the remainder of the floodplain area bereft of other such large

obstacles. In rural areas, we may speculate that this pattern is the result of common

agricultural practice, where the riverbank marks the field boundary and the trees

form part of the hedgerow system that characterises the British countryside, whilst

also offering the channel sides some degree of protection from erosion. Whatever

the genesis of this pattern however, the thrust of current environmental policy in

Europe, as embodied by the Water Framework Directive, is to restore or enhance
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1.1 Aims and Objectives

the aquatic environment wherever possible. As such, the wholesale removal of

riparian trees is unlikely and their effects must be understood.

Despite their obvious ecological functions, riparian trees and other vegetation

have a large impact on flood hydraulics. The presence of vegetation tends to re-

duce the conveyance capacity of a river and its floodplain, raising local flood lev-

els. Although some would advocate the use of vegetated areas of floodplain on a

catchment scale to attenuate flood flow peaks, in areas where lower flood levels

are desirable, effective management of the vegetation, informed by science, is a

necessity.

In order to improve guidance on the establishment or removal of riparian veg-

etation, it is necessary to understand how the presence of vegetation provides re-

sistance to the flow. In fact, this process is twofold; the vegetation provides direct

resistance to the passage of the water and also tends to affect the sedimentation

processes in such a way as to reduce the cross sectional area of the channel. How-

ever, this programme of research will concentrate on the former of these compo-

nents.

1.1 Aims and Objectives

The overarching aim of this programme of research is to better understand the

characteristics of compound open channel flow in which rigid vegetation is situated

at the floodplain edge of a compound channel. Under the umbrella of this general

aim, four specific objectives were identified and are summarised below.

• To identify the bulk changes in the wake structure around an identical obsta-

cle when moved from the centre of a symmetrical, open channel of simple

cross-section to the floodplain edge of a compound, open channel, for both

submerged and emergent (surface piercing) obstacles, and the resultant ef-

fects on the drag coefficient.
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1.1 Aims and Objectives

Figure 1.1: Clockwise from top left: River Derwent at Eaton Bank, River Churnet at

Westwood, River Hamps at Onecote, River Lune at Borrow Beck Confluence, River Dove at

Milldale, River Petteril at M6 bridge, River Severn at Ironbridge, Field Drain nr. Peterborough
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1.2 Contribution to Knowledge

• To reveal the detailed structure of the mean and turbulent fields around sub-

merged and surface piercing obstacles at the floodplain edge of a compound,

open channel. Specifically, by what processes the changes identified in the

bulk flow characteristics and the drag coefficient come about.

• To examine how the structures and processes identified in the previous step

affect the flow patterns in the wider channel and how these are linked to the

secondary circulation patterns observed by other researchers.

• To investigate how the trends identified change with the changing geometry

of the obstacle and how they are affected by the arrangement of multiple

obstacles in a single line at the floodplain edge.

1.2 Contribution to Knowledge

The contribution to knowledge from this project can be summarised as the follow-

ing:

• The current approaches to the analysis of compound, open channel flow with

vegetation at the floodplain edge have been shown to be limited by the lack

of consideration of the effects of the strong shear layer that exists in this

location between the main channel and the floodplain. This highly three-

dimensional flow environment has been shown to significantly affect the for-

mation of the wake structures around blocks representing vegetation in this

position and therefore to affect the drag force exerted on the flow by the

presence of the vegetation.

• For both emergent and submerged block cases, it has been demonstrated

that the floodplain edge location causes complex deformations and asymme-

tries in the processes of separation, reattachment, re-separation and recovery

around the blocks, leading to significant alterations in their drag coefficients

from the equivalent blocks in simple open channel flows.
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1.3 Structure of Thesis

• In testing a numerical model against the experimental results collected as

part of this project, it has been demonstrated that solution of the 3D RANS

equations, using a non-linear k−ε turbulence closure is of some use in inter-

rogating this flow type and can reproduce some of the key features associated

with the complications of the wake structure due to the floodplain edge lo-

cation.

• It has been shown that the impact on the wake structures of cylindrical ob-

stacles placed at the floodplain edge persists for a range of block geometries

and distributions, although the precise changes induced in the wakes and the

resultant changes in the drag coefficient vary strongly with the block aspect

ratio and relative depth of the floodplain flow. The arrangement of multiple

blocks along the floodplain edge also revealed how the vorticity created in

the separation zones around each block is reinforced in the multiple block

arrangement, gradually causing significant alteration to the structure of the

flow in the wider channel.

1.3 Structure of Thesis

This thesis has a total of six chapters, the contents of which can be summarised as

follows:

• Chapter 1 describes the motivation behind the research and presents its struc-

ture.

• Chapter 2 describes the review of literature and sets out the specific points of

interest of the research in relation to this body of work.

• Chapter 3 describes the methods by which data was collected and created,

specifically the details of the physical experiments and the basis of the nu-

merical model.
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1.3 Structure of Thesis

• Chapter 4 presents the results from the two series of experiments carried out

at Loughborough and Kansai universities respectively.

• Chapter 5 compares and contrasts the experimental results with those from

the numerical simulations and presents further computational results encom-

passing variations of block geometry.

• Chapter 6 summarises and discusses the conclusions of the programme of

research and gives suggestions for future work.
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CHAPTER 2

Literature Review

2.1 Introduction

This section will describe the knowledge base from which this project will draw,

including current understanding of the turbulent structure of flow in simple and

compound open channels, the history of the analysis of the effects of vegetation

in open channel flow, work done on the flow around single and tandem pairs of

bluff bodies and the numerical methods that have been developed to analyse these

flows.

The following axes convention will be adhered to in all subsequent equations

and figures, unless otherwise indicated; X represents the streamwise direction, Y ,

the spanwise direction and Z , the vertical.

2.2 Turbulence in open channel flow

It is now well recognised that the structure of flow in open channels is inherently

three-dimensional in nature and that without an understanding of the turbulence

field a full description of the flow cannot be achieved.

The advent of hot wire anemometer technology in the 1950′s allowed researchers

to directly measure the internal structure of flows in detail for the first time. The

7



2.2 Turbulence in open channel flow

anemometer and its successors have since been used extensively in ducts and open

channels to understand how turbulence acts to retard the flow in the streamwise

direction.

2.2.1 Flow in non-circular ducts

It had been observed in the former half of the last century that the nature of flow

in circular and non-circular pipes was fundamentally different. Prandtl (1927)

predicted that the deformations observed in the streamwise velocity profiles in

non-circular pipes were due to the presence of circulations in the transverse plane.

He differentiated between this type of circulation, which he attributed to the action

of turbulence, and the circulations seen in curved pipes and channels, which are

due to the centrifugal force on the fluid body.

One experimental study on the flow in non-circular ducts using hot wire tech-

nology was completed by Brundrett and Baines (1964), the results of which seemed

to confirm Prandtl’s theory. Mathematical analysis of the flow was also performed

using the streamwise vorticity equation, through which the authors sought to iden-

tify the processes by which streamwise vorticity (Ωx) is created, convected and

diffused.

The experimental measurements for fully developed square duct flow showed

the presence of secondary circulation cells in the transverse plain, which act to

significantly distort the isovels of mean streamwise velocity (U). The turbulence

measurements agreed with the proposal that these secondary circulation cells are

created and controlled by the anisotropy of the normal turbulent stresses (v′2−w′2)

and, to a lesser degree, by the magnitude of the turbulent shear stress(v′w′).

The presence of a solid surface will act to limit the length scale of the turbu-

lent fluctuations of velocity that are perpendicular to it. The parallel component

will not be similarly damped by this process so that the lateral v′2 and vertical

w′2 normal turbulent stresses will not act to balance out one another. The resul-

tant deformation of the flow under this stress is the main source of the angular

8



2.2 Turbulence in open channel flow

momentum that constitutes the secondary circulations.

The streamwise vorticity equation is a useful tool in analysing the source of

axial angular momentum in a flow and indeed, its analogous equations in the

spanwise and vertical directions can be put to a similar purpose. The laminar

equation (Equation 2.1) is constructed as follows; terms on the left hand side

represent the convection of vorticity by the mean flow, whilst the fourth term on

the right hand side is the diffusion of vorticity. The first three terms on the right

hand side represent the interaction of the vorticity in all three Cartesian directions

with the rate of strain. The first of these is the action of vortex stretching, whilst

the remaining two are tilting contributions (Libby, 1996).

ρU
∂Ωx

∂ x
+ρV

∂Ωx

∂ y
+ρW

∂Ωx

∂ z
= ρΩx

∂ U

∂ x
+ρΩy

∂ U

∂ y
+ρΩz

∂ U

∂ z
+µ(

∂ 2Ωx

∂ x2 +
∂ 2Ωx

∂ y2 +
∂ 2Ωx

∂ z2 )

(2.1)

For the fully developed turbulent uniform flow case, where the derivatives in X

are zero and the tilting contributions balance one another out, the equation can be

simplified to the form shown in equation 2.2. From this equation, we can see that

the forces driving the streamwise vorticity are the difference in the spanwise and

vertical normal Reynolds stresses and the Reynolds shear stress.

ρV
∂Ωx

∂ y
+ρW

∂Ωx

∂ z
=

∂ 2

∂ z∂ y
(ρw′2−ρv′2)+(

∂ 2

∂ y2−
∂ 2

∂ z2 )(ρv′w′)+µ(
∂ 2Ωx

∂ y2 +
∂ 2Ωx

∂ z2 )

(2.2)

Brundrett and Baines (1964)’s experiments showed that the imbalance in the

normal stresses, or the turbulent anisotropy, is greatest away from any axis of sym-

metry or solid boundary. The diffusion of vorticity, being associated with viscous

stresses, was shown to be greatest in the duct corners so that the secondary circula-

tions act to convect vorticity from regions of production to regions of diffusion. The

action of the secondary currents to transport low momentum fluid away from the

wall regions and high momentum fluid away from the channel centre causes the
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2.2 Turbulence in open channel flow

isovels of mean streamwise velocity to bulge towards the duct corners. This phe-

nomenon is shown in Figure 2.1. The flow structure highlighted by these studies

has since been repeatedly observed by a number of other researchers, e.g. Melling

and Whitelaw (1976), where the relative strength of these circulations has been

found to be 1− 4% of the bulk mean velocity (Um).

Boundary shear stress (τb) is an important flow parameter since its magnitude

and distribution dominates the geomorphological processes that affect rivers. An

average value of boundary shear force can be used to calculate the flow resistance

of different surface roughnesses. Profiles of boundary shear stress and information

about its maximum value can be used in sediment transport work. Knight et al.

(1984) measured profiles of boundary shear stress in closed channels of varying

aspect ratios. Their work shows that the boundary shear stress is always at a

minimum in the corner and increases towards the channel centreline. For a channel

aspect ratio of Wch/Hch > 5, the maximum is at the channel centreline, whilst for

1 <Wch/Hch < 5, the maximum value is shifted a little further towards the corner

and the centreline value is slightly lessened.

By integrating the streamwise momentum equation for uniform flow (i.e. ∂

∂ x
=

0) and applying the appropriate boundary conditions, Nezu and Nakagawa (1993)

derive equations 2.3 and 2.4 to describe the bed shear stress (τbed) and wall shear

stress (τwall) respectively. These derivations illustrate that the magnitude of the

boundary shear stress at any point is a function of the energy slope, the secondary

currents and the Reynolds stresses. As such, the differences in the boundary shear

stress profiles observed by Knight et al. (1984) for the range of channel aspect

ratios can be attributed to the changing patterns of the secondary currents.

τbed

ρ
= g IeHch−

∂

∂ y

∫ Hch

0

�

UV +
τuv

ρ

�

dz (2.3)

τwall

ρ
= g Ie

Wch

2
−
∂

∂ z

∫

Wch
2

0

�

UW −
τuw

ρ

�

d y (2.4)
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2.2 Turbulence in open channel flow

2.2.2 Flow in simple, open channels

For the study of flow in rivers, the most natural extension of this field of research

was to study the influence of the free surface for similar phenomena in open chan-

nels. Tominaga et al. (1989) used a hot film anemometer to extend the experimen-

tal measurement of the effects of turbulence in creating secondary circulations to

flows in straight, open channels with aspect ratios in the range of 2 to 7, showing

that the free surface acts to distort the relative sizes and positions of the vortices

in comparison to the duct flow case.

From the results of their experiments in a half-channel, they detected the ex-

istence of two vortices, flowing towards the side wall, separated at approximately

60% of the total flow depth. The authors named the upper vortex the ’free surface

vortex’ and the lower vortex the ’bottom vortex’. This regime is shown in Figure

2.2.

Where there is a free surface, the vertical velocity component (w) should be

zero in its vicinity. This condition on the vertical turbulent component (w′) has the

consequence that it is damped throughout the entire domain but also alters the dis-

tribution of turbulent length scale (l). The result of these changes is that turbulent

anisotropy and therefore, streamwise vorticity production is strongly positive near

the free surface and near the bed, while the region of zero production is shifted

towards the channel side wall. Next to the sidewall itself, lies a region where v′2 is

greater than w′2 and the sign of the anisotropy is reversed.

The effect of these changes is to alter the distribution of streamwise velocity as

shown in Figure 2.2. The free surface vortex transports high momentum fluid away

from the free surface and brings in low momentum fluid from the channel edges,

acting to depress the region of maximum streamwise velocity. This phenomenon

is often called the ’velocity dip effect’ (Nezu and Nakagawa, 1993). As opposed to

closed duct flow, the isovels tend to bulge towards the side wall.

In fact, this phenomenon had already been studied via numerical modelling

(Naot and Rodi, 1982) so that the experimental results published in the late ’80’s
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2.2 Turbulence in open channel flow

and early ’90’s (Nezu and Rodi, 1993; Tominaga et al., 1989) served to confirm

what had previously been demonstrated.

The model results also showed two counter-rotating vortices in the cross-sectional

plane, with the relative strength of these being dependent on the channel aspect

ratio, as defined by the ratio of channel width to depth (Wch/Hch). At Wch/Hch = 2,

the free surface vortex dominated the channel, growing in size with the aspect ra-

tio to occupy a space equivalent to twice the depth. The bottom vortex however

was limited to the corner of the channel. The experimental results of Tominaga

et al. (1989) confirmed these trends.

More recent modelling studies (Kang and Choi, 2006) have also identified a

small vortex in the corner of the rectangular channel, at the point where the wall

and free surface meet. Rotating in the same manner as the bottom vortex with a

strength of approximately 1% of the mean streamwise velocity, this structure has

a recognisable impact on the isovel pattern in this corner. However, because of its

size, it has seldom been recognised in experimental work.

The strength of the larger vortex structures was measured by Tominaga et al.

(1989) to be approximately 1.5% of the mean streamwise velocity. Beyond the

edges of this pair of vortices in the central channel region, much weaker circu-

lations are present but not deemed to be of significance to the alteration of the

streamwise velocity profile.

The experimental and numerical results obtained by the above researchers

served to demonstrate that the channel geometry has a strong influence on the

turbulent intensity field. In particular, the changing relationship between the span-

wise and vertical turbulent intensities was seen to strongly influence the stream-

wise vorticity and therefore the cross-sectional profile of mean streamwise velocity.

With reference to Equations 2.3 and 2.4, it is also to be expected that the pro-

files of boundary shear stress will differ between a closed channel and open channel

set-up. The evidence of Knight et al. (1984) suggests that the differences between

the two distributions are quite small for aspect ratios of less than approximately

5. However above this value, a distinct bump can be seen in the bed shear stress
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2.2 Turbulence in open channel flow

profile for the open channel close to the sidewall. The data of Tominaga et al.

(1989) also includes a plot of bed shear stress for an open channel flow of aspect

ratio Wch/Hch = 3.94, which although slightly lower than Knight et al. (1984)’s

threshold, clearly shows the secondary peak in question. This pattern is attributed

to the action of the bottom vortex.

2.2.3 Flow in compound, open channels

In order to study the structure of flow in a flooding river, it is necessary to consider

the case of a compound channel, i.e. a combination of a deep main channel and

a shallower floodplain. Although a gross simplification of the naturally occurring

geometry of river beds and floodplains, the combination of a straight main channel

and floodplain is an essential building block in our understanding of more complex

flows.

As such, Tominaga and Nezu (1991) used a Laser Doppler Anemometer (LDA)

to investigate the internal structure of fully developed flow in a straight, compound

open channel. The authors concentrated on investigating the structure for rectan-

gular main channels. Other researchers have also investigated this phenomenon,

such as Shiono and Knight (1989), who took similar measurements for trapezoidal

main channel profiles as part of an extensive programme of testing at the UK’s

Science and Engineering Research Council Flood Channel Facility (SERC - FCF).

The geometry of a compound channel is such that the mean streamwise velocity

of the floodplain flow, affected as it is by the retarding bed shear force of the

floodplain bed, must be less than the mean streamwise velocity of the main channel

flow at the same depth. Thus, straight, compound channel flow is distinguished by

a large difference in streamwise velocity between the main channel and floodplain.

This large lateral velocity gradient is, in effect, a strong shear layer where large

values of the (u′v′) Reynolds stress component are to be expected.

This shear force should produce angular momentum about the vertical axis,

(Ωz) and indeed, large vortices with vertical axes have been observed by a number
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2.2 Turbulence in open channel flow

of researchers (Fukuoka and Fujita, 1989; Sellin, 1964; Tamai et al., 1986), acting

to transfer momentum between the main channel and the floodplain. The strength

of these vortices becomes weaker as the overall water depth increases and the

difference between the mean velocity at equivalent depths in the floodplain and

main channel diminishes. Fukuoka and Fujita (1989)’s schematic representation

of these vortices, seen as a plan view on the water surface is presented in Figure

2.3.

From equation 2.1, it can be seen that the contributions of the large value of
∂ U
∂ y

and the vertical vorticity Ωz described above will result in the production of

streamwise vorticity Ωx at the floodplain edge. Using a cross-sectional geometry

argument, one can also deduce the origins of the streamwise vorticity patterns from

the turbulent stresses. The lateral normal Reynolds stress v′2 has its cross-sectional

maximum on the floodplain bed, whilst the vertical normal Reynolds stress w′2 has

its maximum on the floodplain wall. Either side of the diagonal that bisects the

corner therefore, are two large peaks in turbulent anisotropy, which drive the flow

upwards and outwards.

The results of the experiments of Tominaga and Nezu (1991) show that the

transition from a simple rectangular channel to a compound channel results in the

creation of two additional streamwise vortices. The authors name these the ’main

channel vortex’ and the ’floodplain vortex’, describing their respective zones of in-

fluence. A schematic of the positions of these vortices is shown in Figure 2.4, where

the experiments were conducted in a half-channel. The action of these streamwise

vortices is to transport low momentum fluid from the floodplain bed and main

channel sidewall into the body of the main channel, creating a characteristic bump

in the contour plot of streamwise velocity.

The maximum strength of these vortices in the experiments of Tominaga and

Nezu (1991) was approximately 4% of the maximum streamwise velocity. How-

ever, the relative strength and size of these vortices was shown to depend on the

relative depth of flow on the floodplain (D f l) to flow in the main channel (Dch),

a variable commonly symbolised by Dr . For low values of Dr , the main channel
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2.2 Turbulence in open channel flow

vortex extends in the spanwise direction and becomes flatter. For high values of

Dr , the main channel vortex shrinks in size and the floodplain vortex becomes

dominant.

Shiono and Knight (1991) proposed a schematic of the flow structure of straight,

compound channel flow, which is shown in Figure 2.5. The interaction of the

streamwise and vertically orientated vortices and the relative influence of the com-

ponent parts of this flow structure under different flow and geometry conditions is

still a contentious matter but it is sufficient to say that the distribution of velocities

and forces in a compound channel are significantly more complex than those in a

simple open channel. One may therefore hypothesise that the wake formed behind

large, rigid vegetation at the floodplain edge may differ in size and form from that

behind such obstacles in a simple flow and it is this idea that will be examined in

more detail in subsequent sections.

Their influence on the distribution of boundary shear stress has been examined

by Tominaga and Nezu (1991), whose measurements are shown in Figure 2.6.

On the main channel bed, the profile is similar to that of an open channel, with

the secondary peak associated with the bottom vortex being observed. On the

floodplain bed, the most pertinent feature of the profile is an increase towards

the floodplain edge. With reference to equation 2.3, this increase in bed shear

stress can be attributed to the large spanwise gradient in u′v′ and the action of the

secondary current W .

2.2.4 Summary

Through all of this experimental and numerical work, it has been clearly demon-

strated that the structure of flow in square and rectangular ducts and channels

is inherently 3D in nature. The relative influences of the solid boundaries and

free surface, where it exists, act to change the relationship between the normal

Reynolds stresses and it is primarily through this mechanism that axial vorticity is

created. For the special case of the compound channel, the strong shear layer at the
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2.3 Vegetation in open channel flow

floodplain edge creates both axial and vertically orientated vorticity, such that the

streamwise velocity profile and boundary shear stress distributions are significantly

affected.

2.3 Vegetation in open channel flow

All of the research effort mentioned above and subsequent studies into the struc-

ture of flow in asymmetric and meandering compound channels has been of great

interest to river engineers and has prompted the creation of improved modelling

systems with which the commercial engineer can analyse the real environment.

However, more recently interest has turned to attempts to include more complex

elements of the real river system, including vegetation. The following sections will

describe the approaches commonly taken to examine the influence of vegetation on

flooding river systems. These briefly comprise the following; vegetation as surface

roughness, 2D wake analysis and 3D consideration of bulk matrices of vegetation.

2.3.1 Vegetation as surface roughness

Section 2.2 describes the progress that has been made in understanding the impor-

tant phenomena at work in open channel flows and although the description of the

research above has not explicitly included it, in fact, many of the studies extend

their analyses to the examination of the effect of varying boundary roughness on

the flow structures. This constitutes one method for modelling the effects of vege-

tation in the river corridor and is, by virtue of its simplicity, the method by which

vegetation is commonly accounted for by today’s practising engineer.

One thread of the research effort for improving flow modelling therefore con-

centrates on attempts to estimate the contribution of vegetation to an increase in

flow resistance in terms of standard flow resistance formulae, e.g. the increase in

Manning’s coefficient (n).
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Studies of this type (Jordanova et al., 2006; Petryk and Bosmajian, 1975; Sellin

and Beeston, 2002) can provide useful information about seasonal and species-

related changes in overall flow resistance but any attempt to account for the effects

of floodplain vegetation by varying the Manning’s ’n’ value alone is extremely lim-

ited, particularly since Manning’s roughness parameter is formulated only to make

allowance for surface roughness.

Despite their simplicity, the experiments of Petryk and Bosmajian (1975) high-

lighted the dominant features of the vegetation structure that affect the bulk prop-

erties of the flow, namely:

• Density, specifically the ratio of projected area of vegetation to total flow

area,

• Flexibility, in that the bending of vegetation acts to reduce its projected area,

• Depth of inundation, since completely submerged vegetation affects flow in a

different way to emergent vegetation and

• Distribution, which is especially influential in compound channels

Of these parameters, this study will only consider three, since the flexibility

of vegetation adds a considerable layer of complexity. For sufficiently large and

rigid vegetation such as mature trees, this factor may justifiably be neglected as a

first step. However, the three D’s - density, depth of inundation and distribution -

are easier to manipulate and have been the subject of a number of investigations.

By eliminating the flexibility of vegetation, we can reduce the plant stems and

trunks to rigid, bluff bodies in the flow. On this basis, much work has been done

using a variety of approaches to measure and model the effects of bulk matrices of

vegetation on open channel flow.
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2.3.2 Wake Theory & Two-Dimensional Analyses

As computing resources become more efficient, two dimensional analyses are be-

coming more commonplace in the world of commercial modelling. Although the

effects of vegetation are still commonly accounted for by changes in roughness

parameters within these models, the additional dimension provides the opportu-

nity of using more sophisticated approaches. The development of an accurate

two-dimensional model of vegetated channel flow would be of considerable and

immediate benefit.

In one of the earliest attempts to analyse vegetated channel flow in this way,

Petryk (1969) investigated the range of drag forces ( fd) on individual emergent

circular cylinders in different multi-cylinder arrangements under a variety of open-

channel flow conditions in rectangular channels. Measuring wake decay and spread

rates behind the cylinders, Petryk (1969) used 2D idealised wake theory as a basis

to analyse his experimental data and to develop and validate an analytical model

for the prediction of depth-averaged velocity in such a flow. The rates of wake

spread and decay that he observed were considerably higher than those predicted

by the theory but he derived Equation 2.5 empirically for open channel flow to

calculate the maximum depth averaged velocity deficit decay rate, where the ve-

locity deficit is defined as the difference between the local velocity and a reference

free stream velocity Uo. To enable the analysis of flows containing multi-cylinder

arrangements, the principle of linear superposition of wakes was used to extend

this formula.
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(2.5)

To solve this Equation 2.5, Petryk (1969) assumed that where no aeration oc-

curred behind the cylinder, the 2D idealised drag co-efficient (CD) of 1.2 (Schlicht-
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ing, 1968) was still valid. However, he acknowledged that his experimental set-up

differed from the 2D theory by being influenced by:

• open channel turbulence,

• a non-uniform streamwise velocity profile,

• the free surface and

• blockage caused by the channel walls.

This 2D empirical approach has been extended and modified by more recent

researchers (Järvelä, 2002; Li and Shen, 1973; Linder, 1991; Mertens, 1989; Nud-

ing, 1991; Pasche and Rouvé, 1985) with varying results. This work has essentially

focussed on finding an appropriate drag coefficient value to include the effects

listed above and those induced by multiple cylinder arrangements. Linder (1991),

for example, determined an equation for the drag co-efficient of the cylinders, sug-

gesting that CD is dependent on the narrowing effect of neighbouring cylinders and

the resistance due to the gravitational force. Mertens (1989) and Nuding (1991)

undertook analyses concluding that a blanket CD value of 1.5 was adequate. More

recently, Järvelä (2002) extended this to investigate the influence of type, density

and combination of vegetation, flow depth, velocity, Reynolds number and vegetal

characteristics on CD.

Two-dimensional depth averaged approaches to modelling partially vegetated

open channels remain popular. Wu et al. (2005) built such a model for the mod-

elling of flow through matrices of vegetation using a drag coefficient based upon

the restricted streamwise velocity in the matrix. This drag coefficient was deemed

to vary little with cylinder density and Reynolds number and was therefore more

generally applicable. Wilkerson (2007) developed an analytical model to han-

dle submerged and emergent vegetation in rectangular and trapezoidal compound

channels. This is an extension of Petryk (1969)’s method for the compound chan-

nel case but does not take account of the three dimensional nature of the velocity

field in that channel.
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All of the studies mentioned above offer simplified analyses of the flow scenario

of vegetation in open channels and as such, put forward models that may be of

practical use. In investigating the appropriate values of CD to be used, these stud-

ies have also sought to identify the relationships between the drag force created

by the vegetation and its density and distribution. However, a common feature

of the approaches detailed above is the neglect of the three-dimensional nature of

the open channel flow itself, as has been emphasised in Section 2.2. Only with

an understanding of the three-dimensional effects of open channel turbulence and

the non-uniform streamwise velocity profile which is its consequence can we un-

derstand the processes that are affecting CD and create a truly widely applicable

2D approximation of them.

2.3.3 Fully 3D Approaches

The three major consequences of the introduction of vegetation to open channel

flow are summarised as the production of additional drag forces, an increase in the

production of turbulent kinetic energy (K) and a change in the length scale and

anisotropy of the turbulent field (Naot et al., 1996). Yang et al. (2007) recently

published results of experiments, measuring the three velocity components in a

compound, trapezoidal channel flow with a vegetated floodplain. Contrasting the

resultant vertical velocity profiles with those from a non-vegetated channel, the

authors note that the nature of the secondary circulations is radically altered and

that the effects of this change may be significant. If a full understanding of this flow

type is to be achieved therefore, an appreciation of the interaction between the

turbulent wake behind a bluff body and the turbulence in the free stream passing

around it is essential. Several researchers have performed physical experiments

and numerical modelling exercises to look at the changes to the turbulent field of

an open channel, when vegetation is introduced into it.
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2.3.3.1 Emergent Vegetation in a Simple Open Channel

Pasche and Rouvé (1985),Tsujimoto (1992a),Tsujimoto (1992b),Naot et al. (1996)

and Nepf and Vivoni (2000) have all examined the case of a rectangular open

channel partially filled with emergent vegetation. The nature of the flow in such a

channel was concluded to be heavily influenced by the shear layer that develops at

the edge of the vegetated zone, since the flow within the vegetation is decelerated

compared to that in the non-vegetated zone. In fact, Naot et al. (1996) created

a hydrodynamic model for the case and more specifically identified that it is the

difference between this shear layer and the shear layer at the solid boundary on

the other side of the channel that acts to distort the internal structure of the flow.

At low vegetation densities, it was shown that the presence of the vegetation in-

troduces a measure of asymmetry to the contours of streamwise velocity, with a

peak in turbulent kinetic energy near the channel bed at the lateral interface. At

intermediate densities, the turbulent energy peak was spread throughout the wa-

ter depth at the edge of the vegetated zone and the streamwise contours showed

a more symmetrical profile. Finally, at very high densities, the secondary current

patterns were heavily altered and acted to convect the turbulent kinetic energy

peak from the junction zone into the non-vegetated zone.

It is clear from these results that the wakes from the vegetation interact not only

with each other but also with the flow in the non-vegetated zone to produce a range

of different patterns of turbulence generation and transmission. The details of how

these interactions act to create the patterns identified still requires investigation.

2.3.3.2 Submerged Vegetation in a Simple Open Channel

Tsujimoto et al. (1992) gave details of turbulence measurements in a rectangular

channel with submerged vegetation uniformly distributed across the whole channel

bed. Concentrating on the variation of the velocity and turbulence parameters over

the water depth, they concluded that the flow in the vegetation layer was highly

influenced by the velocity and depth of the flow in the upper layer. Turbulent
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intensities and Reynolds shear stresses were observed to peak at the top of the

vegetation. Nepf and Vivoni (2000) later stated that the inflection in the vertical

profile of the streamwise velocity at the top of the vegetation causes large eddies

with streamwise orientation to be generated in this location.

Naot et al. (1996) supplemented these results by examining a similar flow via

numerical modelling, this time with submerged vegetation present only in the

channel corner. In this flow, a shear layer is not only present at the top of the

vegetation, as noted by Tsujimoto et al. (1992), but also at the side of the vege-

tated zone.

Nezu and Onitsuka (2001) used both a PIV system and a LDA to take turbu-

lence measurements for such a case, i.e. a rectangular open channel with half of

the channel width covered in submerged, rigid vegetation. With the PIV, a plan

sheet of data was collected at an elevation above the height of the vegetation, the

density of which was varied. The results of these measurements showed that an in-

flection point exists in the spanwise profile of streamwise velocity at the spanwise

edge of the vegetation zone, as shown in Figure 2.7. The generation of the verti-

cally orientated coherent vortices that were observed is attributed to this inflection.

As the density of the vegetation was increased, these structures were consolidated.

Although the presence of vertically orientated coherent vortices may lead one to

draw analogies with the simple compound channel case, the mechanism by which

they are generated must be dissimilar, since the inflected profile of streamwise ve-

locity would not be expected in the compound channel case, where the secondary

currents act to create a dip in the streamwise velocity at the junction point, as

described in Section 2.2.3.

The LDA measurements of a single cross-section highlighted the secondary cur-

rent pattern of this partially vegetated case, showing that it was quite different

from that described for the compound open channel case. Large velocity vectors

were measured at the interface, flowing strongly towards the layer above the veg-

etation, whilst analysis of the turbulent anisotropy term showed a large positive
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peak in anisotropy just under the free surface near the interface position. The gen-

eration of turbulent kinetic energy was shown to peak at the junction position, at

the side and top of the vegetation, being partly attributed to the wake structures

behind that vegetation.

These experiments therefore showed that all of the important flow variables,

such as streamwise velocity and boundary shear stress, are affected in a complex

manner by the addition of vegetation to the channel as the wakes from the vegeta-

tion interact with the freestream turbulence.

2.3.3.3 Vegetation on the Floodplain of a Compound Channel

Naot et al. (1996), Rameshwaran and Shiono (2007), Sun (2006) and Kang and

Choi (2006) are among the small number of researchers who have extended these

analyses to compound channels with vegetated floodplains.

Detailed experimental results for the case of emergent vegetation on the flood-

plain of a compound channel can be found in Sun (2006), who performed tests in

a straight, trapezoidal, compound channel using an Acoustic Doppler Velocimeter

(ADV) to measure the velocity distribution. For all the floodplain vegetation cases

that were examined, it was noted that the presence of the vegetation caused the

streamwise velocity on the floodplain to be significantly reduced, thus accentuating

the spanwise gradient in U from the smooth channel case. However, the actions of

the secondary currents add further complexity to the streamwise velocity contours.

For the emergent case, Sun (2006) recorded a circulation in the main channel be-

ing driven by a strong flow into the main channel from the floodplain edge near

the free surface. This circulation pattern was also found by Kang and Choi (2006),

who used Reynolds Stress Modelling (RSM), incorporating the vegetation by way

of a drag term in the momentum equations, to perform numerical simulations of

flow in a rectangular compound channel with a fully vegetated floodplain. Their

results are shown in Figure 2.8.

Testing this scenario with a range of vegetation densities, Kang and Choi (2006)

observed that the main channel vortex grows in size and influence as the vegetation
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density increases and measured a range of maximum strengths of the secondary

currents of 3.4%−5.1% of the maximum streamwise velocity, increasing with veg-

etation density. The intensity of the turbulence and the turbulent kinetic energy

were observed by both Sun (2006) and Kang and Choi (2006) to peak at the main

channel/floodplain interface. As with Pasche and Rouvé (1985), Sun (2006) also

identified large vertically orientated eddies at the interface and attributed them to

the lateral shear caused by the wakes from the vegetation.

Sun (2006) also performed experiments with submerged vegetation at two flow

depths such that at one depth, the vegetation was slightly submerged and at the

other, deeply submerged. In these cases, there was strong flow towards the main

channel along the height of the vegetation at the floodplain edge. In the shallow

submerged case, the circulation described for the emergent case was also partially

visible. For the deeply submerged case, the strong flow into the main channel

then formed a circulation flowing back onto the floodplain, above the top of the

vegetation layer. Sun (2006) measured a maximum strength of the secondary

currents of about 10% of the maximum streamwise velocity. The intensity of the

turbulence and the kinetic energy again peaked at the main channel/floodplain

interface but in these cases, there was also a secondary peak in the streamwise and

spanwise turbulent intensities at the top of the vegetation.

Sun (2006) showed that the anisotropy of the turbulence also peaked at the

floodplain edge but having performed a vorticity balance, concluded that in the

vegetated floodplain case, the Reynolds shear stress was of a similar magnitude

and therefore much more important for the creation of streamwise vorticity than

in the smooth channel case. This was very clear for the submerged cases but the

results were less conclusive for the emergent case.

In both submerged and emergent cases, all three Reynolds shear stresses were

found to peak at the floodplain edge. However, the peak of τuv was generally

larger that that of τuw and τvw, which were of analogous magnitudes. For the

emergent case, the peak of τuv at the floodplain edge was negative and of the

smallest magnitude of the three cases. τvw also had the lowest peak magnitude of
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the three cases. For the deep submergence case, the pattern of τuv was complex,

with a negative region on the slanting surface of the main channel wall. In the

shallow submergence case, the pattern of τuv was similar to that of the emergent

case but with a greater peak magnitude than the other two cases.

In analysing these results, the above authors have attributed the changes in

Reynolds stress and velocity distributions and the creation of axial and vertically

orientated vorticity to the action of the wakes from the vegetation elements. How-

ever, as yet, there appears to have been no attempt to study the structure of these

wakes in detail nor to predict how the changes in freestream conditions will impact

upon them and therefore upon the flow structure more generally.

2.3.3.4 One Line Vegetation at the Floodplain Edge

Sun (2006) also extended his experiments to the case of a single line of emergent

vegetation placed at the floodplain edge of a compound channel with Dr = 0.52.

Since the velocities in this case were measured with a Pitot tube, only the stream-

wise velocity profile could be directly recorded. Measurements were made at the

centre of the gap between adjacent rods, where the spacing between rods was set

to 4.44Wbl . The results showed the creation of two velocity maxima, either side

of the vegetation, as shown in Figure 2.9. This also implies the existence of two

transverse shear layers, the combined width of which was twice that of the single

shear layer in the smooth floodplain case. Of course, the spanwise gradient of U

is shown to be greater on the main channel side than on the floodplain side. Us-

ing a Preston tube, it was also shown that the presence of the vegetation acted to

significantly reduce the overall boundary shear stress and in particular, to reduce

it on the floodplain. Despite these revelations, no secondary current or turbulence

data were collected. It is therefore unknown how the wakes from the vegetation

interact with the compound channel turbulence and the possible distribution of

coherent vortices that may result from this interaction.
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2.3.3.5 Three-Dimensional Numerical Modelling

Whilst these experimentalists have been revealing the structures and patterns of

vegetated flow, other researchers have been attempting to replicate their results by

way of three dimensional numerical modelling. The focus of much of this work has

been the search for suitable values of drag coefficient but the alteration of other

model coefficients has also been proposed. Numerical modelling of these flow sce-

narios has commonly been attempted by combining a drag coefficient approach

with the solution of the three-dimensional Reynolds-averaged Navier Stokes equa-

tions and the k− ε turbulence model.

Shimizu and Tsujimoto (1994) and Lopez and Garcia (1997) both analysed

flow through vegetation arrays using the Reynolds-averaged approach, opting to

include a sink term for the vegetal drag in all of the equations and to calibrate

their model by changing two of the five coefficients of the standard k − ε model.

Fischer-Antze et al. (2001) adapted this approach, choosing not to modify the k−ε

model at all on the assumption that the values of K and ε in the vegetation layer

did not affect the velocity. More recently, this approach was also used by Wilson

et al. (2006) to model the affects of willow stands in a natural river geometry. All of

these models make assumptions about the appropriate value of drag co-efficient to

be used to calculate the drag force exerted per vegetation element. Fischer-Antze

et al. (2001) and Wilson et al. (2006) used a universal value of 1.0, although the

latter also tested the use of a value of 1.5, as espoused by Mertens (1989) and

Nuding (1991).

Although the k−ε model has been used successfully to produce a variety of in-

teresting results for open channels containing vegetation, it is well recognised that

this two-equation turbulence model is unreliable for the prediction of turbulence

in open channel flows since it cannot predict the difference between the spanwise

and vertical normal turbulent stresses. The k − ε model is also limited when ap-

plied to the flow around bluff bodies, since it cannot predict the normal turbulent

stresses, which dominate in the stagnation zones.

26



2.3 Vegetation in open channel flow

A limited amount of work has therefore been done on extending the 3D nu-

merical modelling of vegetated channels through the use of algebraic stress mod-

els (ASM’s) and Reynolds stress models (RSM’s), both of which attempt to include

the influence of the transport of Reynolds stresses and therefore the anisotropy

of the turbulent field. Naot et al. (1996) used an algebraic stress model with the

drag co-efficient approach. In this case, not only were the drag forces incorpo-

rated into the momentum equations but the k−ε equations were modified to take

into account the direct contribution of the vegetation to the turbulent intensity

and scale and also the presence of the free shear layer at the edge of the vegetated

zone. Finally, the algebraic stress model equations were extended by assuming that

the turbulence produced by the vegetation was distributed among the individual

component directions according to an anisotropy matrix. Kang and Choi (2004,

2006) performed similar simulations using a full RSM, also using the drag coeffi-

cient approach to include the vegetation. Comparing their results to those of Naot

et al. (1996), the authors noted that although agreement between the two sets

of data was reasonably good, the Reynolds stress technique allows the turbulent

anisotropy near the free surface to be better predicted. Consequently, the velocity

dip effect is more clearly observed in the Reynolds stress model results.

2.3.4 Summary

The work described in this section has clearly shown that the addition of vegetation

to an open channel flow has wide ranging effects on the flow structure. These

effects are directly dependent on the three D’s: vegetation density, distribution

and depth of inundation. All of the above researchers have concluded that the

wakes behind the vegetation elements cause additional turbulent kinetic energy

to be generated and then convected into the non-vegetated parts of the channel.

For all cases, it is also apparent that the shear layers existing at the top and sides

of the vegetated zones cause axial and vertical vorticity to be generated, altering

the streamwise velocity and boundary shear stress distributions from those of their
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smooth channel equivalents. These studies almost universally concentrate on the

bulk effect on open channel flow structures of the addition of large matrices of

vegetation to those channels. Very little has yet been revealed about the effects of a

single line of vegetation at the floodplain edge, which has been identified in Section

1 as an important growth pattern in UK river systems. Moreover, the manner

in which the wakes behind the vegetation elements interact with the turbulent

structures of the compound channel is yet to be studied at all.

2.4 Turbulent flow around isolated obstacles

2.4.1 Two-dimensional flow around bluff bodies

Much of the investigative effort into the effects of vegetation on the flow struc-

ture in open channels has been directed at observation of its bulk effects, e.g.

experiments on rows or matrices of vegetation elements, inclusion of vegetation in

numerical models using the drag co-efficient approach. Although these approaches

have yielded important information about the effects of the wakes from the veg-

etation on the overall flow structure, they do not give any detailed information

about how the wakes and the free stream flow are interacting to create these ef-

fects. Analysis based upon wake theory on the other hand, has been limited to

a two dimensional depth-averaged approach and has been based on assumptions

that may significantly limit its application to open channel flow.

If we reduce the vegetation to the status of a rigid bluff body in the flow, by

ignoring the presence of branches and leaves and eliminating the flexibility, we

then allow ourselves to draw analogies between the flow around floodplain vege-

tation and the large knowledge base that has been built up by aerodynamicists and

hydraulicists with regards to the nature of flow around bluff bodies.

Much of the basic understanding of the nature of these flows was found by

performing experiments on two-dimensional bluff bodies in uniform free streams,

in which free stream turbulence was purposefully suppressed. The exact structure
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of the wake behind such a body is determined by its local Reynolds number (ReD),

its geometry (cylindrical, sharp-edged) and the nature of the free stream in which

it sits.

For a two-dimensional circular cylinder in a uniform free stream with low tur-

bulence, Zdravkovich (1997) gives a summary of the changing wake structure

throughout the Reynolds number range. All flows around bluff bodies feature

boundary layers on the body’s surface, a wake region downstream of the body and

shear layers bounding this wake. The creation and decay of the coherent structures

often seen in the wake depend upon the flow state of each of these regions.

In the case of floodplain vegetation, the local Reynolds number (i.e. approach

velocity x vegetation diameter / kinematic viscosity) is likely to be in the range

of 1x105 (laboratory flume scale) to 1x106 (natural river channel). In this range,

for Zdravkovich’s 2D circular cylinder, if the free stream turbulence is controlled

and the flow is uniform, the wake region would be turbulent and transition to

turbulence is also likely to have occurred in the free shear layers. Transition in

the boundary layer attached to the cylinder surface may also be underway. At

the bottom of this range, we would already expect the cylinder to be shedding

turbulent eddies with the same orientation as the cylinder, commonly known as a

von Kármán vortex street. Although the long time averaged flow may be steady,

the vortices are shed alternately from each side of the cylinder, with a frequency

described by the dimensionless Strouhal number, which is defined as:

St =
fshL

Um
(2.6)

where fsh is the shedding frequency and L is a characteristic length. As the

Reynolds number increases and transition occurs in the free shear layers, alternat-

ing eddies also appear in this region. With further increases, the boundary layers

become turbulent through a complex process, in which the shedding of eddies is

at some points retarded and at other points promoted.
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The drag force of the cylinder is made up of friction drag from fluid passing

over its surface and pressure drag, which emanates from the unequal pressure

distribution across the cylinder. Throughout the transitions mentioned above, the

pressure distribution and therefore the drag coefficient is constantly fluctuating.

This is shown clearly in Figure 2.10. It follows from this that the free stream

conditions in which a bluff body is sitting can have far reaching effects on the drag

force that it exerts.

Due to modelling constraints, this research is concerned with the flow around

square sectioned bluff bodies. Although the circular cylinder is intuitively prefer-

able to model the effect of trees on compound channel flow, in reality, the cross

section of such vegetation is rarely simple and since much of the same theory is ap-

plicable to the square sectioned case as for the circular section case, it is reasonable

to interchange between the two. The aim of the work is, after all, to investigate

the interaction of the compound channel environment and the wake flow from an

obstruction and compare this to what we might expect in a simple channel envi-

ronment. These conclusions can be drawn equally for both section shapes.

Although much of the same theory applies for a sharp-edged bluff body, much

less research effort has been expended on understanding this flow type. Researchers

such as Durao et al. (1988) and Bearman and Trueman (1972) were amongst the

first to examine the case of a square and rectangular block respectively. A more

detailed experiment was carried out by Lyn et al. (1995) using a LDV to take mea-

surements in the wake of a square block. Lyn et al. (1995) used these results to

make a comparison of the flow around a square block with that around an equiva-

lent circular cylinder.

Unlike the circular cylinder, where the point of flow separation moves around

the circumference, separation always occurs at the sharp edges of a square block

producing a wider wake than in the circular case. Streamwise and spanwise co-

ordinates are normalised using the block width ( x = X/Wbl , y = Y /Wbl ) and

vertical co-ordinates are normalised with the block height, where the block height

is equal to the floodplain depth in the emergent cases ( z = Z/Hbl or z = Z/D f l
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). Unless otherwise indicated, these conventions will be used to describe all of the

following results.

Measuring the wake at x = 1, Lyn et al. (1995) observed peaks in the Reynolds

shear stress u′v′ showing the shear layers to be at approximately y = ±0.75. This

implies and the experiments confirmed that the recovery of the centreline velocity

is slower for a square block than for a circular one. The recirculation region was

measured to be of length 1.4Wbl , which is more clearly shown in Figure 2.11. The

experiments also showed that turbulent intensities in the wake are larger for the

square case and these values are also plotted in Figure 2.11.

From the detailed measurements of Lyn et al. (1995), this 2D wake structure

resulted in a Strouhal number of 0.13 and a time-averaged drag coefficient of 2.1

at a block Reynolds number of 21, 400. Based on a scaling argument, Lyn et al.

(1995) therefore proposed the following relationship between drag coefficients for

the circular and square blocks.

(CD)sq
(CD)circ

≈ 1.7 (2.7)

2.4.2 Surface mounting effects

Reviewing the details of the flow around two-dimensional bluff bodies gives us im-

portant information about what to expect from all bluff body flows, ie. flow separa-

tion, the creation of vorticity and a gradual recovery. It also serves to demonstrate

the important influence of freestream conditions on these processes. However,

the 2D approach has its obvious limitations since nearly all engineering applica-

tions will involve three-dimensional flow. For the case of riparian vegetation, we

must consider the influence of the bed and either the free surface or the flow over

the top of the body. We must also consider the freestream turbulence and non-

uniformity of the oncoming flow. In other words, we must take account of the

three-dimensional nature of the flow and of the vegetation.
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The first addition to the complexity of flow around a bluff body in an open

channel flow is the necklace or horseshoe vortex, which is created when any bluff

body is mounted onto a solid surface. A review by Simpson (2001) reveals that

this system has been measured and modelled for various applications by many

researchers. Despite the differences of body shape and Reynolds number, the com-

mon feature of the system is the formation of two axially orientated vortices on the

bed in the body wake, which rotate towards its central axis.

These vortices originate in the stagnation zone upstream of the body, where a

complex process of 3D separation is occurring due to the adverse pressure gradient

that the presence of the body induces. In an early study on a set of large aspect ratio

circular cylinders, Baker (1980) used flow visualisation to reveal the time averaged

stagnation pattern on the bed. There occur two stagnation points, from which two

sets of separation lines extend around the bluff body. Although indistinguishable

from the experimental results, it is concluded that there must be an attachment

between these separation points.

Martinuzzi and Tropea (1993) confirmed this pattern in their experiments on

a surface mounted cube. They also concurred with Baker (1980) that as the tur-

bulent boundary layer on the channel bed enters the stagnation zone, a system of

four vortices with spanwise orientation are created. These vortices are shown in

Figure 2.12, of which the vortex labelled (1) is the dominant structure. It is this

vorticity, which is swept around the sides of the body and consolidated by vortex

stretching to form the horseshoe vortex.

In fact, at the Reynolds numbers encountered in open channel flow, the horse-

shoe vortex system has become highly unsteady and its instantaneous structure

may be very different from that described above. In common with researchers

looking at the flow around aerofoils, Martinuzzi and Tropea (1993) found that

there were two distinct modes of system behaviour, with switching occurring be-

tween the two modes at a low frequency unrelated to the Von Kármán shedding

frequency. The features of this unsteady phenomenon will not be described in de-

tail here but it is important to note that this process results in the creation of high
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turbulent kinetic energy and turbulent stresses in the stagnation zone.

For bodies of sufficient height, i.e. Hbl/Wbl > 1.5, Baker (1980) found that the

only factors influencing the horseshoe vortex system were the Reynolds number

and the relative width of the body and the boundary layer (Wbl/δ∗), noting that

as these factors increased, the primary stagnation point moves closer to the body.

Importantly, he did not record any change in the vertical dimensions of the vortices

with changing (Wbl/δ∗).

Spezezzy and Bearman (1992) investigated the effects of the block aspect ratio

Hbl/Wbl on the two-dimensionality of the flow around a circular cylinder mounted

between two end plates. Focusing on the changing nature of the Von Kármán vor-

tex shedding as opposed to the detailed interaction between it and the horseshoe

vortex systems, they performed a set of experiments with a constant blockage ratio

of Abl/Ach = 7.7% and a freestream turbulence level of Tu < 0.05%. Although the

experiments covered differing behaviours over a range of Reynolds numbers, only

the results from the top of the range, i.e. at Re = 1.3x105 are pertinent to our

interests.

At this Reynolds number, for aspect ratios of approximately Hbl/Wbl = 5 and

above, the fluctuating coefficient of lift (i.e. the spanwise force coefficient) at

the centre of the cylinder height was found to be constant. Below this value, CL

increased towards a peak at approximately Hbl/Wbl = 2.5 before experiencing a

large drop at values lower than this. At these lowest values of aspect ratio, the

drop in lift coefficient is attributed to the near complete suppression of the vortex

shedding. When considering the mean drag coefficient at the mid-height position,

the value was again approximately constant for Hbl/Wbl > 5 and increased toward

a peak for values below this. Putting the flow behaviour at very low aspect ratios to

one side, the conclusion from this data is that the flow is more two-dimensional at

lower aspect ratios. When the shedding cycle is in phase over the entire height of

the cylinder, the fluctuating lift and the mean drag will be at their greatest. At high

aspect ratios, small disturbances along the greater height of the cylinder disrupt

the regular shedding cycle, and therefore weaken its long time averaged effects.
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2.4.3 End Effects - Submerged Bluff Bodies

Baker (1980) performed his experiments on a submerged cylinder and defined

Hbl/Wbl = 1.5 as a threshold of aspect ratio above which the position of the span-

wise vortices in which the horseshoe vortex originates is stable. This insinuates that

the flow passing over the top of the cylinder does not penetrate low enough into

the wake to have an influence on the horseshoe vortex. This flow does however,

have a significant effect on the Von Kármán vortices that are being formed around

the shaft of the bluff body. According to the experimental work of Kawamura et al.

(1984) and Kappler (2002), the end effects for such a cylinder change the vortex

shedding system considerably. Suggesting the pattern shown in Figure 2.13, they

claimed that for high aspect ratio cylinders, some degree of regular vortex shed-

ding is preserved around the lower portion of the body, but for aspect ratios of 2

or less, vortex shedding is completely suppressed.

For the former case, the results of the Large Eddy Simulation (LES) of Fröhlich

and Rodi (2004) are useful in demonstrating the complexities of the flow structure.

The simulation mimics an experiment of Kappler (2002), in which the flow around

a circular cylinder of Hbl/Wbl = 2.5 was measured. At this aspect ratio, a small

region of vortex shedding is expected. The drag coefficient for a surface mounted

cylinder is a function of the cylinder aspect ratio Hbl/Wbl , the cylinder width and

boundary layer thickness ratio Wbl/δ∗, the freestream turbulence level Tu and the

blockage ratio Abl/Ach. The experiment was performed in a water tunnel at a

cylinder Reynolds number of 43,000, where Wbl/δ∗ = 4. By these measures, this

flow is similar to that in which we are interested. The suppression of the freestream

turbulence in the experiment to (Tu = 2%) differs from the higher turbulence level

that we might expect. Finally, the blockage ratio (Abl/Ach) in this case was 7.3%.

Both the experimental and numerical results revealed the following features of

the flow. At the top of the cylinder, the flow separates from the top front edge

rolling up into a system of spanwise orientated vortices and reattaching at approx-

imately the centre of the top surface. At the rear edges, the separation is very
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complex but results in two tip vortices, which reach downward into the wake.

Immediately at the rear edge, these tip vortices form part of an arch vortex struc-

ture, which appears in the long time-averaged results and sits directly behind the

cylinder.

Directly below the top rear edge, the tip vortices highly distort the flow separat-

ing around the shaft of the cylinder so that no regularity can be identified. Moving

away from the top of the cylinder, the vortices being shed around the shaft be-

come larger and more regular and as the position falls below (z = 0.6), occasional

alternate eddy shedding behaviour can be observed.

Long time averages of the three-dimensional recirculation region directly be-

hind the cylinder show that it is narrower at the top and widens out towards the

bottom. In the lower regions, the pattern of Reynolds stresses nearly follows that of

the 2D case in a qualitative sense, so that (u′2) and (u′v′) peak in the shear layers

whilst (v′2) and (w′2) peak in the central region of the wake. However, the wake is

wider than that measured in an analogous 2D case and the peak of (v′2) is smaller

in magnitude and slightly off-centre. Near the top, the similarity to the 2D case

breaks down further and the magnitude of all of the normal stresses is lessened.

As there is no shedding behaviour, the recirculation region is smaller.

Moving downstream of the recirculation zone, the vorticity associated with the

tip vortices diminishes and disappears at approximately one diameter downstream

of the cylinder, only to be replaced with streamwise orientated vorticity emanating

from the downward flow over the top of the cylinder. These secondary currents

peak in magnitude at x = 2 and then steadily decrease in strength. Examination

of the eddies being shed from the shaft further downstream from the cylinder

reveals that a distorted Von Kármán vortex street develops. However, the shedding

of vortices is highly sporadic and the eddies are angled downwards as they are

affected by the downward flow over the top of the cylinder. Finally, evidence of a

small horseshoe vortex was also observed around the base of the cylinder.

Since this study was concerned with a circular cylinder, quantitative compar-

isons with the 2D case described above cannot be made. However, it has been
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observed in experiments, e.g. Kawamura et al. (1984), that the drag coefficient

reduces with the cylinder aspect ratio so that the influence of the flow over the top

of the cylinder and the suppression of the regular vortex shedding mechanism acts

to reduce the drag. It is therefore reasonable to assume that the wake structure

described here will result in a lower relative drag coefficient than in the purely 2D

case. In comparing their calculated values of drag coefficient with the results from

previous experiments, Fröhlich and Rodi (2004) make the point that the final drag

force exerted by the cylinder is strongly dependent on the blockage ratio.

As the aspect ratio of a submerged bluff body is reduced, the length over which

shedding can take place is destroyed. The ultimate example of this is flow over

a cube, which has been studied in detail by a number of researchers including

Castro and Robins (1977), Schofield and Logan (1990), Martinuzzi and Tropea

(1993) and Shah and Ferziger (1997). Using flow visualisations and static pressure

measurements of flows at Reynolds numbers in the range of 8x105 to 1.2x106 and

a low blockage ratio of 0.02, Martinuzzi and Tropea (1993) proposed the schematic

shown in Figure 2.14 of the flow over a surface mounted cube.

In common with its taller counterpart, the cube causes the creation of a horse-

shoe vortex, although its influence on the downstream flow patterns must be pro-

portionally greater. Again, the flow separates at the leading edges of the top of

the cube and reattaches onto the top surface. Separation at the rear of the cube

continues to result in an arch vortex structure with recirculation vortices with the

same orientation. Figure 2.14 would seem to suggest that the axial velocity ob-

served downstream of the cube emanates purely from the horseshoe vortex. This

is disputed by others including (Schofield and Logan, 1990), who attribute the

vorticity to a number of sources including a horseshoe vortex with its source in the

recirculation region, i.e. the same conclusion drawn by Fröhlich and Rodi (2004)

for the taller circular cylinder.
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2.4.4 End Effects - Emergent Bluff Bodies

For large floodplain obstacles such as trees, perhaps the more significant scenario

is that of the emergent bluff body, where there is no flow over the top but where

the deformation of the free surface exerts its influence on the wake. Indeed, for

shallow submerged obstacles, the influence of the free surface must also be in-

cluded. Flow past surface-piercing bluff bodies has long been the domain of naval

architects. Chaplin and Teigen (2003) conducted experiments on a smooth, sur-

face piercing circular cylinder in a towing tank and compared their results to the

existing experimental database in this field, including Hay (1947), Hseih (1964)

and Hogben (1974). Of these, the only experimental set-up in which the cylinder

was fixed to the channel bed was that of Hseih (1964).

When a free surface is introduced, the drag force exerted on the flow consists

of three mechanisms. In addition to those elucidated above, i.e. friction drag and

pressure drag, the generation of the surface wave must now also be considered. A

general description of the surface of an open channel flowing around a bluff body

is shown in figure 2.15. It is characterised by a positive slope of the water surface

upstream of the obstacle, followed by a depression in water level downstream. As

the Froude number increases, the amplitude of this wave increases until eventually,

the entire rear face of the body is exposed to the air.

Chaplin and Teigen (2003) measured the pressure on the surface of a smooth

circular cylinder being towed through a water tank at a constant speed by way of

a ring of pressure taps inserted into the body of the cylinder. Pressure distributions

at different relative depths were found by varying the water depth in the tank. Not-

ing that no evidence of vortex shedding could be identified from the instantaneous

pressure measurements, a time averaged value of pressure was found at each tap

and these averaged values were integrated around the circumference of the cylin-

der to calculate sectional drag coefficients. By plotting these drag coefficients as

a function of vertical position on the cylinder for a range of Froude numbers, the

changing characteristics of the wake were highlighted.

37



2.4 Turbulent flow around isolated obstacles

At low Froude numbers (F r < 0.8) CD was almost constant across the depth at

a value of approximately 0.95. In the range of (0.8< F r < 1.4) CD was observed to

increase with increasing vertical position, before sharply turning and falling to zero

at the highest point of measurement. This effect was most exaggerated in critical

flow, where the maximum value was 1.5. For higher Froude numbers, (F r > 1.4)

CD again becomes constant throughout the depth but at a relatively low value of

approximately 0.5.

Inoue et al. (1993) took more detailed measurements around a circular cylin-

der at F r = 0.8 and 1.0 and were able to identify the changes that the presence

of the free surface affected on the wake structure with more clarity. The genera-

tion of the free surface wave acts to attenuate the shedding of vortices from the

cylinder near the surface, whilst the expected vortex shedding behaviour persists

at greater depths. Kawamura et al. (2002) made further investigations of this flow

type via LES and confirmed some of Inoue et al. (1993)’s results. The simulations,

performed at a cylinder Reynolds number of 2.7x104 to match the experiments of

Inoue et al. (1993), showed that the impact of the free surface on the wake struc-

ture was minimal at F r = 0.2 and 0.5 but for F r = 0.8, a noticeable impact was

observed. No information on the blockage ratio or freestream turbulence level was

attainable.

At the higher Froude number, they observed two strong counter-rotating vor-

tices under the free surface downstream of the cylinder. These vortices acted to

alter the vertical profile of the wake so that it was narrowed at a distance approx-

imately 60% of the diameter of the cylinder under the free surface. Above and

below this point, the wake became wider. It was concluded that an unstable shear

layer exists under the free surface, in which the turbulent fluctuations of velocity

are relatively small and random in nature. Deeper under the surface, the fluctua-

tions become more periodic and more closely resemble those to be expected in the

wake behind a continuous cylinder. This feature was attributed to the orientation

of the separated shear layers, which are aligned straight in the downstream direc-

tion in the deep part of the flow but are deflected outwards near the free surface.
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Consequently, the eddy street normally to be expected downstream of a cylinder is

disrupted close to the surface.

Kawamura et al. (2002) calculated the total drag coefficient for their bluff body

by integrating the stresses on the surface and were able to show a decreasing value

of CD with increasing Froude number so that with an increase in Froude number

from 0.2 to 0.8, the drag coefficient dropped by 12%. This correlates well with the

trend for the increase in free surface deformation to attenuate the vortex shedding.

2.4.5 Tandem Bluff Bodies

For the study of one-line vegetation at the floodplain edge, we are interested, not

simply in the interaction between the compound channel flow and the wake be-

hind a single bluff body but also in the interaction between neighbouring bodies.

Since each subsequent body sits in the wake of the previous one, the drag force

exerted by a row of vegetation at the floodplain edge will depend not only on the

characteristics of the single block wake but also on the changes introduced to the

tandem block relationship by its placement at this location.

s is defined as the distance between the body centres and the variable s/Wbl

is the key determining factor for the structure of the flow around tandem bodies.

Havel et al. (2001) provides a concise summary of the different flow regimes en-

countered by both tandem square blocks and tandem cubes, both drawing on the

experimental work of previous researchers (Hangan and Vickery, 1999; Martinuzzi

and Havel, 2000; Sakamoto and Haniu, 1988) and producing new experimental

data. The new data was collected at a block Reynolds number of 2.2x104 and

a freestream turbulence level of 1.5%. The square blocks had an aspect ratio of

Hbl/Wbl = 16 and a blockage ratio of 6.5%. The cubes had a boundary layer thick-

ness ratio of Wbl/δ∗ = 14.3 and a blockage ratio of less than 2%. The data of

Hangan and Vickery (1999) was collected at a similarly low freestream turbulence

level for a block of aspect ratio Hbl/Wbl = 40. The data of Sakamoto and Haniu

(1988) was collected for a block of much smaller aspect ratio Hbl/Wbl = 3 and a
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2.4 Turbulent flow around isolated obstacles

boundary layer thickness ratio of Wbl/δ∗= 1.25. Since the block Reynolds number

places these experiments in a lower Reynolds number regime than that which we

might expect, these results are included as a qualitative guide to the regimes ex-

perienced by tandem blocks. Indeed, analogous experiments on circular cylinders

have revealed similar flow regimes.

The first regime, found at the lowest values of s/Wbl is the ’one body’ regime,

where the flow separating from the upstream obstacle overshoots the downstream

obstacle completely so that the tandem pair can be considered as one. Although

this regime can be identified clearly for 2D cases, for the cubes, the flow entering

the gap from the top means that this regime is unlikely to exist. For the blocks, the

situation at such small spacings is unclear. The ’one body’ regime is associated with

a low drag coefficient for the upstream obstacle and a negative drag coefficient for

its downstream partner.

As the spacing increases, the second regime, referred to as ’bistable’ takes over.

The title refers to two modes of shedding which occur in this spacing range for both

2D and 3D obstacles; either the shear layers from the first obstacle do not reattach

to the second and low frequency shedding from the first obstacle occurs or the

shear layers do reattach and the shedding takes place from the second obstacle

with a higher frequency. For the 2D cases, the drag profiles described above persist

until s/Wbl ≈ 2, where both values dramatically increase due to the roll up of

the upstream shear layers into the gap. For the 3D cases, this regime is associated

with gradually decreasing drag coefficient on the upstream obstacle and increasing

drag coefficient on the downstream obstacle since the reattachment position on the

downstream obstacle is affected by the flow over the top.

The third regime, the ’lock-in’ regime, describes the situation in which there is

consistent shedding from the upstream obstacle at a single frequency but where the

upstream shear layers roll up and attach onto the upstream face of the downstream

obstacle. For the cube, the shedding occurs at the natural frequency of the gap. For

the large aspect ratio block and 2D cases, it is less obvious that this is the case. The

vortices being shed from the downstream obstacle have the same frequency as
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those from the upstream obstacle, since the latter triggers the former. For the 3D

cases, this regime is associated with the reduction of the upstream drag coefficient

to its minimum value. The drag coefficient for the downstream obstacle continues

to gradually increase.

Finally, the ’quasi-isolated’ regime is reached, where the process of vortex for-

mation is separated for the two obstacles. Despite this, the up- and downstream

obstacles still have the same shedding frequency as the pressure fluctuations in

the wake of the upstream obstacle are enough to trigger shedding from the down-

stream obstacle. In this regime, the shedding frequency gradually increases asymp-

totically, as do the drag coefficients for both of the obstacles. Eventually, for very

large spacings (s/Wbl > 12) the shedding is completely decoupled.

2.4.6 Summary

The large volume of work that has been done to understand the wake structures

behind cylindrical bluff bodies belies the complexity of the flow scenario in ques-

tion. Vitally however, it has clearly been shown that the environment into which a

bluff body is introduced has a significant impact on the wake structure and there-

fore the drag force that the body exerts on the flow. Reynolds number, blockage

ratio and freestream turbulence levels have been shown to quantitatively affect the

size and strength of the wake and the speed of flow recovery but in addition, end

effects from solid surface mounting, submergence and free surface interaction have

all been shown to retard the vortex shedding phenomenon in various locations and

thereby reduce the overall drag coefficient.

In the case of one-line vegetation at the floodplain edge, the location of the

blocks in the strong shear layer between the main channel and floodplain may also

alter the wake structure and therefore the overall drag coefficient.
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2.5 The Research Gap

A great deal of work has been done to understand the turbulent field in open

channel flows and how it is affected by the introduction of areas of vegetation.

Simultaneously, the intricate details of flow around individual bluff bodies has

been studied, concentrating on simplified freestream conditions. This project will

draw together these themes to investigate the following:

• The bulk changes in the wake structure around an identical cylindrical ob-

stacle when moved from the centre of a symmetrical, open channel of simple

cross-section to the floodplain edge of a compound, open channel, for both

submerged and emergent (surface piercing) obstacles, and the resultant ef-

fects on the drag coefficient.

• The detailed structure of the mean and turbulent fields around submerged

and surface piercing obstacles at the floodplain edge of a compound, open

channel. Specifically, by what processes the changes identified in the bulk

flow characteristics and the drag coefficient come about.

• How the structures and processes thus identified affect the flow patterns in

the wider channel and how these are linked to the secondary circulation

patterns observed by researchers such as Sun (2006).

• How the trends identified change with the changing geometry of the obstacle

and how they are affected by the arrangement of multiple obstacles in a

single line at the floodplain edge.

42



2.5 The Research Gap

(a)

(b)

Figure 2.1: (a) contours of streamwise vorticity and (b) isovels in the top right quadrant of

a square duct from Brundrett and Baines (1964)
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Figure 2.2: Isovels of streamwise velocity and vectors of secondary circulations in the left

half of a rectangular channel of AR= 3.94, (Tominaga et al., 1989)

Figure 2.3: Schematic of vertically orientated vortices at the floodplain edge, (Fukuoka and

Fujita, 1989)
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(a)

(b)

Figure 2.4: (a) Contours of streamwise velocity and (b) velocity vectors of secondary

circulations from Tominaga and Nezu (1991)
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Figure 2.5: Schematic of flow in a straight, compound channel from Shiono and Knight

(1991)

Figure 2.6: Distribution of Boundary Shear Stress in a compound channel with Dr = 0.5,

adapted from Tominaga and Nezu (1991)
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Figure 2.7: Spanwise variation of mean streamwise velocity across a partially vegetated

channel, from Nezu and Onitsuka (2001). z/B is the spanwise position and α is the

vegetation density.

Figure 2.8: Secondary currents in a rectangular, compound channel with vegetated

floodplain (Dr = 0.5, Vegetation density = 0.25m−1), Kang and Choi (2006)
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Figure 2.9: Contours of mean streamwise velocity, normalised with Um, in a trapezoidal

channel with one line of emergent blocks at the main channel/floodplain interface, Sun

(2006)

Figure 2.10: Variation of Drag Coefficient CD with Reynolds number Re for a 2D circular

cylinder in a uniform freestream with low turbulence, Zdravkovich (1997)
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Figure 2.11: Streamwise variation of (a) Mean streamwise velocity, (b) streamwise

turbulent intensity and (c) spanwise turbulent intensity on the centreline of the wake of a

square 2D block, where all variables are normalised with Um. Adapted from Lyn et al. (1995)
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Figure 2.12: Spanwise orientated vortices upstream of a surface mounted circular cylinder,

(Baker, 1980)

Figure 2.13: Flow fields around submerged circular cylinders, (Kawamura et al., 1984)
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Figure 2.14: Schematic of flow around a surface mounted cube, (Martinuzzi and Tropea,

1993)

Figure 2.15: Schematic of flow around a surface piercing circular cylinder, (Chaplin and

Teigen, 2003)
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CHAPTER 3

Methodology

3.1 Physical Experiments

In order to test the hypothesis that the placement of a bluff body at the floodplain

edge will influence the flow pattern around it and to provide data with which to

verify the performance of the computational model, a series of physical experi-

ments were performed in the flumes in the Loughborough University and Kansai

University laboratories. This section will give details of how these experiments

were carried out and an explanation of the experimental set-ups used.

In all sections, the following coordinate system will be applied; the origin for

the streamwise axis is set at the centre of the furthest upstream block, for the

spanwise axis at the block centre and for the vertical axis at the block base and all

distances are normalised using the block width.

3.1.1 Loughborough Experiments

3.1.1.1 Experimental Equipment & Set-Up

Flow Environment All of the experiments detailed here were performed in the

large flume in the hydraulics laboratory at Loughborough University. Figure 3.1

shows a plan view of the flume and a simple schematic of its cross sectional geom-

etry.
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The flume is lined with slate, has a length (Lch) of 8.6m, a width of 0.917m

and is flat bottomed. At the upstream end of the flume (at the top of the photo-

graph in Figure 3.1), there is a stilling tank and a bank of plastic tubing, designed

to straighten the flow before it enters the flume. At the downstream end, an ad-

justable gate allows for control of the water depth. Into this flume, a wooden bed

has been inserted to create a bed slope and on top of this, a wooden step has

been placed to create a compound cross-section. The wooden surfaces are either

varnished or finished with a waterproof coating and can be considered as hydrauli-

cally smooth. As shown in Figure 3.1, the step has a width (Wf l) of 0.370m and

a height (H f l) of 0.150m. Although it was attempted to achieve a bed slope of

1x10−3, the inaccuracies involved in construction with wood meant that achieving

this exact figure was impossible. After construction, a detailed channel survey was

therefore carried out using a theodolite in order to accurately calculate the rele-

vant bed slopes. The results of this survey are depicted in Figure 3.2. The results

for the main channel bed and floodplain bed are shown separately. The average

bed slope at the centre of the main channel over the entire length of the channel is

calculated to be 1.389x10−3, whilst that of the floodplain centre is 1.282x10−3.

Depth and level measurements made whilst the flume was running were per-

formed with a point gauge, mounted on a millimetre scaled measure. Flow mea-

surement was achieved using a stopwatch and a weigh tank, which was integral to

the flume set-up.

Acoustic Doppler Velocimetry The acoustic doppler velocimeter (ADV) was used

to measure the instantaneous velocity of the flow. Capturing this information over

time allows for the calculation of statistical data such as mean velocities, turbulent

intensities and Reynolds stresses. Where data quality is good, the ADV signal can

also be analysed to extract the dominant frequencies of the local turbulence and

identify any periodicity in the turbulent field. The ADV is a simple and robust piece

of equipment, the use of which does not entail the extensive health and safety pre-

cautions associated with its main alternative, the laser doppler velocimeter (LDV).
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Short pulses of sound are emitted by a transmitting transducer and are reflected

from small particles being carried by the flow. Four receiving transducers pick up

these reflected pulses and by measuring the change in frequency from the origi-

nal pulse, the velocity of the particles, and therefore of the flow can be calculated.

There are a number of constraints associated with its use, not least the fact that the

acoustic transducers (shown in Figure 3.3(a) as the blue areas) must be submerged

in the water whilst measurement is taking place. The ADV model used in this case

is the Nortek Vectrino, which has a single transmitting transducer in its centre and

four receiving transducers. Each receiving transducer measures velocity parallel

to its beam and simple trigonometry is used to convert these measurements into

the three Cartesian directions. For this model, the measurement volume is located

50mm below the transmitting transducer head. This has the obvious implication

that velocities in the top 50mm of the flow cannot be directly measured.

The ability of the ADV to accurately measure the streamwise, spanwise and

vertical velocity components is crucially dependent on the probe head’s correct

alignment to the flow. Although it is acknowledged that even the small variations

in the construction of the flume and the rails along which the ADV was mounted

can contribute significantly to the misalignment of the probe, preparations were

made to minimise and standardise the error. As a first step and whilst the com-

pound channel section was still to be constructed, a test was performed to choose

a standard yaw angle, i.e. rotation with respect to the vertical axis. The probe

was mounted at a chainage of 4.06m from the inlet, at the spanwise and vertical

central positions of a flow of depth 0.266m. Although fully developed flow condi-

tions would be required to ensure that the spanwise mean velocity component at

the channel centre is exactly zero, this position offered the closest reproduction of

these conditions that could be achieved with the available flume set-up. The span-

wise mean velocity was then measured for a range of yaw angles between −2◦ and

+2◦, where a negative rotation is towards the left bank and a positive rotation is

towards the right bank. Two sets of results were taken and the average of these is

plotted in Figure 3.4.
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Fitting a linear relation to this data suggested that a yaw angle of −0.22◦ was

suitable for the alignment of the probe with the flow in the flume. In practical

terms, the measurement of such a small angle was difficult but despite this, an

attempt was made to measure and mark this yaw position on the ADV mounting.

Although not as influential on the final results as the yaw angle, both the pitch and

roll angles, i.e. rotation about the spanwise and streamwise axes respectively, were

also both investigated. Since the orientation of the ADV mounting was fixed, these

angles could not be changed so that an investigation of the type described above

was impossible. Instead, the discrepancies between the orientation of the probe

and the channel bed were measured using a plumb line, spirit level and microm-

eter. Doing this at the location at which the blocks were to be placed, resulted in

a pitch angle correction of +0.942◦ and a roll angle correction of −0.286◦. These

were applied to the measured data through the processing software accompanying

the ADV.

Despite these precautions, later comparison of the experimental results with

numerical simulations revealed that further corrections to these angles were nec-

essary. For each experiment, the final rotation angles applied to the data taken by

the ADV were chosen in order to provide a realistic fit between the contours of the

streamwise velocity, which are largely insensitive to the small changes in rotation

angle and the secondary circulation pattern. The rotation angles chosen as a result

of this process are shown in Table 3.1.

During measurement, the accuracy of the data retrieved with an ADV is max-

imised through the control of two factors; the signal-to-noise ratio (SNR) and the

correlation score. Previous work comparing the performance of the Nortek Vectrino

(Rusello et al., 2006; Voulgaris and Trowbridge, 1998) to non-invasive velocimetry

techniques such as PIV found a maximum error of 4% in the streamwise veloc-

ity measurement between the two systems, provided that appropriate minimum

values of SNR and correlation were maintained for each measurement.

Monitoring of the signal-to-noise ratio allows the user to ensure that the strength

of the signal received by the transducers in reflection from moving particles is suf-
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Table 3.1: Rotation Angles (◦) applied to the velocity vectors measured with the ADV

Series Case Heading

(◦)

Pitch

(◦)

1 I -1.5 1.0

1 II 2.5 1.0

1 III 0.5 1.0

2 I -1.0 0.0

2 II -0.75 +0.25

ficiently large in comparison with the background noise. Since the ADV measures

not the velocity of the water itself but rather the velocity of small particles being

conveyed by the water, the SNR may drop if the number of such particles is too

low. However, the SNR is also dependent on the nominal velocity range setting,

which will be discussed below. The SNR value is calculated using equation 3.1. In

order to maintain the accuracy quoted by Rusello et al. (2006), a minimum value

of 19.5 was applied to the collection of data here.

SNR= 20log

�

Ampli tudeSignal+Noise

Ampli tudeNoise

�

(3.1)

The correlation score gives an indication of the correlation of successive mea-

surements. Rusello et al. (2006) quote the recommended minimum value of cor-

relation in order to maintain accuracy to be 70% and this figure has been applied

here.

In order to maintain the SNR and correlation scores for each measurement

point such that the accuracy of the collected data was maximised, the ADV settings

were carefully chosen, as follows:

• Recording Period (T) - Sun (2006) successfully used the same ADV equip-

ment to record velocities in the same flume. Having performed sensitivity

tests at a single measurement station to ascertain the minimum recording
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period necessary to achieve a constant mean velocity reading, a period of 2

minutes was chosen. In this study, where the flow around the bluff bodies

may include periodic vortex shedding, it was also necessary to confirm that

this recording period was significantly longer than the shedding period of the

body. Based on the work of Lyn et al. (1995), who took detailed measure-

ments of the wake behind a two-dimensional square bluff body, a Strouhal

number of 0.13 was assumed to be the order of that expected. Based on this

assumption and a resultant shedding period of the order of a second, the two

minute recording period is sufficient.

• Nominal Velocity Range (VR) - The nominal velocity range should be set to

cover all of the anticipated velocities that are to be measured and is used to

set the time lag between acoustic pulses. A low velocity range is equivalent to

a longer time lag. Rusello et al. (2006) state that the setting of an excessively

low velocity range leads to the decorrelation of successive measurements. Al-

ternatively, an excessively high velocity range introduces considerable noise

into the measurement, which emanates from the ADV circuitry. Rusello et al.

recommend that "selecting the lowest velocity range applicable to a flow is

generally the best option".

In order to test which velocity range would be most appropriate in this sce-

nario, the setting was tested at two locations: in the main channel, where the

highest velocity might be expected and directly behind the block, where the

lowest velocity is expected. The position in the main channel was set so that

measuring volume was 38.5mm from the floodplain bed and that x =−5.53

and y = −9.43. The position behind the block was set at the same vertical

position but such that x = 1.3 and y = 0.04. The remaining ADV parameters

were set to the following values: T = 2min, fsa = 200Hz, HSV = 2.5mm,

LT = 1.8mm. Data was then gathered at the following velocity ranges in the

two positions: ±0.03m/s, ±0.1m/s, ±0.3m/s, ±1m/s, ±2.5m/s and±4m/s.
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Figure 3.5 shows the mean streamwise velocity, turbulent kinetic energy and

u′v′ Reynolds shear stress results plotted against the velocity ranges for the

main channel and behind the block positions respectively. The results for

the remaining Reynolds shear stresses were similar to those for u′v′ and have

been omitted for brevity. All of the data was filtered using the criterion stated

above, where low quality data points were removed from the series.

From an examination of the plots for the mean streamwise velocity, it is

clear that both in the main channel and behind the block, the results at

the two lowest velocity ranges are significantly different from those at the

higher values. Following the advice that the lowest suitable velocity range

should be chosen, this would suggest that the ±0.3m/s range is the correct

choice. The results for the turbulent kinetic energy are similar so that the

results at the lowest two ranges suggest that they should be ruled out. For

the u′v′ Reynolds shear stress component, the pattern of variation is differ-

ent between the two positions. In the main channel, the Reynolds stress is

nearly constant up to and including at the ±1m/s range. Behind the block,

the ±0.1m/s, ±1m/s and ±2.5m/s ranges seem to give a consistent result.

This pattern is mimicked in the other two components of the Reynolds shear

stress. Instead of choosing the ±0.3m/s range therefore, the experiments

were carried out using the ±1m/s range.

When the experimental data was processed, there were a number of loca-

tions, mainly in the block wakes on the floodplain, where the chosen velocity

range appeared to be too high, introducing a high level of noise into the data

set. At these stations, after filtering the data with the usual limit, two bands

of erroneous data points were left. An example of this is shown in Figure

3.6 for the measurement point at x = 3.5 and y = 1.86 in Series 1, Case I.

In order to remove this noise from the data, the maximum value limit was

adjusted for each measurement point in turn.
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• Sampling Rate ( fsa) - Based on a review of other authors work and an ex-

amination of the dominant turbulent frequencies in compound open channel

flow in the Loughborough flume, Sun (2006) concluded that nearly all of the

turbulent intensity is captured by using a sampling frequency of 50Hz. As-

suming a Strouhal number of 0.13, this would equate to at least 29 readings

per shedding period for the experiments in question.

Taking these basic facts into account however, a test was performed to find

the optimum sampling frequency for use in this scenario. Intuitively, the

measurement station directly behind the bluff body is a location at which the

collection of good quality data is challenging and it was therefore at this po-

sition that the test was performed. Setting all of the other parameters to the

final values described in their respective sections (T = 2min, VR = ±1m/s,

HSV = 2.5mm, LT = 1.8mm) a set of velocity data was measured at a range

of different sampling rates: 25, 50,75, 100 and 200Hz. The resulting data

sets were filtered using linear interpolation and the resulting data sets are

shown in Figure 3.7, where Ux , Uy and Uz are the velocities in the stream-

wise, spanwise and vertical directions respectively.

A visual inspection of the results quickly reveals that the data gathered at the

higher frequencies of 75,100 and 200Hz was of a poorer quality than that

gathered at the lower frequencies. Details of the results at 50Hz and 25Hz

are shown in Table 3.2. Although the mean velocity results are very similar

between these two frequencies, it is clear that the turbulent kinetic energy

results are significantly higher for the 50Hz case. This is an indication that

the higher sampling frequency allows the user to pick up more of the turbu-

lence spectrum than the lower frequency. The choice of sampling frequency

is therefore a compromise between the proportion of the turbulent spectrum

included and the overall quality of the data. As such, the 50Hz sampling

frequency was chosen.
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Table 3.2: Velocity statistics at sampling frequencies of 25 and 50Hz

fsa U V W K u′v′ u′w′ v′w′

[Hz] [cm/s] [cm/s] [cm/s] [cm2/s2] [cm2/s2] [cm2/s2] [cm2/s2]

50 -16.12 -3.72 0.68 623.97 51.08 -9.87 -25.44

25 -16.59 -4.46 0.87 386.52 -39.51 -17.41 -20.64

• Height of Sampling Volume (HSV ) - The sampling volume in which the ADV

measures is set to be a block of diameter 6mm. The user can choose to define

the height of the sampling volume however. In this case, the value of 2.5mm,

taken by Sun (2006), has been applied in all cases.

• Transmitting Length (LT) - The transmitting length was uniformly set to

1.8mm.

In post-processing, the quality of the data can be further optimised by filtering

the data sets according to two further parameters:

• Acceleration - This parameter allows the user to exclude a data point on the

basis of the scale of difference between it and its neighbours. A limiting value

of 3 times the gravitational acceleration was chosen as a standard here.

• Velocity - A velocity limit can be imposed on the data set to exclude outlying

data points. This limit is expressed as a multiple of the standard deviation

of the data. A limit of 3 times the standard deviation was generally chosen.

However, for some data series, where excessive noise in the data caused by

the operation of the ADV was required to be excluded, this limit was varied.

Flow Development Having chosen the settings with which to proceed, a further

preliminary test was performed before commencing the experiment proper. Using

a single header tank for both floodplain and main channel and at 8.6m in length,
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recent work by Bousmar et al. (2005) suggests that the Loughborough flume may

be too short in which to establish fully developed compound channel flow. Fully

developed compound channel flow is characterised by a velocity gradient between

the floodplain and main channel. The distinctive pattern of both streamwise and

vertically orientated vortices that has been repeatedly observed at the floodplain

edge is intrinsically linked to this velocity gradient and as such, the degree of

development at the block test location was of vital interest.

Where a single header tank is used for both main channel and floodplain and

the flow is entering both sections at a uniform velocity, it has been claimed that

a significant downstream length is required in which momentum is transferred

from the floodplain to the main channel, thus establishing the appropriate velocity

gradient. A test was therefore devised to check whether the insertion of a board

across the floodplain inlet would increase the rate at which a fully developed flow

was obtained by reducing the velocity of the flow on the floodplain at the inlet.

Figure 3.8 shows both configurations: (a) with the board and (b) without it.

Having chosen the position of the block to be at CH6.95m, the gradient of

the water surface was calculated at the centre of the floodplain over the dis-

tance CH4.25m to CH7.25m.The ’with board’ case was tested first of all and using

the downstream gate as a control, a water surface gradient of 1.333x10−3 was

achieved with a total flow rate of 0.109m3/s. This results in a 3.9% difference

between the gradient of the floodplain bed and the water surface and the flow is

therefore considered to be uniform. The relative depth of this set-up is 0.472. In

practice, the accuracy of the water surface gradient measurement is limited be-

cause of the scale of the depth probe in relation to the size of the change in depth

over the length of the channel and also because of the unsteady nature of the wa-

ter surface. For the experiments themselves, the methodology with regards to flow

uniformity will be discussed below. In this preliminary stage, the flow and gate set-

tings were kept constant for both the ’with board’ and ’without board’ cases. The

ADV was set up with the following settings: T = 2min, fsa = 200Hz, VR=±1m/s,

HSV = 7.0mm, LT = 1.8mm. A traverse of measurement was then undertaken
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at a depth of 0.01m from the floodplain bed at chainages 1.25m, 3.25m, 5.25m

and 7.25m for both cases. Figure 3.9 shows a comparison of the development of

the mean streamwise velocity over the length of the flume, where the floodplain

data is displayed on the left of each graph and the main channel data on the right,

delineated by the vertical dashed line. The velocity is shown normalised with the

bulk mean velocity and the lateral position is expressed as a proportion of the total

channel width.

For the ’with board’ case, it is clear from the results at CH1.25m that there is a

reversal of the flow on the floodplain immediately downstream of the inlet. At the

positions further downstream, a clear velocity gradient can be observed between

the floodplain and the main channel such that at CH7.25m, the velocity on the

floodplain is approximately 57% of that in the main channel.

For the ’without board’ case, the velocity at the first chainage position is ap-

proximately uniform across the section. At the downstream positions, a velocity

gradient is seen to develop such that the floodplain velocity is approximately 95%

of the main channel velocity. Although the velocity gradient is smaller in compari-

son with the ’with board’ case, it is also observed that a large dip in velocity occurs

at the floodplain edge.

Based on the observations of Tominaga and Nezu (1991), amongst others, on

compound channel flow at a relative depth of 0.5, the presence of the large dip

in velocity at the floodplain edge in the ’without board’ case would tend to sug-

gest that this is the flow that is closer to the fully developed scenario, despite

the smaller velocity gradient. Inspection of the mean spanwise velocity data for

the ’with board’ case suggests that even at the furthest downstream position, fluid

is moving from the floodplain into the main channel. It is likely therefore that

although the pace of change in the data is slowing, the artificially lowered flood-

plain velocity is increasing, whilst the heightened main channel velocity is slowing.

There is certainly no evidence to suggest that the characteristic secondary currents

associated with fully developed flow of this type have begun to establish them-

selves. In fact, the ’with board’ case could be interpreted as an exacerbation of the
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problem, rather than an improvement.

Based on these observations, the experiments have been performed without the

board at the inlet. It is, however, acknowledged that the flow at the block position

is not likely to be fully developed since the velocity gradient is low. For most of the

cases detailed below therefore, an upstream cross-section of velocity data has been

gathered for use as boundary conditions in the numerical model. It is hoped that

having achieved a good calibration of the model with these experimental results,

the modelling results for a fully developed flow can be usefully analysed.

3.1.1.2 Experimental Series - Set-Up Details

Series 1 - Multiple Small Aspect Ratio Blocks In actual fact, a first set of exper-

iments were performed before all of the preliminary steps outlined above had been

completed. These tests were designed to test the central hypothesis using the ma-

terials immediately available, before proceeding to more detailed measurements.

In these tests, a series of 5 concrete blocks of width 0.06m and of low aspect ratio

(1.67) were placed along the floodplain edge, with the first block centre placed at

a chainage of 4.25m and the subsequent blocks placed at a centre-to-centre spac-

ing of 12Wbl . The flume inlet was set up without the board, but in this case, the

floodplain section did not start until a chainage of 1.50m. A sampling frequency of

200Hz and a sampling volume height of 7mm were used.

The spacing of 12Wbl is based on the work of Havel et al. (2001), who both col-

lated the work of other researchers and performed experiments around submerged

sharp-edged bodies in tandem, in an attempt to define the spacings at which transi-

tion from one flow regime to the next occurs. According to their work, this spacing

is the minimum spacing at which the shedding processes of two tandem bodies are

completely independent. Since vortex shedding is a dominant factor in determin-

ing the drag force created by the presence of a bluff body, the independence of the

shedding mechanisms is an important factor.

The set-up of the flume at the inlet for this series of experiments can be seen

in Figure 3.1(a), which was taken before the floodplain section was extended to
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the inlet. The abrupt change in cross-sectional geometry occurring at the start

of the floodplain section means that the nearly developed flow described in the

previous section for the ’without board’ case does not exist in this case. However,

measurements have been taken around the fourth block in the five block series

and it is assumed that the flow is sufficiently developed due to the influence of

the upstream blocks for measurements to be useful. Uniform flow conditions were

attained between CH4.25m and CH7.25m, although the uncertainty arising from

the unsteady movement of the water surface and the coarse scale of the depth

probe remain problematic.

In total, three sets of experiments were carried out within this series, the details

of which are shown, together with the details of all the experiments performed, in

Table 3.3. If a parameter value is missing from Table 3.3, this implies that the data

is inapplicable or unavailable. For the emergent cases, it is suffice to say that the

block height was significantly larger than the water depth. In order to define a

block aspect ratio for these cases therefore, the suitable measure is the floodplain

depth divided by the block width (D f l/Wbl) or the total water depth divided by the

block width for the simple channel cases (Dch/Wbl). For the submerged cases, the

block aspect ratio is equal to the block height divided by the block width (Hbl/Wbl).
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Figure 3.10 shows the streamwise measurement positions, stations S1 - S4,

and their positions relative to the fourth block, which is shaded in grey. Station

1 is located at x = −3.5, Station 2 is located at x = 0.0, Station 3 is located at

x = +3.5 and Station 4 is located at x = +6.0. The channel was traversed with

the ADV at each of these cross-sections at a vertical position of 0.03m above the

floodplain bed, i.e. z = +0.5. In the spanwise direction, the lateral spacing of

the measurement points was 0.83Wbl in the outer regions of the flow. Within a

region centred on the block of width and length 3Wbl , the spacing was reduced to

0.25Wbl . This area is shown with the dotted outline in Figure 3.10(b).

Series 2 - Single Large Aspect Ratio Blocks The second series of experiments

was designed to fulfil the central aim of collecting detailed flow data around a

single bluff body at the floodplain edge and examining the structure of the wake.

Two cases were pursued: Case I with an emergent block and Case II, with a sub-

merged block. In both cases, a single square sectioned aluminium block of width

Wbl = 0.038m was placed at CH6.95m exactly at the edge of the floodplain. Since

practicality excluded the obtaining of exactly uniform flow in the flume, the same

flow (Q = 0.109m3/s) and downstream boundary conditions were applied for all

tests as were set-up for the flow development tests described in Section 3.1.1.1.

The pertinent flow details are shown in Table 3.3 for both cases. The water depth

used to determine the channel Reynolds number and Froude number was mea-

sured at CH4.25m.

The choice of flow geometry was a compromise between the block aspect ratio

and the relative depth. For wall mounted submerged circular blocks, Kawamura

et al. (1984) reported that for block aspect ratios at or below 2, regular vortex

shedding is largely suppressed. In order to study the flow around blocks in which

some regular shedding might be expected, it was therefore decided to maintain the

block aspect ratios above this figure. The larger the block aspect ratio however, the

larger the relative depth. Knight and Shiono (1996) maintain that the interaction

between main channel and floodplain is greatest at relative depths of between 0.1
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and 0.3. Although the creation of such low values was impossible, the relative

depth was minimised and as such, all subsequent values are less than 0.5.

In each case, two sets of measurements were made: firstly, a horizontal surface

of data at a height of 1.0Wbl from the floodplain bed and secondly, a cross-section

of data at x = 2.7. Remote from the block, a spanwise measurement spacing of

1.184Wbl was used, whereas in a region defined by −1.145 < y < 1.224 a span-

wise measurement spacing of 0.237Wbl was applied. For the horizontal surface, 7

traverses were made in the wake. For the cross section in Case I, 8 traverses were

performed. The measurement points are shown in Figures 3.11 to 3.14, where

grey circles represent measured points and black circles are assumed, extrapolated

or interpolated data points.

In addition to these measurements points, a cross-section of data was also gath-

ered upstream of the block at x = −5.5 for each case. The data from this cross-

section, taken at a point assumed to be upstream of the area of influence of the

block, was gathered in order to be put to use as upstream boundary conditions

for any numerical simulation of the experiments. Since it cannot be assumed that

fully developed uniform flow conditions were achieved, the availability of these

upstream conditions will allow for a sensitivity analysis to be performed with the

model. Since for each case, the horizontal plane of data was measured on a differ-

ent occasion to the downstream cross-section, the velocity profile at this upstream

station was used as an additional check on the similarity of the flows. A full cross-

section of data was gathered upstream on the occasion of measuring the data in the

horizontal plane, whilst a single traverse of data at a depth of z = 1.579 was mea-

sured when the flow was set up for the cross-sectional measurements. For Case I,

the maximum difference between the mean streamwise velocities was 2.8%, whilst

the average was 1.2%. For Case II, the maximum difference between the mean

streamwise velocities was 3.4%, whilst the average was 1.5%.
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3.1.2 Kansai Experiments

A second set of physical experiments was carried out in the hydraulics laboratory

at Kansai University. Having established with the ADV data that the structure of the

bluff body wakes at the floodplain edge is altered from that in a simple channel,

the measurements in Kansai were carried out with the aim of measuring the drag

coefficient of equivalent blocks in simple and compound channels. To this end,

three values were measured from which the drag coefficient is calculated indirectly,

namely the velocity, free surface position and boundary shear stress. As the large

water depth in the Loughborough flume made the measurement of the boundary

shear stress excessively difficult, the calculation of drag coefficient for the cases

measured there was not possible.

3.1.2.1 Experimental Equipment & Set-Up

Flow Environment The flume in the Kansai laboratory is shown in Figure 3.15,

which shows a photograph of the flume taken looking downstream from near the

inlet and a simple schematic of its cross sectional geometry.

Unlike the large flume in the Loughborough laboratory, the Kansai flume is

mounted in a frame, lifting it to eye level and allowing the user to easily adjust

the slope of the base of the channel via three jacks at the upstream, central and

downstream positions respectively. The flume is constructed from glass and is 14m

in length (Lch) and 0.5m wide (Wch). Water is supplied in a closed system, with a

large tank elevated above the channel at the upstream end, from which water falls

through a notched weir to a stilling tank below. At the downstream end, a weir

plate is fitted to enable control of the downstream water level.

The bed slope of the flume is set by adjusting the jacks and was measured

by raising the downstream weir, filling the flume with still water and measuring

the depth of the water over the length of the flume. The slope of the flume was

set as close as possible to 0.001, where Figure 3.16 shows the position of the

water surface at the channel centreline plotted against streamwise position. Linear
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regression of the measured data shows that the overall slope is 0.001 with a R-

squared value of 0.9829.

For the measurements in the simple sections, the blocks were attached directly

to the centre of the glass flume floor using silicon sealant. For the measurements in

the compound sections, a floodplain section was constructed out of lengths of solid

plastic with a depth of 0.022m mounted on two lengths of rectangular aluminium

piping of depth 0.060m, making the total floodplain height (H f l) 0.082m. This

construction starts at a chainage of 3.25m, directly upstream of which, a wooden

ramp was inserted to minimise flow disruption. Since considerable difficulty was

experienced in securing this ramp to the body of the flume, to prevent it from

floating, a heavy steel plate was set on top of the ramp, as shown in Figure 3.17.

Although the disadvantages of this floodplain set-up are acknowledged, the en-

tire length of the flume, in common with the Loughborough flume, is unlikely to

be sufficient to establish fully developed flow. The judgement was therefore made

to provide as much upstream length of floodplain as the available materials al-

lowed for and to follow the procedure set up for the Loughborough experiments,

to measure the cross-sectional velocity profile upstream of the block and use these

results as the inlet conditions for the numerical model. Once verified, the model

should allow us to make a comparison of the experimental results to those in a

truly fully developed flow. The test section onto which the blocks were mounted

was constructed from glass and is shown in Figure 3.17. Considerable effort was

expended to ensure that the glass test section was sealed and that no level differ-

ences occurred at the meeting of the glass and plastic sections.

Depth and level measurements made whilst the flume was running were per-

formed with a number of point gauges, which all included Vernier scales allowing

for measurements with an accuracy of a tenth of a millimetre.

Electromagnetic Velocimeter The electromagnetic velocimeter (EMV) consists

of a magnet mounted within a velocity probe. As the probe is inserted into the

flow, the movement of the fluid displaces the magnetic field and the electric field
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that is created as a result of this change is measured by pairs of electrodes as

a voltage, which can then be converted into a flow velocity. The EMV used in

these experiments measured two components of the velocity to an accuracy of

±2mm/s; streamwise and spanwise velocity, with a head of diameter 8mm.The

measurements provided by the EMV are useful only in determining mean values of

velocity and have not been analysed for information regarding the turbulent field

in this case.

The EMV must be correctly rotated with respect to the flow to produce accu-

rate results. The rotation of the EMV was set by performing a series of crude test

measurements in the simple channel section upstream of the floodplain ramp at a

chainage of 1.5m. Although this section is certainly too short in which to establish

developed flow and therefore to claim that the secondary circulations at the chan-

nel centre will be zero, it was assumed that the secondary circulations would be

small. The heading of the EMV was therefore rotated until a spanwise velocity of

less than 1x10−3m/s was registered by the probe at the channel centre (width and

height). Where this was not possible, the spanwise velocity reading was reduced to

its minimum possible value and an appropriate rotation was applied to the results.

All of the data was collected on the assumption that the velocity data may require

to be rotated again by small amounts in post-processing.

The reliability of the results from the EMV reduces when the probe is placed

within 1cm of a boundary such as the channel bed, walls or free surface. This

means that measurements could be taken far closer to the free surface in compari-

son with the ADV and provided useful data on the secondary flow patterns in that

region. Since no turbulence analysis is to be performed with this data, the amount

and frequency of data collection was relaxed. A sampling frequency of 20Hz was

used for 25s at each point. The data was filtered using a limit of 3 times the

standard deviation and the measured voltages were converted to velocities using

Equation 3.2.

Veloci t y = 0.2 ∗ Vol tage (3.2)
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Table 3.4: Rotation Angles (◦) applied to the velocity vectors measured with the EMV

Case Rotation Angle (◦)

I +0.26

II +0.92

III +0.20

IV +0.75

Measurements of time-averaged streamwise and spanwise velocity were there-

fore collected using the EMV at a matrix of points throughout both the simple and

compound channel set-ups. Having collected and filtered the data, it was also nec-

essary to rotate the velocity vectors to account for the difficulties in positioning the

EMV. For measurements in the simple channel cases, the rotation angle was cho-

sen such that the magnitude of the spanwise velocity component at the channel

centre at the upstream station was minimised. For the compound channel cases, it

was assumed that the spanwise velocity was zero at the location of the maximum

streamwise velocity and a rotation angle applied to ensure that this was the case.

The resulting rotation angles are shown in Table 3.4.

Pitot-static Tube In order to measure velocities and boundary shear stress val-

ues at the bed and wall boundaries of the channel, a 4mm diameter Pitot-static

tube was also used in these experiments. Although boundary shear stress is more

usually measured using a Preston tube, the shape of which is especially designed

for the purpose, the mechanism of both tubes in measuring the dynamic pressure

within the log-law region close to solid boundaries is the same. As such, the stream-

wise velocity was found directly from the dynamic pressure measurement and the

boundary shear stress was found using the standard equations for this calculation

from Patel (1965), i.e. equations 3.3a to 3.3e. The equations define the boundary

shear stress in terms of the physical properties of the fluid (ρ) and (µ), a represen-

tative distance that is usually the Pitot-static tube diameter (dpst) and the dynamic
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pressure (PD) measured within the region of influence of the log-law.

a∗ = log
(PDd2

pst )/(4ρν
2)

10 (3.3a)

b∗ = log
(τbd2

pst )/(4ρν
2)

10 (3.3b)

b∗ = 0.5a∗+ 0.037, b∗ < 1.5 (3.3c)

b∗ = 0.8287− 0.1381a∗+ 0.1437a∗2− 0.006a∗3, 1.5< b∗ < 3.5 (3.3d)

a∗ = b∗+ 2log1.95b∗+4.1
10 , 3.5< b∗ < 5.3 (3.3e)

The Pitot-static tube was connected to a pressure transducer, which was cali-

brated before the measurements were taken, to establish a relationship between

the measured dynamic pressure and the voltage recorded by the computer. A pho-

tograph of the calibration process is shown with the resulting graph in Figure 3.18.

This was achieved by connecting only the total pressure tube to the transducer and

submerging the tube in water. The other side of the transducer was left open to the

atmosphere and the pressure difference was varied to the limits of measurability

by adjusting the vertical position of the transducer. Equation 3.4 is the result of

this process.

Head = 0.1002 ∗ Voltage − 0.0023 (3.4)

It is acknowledged that whilst the coefficient of the calibration equation for

the pressure transducer is invariant, the constant can be very sensitive and should

be carefully checked. Indeed, whilst the pressure transducer is in use, monitoring

this constant provides a confirmation that the performance of the transducer and

Pitot tube is consistent. Before and after each set of measurements were taken
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in the moving fluid therefore, a background value was taken by placing the Pitot-

static tube ( with both tubes now connected to the transducer ) in a container

of still water. Thus, instead of using the intercept value from equation 3.4, the

average of these readings was subtracted from the values of head obtained in the

flume. The dynamic pressure was sampled at a frequency of 5Hz for 120s at

each location, where the locations were chosen to correspond with the lateral and

vertical positions at which velocities were measured with the EMV.

Ultrasonic Level Sensor In order to know the static pressure distribution through-

out the measured cross-sections, it was also necessary to measure the profile of the

water surface. This was achieved to high accuracy using an ultrasonic level sensor.

Before each use, the sensor was calibrated using the set height cylinders supplied

with the sensor equipment. These cylinders were placed on top of a 6cm box

to ensure that the calibration limits encapsulated the likely position of the water

surface. In the case of the compound channel, this stack was set on top of the

floodplain section. The calibration process provided the relationship between the

voltage signal produced by the sensor and the water surface position.

The level sensor consists of a small disc of 2cm diameter. As the sensor is

brought closer to the water surface, the water surface area over which measure-

ments are made reduces. However, where the water surface is highly angled, such

as in the wake of the blocks, at positions too close to the surface the sensor can

fail to produce any meaningful results. The vertical position of the sensor was

therefore chosen to be as close to the water surface as possible to capture sufficient

data. The water surface position was sampled at a frequency of 20Hz for 120s at

each location. At positions of maximum deformation of the surface, this time was

extended to 180s to ensure that sufficient reliable data were recovered.

The sensor was positioned so that the centre of the disc was directly over the

measurement point of interest. These points were chosen to coincide with the

EMV velocity measurement positions. The resulting data was generally filtered in

a similar fashion to the data from the EMV, using a limit of 3 times the standard
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deviation to exclude outliers. However, in cases where the deformation of the free

surface affected the results and the sensor returned invalid results, these points

were recorded with values at or around 5. For data series affected by this type of

result, the usual filtering was preceded by the removal of all data points above a

certain value threshold.

A sample of the results from the sensor is shown in Figure 3.19. These show the

profile of the water surface upstream of the block in Series 4, Case IV, where the

profile of the water surface should be close to symmetry. The original measured

profile is shown with a dotted line, from which it is clear that there is a significant

lateral gradient associated with the results. This is likely to be due to a small

gradient between the rails on which the mounting for the meter sits. Applying a

correction for this gives the results shown with the solid line. Since the results for

Series 4, Case III showed a very similar trend, an average correction factor was

calculated from these two cases and then applied to all results measured with this

equipment.

3.1.2.2 Experimental Series - Set-Up Details

The experiments pursued in the Kansai flume were designed to collect the nec-

essary data to calculate and compare the coefficients of drag for equivalent bluff

bodies in simple and compound channel flows. Although not including turbulence

data, the mean velocities, boundary shear stresses and water surface positions are

also helpful in directly comparing the state of the wakes between the two channels

and in verifying the results from the Loughborough experiments. The experimental

set-up for this, Series 4, is detailed in Table 3.3. The block used in the Kansai flume

was a solid cubic block of aluminium of width Wbl = 0.019m, which was placed at

the edge of the floodplain at a chainage of 9.5m.

For the measurements of velocity with the EMV, a spanwise sample spacing of

2Wbl was used where possible far from the block and 0.25Wbl in a zone defined by

−1.0 < y < 1.0. The resultant measurement grids are shown in Figures 3.20 and

3.21, where the EMV measurements are shown with the grey circles and assumed,
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extrapolated and interpolated points are shown in black. The white points show

the points measured with the Pitot-static tube. The points on the water surface

were measured in order to correspond to the points shown in these figures.

Three streamwise locations were chosen for measurement. For the compound

channel cases, upstream of the block at x =−5.53 and downstream of the block at

x = +5.53, the EMV was used to gather data in the manner described above. The

water surface profile and boundary shear stress distribution were also measured at

these positions. Finally, the boundary shear stress distribution at the block centre,

i.e. x = 0, was added.

The aim was to choose an upstream measurement position at which the com-

pound channel flow was as yet undisturbed by the presence of the block and was

originally chosen with respect to the work of Lyn et al. (1995). Taking measure-

ments in the 2D plane at the vertical centre of a square block mounted in a closed

channel, they reported a measurable effect from the presence of the block on the

streamwise velocity profile at a position of x = −3. According to the work of

Baker (1980), the position of the upstream separation point for a wall mounted

circular cylinder is a function of the cylinder Reynolds number, cylinder aspect ra-

tio, freestream turbulence, the ratio of the cylinder width to the boundary layer

thickness and the boundary layer form function.

Without an accurate picture of all of these variables for the experiments of Lyn

et al. (1995), direct comparison was not attempted. However, the Reynolds num-

bers and block aspect ratios were similar enough that the assumption was made

that a near doubling of the distance to the upstream section would be sufficient.

Performing the compound channel cases first, the results presented in section

4.1.2.1 show that the velocities measured using the EMV do not betray any influ-

ence from the block. However, examination of the boundary shear stress distribu-

tion shows that the values of τb do not reach a maximum at the floodplain edge as

observed by Tominaga and Nezu (1991). Instead, the values are depressed in this

area, which can be interpreted as the early upstream influence of the presence of

the block in decelerating the flow in this area. Despite this, it has been assumed
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that the measurements of velocity at this cross-section are undisturbed enough to

be representative of the freestream conditions.

When setting up the first simple channel case, it was found that at x = −5.53,

the flow was significantly affected by the presence of the block. The vectors of

mean spanwise velocity V clearly showed the flow diverging and a significant re-

gion of deceleration in streamwise velocity U in front of the block. The upstream

cross-section of measurements was therefore taken further upstream at x = −11.

Even this far upstream, the effects of the presence of the block could be observed

in the velocity and boundary shear stress distributions. However, the influence was

judged to be reduced sufficiently to provide a reliable estimate of freestream con-

ditions. The upstream section of data was therefore collected at x = −11 for both

the simple channel cases. The measurement positions at x = 0 and x = +5.53

were maintained.

3.2 Numerical Modelling

3.2.1 Basic Concepts & Equations

In order to complement the experimental results, simulations are also undertaken

with a numerical model developed at Loughborough University (Vyas, 2007). The

model solves the continuity and Reynolds Averaged Navier Stokes (RANS) equa-

tions on a structured, co-located grid using a Cartesian coordinate system. The

structured grid is constructed using a separate programme to the main model.

Variations in channel geometry can be achieved using the masking concept, where

parts of the grid are blanked out and boundary conditions are applied along their

edges. As previously mentioned, the Reynolds averaging approach is only capable

of reproducing the average behaviour of the flow but, as a result of this simplifi-

cation, is relatively cheap to implement. The model therefore solves the equations

of flow in the forms shown in Equations 3.5a to 3.5d, namely the continuity equa-

tion ( Equation 3.5a ) for the conservation of mass and the steady RANS equations

76



3.2 Numerical Modelling

(Equations 3.5b, 3.5c and 3.5d ) for the conservation of momentum.

∂ U

∂ x
+
∂ V

∂ y
+
∂W

∂ z
= 0 (3.5a)
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∂ z
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µ
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∂
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(ρu′w′)−

∂

∂ y
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∂

∂ z
(ρw′w′) (3.5d)

where P is the static pressure, µ is the fluid viscosity, ρ is the fluid density, g is

the gravitational acceleration and θ is the angle between the channel bed and the

horizontal.

The momentum equations represent the balance between the convection of

momentum and the sum of forces causing that convection. For flow in an open

channel, these include the static pressure gradient, gravity, molecular and turbu-

lent normal and shear stresses and for certain cases, surface tension, centrifugal

and Coriolis forces. By assuming that the fluid is Newtonian in character and that

the flow is incompressible, we can write the stresses caused by molecular motion

in terms of the static pressure and the dynamic viscosity.
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The equations are solved using a finite volume formulation, where the diffusion

terms are discretised using a central differencing scheme and the convection terms

are discretised using a blend of upwind and central differencing techniques (UDS

and CDS). In order to calculate the pressure terms in a manner that also satisfies

continuity, the well known Semi-Implicit Method for Pressure Linked Equations

(SIMPLE, (Patankar and Spalding, 1972)) is used. After an initial pressure field is

guessed, a Poisson equation for the pressure correction is solved with the momen-

tum equations on each iteration so that the velocity and pressure fields develop

simultaneously in the calculation. The linearised equations are solved using the

strongly implicit procedure (SIP) method of Stone (1968).

For steady, laminar flow modelling, the procedure in the code is therefore:

• Set initial values of dependant variables at all nodes.

• Assemble momentum equations using these initial variable values to linearise

the non-linear terms.

• Iterate to solve the linearised momentum equations using the SIP to find

intermediary values of U , V and W .

• Calculate residual error in this solution.

• Assemble the pressure correction equation using these intermediary veloci-

ties.

• Iterate to solve for the pressure correction and update pressure and velocities.

• Calculate residual error in this solution.

• Re-assemble the momentum equations using the updated values and repeat

the procedure.

• Print solution when error residual values fall below predetermined threshold.
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3.2.2 Turbulence Modelling

3.2.2.1 The K-ε model

Since we are using Reynolds averaging, the momentum equations include terms

that represent the time-averaged stresses caused by the turbulent motion. In or-

der to solve the equations, we must introduce a model for these unknown correla-

tions. To do this, we use the eddy viscosity concept (Boussinesq, 1887). Boussinesq

(1887) created a model whereby the turbulent stresses are assumed to be directly

proportional to the mean velocity gradients and therefore the mean strain rates.

Equation 3.6 is called the Boussinesq Equation and describes this idea in index

notation.

−ρu′iu
′
j = µt

�∂ Ui

∂ x j
+
∂ U j

∂ x i

�

−
2

3
ρKδi j (3.6)

where K is the turbulent kinetic energy, and δi j is the Kronecker delta. Inclu-

sion of this term ensures that when i = j, i.e. for the normal stresses, the equation

is always positive and equal to double the turbulent kinetic energy. The δi j term

is absorbed into the pressure gradient term when the Boussinesq equation is sub-

stituted into the momentum equations. µt is the turbulent eddy viscosity and is a

property of the flow, as opposed to µ, which is a property of the fluid. The model

means that the action of the turbulence increases the effective viscosity of the fluid.

If the Boussinesq model is used, the terms including the dynamic viscosity in the

RANS equations are replaced by terms including the turbulent viscosity µt . The

Boussinesq model allows us to predict the distribution of the turbulent stresses if

we know the corresponding distribution of the turbulent eddy viscosity.

There are a number of different models available to predict the distribution of

the eddy viscosity. The simplest methods involve attributing values of µt based on

experimental measurements, trial and error or by relating µt to the mean strain

rate. One of the most commonly used methods, the k−ε model however, attempts
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to account for the transport of the turbulence properties within the flow field.

It requires us to solve two transport equations - one for the turbulent intensity,

represented by the turbulent kinetic energy K (Equation 3.7 ), and one for the

turbulent length scale, represented by the turbulent kinetic energy dissipation rate

ε (Equation 3.8). This model is based on the assumption that the dissipation rate

is directly proportional to K
3
2

l
, where l is the turbulent length scale. By solving

these equations to calculate the distributions of K and ε, the eddy viscosity is then

found using the Kolmogrov-Prandtl formula (Equation 3.9).
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µt = ρCµ
k2

ε
(3.9)

The model is based on a series of empirical coefficients, simplifications and

assumptions but for many applications can produce very useful results. The co-

efficient values set in the model used here are taken from Rodi (1993) and are

as follows - Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09,σk = 1.0,σε = 1.3. Although the

k−ε model is very widely applicable, its assumption that the relationship between

Reynolds stresses and the mean strain rate is the same in every direction limits its

usefulness. As a first consideration, it is unable to model the behaviour of open

channel flow in which the anisotropy of the turbulence is a governing parameter,

as described in Section 2.2.
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3.2.2.2 Higher Order Turbulence Closures

Vyas (2007) constructed the model with an original aim of reproducing the sec-

ondary circulations observed in uniform open channel flow. To this end, three

models were built into the code in order to calculate the values of the Reynolds

stress terms in the Navier Stokes equations in addition to the simple linear k − ε

model. The original computer code included the following model options for the

inclusion of the Reynolds stress terms: Launder and Ying (1973), Naot and Rodi

(1982) and the non-linear k− ε model of Speziale (1987).

As mentioned previously, Reynolds stress modelling involves the solution of the

full transport equations for the Reynolds stresses, which can be found in Launder

et al. (1975). Algebraic stress modelling is a simplification of this system and forms

the basis of the work by Launder and Ying (1973) and Naot and Rodi (1982). By

assuming local equilibrium of turbulence, simplifications occur as firstly, the con-

vection and diffusion terms are neglected and secondly, the production term is set

equal to the dissipation. It is also assumed that the gradients in the lateral and ver-

tical mean velocities (V and W ) are significantly less than those in the streamwise

velocity (U). In Launder and Ying (1973), these terms are neglected completely,

whilst in Naot and Rodi (1982), they are modelled using an eddy viscosity term as

opposed to being included explicitly. The result of these simplifications are alge-

braic expressions for the Reynolds stresses in terms of the mean velocity gradients,

which can be substituted directly into the momentum equations. The derivation of

the model of Speziale (1987) takes a different approach. Instead of bypassing it

completely, the non-linear k−εmodel is based upon a higher order approximation

to Equation 3.6. Whereas the original approximation of the linear k−εmodel only

considers the linear mean velocity gradient terms, the model of Speziale (1987) is

extended to also include the quadratic mean velocity gradients.

For the original purposes of the code, it was only necessary to model the

Reynolds stress components that appear in the momentum equations in lateral

and vertical gradient terms, namely v′2, w′2 and v′w′. However, since the code
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is now to be applied to the non-uniform flow around floodplain vegetation, it is

necessary to include all of the Reynolds stress terms. Instead of simply extending

one of the existing models, a new non-linear k− ε model was introduced.

Kimura and Hosoda (2003) based their model on the earlier work of Speziale

(1987) but tuned their model to be particularly applicable to bluff body flows.

At this point, it is important to note the deficiencies that computational models

generally exhibit in predicting the mean flow about bluff bodies. For the flow

around square sectioned bodies, it is well documented (Bosch and Rodi, 1998;

Franke and Rodi, 1993; Kato and Launder, 1993; Ramesh et al., 2005) that the

standard k − ε model cannot satisfactorily reproduce the expected flow pattern

due to its inability to distinguish between the normal Reynolds stresses, which are

important in the production of turbulent kinetic energy in stagnation regions, i.e.

at the upstream face of a bluff body. However it is true of all models thus far tested,

including the more sophisticated LES, that the turbulent kinetic energy behind the

body is consistently under-predicted. Having acknowledged this limitation, the

model of Kimura and Hosoda (2003) performs relatively well in comparison with

other approaches and as such has been chosen for inclusion here.

Extending the Boussinesq model to include non-linear terms means that Equa-

tion 3.6 becomes Equation 3.10.
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3
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The model constants (α1 - α3) are set by the relationships described by Equa-

tions 3.13 to 3.15. The values of C1 to C3 are, in turn, tuned by comparison with

experimental data from the flow around a 2D square block and a 3D submerged

square block and are functions of a strain parameter (S) and a rotation parameter

(Ω) as described in Equations 3.16 to 3.18. According to the constraints of real-

izability (Schumann, 1977), the constant Cµ in Equation 3.9 now also becomes a

function of (S) and (Ω) .

C1 =−2α1+α2−α3 =
0.4

1+ 0.01M2 (3.13)

C2 = 2(α2+α3) = 0 (3.14)

C3 = 2α1+α2−α3 =
−0.13

1+ 0.01M2 (3.15)

M = max(S,Ω) (3.16)
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K
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1

2
(
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∂ x j
+
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)2 (3.17)
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ε
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1

2
(
∂ Ui

∂ x j
−
∂ U j

∂ x i
)2 (3.18)

Cµ = min(0.09,
0.3

1+ 0.09M2 ) (3.19)
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3.2.3 Boundary Conditions

Inlet & Outlet Values of streamwise velocity, turbulent kinetic energy and dissi-

pation rate can be applied directly to the inlet boundary nodes. This allows for the

application of periodic boundary conditions, which can be used to good effect to

achieve fully developed flow conditions when grid size is limited.

At the outlet, Neumann boundary conditions are applied, i.e gradients are set

to zero and values of velocity are extrapolated from the interior of the grid. These

values of velocity must be corrected to ensure that the mass outflux is equal to the

mass influx set at the inlet.

Wall Boundaries Instead of solving the equations right up to the solid bound-

aries, the standard ’law of the wall’ approach is used. In an open channel flow, the

vertical boundary layer extends from the bed to the free surface but the surface

micro-roughness does not usually affect this entire layer. Instead, a distinct wall

layer has also been defined, in which the surface micro-roughness is a governing

parameter.

The flow behaviour in the wall layer is distinct from that in the rest of the

boundary layer. As the velocity nearest the wall is low, the Reynolds number is

small and the flow is likely to be dominated by viscous forces. Thus, nearest the

wall a region exists that is often called the viscous sub-layer. The assumptions

which allowed us to neglect the viscous dissipation terms in the RANS equations

break down in this sub-layer, introducing the need for a model to bridge the gap.

Beyond the viscous sub-layer, an inertial sub-layer has also been identified.

Experimental measurements in this zone have shown that the velocity profile can

be approximated with a logarithmic function:

u+ =
1

κ
lnEn+ (3.20)
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where u+ is the dimensionless velocity, κ is the Von Kármán constant equal to

0.41, E is the roughness parameter associated with the thickness of the viscous

sub-layer and n+ is the dimensionless distance from the wall:

n+ =
ρU∗n

µ
(3.21)

Thus, as long as we ensure that the first node of the model grid is within the

inertial sub-layer, we can set the velocity as a function of the shear velocity U∗ .

In the model in question, a value for the shear velocity is found using the latest

iteration value of turbulent kinetic energy K , where:

U∗ = C
1
4
µ

p
K (3.22)

The velocity u+ is not directly applied at the node. Rather, the shear stress

experienced by the flow at that point is calculated using a modified viscosity based

upon U∗. Having found the dimensionless distance of the node from the wall using

equations 3.21 and 3.22, the law of the wall is manipulated to find the modified

viscosity at the node so that:

µmod = µn+
κ

ln(En+)
(3.23)

Large obstacles of the type to be analysed in this project can be referred to

as macro-roughness elements. It is of interest to know how the flow field around

such elements is affected by smaller scale, surface micro-roughness. In the model,

this micro-roughness may be simulated through the roughness parameter E. By

collating and comparing a large volume of experimental data on pipe roughness,

Jayatilleke (1969) developed a relationship between the parameter E and the pa-

rameter Rr , where:
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Rr = yr

r

τbρ

µ
(3.24)

yr is the mean height of the roughness and τb is the boundary shear stress. By

plotting the data collected by Nikuradse (1932) in terms of these parameters, the

distribution shown in Figure 3.22 was revealed.

At low roughness heights, E is equal to approximately 9.535 and the surface can

de described as hydraulically smooth. As the roughness height increases, the flow

enters a transition regime, for which a number of different relationships between

E and Rr have been suggested. For high values of Rr , the flow can be described as

fully rough and the following equation applies:

E =
β

Rr
β ≈ 30 (3.25)

Symmetry Boundaries At symmetry boundaries, simple boundary conditions are

applied to all variables such that the gradient of the variable at the boundary is

equal to zero. In testing the model in its initial state, it was found that the provision

that had been made to take account of the free surface to model open channel flow

was not functioning correctly. The effects of the presence of the free surface in

open channel flows is felt in the increased anisotropy of the turbulence and the

limitation of the turbulent length scale. For most of the flow variables, this implies

that the free surface can be treated as a symmetry boundary. As such, the velocities

and the turbulent kinetic energy are treated with symmetry boundary conditions

in any case. In order to modify the turbulent length scale, it is normal practice to

prescribe the values of the turbulent dissipation rate at the surface cells. However,

since this system produced unreliable results for open channel flow calculations, a

simple symmetry boundary has been substituted. The drawbacks of this approach

are acknowledged. However, since the purpose of the simulations is to identify the

features of the flow that are caused by the floodplain edge position of bluff bodies,

the most important feature of the model is its ability to reproduce the turbulent
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field associated with this channel profile. This will be tested in Chapter 5 and

account will be taken of the nature of the boundary conditions when analysing the

model results.

3.3 Summary

This chapter has described the experimental methods and equipment used to col-

lect and filter raw data from the laboratory and also the computational model

created to enhance the data set. The experiments were designed to take advantage

of the different equipment and flumes available in the Kansai and Loughborough

laboratories. As displayed in Table 3.3, the geometry of experimental Series 2 and

4 in particular was designed in order to maintain the relative geometries of the

blocks and channels and allow the results to be compared and the trends con-

firmed. This data is presented in Chapter 4. The structure of the computational

model presents both opportunities and limitations on the usefulness of its results.

These will be discussed further in Chapter 5, where the results of its testing and

use are presented.
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(a) (b)

Figure 3.1: (a) Plan view of the Loughborough flume and (b) cross-section schematic
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(a)

(b)

Figure 3.2: Channel survey results in Loughborough flume for (a) the main channel bed and

(b) the floodplain bed
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(a) (b)

Figure 3.3: The ADV, (a) Acoustic transducers and (b) operational schematic

Figure 3.4: Mean spanwise velocity vs. Yaw angle in the simple open channel
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Flow statistics vs. Velocity Range for the main channel position (left column)

and the position behind the block (right column)
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(a) (b)

Figure 3.6: (a) Raw and (b) filtered data sets at x = 3.5 and y = 1.86 for the multiple,

deep submerged, small AR case (S1CI)
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(a) (b)

(c) (d)

(e)

Figure 3.7: Data sets collected behind the block after filtering using linear interpolation at

sampling frequencies of (a) 200, (b) 100, (c) 75 , (d) 50 and (e) 25Hz
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(a) (b)

Figure 3.8: Arrangement at flume inlet (a) with board and (b) without board
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Figure 3.9: Mean streamwise velocity at 0.01m from the floodplain bed for (a) the ’with

board’ case and (b) the ’without board’ case
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(a) (b)

Figure 3.10: Experimental Series 1 - Multiple, small blocks (a) experiment set-up and (b)

measurement positions

Figure 3.11: Plan Measurement grid for single, large AR, emergent block (S2CI). White

circles are measured points and black circles are assumed, extrapolated or interpolated points.
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Figure 3.12: Cross-section Measurement grid for single, large AR, emergent block (S2CI).

White circles are measured points and black circles are assumed, extrapolated or interpolated

points.

Figure 3.13: Plan Measurement grid for single, large AR, submerged block (S2CII). White

circles are measured points and black circles are assumed, extrapolated or interpolated points.
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Figure 3.14: Cross-section Measurement grid for single, large AR, submerged block (S2CII).

White circles are measured points and black circles are assumed, extrapolated or interpolated

points.

(a) (b)

Figure 3.15: (a) Photograph of the Kansai flume and (b) cross-section schematic
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Figure 3.16: Centreline channel survey results for the main channel bed, Kansai flume

(a) (b)

Figure 3.17: Kansai flume floodplain section - (a) upstream set-up, (b) glass test section
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(b)

Figure 3.18: Calibrating the Pitot-static tube - (a) calibration set-up, (b) calibration curve
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Figure 3.19: Water Surface measured with Ultrasonic Level Meter upstream of the single,

large AR, submerged block in a simple channel (S4CIV)

Figure 3.20: Measurement grid for the single, large aspect ratio blocks in the compound

channel in the Kansai flume (S4CI&II)

101



3.3 Summary

Figure 3.21: Measurement grid for the single, large aspect ratio blocks in the simple channel

in the Kansai flume (S4CIII&IV)

Figure 3.22: E(Rr) from the experimental data of (Nikuradse, 1932)
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CHAPTER 4

Experimental Results

This chapter will present the results from the physical experiments in the Kansai

and Loughborough flumes. In order to present a coherent argument for each case,

the results have been grouped together with respect to the status of the block. The

results for the emergent blocks are described in Section 4.1 whilst the results for

the submerged blocks are described in Section 4.2. As this system is to be adopted,

the numbering of series and cases in this chapter is not sequential. Please refer to

Table 3.3 for experimental conditions for each case.

In all of the subsequent figures, the following conventions are adhered to unless

otherwise stated; all mean velocity values are non-dimensionalised using the bulk

mean velocity (Um), all turbulent stresses and the overall turbulent kinetic energy

are normalised using the square of the mean shear stress (U2
∗ ). The spatial coordi-

nates are consistent with the explanation provided in the introduction to Chapter

3.
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4.1 Emergent Cases

4.1.1 Kansai - Single, large aspect ratio block in a simple chan-

nel (S4 CIII)

Series 4, Case III consists of an emergent block immersed in the centre of a simple

open channel flow. As such, it will provide a baseline to which the more complex

compound channel cases can be compared in order to understand the influence of

the block location on its wake. Although no exact replica of this simple channel

experiment exists in the literature, the results may be evaluated with respect to

similar results to summarise the pertinent flow features.

4.1.1.1 Upstream Conditions

Figure 4.1 shows the contours of streamwise and spanwise velocity in the simple

channel upstream of the emergent block (x = −11). In all figures for Series 4, the

values of U are extrapolated from the highest measurement level to the surface and

contours are plotted as such. Contours of spanwise velocity are not extrapolated

to the free surface, since this process is not expected to produce realistic results

and contours are shown up to the highest measurement level only. The contours of

U show the expected pattern for open channel flow, where the maximum velocity

is found beneath the free surface. The results of (Tominaga et al., 1989) for fully

developed open channel flow show that the velocity maximum is at a vertical posi-

tion of approximately Z/Hch = 0.79, where the channel aspect ratio was 3.94 and

Z/Hch = 0.88, where the channel aspect ratio was 8.00. In this case, where the

channel aspect ratio is 6.65, the maximum velocity is at z = 1.58, an equivalent of

Z/Hch = 0.40, which is lower than the published results. It is also apparent that the

maximum values of U do not occur exactly in the spanwise centre of the channel

but that there is an area of deceleration here. It may be supposed that this slight

deceleration is a consequence of the presence of the block in the downstream flow.
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Although it was impossible to measure the vertical velocity component and

therefore to plot the vectors of the secondary circulations, from examination of the

contours of the spanwise velocity, we can see evidence that the expected circula-

tions do occur. In the top left sector and the bottom right, the contours suggest

clockwise circulations, whilst in the top right and bottom left sectors, the contours

suggest anti-clockwise circulations. The maximum recorded strength of the span-

wise velocity is equivalent to 1.86% of the bulk mean velocity, which is comparable

to the result of (Tominaga et al., 1989).

Figure 4.2 shows the normalised values of boundary shear stress for the section

plotted against wetted perimeter. The values in this figure have been normalised

using the average value for this section. The profile is fairly symmetrical but there

is clearly a dip in the values at the channel centre. (Tominaga et al., 1989) gives

results for a fully developed, uniform flow in a simple open channel of aspect ratio

3.94. From their results on the bed, τ/τ reaches a maximum of approximately

1.28 at the channel centre. The results from this experiment show a maximum of

1.17 at an off centre position. The depression of the values at the channel centre

is likely to be associated with the deceleration of the flow due to the presence of

the block at this lateral position in the downstream flow, as shown in Figure 4.1.

Tominaga et al. (1989) also noted a secondary peak on the channel bed associated

with the bottom vortex, where τ/τ= 1.04 at y/Wch = 0.115. Such a peak is visible

in these results on the left side of the channel, where τ/τ= 1.07 at y/Wch = 0.152.

No such peak is observed on the right side. On the channel wall, Tominaga et al.

(1989) described a peak of 1.04 at z/Hch = 0.667. In these results, on the right

wall, this peak is observed exactly in magnitude and position. On the left bank, the

peak is smaller with a magnitude of 0.89.

Overall, the results show that the influence of the presence of the block trans-

mits very far upstream of its position and that the approaching flow is three-

dimensional in nature, negating the assumptions that may be made for uniform

flows. However, there is evidence of the existence of the flow structures associated

with rectangular open channel flow in which we are interested and as such, the
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experiment provides a useful comparison to the compound channel case, which is

presented in the next section. The slight asymmetries in the results at this section

are likely to be a result of a small lateral gradient in the flume bed. Since this

factor must be the same for all of the cases in this flume, it is hoped that this will

not preclude useful conclusions being drawn from the comparison between simple

and compound channel cases.

4.1.1.2 Wake Structure

The measurements downstream of the emergent block were taken at x = +5.5.

The velocity contours are shown in Figure 4.3, where for this and all subsequent

downstream figures, the position of the block is shown with light black lines in

order to aid meaningful analysis of the results. The streamwise velocity contours

at the downstream cross-section clearly show the deceleration behind the block

and the acceleration of the flow around the wake. The contours show that the

wake widens significantly towards the free surface, which is consistent with the

findings of Kawamura et al. (2002), who worked with a surface piercing circular

cylinder. They examined the vertical profile of the streamwise velocity at the chan-

nel centre in the wake and noted that the maximum velocity tended to occur at

approximately one cylinder diameter under the free surface. Above this point, the

velocity decreased sharply and usually with a linear profile.

Figure 4.4 shows the vertical profile of streamwise velocity at the block cen-

treline, both upstream and downstream of the block. In this case, the streamwise

velocity reaches a maximum at approximately 1.3Wbl below the free surface and

then decreases sharply. Taking an average of both the upstream and downstream

centreline profiles, the wake centreline velocity is calculated to be a factor of 0.785

of the approach velocity.

Kawamura et al. (2002) suggests that there should be two counter-rotating ax-

ial vortices just under the surface downstream of the block; clockwise on left, anti-

clockwise on right. The contours of spanwise velocity measured here are not quite

symmetrical, but show the flow moving toward the channel centre, expect for two
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opposite peaks just under the free surface directly behind the block. The reversal

of the flow direction occurs at approximately 1.0Wbl below the free surface. The

reversed spanwise flow measured at the highest possible level (0.579Wbl below the

surface) suggests that these circulations are present in the current results.

Figure 4.5 shows a comparison of the distributions of the boundary shear stress

at the upstream, central and downstream sections. To allow for meaningful com-

parison, the values have all been normalised using the average boundary shear

stress for the entire control volume as defined by the up and downstream sections.

At Station 3, i.e. at the block position, the bed shear stress values become very

large in the vicinity of the block and are generally elevated from their upstream

values throughout the cross section. Downstream of the block, the profile shows

a clear dip, symmetrical about the centre of the channel associated with the block

wake, whereas the peak value on the bed has increased to τ/τ = 1.318 and the

values outside of the wake zone have increased from their Station 3 values more

generally.

Bearing in mind the asymmetry in both of the measured velocity profiles that

has already been acknowledged, the boundary shear stress data is a good reflec-

tion of the changes in the near-bed streamwise velocity distribution that we might

expect around an emergent block. As the flow separates from the front edges of

the block, there is a nearly equal acceleration around the separated zones. Further

downstream, after reattachment, the wake gradually widens out so that velocities

outside of it increase further.

Figure 4.6 shows the difference between the upstream and downstream free

surface positions, normalised with the block width for both Cases I & III. For the

simple channel case, the free surface clearly shows two large troughs, bounding a

large central peak. Following the work of Chaplin and Teigen (2003), we would

expect there to be a dip in the water surface directly behind the block and indeed

this is observed in this experiment, where the difference parameter is mostly nega-

tive. The large peak in the profile is directly correlated to the zone of deceleration

in the channel centre described in Figure 4.3.
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In summary, the results for Series 4, Case III show many of the features that

we might expect for the flow around an emergent block from comparison with

previous experiments in the record. With this example in mind, we may then

proceed to analyse the compound channel cases with reference to it in order to

identify any changes in the wake structures that come about by this positioning.

4.1.2 Kansai - Single, large aspect ratio block at the floodplain

edge (S4 CI)

Series 4, Case I consists of an emergent block positioned at the edge of the flood-

plain of a compound open channel flow. The characteristics of the flow, as detailed

in Table 3.3, were chosen as to minimise the difference in the relevant influencing

flow parameters, i.e. Re/F r, ARbl and B, and to render the results comparable with

those described in Section 4.1.1.

4.1.2.1 Upstream Conditions

Figure 4.7 shows the contours of streamwise and spanwise velocity at the upstream

position. When comparing these results to those of Tominaga and Nezu (1991)

shown in Figure 2.4 for the fully developed uniform flow case, it is clear that the

same characteristic bulging of the streamwise velocity contours at the floodplain

edge can be observed. The pattern of the spanwise velocities also suggests that the

secondary circulations that tend to produce this exist, since there is a strong posi-

tive peak at the floodplain edge. The contours suggest two circulations emanating

from the floodplain edge, one close to the floodplain wall and one on the floodplain

itself. Although the vertical velocity components are not available, the circulations

proposed here are shown, superimposed onto the contours of spanwise velocity in

Figure 4.7. The maximum value of spanwise velocity is 4.67% of the bulk mean

velocity and is therefore in the approximately correct range as compared to the

results of Tominaga and Nezu (1991). Since the geometry of the channel, specif-

ically the ratio of the widths of floodplain and main channel, is different to that
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of Tominaga and Nezu (1991) and the flow in this case is not uniform, differences

such as the vertical position of the maximum streamwise velocity do exist. In this

case, the position of the maximum velocity appears to be lower than that reported

previously. However, in general, the flow exhibits the essential features of com-

pound channel flow, relevant to this investigation; a drop in streamwise velocity

at the floodplain edge associated with the distribution of turbulent stresses, sig-

nificant secondary circulations and a gradient of streamwise velocity between the

floodplain and main channel.

Comparing the results to the Dr = 0.5 case of Tominaga and Nezu (1991) as

shown in Figure 2.6, the values of boundary shear stress, shown in Figure 4.8,

match well in the main channel. The maximum value in the main channel is

τ/τ = 1.26 at a position of y/Wmc = 0.515, compared to τ/τ = 1.15 at a posi-

tion of y/Wmc = 0.6 from Tominaga and Nezu (1991). The secondary peak is also

present; in Tominaga and Nezu (1991), τ/τ= 0.93 at a position of y/Wmc = 0.155

and here, τ/τ= 1.1 at a position of y/Wmc = 0.193. In general, therefore, the val-

ues are slightly higher than those observed by Tominaga and Nezu (1991). On the

floodplain bed, both profiles show a gradual increase towards the floodplain edge

followed by a sharp decrease in its immediate vicinity. The position of the maxi-

mum value is clearly different between the two cases however, where it is further

from the floodplain edge in these measurements. This result suggests that whilst

the velocity contours do not betray any obvious influence transmitting upstream

from the block at this streamwise location, the reduction of streamwise velocity

values has to a small extent, in fact, already begun.

Despite this small deviation from the ideal freestream conditions, the measured

profile of boundary shear stress broadly confirms that the desired flow structure

demonstrated through the velocity measurements does indeed exist at this up-

stream position. As such, the results from the downstream section and the re-

sultant calculation of drag coefficient can be usefully compared with the results

from the simple channel to interrogate the differences in wake structure that the

floodplain edge position initiates.
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4.1.2.2 Wake Structure

Figure 4.9 shows the contours of streamwise and spanwise velocity downstream

of the emergent block at the edge of the compound channel floodplain. At this

position in the wake, the streamwise velocity contours directly behind the block

show a high degree of lateral symmetry. This symmetrical dip sits within a gradi-

ent, whereby the main channel velocities are larger than those on the floodplain.

At the measurement point closest to the floodplain bed at z = 0.589, the main

channel peak velocity is a factor of 1.25 larger than that on the floodplain. At the

measurement point closest to the free surface at z = 3.314, this has reduced to a

factor of 1.07. Under the influence of the altered secondary circulations, the max-

imum velocity in the channel has moved upward and toward the floodplain from

its upstream position.

The contours of spanwise velocity show the flow converging over the majority

of the height of the block and evidence of flow reversal near the free surface, in

common with the pattern of spanwise velocity observed for the simple channel

case. Althought at this level of detail, it is impossible to compare and contrast the

size of the circulations at the free surface between these two cases, clues may be

taken from the remaining data to surmise the likely changes in the character of the

flow structure.

Figure 4.10 shows the changes in the vertical profile of streamwise velocity at

the downstream block centreline that occur when the block is transferred to the

floodplain edge of a compound channel. In comparison with the same plot for the

simple channel case, it is clear that the distribution is quite different. Here, the

maximum streamwise velocity is found 3.2Wbl below the free surface with a linear

decrease above this point. The average wake centreline velocity is a factor of 0.719

of the approach velocity. Since the wake velocities are clearly less well recovered

in the compound channel case, it might be assumed that the recirculation zone

is simply longer and that the structural differences are accounted for purely by

the different relative position in the wake at which the measurement section falls.
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However, Kawamura et al. (2002) record a structurally similar wake at various

streamwise positions behind their circular cylinder ( x = 1.0, 2.5,4.5 ) so that

nowhere in the development of the axial vorticity at the free surface does the

vertical profile of U resemble that measured in this case. This suggests that the

near-linear decrease in streamwise velocity over the height of the block that is

observed here is due to a different process, unconnected to the influence of the

free surface.

Figure 4.11 shows the profiles of boundary shear stress normalised with the

control volume mean value at the three streamwise measurement stations. At both

Stations 3 and 5, the values on the main channel right bank and on the majority of

the main channel bed are little changed in magnitude from their upstream coun-

terparts. There are, however, changes to the shape of the profile in these areas,

notably including the disappearance of the shoulder on the main channel bed as-

sociated with the corner vortex there. This is consistent with the radical changes to

the pattern of secondary circulations that occur between the up- and downstream

sections. The influence of the block on the streamwise velocity distribution at the

bed and therefore the magnitudes of the boundary shear stress begins to appear in

a very significant way on the main channel bed at a spanwise position of y = 4.18

and continues across the floodplain bed as we might expect, where the boundary

shear stress values are elevated at the downstream positions.

Turning to the profile of the downstream water surface as shown in Figure 4.6,

it can now be compared to the simple channel case. In the compound channel case,

the average downstream water level is again less than upstream and a similar pat-

tern of a distinct peak bounded by two troughs can be seen in the profile. However,

the average difference parameter over the cross section and its maximum range is

clearly significantly less than that in the simple case.

The smaller average gradient in pressure indicates that the pressure field in the

compound channel case is more recovered than that in the simple channel case

at this point. The smaller range of values may be a result of the lower channel

Froude number of the compound channel flow, due to the greater depth in the
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main channel. A detailed comparison of the streamwise velocity profiles at each

measured depth suggests that the wake widening associated with the free surface

vortices occurs within a narrower vertical band than in the simple channel case.

However, at the free surface, the evidence suggests that the wake is wider in the

compound channel case since it can also be observed that the lowest points in the

water surface in the compound channel case are spread more widely than in the

simple channel case. For the simple channel, they are separated by approximately

6Wbl , whilst in the compound channel case, this increases to 12Wbl . This would

suggest that the free surface vortices have a smaller vertical scale but larger hori-

zontal scale in the compound channel case.

These results show marked differences in the flow structures between the com-

pound channel case and its simple channel counterpart. Overall, the results indi-

cate that the recovery of the streamwise velocities in the compound channel wake

is slower but that the recovery of the pressure field is more advanced. The balance

between these two factors and their influence on the overall drag will be explored

in the next section.

4.1.2.3 Emergent Block in Simple & Compound Channels - Comparison of

Drag Coefficients

For each of the cases in Series 4, data was collected with the aim of calculating

a drag coefficient for the flow based on an indirect momentum balance method.

The drag force induced by the presence of the block is calculated using Equation

4.1 for the control volume bounded by the channel walls, surface and the up and

downstream measurement sections. The value is converted to a drag coefficient

with Equation 4.2. The subscripts u and d refer to the upstream and downstream

sections respectively, L in this instance is the length of the control volume and p is

the perimeter position.

fd =

∫ A

0

ρUd(Uu− Ud)dA+

∫ A

0

(Pu− Pd)dA−
∫ p

0

τb Ldp+ρgsinθAL (4.1)
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Case Simple Channel Compound Channel

Ua 0.56 0.46

Rebl 10,011 9,929

F rbl 1.22 1.21

F rch 0.61 0.43

B(%) 3.8 2.3

CD 1.99 7.05

Table 4.1: Flow Parameters and Drag Coefficients for Single, Emergent Blocks in Simple and

Compound Channels

CD =
fd

1
2
ρU2

a Wbl Hbl

(4.2)

Whilst the accuracy of the electromagnetic velocimeter is quantifiable (see Sec-

tion 3.1.2.1), the accuracy of the other equipment used to collect the data necces-

sary to use this equation, namely the ultrasonic level meter and the Pitot tube, is

not as easy to estimate. As a check on the consistency of the combined data there-

fore, the time averaged integrated discharge at the upstream and downstream sec-

tions is compared. For the simple channel case, the difference is 3%, whilst for the

compound channel case, it is 1.6%.

The values of drag coefficient for these two cases are shown in Table 4.1, to-

gether with a reminder of the pertinent flow parameters.

Since no exact comparative results are available from other experiments, it is

very difficult to validate these results directly. However, a comparison with some

previous quantitative and qualitative data provides one means by which to sense

check them. Lyn et al. (1995) reported the 2D drag coefficient for a square sec-

tioned block to be 2.1. However, the experiments of Chaplin and Teigen (2003)
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and others imply that the end effects would tend to suppress the vortex shedding

mechanism locally. As the vortex shedding process contributes strongly to the over-

all drag force exerted by the body, we would expect the overall drag coefficient for

a 3D square sectioned block to be less than 2.1. On this basis, the figure calculated

here for the simple channel case appears to be reasonable.

For the value calculated for the compound channel, the very great discrepancy

between it and the value in the simple channel is a result of the changes in the

wake behaviour observed in the velocity distributions described in the preceding

sections, where the recovery of the velocities in the wake of the block in the com-

pound channel is significantly delayed. Whilst the other terms in Equation 4.1 vary

by a small amount between the simple and compound channel cases, the momen-

tum term changes very significantly.

Whilst the Reynolds number of the oncoming flow in both cases is sufficiently

similar to be discounted as an influencing parameter, the nature of the changes

to the channel Froude number appear to be repsonsible for the reduction in the

deformation of the free surface between the simple and compound channel cases.

The results described in the preceding section suggest that influence of the ax-

ial vortices associated with the deformation of the free surface is much reduced

in the compound channel case so that the contribution to the overall drag coef-

ficient from these structures is lessened. Despite this change in the extremity of

the deformation, the overall recovery of the total pressure field and its consequent

contribution to the drag coefficient changes only slightly between the simple and

compound channel cases. Whilst the contribution of the axial vortices induced by

the deformation of the free surface reduces therefore, this is more than compen-

sated for by an increase in the form drag.

The reduced blockage ratio may also contribute to the increase in drag coeffi-

cient as overall, a smaller blockage ratio should result in less entrainment into the

wake from the mean flow and a slower recovery. However, the degree of overall

difference is small and the effects of the blockage on the wake structure must be

complicated as a result of the non-central position of the block in the compound
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channel and the wider geometrical effects. Likewise, although not listed here as it

could not be calculated from the experimental results, the influence of the change

in freestream turbulence between the simple and compound channel cases must

be bound up with the complexities of the geometry.

In summary therefore, the large increase in drag coefficient calculated here

for the block in the compound channel comes about as a result of a large change

in the momentum term in Equation 4.1, which, in turn, is a consequence of the

slower recovery rate of the velocity. The details of how the geometrical effects may

combine to slow the recovery of the velocity in the compound channel case are

explored in the next section.

4.1.3 Loughborough - Single, large aspect ratio block at the

floodplain edge (S2 CI)

Series 2, Case I is the case of the single emergent block located at the floodplain

edge of the compound channel in the Loughborough flume. From Table 3.3 it is

clear that the values of ARbl are very similar to those for the cases above. The

value of B is even smaller than those used in the Kansai flume experiments so

that its influence should be small. However, when considering the comparability

of the results, it must be noted that the Re/F r ratio is considerably larger in this

case. Although the flow around sqaure blocks is much less sensitive to changes

in the Reynolds number than the equivalent flow around a circular cylinder, the

drop in Froude number that contributes to the change in this ratio may mean that

the balance between the mechanims of flow separation and deformation of the

free surface may be different to the previous cases. Broadly speaking however, the

results in both flumes should be comparable with care.

4.1.3.1 Upstream Conditions

The difference in the upstream set-up of the flumes in Series 2 and Series 4 is de-

scribed in Sections 3.1.1.1 and 3.1.2.1. Figure 4.12 shows the contours of stream-
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wise mean velocity, the vectors of secondary circulation and the contours of tur-

bulent kinetic energy upstream of the single emergent block in the Loughborough

flume. Please note that as the ADV was impossible to use close to the water surface

in this case, extrapolation of values to the free surface position at z = 3.5 has not

been attempted for the following figures. Extrapolation has however been used

close to the floodplain bed, where measurements were missed.

The contours of mean streamwise velocity again show the characteristic bulging

at the floodplain edge associated with the secondary currents of compound channel

flow. This corresponds to a strong peak in the vectors of secondary circulation and

in the contours of turbulent kinetic energy at this location. As such, the flow be-

haviour at the floodplain edge matches the pattern of that which we might expect

from the results of Tominaga and Nezu (1991). When comparing the magnitudes

of mean streamwise velocity between Figures 2.4 and 4.12, the matter is com-

plicated by the difference in normalisation factor; Umax is used by Tominaga and

Nezu (1991), while Um is used here. Since the velocities in the uppermost part of

the channel could not be measured, it is impossible to definitively state a vertical

position for the maximum streamwise velocity. However, the highest measured

velocity is located in the main channel at approximately Z/Hch = 0.77, which is

reasonable with reference to the results of Tominaga and Nezu (1991) as shown

in Figure 2.4. Conversion of the normalisation factor in this case shows that the

magnitudes also match very closely. The maximum secondary circulation value is

4.75% of the bulk mean velocity, which is again is the correct range compared to

previous results. The magnitude of the values of K/U2
∗ is, in general, lower than

those quoted by the previous authors. Tominaga and Nezu (1991) give values in

the range of 0− 4, whereas these results are in the range 0− 2. This is likely to be

due to inaccuracy in the calculation of the mean shear velocity in this case, since

an accurate measurement of the free surface and therefore the energy slope was

very difficult.

The turbulent intensity at the block centreline at the upstream cross-section

was examined in particular in order to provide a comparative freestream turbulent
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intensity with the experiments around blocks described in Chapter 2. Lyn et al.

(1995) define freestream turbulent intensity as u′/Um. Calculating this value at

the two measurement points at the upstream block centreline gives 7.30% and

7.85% at z = 1.58 and z = 1.79 respectively. These values are considerably higher

than, for example, the 2% value quoted by Lyn et al. (1995).

4.1.3.2 Wake Structure - Mean Flow

Figure 4.13 shows the contours of normalised streamwise velocity around the

emergent block at a vertical position where z = 1.1 and at the measured down-

stream cross-section at x = 2.7. From both plots, it is clear that the structure of

the near wake is skewed significantly to the floodplain side of the block centre-

line throughout the flow depth. The absolute minimum velocity measured was

U = −0.35 at a position of (x , y) = (1.3,0.28). Further downstream, outside

the recirculation zone, the minimum velocity point moves back towards the main

channel so that it is at the central position by a streamwise position of x = 4.00.

At x = 5.33, the profile of U resembles that described in Section 4.1.2.2, where a

symmetrical dip sits within a wider overall lateral gradient. Finally, in the lowest

portions of the measured wake, the contours show that the wake is widening out

into the main channel. This is not accompanied by a similar phenomenon on the

floodplain side. These results clearly elucidate that the floodplain edge location

has implications not only for the wave making resistance at the free surface, as

described in Section 4.1.2.2, but also for the pattern of flow separation about the

main shaft of the block.

Although the recirculation zone is no longer symmetrical about the block axis,

an estimation of the reattachment length at the block centreline is useful to com-

pare the wake size with that from previous experiments. Using the data collected

at z = 1.1, the limiting 0 contour is located at the centreline at x = 2.06. For the

purposes of comparison, the recovery of the streamwise velocity in the case of Lyn

et al. (1995), which is shown in Figure 2.11, gave a recirculation zone ending at

approximately x = 1.4. It must be noted that the end effects at the free surface
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would act to suppress the vortex shedding and result in a longer recirculation zone

near the free surface than that measured by Lyn et al. (1995), even in the sim-

ple channel case. However, at this height in the wake, this near doubling of the

length of the recirculation zone is another hint that the floodplain edge positioning

is having a measurable effect on the flow separation process.

In order to meaningfully analyse the streamwise contour pattern, Figure 4.14

shows the contours of mean spanwise and vertical velocity in plan at z = 1.1. From

the spanwise contours, it can be observed that at the block streamwise centreline,

the contours of spanwise velocity are nearly symmetrical, which would suggest

similarity between the flow separating from the two leading edges of the block, at

least at this vertical position. Despite this initial symmetry in the flow, the distri-

bution of the spanwise velocity begins to show a significant degree of asymmetry

in the wake zone behind the block. In the near wake, the maximum values of

spanwise velocity are staggered across the wake width. On the floodplain side, the

peak value is −0.309 and occurs at x = 1.3, whereas on the main channel side,

the peak value is approximately 15% smaller at +0.264 and occurs at x = 2.7.

This imbalance suggests that whilst the initial flow separation may be equal, the

differing flow conditions on each side of the block affect the development of the

recirculation zones and therefore the growth mechanism of the vortices to be shed

into the downstream flow. Further downstream in the wake, where the peak values

of V on both sides of the block are gradually reducing, the values on the floodplain

side can be seen to diminish more quickly than those on the main channel side. A

slower decay of the secondary circulations associated with the wake is consistent

with the widening of the wake into the main channel that is observed.

Although more detailed measurement would be required to confirm it conclu-

sively, the near equality of the peak spanwise velocities at the streamwise block

centreline suggests that the mean position of the separation streamlines on both

sides of the block is very similar. We may therefore surmise that the frequency

of shedding of vortices on the two sides should be similar. The imbalance in the

wake structure must then be a consequence of an imbalance in the size and energy
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of the vortices being shed. On the floodplain side, where the geometry resembles

the simple case more closely, the vortices are larger and more energetic than those

shed from the main channel side, where the separation process is affected by the

floodplain edge position and the structure of the separation zone is not simple.

Thus, the more efficient creation of vertically orientated vorticity on the floodplain

side ensures that the minimum streamwise velocity occurs there.

Once shed however, the process of decay of the vortices is also affected by the

floodplain edge positioning. Although calculation of the fluctuating strain rate and

vorticity are not possible, an examination of the mean vorticity sheds some light on

the process involved in the dissipation of energy. The mean vortex stretching term

in the mean vertical vorticity equation Ωz
∂W
∂ z

was calculated at the only position

where enough data was available to do so, i.e. at the intersection of the plan and

cross-sectional measurement planes at (x , z) = (2.7,1.0). This is shown in Figure

4.15. Although the profile is complex in character, it demonstrates that the vortex

stretching term peaks at a larger magnitude in the main channel. If this behaviour

persists throughout the wake, it would mean that energy transfer from the mean

flow to the eddies was greater on the main channel side of the block, delaying the

recovery of the mean streamwise velocity.

The contours of mean vertical velocity shown in Figure 4.14 give an indication

of a mechanism by which the recirculation zone and vortex shedding process is al-

tered from that which is expected for a simple block. Whilst the spanwise velocities

at the streamwise centreline are symmetrical in magnitude, the vertical velocity on

the main channel side is 40% greater than that on the floodplain side. In the near

wake, this difference increases to 50%. This means that the downflow associated

with the rapidly changing pressure field around the block is significantly affected

by the floodplain edge position, where the downward flow is limited on the flood-

plain side by the presence of the floodplain bed but that on the main channel side

is not.

As the pressure field recovers behind the block, a positive peak in the vertical

velocity profile develops although the position of this peak varies throughout the
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length of the wake. This implies that axial vorticity develops in the wake, a con-

sequence of the placement of the block onto the channel bed. Such vorticity was

not recognised in the results of the work of Kawamura et al. (2002), which have

been used elsewhere in this study to provide comparative results, since the block

on which they performed experiments was towed through a deep water tank.

The nature of the development of this axial vorticity is not, however, symmetri-

cal. At x = 2.7, the peak in W is firmly located on the floodplain side of the block

centre at y = +0.28. Further downstream, it moves gradually towards the block

centreline, reaching its absolute maximum at x = 4.0. This correlates well with the

measurements of the free surface for the emergent block in the compound channel

in the Kansai flume, since a close inspection of Figure 4.6 suggests that the maxi-

mum water level is reached on the floodplain side of the block centreline. Finally,

at the furthest downstream measurement point at x = 8.0, the peak moves to the

main channel side at y =−0.43.

In order to gain an impression of how the secondary circulations combine to

create mean axial vorticity in the wake, the vectors at x = 2.7 are plotted in Figure

4.16, showing the detail around the block location. It is of note that the maximum

magnitude of the measured vectors is 45% of the bulk mean velocity, which is an

order of magnitude larger than the turbulence-induced secondary circulations at

the upstream position. At the higher vertical positions, the difference in the pat-

tern of the vertical component is in obvious agreement with that described above.

Outside of the zone plotted here, there is evidence of a strong upflow against the

floodplain wall, which feeds into the block wake structure. Far from the block in

the main channel, the secondary flow vectors appear to be little changed from their

upstream pattern.

In order to further elucidate this pattern of secondary circulations, an estima-

tion of the axial vorticity Ωx is made. Reliable estimations of the mean velocity

gradients being required, it was deemed inappropriate to calculate Ωx at locations

where extrapolation had been used to find velocities. As opposed to a contour plot

of the entire section therefore, Figure 4.17(a) plots the axial vorticity values at two
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vertical levels at x = 2.7: z = 0.84 and z = 1.0. As expected, there are two large

peaks in vorticity in the block wake, representing the angular momentum shown

in Figure 4.16. At both levels however, it is also clear that the peak on the main

channel side is considerably larger than that on the floodplain side. At z = 0.84,

the main channel peak is 32% larger than that on the floodplain side. At z = 1.0,

this has decreased to 25%.

The two measurement planes coincide at (x , z) = (2.7, 1.0) and it is there-

fore possible to calculate all of the mean velocity gradients at these points and

ultimately, the magnitude of the production terms in the mean axial vorticity equa-

tion. These values are plotted for the area within −1.5< y < 1.5 in Figure 4.17(b)

together with PΩx
, the sum of these contributions. It is clear from this plot that the

transverse and vertical contributions are largely cancelled out by one another so

that the vortex stretching component is the greatest contributor to the production

of axial vorticity. The distribution of this component shows that due to the changes

induced in the separation zone on the main channel side of the block by the un-

equal distribution of vertical momentum, the vortex stretching mechanism tends

to be stronger on this side.

These results show that the difference in the distribution of vertical momentum

due to the differing water depths on the two sides of the block has significant

implications for the turbulent structures that form around it. Whilst the separated

zone on the floodplain side of the block forms in a way close to that which we

might expect for a block in a simple flow, that on the main channel side does

not. This results in a striking imbalance in the vertically orientated vortices that

are shed from the shaft of the block, where those on the main channel side are

less energetic than those on the floodplain side. It also creates asymmetrical axial

vorticity in the wake zone, so that the secondary flows on the main channel side

are stronger than those on the floodplain side and act to change the secondary flow

pattern in the main channel, particularly at the floodplain wall.

Downstream of the base region very near to the block, the differing intensities

of vertical vortex stretching because of the different flow depths either side of the
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block appear to contribute to different rates of decay, such that flow recovery is

slower on the main channel side.

4.1.3.3 Wake Structure - Turbulence Statistics

The data collected from the ADV also allows for the presentation and analysis of

the turbulent field. In this section, results will be presented that combine both

the periodical component of the turbulence due to regular structures such as von

Karman type eddies with the truly random component. Although the results have

not been disaggregated, the differences between the measured profiles and those

recorded in the literature for blocks in simple channels are worth investigation.

Lyn et al. (1995) described the pattern of the streamwise and spanwise nor-

mal Reynolds stresses for the 2D case in which vortex shedding is the dominant

process, at a streamwise location where x = 1. The profile of u′2 shows that a max-

imum value is attained in the shear layer region, which for their experiment was

found at approximately y = ±0.7. At the block centreline, the magnitude drops

to 65% of this maximum value. The profile of v′2 is more nuanced, but shows its

maximum value at the block centreline. The difference in the distribution of the

periodic component of the normal turbulent stresses is an important factor in the

final structure of the wake.

Lyn et al. (1995) set up their experiment so as to create 2D conditions at the

vertically central position of a square block mounted in a wind tunnel. Having

satisfied themselves that the flow at this position was sufficiently close to the 2D

condition, they based their calculation of the total fluctuating kinetic energy on

the streamwise and spanwise components alone; the vertical components were as-

sumed to be negligible and were not measured. The total turbulent kinetic energy

K for this case, including the vertical component, is plotted in Figure 4.18, where

it is normalised using the bulk mean velocity. At the centreline, the peak turbu-

lent kinetic energy is located at approximately x = 3.4, where a value of 0.184 is

reached. This peak is significantly smaller and later than that observed in the 2D
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case of Lyn et al. (1995), which correlates well with the observation in the previous

section that this case exhibits a significantly longer recirculation region.

The streamwise variation in K is also plotted at y = ±0.5. This shows that

the lateral distribution of turbulence also deviates from the symmetrical 2D case

considerably, such that the peak in turbulent kinetic energy on the floodplain side

of the block is considerably larger than that on the main channel side. This can

be explained via an examination of the individual normal fluctuating stresses. For

this case, Figure 4.19 shows the plots of the streamwise normal Reynolds stress u′2,

where part (a) shows the plan profile and part (b) shows detail of the downstream

cross-section at the block location. Although the flow around the block in this

case is highly 3D, the two distinct peaks in u′2 identified in Lyn et al. (1995) are

clearly observable in these results, where at x = 1.3, the peak values are found

at y = −0.67 and y = +0.75 respectively. Unlike the results of Lyn et al. (1995)

however, the two peak values are clearly unequal throughout the length of the

wake, where the absolute peak value on the floodplain side of the block is 9.2%

greater than that on the main channel side. The spanwise normal Reynolds stresses

v2 is shown in Figure 4.20. In the near wake zone, there are two distinct peaks

in the profile, where the peak on the floodplain side is 19.5% larger than that on

the main channel side. From the results of Lyn et al. (1995), we might not expect

a pattern of two peaks in the spanwise component. However, the recirculation

length in this case, it must be remembered, is considerably larger than that in the

purely 2D case so that the measurements are not being taken at equivalent points

in the wake. Indeed, further downstream in this case, a single peak in v2 does

emerge. This is located not at the block centreline but toward the floodplain side

of the block, where it gradually reduces. Thus the patterns of the streamwise and

spanwise Reynolds stress components in the plan dataset show agreement with the

measurements of mean velocity, namely that the vortex shedding phenomenon is

being altered such that at equivalent depth, the vortices shed on the floodplain side

of the block are more energetic than those shed on the main channel side.
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The limitations of the analogy with the 2D case can be understood by obser-

vance of the cross-sectional data in both Figures 4.19 and 4.20. Both profiles

show that the tendency of the larger Reynolds stresses to lie on the floodplain

side of the block persists throughout the measured depth. This is consistent with

the observation that the minimum streamwise velocity is located on the flood-

plain side throughout this measurement set. However, neither profile is vertically

uniform. The cross-sectional detail of the streamwise component shows that the

double peaked profile exists at all measurement points. Likewise, the single peak

in the spanwise component can also be observed throughout the depth. Although

positions near to the free surface or very close to the bed could not be measured,

this indicates that the vortex shedding regime is indeed present over a substantial

portion of the shaft of the block.

However, it is also true that the magnitudes of the streamwise component tend

to increase with increasing vertical position, whilst the magnitudes of the spanwise

components show the opposite tendency. Perhaps of more pertinance to this case

in particular, is the variation in the asymmetry over the depth. As we might expect,

the difference between the two peaks in u2 is higher near the floodplain bed than

near the free surface. The position of the peak in v2 is further towards the flood-

plain side near the floodplain bed than near the free surface. Since the velocity

gradient between the floodplain and main channel flow is at its greatest near to

the floodplain bed, it is consistent that the discrepancy between the energy of the

vortices being shed from the two sides of the block is greatest there also.

To complete this description, it is neccessary to examine the vertical normal

Reynolds stress, which is plotted in Figure 4.21. The magnitude of the vertical

component is considerably less than the spanwise and streamwise components so

that the vertically orientated vortices, as we might expect, contain the largest pro-

portion of the total fluctuating energy. The vertical component, i.e. the turbulence

associated with the axial and lateral vorticity, also however reaches its maximum

on the floodplain side of the block, a pattern that is consistent throughout most of
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the measured depth. This must be associated with the greater lateral vorticity that

the presence of the floodplain bed on that side of the block initiates.

In order to further analyse the sources and distribution of the turbulent ki-

netic energy in the wake, the Reynolds shear stress data at the intersection points

between the measured planes was combined with the mean strain rates, thus en-

abling the calculation of the production term in the turbulent kinetic energy con-

servation equation, PK , using Equation 4.3.

PK =−u′iu
′
j

�

∂ Ui

∂ x j

�

(4.3)

Figure 4.22 shows the components of and overall turbulent kinetic energy pro-

duction in this location. As suggested by the normal turbulent stresses, the greatest

contribution to the production of turbulent energy is the component in the hori-

zontal plane, i.e. that associated with the shed vortices. The axial contribution is

relatively modest but crucially, it is the transverse contribution that ensures that

the overall production term is significantly greater on the floodplain side of the

block. This distribution of PK would suggest that the imbalance in the distribution

of fluctuating energy that we observe is due to the large difference in the produc-

tion term, rather than any significant transport of K by the mean flow.

The distribution of the turbulent shear stresses is key to the production of tur-

bulent kinetic energy. In the horizontal plane, as might be expected, the two peaks

in −u′v′, plotted in Figure 4.23, are unequal with the larger value occuring consis-

tently in the shear layer on the floodplain side of the block. This is consistent with

the greater shear associated with the larger spanwise gradient in U , which must

exist on the floodplain side of the wake, where the minimum wake velocity lies.

The spanwise positions of the peaks at x = 1.3 are approximately in line with the

results for the 2D case of Lyn et al. (1995), who noted the peak to appear at ap-

proximately y = 0.75 at x = 1.0. As the positions of these peaks provide a reliable

estimate of the position of the shear layers, this serves to confirm that in the very
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near wake at least, there is no largescale change in the width of the wake to the

symmetrical, 2D case. Although not shown, this pattern persists throughout the

measured depth at the measured cross section. In the transverse plane, the same

pattern of the absolute maximum appearing on the floodplain side of the block is

apparent throughout the majority of the wake and throughout the depth at the

measured cross-section. This turbulent component is dependant on shear in the

transverse plane so that the differences in the distribution of vertical momentum

across the wake due to the floodplain edge location must be a controlling influence.

Finally, the cross-sectional component−v′w′ shows a complex distribution, par-

ticularly in the near wake where the axial vorticity emanating from the separated

regions is establishing itself. Further downstream, the larger voritcity on the main

channel side identified in the contours and vectors of V and W ensures that the

shear force in the cross-sectional plane and the consequent turbulent shear stress

also peaks on this side.

4.1.3.4 Summary

The results described above for the single, large aspect ratio, emergent block at

the floodplain edge clearly show significant differences from those that we might

expect to see in a simple, symmetrical channel set-up. Although these results sug-

gest that the separation angle from the upstream leading edges of the block shaft is

similar on both sides, the nature of the wake as measured here requires that signif-

icant differences must develop within the lateral separation zones. Changes in the

expected development of the separation zone on the main channel side in particu-

lar, cause asymmetry in the wake structure from its inception. Whilst the increased

blockage due to the non-central position of the floodplain edge in the channel may

be contributing to this asymmetry, changes in the main channel separation zone

due to the sudden increase in water depth are also important.

The results suggest that the vertically orientated vortices remain the most en-

ergetic wake structures overall, which goes to explain why the disruption of the
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shedding process results in a significant change in the wake structure; the distribu-

tion of the fluctuating energy is skewed to the floodplain side from the outset, since

the eddies shed from that side of the block tend to be larger and more dominant

than those shed from the main channel side. Due to this difference in behaviour,

the minimum wake velocity occurs skewed towards the floodplain side of the block

centre.

Further downstream in the wake, where the shed vorticity must dissipate, the

vortex stretching process appears to be more exaggerated in the deeper main chan-

nel flow, so that the vorticity on this side is dissipated more slowly and the rate of

the recovery of the wake is reduced compared to that on the floodplain. Whilst

the initial separation pattern ensures that the actual magnitude of U at the mea-

sured depth remains higher on the main channel side than on the floodplain side,

the difference in recovery rate eventually leads to a reversal of this trend and the

widening of the wake into the main channel.

In addition to the changes induced in the energetic horizontal vortex structures,

the floodplain edge geometry also has a significant impact on the transverse and

axial vorticity associated with the recovering flow. In particular, the vertical mo-

mentum created as the flow passes around the block on the main channel side is

considerably greater than that on the floodplain side. As the flow begins to recover,

the vertical momentum in the main channel decays more slowly. This slower rate of

change means that less energy is associated with the transverse shear in the main

channel. The persisting vertical momentum in the main channel, which causes

signifcant changes to the secondary circulations, contributes to the greater axial

vorticity found there.

Thus, the results from the Loughborough flume for a single, large aspect ratio

block tend to suggest the pattern implied by the Kansai results, namely that the

deeper main channel flow on one side of the block alters the charateristics of the

wake in such a way to slow the recovery of the flow in the wake and increase the

overall drag coefficient of the block.
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4.1.4 Loughborough - Multiple, small blocks at the floodplain

edge (S1 CII)

In order to provide some context to the single block experiments and to provide a

starting point into an investigation of the effects of changes in block and channel

geometry on the processes described above, the multiple block arrangement of

this case is very useful. The important differences between this case and those

preceding it are as follows: a much lower block aspect ratio such that no area of

regular vortex shedding may be expected, a significantly lower relative depth in

the compound channel and finally, the arrangement of multiple blocks along the

floodplain edge. It is hoped that by also considering this data, it may be possible

to see what features of the flow as described above are enhanced or diminished

as a result of these changes. The vertical measurement position in this case is at

z = 0.5. From these changes, we might expect that the deformation of the free

surface would have a greater relative impact on the dynamics of the wake, that

there may be stronger shear between the floodplain and main channel flow and

that each block would be affected by the influence of its predecessors.

The amount of measured data for this case is much less than the previous cases.

However, it is sufficient to highlight some important similarities and differences in

the flow structure from that observed for the single large aspect ratio blocks. Figure

4.24 plots all of the measured mean velocities, from which it is immediately clear

that the relative wake width is considerably greater, especially on the floodplain

side of the block. The overall spanwise gradient of U from the floodplain into the

main channel is also much greater than previously, where at Station 3 (x = +3.5)

the peak velocity in the main channel is a factor of 1.46 larger than that on the

floodplain. The greater velocity gradient between the floodplain and main channel

flow must develop as the result of a combination of factors; firstly, the smaller

relative depth of the floodplain flow and secondly, the effects of the multiple block

arrangement in gradually decelerating the floodplain flow. This suggests that the

blocks exist in a stronger shear layer than that in the previous experiments. A final
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feature that is not observed in the single, large aspect ratio experimental results is

the existence of two maxima in the streamwise velocity profile in the main channel,

at approximately y =−2.5 and y =−6.5.

The spanwise and vertical mean velocities are plotted as vectors in Figure

4.24(b). At the upstream station, S1, the axial vorticity from the preceding block

can be observed. As with the single, large aspect ratio block case, the recovering

wake flow tends to form two axial circulations, rotating such that there is a resul-

tant upflow at or near the block centreline. The vectors at the upstream position

suggest that there may be an anti-clockwise circulation in the main channel and a

clockwise circulation on the floodplain near the block, forming this vorticity. The

vortices meet not at the block centre however, but at the main channel edge.

As the flow passes the block, the characteristic imbalance in the vertical ve-

locities across it appears, where at this vertical position, there is upflow on the

floodplain side and some downflow on the main channel side. At the third and

fourth stations, the vectors show that the two axial circulations at the blocks have

been firmly reestablished. This pattern of flow has parallels with that observed in

Series 2, Case I, where two zones of axial vorticity are also observed and of these,

the main channel circulation is dominant. A difference again lies however, in the

spanwise positions of these circulations since in this case, the maximum vertical

velocity and the zero spanwise velocity are pushed to the main channel edge of the

block thus suggesting that the position of the circulations is shifted into the main

channel in comparison to those measured in Series 2. The vectors also suggest that

the dominance of the main channel circulation is enhanced in this case.

From these measurements, it is again clear that the floodplain edge positioning

of the block has significant implications for the pattern of flow separation and

reattachment in the wakes. Due to the differences in block aspect ratio, it is to

be expected that the contribution of the vertically orientated vorticity to the wake

energy will be considerably less than in the large aspect ratio cases. However,

the sudden increase in depth on the main channel side of the block is impacting

strongly on the distribution of vertical momentum, such that, just as previously,
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the axial vorticity on the main channel side is more significant than that on the

floodplain side, on this occasion emphatically so. No doubt due to the smaller

relative depth, this effect is even stronger here than in the large aspect ratio case.

It seems likely, therefore, that the secondary circulations induced as the flow passes

around the obstacle at the floodplain edge, are responsible for the double peak

observed in the streamwise velocity profile.

Figure 4.25 shows both the overall mean turbulent kinetic energy and the three

individual components of the normal turbulent stress. There is a large peak in the

turbulent kinetic energy located directly at the main channel edge of the block in

this case, accompanied by a shoulder in the profile on the floodplain side. From

the plots of the individual normal turbulent stresses, it can be seen that each com-

ponent follows the general pattern established previously so that the streamwise

component peaks in both of the shear layers, whilst the other components peak

once near the centreline. However, for this block geometry, the maximum value

of all three components is found at y = −0.5, i.e. exactly at the floodplain edge

position. The distribution of the turbulent Reynolds stresses is wholly consistent

with this pattern, as shown in Figure 4.26. For every component, the distribution

is skewed so that large negative values are found at the floodplain edge position.

The changes observed in the distribution of the turbulence parameters are in-

dicative of the sensitivity of the turbulent field to changes in the geometric param-

eters of the block and channel and also of the impact of setting the blocks in series.

The lower relative depth of flow on the floodplain and the smaller block aspect

ratio mean that the axial vorticity is more significant in contributing to the overall

wake turbulence than would be the case in the previous series. The lower relative

depth must also act to accentuate the degree of difference in the distribution of

vertical momentum around the block so that the difference in the turbulent energy

associated with the two axial vortices is proportionally greater and the position of

the vortices appears to move toward the main channel. However, since it is the

case that as the flow passes successive blocks at the floodplain edge, the floodplain

flow will be decelerated whilst the main channel flow far from the block is not, the

130



4.1 Emergent Cases

degree of asymmetry in the turbulent structure of the wake must also be a con-

sequence of the multiple block arrangement and the large difference in the peaks

of u′v′ that develops. The small block aspect ratio and relative depth then ensure

that the other components peak in the same location. In order to explore the vari-

ation of these features with the changing geometry and arrangement of blocks,

would require many physical experiments to be performed. The numerical model

will therefore be used to investigate these variations, where its ability to usefully

reproduce the experimental results is explored in Chapter 5.
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4.2 Submerged Cases

This section includes a similar presentation of the results of measurements around

submerged blocks as Section 4.1 provides for emergent blocks. In these cases, the

measured values must be viewed with consideration of the different flow structures

that we might expect from this flow type, since the submergence of the block will

involve flow separation not only from the block sides but also from the block top

and consequent downflow in the wake.

4.2.1 Kansai - Single, large aspect ratio block in simple channel

(S4 CIV)

4.2.1.1 Upstream Conditions

For this experiment in the simple rectangular channel, the contours of streamwise

and spanwise mean velocity and the distribution of boundary shear stress at the

upstream section (x = −11), as shown in Figures 4.27 and 4.28, closely resemble

those presented in Section 4.1.1.1. The influence of the block can be observed

through both the distortion of the velocity field and the drop in boundary shear

stress at the channel centre. The contours of streamwise velocity show a very

similar pattern to that shown in Figure 4.1, where the maximum velocity is to

be found at a low vertical level in the channel and there is a clear asymmetry in

the distribution of the velocity, with the values in the upper right quadrant being

significantly depressed in comparison with those in the left quadrant.

The contours of spanwise velocity also show a similar picture, where the con-

tours suggest a clockwise circulation in the top left corner of the channel and

an anti-clockwise circulation in the top right. In common with Case III, there is

stronger evidence of the counter-rotating vortices that we would expect in the

lower corners of the channel on the right than on the left. At the channel centre,

where the flow is decelerating in front of the block, there is a complex pattern of

spanwise velocities. Overall, the maximum spanwise velocity in the measured zone
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is 1.36% of the bulk mean velocity, which is slightly smaller than that measured in

Case III.

The profile of boundary shear stress measured at this location is shown in Fig-

ure 4.28, again where values have been normalised using the section mean value.

In this case, the maximum value is τ/τ = 1.15, which is very similar to that mea-

sured in Case III. The depression at the channel centre associated with the pres-

ence of the block in the downstream flow is again apparent. Although no distinct

secondary peaks are observed in the measurements, the shape of the profile on

the left of the channel suggests that there may be one, again at approximately

y/Wch = 0.115. On the right channel wall, a peak of τ/τ = 0.914 occurs at

z = 0.49. On the left channel wall, a peak of τ/τ = 0.975 occurs at z = 0.52.

Both values are therefore slightly lower both in magnitude and position than those

observed by Tominaga et al. (1989).

From these results, it is clear that the flow is very similar to that observed in

Case III for the emergent block in so much as it is not fully developed and uniform

but rather 3D in nature, although exhibiting many of the features of the developed

flow case.

4.2.1.2 Wake Structure

Figure 4.29 shows the mean velocity contours in the wake of the submerged block

at x =+5.5. The depression of mean streamwise velocity in the upper right quad-

rant is again noticeable and has an effect on the symmetry of the flow around the

block. However, otherwise the contours show the flow pattern that we might ex-

pect. The flow accelerates around a central wake in the lower part of the channel,

in which there are two peaks at the block edges and a central dip. The vertical

profile of the wake according to the contours of mean streamwise velocity is such

that it is narrower at the top and widens out towards the bottom. In this respect,

it is similar to the modelled results of Fröhlich and Rodi (2004) for a submerged

circular block.
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Figure 4.30 shows the vertical profile of the mean streamwise velocity at the

block centreline upstream and downstream of the block for the simple channel

case. The top of the block is located on this vertical scale where z = 2.5. For

this, the simple channel case, in the zone behind the block, the profile agrees with

the results of Fröhlich and Rodi (2004). They obseved that the recirculation zone

is shorter near the top of the cylnder and longer at the bottom, which correlates

with the greater recovery of the flow near the top of the block measured here.

This profile means that the mean value throughout the depth at this location in

the wake is a factor of 0.94 of that at the upstream position. The contours of

spanwise velocity are consistent with the presence of two counter-rotating vortices

in the wake, where there is a clockwise circulation on the left side and an anti-

clockwise circulation on the right. This is consistent with previously published

results including Fröhlich and Rodi (2004) and Martinuzzi and Tropea (1993),

who identified the vorticity as emanating from the separated region around the

block.

The profiles of boundary shear stress at the three streamwise locations are

shown in Figure 4.31. The profiles are generally similar to those observed for

the emergent block, however the profile at the downstream location in particular

shows that the wake for the submerged case is considerably wider and the mini-

mum bed shear stress value at the centre of the wake is smaller. As the bed shear

stress profile is a reflection of the near bed velocities, this observation is consis-

tent with the suppression of the vortex shedding as described by Fröhlich and Rodi

(2004), which implies a wider wake width and a lesser minimum wake velocity.

Finally, Figure 4.32 gives a comparison of the deformation of the free surface for

the submerged simple and compound channel cases. In this simple case, the profile

is similar to that for the emergent case (Figure 4.6) in that there is a central peak

bounded by two large troughs, which delineate the wake zone. Since the wake in

the submerged case tends to be wider than that in the emergent case, the greater

blockage caused by the larger separated zone causes the overall deformation of
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the free surface to be larger, although the relative deformation from the minimum

point on the surface to the peak of the central trough is approximately similar.

4.2.2 Kansai - Single, large aspect ratio block at the floodplain

edge (S4 CII)

In line with the methodology for the emergent block cases in the Kansai flume,

Case II was set-up in order to minimise the differences in Re/F r, ARbl and B with

Case IV. This data can be examined in Table 3.3.

4.2.2.1 Upstream Conditions

As we might expect, the contours of mean streamwise and spanwise velocity at the

upstream position in this case, as shown in Figure 4.33, are very similar to those

observed for the emergent compound channel case (Figure 4.7). The maximum

magnitude of the spanwise velocity is slightly smaller at 3.61% of the bulk mean

velocity but still similar to that observed by Tominaga and Nezu (1991). The ac-

companying profile of boundary shear stress (Figure 4.34) is, again, very similar to

that measured in the emergent block case (Figure 4.8). Here, the maximum value

in the main channel is τ/τ = 1.24 at a position of y/Wmc = 0.497, compared

to τ/τ = 1.26 at a position of y/Wmc = 0.515 from Case I. The secondary peak

is again present, where τ/τ = 1.13 at y/Wmc = 0.193. The spanwise area over

which the effect of the block can be seen in the boundary shear stress profile is

reduced in this case in comparison to Case I but the same pattern is evident on the

floodplain bed, where the boundary shear stress increases from the floodplain wall

towards the floodplain edge zone until it is depressed in the zone directly upstream

of the block location.

4.2.2.2 Wake Structure

The data measured at the downstream position for the submerged block on the

floodplain edge shows quite different flow behaviour to that observed in the cor-
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responding simple channel case. From the contours of streamwise mean velocity,

shown in Figure 4.35, although the deceleration behind the block associated with

the wake can be observed, it is clear that the central dip evident in the simple

channel case has disappeared. The contours also appear to bulge significantly to-

wards the main channel. The contours of spanwise velocity show no evidence

of the circulating flow that was observed in the simple channel case since there

is no change in direction near the block base. Instead, the flow toward the cen-

tre directly behind the block is characterised by larger velocity magnitudes on the

floodplain side. In the zone above the block however, the dominance is reversed so

that the orientation of the zero contour is significantly deviated from the vertical

in both directions.

The vertical profile of the mean streamwise velocity at the block centreline,

as shown in Figure 4.36, shows more clearly that the wake behind the block in

the compound channel is significantly less well recovered than that in the simple

channel. As a result of this, the depth-averaged value at this location in the wake

is a factor of 0.8 of that at the upstream position. However, it is not only the

magnitudes of the velocity at the centreline that have changed, but also the shape

of the profile since the degree of difference between the recovery at the top and

the bottom of the block has reduced.

The results for the boundary shear stress throughout the measurement zone

are shown in Figure 4.37. It is obvious that at the downstream position, the distri-

bution of bed shear stress in the wake can clearly be seen to be skewed toward the

main channel, which is consistent with the velocity measurement results.

The skew of the flow above the block towards the floodplain side of the wake

is clear in the profile of the downstream water surface for the compound channel

case, which is shown in Figure 4.32. The position of the maximum water level is

displaced by approximately one block width towards the floodplain side, which is

consistent with the distribution of spanwise velocities in this location. Overall, the

positioning of the block at the floodplain edge position tends to produce a much

smaller deformation of the free surface outside of the wake zone. However, the
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much larger central peak is an indication that the relative deceleration in the wake

is significantly larger, which corresponds well with the mean streamwise velocity

profile as described in Figure 4.36.

Unlike the emergent cases, where the wake structure over the majority of the

height of the block is dominated by the balance of the flow separating from the

sides and the resultant vortex shedding oscillation, the wake behind the submerged

blocks is controlled by a combination of this process and the effect of the flow

over the top surface. For this case in the compound channel, the velocity contours

suggest the presence of these two features since the wake is skewed in one direction

near the block base and in the other near the block top. One may speculate that

the process of axial vortex formation on the main channel side of the block is

disrupted by a complex interaction of the separating flow with the floodplain edge.

Separation on this side of the block being thus inhibited, it may be postulated that

the recirculation region on the floodplain side grows to be more dominant.

The freestream flow approaching the top of the block is complex due to the sec-

ondary currents associated with floodplain edge of the compound channel (Tom-

inaga and Nezu, 1991) and must therefore also cause the separation pattern on

the top of the block to be altered. The flow, having separated at the leading edge,

would be expected to re-attach onto the top surface, before again separating at

the trailing edge. The point of reattachment, however is likely to vary across the

width of the block top in this case. The higher freestream turbulence level or lower

freestream velocity on the main channel side may lead to earlier reattachment,

skewing the separation streamline and consequently also the flow over it.

4.2.2.3 Submerged blocks in simple & compound channels - Comparison of

Drag Coefficients

As in the emergent block cases, the drag coefficients for the submerged blocks

in simple and compound channel set-ups are shown below in Table 4.2. In this

case, the difference in time averaged integrated discharge at the upstream and
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Case Simple Channel Compound Channel

Rebl 10,764 9,006

F rbl 1.31 1.10

F rch 0.62 0.42

B(%) 2.4 1.5

CD 3.55 3.35

Table 4.2: Flow Parameters and Drag Coefficients for Single, Submerged Blocks in Simple

and Compound Channels

downstream sections for the simple channel case is 2.6%, whilst for the compound

channel case, it is 0.3%.

The values of CD calculated here for both cases are striking for their relatively

large magnitudes. Even accounting for the larger drag coefficient that we might

expect for a square block, the value for the block in the simple channel is clearly

significantly larger than the value predicted by Fröhlich and Rodi (2004) for the

case described in Section 2.4.3, CD = 0.88. This may suggest that there is a dis-

crepancy in the results for the simple channel case, causing the drag coefficient

to be over-estimated. Even accounting for such a discrepancy, the results clearly

demonstrate that the difference between the values measured in the simple and

compound channels is far smaller in comparison to that for the emergent cases.

The influence of the important flow parameters shown in Table 4.2 must of

course be considered. The assumptions to be drawn from the figures in Table 4.2

must be largely similar to those for the emergent blocks. Again, the difference in

the Reynolds number of the approaching flow is unlikely to be large enough to

significantly affect the structure of the wakes and here, even more so, the overall

magnitudes and the degree of difference between the blockage ratios is very small.

Unlike the emergent cases however, the reduction in the channel Froude number

would in this case have a minimal effect on the vortex shedding process, where it
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exists around the submerged blocks. The smaller Froude number may, however,

partially account for the smaller overall deformation of the free surface in the

compound channel case.

The influence of the compound channel geometry and the changing upstream

distribution of turbulent kinetic energy have been shown to have a clear effect on

the recovery of the pressure and velocity fields. Their part in the alteration of the

drag coefficient will be examined in the next section.

4.2.3 Loughborough - Single, large aspect ratio block at the

floodplain edge (S2 CII)

Series 2, Case II is the case of a submerged block at the floodplain edge in the

Loughborough flume. As with the emergent cases, efforts were made to make

comparisons possible such that the aspect ratio of the block is identical to that

used in Series 4 and the blockage ratio is very similar to that in Series 4, Case II.

Re/F r is again larger in this case than that achieved in the Kansai experiments but

it is hoped that the difference is not so large as to disbar comparison of the results.

4.2.3.1 Upstream Conditions

Figure 4.38 details the upstream conditions for this experiment, showing the con-

tours of mean streamwise velocity and turbulent kinetic energy and the vectors

of the secondary circulations. Again, due to the inability of the ADV to measure

in the upper portion of the flow, data is shown only for vertical positions where

measurement was possible and the figures do not extend to the free surface.

The results are very similar to those observed in the emergent case, where

bulging of the streamwise velocity contours at the floodplain edge position can be

seen, together with a peak in the turbulent kinetic energy at this position. The

highest measured streamwise velocity in this case occurs at Z/Hch = 0.77, which is

identical to the emergent case and therefore compares favourably with the results

of Tominaga and Nezu (1991). The maximum secondary circulation is 5.80% of
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the bulk mean velocity, which is slightly higher than that measured in the emergent

case but nevertheless, reasonable when compared to previously published results.

The values of K are also again slightly lower than that which we might expect from

Tominaga and Nezu (1991), being in the range of 0−1.5. Using the definition from

Lyn et al. (1995) for freestream turbulent intensity of u′/Um, the values available

at the upstream centreline for the block are 9.71%, 7.81% and 7.45% at z = 0.26,

z = 1.58 and z = 2.00 respectively. With the requisite spanwise gradient in mean

streamwise velocity, significant secondary circulations and this elevated turbulent

energy level, the following results from the wake of the block should give a good

indication of the effects of this positioning on the wake structure.

4.2.3.2 Wake Structure - Mean Flow

Figure 4.39 shows the contours of normalised streamwise velocity around the

emergent block at a vertical position where z = 1.0 and at the downstream cross-

section at x = 2.7. The plan data confirms that the skew of the wake into the

main channel is occuring throughout the length of the wake. In the recirculation

zone, the absolute minimum streamwise velocity is U = −0.253 and occurs at

(x , y) = (1.3,−0.20), although overall within the recirculation zone, the symme-

try of the wake is much greater than that of the emergent case. After reattachment,

the skew into the main channel becomes progressively more accentuated until at

x = 4.0, the minimum velocity is situated at the main channel edge of the block.

The cross-section of data shows the nascent skew in development and although

data was not captured near the top of the block, like the results in the Kansai

flume, the trend is for the effect to lessen as the vertical position increases. Al-

though there are no results with which to directly compare, since the results from

the Kansai flume suggest that the recirculation zone is larger for the compound

channel case, it is worth noting that at z = 1.0 in this case, at the block centreline

the recirculation zone ends just beyond x = 2.0.

Figure 4.40 shows the contours of mean spanwise and vertical velocity in plan.

Since the position of the wake according to the contours of streamwise velocity cor-
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responds well with the previous results from the Kansai flume, at the measurement

depth of the plan results, we might expect to and do indeed see larger spanwise

mean velocity values on the floodplain side of the block centreline in the wake.

However, these results reveal that this feature occurs throughout the length of the

wake. Unlike the emergent case, where there was no evidence of a significant dif-

ference in size of the separation zones on either side of the block, in this case, there

is a small discrepancy in the spanwise velocities at the block streamwise centre po-

sition, where the higher main channel values would suggest that the separation

zone on the main channel side may be slightly larger. As is clear from the contours

of streamwise velocity, the imbalance in the wake positioning tends to grow sig-

nificantly in the downstream direction. This is reiterated in the spanwise velocity

results since the imbalance between the peak values on either side of the wake also

increases.

Just as with the emergent case, the vertical velocity profile shows that the

downflow associated with the separating flow around the shaft of the block is

greater in the main channel than on the floodplain. However, the structure of the

wake in this case being complicated by the flow over the top of the block, the wake

distribution of vertical momentum is more complex. Although it is difficult to make

out from the figures, the results indicate that the flow coming over the top of the

block is angled towards the main channel, which supports the theory discussed

in Section 4.2.2.2 that the reattachment and separation pattern on the top of the

block will be angled because of the floodplain edge positioning.

In the near wake, a small but strong circulation can be identified in Figure

4.40(b) on the main channel side, which is completely lacking on the floodplain

side. This is rotating in an opposite sense to the axial vorticity that we see more

centrally due to the flow over the top of the block. Although this feature quickly

diminishes, its effects are felt downstream, as can be clearly seen in the plot of the

secondary velocity vectors at x = 2.7, shown in Figure 4.41. This shows that the

axial vorticity on the main channel side is hindered from forming as it does on the

floodplain side by a strong upflow from the main channel. The upflow noted at the
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floodplain wall in the main channel is also present in the secondary flow vectors in

the emergent case (Figure 4.16). In that case, a commonality of direction means

that it reinforces the axial voriticity contribution on the main channel side of the

wake. In this submerged case, where the direction of rotation of the prevailing

vorticity is opposite, it has the reverse effect and diminishes the main channel

vortex in comparison with that on the floodplain side.

Estimations of the vorticity components were again made at (x , z) = (2.7, 1.0)

and are plotted in Figure 4.42. At this location, the results show that whilst the

vertical vorticity of the average flow remains that largest component overall, its

dominance over the other components is slightly reduced from that of the emer-

gent case and its profile is symmetrical. The profiles for the axial component and

crucially, for the transverse component are heavily skewed towards maxima on the

main channel side.

These results show that, perhaps even more so than in the emergent case, the

floodplain edge positioning of the submerged block has considerable implications

for the formation of the wake and the subsequent flow pattern in the channel more

widely. Not only is the separation and reattachment of the flow around the block

shaft affected, particularly by the uneven vertical momentum distribution on either

side of the block, but the pattern of reattachment on the top of the block is also

skewed. These effects combine to create an axial vorticity pattern in which the vor-

tex structure on the main channel side is disrupted and comes to be dominated by

the structure on the floodplain side. Moving downstream, this effect is accentuated

as the wake drifts into the main channel.

4.2.3.3 Wake Structure - Turbulence Statistics

The key features of the turbulent field that are contributing to the wake structure

described above are revealed through the following data. Figure 4.43 shows the

total turbulent energy distribution, at y = −0.5, 0,0.5. In comparison with the

peak values measured in the emergent case, which are shown in Figure 4.18, the

total energy of the turbulent field is reduced in this case. This is consistent with
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the suppression of vortex shedding by the flow over the top of the block that has

been observed in experiments in simple channels. The pattern of distribution of

the turbulence across the wake is, however, very similar to that observed for the

emergent block, where larger values are found on the floodplain.

Figures 4.44, 4.45 and 4.46 show the streamwise, spanwise and vertical normal

Reynolds stress components for both the plan measurement plane and the detail of

the contours in the block wake for the cross-sectional measurement plane.

From the measurements of the streamwise component, the familiar double

peak in u′u′ in the shear layers surrounding the wake can be seen and just like the

emergent case, the larger peak is to be found on the floodplain. In line with the

drift in the streamwise velocity contours into the main channel, the positions of the

peaks in u′u′ can also be seen to move toward the main channel in the downstream

direction. The cross-sectional profile shows a similar trend to the emergent case

in that the degree of asymmetry across the block reduces as the vertical position

moves away from the floodplain bed.

The distribution of the spanwise component at the plan measurement level is

also highly similar to that in the emergent case, with a single peak developing on

the floodplain side of the block centreline. Moving downstream, this also moves

gradually towards the main channel. This pattern of normal Reynolds stresses is

consistent with the information gleaned from the mean velocity contours, namely

that the separating flow from the shaft is disrupted on the main channel side, lead-

ing to more powerful and therefore, higher energy circulations on the floodplain

side of both vertical and axial orientations.

The relative contribution of the vertical component w′w′ to the overall turbu-

lent kinetic energy in the wake is much larger in this case than in the emergent

case. The peak magnitude of the component is associated with the region just after

reattachment, where the mean vertical velocity component is also at a maximum.

Confirming the observations from the mean vertical velocity profile that the altered

shape of the recirculation zone and the angling of the flow separating from the top
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of the block result in a downflow at this location that is skewed toward the main

channel, the peak in w′w′ is located on the floodplain side.

As may be expected from the previous results, the plot of the Reynolds shear

stress in the horizontal plane shown in Figure 4.47(a) shows higher values on

the floodplain side of the block. In comparison with the emergent case, both the

absolute magnitudes and the degree of difference between them across the wake

are lessened. With dampened vortex shedding due to the flow over the top of

the block, the overall drop in magnitude is to be expected as the minimum wake

velocity will not be as extreme in this case. The higher floodplain values persist

partially due to the higher blockage on the floodplain side, which ensures that the

peak velocity outside of the wake is higher, leading to a higher strain rate. As the

flow passes downward over the recirculation zone, a large positive peak appears

in the profile of −u′w′ shown in Figure 4.47(b). Finally, the distribution of −v′w′

shown in Figure 4.47(c) shows the opposite trend to that identified in the emergent

case so that higher values are found on the floodplain side. This distribution is a

result of the dominance of the axial circulation on the floodplain identified in the

contours of mean velocity and confirms that these structures are balanced in an

opposite sense to their equivalents in the emergent case.

4.2.3.4 Summary

The flow around a single large aspect ratio submerged block at the floodplain edge

exhibits significant differences from that around a similar block in a simple chan-

nel. Like its emergent couterpart, the floodplain edge positioning is again influen-

tial in disrupting the characteristics of the separated flow on the main channel side

of the block shaft such that the vorticity formation associated with this separation

zone does not proceed as would otherwise be expected and together with the in-

fluence of the asymmetric blockage, results in more turbulent kinetic energy being

associated with the floodplain side of the wake. Unlike its emergent counterpart,

due to the more complex shape of the recirculation zone, including the influence

of the flow separating from the top of the block, this does not result in a skew
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of the wake to the floodplain side. The channel geometry heavily influences the

distribution of vertical momentum such that a small but powerful axial rotation

develops on the main channel side of the block in the separation zone. Rotating in

an opposite sense to the axial vorticity that we expect in the wake of a submerged

block, this feature has an important role in changing the nature of the wake on this

side, as the wake gradually becomes skewed into the main channel.

The flow over the top of the block, which would normally be expected to sep-

arate from the leading edge and reattach at a uniform streamwise position on

the top surface is also clearly affected by the floodplain edge position such that

reattachment and the subsequent separation from the rear edge are likely to be

skewed. The results certainly indicate that where this flow passes over the recir-

culation zone, it is angled toward the main channel and thus has an asymmetrical

influence on the subsequent wake development.

Whilst the vortex shedding process is much reduced in extent and influence, the

greatest turbulent kinetic energy is still associated with the turbulent structures in

the horizontal plane. In both this and the axial plane, the uneven pattern of separa-

tion leads to a dominance by the floodplain structures. The imbalance originating

in the separation zones is emphasised by the differences in magnitude of the vor-

tex stretching terms in the wake so that behind the block, the wake appears to

gradually drift into the main channel.

The results from the Kansai and Loughborough experiments suggest that the

floodplain edge positioning acts to slow the overall recovery of the streamwise

velocities in the wake, in much a similar way to the emergent cases.

4.2.4 Loughborough - Multiple, small blocks at the floodplain

edge (S1 CI & III)

In Series 1, two submerged cases with multiple small blocks were tested with dif-

ferent degrees of submergence. This data complements that collected for the single

block with data for a set of in-line blocks. Not only that however, but the change in
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the degree of submergence reveals some interesting flow characteristics, giving an

insight into the influence of this factor. The aspect ratio of the block in both cases

is 1.67 but the relative depth varies such that in Case III, it is similar to that of the

single large aspect ratio block of the previous section, whilst in Case I, it is much

greater.

This section details the data collected in both the deep submergence case and

the shallow submergence case. Figure 4.48 shows the mean velocity data for the

former case while Figure 4.49 shows it for the latter. For both cases, the overall

spanwise gradient of U is considerably larger than that measured for the single

block case. This does not appear to qualitatively change the distribution of the

mean velocities.

In the deep submergence case, the results for the distribution of the streamwise

velocity downstream of the block are similar to those observed for the single large

aspect ratio block, namely that the wake can be observed to move into the main

channel in the downstream direction. The upstream profile, itself measured in

the wake of the third block, shows a wake from the previous block that is largely

indistinguishable from the floodplain flow. This suggests that the wake is well

recovered at this point. The vectors of the secondary circulations at this station

still show evidence of axial circulations however and just as with the single large

aspect ratio block, the vectors suggest that the vortex structure on the floodplain

side is heavily dominant over that on the main channel side. Moving downstream

past the fourth block, the vectors show that this pattern is augmented so that the

process described for the single, large aspect ratio block may be assumed to be also

present for these small blocks and to be enhanced by the arrangement of the blocks

in a line at the floodplain edge.

In the shallow submergence case, the streamwise velocity distribution shows

exactly the opposite tendency to the deep submergence case so that the minimum

streamwise velocity is consistently found on the floodplain side of the block cen-

treline. In this respect, the flow resembles the emergent case much more closely

than the deep submergence case, suggesting that the relative influence of the flow
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coming over the top of the block in determining the wake structure is very large.

The vectors of secondary circulations for this case suggest that the axial vorticity

associated with the wakes is also more akin to that of the emergent case so that

there is an upflow near the block centre and a tendency for the main channel axial

vortex structure to dominate. Despite these similarities, the characteristic double

peak in the main channel distribution of streamwise velocity of the emergent case

is however, conspiciously absent here and the shape of the wake suggested by the

streamwise velocity profiles is also different. Whilst in the emergent case, the wake

widens out on the floodplain side, in the shallow submergence case, this widening

is less remarkable.

The total turbulent kinetic energy and the normal turbulent shear stress con-

tributions are shown in Figures 4.50 and 4.51. For the deep submergence case,

despite the simlar distribution of mean velocities with the single, large aspect ratio

block case, the peak value of turbulent energy is generally at or near the block

centreline at all of the measurement stations. An examination of the individual

normal turbulent stress components reveals that this is the result of a change in

the relative contributions and distributions of these. Since the aspect ratio of the

blocks is much reduced in this case, we must expect that the relative influence of

turbulent structures emanating from separation around the block shaft will be less-

ened. Thus, the relative magnitude of u′u′ is smaller and its influence on the final

turbulent energy distribution is reduced. Although u′u′ and v′v′ follow the pattern

established for the single large aspect ratio block and peak on the floodplain, w′w′

does not.

For the shallow submergence case, the K profile moves closer to that observed

for the emergent block in this series with the overall maximum occurring near to

the main channel edge of the block, where both u′u′ and w′w′ peak. Thus it is again

clear that the degree of submergence is highly influential in determining the final

relative significance of the turbulent structures in each plane and the development

of the wake in the downstream direction.
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The turbulent shear stresses are plotted in Figures 4.52 and 4.53 in the horizon-

tal, transverse and cross-sectional planes respectively. For the deep submergence

case, the turbulent shear stress distributions are very similar to those described

for the single, large aspect ratio submerged block since the larger peak of −u′v′

is found on the floodplain side, despite the tendency of the minimum streamwise

velocity to lie near the main channel. The skewed downward flow over the top

of the recirculation zone also again results in a large positive peak in −u′w′ on

the floodplain side. For the shallow submergence case, similarities with the emer-

gent case prevail for both −u′w′ and −v′w′, where the values at the main channel

interface are dispropotionatly large and reflect an axial flow structure highly de-

pendent on the nature of separation around the block shaft. Only the profile of

−u′v′ is significantly different, since its imbalance is reversed.

Whilst the results for the deep submergence case in this section confirm many

of the observations made for the single, large aspect ratio block and suggest that

these features are accentuated by the smaller aspect ratio and the in-line arrange-

ment, the results for the shallow submergence case reveal that the degree of sub-

mergence has a powerful influence on the final wake structure and the influence of

the floodplain edge positioning thereon. Whilst it has been observed for the former

cases that the floodplain edge positioning and the resulting skew in the flow pass-

ing over the top of the block results in significantly stronger axial vorticity on the

floodplain and the gradual movement of the wake into the main channel, for the

shallow submerged case, many of the effects associated with the emergent blocks

are observed. The relative influence of these features on the drag created by the

blocks will be examined with the numerical model in Chapter 5.

4.3 Summary

This chapter has presented the results gleaned from physical experiments in straight

channels in the Kansai and Loughborough laboratories. The experiments in the

Kansai flume demonstrated directly the differences in wake structure induced by
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the placement of blocks at the floodplain edge of a compound channel, whilst those

from the Loughborough flume added detail to the mechanisms causing these dif-

ferences and provided a contrasting set of results for blocks of varied aspect ratio

and arrangement. The results in general reveal significant differences in the wake

structures behind cylindrical obstacles induced by their positioning at the edge of

the floodplain of a compound channel and a tangible impact on the drag force

produced by these blocks in comparison to their counterparts in simple channels.
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Figure 4.1: Mean (a) streamwise velocity contours (U) and (b) spanwise velocity contours

(V) upstream of the large aspect ratio, emergent block in the simple channel (S4CIII)
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emergent block in the simple channel (S4CIII)
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Figure 4.3: Mean (a) streamwise velocity contours (U) and (b) spanwise velocity contours

(V) downstream of the large aspect ratio, emergent block in the simple channel (S4CIII)
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Figure 4.8: Distribution of boundary shear stress upstream of the large aspect ratio,

emergent block in the compound channel (S4CI)
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Figure 4.11: Distribution of boundary shear stress at all sections for the large aspect ratio,

emergent block in the compound channel (S4CI)
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Figure 4.12: (a) Mean streamwise velocity contours (U) and (b) mean turbulent kinetic

energy contours (K) upstream of the large aspect ratio, emergent block in the compound

channel (S2CI)
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downstream (x = 2.7) of the large aspect ratio, emergent block in the compound channel
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Figure 4.14: Mean (a) spanwise velocity contours (V) and (b) vertical velocity contours

(W) around (z = 1) the large aspect ratio, emergent block in the compound channel (S2CI)
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Figure 4.17: (a) Axial vorticity and (b) contributions to axial vorticity production

downstream (x = 2.7) of the large aspect ratio, emergent block in the compound channel
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Figure 4.20: Mean spanwise normal Reynolds stress contours (v′v′) (a) around (z = 1) and

(b) downstream (x = 2.7) of the large aspect ratio, emergent block in the compound channel
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Figure 4.21: Mean vertical normal Reynolds stress contours (w′w′) (a) around (z = 1) and

(b) downstream (x = 2.7) of the large aspect ratio, emergent block in the compound channel

(S2CI)
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Figure 4.22: Components of and total turbulent kinetic energy production at

(x , z = 2.7, 1.0) for the large aspect ratio, emergent block in the compound channel (S2CI)
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Figure 4.23: Mean Reynolds shear stress contours (−u′v′,−u′w′,−v′w′) around (z = 1.0)

the large aspect ratio, emergent block in the compound channel (S2CI)
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Figure 4.25: Turbulent kinetic energy and normal turbulent stresses around small, emergent

block in the multiple block arrangement in the compound channel (S1CII) (a) K, (b) u′u′,

(c) v′v′ and (d) w′w′
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Figure 4.26: Turbulent shear stresses around small, emergent block in the multiple block

arrangement in the compound channel (S1CII) (a) −u′v′, (b) −u′w′ and (c) −v′w′
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Figure 4.27: Mean (a) streamwise velocity contours (U) and (b) spanwise velocity contours

(V) upstream of the large aspect ratio, submerged block in the simple channel (S4CIV)
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Figure 4.28: Distribution of boundary shear stress at the upstream section for the large

aspect ratio, submerged block in the simple channel (S4CIV)
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Figure 4.29: Mean (a) streamwise velocity contours (U) and (b) spanwise velocity contours

(V) downstream of the large aspect ratio, submerged block in the simple channel (S4CIV)
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Figure 4.30: Vertical distribution of streamwise velocity U at the block centreline upstream

and downstream of the large aspect ratio, submerged block in the simple channel (S4CIV)
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Figure 4.31: Distribution of boundary shear stress at all sections for the large aspect ratio,

submerged block in the simple channel (S4CIV)
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normalised with block width, for the large aspect ratio, submerged blocks in the simple and
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Figure 4.33: Mean (a) streamwise velocity contours (U) and (b) spanwise velocity contours

(V) upstream of the large aspect ratio, submerged block in the compound channel (S4CII)
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Figure 4.34: Distribution of boundary shear stress upstream of the large aspect ratio,

submerged block in the compound channel (S4CII)
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Figure 4.35: Mean (a) streamwise velocity contours (U) and (b) spanwise velocity contours

(V) downstream of the large aspect ratio, submerged block in the compound channel (S4CII)
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Figure 4.36: Vertical distribution of streamwise velocity U at the block centreline upstream

and downstream of the large aspect ratio, submerged block in the compound channel (S4CII)
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Figure 4.37: Distribution of boundary shear stress at all sections for the large aspect ratio,

submerged block in the compound channel (S4CII)
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Figure 4.38: (a) Mean streamwise velocity contours (U) and (b) mean turbulent kinetic

energy contours (K) upstream of the large aspect ratio, submerged block in the compound

channel (S2CII)

182



4.3 Summary

1.35

1
.1

5

1.25

1.35

1
.3

5

0
.9

5
0
.7

5

y

x

-10 -5 0 5
0

2

4

6

8

(a)

1.1

1.2

1.3

1.4

1
.2

y

z

-10 -5 0 5

-3

-2

-1

0

1

2

3

(b)

Figure 4.39: Mean streamwise velocity contours (U) (a) around (z = 1) and (b)

downstream (x = 2.7)of the large aspect ratio, submerged block in the compound channel

(S2CII)
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Figure 4.40: Mean (a) spanwise velocity contours (V) and (b) vertical velocity contours (W)

around (z = 1.0) the large aspect ratio, submerged block in the compound channel (S2CII)
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Figure 4.41: Vectors of secondary circulations downstream (x = 2.7) of the large aspect

ratio, submerged block in the compound channel (S2CII)
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Figure 4.42: Mean vorticity components downstream (x , z = 2.7,1.0) of the large aspect

ratio, submerged block in the compound channel (S2CII)
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Figure 4.44: Mean streamwise normal Reynolds stress contours (u′u′) (a) around (z = 1)

and (b) downstream (x = 2.7) of the large aspect ratio, submerged block in the compound

channel (S2CII)
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Figure 4.45: Mean spanwise normal Reynolds stress contours (v′v′) (a) around (z = 1) and

(b) downstream (x = 2.7) of the large aspect ratio, submerged block in the compound

channel (S2CII)
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Figure 4.46: Mean vertical normal Reynolds stress contours (w′w′) (a) around (z = 1) and

(b) downstream (x = 2.7) of the large aspect ratio, submerged block in the compound

channel (S2CII)
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Figure 4.47: Mean Reynolds shear stress contours (−u′v′,−u′w′,−v′w′) around (z = 1.0)

the large aspect ratio, submerged block in the compound channel (S2CII)

190



4.3 Summary

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5y

U
/U

m

ST01 ST02 ST03 ST04

(a)

S1

S2

S3

S4 0.05

(b)

Figure 4.48: Mean velocity components around small, deep submerged block in the multiple

block arrangement in the compound channel (S1CI) (a) U and (b) Vectors of V and W
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Figure 4.49: Mean velocity components around small, shallow submerged block in the

multiple block arrangement in the compound channel (S1CIII) (a) U and (b) Vectors of V

and W
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Figure 4.50: Turbulent kinetic energy and normal turbulent stresses around small, deep

submerged block in the multiple block arrangement in the compound channel (S1CI) (a) K,

(b) u′u′, (c) v′v′ and (d) w′w′
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Figure 4.51: Turbulent kinetic energy and normal turbulent stresses around small, shallow

submerged block in the multiple block arrangement in the compound channel (S1CIII) (a) K,

(b) u′u′, (c) v′v′ and (d) w′w′
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Figure 4.52: Turbulent shear stresses around small, deep submerged block in the multiple

block arrangement in the compound channel (S1CI) (a) −u′v′, (b) −u′w′ and (c) −v′w′
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Figure 4.53: Turbulent shear stresses around small, shallow submerged block in the multiple

block arrangement in the compound channel (S1CIII) (a) −u′v′, (b) −u′w′ and (c) −v′w′
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CHAPTER 5

Computational Modelling

5.1 Model Testing - Simple Scenarios

The structure and algorithm for the computational model was described in Chapter

3. In its original form, the code was tested by its author (Vyas, 2007). However,

since a new turbulence closure was added to the code for this project, it was first

necessary to test its application to simple flow cases and compare the results to

those obtained with the existing turbulence closure mechanisms.

Square Duct Flow The first test case considered was that of a simple square

duct flow with a Reynolds number of 5x104. This corresponds to the Reynolds

number chosen for model testing by Vyas (2007). Setting the upstream boundary

condition to a uniform velocity value, the linear k− ε model was used initially. At

the conclusion of the first simulation, the resulting downstream profile was applied

as the upstream boundary condition to the next simulation. In this way, fully

developed flow was achieved using the more efficient linear k− ε model. The grid

for this simulation is shown in Figure 5.1. The grid, and all subsequent grids used

in this work, are designed in order to minimise the simulation times associated with

them. To this end, smaller cell sizes were created near boundaries and larger cell

sizes were used far from boundaries. In this case, in the streamwise direction, the
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grid cells are equally spaced with 72 cells covering a length of 5, giving a cell length

of 0.0695. In the lateral and vertical directions, the cell distributions are identical,

with a total of 80 cells in each direction and an equal width and height of 1. The

minimum cell size is 0.00894 and the expansion factor, namely the factor by which

cell size increases from one cell to its neighbour, is 1.034. Cells are smallest at

the boundaries, increase in size towards the quarter-width point and then reduce

in size again to the centre of the channel. The vertical and lateral boundaries are

set to be wall boundaries, functioning as described in Section 3.2.3 and the outlet

boundary is set up using the Neumann boundary condition described in Section

3.2.3.

The distribution of mean streamwise velocity, the turbulent kinetic energy and

the vectors of the secondary circulations produced by the k−εmodel are shown in

Figure 5.2. The maximum magnitude of the secondary circulations was found to be

approximately 0.5x10−6Um. It is clear from this result that, as expected, the k− ε

model fails to reproduce the secondary circulations associated with the anisotropy

of the lateral and vertical normal Reynolds stress components. Figure 5.2(b) shows

the distribution of the turbulent kinetic energy (K), which, as expected, shows

higher values near the channel walls.

Using these results as upstream boundary conditions, a simulation was then

performed using the Speziale (1987) model. The performance of this model for

this scenario was tested by Vyas (2007), allowing us to directly compare our re-

sults. Figure 5.3 gives the results for this simulation and the secondary circulations

can be clearly seen in the plot in (c). The maximum secondary circulation value

as a proportion of the bulk mean velocity is 0.926%. In comparison to the exper-

imental data described in Section 2.2.1, this value is low and this is reflected in

the weak bulging of the contours of streamwise velocity that can be observed in

Figure 5.3(a). These results also match those of Vyas (2007), who noted that of the

three models originally included in the code, the model of Speziale (1987) tended

to produce the least change in the streamwise velocity contours. The contours of
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turbulent kinetic energy are largely unchanged from the results of the linear k− ε

model.

Figure 5.4 shows the results from the same simulation performed with the tur-

bulence closure scheme of Kimura and Hosoda (2003), which will henceforth be

called the K&H scheme. The streamwise velocity contours are changed from the

results of the linear k− ε model and although the pattern of the secondary circu-

lations is broadly similar to the previous results, in this case, the maximum mag-

nitude of the secondary circulations is 2.49% of the bulk mean velocity. This value

is exactly within the 1 − 4% range of experimental values described in Section

2.2.1. The contours of turbulent kinetic energy show that the model of Kimura

and Hosoda (2003) is predicting significantly larger peak values than the previous

two models. From this test, we can therefore conclude that the K&H turbulence

closure performs favourably for square duct flow.

Compound Channel Flow The second test case was that of compound duct flow.

This test was important to ensure that the model was capable of reproducing the

characteristic velocity profile of the compound channel in which we are interested.

The grid from the square duct case was modified for this purpose. Symmetry

boundaries were substituted for wall boundaries on the top and right of the cross-

section and the bottom left hand quadrant was removed from the calculation do-

main using the masking concept described in Section 3.2.1. The resulting grid is

shown in Figure 5.5, where the plan view of the grid is taken in the bottom half of

the channel, showing the masked region.

A similar approach was adopted to the simulation as in the square duct case.

However, for the compound channel case, a bed slope of 0.0005 and a higher

Reynolds number of 1.163x106 was adopted. This higher Reynolds number was

used in order to confirm the applicability of the model over the range of Reynolds

numbers of interest. The results from the simulations with the linear k− ε model

are shown in Figure 5.6.
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The results from the k− ε model show that the masked boundaries are operat-

ing correctly but of course, the results do not have any of the features of compound

channel flow as described in Section 2.2.3. Using the K&H model, the results in

Figure 5.7 were then created. The contours of streamwise velocity have moved

from the k−ε results to show a slight bulge at the floodplain edge and the pattern

of secondary circulations causing this phenomenon can be clearly seen by com-

paring the vector plots between the two cases. The maximum strength of the sec-

ondary flow as a proportion of the bulk mean velocity is now 1.67%. The contours

of turbulent kinetic energy show that the values at the floodplain edge area have

increased in relation to the values in the remainder of the channel as compared to

the results from the k− ε model.

When comparing these results with previous experimental data, it is clear that

the strength of the secondary circulations is smaller than we might expect. Tomi-

naga and Nezu (1991), for example, quote a maximum secondary flow of 4.45% of

the bulk mean velocity, where the Reynolds number is 5.45x104, whilst an average

value of 4.71% was recorded in the experiments described in Chapter 4, where the

Reynolds numbers were between 2.6x105 and 4.8x105. However, having chosen

the algebraic stress model of Naot and Rodi (1982) as the best performer of the

original three options, Vyas (2007) produced a broadly similar result of 2% for his

simulation of a compound duct flow with Re = 1x105. The bulging of the stream-

wise velocity contours in the modelled results is also mild in comparison with that

observed in the experimental data. This must partially be due to the weaker sec-

ondary circulations but is also a consequence of the way in which the free surface

is modelled. Since a symmetry boundary is used for all dependent variables, this

boundary does not make allowance of the limitation that the free surface places on

the turbulent length scale in the vertical direction. The neglect of this phenomenon

may also act to suppress the deformation of the streamwise velocity contours.

In general, however, the model successfully represents the lateral gradient in

streamwise velocity between the floodplain and main channel and the pattern of

secondary flow vectors induced by the distribution of the normal turbulent stress
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components in the spanwise and vertical directions. The next section will compare

results from the model with some of the experimental data presented in the pre-

vious chapter to investigate what features of the flow the model can successfully

represent.

5.2 Model Testing - Experimental Scenarios

5.2.1 Emergent Cases

5.2.1.1 Emergent, Low Aspect Ratio In-line Blocks (S1CII)

Since the model is limited to steady flow modelling only, it is inherently better

suited to the modelling of flows without a periodic component, i.e. we would ex-

pect the model results to match the experimental results more closely for cases

without strong vortex shedding phenomena. As such, the in-line emergent low

aspect ratio experimental case (Series 1, Case II) was chosen as the first case with

which to test the model. This is the final case for which both the linear k − ε

and non-linear K&H closure schemes have been used. The grid for this simulation

encompassed the length of the flume and since no detailed information was avail-

able on inlet conditions from the experiments, the streamwise velocity at the inlet

was set to a uniform value matching that of the bulk mean velocity. The turbulent

kinetic energy and turbulence dissipation rate were also set to uniform values at

the model inlet, using Equations 5.1 and 5.2 and assuming a freestream turbulent

intensity of 2%. All wall and masked boundaries were set up in the same way as

described for the models of simple flows, as was the outlet boundary. A symmetry

boundary condition was again applied at the free surface.

K = 1.5(U Ti)
2 (5.1)

ε=
C0.75
µ K1.5

0.07R
(5.2)

201



5.2 Model Testing - Experimental Scenarios

Figure 5.8 shows the mean velocity components and the turbulent kinetic en-

ergy from both the experiment and the models at Station 3, which lies a distance of

3.5Wbl downstream of the centre of the fourth block as described in Section 3.1.1.2.

The comparison is performed at a vertical position of z =+0.5. In order to provide

context to the comparison of the measured and modelled results, error bars have

been added to the plots of streamwise mean velocity in all of the subsequent cases.

These error bars show the 4% error reported by Rusello et al. (2006) in their com-

parison of the performance of the Nortek Vectrino ADV with non-intrusive velocity

measurement techniques. In this case, the plot of mean streamwise velocity shows

that the modelling results display higher values far from the block in both the main

channel and on the floodplain, greatly exceeding the error bar thresholds. This fea-

ture may be linked to the tendency of the model, as described in Section 5.1, to

underestimate the secondary circulations and turbulent kinetic energy associated

with the anisotropic distribution of the normal turbulent stresses in the compound

channel and the inability of the model to fully reflect the changes induced in the

velocity distribution by the free surface.

Inside the wake, the larger relative drop in streamwise velocity predicted by the

models suggests that the modelled flow is recovering more slowly to the freestream

conditions than we might expect. Whilst outside of the wake, the two turbulence

closures produces very similar distributions of the mean streamwise velocity, it is

clear that the k − ε model is predicting a faster recovery of streamwise velocity

within the wake. This is accompanied by a slightly larger prediction of the total

turbulent kinetic energy at this streamwise location. This behaviour is directly

opposite to that noted by Bosch and Rodi (1998) for the 2D square block case,

where the linear turbulent closure tended to over-produce turbulent kinetic energy

in the stagnation region upstream of the block and over-predict the length of the

recirculation zone behind it.

Concentrating on the prediction of the turbulent kinetic energy by the non-

linear model, it is clear that, in common with many modelled flows, the model

gives a lower result than the measured profile. Despite this, the shape of the profile
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matches the experimental data well and reproduces the imbalance in the peaks,

which is characteristic of this flow. The original testing of the K&H scheme for the

2D flow of Lyn et al. (1995) showed that the model reproduced the total fluctuating

energy well. However, it achieved this through a combination of over-predicting

the contribution from the regular shedding and under-predicting the contribution

from the truly random turbulence. In this case, where regular shedding is likely

to be minimal due to the low block aspect ratio, the larger influence of the under-

prediction of the turbulence means that the model is more likely to under-estimate

the total fluctuating energy and therefore predict the longer recovery zone that

is observed in these results. This may be true to such an extent that the normal

pattern of turbulence and wake recovery prediction by the linear and non-linear

models at this location is reversed.

However, whilst the k− ε fails to do so, the K&H model successfully, although

weakly, reproduces the double bump in the profile in the main channel, a conse-

quence of an improvement in the prediction of the secondary circulations. This

is particularly true of the vertical component, where implementation of the non-

linear closure improves both the magnitude and the distribution.

An examination of the model results around the fourth block shows the forma-

tion and augmentation of the axial vorticity that was identified in the experiments

around the single, large aspect ratio blocks described in Chapter 4. Figure 5.9

shows the mean streamwise velocity contours and the secondary flow vectors at

Stations 2 and 3, i.e. at the streamwise block centre and 3.5Wbl downstream. The

plots of the secondary flow vectors concentrate on the area around the block whilst

the contours of streamwise velocity are shown for the whole section.

At the streamwise centre, a large anti-clockwise circulation can be observed in

the main channel, which has been set up by the flow past the upstream blocks in

the series. The presence of this circulation goes to explain the distortions in the

contours of streamwise velocity at this position. However, the plot of secondary

circulations also shows a small but powerful anti-clockwise circulation appearing

right on the block edge on the main channel side. From an examination of the
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results in plan, it is clear that this circulation is strongest on the upstream half of the

block side wall for all cases and within the series of blocks, is strongest at the first

block and gradually decreases in strength in the downstream direction. However,

it is still clearly strong enough to have a significant impact on the structure of

the wake for the fourth block, since the pattern of secondary circulations for the

downstream position shows that the symmetrical axial vorticity pattern that we

might otherwise expect behind a block in a simple stream has become significantly

distorted, with a dominant main channel vortex and little or no vorticity on the

floodplain side.

These simulated results show that the model is a useful tool for analysing this

flow type and lead to the conclusion that the results from the K&H turbulence

closure are more useful in simulating this kind of flow than those from the linear

turbulence closure. Taking into account its limitations, particularly in reference to

the prediction of turbulent energy, it may therefore be put to use to examine the

effects of changes in channel geometry and freestream flow parameters on wake

structures.

5.2.1.2 Single, Emergent, Large Aspect Ratio Block at the Floodplain Edge

(S2CI)

The experimental case of Series 2, Case I, where a single large aspect ratio square

block was placed at the edge of the flume in the laboratory in Loughborough,

was modelled on a 150x125x100 grid encompassing a length of flume from x =

−5.5 to x = 12.5. The inlet of the model area therefore coincided with the inlet

section measured during the experiment and inlet conditions were thus set using

the variables measured in the experiment. This method should provide a more

accurate set of inlet conditions than the uniform inlet used in the previous section.

All other boundaries were set using the same methods as the previous section.

Taking into consideration the experiments and simulations to be found in the

literature record, it is clear that vortex shedding processes may be present for this

case, although the experimental results show that the regular vortex shedding that
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we might normally expect is disrupted here. It is however true that the best nu-

merical modelling results for cases where shedding processes are significant are to

be achieved by long-time averaging of the results of unsteady flow modelling using

the ensemble-averaged Naiver Stokes equations. In this approach, the shedding

process is simulated directly, whilst the truly random component of the turbulence

is modelled. Unfortunately, this option was not available for this project and the

following results are from a steady flow simulation, where both regular fluctua-

tions and turbulent contributions are modelled using the K&H model.

Figures 5.10, 5.11 and 5.12 show a detailed comparison of the experimental

and modelled results at x = 1.3, x = 4.00 and x = 6.67. The plots of mean

streamwise velocity show that the model can produce accurate results in the near

wake, where at x = 1.3 (5.10) the model predicts not only the minimum value on

the floodplain side of the block centreline but also predicts the values of streamwise

velocity exceedingly well. Only on the floodplain are magnitudes under-predicted

to an extent significantly greater than the scope of the ADV error. Further down-

stream at x = 4.00 (5.11), the plot of streamwise velocity is starting to show

that the model is again predicting a slower recovery that the experimental results.

However, the width and shape of the wake are well predicted, as is the shape of the

profile outwith the wake zone. At x = 6.67 (5.12), the gap between the modelled

and experimental results is widening. This behaviour correlates well with that ob-

served by the model’s authors (Kimura and Hosoda, 2003), who, when modelling

flow around a 2D square block, found that the streamwise velocity recovery was

predicted very well in the region where x < 4 after which the modelled results

recovery slowed in comparison to the experimental results.

The varying performance of the model in predicting the distribution of the

streamwise velocity component is summarised in Figure 5.13. For each of the

points that were measured at z = 1 in the experiment described in Section 3.1.1.2,

a percentage difference was found between the measured and modelled values of

U . The value plotted in this figure has been found by taking an average of these

values at each streamwise measurement position.
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For this, the emergent case, it is clear that whilst the modelled results at x = 1.3

have been shown to match the measured results generally very well, the discrep-

ancy in values in the wake on the floodplain side of the block contributes to a large

average difference. Between x = 2.25 and x = 6, the difference is less than 5%

after which, it grows steadily. From this information, it may be concluded that

any force balance calculation to find a drag coefficient from the modelled results

should be performed with a downstream station located between x = 2.25 and

x = 6.

At x = 1.3, the spanwise and vertical velocities are predicted to reasonable

accuracy outside of the wake in the wider channel. Within the wake, the values

are less well predicted; the spanwise values are in the correct range but show

a different pattern, whilst the vertical velocities show the right pattern but the

values are over-predicted. At x = 4.00, this pattern for the vertical velocities is

repeated. The spanwise velocity plot shows that the model correctly predicts the

peak on the floodplain side to be larger than that on the main channel side. How-

ever, the degree of difference of these two peaks is larger and this correlates well

with the tendency of the model to show the distribution of vertical velocity to be

offset from the experimental results and the minimum streamwise velocity to be

positioned further toward the main channel. At x = 6.67, the spanwise velocity

profiles match well on the main channel side, but the model again over-predicts

the peak on the floodplain side. The vertical velocities measured in the experiment

have diminished considerably at this streamwise position. The modelled results,

although reasonable in trend, continue to be over-predicted in magnitude.

An examination of the prediction of the turbulent kinetic energy instantly shows

that the model is significantly under-predicting the measured turbulent kinetic en-

ergy in the block’s wake. This is exaggerated in comparison with the previous case,

presumably because of the presence of unsteadiness in the form of regular velocity

fluctuations in the experimental results that are failing to be represented in the

steady simulation. Despite this, both profiles show higher peaks on the floodplain

side of the block centreline, which suggests that this imbalance exists not only in
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the regular vortex structures but also in the truly random component of the turbu-

lence.

The results suggest that the distribution of energy between the mean flow and

the turbulent fluctuations is mispredicted such that the magnitudes of the sec-

ondary circulations associated with the wake are too large and the magnitude of

the turbulent kinetic energy is too small. However, overall, these results show that

the model is capable of reproducing the structure and size of the wake behind the

block at the floodplain edge with reasonable enough accuracy to draw useful engi-

neering conclusions from subsequent runs using different geometries and numbers

of blocks. Combining the results for both simulations for emergent blocks allows

us considerable confidence in the capability of the model.

5.2.2 Submerged Cases

5.2.2.1 Submerged, Low Aspect Ratio, In-line Blocks (S1CI)

The model validation process is now extended to the submerged block cases, where

the flow structures, as detailed in Chapters 2 and 4, are quite different to those

around emergent blocks. Of the two in-line low aspect ratio experiments per-

formed (Series 1, Cases I & III), the case with deeper block submergence (Case I)

has been simulated using the model. The grid for this simulation differed from that

used for the emergent case (Case II) only in the vertical scale, where it was slightly

modified to ensure a fine enough grid resolution at the top of the block and to take

account of the change in total water depth. All of the model boundaries were set in

the same way as described in Section 5.2.1.1, where the inlet values were adjusted

to reflect the different bulk mean velocity.

Figure 5.14 shows the measured and modelled results downstream of the fourth

block at Station 3, as described in Section 3.1.1.2. It is immediately clear that the

results for this submerged case are less successful than those shown above for the

emergent block case. Some of the discrepancies between the experimental and

modelled data here are due to similar reasons as those mentioned above, namely
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that the K&H turbulence closure has a tendency to underestimate the random com-

ponent of the turbulent field. This means that again, the simulated streamwise ve-

locity values in the block wake are less well recovered than the experimental data,

whilst the values outside of the wake zone are over-predicted.

However, in addition to these phenomena, it is clear that the pattern of sec-

ondary circulations in the block wake is being predicted to be significantly more

complex than that observed in the experimental data. The result of this complexity

is that the distribution of the streamwise velocity at this position is also made more

complex than its measured counterpart. This is clarified in Figure 5.15, which

shows both the contours of streamwise velocity and vectors of secondary flow, up-

stream of the block at Station 1 and downstream at Station 3.

The vectors of secondary flow at both the upstream and downstream stations

show that the flow is dominated by a large anti-clockwise circulation on the flood-

plain. The presence of such a circulation is consistent with the measurements in

all of the experiments for submerged blocks performed as part of this project (Fig-

ures 4.48 and 4.49). For the single block cases, the evidence suggests that the

formation of axial vorticity that might normally be expected from both sides of the

block is disrupted on the main channel side for blocks at the floodplain edge. The

model results for this multiple in-line block case not only support this theory but

also suggest that this phenomenon is consolidated for each block in turn.

The comparison plot of spanwise velocity in Figure 5.14 shows that although

there is an inappropriate positive peak at the block centreline, the prediction is

generally good. The differences between the profiles on the floodplain indicate that

the model’s prediction of the width of the circulation there is perhaps slightly too

small, causing the bump in the prediction of streamwise velocity on the floodplain.

The large peaks and troughs in the prediction of the vertical velocity mean that

this component is less well predicted and an examination of the vectors predicted

at Station 3 in Figure 5.15 shows the complex wake circulations that are causing

this.
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Having taken into account the tendency of the model to under-predict the tur-

bulent kinetic energy, the results in Figure 5.14 show that the model is predicting

a significant difference between the peaks on either side of the block. An exami-

nation of the individual normal Reynolds stress components shows that this is due

to a discrepancy between the measured and modelled profiles of the vertical com-

ponent, where the measured data shows a large peak on the main channel side

(Figure 4.50) and the modelled data does not. This phenomenon fits in well with

the difficulties experienced in predicting the distribution of the mean vertical ve-

locity component. Overall however, the model appears to successfully reproduce

the width and shape of the peak in turbulent kinetic energy associated with the

wake.

Despite the problems encountered in predicting the details of the secondary

currents in the wake zone, an examination of the contours of streamwise velocity

for the entire section show an overall tendency for the wake to bulge out into the

main channel. Although not as noticeable at the height of the measurements used

to produce Figure 5.14, this behaviour is very consistent with the results presented

in Sections 4.2.2 and 4.2.3.2 and may allow us confidence in the model’s ability to

predict the bulk features of the flow.

5.2.2.2 Submerged, Single, Large Aspect Ratio Block at the Floodplain Edge

(S2CII)

The final test simulation was designed to reproduce the experimental flow around

the single large aspect ratio submerged block at the floodplain edge. An identical

technique was used as described in Section 5.2.1.2, where a length of flume from

−5.5 < x < 12.5 was modelled using a 150x125x116 grid. The grid therefore

differed from that used for the emergent case only in the vertical direction. Figures

5.16, 5.17 and 5.18 again show a detailed comparison of the experimental and

modelled results at x = 1.3, x = 4.00 and x = 6.67.

Some tendencies of the model can be recognised from the previous results for

other cases, namely that the streamwise velocity profile behind the block is ex-
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cellently represented in the near wake at x = 1.3, where only the values on the

floodplain are significantly outwith the error bounds of the measured data but that

the modelled values recover more slowly than those in the experiment so that the

gap between measured and modelled values grows larger at x = 4.00 and x = 6.67

respectively. At x = 4.00, despite the difference in the magnitude, the model suc-

cessfully shows the tendency of the wake to be skewed toward the main channel

side of the block. At x = 6.67, both the shape and the magnitude of the streamwise

velocity profile are failing. The shape of the profiles outside of the wake zone are

reasonably well reproduced in all locations. Reference to Figure 5.13 confirms that

by the average difference parameter for the streamwise velocity component, the

model’s performance is best at x = 1.3. However, after peaking at the next station,

the trend, by this measure, is for the performance of the model to improve in the

downstream direction.

The results for the spanwise and vertical velocity components show a similar

trend to that noted in the previous section. Overall, the magnitudes of the sec-

ondary circulations are in the correct range but the profiles tend to be overly com-

plex in the wake region. Of the two components, the vertical velocity is less well

represented, particularly in the later stages of the wake. As in the single emergent

block case, the model tends to over-predict the magnitudes of the vertical velocity

at the downstream positions.

The under-prediction of the turbulent kinetic energy is also still apparent in

these results, although the gap has narrowed from that observed in the emergent

case. In this case, we would expect the influence of the vortex-shedding phe-

nomenon to be much reduced, which is consistent with a reduction in the large

discrepancy between the modelled and measured results. However, the tendency

of the model to under-predict the random component of the fluctuating velocity

field means that a gap still exists. The trend in the results for the turbulent kinetic

energy are, as may be expected from the mean velocity profiles, best reproduced

at x = 1.3. Further downstream, the similarity decreases. These results suggest

that the model is less capable of producing accurate results for this more complex
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submerged case, where flow separation is occurring both at the sides and at the

top surface of the block.

5.2.3 Model Testing - Summary

The results set out in the preceding sections show that the performance of the

model in reproducing the experimental data is mixed. In all cases, a similar pat-

tern emerges when the measured and modelled results are compared such that the

recovery of the mean streamwise velocity in the wake is excessively slow and the

total turbulent kinetic energy in the wake is under-predicted. The under-prediction

of turbulent kinetic energy for the individual cases is likely to emanate from slightly

different sources. For the multiple, emergent block and both of the submerged

cases, the under-prediction is likely due to the tendency, noted by Kimura and

Hosoda (2003), for the K&H turbulence closure to under-predict the random com-

ponent of the total turbulence in bluff body wakes. For the single, emergent block,

where a more significant amount of vortex shedding would be expected to be

present, the under-prediction is likely to emanate from the steady nature of the

simulation. In order to properly account for the regular fluctuations in the veloci-

ties induced by the vortex shedding mechanism, previous authors (Bosch and Rodi,

1998; Kimura and Hosoda, 2003) have recommended that for such cases, the best

results are obtained via long-time averaging of the results of an unsteady simula-

tion. Both of these factors are also impacting on the rate of recovery of the mean

streamwise velocity.

This suggests that the accuracy of the results for single, emergent case may be

improved upon should an unsteady modelling technique be applied. The more in-

trinsic failures of the K&H turbulence closure however, are similar in nature to all

of the other turbulence closures currently available and are less easily overcome.

More complex, and ergo expensive, modelling methods such as Large Eddy Simula-

tion (LES) have been found (Rodi, 1997) to give improved results for the modelling

of flow around bluff bodies but even these exhibit significant differences from mea-
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sured results. It is clear that incorporating all of the complex flow features of bluff

body flows is extremely difficult to achieve cheaply.

The next section uses the model to create simulations of flows around blocks of

different aspect ratio and distribution for comparison of the wake structures and

resultant drag coefficients. Although the results of these simulations are of course,

subject to the inaccuracies summarised here and the resultant values of drag co-

efficient may not form a continuum with those calculated from the experimental

results, the results have shown that the model is capable of reproducing many of

the bulk features of the wakes that impact on the drag coefficients, as observed

in the experiments, including the sometimes highly asymmetric distributions of

secondary circulations and total turbulent kinetic energy. As such, the model re-

sults described below should allow for meaningful analysis of the changes to these

structures that come about as the block aspect ratio and distribution change.

5.3 Model Results - Emergent Cases

Using the computational model, it is possible to test the effects on the wake struc-

ture and drag coefficient of both variation of the block geometry and the arrange-

ment of blocks at the floodplain edge. The following sections describe the modelled

results for two series; in the first, the aspect ratio of a single block at the floodplain

edge is varied whilst in the second, high aspect ratio blocks are arranged in a line

along the floodplain edge.

5.3.1 Variation of Block Aspect Ratio (AR)

In order to identify the source of the differences in wake behaviour observed in the

experimental results between the single, high aspect ratio cases and the multiple,

low aspect ratio cases, it is first necessary to look at how the structure of the wake

changes with the changing aspect ratio for a single block. To this end, the compu-

tational model was used to simulate the flow around a single block at the edge of
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the floodplain for a number of values of AR. The channel geometry familiar from

the single block experiments in the Loughborough flume was applied here ( see

Figure 3.1 ) and the width of the block was varied in order to change AR. This, of

course, implies that the total width of the floodplain was kept constant so that the

proportion of the floodplain width covered by the block decreases as AR rises.

The size of grid on which the simulations were performed was maintained for

each block such that the upstream boundary was located 5.5Wbl upstream of the

block centreline and the downstream boundary was located 12.5Wbl downstream

of the block centreline. The expansion factors used for each grid were varied to

take account of the changing value of Wbl but were always between the bounds of

0.9 ≤ Ex , E y, Ez ≤ 1.1. Inlet conditions for all of the simulations were identical,

having been created by running the model a number of times to simulate flow in

the empty channel, each time applying the downstream profile from the previous

simulation as the upstream conditions for the next. The inlet conditions for each

of these runs therefore represent fully developed uniform flow conditions in the

empty channel. Figure 5.19 shows both the contours of streamwise velocity and the

vectors of the secondary circulations that constituted the inlet boundary condition

to all of the simulations in this series.

A summary of the governing parameters of each of the simulated flows is given

in Table 5.1. Using an identical technique to that described for the experimental

results, namely the indirect momentum balance method, a value of CD was calcu-

lated for each case and these values are also shown.

Whilst the approach velocity at the upstream block centreline is identical for all

cases, the changing block width accounts for the range of block Reynolds numbers.

Although the value varies from 1.4x104 to 7.2x104, this difference is unlikely to be

influential in changing the structure of the wake and the resultant drag coefficient,

as the square section shape ensures that the location of separation is fixed. As

these simulations were all performed for the same compound channel geometry,

the channel Froude number of the flow is the same for each case. The increase in
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Aspect Ratio 1 2 3 5

Rebl 72,059 36,030 24,002 14,412

F rbl 0.47 0.66 0.81 1.05

Tu(%) 4.8 4.8 4.8 4.8

B(%) 8.7 4.3 2.9 1.7

CD 2.96 3.80 3.81 3.73

Table 5.1: Flow Parameters for Emergent Cases

the block Froude number over the range of AR is accompanied by an increase in

CD, so that F rbl may be a contributing factor to the changing CD.

There is a significant change in the overall blockage ratio B over the series of

simulations. We might expect that a higher blockage ratio would decrease the cur-

vature of the separation streamlines, causing the wake structures to form closer to

the block and the pressure difference across the block to rise. However, (Lyn et al.,

1995) also states that as the flow recovers, a higher blockage ratio implies higher

spanwise velocity gradients and therefore higher rates of entrainment. In this se-

ries, this latter effect, when combined with the influence of the other parameters,

seems to be dominant.

The effects of freestream turbulence on the flow around bluff bodies was in-

vestigated by Bearman and Morel (1984), who concluded that whilst the turbulent

length scale was unimportant, a high freestream turbulent intensity had two impor-

tant effects. In the near-block region, high freestream turbulence increases entrain-

ment into the separated shear layers so that the separated streamline tends to curve

inward toward the body of the block. In more extreme cases, this leads to reattach-

ment onto the side of the block. Depending on which of these processes occurs,

the base pressure can increase or decrease. As the flow recovers, the free shear

layers are also affected by freestream turbulence such that the normal component

of the turbulence acts to reduce the coherence of any periodic structures such as
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shed vortices, increasing the rate of recovery. The depth-averaged freestream tur-

bulence level at the block centreline at the model inlet is the same for all the cases

here. By the norms stated by Bearman and Morel (1984), the value of 4.8% would

be considered as a medium level of freestream turbulence. However, the difference

in the freestream turbulence intensity across the flow approaching the blocks at the

floodplain edge may be a contributing factor to the resulting asymmetry of the sep-

aration characteristics and the wake recovery. Together with the final governing

parameter, the geometry, the effects of the freestream turbulence distribution must

be considered by examining the detailed model results for each case.

By far the most influential parameter in this case therefore is the changing ge-

ometry. This of course incorporates the changing AR, which will affect the size and

structure of the wake no matter what its position. Previous experimental evidence

(Spezezzy and Bearman, 1992) for a square sectioned block placed between two

solid surfaces suggests that when AR is very low, vortex shedding processes are

suppressed, leading to a smaller maximum pressure/velocity difference across the

block, faster wake recovery and therefore a smaller value of CD. As AR surpasses

2.5 and rises towards 5, the vortex shedding process gradually grows in strength

and CD increases.

Overall, the trend for these experiments is also generally for CD to rise as the

aspect ratio of the block rises. However, the results suggest that this process is

being affected in a more complex way by the floodplain edge positioning, as CD is

virtually identical for the AR= 2 and AR= 3 cases.

A closer examination of the model results shows the different processes at work

over the spectrum of values of AR. The recovery of the mean streamwise velocity

component at the block centreline is plotted in Figure 5.20. The depth average

streamwise velocity component at all downstream stations is plotted in this figure

as a factor of the depth average streamwise velocity component at the model inlet.

A comparison of the recovery profiles of the AR = 2 and AR = 3 cases shows that

the structure of the wakes is quite different. In the AR = 2 case, the wake is

characterised by a long, weak recirculation zone and a faster recovery. In the AR=
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3 case, there is a much greater maximum velocity difference across the block at the

centreline and a slower recovery. In this respect, the centreline recovery profiles

are what we might expect from the results of Spezezzy and Bearman (1992), as

the vortex shedding process is established. However, the resultant values of CD go

against the trend that these centreline plots might otherwise suggest.

Whilst Figure 5.20 is a useful overall tool in identifying the trend in the wake

structure over the range of AR, it masks some of the complexity of the wakes in-

troduced by their asymmetrical floodplain edge positioning and does not reflect

the changes induced by that positioning. It is therefore necessary to examine the

changing flow pattern around and downstream of the blocks, to isolate how the

floodplain edge positioning is contributing to this phenomenon. Figure 5.21 pro-

vides a means to compare the contours of mean streamwise velocity at the same

streamwise position in each wake (x = 4), whilst Figure 5.22 does the same for

the vectors of secondary flow. From these plots, a clear pattern of change across

the range of AR becomes apparent.

For all of the blocks, the model predicts that on the floodplain bed, where the

interaction between the main channel and floodplain flows is at its maximum, the

wake is firmly skewed toward the main channel. For the lower values of AR, the

wake position at the free surface is skewed in the opposite direction and the wake

is significantly tilted over the height of the block as a result. At the higher values of

AR, the height over which a tilt in the wake is visible becomes confined to the region

close to the floodplain bed. The plots of the vectors of secondary circulations show

the axial vorticity associated with these wake patterns, where there is a consistent

pattern of dominance of the main channel circulation over that on the floodplain

and a tilt in the axis between them.

To illustrate how this change in the influence of the floodplain edge positioning

impacts on the characteristics of the wake affecting the drag coefficient, Figure

5.23 shows a plan view of the contours of streamwise velocity for the AR = 1 and

AR = 5 cases. The plot represents the wake for each case at a vertical position

where Z/D f p = 0.28.
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At AR = 1, at this height, reattachment can be seen to occur on both sides of

the block, although much sooner on the main channel side. For the low aspect

ratio cases, this pattern of very early reattachment on the main channel side of

the block can be identified over a significant proportion of their height. This is

demonstrated in Figure 5.24, which shows the streamwise velocity contours and

secondary circulations at the streamwise block centre for AR= 1. At Z/D f p = 0.28,

the flow on the main channel side can then be seen to separate again at the rear

of the block. On the floodplain side, the higher blockage caused by the large

width of the block in relation to the width of the floodplain also acts to promote

reattachment but overall, the re-separation pattern of the flow causes the wake

to be skewed to the main channel side of the block centreline. In this respect, it

mirrors the behaviour of the experimental data for the low aspect ratio, in-line

blocks presented in Chapter 4, Section 4.1.4. Further downstream, the recovery of

the flow on the main channel side is delayed under the influence of the persistent

strong axial circulations on that side.

At AR = 5, the plan view is reminiscent of the experimental results plotted

for the single, large aspect ratio block in the Loughborough flume (Chapter 4,

Section 4.1.3.2 , Figure 4.13). For these higher AR cases, it has already been

demonstrated that the region of very early reattachment on the main channel side

of the block and the associated tilting portion of the wake is confined to a vertical

band near the floodplain bed. At the vertical position shown in this figure therefore,

the separation pattern shows, like the experimental results, the minimum wake

velocity on the floodplain side of the block centreline. This is related to a change in

the reattachment characteristics such that whilst reattachment still tends to occur

on the main channel side of the block, its influence is much reduced. On the

floodplain side in contrast, the much reduced blockage means that reattachment

may not happen at all, leading to much stronger vortex shedding processes on this

side. Further downstream in the wake, it is still true that the recovery of the wake

on the main channel side is delayed in comparison to that on the floodplain.
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Overall therefore, the changing balance between the nature of the regions of

separation due to the geometrical effects of the compound channel alters the vari-

ation of CD with AR that we might otherwise expect. For all cases however, the

reduction in the rate of recovery on the main channel side acts to increase the

value of the drag coefficient.

5.3.2 Multiple blocks

Having successfully simulated the flow around multiple, low aspect ratio blocks at

the floodplain edge in testing the model’s performance against the experimental

results in Section 5.2.1.1, the model was also used to simulate the flow around

a series of high aspect ratio blocks. The geometry of the channel was again set

to match that of the Loughborough flume and the relative spacing of the blocks,

with aspect ratio 3.5, was set to be the same as the experimental case, namely

such that s/Wbl = 12. At the upstream boundary of the model, which is located

5.5Wbl upstream of the first block, the inlet conditions are the same as those used

in the AR series, namely representing fully developed uniform flow conditions in

the empty channel (see Figure 5.19). The downstream boundary is located 6.5Wbl

downstream of the last block. The expansion factors for the grid were maintained

such that 0.9≤ Ex , E y, Ez ≤ 1.1.

The results from this simulation allow the comparison of the wake structures

between different blocks in the series. As a first means to compare these, Figure

5.25 provides a comparison of the recovery rates for the first four blocks. In this

figure, the depth averaged mean streamwise velocity at the block centreline is nor-

malised using the depth averaged mean streamwise velocity at this lateral location

at the model inlet. In order to compare recovery profiles, the results are plotted

relative to each block’s streamwise centre position, i.e. x ′ = xcc + x .

Figure 5.25(a) shows a distinct change in behaviour between the wake from

the first block and the others. This must largely be due to the reduced approach

velocities that affect the later blocks so that whilst the depth averaged velocity
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Block 1 4

Rebl 20.474 10,100

F rbl 0.88 0.44

Tu(%) 4.9 7.7

CD 2.22 1.65

Table 5.2: Flow Parameters for Blocks 1 and 4 in Multiple, Emergent, High AR Block Case

upstream of the first block at the model inlet is U = 1.01Um, for the subsequent

blocks, the upstream depth averaged velocity only ever recovers to approximately

U = 0.50Um. It is clear that for the subsequent blocks, the minimum wake velocity

is higher than that for the first block and the recirculation length is also shorter.

After reattachment, the recovery rate of the wakes are broadly very similar, until

approximately x ′ = 6.5, where that of the downstream blocks falls below that of

the first block. Given the drop in approach velocity experienced by the downstream

blocks, it is necessary to take into account the effects on the governing parameters

(Re, F r, B, Tu) of the changing flow, where these values are compared in Table 5.2

for the first and fourth blocks. The blockage ratio is identical for both blocks and

is therefore omitted.

In Figure 5.25(b), the results for the first block are plotted together with the

recovery profile predicted by Equation 2.5 of Petryk (1969), for single lines of

blocks, which is based on 2D idealised flow theory. The figure clearly shows that

the 3D effects of the real flow at the floodplain edge result in a significant deviation

between Petryk’s prediction and the model results.

Relating Table 5.2 to Figure 5.25, the lower Reynolds number associated with

the fourth block is certainly influential in creating the less powerful recirculation

region of the fourth block. The lower Froude number of the fourth block would

be expected to ensure less damping of vortex shedding processes by the deforma-

tion of the free surface and therefore, a faster recovery overall. The similarity of

the recovery rates until x ′ = 6.5 effectively rules this out as a significant factor in
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our consideration. The increase in freestream turbulence intensity in the approach

to the fourth block might be likely to lead to earlier reattachment of the sepa-

rated shear layers and accelerated recovery through increased entrainment into

the wake. However, the organised nature of the turbulence upstream of the fourth

block means that simple assumptions based on observations of the effects of truly

random freestream turbulence are of limited applicability.

It must also be true that the structure of the wake inherited from the upstream

block influences the formation of that of the downstream block. Although at this

spacing, we are not expecting the shedding processes from the downstream blocks

to be directly linked to those of the upstream blocks, the sustained imbalance in

the approach velocity and freestream turbulence across the front face of the down-

stream block and the persistence of secondary circulations from the vorticity em-

anating from the upstream block might be reasonably be expected to affect the

development of the separation zones on the downstream block. In addition to and

in spite of the changes in the wake induced by the general changes to the approach-

ing flow, an examination of the details of the wakes of the first and fourth blocks

reveals how the features specifically related to the compound channel floodplain

edge setting are changed by the in-line arrangement.

Figure 5.26 shows the contours of mean streamwise velocity at x ′ = 5.5 for the

first and fourth blocks, where the overall profiles of the wakes are very similar; near

the floodplain bed, the wake tilts into the floodplain and is associated with a strong

upflow at the floodplain edge from the main channel into the floodplain. Indeed, at

x ′ = 3.5 for both blocks, the maximum magnitude of the vertical velocity is a very

similar proportion of the approach velocity; for the first block Wmax/UA = 0.44,

whilst for the fourth block Wmax/UA = 0.38. At the higher elevations, the wake is

consistently skewed toward the main channel side of the block centreline.

As the fourth block is located within the wake from the third block however,

the plot also shows that at the fourth block the wake is of a substantially increased

width. In addition, as the axial vorticity emanating from the separated regions at
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the block sides (namely a clockwise circulation on the floodplain and an anticlock-

wise circulation in the main channel) is progressively reinforced, the wake tends

to widen particularly near the free surface and combined with a general decelera-

tion of the flow on the floodplain, this gradually alters the distribution of the mean

streamwise velocity in the whole channel.

The changing pattern of U results in a distribution of turbulent kinetic energy

in which larger values are consistently found on the main channel side. Figure 5.27

illustrates both the contours of mean streamwise velocity and of turbulent kinetic

energy around the fourth block at a representative elevation of z = 2.0. It is clear

from this figure not only that the main channel peak in turbulent kinetic energy is

larger but also, crucially, that its decay is slower. The associated tendency of the

wake to drift out into the main channel can be clearly seen in the contours of U .

In common with the results described for the single block cases, Figure 5.27

shows therefore that the tendency for the wake recovery on the main channel side

to be slower is preserved for the in-line case. In general therefore, although the

drag coefficients of the downstream blocks are reduced in comparison to that of

the first block (Table 5.2), the features of the wakes that are brought about by

the compound channel floodplain edge location persist so that in comparison to a

set of in-line blocks in a simple channel, the blocks at the floodplain edge are still

likely to cause increased amounts of drag.

5.4 Model Results - Submerged Cases

The test series for the variation of block aspect ratio and for placing blocks in

line at the edge of the floodplain were also carried out for submerged blocks. In

all cases, the flow conditions mimicked those of the experiments performed in

the Loughborough flume and the positions of the inlet and outlet boundaries and

of the multiple blocks in relation to one another are the same as those used for

the emergent blocks. The inlet conditions for each simulation were again set to

by running the model a number of times to simulate flow in the empty channel,
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Aspect Ratio 1.5 3.5 4.5 5.5

Rebl 32,973 14,116 10,991 9,012

F rbl 0.66 1.01 1.15 1.27

Tu(%) 4.9 4.9 4.9 4.9

B(%) 2.8 1.2 0.9 0.8

CD 2.20 2.67 2.52 2.48

Table 5.3: Flow Parameters for Submerged Cases

each time applying the downstream profile from the previous simulation as the

upstream conditions for the next. Whilst the total flow depth is slightly larger for

the submerged cases to reflect the experimental conditions, this small variation

does not produce a significant difference in the flow structure and Figure 5.19 is

still a useful guide to the inlet conditions for the simulations.

5.4.1 Variation of Block Aspect Ratio

For the submerged blocks, the governing flow parameters and resulting drag coef-

ficients are shown in Table 5.3.

For the submerged cases therefore, it is clear that the drag coefficients calcu-

lated for the blocks are generally less than those of the emergent blocks. The

range of values again reflects the changing nature of the wake. As for the emer-

gent blocks, low aspect ratios ensure that no vortex shedding processes can be

established. In submerged cases, the low aspect ratio ensures that the flow coming

over the top of the block becomes the dominant feature. This accounts for the small

value of CD for the AR= 1.5 case in relation to the other cases and agrees with the

results of Kawamura et al. (1984), who described the vortex shedding processes

as being completely suppressed for AR < 2. However, for this series, a maximum

value of CD is reached at AR = 3.5, implying that another mechanism is acting

to reduce the drag coefficient for the highest aspect ratio cases, where we might
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otherwise expect to see the vortex shedding processes the least affected. The cause

of this drop in CD at the highest values of AR can be seen in Figure 5.28, however,

to arise not from large changes to the absolute minimum velocity achieved in the

base region, but rather from faster recovery rates for the higher AR cases.

Considering each of the influencing parameters detailed in Table 5.3 in turn, it

is possible to estimate their influence on the changing results over the AR range.

Some parameters are likely to have very little effect. For example, the variation in

Reynolds number is again due to the changing block width rather than any change

in approach velocity. As was the case for the emergent blocks, this range of Rebl

is unlikely to wield a large influence on the development of the wake structures.

Also, in comparison with the emergent cases, the range of blockage ratios is much

smaller for the submerged blocks. All of the values are less than 3% and the

variation is limited to 2% so that it is unlikely that the overall change in blockage

ratio is an important factor here either.

Whilst the sharp drop in CD at the lowest value of AR can be well accounted for

by the suppression of vortex shedding, the gradual decrease in CD with AR for the

higher values could be partially attributed to the changing block Froude number

of the flow. We might expect the rising Froude number to increase the influence

of the free surface deformation and thereby suppress the vortex shedding process.

This would, however, cause a change in the behaviour of the base region that is

not observable in Figure 5.28.

It is therefore more likely that the changes in wake behaviour are due to a

combination of the asymmetrical distribution of the freestream turbulence and the

geometric effects of the compound channel. Figures 5.29 and 5.30 provide a means

by which these influences can be examined. The experimental results for the sub-

merged blocks presented in Chapter 4 showed that the wake has a tendency to be

skewed in its alignment in a complex way, under the influence of the asymmetrical

separation and reattachment patterns on both the block sides and the block top

surface. From the contours of streamwise velocity plotted in Figure 5.29, it is clear

that these features are most apparent at low values of AR; at AR = 1.5, the bulge
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of the wake into the main channel can still be identified, whilst at AR = 3.5 and

AR= 4.5, the contours appear to be much more symmetrical in structure.

Whilst the comparison of the model results with the experimental data in Sec-

tion 5.2.2 reveals that the model tends to predict an overly complex pattern of

secondary circulations in the wake of the submerged block, the results shown in

Figure 5.30 do show the tendency for the influence of the characteristic upflow

from the main channel into the wake at the floodplain edge to diminish as AR

rises. We may conclude that for low values of AR, the disruption of the formation

of the axial vorticity on the main channel side is more severe, so that the dom-

inance of the axial circulation on the floodplain side would be greater for these

cases. It is also the case that the difference in reattachment position on the top of

the block is likely to be larger for the low AR values so that the angle of the flow

coming over the top of these blocks is greater.

In the experimental results in Chapter 4, it was shown that the combination

of the skewed flow over the top of the block, uneven lateral separation and the

greater vortex stretching associated with the deeper main channel flow resulted in

a slower recovery of the wake velocities, particularly on the main channel side. The

modelled results in this section suggest that these effects are greatest at lower block

aspect ratios so that the influence of the floodplain edge positioning in increasing

the drag coefficient wanes as the aspect ratio increases.

5.4.2 Multiple Blocks

The final simulation performed examines the flow around multiple, submerged,

high aspect ratio blocks at the floodplain edge. The geometry of the channel was

set to match that of the Loughborough flume and the relative spacing of the blocks,

with aspect ratio 2.5, was set to be such that s/Wbl = 12. In an identical manner

to the equivalent emergent case, the upstream boundary of the model is located

5.5Wbl upstream of the first block and the inlet conditions are the same as those

used in the AR series, namely representing fully developed uniform flow conditions
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Block 1 4

Rebl 19,942 14,828

F rbl 0.86 0.64

Tu(%) 4.9 28.8

CD 0.28 0.65

Table 5.4: Flow Parameters for Cylinders 1 and 4 in Multiple, Submerged, High AR Block

Case

in the empty channel. The downstream boundary is located 6.5Wbl downstream

of the last block. The expansion factors for the grid were maintained such that

0.9≤ Ex , E y, Ez ≤ 1.1.

Figure 5.31 shows the depth averaged mean streamwise velocity at the block

centreline, normalised using the depth averaged mean streamwise velocity at this

lateral location at the model inlet. The results are plotted relative to each block’s

streamwise centre position, i.e. x ′ = xcc + x . Unlike the emergent case, where

a clear difference in wake behaviour was immediately noticeable in the centreline

wake recovery plot, for this, the submerged case, the various wake recovery profiles

appear to be very similar. The downstream block profiles are only distinguished by

a slightly slower recovery rate.

Perhaps partially explaining this similarity, Table 5.4 shows that the Reynolds

number of the approaching flow varies only a little, despite the initial deceleration

experienced by the flow at the block centreline downstream of the first block. The

difference in the Froude number of the approaching flow is also limited. Only the

change in the freestream turbulence level, which is very large, may therefore be

considered as a significant factor in the development of the downstream wakes.

The cross-sectional profiles shown in Figure 5.32 downstream of the first and

the fourth blocks in the series reveal the gradual changes being experienced by the

blocks as the flow develops. Whilst the tilting of the wake into the main channel

remains a consistent feature and the skew of the flow over the top of the blocks is
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likely therefore to be consistent, the acceleration of the flow in the main channel

and the deceleration of that on the floodplain is marked. On the floodplain, this

deceleration is partially attributable to the strong anticlockwise circulation, which

gradually causes a bulge of low velocities to appear. Meanwhile, the circulation

on the main channel side is limited in scope and fails to make any very significant

impact on the distribution of velocities in the main channel.

In general therefore, the results suggest that the phenomena described for the

single, high aspect ratio block at the floodplain edge are accentuated by the place-

ment of such blocks in an in-line arrangement. The increasing impact of the flood-

plain circulation on the overall channel dynamics may explain the slowing wake

recovery rate observed in Figure 5.31 but the model results suggest that the drag

coefficients associated with the inline blocks will be similarly affected to the single

block case.

5.5 Summary

This chapter has summarised the performance of the numerical model with respect

to both simple, open channel flow cases and more complex cases involving the sep-

arating flow around cylindrical obstacles. Comparison of the simulated results with

the experimental data collected and presented in Chapter 4 shows the opportuni-

ties and limitations of the model and taking these into account, the model has been

applied to the simulation of a number of different scenarios including the variation

of block aspect ratio and the number of blocks in place at the floodplain edge. The

results of these simulations have revealed the fundamental features of wakes at

the floodplain edge and how these features are variously affected by the chosen

parameters.

Figure 5.33 summarises the values of CD calculated for the numerically mod-

elled cases discussed in this chapter, together with the 2D value for the square

block in the simple channel, as calculated by Lyn et al. (1995). Whilst the range of

Re covered in this figure is not very wide, the plot immediately confirms that there
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Case CD nv

Single Emergent Block, AR=1 2.96 0.094

Single Emergent Block, AR=2 3.80 0.059

Single Emergent Block, AR=3 3.81 0.038

Single Emergent Block, AR=5 3.73 0.021

Multiple Emergent Block (4 of 5), AR=3.5 1.65 0.001

Table 5.5: Equivalent Manning’s Coefficient Values for Blocks representing Vegetation

is no appreciable trend in CD with relation to Re. Rather, the clear split between

emergent and submerged bodies becomes obvious, as do the effects of the block

geometry and the location of the block, as single bluff bodies or in multiple block

arrangements.

As described in Section 2.3.1, engineering practice commonly utilises Man-

ning’s ’n’ as a mechanism by which the retardation of flow by roughness of all

kinds is accounted for. Equation 5.3, in which (h) is the height of the block and

(nb) is the Manning’s coefficient of the surface (for these cases equal to the value

for hydraulically smooth surfaces), has been derived for emergent vegetation to

give the total Manning’s coefficient caused by both surface and vegetal roughness

(Komatsu, 2009). By subtracting the Manning’s coefficient for the surface from the

total value found from this equation, the equivalent Manning’s coefficient for the

vegetation, here represented by the blocks, can be found. These values are shown

in Table 5.5.

n=
h

1
6

Um(ρg)
1
2

�1

2
ρACDU2

a +
ρgU2

m

h
1
3

n2
b

�

(5.3)

Table 5.5 shows that the contribution to the overall Manning’s coefficient cal-

culated by this method in the single block cases is very large. For the multiple
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block case, the contribution is much smaller. This variance in the contribution

to the Manning’s coefficient would suggest that the sensitivity of different scenar-

ios modelled using the Manning’s coefficient approach will also vary widely. In a

situation in which a whole river system were being modelled for example, these

results suggest that the change induced in the overall Manning’s coefficient by the

floodplain edge location of a row of trees would be small. The value of the overall

Manning’s coefficient for such a model would therefore be better chosen on the ba-

sis of broader criteria. For situations in which a single reach were being modelled

in more detail, to predict local flood levels for a new development or to model the

seasonal variation in the rating at a gauging station for example, the floodplain

edge location of vegetation could be very significant in choosing an appropriate

overall Manning’s coefficient.

The large drop in the Manning’s coefficient associated with the multiple block

arrangement also suggests that a closer examination of the dynamics of that ar-

rangement, including a variation of the spacing of the blocks, would yield inter-

esting results. This and other suggestions for future research are discussed in the

next section, where all of the experimental and computational results will also be

summarised.
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Figure 5.19: Variation of Emergent Block Aspect Ratio - Series Inlet Conditions (a) Contours

of U and (b) Vectors of Secondary Circulations
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Figure 5.20: Mean streamwise velocity recovery downstream of emergent blocks of varying
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Figure 5.23: Modelled U at (z = 1), Single emergent blocks of varying aspect ratio (a)

AR= 1, (b) AR= 5
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Figure 5.24: Modelled results for AR= 1 at streamwise block centreline (a) U, (b) V and W
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Figure 5.25: Mean streamwise velocity recovery downstream of first and fourth emergent

blocks in multiple block arrangement at the floodplain edge (a) model results only and (b)

model results and prediction of Petryk (1969)
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Figure 5.26: Modelled U for multiple, emergent, high aspect ratio blocks at x ′ = 5.5 for (a)

Block 1 and (b) Block 4
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Figure 5.27: Modelled results at z = 2.0 for Block 4 in multiple, emergent, high aspect ratio

block case, (a) U and (b) K
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Figure 5.28: Mean streamwise velocity recovery downstream of submerged blocks of varying

aspect ratio at floodplain edge
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blocks in multiple block arrangement at the floodplain edge
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CHAPTER 6

Conclusion

This chapter summarises the findings of this program of research and includes

discussion of their implications and suggestions of new directions for research in

this field.

6.1 Summary of Research Findings

In order to elucidate the conclusions that may be drawn from this research project

in a systematic manner, bringing together the information gathered from the exist-

ing literature, the physical experiments, model development and numerical exper-

iments, they will be summarised here:

• Holistic Review of Literature on Drag Force

1. In attempting to include the effects of vegetation in numerical models of

open channel flow, two dimensional approaches based on the inclusion

of a drag term in the flow equations offer a practical and inexpensive

method. However, in order to determine the most appropriate value

of drag coefficient to represent the vegetation in such a model, an un-

derstanding of how the wider channel flow environment affects the for-

mation and decay of the wakes is essential. The alternative method of
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assigning values of CD in such models, namely by a process of calibrat-

ing modelled results against experimental results, must, by definition,

be limited in its scope. By expanding the review of relevant literature

in this project to include sources of information and data from a range

of disciplines, it was shown that the key factors impacting on the struc-

ture of the wakes formed behind cylindrical obstacles and therefore, on

the final drag force caused by their presence in a flow, are the Reynolds

number, Froude number and turbulence intensity of the approaching

freestream flow, the blockage ratio of the block’s approach area to the

channel’s cross-sectional area and the geometry of the block and the

channel within which it is located. Using this summation of knowledge,

it was shown that the location of blocks at the edge of the floodplain in

a compound, open channel flow was highly likely to have a significant

effect on the drag coefficient and that this effect would vary with the

characteristics of both the block and the channel.

• Numerical Model Development and Testing

1. Comparison of the modelled results with the data gleaned from the

physical experiments provided a new set of cases to examine the per-

formance of the non-linear turbulence closure of Kimura and Hosoda

(2003). In comparison with the linear k − ε turbulence closure, this

was shown to offer significantly better performance in simulating the

flow around cylindrical obstacles at the floodplain edge.

2. In general, the model was shown to reproduce the mean streamwise

velocity profiles particularly well in the near wake region of the blocks.

Whilst inaccuracies in the prediction of the magnitudes of the secondary

circulations and turbulent kinetic energy were found, such that the sec-

ondary circulations tended to be over-predicted whilst the turbulent en-

ergy tended to be under-predicted, the model generally also was suc-

cessful in predicting the shape of these profiles well.
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3. Testing the model against the experimentally gathered data also how-

ever, demonstrated some of the limiting characteristics of this model

for these scenarios. For the low aspect ratio blocks, where the periodic

shedding of vortices would be limited, the results suggested that the

recognised tendency of the model to under-estimate the truly random

component of the turbulence is an important limiting factor. For the

high aspect ratio cases, where periodic structures should make much

more of an impact on the overall turbulent intensity, the steady nature

of the modelling was the limitation as the turbulent energy associated

with the shed vortices is not reproduced.

4. The result of these limitations was, in all cases, for the model to pre-

dict, particularly in the far wake region, a slower recovery of the mean

streamwise velocities than found in the experimental results.

• Physical Experiments on Single, Emergent, Large Aspect Ratio Blocks

1. In comparison with the wake around a similar block at the centre of

a simple, rectangular channel, the wake around a large aspect ratio,

emergent block at the floodplain edge of a compound, open channel

flow is characterised by a slower recovery of the mean streamwise ve-

locities and a faster recovery of the pressure field, resulting in a signifi-

cantly higher overall drag coefficient.

2. For the compound channel case, the deeper main channel flow was

shown to contribute to a reduction in the Froude number of the ap-

proaching flow commensurate with the observed reduction in the verti-

cal scale of the axial vortices associated with the free surface deforma-

tion. The experimental results also showed, however, that their hori-

zontal scale is larger.

3. The separated regions around the single, emergent block at the flood-

plain edge were shown to be characterised by differing patterns of reat-
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tachment and re-separation on each side of the block due to the dif-

fering geometries and freestream conditions to be found there. Over

the majority of the height of the block, the balance was such that whilst

reattachment was limited on the floodplain side, it was a significant fea-

ture on the main channel side, causing the resulting wake to be skewed

slightly to the floodplain side of the block centreline. With the vortex

shedding process thus compromised on the main channel side of the

block, the more energetic vertically orientated vortices being formed

and shed from the floodplain side of the block were demonstrated by the

asymmetric pattern of turbulent intensity measured across the wake.

4. The axial vorticity formed within the lateral separation zones was shown

to be of distinctly different character. Whilst the literature record for

surface-mounted blocks in simple channels shows that axial circulations

are expected to emerge from these zones such that there is an upward

flow at the block centreline, in this case, the vorticity formed within

the separated zone on the main channel side of the block was shown to

be greater than that formed on the floodplain side. Affecting the sec-

ondary circulations in the main channel more widely, the influence of

this circulation was observed to reach down to the main channel bed.

5. The rate of decay of the wake structures and the turbulent energy as-

sociated with them was shown to be significantly slower on the main

channel side of the block, contributing to the overall deceleration of the

flow recovery more generally in comparison to that of the equivalent

block in the centre of a simple channel geometry.

• Numerical Experiments on Single, Emergent Blocks of Varying Aspect Ra-

tios

1. Through comparison of the results of numerical simulations carried out

for a range of values of aspect ratios, it was shown that this geometrical
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feature has a strong influence not only on the structure of the wake

due to its influence on the shedding process generally but also on the

modifications applicable to the wake structure because of the floodplain

edge positioning.

2. The premature reattachment of the flow on the main channel side sur-

face of the block was shown to be associated with a clockwise circula-

tion in the floodplain edge region.

3. For low aspect ratio blocks, this circulation and the premature reattach-

ment were shown to be dominant over a larger vertical proportion of

the block. On the floodplain side, it was demonstrated that the high

blockage ratio associated with the low aspect ratio also promotes reat-

tachment. The combination of these phenomena however, results in the

location of the wake on the main channel side of the block centreline

for a significant proportion of the block height near the floodplain bed.

4. At the free surface however, the opposite is true so that the wake is

characterised by a strong tilt over the depth of the floodplain flow.

5. At high aspect ratios, this tilted region was shown to be limited to a

vertical zone very near the floodplain bed. For the majority of the block

height for these cases, whilst early reattachment was still a feature on

the main channel side, limited or no reattachment was identified on the

floodplain side, leading to stronger vortex shedding.

6. For all cases in this series, it was shown that the decrease in the rate of

the wake recovery in the deeper water of the main channel identified

from the experimental results persists.

• Physical Experiments on Single, Submerged, Large Aspect Ratio Blocks

1. In comparison with the wake around a similar block at the centre of a

simple, rectangular channel, the wake around a large aspect ratio, sub-
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merged block at the floodplain edge of a compound, open channel flow

is characterised by a slower recovery of the mean streamwise velocities.

2. The wake structure from a block in this location was shown to be very

different to that from a block in an equivalent simple channel flow

since the wake tends to bulge very strongly outward into the main

channel under the influence of uneven separation, reattachment and

re-separation patterns both on the two sides of the block and also on

the block top surface.

3. The axial vorticity that is expected in the wake of a submerged block,

namely two counter rotating vortices flowing downward at the block

centreline, is a result of the domination of the flow coming over the

top of the block over the axial vorticity created in the lateral separation

zones, which rotates in the opposite direction. It was shown that the

asymmetry in the creation of axial vorticity in the lateral separation

zones familiar from the emergent case was also found here but that

for the submerged block, the strong rotation on the main channel side

acts against the flow over the top of the block to diminish the overall

vorticity found on the main channel side. The axial circulation on the

floodplain side and the overall turbulent intensity associated with all of

the periodic and random turbulent structures was shown to be heavily

dominant.

4. In common with the emergent case, it was shown that the rate of decay

of the wake is slower on the main channel side, so that the bulge of the

wake into the main channel tends to be emphasised in the downstream

direction.

• Numerical Experiments on Single, Submerged Blocks of Varying Aspect

Ratios
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1. As with the emergent cases, the block aspect ratio was again shown

to have a strong influence on the structure of the wake and on the

modifications applicable to the wake structure because of the floodplain

edge positioning.

2. The greatest impact on the wake structure was found for the low as-

pect ratio blocks, where the greatest bulging of the wake into the main

channel was observed. This may be associated with not only a greater

disruption of the separated zone on the main channel side of the block

but also with a larger gradient in the position of reattachment on the

block top.

3. At high aspect ratios, the bulging phenomenon was shown to be much

reduced, along with the upflow at the floodplain edge.

• Multiple Block Arrangements

1. For all cases, the multiple block arrangement was found to promote

a larger overall velocity gradient between the main channel and the

floodplain.

2. For the emergent blocks, at both low and high aspect ratios, the pat-

tern of axial circulation emanating from the separation zones described

for the single block cases is gradually enhanced as the flow past subse-

quent blocks in the multiple arrangement develops. This acts to alter

the distribution of the mean streamwise velocity both on the floodplain

and in the main channel. In the main channel in particular, the wake

becomes wider and the maximum mean streamwise velocity zone is

pushed downward.

3. Despite these changes for the emergent blocks, the evidence also indi-

cated that the asymmetrical separation, reattachment and re-separation

characteristics of the lateral separation zones, identified for the single
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block cases, persist for the multiple block case, as does the slower re-

covery on the main channel side.

4. For the submerged cases, the patterns of separation, reattachment and

re-separation identified for the single block cases are again seen to

persist for the multiple channel arrangements. This ensures that the

bulging of the wakes into the main channel and the dominance of the

axial circulations on the floodplain also remain. The circulation on the

floodplain gradually creates a bulge in the contours of streamwise ve-

locity in this location also, adding to the deceleration of the floodplain

flow more generally. The distribution of streamwise velocity in the main

channel is much less disturbed.

• Manning’s Coefficient Conversion and Application of Results

1. Through conversion of the modelled drag coefficients into contribu-

tions to Manning’s coefficient, it was shown that the amount to which

changes to the Manning’s coefficient induced by the floodplain edge lo-

cation of vegetation should be taken into account is dependent both

on the nature of the scenario being modelled and the distribution and

geometry of the vegetation.

2. For scenarios in which local reaches of river are to be modelled and par-

ticularly where single large trees or other obstacles exist at the flood-

plain edge, careful consideration of the contribution to the Manning’s

coefficient made by that obstacle should be made.

3. For scenarios in which less detailed, large scale models of river systems

are being created, particularly where there is a multiple arrangement of

vegetation or other obstacles at the floodplain edge, less consideration

may safely be given to the contribution to Manning’s coefficient of those

obstacles.
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6.2 Suggestions for Future Research

In order to further understand the impacts on compound, open channel flows of

the presence of vegetation at the floodplain edge and to extend the applicability of

the results reported in this project, the following questions and topics are suggested

for examination in future research:

• Variation of other important geometrical parameters The work of this re-

search project has concentrated on revealing the flow structure of the wakes

around two distinct classes of block at the floodplain edge: emergent and

submerged blocks. The experimental results collected for the multiple, low

aspect ratio, submerged block cases revealed however, the sensitivity of the

flow structures to the degree of submergence of the block. For the blocks

which experienced only a shallow degree of submergence, the results sug-

gested that the wake structure was more similar to that of the emergent

block than to that of the deeply submerged block. In other words, the two

states should not be considered in isolation but instead, as two positions in

a spectrum. A future question to be addressed therefore would be how the

wake structure transitions from one in which the flow over the top of the

block is dominant in determining the recovery profile to one in which the

flow around the block sides is dominant and how this process is influenced

by the floodplain edge positioning. In addition to this geometrical parameter,

the spacing between multiple blocks in an in-line arrangement was reported

to be an important determinant in controlling separation and reattachment

processes and therefore drag coefficients as identified in the literature review.

As this project has revealed that the floodplain edge positioning has a signifi-

cant effect on the recovery profiles of blocks in this location, a future research

project could usefully compare the results of for blocks in a simple channel to

those at the floodplain edge. By performing such a comparison, the spacings

at which the important transitions from linked shedding processes to inde-

pendence could be identified. As the modifications to the separation zones
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and the recovery rates of the wakes around blocks at the floodplain edge have

been demonstrated to be strongly linked to the sudden increase in depth on

the main channel side of the blocks, in order to determine the limits of the

applicability of these modifying factors, an investigation of the diminishing

floodplain edge effects as the lateral position of the block is changed would

be interesting and useful. Finally, since the variation of aspect ratio examined

as part of this work was associated with a fixed floodplain width, it would

also be useful to eliminate the relative width of the block in relation to the

width of the floodplain as an influencing factor.

• Improvement of Numerical Modelling Techniques Whilst the numerical mod-

elling undertaken as part of this project was shown to yield useful results for

blocks at the floodplain edge, a number of limitations on the accuracy of

the results were also identified. Solutions to some of these limitations were

worked on, but not resolved, as part of this project. Since an accurate 3D

RANS simulation of this flow type could quickly and cheaply yield impor-

tant results, including analysis of some of the geometrical variations men-

tioned in the previous paragraph, resolution of these limitations is clearly an

important next step. The first improvement that could be made would be

to use an unsteady modelling facility, which would be likely to greatly im-

prove the model’s performance of the prediction of total turbulent energy, in

cases where periodic structures are important. The use of an unsteady model

would also allow for confirmation of the analyses of this project with respect

to the differences that develop in the vortex shedding processes on the two

sides of blocks at the floodplain edge, by clear disaggregation of the periodic

and truly turbulent components of the unsteady flow and by examination

of the instantaneous wake structures throughout the shedding cycle. The

second major improvement that would benefit the results procured from the

numerical model would be the inclusion of a moving free surface. Using a

volume tracking technique, this would enable a much better representation
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of the free surface deformation, the shear layer and associated vorticity at the

free surface, and the changes induced in that phenomenon by the sudden in-

crease of depth and change of Froude number experienced at the floodplain

edge.

• Application of Modified Drag Coefficients In order to translate the results

of this project into a tool of practical use, it may also be advantageous to use

them to develop a generalised 2D approach to the inclusion of one line veg-

etation at the floodplain edge in models of open channel flows. In a similar

vein to the models produced by such researchers as Järvelä (2002) and Wilk-

erson (2007), as introduced in Section 2.3.2, the creation of a 2D model

capable of reproducing the depth-averaged effects of the floodplain edge

vegetation would be a route to achieving tangible engineering impact. As

opposed to the models suggested in Section 2.3.2 however, any such model

would be developed by directly taking into account the underlying physi-

cal processes at work and would therefore be of use to engineers facing the

gamut of natural scenarios represented by Figure 1.1.

6.3 Final Comment

This research project has shown that the placement of bluff bodies in the shearing

flow at the floodplain edge of a compound channel has significant impacts on the

wake structures that are formed around them and therefore on the drag force that

they exert on the flow. It provides a first glimpse at the nature of these changes,

which, despite their potential impact on our understanding of open channel hy-

draulics and our ability to accurately model the effects of floodplain vegetation,

have not been investigated before. The approach taken in this analysis should

provide an avenue by which existing data on the bulk behaviour of vegetated,

compound channels may be interpreted. Furthermore, detailed study could reveal

both the unsteady processes at work in creating these effects and their patterns of
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change with channel geometry, finally allowing for the more accurate inclusion of

them in engineering models.
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