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Synopsis 
This thesis reports on the research undertaken to minimise the energy consumption within 

the production phase of a product life cycle through modelling, monitoring and improved 

control of energy use within manufacturing facilities. The principle objective of this 

research is to develop a framework which integrates energy consumption data at the ‘plant’ 

and ‘process’ perspectives within a manufacturing system so as to be able to indicate how  

much energy is required to manufacture a unit product.  

The research contributions are divided into four major parts. The first part reviews the 

relevant literature in energy trends, related governmental policies and legislative measures, 

and their impact on industry. Various energy management and modelling tools and software 

have also been identified and reviewed.  The second part introduces an ‘Embodied Product 

Energy’ framework which categorises the energy consumption within a production facility 

into ‘direct’ and ‘indirect’ energy required to manufacture a product. Direct energy is 

defined as the energy consumed by the production processes, whereas the indirect energy is 

the energy required to maintain the environment in which the production takes place.  The 

third part describes the design and implementation of a simulation model based on this 

framework to support manufacturing and design decisions for improved energy efficiency 

through the use of ‘what-if’ scenario planning.  The final part of the thesis outlines the 

utilisation of this energy simulation model to support a ‘Design for Energy Minimisation’ 

methodology which aims to incorporate energy considerations within the design process to 

minimise the energy required to manufacture a product.  

The applicability of the proposed research concepts have been demonstrated via two case 

studies. The detailed analysis of energy consumption from a product viewpoint provides 

greater insight into the inefficiencies of the processes and associated supporting activities, 

thereby highlighting opportunities for optimisation of energy consumption via operational 

or design improvements. Although the research domain for this thesis is limited to the 

production phase, the flexibility offered by the energy modelling framework and associated 

simulation tool allow for their employment to other stages of a product life cycle.  

In summary, the research has concluded that investment in green sources of power 

generation alone is insufficient to deal with the rapid rise in energy demand, and has 

highlighted the paramount importance of energy rationalisation and optimisation within 

the manufacturing industry.  
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The typical units of energy and their Joules equivalent are shown below:  

Unit Equivalent amount Representation 

British thermal unit (typically used for measuring gas) 1055 J 1 Btu 

Kilowatt hour - Multiplication of power in watt and time in 

hours (billing unit for energy delivered to consumers by 

electric utilities) 

3,600,000 J or 3.6 MJ 1 kwh 

Barrels of oil equivalent  6,000,000,000 J or 6 GJ 1 boe 

Tonne of oil equivalent 41,868,000,000 J or 41.9 GJ 1 toe 

Tonnes of coal equivalent 29,000,000,000 J or 29 GJ 1 tce 

Watt - Unit of power and measures the rate of energy 

consumption 
1 joule/sec 1 w 

 

 

While the units used in this thesis are generally accepted within the field of energy 

analysis that do not necessarily conform to the International System of Units (SI) which 

include: meters (m), kilograms (kg), seconds (s), and degrees Kelvin (K). Units which 

are not SI units include tonnes (t), British Thermal units (BTU) and  

Joules (J). The following stand metric prefixes were also used: 

prefix abbreviation multiple Description 

milli (m) 10-3 (thousandth) 

kilo (k) 103 thousand 

mega (M) 106 million 

giga (G) 109 billion 

peta (P) 1015 million billion 

exa (E) 1018 billion billion 
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Chapter 1 Introduction 

Energy is an inextricable part of life in the 21st Century, thus its availability and 

utilisation will become increasingly important with the realisation of global climate 

change and the escalation in worldwide population. Energy demand is expected to 

continue to increase over the coming decades, with demand estimated to be more than 

45% higher in 2030 when compared to today’s levels (IEA, 2006). The use of energy is 

one of the main contributors to greenhouse gas emission which is resulting in changes 

to the climate (IPCC, 2007).  

The phrase “low-carbon manufacturing” has been coined to reflect a comprehensive 

effort to reduce CO2 emissions generated from energy consumed directly by 

manufacturing activities (e.g. specific process energy consumed per kilo of material 

processed, or per product manufactured), and the CO2 produced through indirect energy 

consumption (e.g. general facility energy overheads such as heating and lighting). 

Future manufacturing businesses will have to adapt to the concept of ‘lean energy’ 

based on the most energy efficient processes within their production facilities. It is 

argued that despite the predicted growth in renewable energy technologies, in the short 

to medium term manufacturing activities will still rely heavily on electricity generated 

from fossil fuels. For example, the introduction of ‘renewable obligations’, requiring 

UK electricity suppliers to source a percentage of their capacity from renewable 

technologies, will necessitate 15% of the UK’s energy demand to be generated from 

renewable sources by 2015 (HM Government, 2006). The remaining energy will clearly 

have to be produced through nuclear and fossil fuel power. 

Achieving increased energy efficiency has become increasingly vital in light of the 

growing energy demand coupled with projections of shortages. Using energy more 

efficiently is often a cost effective way of cutting carbon dioxide emissions which also 

improves productivity and contributes to the security of our future energy supply. 

Energy efficiency can be defined as using less energy while maintaining the same level 

of service. It can be achieved either by decreasing total energy use or by increasing the 
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production rate per unit of energy consumed. In a manufacturing facility, energy 

efficiency can be achieved by using higher efficiency equipment, providing advanced 

systems to control energy use and improving operation and/or maintenance practices.  

In the UK, the Carbon Trust (2011) and the Climate Change Program Review by 

DEFRA (2008) have been set up to ensure that energy efficiency in businesses is 

encouraged. Performance indicators like the Carbon Trust Standard developed by the 

Carbon Trust (2008) recognises achievements in reduced carbon emissions and energy 

use by leading organisations in industry, commerce and the public sector.  

There are several perspectives that can be used to assess the energy consumption within 

a manufacturing system (factory) as depicted in Figure 1.1. These include Plant, Process 

and Product viewpoints. In this context, the majority of current energy related research 

and tools focus on Plant (reduction of facility level energy demand) and Process 

(reduction of equipment level energy demand) perspective actions. The research 

assertion made in this thesis is that the Product perspective provides a distinctly 

different and useful method of identifying the energy hotspots within the manufacturing 

activities. This gives a greater degree of transparency not provided with Plant and 

Process viewpoints when analysing energy consumption within a system. Modelling 

tools developed based on this approach enable energy intensive processes used during 

the manufacture of a product to be identified.  

 

Product View PointProcess View Point

Lighting Heating

Process 1 Process 2 Process 3

Plant View Point

Raw material Final Product

Figure 1.1: The three different perspectives used to assess energy consumption within a manufacturing 
system- Plant, Process and Product Viewpoint 
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Minimisation of energy consumption in manufacturing applications is a complex 

subject and covers a wide range of issues from raw material extraction and production 

processes to logistics and even end-of-life management. Therefore, many of the existing 

tools that focus on energy consumption are either very broad in scope (e.g. Life Cycle 

Assessment) where energy consumption is considered at a very high level over the 

product’s life cycle, or are very simplistic in their attribution of energy use (e.g. 

Cumulative Energy Demand) where energy consumption is attributed to the average 

weight of material processed. This highlights the need for detailed modelling of energy 

consumption in a particular manufacturing system. As such the scope of the research 

reported in this thesis focuses on the production phase of a product’s life cycle.  

The research reported in this thesis investigates the use of energy during manufacture 

and its attribution to a single product, so as to provide designers and engineers with an 

indication of energy hotspots during the production phase. This is to enable the 

minimisation of energy consumption during this stage through design and operational 

improvements. This is achieved through:  

a) Developing a framework that can provide a breakdown of energy consumption 

during manufacture to identify the energy intensive processes thus highlighting 

the areas for improvement in production, production planning and product 

design  

b) Using simulation to handle the complexity involved in modelling and 

calculating the energy flows through a production system and to support ‘what 

if’ scenarios such as varying product types, changes in process parameters, 

scheduling plans and/or other production variations like set up times, queue 

times and batch sizes.    

The structure of the thesis is broken down into three different sections: research 

background and overview, theoretical research, model development, and research 

conclusions as shown in Figure 1.2.  

The research background and overview section encompasses Chapters 1 to 6 and 

provides an introduction to a range of issues regarding the use of energy and its impact 

on the environment as well as where energy is used in manufacturing and how it can be 

modelled. Chapter 2 provides a detailed insight into the context of the research and 
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outlines the research aims and objectives. Chapter 3 introduces the reader to the current 

energy situation in the world including the UK, the different sources of energy, its 

issues and impact on the environment, highlighting the need for energy rationalisation 

and demand control. Chapter 4 reviews the current research related to establishing 

energy flows within products and industrial systems highlighting the wide range of 

considerations and the challenges associated with modelling energy flows in both a 

product and within a production system. The final literature review chapter, Chapter 5 

evaluates a range of commercially available software packages commonly used for 

analysing energy consumption over a product’s life cycle and within a facility. Chapter 

6 highlights the research methodology used in this thesis.  

The theoretical research and development section encompasses five chapters and 

highlights the thesis’s main contributions to research. Chapter 7 discusses the 

generation of a novel framework to establish the energy required to manufacture a 

product (Embodied Product Energy). Chapter 8 builds on the framework and elaborates 

on the calculations and methods used to obtain data. Chapter 9 describes the 

development of the energy model and simulation and Chapter 10 explores how the 

model can be used in the design process to minimise energy consumption in a product 

life cycle through the use of a Design for Energy Minimisation approach. Chapter 11 

highlights suitable case studies to demonstrate the use of the energy simulation model 

and show how energy can be minimised.  

The final section within this thesis includes two chapters (Chapters 12 and 13), which 

discuss the significance of the proposed energy framework in the context of the thesis 

scope, before drawing the final conclusions from this research and highlighting areas of 

further work.   
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Review of Energy Modelling 
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Scope and Research Context 
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Research background 
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Conclusions & Further Work 
(Chapter 13) 

Concluding Discussion 
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Research Conclusions 
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Simulation  
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Case Study 
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Development 

Modelling Direct Energy and Indirect Energy 
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Figure 1.2: Overview of the thesis structure
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Chapter 2 Aims and Scope of Research 

2.1 Introduction 

This chapter discusses the research context, overall aims, objectives and research scope. 

The preliminary part of the chapter describes the research context and in particular the 

primary question considered in this research. The later part of the chapter highlights the 

research objectives and their scope in the context of this thesis.   

2.2 Research Context 

Energy has become integral to our modern lifestyle, the demand for which is only 

expected to increase. The majority of our current energy is generated by fossil based 

fuels which account for two thirds of the world’s greenhouse gas emissions. Despite 

recent advances in renewable energy technology, much of our energy will continue to 

be supplied by fossil based sources in the foreseeable future. Manufacturers, 

governmental agencies, local and national authorities, as well as the general public have 

come to realise that one of the ways of mitigating climate change requires targeted 

efforts on reducing energy consumption which has resulted in a proliferation of energy 

saving products, tools, standards and legislation.  

Consumers can now choose more energy efficient products by referring to the energy 

ratings labelled on electrical goods. Local and national authorities have implemented 

various plans for more energy efficient homes and buildings. Governments have 

enforced energy acts to reduce carbon emissions from energy supplies. And 

manufacturers are increasingly incorporating micro cogeneration as well as energy 

monitoring systems to track their energy use within their facilities. This focus on energy 

reduction has also highlighted the importance of the rationalisation and optimisation of 

energy demand which is not only one of the most significant ways of reducing overall 

environmental impact, but also offers cost saving opportunities, especially in light of the 

rapidly rising cost of energy over the last few years.  
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As the research will be looking at various aspects of the manufacturing system in terms 

of different perspective, it is essential to clarify the terms ‘plant’, ‘process’ and 

‘product’ which have been used to describe these perspectives.  

‘Plant’ in this thesis refers to the factory building and the associated equipment required 

in maintaining optimal production environment (i.e. temperature, humidity, air purity, 

pressure etc).    

Within a manufacturing enterprise, different types of processes can be found. In systems 

modelling, processes are often seen as a chain of activities that can be temporal or 

causal to achieve the purpose of the process. Processes are typically defined as “a 

conceptualisation of actions needed to achieve real-world transformations within finite 

time frames” (Weston et al., 2007). There are many ways of classifying processes and 

further details can be found in Pandya et al. (1997), Andersen (2002) and Rose (2003).   

Common process classifications include: operational processes, infrastructural support 

processes, managerial processes and developmental/evolutionary processes (Pandya et 

al., 1997). ‘Process’ this thesis refers to the operational processes which covers the 

actions taken by the machines or equipment that create value.  

The definition of ‘product’ in this thesis is taken from the subject of product modelling 

as detailed by Krause et al. (1993). They define products as “materialised, artificially 

generated objects or groups of objects which form a functional unit”.  The products can 

contain different parts (mechanical, electrical or hydraulic etc) and maybe made up 

different materials and manufactured by different processes from a range of lot sizes.  

Much of the existing research on energy consumption within manufacturing has been 

from the Manufacturer’s perspective with the focus mainly on the Plant and Process 

level (for reviews of research work in these areas refer to Chapter 4), as outlined below:  

1) Plant facility level:  The focus of this work is mainly on the manufacturing 

facility such as the building infrastructure and the services associated with it 

such as lighting, heating and ventilation.  

2) Process equipment level: This area of research is concerned with improving 

process (and equipment) efficiencies such as determining optimum turning 

Comment [Y1]: Definition of process, 
plant and product 
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speeds on a lathe or processing temperatures in an oven for minimal energy 

consumption whilst achieving the desired finish.  

The research assertion made in this thesis is that the independent use of these 

viewpoints does not provide a holistic overview of the energy hotspots within a 

manufacturing system. In addition, the author argues that within a complex application, 

the independent assessment of plant and process energy consumption does not allow for 

an effective prioritisation of the required investment in energy efficiency, thus this 

research attempts to analyse energy flows from a distinctly different viewpoint, i.e. a 

product viewpoint. This new approach highlights energy hotspots both in processes as 

well as the facility which can then be linked to casual factors such as production 

scheduling, process routing or in fact poor design of a particular product. Such holistic 

analysis of energy inefficiencies can then be used to improve production operations as 

well as product design.  

Products are responsible for the consumption of energy over their life cycle from 

material extraction through to end-of-life. Some products consume energy during their 

‘Use’ phase (e.g. electrical goods like televisions, kettles or fuel powered products like 

cars, airplanes and trains), whilst other products do not consume any energy during this 

phase, (e.g. pens, rulers or ornamental objects such as vases). Table 2.1 shows these two 

types of products and where energy is used over their life cycle. 

Type of Products  
Product Life cycle 

Examples 
Material extraction Production Use End-of-life 

Energy Consuming   

Functional 
use 

 
 

Electrical Appliances 
e.g. Television 

Kettles 
Computers 

Vehicles (car, 
motorcycles, vans etc.) 

Non 
functional use 

 

Non Energy 
Consuming   ×  

Stationery e.g. Paper, 
pens 

Ornaments e.g. vases 
Toys  

  

Table 2.1: Types of products from an energy viewpoint, the research will focus on the production phase 
of these product families. 



   

Chapter 2 9 

 

For a complete assessment of the environmental impacts resulting from the energy 

consumption, the full life cycle of a product should be considered. However such full 

life cycle energy analysis often results in a lengthy data intensive exercise which at 

times, due to the lack of available data, requires significant assumptions and 

simplifications. Therefore the domain defined for the research reported in this thesis 

will only focus on the energy flow modelling within the ‘Production’ phase, as 

highlighted in Table 2.1. It is argued that the fundamental framework established by this 

research can be applied to the other phases in order to establish a model for the total 

energy consumed by the product (this is discussed in greater detail in Chapter 7).   

2.3 Research Question 

Traditionally in manufacturing applications, the optimisation processes to improve 

production efficiencies have primarily been based on a range of information related to 

product design attributes, for example:   

- What material types and how much of each material is required, 

- What are the range of production processes required to manufacture the product, 
and  

- How much does it cost to manufacture a product, together with the breakdown 
of this cost.  

To date various research has considered the minimisation of energy of various processes 

(e.g. milling, grinding, cutting etc.) and the reduction of energy required by services 

within a building (heating, lighting, ventilation etc.). This research is trying to address 

the efficiency of energy consumed by manufacturing processes and the related activities 

required to produce a product. The fundamental research question in this thesis is  “How 

much energy is needed to manufacture a unit product?”   

To be able to answer this fundamental research question, the following questions also 

need to be answered:  

 Of the total energy consumed to manufacture a product, how much of the energy 

is used directly by the process and, how much is used by the facility that houses 

the process and the other supporting processes? 
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 When considering the energy consumed by the facility that houses the process 

how can it be attributed to the manufacture of a unit product? 

 How much of the energy consumed by the process is for productive work and 

how much is non-productive? 

 How can design influence the energy required to manufacture a product?  

2.4 Aims and Objectives 

The overall aim of this research is to model the total energy used to manufacture a 

single product and to utilise this model to improve both production and design 

decisions. The research will investigate the modelling of energy flows from a product 

rather than facility and/or process perspective, to provide a detailed breakdown of the 

energy consumed throughout the production phase of a product life cycle.  

In order to achieve this aim the following research objectives have been defined: 

1. To review literature on sources of power generation and major trends in energy 

consumption within various industrial sectors.    

2. To review the state of art in energy management and modelling research and 

software tools.  

3. To generate a framework to model the total energy used to manufacture a single 

product by considering both the energy consumed by the production processes 

and the environment required to maintain these processes.   

4. To develop an energy simulation model for the optimisation of energy efficiency 

through the consideration of various ‘what-if’ scenarios.   

5. To investigate the feasibility of using the energy simulation model to improve 

product design.  

6. To demonstrate the applicability of research concepts and energy flow 

modelling framework through case study products. 
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2.5 Scope of Research 

The scope of this research is in line with its objectives, as outlined in the remaining 

sections of this chapter.   

I. Review literature on sources of power generation and trends in energy 

consumption within the industrial sector.    

In order to place the research in the appropriate context, a comprehensive review of the 

research that encompasses the various sources of energy generation (including both 

renewable and non-renewable forms), the impact of energy consumption on climate 

change, the implications of climate change, various energy trends and the significance 

of energy availability for long term sustainability of industrial activities will be 

undertaken. Peripheral to the review is an understanding of the relevant government 

policies, directives and associated legislative measures, and their impact on businesses 

and manufacturers. These will be discussed as part of the literature review in Chapter 3. 

II. Review of the state of art in energy management and modelling research and 

software tools.  

To take advantage of the existing knowledge, a comprehensive review of literature 

surrounding energy management and modelling will be undertaken. The review will 

include both product focused research such as life cycle assessment, as well as the full 

spectrum of energy research within a manufacturing system from the enterprise level 

down to the turret level. In addition, an overview of the work and software developed 

by various commercial and governmental agencies will be conducted. The results from 

this review are included in Chapters 4 & 5.   

III. Generate a framework to model embodied product energy 

The identification of various energy contributors during the production phase forms the 

basis of this framework. The scope of this research will be limited to the electricity 

consuming activities and processes but the framework could be extended to include 

other sources of energy as part of the further work. This framework aims to assist 

designers, engineers and manufacturers in identifying the direct and indirect energy 

consuming activities attributable to the manufacture of a product thereby providing 
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greater transparency of the energy used. This detailed breakdown provides a clear 

indication of energy hotspots which can then be used to optimise energy efficiency in 

both production and product design. In addition, the framework provides an opportunity 

to develop a number of efficiency ratios that can be used to compare energy efficiencies 

between processes, products and production systems supporting additional 

benchmarking opportunities. The framework will be introduced in Chapter 7 and further 

detailed in Chapter 8.   

IV. Realisation of an energy simulation model to support energy efficiency 

optimisation. 

Predicting the amount of embodied energy within a product during manufacture is a 

complex task which involves concurrent consideration of product, process and 

production data. Therefore this research will identify a suitable simulation technique to 

design and implement a prototype energy simulation model that incorporates various 

considerations included in the energy modelling framework. The model will also be 

used to demonstrate how energy efficiency optimisation can be achieved through the 

use of ‘what-if’ scenario planning. This will be described in Chapter 9.   

V. To investigate the feasibility of using the energy simulation model to improve 

product design.   

Much of a product’s production process and consequently its environmental impact are 

determined during the early stages of the design process. The research investigates a 

‘Design for Energy Minimisation’ approach that incorporates the energy simulation 

model developed in this research with other supporting tools to aid designers and 

engineers reduce embodied product energy during the design process. Design can 

sometimes involve multiple stakeholders and the methodology would need to be further 

examined to determine its applicability to both simple products (where the design 

process can be managed and carried out by a single party) and complex products (where 

the design process can be managed by several parties). This ‘Design for Energy 

Minimisation’ approach will be described and discussed in Chapter 10.  
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VI. Demonstrate and Validate the Applicability of the Framework  

In order to assess the validity of the research concepts and to highlight the applicability 

of the framework, the model will be evaluated through a number of case study products, 

using theoretical data, complemented by empirical data. The case study will investigate 

the use of the energy framework and simulation model to establish the energy hotspots 

and use the results to identify production and design improvements through changes in 

the processing parameters or changes in production configurations. Case study data will 

be used to populate the model and provide an initial assessment of the energy 

efficiencies of a manufacturing line with respect to a particular product design. The 

results of this analysis will then provide a foundation for possible design and 

operational improvements. This will be discussed in Chapter 11.   
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Chapter 3 Overview of Energy and its Impact on the 
Environment 

3.1 Introduction 

This chapter provides an overview of the role of energy in today’s world and the various 

sources of energy including fossil based and renewable sources alongside a brief review 

on the advantages and disadvantages of each type of energy. The next part of the 

chapter investigates the impact of energy consumption on climate change and the 

implications of climate change to the environment and the manufacturing industry. The 

latter part of the chapter then presents energy trends and the role of energy within the 

industrial sector as well as the relevant energy directives and policies pertaining to 

industry.  

3.2 Energy and its Role in Modern Society 

Energy is very much woven into the fabric of modern society as summed up by this 

quote from the European Commission (2009): “Energy is fundamental to the quality of 

our lives. Nowadays, we are totally dependent on an abundant and uninterrupted supply 

of energy for living and working. It is a key ingredient in all sectors of modern 

economies.”  

All through human history, the development of society has been inextricably linked to 

our ability to control and manipulate energy. The discovery of fire provided early man 

with the means of protecting themselves from predators and the harsh winters, greatly 

improving man’s chances of survival. Since then, the evolution of modern energy and 

technology has enabled people to lead a lifestyle wholly dependent on energy. For the 

developing nations, energy not only provides a basic quality of life, it also supports and 

accelerates changes that improve and save lives. For these nations, energy means 

expanded industry, modern agriculture, increased trade and improved transportation, all 

of which are building blocks of economic growth that create the jobs that help people 

break out of the cycle of poverty and create better lives for future generations. In the 
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developed world, energy is not only a necessity, but also enriches and extends lives; 

powering computers, communication systems and even medical equipment. 

As population increases in the developing countries, so too does the demand for energy. 

According to the International Energy Agency, IEA (2008), energy demand is expected 

to be 40% higher in 2030 compared to 2008 levels due to significant increases in 

demands from China and India, see Figure 3.1. The global demand for energy is being 

met by range of fuels sources, (the most common of which are coal, oil and gas) and is 

further described in the next section.  

3.3 Sources of Power Generation 

Sources of energy can be categorised into two categories: non-renewable and 

renewable. If the source is not replenishable in a short period of time, it is known as 

non-renewable and sources which are rapidly replenished, like wind and solar are 

known as renewable. Global energy demand is expected to grow by 40% between 2007 

and 2030 and much that demand will be supplied by sources which are non-renewable. 

According to the IEA (2009), approximately 85% of all energy currently produced and 

consumed is derived from the finite supplies of fossil fuels as the primary energy 

source, with the remaining coming from nuclear and renewable sources as shown in 

Figure 3.2. The graph shows a slight reduction in energy demand in 2008-2009 due to 

the economic crisis which saw a reduction of trade and therefore energy demand. The 

dotted black line shows the projected world demand up to 2030 before the financial 

crisis.   

 
Figure 3.1: World energy demand by region. (IEA, 2008a)  
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As clearly indicated in Figure 3.2, fossil fuels – oil, natural gas and coal – will continue 

to meet most of the world’s needs during this period because no other energy sources 

can match their availability, versatility, affordability and scale. By 2030, global demand 

for natural gas will be more than 55 percent higher than it was in 2005 (IEA, 2009). 

Nuclear power will also grow significantly to support increasing needs for power 

generation. Although wind, solar and biofuels will grow sharply leading up to 2030, at 

nearly 10 percent per year on average, their contribution by 2030 will remain relatively 

small at about 2.5 percent of total energy because they are starting from a small base. 

3.3.1 Non-Renewable Energy Sources 

The most common forms of non-renewable or fossil based energy sources are oil, 

natural gas and coal. Uranium whilst not a fossil fuel is also non renewable. Currently, 

all these sources of energy supply a large proportion of our energy needs.   

3.3.1.1 Oil 

Oil is formed from the plant and animal remains that lived in a marine environment 

which later was covered by sand and silt and was heated and pressurised by these layers 

to form crude oil.  

The advantage of using oil to generate energy is that it is easily combustible, produces 

high specific energy density (approximately 45 MJ/kg, as shown later in Table 3.2) and 

is also easy to extract and transport. In addition oil is also very versatile, various 

compounds and mixtures can be extracted from crude oil such as gasoline and diesel for 

automobiles, kerosene, some types of alcohol and lubricating oils, most of which have 

Figure 3.2: World primary energy demand by fuel (IEA,  2009) 
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widespread use in daily life. In addition a whole range of products can be derived from 

oil e.g. plastics, asphalt, paraffin wax etc. A key advantage is that oil prices remains low 

compared to other forms of energy with lower environmental impacts like wind or solar, 

and unlike hydrogen or gas, it is easy to transport and has a wider range of developed 

infrastructure available to support its use.  

The disadvantages of oil are that it is a finite resource and is depleting at rapid rate, its 

combustion releases CO2 originally stored in the earth for millions of years and harmful 

by-products are also generated in the process. The extraction of oil leads to degradation 

of the surrounding environment and occasional oil spillages often result in high 

environmental cost to the surrounding wildlife and eco systems.  

3.3.1.2 Natural Gas 

Natural gas, like oil and coal was formed from the remains of plants and animals 

millions of years ago under compression and pressurisation from the earth. Natural gas 

can also be produced by microorganisms (or methanogenic organisms) often found in 

marshes, bogs and landfills that break down organic matter into methane. Methane is 

the main constituent in natural gas and is often found with other fossil fuels.  

Unlike other fossil fuels, natural gas is relatively clean burning and emits lower levels 

of harmful by-products into the atmosphere. It also has a higher energy density than 

coal. Natural gas is relatively inexpensive compared to coal and as it is transportable 

over a pipeline, it is less susceptible to bad weather conditions unlike coal or oil which 

are typically transported by road or rail.  

The disadvantage of natural gas is that it is highly flammable and needs to be produced 

in closely controlled conditions. Natural gas unless treated is colourless and odourless 

and tasteless which makes detection of hazardous leaks difficult.  

3.3.1.3 Coal 

The energy in coal comes from the energy stored long ago by trees and ferns which was 

initially decomposed by aerobic bacteria and then covered anaerobically, producing peat 

which when heated and pressurised further became coal. The carbon from coal is also 

used in the process of making steel and is commonly used in the concrete and paper 

industries.  
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Coal is one of the most abundant sources of energy, more so than oil and gas and unlike 

oil, coal is widely available, is inexpensive and is not limited to certain geographical 

regions, making it less susceptible to geopolitical tensions. Coal can be safely stored 

and can be used to create energy in times of emergency, additionally coal based power 

is not weather dependant which cannot be said for most forms of renewable like wind 

and solar.      

Mining of coal can damage the surrounding ecosystems, affect water quality and also 

cause health issues for miners. The combustion of coal produces harmful substances 

like sulphur dioxides, nitrogen oxides, arsenic and ash which can cause significant 

environmental problems such as acid rain. It also emits twice as much carbon dioxide 

compared to natural gas per unit of heat, increasing greenhouse gas emissions (Hansen, 

2006). Additional emissions are also contributed by the transportation of coal (e.g. 

emissions from the lorries used to transport the coal from the mines to the power 

stations).  

3.3.1.4 Uranium (Nuclear Fission) 

Uranium, a commonly found metal, is used in nuclear plants for nuclear fission. In 

nuclear fission, the atoms are split apart to form smaller atoms, releasing energy in the 

form of heat, which is used to drive turbines, producing electricity. U-235 is the specific 

type of uranium that is used due to the ease of atoms splitting.  

Nuclear power costs about the same as coal and does not contribute to the greenhouse 

effect. A huge amount of energy can be produced from small amounts of fuel and it 

only produces a small amount of waste. Nuclear power is a reliable source of energy 

and non weather dependant.  

The main environmental concerns for the use of nuclear power are radioactive wastes 

such as uranium mill tailings, spent reactor fuel and other radioactive wastes (Glasstone 

and Jordan, 1980). Besides being radioactive, Uranium is highly toxic and therefore 

harmful to humans. Uncontrolled nuclear reactions can have disastrous and widespread 

impact on the environment as such nuclear power plants need to have complex safety 

and security features.   
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3.3.2 Renewable Energy Sources 

Renewable energy sources are derived naturally and are constantly replenished and will 

not run out. Some of these natural sources of energy are sunlight, wind, rain, 

hydropower and geothermal heat.   

3.3.2.1 Solar 

Solar energy is the sun’s rays (solar radiation) that reach the Earth. This energy can be 

converted into other forms of energy, such as heat and electricity. Solar powered 

electrical generation relies on photovoltaic cells or heat engines.  

The main advantage is that solar energy is renewable and solar cells provide a non-

polluting and cost effective solution to energy problems in places where there is no 

mains electricity. In addition photovoltaic cells are easy to install and as they have no 

moving parts, they are easy to maintain and can last a long time.  

The main disadvantage is the initial cost of solar cells. At present solar energy is more 

than twice the price of fossil derived energy (Lewis, 2007). Other issues with solar 

energy is that it is intermittent (i.e. cloudy days may affect performance and no energy 

can be generated at night).  

3.3.2.2 Geothermal 

Power is extracted from the heat trapped in the earth’s core and the decay of radioactive 

isotopes in the crust, mantle and core. The heat from the Earth’s core heats up the 

underground water in turn producing steam which is channelled through deep holes that 

have been drilled to drive turbines to generate electricity.  

The advantages of geothermal are that it does not produce any pollution and does not 

contribute to the greenhouse effect. The power stations are also relatively small so has 

little impact on the environment. The running costs of a geothermal power plant are 

relatively low as no fuel is required to generate the electricity.  

The main issue with geothermal energy is that it is limited to certain geographical 

locations. Most of the locations may be situated in harsh environmental conditions at 

high altitudes or near active volcanoes. In addition, geothermal sites may experience 

reduced outputs due to depletion of the water source.  
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3.3.2.3 Hydropower 

In hydropower, energy is generated from the movement of water such as rivers and 

streams. Typically dams are built on rivers to store the water in a reservoir which is then 

released in a controlled manner which flows through turbines thus generating 

electricity.     

The main advantages of hydropower are that is it non-polluting, technologically mature, 

and uses a renewable energy source that does not contribute to global warming.  

As large areas are often flooded to create the reservoir once the dam is built the natural 

environment is often destroyed resulting in the loss of habitat for both animals and 

humans. In addition to the significant costs of building a dam, the cost of a dam failure 

is just as high, as a breeched dam can often result in the loss of lives.  

3.3.2.4 Wind Energy 

The uneven heating of the Earth’s surface causes some air to rise in the areas that are 

warmer. Wind is generated as the surrounding air moves in to replace the rising warm 

air. Wind energy is harnessed through the use of wind turbines that convert the moving 

air into wind power.  

Wind power is plentiful, available in many regions around the world, free and can be 

captured effectively with modern technology. Most importantly, it does not produce any 

greenhouse gas emissions during operation. Wind turbines do not occupy a large land 

area and the land beneath the turbine can be used for other purposes, also the turbines 

can be made in a range of sizes, so can be suited for various uses, from supporting an 

entire city to a single household.  

Like solar energy, wind power can be intermittent and there will be times when no 

power is generated at all. Wind turbines are large structures and are noisy during 

operation which can make the country side less pleasant for some people. The 

manufacture of wind turbines produce pollution and hence it is not entirely 

environmentally friendly, moreover a large number of turbines are required to sustain 

large demands as the largest single turbine can only provide approximately 3500kW 

which is enough to power only 1500 households (Joselin Herbert, 2007). 
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3.3.2.5 Bioenergy 

Bioenergy is extracted from materials that are from biological sources such as wood, 

sugar cane and other solid waste like manure which has stored energy from sunlight. 

Some sources of biomass are combusted directly to generate energy from heat; others 

like sugar cane are allowed to ferment to make biofuel which can be burned to generate 

power.  

The main advantage of burning biomass is that it is more reliable than solar or wind 

energy. The use of bioenergy saves the environmental cost of disposing waste material. 

Growing of plants for biofuel could provide a carbon sink to remove carbon dioxide 

from the atmosphere. Biomass is a resource that is available throughout the world 

unlike other sources of energy such as geothermal and oil.  

However the growth of crops for biofuels may compete with land usage for crops grown 

for consumption especially if they are to replace fossil fuels (Gurgel et al., 2007). The 

combustion of biomass still contributes to global warming and pollution when burned 

(Kim et al., 2009). It is also expensive to collect, harvest and store the raw materials.   

3.3.3 Environmental Impact of Various Sources of Energy  

As highlighted within each energy source, there are benefits and disadvantages with 

using energy regardless of how it is derived. A summary of the specific energy density 

of the various sources as well as the main problems associated with the various sources 

of fuel are given in Table 3.1. In terms of non renewable energy sources, the complexity 

and the safety concerns with using nuclear energy limits its use, despite being extremely 

energy dense. On the other hand oil and gas are the next highest in energy density, are 

ideal fuels for energy use in everyday life as the energy is easily accessible through 

combustion, however the use of fossil fuels is typically attributed to increased carbon 

emissions and are the main contributors to climate change. On the whole, renewable 

sources of energy do not contribute as much to climate change as fossil derived fuels 

although the systems that need to be built to harness renewable energy often result in 

changes to the landscapes and may impact surrounding habitats. These ramifications are 

commonly associated with hydro-electricity and wind energy. Whilst the various 

associated environmental impacts are valid issues for consideration, there are perhaps 

none as pressing and as significant as climate change.  
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Source 
Specific Energy 
Density (MJ/kg) 

Potential Cause for Concern 

N
o

n
 R

en
ew

ab
le

 

Oil 45 
Global climate change, air pollution by vehicles, acid 

rain, oil spills, oil rig accidents 

Natural Gas 38-50 
Global climate change, methane leakage from pipes, 

methane gas explosions, gas rig accidents 

Coal 29-33 

Global climate change, acid rain, environmental 

spoliation by open-cast mining, land subsidence due to 

deep mining, spoil heaps, ground water pollution, mining 

accidents, health effects on miners 

Nuclear 
Power 

77,000,000 

Radioactivity ( routine release, risk of accident, waste 

disposal), misuse of fissile and other radioactive material 

by terrorists, proliferation of nuclear weapons, land 

pollution by mine tailings, health effects on uranium 

miners  

R
en

e
w

ab
le

 

Biomass 9-21 

Effect on landscape and biodiversity, ground water 

pollution due to fertilizers, use of scarce water, 

competition with food production. 

Hydro-
electricity 

- 

Displacement of populations, effect on rivers and ground 

water, dams (visual intrusion and risk of accident, 

seismic effects, downstream effects on agriculture, 

methane emissions from submerged biomass 

Wind power - 
Visual intrusion in sensitive landscapes, noise, bird 

strikes, interference with telecommunications 

Tidal power - 

Visual intrusion and destruction of wildlife habitat, 

reduced dispersal of effluents (these concerns apply 

mainly to tidal barrages, not tidal current turbines) 

Geothermal - 

Release of polluting gases, (SO2, H2S, etc) ground 

water pollution by chemicals including heavy metals, 

seismic effects 

Solar energy - 

Sequestration of large land areas (in the case of 

centralised plant), use of toxic materials in manufacture 

of some PV cells, visual intrusion in rural and urban 

environments. 

  

Table 3.1: Impacts and pollutants from various energy sources (adapted from David Coley, 2008)
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3.4 Energy and Climate Change 

3.4.1 Impact of Climate Change  

Climate change has been the subject of interest both within the scientific community 

and the public, and now increasingly among politicians. Changes in the climate will 

affect everyone and will have significant implications for present lives, future 

generations and for ecosystems on which humanity depends (The Royal Society, 2010).    

The global average air and ocean temperatures have increased over the past 100 years 

and with the last decade being the warmest since records began: 0.6oC higher since 

1990 (IPCC, 2007a). According to IPCC, there is empirical evidence of increases in air 

and ocean temperatures, widespread melting of snow and ice and rising sea levels, see 

Figure 3.3. According to their models, global surface temperatures are likely to continue 

rising which would cause glaciers to retreat, sea ice to melt and sea levels to rise in turn 

changing the amount of precipitation leading to extreme weather which would lead to 

changes in the physical and biological systems.  

There are more possible effects of climate change than there is space here for and the 

author would recommend the IPCC Fourth Assessment Report on the Impacts, 

Adaptation and Vulnerability (IPCC, 2007b) for a detailed assessment of the future 

impacts on various systems, sectors and regions. For a quick overview of the impacts, 

Coley (2008) has qualitatively summarized the likely consequences if no concerted 

effort was made to mitigate climate change. They are based on three scenarios at three 

different dates and different temperate rise (see Table 3.2). The impacts are categorised 

into the following: Human health effects, Ecosystem effects, Agriculture effects, Water 

Resource effects and other Market sector effects. There is a very high probability that 

heat stress and winter mortality will increase and extreme changes to crop yields and 

water supply would become increasingly common.   
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Figure 3.3: Observed changes in (a) global average surface temperature; (b) global average sea level 
from tide gauge (blue) and satellite (red) data; and (c) Northern Hemisphere snow cover for March-April 

(IPCC, 2007a) 
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Parameter 2025 2050 2100 

CO2 concentration 405-460 ppm 445-640 ppm 540-970 ppm 

Global mean 
temperature change 
from the year 1990 

0.4-1.1 oC 0.8-1.1 oC 1.4-5.8 oC 

Global mean sea-
level rise from the 
year 1990 

3-14 cm 5-32 cm 9-88 cm 

Human health effects   

Heat stress and 
winter mortality  

Increase in heat related deaths 
and illness (high confidence). 
Decrease in winter deaths and 
some temperate regions (high 
confidence) 

Thermal stress effects 
amplified (high confidence) 

Thermal stress effects 
amplified (high 
confidence) 

Vector-and water-
borne diseases 

 

Expansion of areas of 
potential transmission of 
malaria and dengue 
(medium to high confidence) 

Further expansion of 
area of potential 
transmission (medium to 
high confidence) 

Floods and storms 
Increases in deaths, injuries and 
infections associated with extreme 
weather (medium confidence) 

Greater increases in deaths, 
injuries and infections  
associated with extreme 
weather (medium 
confidence) 

Greater increases in 
deaths, injuries and 
infections (medium 
confidence) 

Nutrition 
Poor are vulnerable to increased 
risk of hunger, but state of science 
very incomplete 

Poor remain vulnerable to 
increased risk of hunger 

Poor remain vulnerable 
to increased risk of 
hunger 

Ecosystem effects     

Corals 
Increase in frequency of coral 
bleaching and death (high 
confidence) 

More extensive coral 
bleaching and death (high 
confidence) 

More extensive coral 
bleaching and death 
(high confidence) 

Coastal wetlands 
and shorelines 

Loss of some costal wetlands to 
sea level rise (medium 
confidence). Increased erosion of 
shorelines (medium confidence). 

Further loss of some costal 
wetlands (medium 
confidence). Further erosion 
of shorelines (medium 
confidence). 

Further loss of some 
costal wetlands (medium 
confidence). Further 
erosion of shorelines 
(medium confidence). 

Terrestrial 
ecosystems 

Lengthening of growing season in 
mid-and high latitudes; shifts in 
ranges of plant and animal species 
(high confidence). Increase in net 
primary productivity of many mid 
and high latitude forests (medium 
confidence). Increase in frequency 
of ecosystem disturbance by fire 
and insect pests (high confidence) 

Extinction of some 
endangered species; many 
others pushed closer to 
extinction (high confidence). 
Increase in net primary 
productivity may or may not 
continue. Increase in 
frequency of ecosystem 
disturbance by fire and 
insect pests (high 
confidence) 

Loss of unique habitats 
and their endemic 
species (medium 
confidence). Increase in 
frequency of ecosystem 
disturbance by fire and 
insect pests (high 
confidence) 

Ice environments 

Retreat of glaciers, decrease sea-
ice extent, thawing of some 
permafrost, longer ice free 
seasons on rivers and lakes (high 
confidence). 

Extensive Arctic sea-ice 
reduction benefitting 
shipping but harming wildlife 
(medium confidence). 
Ground subsidence leading 
to infrastructure damage 
(high confidence)  

Substantial loss of ice 
volume from glaciers, 
particularly tropical 
glaciers (high 
confidence) 

  

Table 3.2: Part 1- Predicted consequences of climate change if no action is taken to reduce the use of 
fossil fuel use. Data from IPCC (2001), adapted from Coley (2008) 
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Parameter 2025 2050 2100 

Agricultural effects   

Average 
crop yields 

Cereal crop yields increase in many 
mid and high latitude regions (low to 
medium confidence). Cereal crop 
yields decrease in subtropical 
regions (low to medium confidence) 

Mixed effects on cereal yields 
in mid-latitude regions. More 
pronounced cereal yield 
decreases in tropical and 
subtropical regions (low to 
medium confidence)  

General reduction in cereal 
yields in most mid-latitude 
regions for a warming more 
than a few oC (low to medium 
confidence) 

Extreme low 
and high 
temperatures 

Reduced frost damage to some 
crops (high confidence). Increased 
heat stress damage to some crops 
(high confidence). Increased heat 
stress in livestock (high confidence) 

Effects of changes in extreme 
temperatures amplified (high 
confidence) 

Effects of changes in extreme 
temperature amplified (high 
confidence) 

Incomes and 
prices 

 

Incomes of poor farmers in 
developing countries 
decreased (low to medium 
confidence) 

Food prices increased relative 
to projections that exclude 
climate (low to medium 
confidence) 

Water resource effects   

Water supply 

Peak river flow shifts from spring 
toward winter in basins where 
snowfall is an important source of 
water (high confidence) 

Effect of changes in extreme 
temperatures amplified (high 
confidence) 

Water supply effect amplified  
(high confidence) 

Water quality 

Water quality degraded by higher 
temperatures. Water quality changes 
modified by changes in water flow 
volume. Increase in saltwater 
intrusion into coastal aquifers due to 
sea level rise. (medium confidence) 

Incomes of poor farmers in 
developing countries 
decreased (low to medium 
confidence) 

Water quality effect amplified  
(high confidence) 

Water 
demand 

Water demand for irrigation will 
respond to changes in climate; 
higher temperatures will tend to 
increase demand (high confidence) 

Water supply decreased in 
many water-stressed 
countries, increased in some 
other water stressed countries 
(high confidence) 

Water demand effect 
amplified (high confidence) 

Extreme 
events 

Increased flood damage due to more 
intense precipitation events (high 
confidence). Increased in drought 
frequency (high confidence) 

Further increase in flood 
damage (high confidence). 
Further increases in drought 
events and their impacts.  

Flood damage several-fold 
higher than ‘no climate 
change’ scenarios’ 

Other market sector effects   

Energy 

Decreased energy demand for 
heating buildings (high confidence). 
Increased in energy demand for 
cooling buildings (high confidence) 

Energy demand effect 
amplified ( high confidence) 

Energy demand effect 
amplified ( high confidence) 

Financial 
sector 

 
Increased insurance prices 
and reduced insurance 
availability (high confidence)  

Effects on financial sector 
amplified 

Aggregate 
market 
effects 

Net market sector losses in many 
developing countries (low 
confidence). Mixture of market gains 
and losses in developed countries 
(low confidence) 

Losses in developing countries 
amplified (medium 
confidence). Gains diminished 
and losses amplified in 
developed countries (medium 
confidence) 

Losses in developing 
countries amplified (medium 
confidence). Net market 
sector losses in developed 
countries from warming of 
more than a few oC (med 
confidence). 

Table 3.2. Part 2- Predicted consequences of climate change if no action is taken to reduce the use of 
fossil fuel use. Data from IPCC (2001), adapted from Coley (2008) 
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According to the IPCC there is strong evidence that the observed rise in temperature is 

very likely due to the increase in greenhouse gas emissions (a 70% increase between 

1070 and 2004) as a result of the increase in human activities since pre-industrial times. 

The atmospheric concentrations of CO2 and CH4 in 2005 exceed by far the natural range 

over the last 650,000 years. Global increases in CO2 concentrations are due primarily to 

fossil fuel use, with land-use change providing another significant but smaller 

contribution. It is very likely that the observed increase in CH4 concentration is 

predominantly due to agriculture and fossil fuel use.  

In order to limit global temperature rise to 2oC, the IPCC suggests that carbon emissions 

need to be reduced by 50-80% of the levels in 2000, a summary of various temperature 

increases and the respective CO2 reduction are shown in Table 3.3. The Stern review 

(Stern, 2007) concluded that the benefits of limiting temperature rises to within 2oC 

would considerably outweigh the costs of doing so and proposes that one percent of 

global gross domestic product (GDP) per annum be invested to mitigate the worst 

effects of climate change.   

According to IPCC (2007a), about 69% of all CO2 emissions are energy related and 

about 60% of all green house emissions can be attributed to energy supply and energy 

use. Unless current policies change, it is predicted that global energy-related CO2 

emissions will grow 57% by 2030 from 2005 levels. The demand for energy will 

continue to increase, and the IEA (2007a) predicts that it will be 40% higher in 2030 

with fossil fuels remaining dominant, meeting 84% of this increment. CO2 capture and 

storage can prevent CO2 from being released into the atmosphere, with the potential to 

reduce CO2 emissions from fossil fuel plants by between 85% and 95% (IEA, 2006). 

Temperature increase 
(oC) 

All GHGs 
(ppm CO2 eq.) 

CO2 

(ppm CO2) 
CO2 emissions 2050 
(% of 2000 emissions) 

2.0-2.4 445-490 350-400 -85 to -50 

2.4-2.8 490-535 400-440 -60 to -30 

2.8-3.2 535-590 440-485 -30 to +5 

3.2-4.0 590-710 485-570 +10 to +60 

  

Table 3.3: The relation between emissions and climate change according to IPCC (2007a)
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The results show a "best estimate" of 4oC being reached by 2070, with a possibility that 

it will come as early as 2060, if greenhouse gas emissions are not cut soon then we 

could see major climate changes within our own lifetimes (Betts, 2009).  

Electricity consumption is growing rapidly in many countries and its global 

consumption has increased by more than 200% since 1971, see Figure 3.4. Two thirds 

of the world’s electricity is generated from fossil fuels with coal and gas continuing to 

play an important role even in a CO2 constrained world, see Figure 3.5.  

 

 

 

 

  

Figure 3.4: Electricity consumption (Mtoe) by sector between 1971 to 2008 (IEA, 2010a)

Figure 3.5: Electricity generation (TWh) by fuel type from 1971 to 2008 (IEA, 2010a)
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Approximately 40% of the world’s electricity comes from coal, in some countries this 

percentage can be much higher (90% in South Africa and Poland, 80% in China and 

Australia, more than 66% in India). Currently around 20% of the world’s electricity 

comes from gas. Russia produces almost half its electricity from gas and within the UK 

at 40% and the US and Japan at around 20% (IEA, 2008b). Currently more than 70% of 

the electricity generated in the UK are from fossil fuels which in addition to be being 

non renewable, emit large amounts of CO2, see Table 3.4.  

There is no doubt that the combustion of fossil fuels generates CO2 and it is also clear 

that the demand for fossil fuels will continue to rise to meet the world’s energy needs. 

There is compelling evidence that CO2 emissions are the main contributor to climate 

change and unless we drastically limit the amount of CO2 release into the atmosphere, 

climate change will be imminent and its effects will have global implications.  

3.5 Energy and Industry 

3.5.1 Energy trends in the Manufacturing Sector 

There are four primary sectors that consume energy: manufacturing, households, 

transport and services. The manufacturing sector covers the manufacture of finished 

goods and products, mining and quarrying of raw materials and construction. Directly 

or indirectly, manufacturing industry accounts for more than one-third of the global 

energy use and CO2 emissions (IEA, 2008b), this figure is higher in developed countries 

where most of the energy is allocated to manufacturing and transportation sectors 

(Moan and Smith, 2007). 

Fuel Used for Electricity 
Generation 

% electricity generation in 
the UK, 2008 

Carbon emitted (g/kWh) 

Gas 46.1 357 

Coal 31.2 880 

Nuclear 12.5 5 

Renewables and other 6.3 <100 

Oil 1 650 

Table 3.4: Proportion of fuel used for electricity generation and respective carbon dioxide emissions. 
(Adapted from DECC, 2009 and POST, 2006) 
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Although the industrial sector is currently the second highest energy consumer after 

buildings, the projections for worldwide industrial energy consumption is expected to 

grow from 3000 Mtoe in 2010 to 5000 Mtoe becoming the top energy consumer in 

2050, see Figure 3.6 (IEA, 2008). The manufacturing sector was also the highest 

contributor to carbon emissions with a share of 38% in 2005, see Figure 3.7. 
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Figure 3.6: Energy use by sector from 1990 to 2050. (IEA, 2008)

Figure 3.7: Shares of global final energy consumption and carbon emissions by sector, 2005 (adapted 
from IEA, 2008a) 
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As one of the largest consumers of energy, the US accounts for 25% of the worldwide 

energy use of which 33% is used by the industrial sector. Within this sector 

manufacturing consumes 73% of the energy use (Evans, 2003). Similarly, in UK, the 

industry also accounted for a significant proportion of energy use, 25% of the final 

energy consumed is attributable to the Industrial sector, (see Figure 3.8). In terms 

electricity consumption, industry also consumed a large proportion at 34%, see Figure 

3.9.   

According to the latest updated data from BERR (2009), more than 50% of the energy 

consumed by the UK industrial sector was for processes, with low temperature 

processes being the most significant at 36% of the total energy consumption by industry 

(Figure 3.10). The energy intensity of most industrial processes is at least 50% higher 

than the theoretical minimum determined by the laws of thermodynamics. In energy 

intensive industries such as paper, chemicals, steel and cement manufacturing, cost-

effect efficiency gains are possible in the order of 10%-20% using commercially 

available technology. In processes where efficiency is close to the practical maximum, 

innovations in materials and processes could enable even further gains.   

This indicates that of all areas, manufacturing is the most energy intensive with large 

amounts of energy used in inefficient processes, thus indicating there is room for energy 

improvements in this area.  

 

  

226.0 Million tonnes of oil equivalent 

Figure 3.8: Final energy consumption of various sectors (UK) in primary energy equivalent in 2007  

(Source: BERR , 2009) 
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15.4 Million tonnes of oil equivalent 

Figure 3.9: Electricity consumption of various sectors (UK) in primary energy equivalent in 2007  

(Source: BERR, 2009) 

Figure 3.10: Energy use within industry by type of use in 2009 (BERR, 2009)
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3.5.2 Role and importance of Energy Efficiency in Industry 

Using energy more efficiently is not only a cost effective way of cutting carbon dioxide 

emissions but also improves productivity and contributes to the security of our energy 

supplies by reducing reliance on imported energy and ensuring our own and global 

energy resources are preserved (BERR, 2009). More importantly it helps to conserve 

the finite energy derived from non-renewable sources.   

The reduction in energy consumption has historically been promoted within 

manufacturing as a means of saving money, with figures estimating that a 20% cut in 

energy costs represents the same bottom line benefit as 5% increase in sales (Carbon 

Trust, 2009). More importantly, whilst historic energy reduction measures have been 

borne out of the need to improve profitability (Ptasinski et al., 2006), future 

improvements will be driven by the need to avoid taxations and levies. A study 

conducted by the International Energy Agency (IEA, 2008a) showed that over the long 

term, savings from improved energy efficiency are even more significant; without the 

energy efficiency improvements that have been implemented energy use would have 

been 58% higher in 2005 than it actually was. However the effectiveness of energy 

efficiency improvements have also decreased between 1990 and 2005 (as seen in Figure 

3.11). 

According to IEA (2008a), the application of proven technologies and best practices on 

the global scale could save between 25 exajoules (EJ) and 35 EJ of energy per year 

(1.9Gt CO2 to 3.2Gt CO2 emissions per year), which represents 18-26% of current 

primary energy use in industry. From the industrial aspect, a study by Worrell et al. 

(2009) showed that there are important benefits of energy efficiency and productivity. A 

methodology for assessing productivity benefits of energy efficiency investments was 

proposed which was incorporated into assessments of energy saving potential across an 

industry. There are numerous policies and measures e.g. Carbon Reduction 

Commitment Energy Efficiency Scheme (Carbon Trust, 2010a) and Climate Change 

Program (DEFRA, 2008) to ensure that energy efficiency in businesses are encouraged. 

Performance indicators like the Energy Efficiency Accreditation Scheme by the Carbon 

Trust recognises achievements in reduced energy use by leading organisations in 

industry, commerce and the public sector.   

  



 

Chapter 3 34 

 

 

3.6 Energy Legislation and Economic Measures 

On an international level, the International Organisation for Standardization (ISO) has 

recently approved ISO50001 as a draft standard and is expected to be published as an 

International Standard by late 2011 (ISO, 2010). The ISO50001 standard on energy 

management builds on the British Standard EN16001 for Energy Management Systems 

and will establish a framework for industrial plants, commercial facilities or entire 

organisations to manage energy. It complements the ISO9001 (ISO, 2008) for quality 

management and ISO 14000 (ISO, 1998) family of standards for environmental 

management. The framework ensures that organisations have a credible and effective 

management process enabling them to achieve their energy reduction goals.  According 

to ISO, the new standard will: 

1. provide a framework for integrating energy efficiency into management practices 

2. allow companies to make better use of existing energy-consuming assets 

3. enable benchmarking, measuring, documenting and reporting energy intensity 

improvements  

4. provide transparency and communication on the management of energy resources 

5. encourage energy management best practices and good energy management 

behaviours 

6. evaluating and prioritizing the implementation of new energy efficient technologies 

7. provide a framework for promoting energy efficiency throughout the supply chain. 

Figure 3.11: Long-term energy savings from improvements in energy efficiency (IEA, 2008b)
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The European Union (Commission of the European Communities, 2007) has set up the 

Strategic Energy Technology Plan (SET-plan) to reduce greenhouse gas emissions, 

increase sources of renewable energy and reduce primary energy use within the EU by 

2020. There is a strong emphasis on reducing energy consumption and eliminating 

energy wastage so as to improve the competitiveness of the EU economy, the security 

of the energy supply and CO2 reduction (Park et al., 2009). In order the meet the 

objectives set out in the plan, the EU has proposed policies of minimum energy 

efficiency standards and rules on labelling products (The European Commission, 2010a) 

and the energy performance of buildings (The European Commission, 2010b).  

A directive on establishing the framework for setting eco-design requirements (such as 

energy efficiency requirements) for all energy using products in the residential, tertiary 

and industrial sectors has been adopted through the eco-design of Energy using 

Products (EuP) Directive 2005/32/EC (The European Commission, 2005). The EuP 

Directive aims to improve the environmental performance of products throughout their 

life cycle by systematically integrating the environmental aspects at the initial stages of 

the product design. Manufacturers who are covered by the directive would need to 

ensure that their products meet the energy efficiency and environmental standards. With 

the implementation of the EuP Directive, the energy efficiency of production systems 

and processes may be regulated legally as well as play an important role in the product’s 

success in the EU market.  

In the U.S, a joint program of the U.S Environmental Protection Agency and the US 

Department of Energy –the Energy Star provides guidelines for the energy efficiency. 

Products that meet the energy efficiency requirements are awarded with an Energy Star 

label. These labels are now slowly being extended to more complex products such as 

cars and even buildings through the green building certification system called 

Leadership in Energy and Environmental Design, LEED. The Energy Star program also 

helps industrial manufacturers improve their energy management through the provision 

of tools such as assessment matrices and indicators. Recently the US Council for 

Energy-Efficient Manufacturing, U.S. CEEM, (2010) have implemented the Superior 

Energy Performance (SEP) initiative. SEP provides industrial facilities with a road map 

for achieving continual improvement in energy efficiency while maintaining 

competitiveness. Under the SEP initiative, industrial facilities are required to conform to 
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various energy management standards, system assessment standards and measurements 

and verification protocols, thus indicating a definite trend towards evaluating energy 

consumption of production lines, plants and companies.  

The biggest catalyst for change currently affecting UK industry is that of the Climate 

Change Act 2008 making the UK the first country in the world to have a legally binding 

target of at least an 80% cut in greenhouse gas emissions by 2050 and a reduction in 

CO2 emissions of at least 26% by 2020 (DECC, 2008). Within the UK, the 

manufacturing sector continues to produce significant amounts of CO2 emissions, and 

as such, several incentives and accreditation schemes have been set up to encourage 

businesses to manage their energy use more efficiently. The Climate Change Levy 

(CCL) was introduced in 2001 to encourage improved energy efficiency and reduced 

greenhouse gas emissions. Climate Change Agreements (CCAs) were introduced 

alongside the CCL which provide an 80% discount on the levy if challenging targets are 

agreed and met for improving energy efficiency or reducing greenhouse gas emissions. 

The CCAs will have an impact on energy-intensive industries through providing an 

incentive to both reduce energy consumption through energy efficiency measures and 

reduce carbon emissions through reducing energy consumption and generating energy 

through renewable and low carbon means (ARUP, 2010). To significantly reduce UK 

carbon emissions not covered by other legislation, the mandatory Carbon Reduction 

Commitment Energy Efficiency Scheme, CRC (Carbon Trust, 2010a) was implemented 

in 2010 and covers all large non-energy intensive organisations in the public and private 

sector. Those covered by the scheme will need to measure and report their carbon 

emissions annually and are ranked in a CRC performance league table. It is anticipated 

that the scheme will cut 1.2 million tonnes of carbon per year by 2020.  

Accreditations have also been set up by the Carbon Trust to generate greater product 

awareness amongst consumers and allow businesses to demonstrate commitment to 

mange and reduce the environmental impacts of their products. For example the Carbon 

Reduction Label (Carbon Trust, 2010b) requires companies to calculate the carbon 

footprint of the product or service to identify the areas of highest emissions and energy 

intensity throughout its life cycle. The certification is done in accordance with the 

Publicly Available Specification, PAS, 2050 that provides an assessment of life cycle 

greenhouse gas emissions of goods and services (British Standards Institution, 2010).  
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3.7 Chapter Summary 

It is apparent that energy plays a key role in society and is essential for modern life. 

Energy demands are set to increase and our dependence on non-renewable sources of 

energy, compounded by the urgency to mitigate greenhouse gas emissions means not 

only do we have to switch to using renewable sources like wind and solar, we also have 

to be more efficient with the way in which energy is used. It is projected that fossil fuels 

will still remain a significant portion of our energy source in the near future. Globally 

and in many countries, the manufacturing sector is one of largest consumers of energy; 

as reported by the IEA, energy supply and generation accounts for majority of the 

carbon emissions, as such in the near future, energy optimisation and rationalisation will 

be a one of the main avenues for carbon reduction. Internationally, governments are 

tightening and increasing the number of energy related legislation to improve energy 

efficiencies and reduce energy consumption within businesses and industry. With UK’s 

commitment to cut its carbon emissions by 80% by 2050, there will be increasing 

pressure for companies and businesses to reduce and limit their carbon emissions. The 

government has already started by implementing numerous energy related legislation 

and incentives such as the Carbon Reduction Commitment Energy Efficiency Scheme 

and Energy Use in Products Directive for businesses to manage and conserve energy 

use within their facilities but also create products that are low energy users throughout 

their life cycle.  
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Chapter 4 Review of Energy Related Research in 
Industrial Systems   

4.1 Introduction 

With the recent concern in climate change and rising energy costs, there has been a 

proliferation of research on reducing and managing energy consumption within 

industry. This chapter provides an overview on the various research that has been 

conducted on measuring, analysing and modelling energy consumption within 

manufacturing. The research reported in this thesis can be categorised into two main 

approaches: 1) from a product designer’s perspective and 2) from a manufacturer’s 

perspective. The chapter begins by introducing these approaches, and then goes into 

more detail in each of those perspectives, finally concluding on how the existing body 

of work would complement the research reported in this thesis, with the research gaps 

identified.  

4.2 Overview of Energy Related Research in Industrial Systems 

Industrial systems encompass the design of products, the making of the products as well 

as the business of selling the products. As seen in Chapter 3, much of the greenhouse 

gas emissions are the result of energy use. It has been suggested that the industrial 

system can account for 30% or more of greenhouse gas generation in industrialised 

countries (Evan et al., 2009). With concerns over climate change, the need for industrial 

systems that are green and sustainable has never been greater and consequently there 

has been a growing body of research exploring opportunities for energy reduction in this 

area.   

There are two approaches to analysing energy flows within industrial systems –  

1) from a product designer’s perspective, and  

2) from a manufacturer’s perspective.   

Comment [Y2]: Intro to designers and 
manufacturer’s perspective
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The energy consumption of a product over its life cycle is commonly evaluated based 

on the use of Life Cycle Assessments. Depending on the accuracy required, various 

methodologies for establishing energy consumption for a product have been developed 

and will be discussed in Section 4.3.  

From a manufacturer’s perspective, much work has been reported on the energy 

efficiency of manufacturing processes and production machines. It is increasingly 

recognised that a holistic view of the manufacturing system (one that includes operation 

parameters and the plant environment) is required for the efficient design and 

management of products. As such, recent research has focused on collecting and 

integrating energy data from various aspects of the manufacturing system into a single 

platform for greater energy improvements and strategic decision making. Section 4.4 

will look at the complexities and issues of analysing energy flows from a 

manufacturer’s perspective. This includes looking at energy consumption of the overall 

plant, manufacturing processes and production equipment. There are different 

challenges with each approach. Herrmann et al. (2007) notes that energy data becomes 

more complex and difficult to reference (see Figure 4.1) as the level of integration 

within a product or system increases. Typically, simple products such as a light bulb are 

the easiest to assess whilst plants and companies within manufacturing systems are the 

most complex and therefore difficult to benchmark.  

 
Figure 4.1: Complexity and difficulty of assessing energy within an industrial system 

(Herrmann et al. 2007)
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4.3 Energy Research from a Product Designer’s Perspective  

A widely accepted method for a product based environmental evaluation is Life Cycle 

Assessment (LCA) which has also been internationally standardised through the 

ISO14000 (ISO, 1998) series. The analysis of the life cycle of a product involves 

looking at the upstream processes of the product and considers all phases required for 

the products’ existence. LCA holistically evaluates the environmental consequences of a 

product system by quantifying the energy and materials used and wastes released to the 

environment, and assessing the environmental impacts of these inputs and outputs, with 

energy consumption typically being one of the main considerations within a LCA study 

(Hauschild et al., 2005). A detailed explanation of the LCA framework and procedure 

as well as an overview of available methods and tools for tabulating and compiling 

associated emissions and resource consumption data in a life cycle inventory (LCI) has 

been detailed by Rebitzer et al. (2004). 

The life cycle approach has formed the basis for most of the energy tools suitable for a 

product designer. Some tools are more holistic, focusing on the overall life cycle, whilst 

some are more specific and may only focus on a particular phase. Table 4.1 provides an 

overview of the energy related research work that uses LCA tools and the respective 

phases that were considered within the work.   

With the aid of commercial LCA software like SimaPro5, Kantardgi et al. (2006) have 

shown that it is possible to successfully model environmental impacts due to energy use 

in the process stages of brick manufacture. However the most researchers found the 

inventory analysis that is required as part of a LCA to be too complex and requiring a 

great deal of effort (McAloone, 2000; Guinée et al., 2002; Fitzgerald et al., 2007; 

Knight and Jenkins, 2009). This is partly due to a lack of consensus among practitioners 

on various LCA issues and techniques. Such a study is often time consuming and 

expensive, further exacerbated by the lack of comprehensive publicly available data 

sources, in particular on various sources of energy consumption during a product life 

cycle. Thus there have been developments to simplify the LCA methodology by 

narrowing the scope of the study or by focusing on just a particular aspect e.g. material 

use, energy use or CO2 emissions. To reduce the data intensive nature of processing the 

databases LCAs are often integrated with the help of software which is discussed in 

Chapter 5.     
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Life cycle 
Phases 

considered 
Focus Type of Tool Used Reference 

Energy Data 
based on  

All Energy Streamlined LCA Duque Ciceri et al., 2010 Mass 

All Energy 

Streamlined LCA, 
Sustainable 
Environmental 
Performance Indicator 

De Benedetto and 
Klemes, 2009 

Mass 

All 
Energy and 
CO2 emissions 

Streamlined LCA , CES 
EcoSelector 

Ashby et al., 2008 Mass 

All Energy 
Life Cycle Energy 
Analysis, LCEA 

Fay et al., 2000 

Sullivan and Hu, 1995 
Mass 

All 
Energy and 
Cost 

Life Cycle Energy 
Analysis, LCEA 

Keoleian and Lewis, 
1997 

Fitch and Cooper, 2010 

Mass 

All Energy 
Cumulative Energy 
Demand, CED 

Gurzenich and Wagner, 
2004 

Patel, 2001 

Mass 

Material extraction 
and processing 

Energy and 
CO2 emissions 

LCA Higgs et al., 2010 Mass 

Material extraction 
and processing 

Energy LCA 
Graedel and Allenby, 
1996 

Mass 

Manufacturing  Energy LCA Kantardgi et al., 2006 Mass 

Manufacturing Energy 
Component 
Manufacturing Analysis 

Mori, et al.2000 Mass 

Manufacturing Energy 
Hybrid analysis combining 
process and economic 
input-out methods 

Williams, 2004 
Mass and unit 

process 

Use Energy Energy indicators 
Moenne-Loccoz et al., 
2010 

Mass 

End-of-life Energy 

Static and Dynamic Life 

Cycle Energy Analysis, 

LCEA 

McLaren et al., 1999 Mass 

Table 4.1: Overview of research work from a Product perspective
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Duque Ciceri et al. (2010) improved on the LCA methodology and developed a tool that 

can be quickly and transparently used to estimate the energy requirements and checked 

against an existing LCI so that new products can be estimated at the design stage. The 

tool uses the product’s bill of materials and the knowledge on how these materials are 

processed to estimate the material’s embodied energy and manufacturing energy for a 

product. A value range on the energy requirements of a product system is derived 

through the sum of all the energy inputs (which were estimated or established from 

databases) into a product system from the beginning of its life, including the extraction 

of materials, processing and the manufacture of the final product. They noted that the 

accuracy of the results will improve with the level of manufacturing data available.  

To further simplify the process of conducting an LCA and its outputs, De Benedetto and 

Klemes (2009) used specific sustainability indicators (footprints) which were then 

translated into a graphical representation designed to provide a single indicator named 

the Sustainable Environmental Performance Indicator. One of the footprints that were 

considered was the energy footprint which takes into account different energy supplies 

as related to different demand categories, such as heating and hot water production, 

process energy, electricity and traffic. Energy footprints have also been used by Ashby 

et al. (2008) to provide a quick estimation of energy usage on a per mass basis for the 

material and processing, and consequently the product.   

An example of an LCA with a focused scope on energy is the Life Cycle Energy 

Assessment (LCEA) which is based on the guidelines and methodology in a typical 

LCA but uses energy as the only measure of environmental impact. Typically the use of 

LCEA is not to replace a broader environmental assessment method, such as LCA, but 

to facilitate decision making concerning energy efficiency (Fay et al., 2000). 

Comparing the energy required in the manufacture of a product to its operational energy 

for example can indicate potential life cycle energy efficiency and conservation 

strategies. Keoleian and Lewis (1997) showed that insulation on a kettle would require 

additional embodied energy cost – energy to make the insulation – but savings in 

operational energy will provide greater savings in the longer term. The Ford Motor 

Company often considered life cycle energy at the system level during the development 

of automobiles, rather than at the component level to ensure that energy consumption is 
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minimised across the life cycle (Sullivan and Hu, 1995). Figure 4.2 shows the typical 

energy flows throughout the life cycle of a product.  

LCEAs are also useful for distinguishing the alternative solutions or technologies in 

terms of energy performance as well as aiding material selection by estimating life cycle 

energy of a component during the material selection process as demonstrated by Fitch 

and Cooper (2010). They compared LCEA with two different material energy analysis 

methods: Energy Content (EC) by Ashby (1992) and Lifetime Energy Consumption 

Index (LEC) by Kampe (2001) and found that LCEAs were still the most thorough. A 

detailed discussion on the use of LCA for energy analysis and management is detailed 

by Udo de Haes and Heijiungs (2007). 

Another form of streamlined LCA is the Cumulative Energy Demand (CED) method 

where the accounting of energy and material inputs is seen as part of an inventory 

analyses and the calculation of CED is a rough form of impact assessment. Gürzenich 

and Wagner (2004) used CED to establish the energy required by the production of 

photovoltaic in Europe. However much of the energy data used has been based on 

previous LCA studies. Patel (2001) who applied CED on products from the organic 

chemistry industry recommend using data from consistent and independent sources to 

avoid distorted conclusions from large data ranges.  

Some researchers have simplified the LCA methodology by focusing on a specific 

phase for their energy assessments. For example Higgs et al. (2010) have specifically 

focused on the energy and CO2 impacts with bringing materials to the high purity grade 

that is often required for semiconductor manufacturing. 

 

Raw Material 
Acquisition

Product 
Processing and 

Manufacture

Consumption 
and Use 

End-of-Life
Waste 

Management

Final 
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Energy Energy Energy Energy

Energy 
Recovery
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Figure 4.2: Energy flows at various stages of the life cycle (Fay et al., 2000)    
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Graedel and Allenby (1996) also demonstrated how to calculate, based on process 

parameters, the energy consumed in manufacturing a material and present a general 

approach of minimising energy use in an industrial facility. Mori et al. (2000) have 

developed a new type of LCI method called Component Manufacturing Analysis 

(CMA) that is easy to implement and less arbitrary. CMA requires the identification of 

all product components and their associated weights which are then entered into a 

factory type database to establish the energy use during the production phase. The 

energy data for the materials production was derived from existing databases and also 

based on material masses.  

Despite these simplified techniques, it is commonly reported that the incompleteness of 

process data is a problem for LCAs (Suh et al., 2004; Williams, 2004; Dixit et al., 

2010). To overcome missing data, Williams (2004) used a hybrid assessment that 

combines process and economic input-output methods to estimate the energy required to 

manufacture a desktop computer. Where data on materials and energy used to make the 

components of the product is unavailable, the energy use is estimated by first estimating 

energy consumption of the global semiconductor industry and then allocating a portion 

used in production of a desktop computer according to the value of semiconductor 

shipments used that computer. However the inherent assumptions in such methods 

make the results unreliable.   

Moenne-Loccoz et al. (2010) have proposed using energy indicators to assess and track 

the energy consumption of electronic equipment during the Use phase with the aim of 

helping designers create more energy efficient electronic products. Energy use at the 

End-of-life phase has also been investigated. McLaren et al. (1999) conducted a static 

LCEA and dynamic LCEA on the End-of-life of mobile phones, and found 

implementing take back and recycling are generally beneficial to the environment. If the 

product sales follow predicted trends, take back rates must be substantial before the 

total system energy requirements starts to decline in real terms.  

One of the main drawbacks of life cycle analysis tools is the assumption that energy 

requirements for manufacturing processes are constant, however studies conducted by 

Gutowski et al.  (2006) have shown that the energy requirements can vary significantly 

base on process rate amongst other production parameters. These considerations are 

discussed further in the next section.    
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4.4 Energy Research from a Manufacturer’s Perspective 

A more formal and structured approach to analysing a manufacturing system is to 

decompose the system hierarchically. A variation of the Shop Floor Production Model 

as developed by ISO (1990) is used to categorise research into various levels. The 

adapted model has five levels, ranging from a high level view to a specific scope:  

1. Enterprise  

2. Facility  

3. Production/Machine Cell 

4. Machine 

5. Tool-chip 

On the highest level, manufacturing enterprises extend beyond the walls of the factory 

that just produces goods; instead it encompasses a range of activities from the supply 

chain of materials or components, to the logistics of the finished product. This involves 

a network of production sites, suppliers, inventory hubs as well as sales and distribution 

centres. Strategic decisions are often taken on this level and the activities are usually 

concerned with supply chain management, sales and marketing, research and 

development and integration of various plants. Energy flows involve the various 

interactions within the supply chain.   

The next level is the manufacturing facility level. Energy consumption on this level is 

mainly from an infrastructure such as a single manufacturing site. Considerations like 

lighting, heating, ventilation and air-conditioning (HVAC) are taken into account.  

The next level in is the production/machine cell level, which includes activities such as 

planning, production engineering and management, supply of materials resources, 

transport waste material processing and maintenance. Energy flows are closely related 

to the running of these activities which may be affected by production plans, scheduling 

times and parameters.  

On a machine level, the activities would involve the operation of the equipment and 

supporting processes that are required for the transformation of material to occur. 

Energy analysis would be focused on energy consumed by the equipment and the 
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auxiliary equipment needed to support the main process. Machine energy efficiencies 

are also a main concern here.   

On the last and most focused level is the tool-chip level which represents the actual 

transformation process itself. This involves the mechanical and chemical knowledge of 

the process in order to establish the theoretical energy consumption values of the work 

being carried out. Figure 4.3 provides a summary of the activities and areas of 

consideration within each level.  

Vijayayaghavan and Dornfeld (2010) also stated that manufacturing systems can be 

studied at different levels. They suggested that at each level of analysis, there is a 

corresponding temporal scale of decision making which ranges from several days at the 

enterprise level to a micro-second at the tool-chip level. The range of variation in the 

analysis and temporal scales along with the types of decisions that are made at each 

level is shown in Figure 4.4. Herrmann and Thiede (2009) also highlighted the need for 

different approaches to improve energy efficiencies within different level.  

 
Decomposition of 

Manufacturing System Levels

Machine

Tool-Chip

Enterprise Level

Production/ Machine Cell Level

Facility level

• Network of  production sites and suppliers
• Global distribution and sales
• Logistics

• Specif ic production site
• Inf rastructure energy requirement
• On site generation, CHP

• Specif ic production line and cells. 
• Energy f lows within the line/cell
• Scheduling and Planning

• Specif ic equipment
• Improving energy ef f iciencies of  equipment 

and auxiliary equipment

• Specif ic process
• Mechanical and chemical knowledge of  

transformation process

Figure 4.3: The different levels within a manufacturing system and the respective areas of research 
commonly conducted. 
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4.4.1 Energy Research on an Enterprise level 

Much of the energy consumed on an enterprise level is from logistics. Kara and 

Manmek (2010) found that supplier location was a significant factor that can increase or 

reduce the embodied energy of the raw materials, and that this embodied energy could 

be reduced by selecting local suppliers and avoiding use of road transport for moving 

the high quantities of raw materials over long distances. Kara et al. (2010) details a 

methodology for assessing the impact of global manufacturing on the embodied energy 

of the products. They studied six different products manufactured from various raw 

materials in a global manufacturing network and found that product, material and key 

supply chain parameters played a crucial role. In another study, Pearce et al. (2007) 

used Google Maps to optimise the embodied energy of transportation to enable 

manufacturers to optimise the life cycle of their products by minimising embodied 

energy of transportation.  

The supply chain structure also influences the embodied energy of the product. Products 

that use recycled materials or reused components require less energy as less virgin 

material needs to be extracted and remanufacturing pathways avoids repeating 

manufacturing steps with characteristically high energy consumption and environmental 

emissions. Seliger et al. (2006) showed that less energy consumption is required for a 

phone that is remanufactured, than for a phone that has been sent to a landfill, over the 

production, use and end-of-life phase. The results indicated that the difference between 

Figure 4.4: Level of analysis of manufacturing with temporal decision scales  
(Vijayayaghavan and Dornfeld, 2010) 
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landfilling and remanufacturing a mobile telephone represents approximately 10 days of 

energy consumption for the average German household and 9 months of CO2 

sequestration potential for an average tree.  

4.4.2 Energy Research on a Facility level 

Two approaches can be considered when analysing the energy consumption of a factory 

with the aim of improving energy efficiency: the top-down and the bottom up approach. 

The top-down approach aims at allocating the consumption among different users in the 

factory which helps to identify the main drivers and in turn providing a basis for more 

detailed study in a specific area. Conversely, the bottom-up approach aims at 

thermodynamically modelling the energy consumptions of the different process 

operations in order to recalculate the energy consumption of the factory by summing up 

their different contributions (Muller et al., 2007). The advantages and disadvantages of 

both approaches are summarized in Table 4.2. 

 Advantages Disadvantages 

Top-down 

 Low cost 
 Simple model 
 Easy monitoring 
 Easy forecasting 
 Flexible 
 Minimal Maintenance 

 Require statistical expertise 
 Require data history 
 No efficiency assessment  
 High level modelling 
 No modelling of efficiency 

measures 

Bottom-up 

 Based on equipment 
thermodynamics 

 Good accuracy 
 Clear picture of energy 

usage 
 No data history required 
 Efficiency assessment 
 Modelling of efficiency 

measures 

 High level of metering 
needed 

 Time-consuming study 
 High data entry requirement 
 Difficulties in forecasting 
 High cost of 

use/maintenance 
 Based on perfect operation 

Table 4.2: Advantages and Disadvantages of the top-down and bottom-up method by 
Muller et al. (2007) 

Research on this level primarily focuses on modelling and reducing the energy 

consumed by infrastructure and other high-level services such HVAC and lighting, 

which are responsible for maintaining the required product conditions and environment 

as well as the building design. Table 4.3 provides an overview of the research 

conducted on a facility level.   

As HVAC systems are one of the main energy consumers in the building, there has been 

much focus on reducing energy consumption in these areas. Fumo et al. (2009) and 

Mills et al. (2008) both presented technical opportunities for reducing energy 
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consumption in high-tech facilities. Reductions can be achieved through energy 

efficiency by improving heating, air-conditioning and ventilation-efficiency upgrades as 

well green power purchases. As for lighting systems, Ryckaert et al. (2010) have 

proposed target values for lamps by taking into account basic lighting comfort 

requirements. Voluntary and mandatory programs (ranging from labelling strategies to 

building standards) such as the Energy Star and the LEED (Leadership in Energy and 

Environmental Design) are also helping companies achieve greater efficiency levels 

(Boyd et al., 2008).   

The reduction of energy consumption in a building can also be achieved through better 

building design. Harvey (2009) reviewed the literature concerning the energy savings 

that can be achieved through optimised building shape and form, improved building 

envelopes, improved efficiencies of individual energy using devices, alternative energy 

using systems in buildings, and through enlightened occupant behaviour and operation 

of building systems. He found that the provision of a high performance envelope is the 

single most important factor in the design of low energy buildings, providing up to 75% 

savings without costing more for construction as it eliminates the need for mechanical 

heating and cooling equipment. 

There is a distinct lack of manufacturing energy performance indicators (EPI) and the 

difficulties of modelling ‘plant level’ energy consumptions (Boyd et al., 2008). In 

energy management program development, benchmarking energy is essential yet it was 

noted that most industries have not benchmarked energy use across their plants. 

Benchmarking enables companies to determine if better energy performance could be 

expected. The task is further complicated by incorporating changing weather and 

production which are major drivers of plant energy use. Kissock and Eger (2008) have 

attributed various factors such as temperature, production and utility billing data to a 

single equation using regression models and are able to provide a clear breakdown on 

potential energy savings. On a more generic level Hernandez et al. (2008) reported on 

the development of energy performance benchmarks and building energy ratings for 

non-domestic buildings. They outlined a methodology to develop energy benchmarks 

and rating systems starting from the very first step of data collection from the building 

stock.  
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Cakembergh-Mas et al. (2010) did an economic assessment of an energy enhancement 

program for a Kraft wood pulping mill and compared 3 cogeneration systems: single 

back pressure steam turbine, single steam condensing turbine and a two turbine system. 

They found that the single back-pressure steam turbine had the shortest payback time 

but the combination of two turbines produced more power and give higher benefits in 

the long term.  

Energy Consumption on a Facility Level Perspective 

Aspect Reference Research Area 

Heating, 
Ventilation 

and Air 
Conditioning 

Mills et al.(2008) 

Presented technical opportunities for reducing energy consumption 
in high-tech facilities. Reductions can be achieved through energy 
efficiency by improving heating, air-conditioning and ventilation-
efficiency upgrades as well green power purchases 

Lighting  Ryckaert et al. (2010) 
Proposed a set of criterion for indoor lighting based on basic 
lighting comfort requirements, to help assess the energy efficiency 
of indoor lighting installation. 

Building 
Design 

Harvey (2009) 

Found that the provision of a high performance envelope can 
providing up to 50-75% savings without costing more for 
construction as it eliminates the need for mechanical heating and 
cooling equipment. 

Benchmarking 
energy 

consumption 
on a ‘plant’ 

level 

Boyd et al. (2008) 
Highlighted the distinct lack of manufacturing energy performance 
indicators (EPI) and benchmarking due to the difficulties of 
modelling ‘plant level’ energy 

Kissock and Eger (2008) 

Presented multi variable piece-wise regression models to 
characterize baseline energy use as a method for measuring plant-
wide industrial energy savings. It takes into account changing 
weather and production between the pre and the post retrofit 
periods. It uses readily available temperature, production and utility 
billing data 

Hernandez et al. (2007) 

Reported on the development of energy performance benchmarks 
and building energy ratings for non-domestic buildings. They 
outlined a methodology to develop energy benchmarks and rating 
systems starting from the very first step of data collection from the 
building stock 

Onsite energy 
generation 

Cakembergh-Mas et al. 
(2010) 

They compared 3 cogeneration systems and found that the single 
back-pressure steam turbine had the shorted payback time but the 
combination of two turbines produced more power and give higher 
benefits in the long term. 

Table 4.3: An overview of the research on a facility level 
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4.4.3 Energy Research within Production/Machine Cell   

Much of the work on the production level involves process planning and process routing 

for improved energy performance. Due to the complexity of process flow decisions, 

most research focuses on costs and cycle times. There is a lack of tools for optimizing 

process flow based on sustainable development objectives, and those that were 

proposed have few practical results (Tan et al., 2006). In an attempt to bridge this gap, 

Tan et al., (2006) combined manufacturing process planning and environmental impact 

assessments using check list analysis and proposed an optimal decision making method 

for new components that includes energy consumption as part of the sustainable 

development evaluation, see Figure 4.5.  

Various environmental measures can be used to develop an environmental process 

planning system that works with conventional process planning methodologies to 

evaluate trade-offs between environmental and productivity requirements (Krishnan and 

Sheng, 2000). Multi objective analysis can be used to support green process planning 

(Yeo and New, 1999) to optimise the raw materials, secondary materials and energy 

consumption, and other environmental impacts (He et al., 2005). Using databases and 

model repositories, the integration of the optimisation of energy consumption of 

processes as part of the process selection algorithm in a process planning program is 

possible as demonstrated by He et al. (2007).  

 

  

 
Figure 4.5: Optimization decisions for production process planning in terms of sustainable evaluation 

(Tan et al., 2006) 
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4.4.4 Energy Research associated with Production Machines and Equipment  

The research targeting energy consumption at the production machinery and equipment 

level has concentrated on individual equipment, machinery and workstations within a 

production system. Until recently, minimising the energy consumption was hardly a 

priority for many machine designers; for most functionality, cost, accuracy and safety 

were more important. With increasing energy prices and a focus on environmental 

impact, the operational energy consumption is now a point of consideration for the end 

user and, as such there is an increased need to measure and evaluate energy consumed 

by manufacturing equipment (Devoldere et al., 2007; Hauschild et al., 2005; Jovane et 

al., 2003). Given that machining processes are used in manufacturing the tooling for 

many consumer products, improving the energy efficiency of machining-based 

manufacturing systems could yield significant reduction in the environmental impact of 

consumer products (Vijayaraghavan and Dornfeld, 2010).  

It has generally been agreed that the power demand of production equipment, in 

particular machine tools, consist of a constant and variable component. The constant 

power can be attributed to the computer, fans, lighting etc. of the machine tool. This 

component is independent of process parameter selection. This is further discussed in 

Section 4.5.4.1. The variable power demand on the other hand is dependant on process 

parameter selection and can be attributed to the spindle or the drives of the table axes 

which will be discussed in Section 4.5.4.2.  

4.4.4.1 Constant Energy Consumption of Production Machines 

Specific Energy Consumption, SEC, of processes is typically used to determine the 

minimum amount of energy required to remove a certain volume of material. However, 

as reported by Dahmus and Gutowski (2004), the energy requirement of the process is 

much higher in actual production. In machining for example, in addition to providing 

energy to the tool tip, energy must also be provided to power auxiliary equipment such 

as work piece handling equipment, cutting fluid handling equipment, chip handling 

equipment, tool changers, computers and machine lubrication systems. In some cases, 

the energy requirements of the auxiliary equipment can far exceed the actual cutting 

requirements. The energy consumption is therefore not largely determined by the 

cutting operation but dominated by the basic power consuming components. This 

energy is mostly constant and independent of whether or not a part is being produced.  
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A study conducted by Dahmus and Gutowski (2004) on three different milling 

machines with different auxiliary equipment capabilities, showed that depending on the 

machine model between 48%- 69% of the energy consumed is constant regardless of the 

load (See Figure 4.6). They categorised start-up energy use, such as for computers, fans 

and unloaded motors as “Constant Start-up operations” and energy used to position 

materials and load tools as “Constant Run-time operations”. It is expected that in the 

future greater automation and an increasing number of integrated machining equipment 

would mean a greater percentage of auxiliary energy consumption. As evident in 

another study on a large Toyota machining centre, it was found that as much as 85.2% 

of the energy used by machining equipment is constant, independent of whether or not a 

part is being produced (Gutowski et al., 2005). 

Coupled with equipment operation data, such as the number of hours the equipment is 

in different modes of operation and the power rating of equipment, the energy 

consumed during “Constant Start-up operations” and “Run-time operations” can be 

calculated based on the time the machining centre spent in each of those states. Dahmus 

and Gutowski (2004) have made a detailed description of the energy calculations of 

milling machines using this breakdown, the results are shown in Figure 4.7. They found 

that the Cincinnaton Milacron spends over 70% of the time positioning, loading, and 

gauging the part. As a consequence, the energy consumption during non-production 

time is substantial and it should be reduced through organisational and technical 

measures.  
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1998 Bridgeport automated milling 
machine with 5.8 kW spindle motor

1988 Cincinnati Milacron automated milling 
machine with a 6.0 kW spindle motor

1985 Bridgeport manual milling 
machine with a 2.1 kW spindle motor

Figure 4.6: Machining energy use breakdown for various automated milling machine (adapted from Dahmus and Gutowski, 2004)
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Figure 4.7: Energy analysis of four milling machines (Dahmus and Gutowski, 2004)
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A similar study by Devoldere et al. (2007) on a 5-axis milling machine found that 65% 

of operation time was non-productive which accounted for up to 47% of the total energy 

consumption (see Figure 4.8). Fleschutz et al. (2010) conducted an energy simulation 

on 12 similar industrial robots within a workstation and found that the assigned 

operations strongly influenced the energy consumption of the respective robot. Even 

though the operating hours are the same for the robots, those that had more kinematic 

movements and little idle time resulted in energy consumptions that were double the 

other robots.  

4.4.4.2 Variable Energy Consumption of Production Machines. 

The variable energy consumption is dependent on the processing parameters. Diaz et al. 

(2009) varied the feed rates for a cutting process and found that the energy per unit 

manufactured increased at lower feed rates. This was also seen when using high speed 

machining compared to conventional machining mainly due to the decrease in 

processing time which offset the slight increase in power required machining at higher 

speeds. Rajemi et al. (2010) found that the cutting velocity and hence the cycle times 

strongly influenced the energy consumption of the machines. Three work pieces were 

machined on a lathe at different speeds and the percentage of the power use for the 

actual machining process increased with cutting speed.  

 

Figure 4.8: Relative energy consumption per production mode (Devoldere et al., 2007)



 

Chapter 4 57 

 

Krishnan et al. (2009) have made some preliminary measurements and energy 

efficiency analysis of individual machines in different manufacturing processes such as 

injection moulding, compression moulding and sheet metal working. Their observations 

from the study are summarised in Table 4.4.  

The operational use of a machine also affects the energy consumption of production 

machines. An early study on 10 different numerical control machines tools conducted 

by Filippi and Ippolito (1981) found that an average of only 60% of machining time was 

productive and as a result the full power of the machine was never exploited. Energy 

consumption can be reduced through implementing effective machining strategies that 

minimised non-productive times (Akbari et al., 2001).  

 

Process Relationship of Energy requirements to processing parameters. 

Injection 
Moulding 

1. Type and characteristic of the plastic (for instance each material has different melting 

temperature)  

2. Design, complexity, and the size of the end product. The greater the pressure on the mould, 

the more energy is consumed.  

3. Each technique used for shaping of the product has its own SEC, depending on heating, 

moulding and cooling.  

4. The higher the quantity of production, the Lower the SEC 

5. The cycle time determines how long the pump or electrical motor is switched on during the 

moulding process 

6. Size of the machine 

7. Frequency of use of the mould 

8. Outside temperature (there is a 10% consumption in the summer) 

Compression 

Moulding 

1. The SEC tends to be higher for lower flow rates and lower for higher flow rates 

2. The final summary graphs also show how the machines perform with respect to each other 

while comparing SEC to flow rate/ throughput.  

3. The general SEC values for M are between: 1-13 MJ/kg assuming grid efficiency of 33% 

4. Across machines, it is observed that some machines have lower SEC values for a given 

throughput.  

Sheet Metal 

working 

1. The SEC in sheet metal working is inversely proportional to the throughput. As the throughput 

increases the SEC reduces and vice versa 

2. The SEC reduces as the total material processed increased, subject to flow-rate changes 

3. The inverse relationship of the SEC to the throughput was also retained when the throughput 

changed either in the early stage or the middle stages of the entire measurement period. 

Table 4.4: Observations of energy consumption and processing parameters (Krishnan et al., 2009) 
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4.4.4.3 Deriving energy data from production equipment 

Typically energy information can be estimated by summarizing the electrical energy 

consumptions of single machine components (pumps and engines) or through taking 

energy measurements of the auxiliary equipment with the use of energy metering 

systems (Herrmann et al., 2007; Gutowski et al., 2005). Alternatively the energy values 

can be derived from machine specifications from equipment manuals or vendors; or 

information given by the manufacturers. Most specifications have been shown to be 

accurate enough for rough analyses (Kalla, 2009), an example of a specification is 

shown in Table 4.5. As noted by Heilala et al. (2008), getting detailed data for 

manufacturing processes like turning, milling or welding is the real challenge, since 

parameters depend on the product. So where theoretical data is unavailable, it is also 

possible to determine the energy required by a process through empirical observations.   

For a more holistic understanding of energy consumption of production equipment, 

some researchers have used energy profiles to identify the main energy consumers in 

machines for energy efficient production optimisation. As discussed earlier, the 

machines consist of several energy consuming components which generate a specific 

energy profile as an integrated system. The energy profiles include all machine 

components which are necessary to perform the machining. Generally energy profiles 

can be subdivided into fixed and variable energy consumption. The fixed energy 

consumption includes the energy requirements of machine components like pumps, 

control units and coolant which enable an operating state. The variable energy 

consumption of a production machine includes the required electrical energy for tool 

handling, positioning and actual cutting operation.  

Specifications TTC 

Model number TTC-630 TMC500 XR1500 HPD 

Spindle Speed (Belted) 4000 rpm 6000 rpm - 

Spindle Motor power 15/20 kW 5/7 kW - 

X Axis Motor Power 208 kW - - 

Z Axis Motor Power 2.8 kW 15000 rpm 375-7500 rpm (Gear Box) 

Coolant Pump Motor Power 1 kW 40 hp 40 hp 

ATC Motor Power 12.6 kW 34 hp 40 hp 

Rapid Traverse (X,Y) 197 mm/min 1417ipm 1417 ipm 

Rapid Traverse (Z) 630 mm/min 1417 ipm 1417 ipm 

Total Driving Power 40 kW 787 ipm 787 ipm 

Hydrualic Pump 1.1 kW 40 KVA 40 KVA 

Table 4.5: Example of Machine Specifications of a TTC CNC machine including power rating of 
auxiliary equipment (Kalla, 2009) 
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The intensity of the variable electrical energy is highly influenced by process 

parameters such as cutting speed, specific material removal rate and specific stock 

removal volume and the use of cooling lubricants. The energy profile can be categorised 

into basic energy, idle energy and tip energy (Kalla et al., 2009) as shown in Figure 4.9. 

The total energy consumption for the process is the sum of all three types of energy as 

shown in Equation 4.1, where power and time are as illustrated in Figure 4.9.   

                     Etotal = Pbasic * (tbasic) + Pidle * (tidle ) + Pmilling * (tmilling)           [Equation 4.1] 
                                          (Basic energy)    (Idle energy)   (Milling energy)  

Where, 

Etotal is the total energy required for milling a part 

Pbasic is the power during the basic mode of the process 

tbasic is the time which the process spends in basic, idle and milling mode 

Pidle is the power during the idle mode of the process 

tidle is the time which the process spends idling and milling 

Pmilling is the power during the milling mode 

tmilling is the time which the process spends milling 

 

 

 

Idle Energy

Pmilling 

Pidle 

Pbasic 

tbasic

tidle

Basic Energy 

Tip Energy

Spindle and Coolant 

motor Startup

Power 

Timetmilling

Figure 4.9: Determination of power characteristics and energy requirements of machine tools (Kalla et 
al., 2009) 
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In a study of the energy profile generated by a grinding machine Herrmann et al. (2008) 

highlights the high energy demand of the air exhaust system as depicted by the sharp 

increase in power requirement seen in Figure 4.10. As a consequence, further measures 

such as reducing the operation mode or replacing air system components through more 

efficient technology can be applied to reduce the total basic power consumption. 

Furthermore, the energy profile shows that the exhaust air system substantially 

increases the power consumption to a short time maximum of 10 kW when started. A 

similar effect is visible with employing the cutting tool spindle.  

Also using energy profiles, Vijayaraghavan and Dornfeld (2010) have proposed a 

framework based on event stream processing to temporally analyse the energy 

consumption and operational data of machine tools and other manufacturing equipment. 

This means that software is able to analyse energy load profiles and changes in the load 

patterns can intelligently interpret the events that have taken place. Figure 4.11 and 

Table 4.6 show the events that were analysed by the framework and the reasoning for 

the profiles.  The integration of the software with real time data from energy meters and 

embedded process sensors in the future would provide additional support in obtaining 

empirical data of manufacturing processes.  

 

 

Figure 4.10: Electrical energy consumption of a grinding process (Herrmann et al., 2008)
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Event Time Reasoning 

1. Machine idle 242 s Average energy use<idle threshold; spindle speed = 0 

2. Expected energy spike 243 s Spike due to spindle startup (0–8000 rpm) 

3. Expected energy spike 464 s Spike due to spindle speed increase (8000–16,000 rpm) 

4. Idle energy constant 1457 s Previous two idle periods energy use constant at 124 kJ 

5. Anomalous spike 1679 s 
Energy spike unaccompanied by shift in spindle RPM. Potential failure 
in spindle 

6. Idle energy increase 2612 s 
Current idle period energy use (211 kJ)>past idle period average 
energy use (124 kJ) 

7. Part energy higher 3074 s 
Current part energy (1218 kJ)>previous parts average energy (1087 
kJ) 

8. Idle energy trend 3309 s 
Idle energy increasing monotonically over past two periods (342 
kJ>211 kJ>124 kJ) 

Similar studies were also done by Avram and Xirouchakis (2011) who used cutter 

location data and speed values as well as specific characteristics of the spindle and feed 

axes and cutting force model to establish the energy required by a machine tool system. 

They claim that their method is able to provide more accurate energy estimation for 

specific milling operations than LCA tools which generally rely on a specific energy 

rate for each process and material.  

Energy is often wasted because of unnecessary machine operation, even when an energy 

efficient machine is used. According to Hesselbach et al. (2008), energy peaks induce 

extra energy costs and should therefore be minimised or at least harmonised by 

considering process chains of several machine tools. Diaz et al. (2009) showed that 

Kinetic Energy Recovery Systems (KERS) can reduce average power consumption by 

up to 25% (depending on workpiece geometry and machining time) by recovering 

energy from the spindle motor. Park et al. (2009) have proposed several technologies to 

reduce power consumption for grinding as shown in Table 4.7.  

Figure 4.11: Energy load profile of the machining process over time with the respective events detailed 
in Table 4.6 

Table 4.6: Energy consumption and spindle rpm profile for case study with results of the event reasoning 
(Vijayaraghavan and Dornfeld, 2010) 
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Power Saving 
Parameters 

Detailed Technologies 

Grinding Power 

Feeding power reduction  
- Weight reduction of grinding wheel carriage; optimal design by CAE analysis, 

application of honeycomb structures, and lightweight materials 
- Driving mechanism design for minimisation of friction energy; application of 

direct driving, built-in driving, linear driving mechanism 
Spindle shaft power reduction during grinding 

Pure grinding time 

Pure grinding time reduction by applying ultra-high speed grinding technologies 
- Increase of maximum power with a decrease of total power because of pure 

grinding time reduction 
Cost reduction of disposal power using CBM wheel grinding (in conventional grinding, 
the disposal power increases as the abrasives, mixed with coolant, flow into the 
machining surface) 

Fixed power 

Power reduction of lubrication, coolant, and air supply during one cycle 
Fixed power reduction for maintaining actuator condition 

- Change of ordinary operating system (it always needs energy) with an optimal 
energy supplying system; intermittent or high-efficiency operation by applying 
an inverter motor and accumulator (it is known that up to 40% of energy 
savings can be made by optimising the coolant system) 

Idling time 
Power-saving by a reduction of work set up time 
High speed of loading/unloading system, and several actuators 
Information-processing time reduction between CNC and PC 

 

4.4.5 Energy Research on the Tool-chip level (Theoretical Process Energy) 

The last and most focused manufacturing system level is the tool-chip level which 

represents the actual material transformation process. This involves mechanical and 

chemical knowledge of the process in order to establish the theoretical energy 

consumption values of the process. On this level, research has been conducted to 

examine the energy consumption at the tool-chip interface of various processes.  

Draganescu et al. (2003) conducted experiments to model machine tool efficiency so 

that the SEC could be determined for establishing cutting parameters and the consumed 

energy necessary for removing a certain quantity of chips; amongst a range of 

parameters such as depth of cut, tool speed etc. they found that the feed rates have the 

greatest influence on energy consumption. As derivation of SEC is dependant on a 

multitude of parameters there can sometimes be complexities in establishing the SEC 

from experimental observations as evident in Equation 4.2.  

  

Table 4.7: Power-Saving Technologies in Grinding Machine (Park et al., 2009)
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As denoted by Draganescu et al. (2003) the specific energy of cutting, Ecs:  

௖௦ܧ ൌ
గ஽ி೟

ଷ.଺଻ଶ ൈଵ଴ల௦೥௧஻௭ఎ
  [Equation 4.2] 

Where,   

D is the diameter of the mill (mm),  

sz the feed per tooth (mm/tooth),  

t the depth of milling (mm),  

B the contact length of the milling tool (mm),  

z the number of teeth of the milling tool,  

Ft = f(v, sz, t, B; z; A) the tangential component of cutting force (N), as a second 

order polynomial function, with natural logarithms of the above parameters, 

including the cutting speed, v (m/min), and the non-symmetry of milling, A (mm), 

obtained also by statistic modelling, and  

η= f (v, D, Ft), the milling machine efficiency. 

 

The large number of variables required to establish the energy for cutting may be 

infeasible in an industrial application. A more generic method of establishing the SEC 

for cutting has been proposed by Kalpakjian and Schmid (2008) and is given in 

Equation 4.3:  

௧ݑ ൌ ி೎௏

௪௧೚௏
ൌ ி೎

௪௧೚
   [Equation 4.3] 

Where,  

ut is specific energy for cutting. 

Fc is the cutting force 

w is the width of the cut 

to is the undeformed chip thickness 

 

For a simple way of establishing the SEC for cutting, tables of various energy values 

based on the different parameters can be used. Kalla et al. (2009) have put together a 

table of the average specific cutting energy based on material type, the respective feeds 

and speeds and density as shown in Table 4.8.  
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Specific energy for other processes can also be established through correlating 

processing parameters. Ghosh et al. (2008) has modelled the specific energy 

requirement of deep grinding and established that the total energy for grinding can be 

summed up using Equation 4.4:  

Utotal=0.5{(Upl+Uc)+Upri_r+Usec_r}  [Equation 4.4] 

Where, 

Utotal is the is the total energy for grinding 

Upl is the specific energies of ploughing 

Uc is the specific energy for chip formation 

Upri_r is the specific energy for primary rubbing 

Usec_r is the specific energy for secondary rubbing  

 

Further studies on machining can be found in Munoz and Sheng’s (1995) work who 

looked at the environmental impact of machining processes. One of the quantifiable 

dimensions in their analysis included energy utilisation and process rate. Other studies 

of theoretical energy consumption of various manufacturing process can be found in 

Kalpakjian and Schmid (2008) who give detailed explanations and descriptions of the 

energy required for cutting, forming and deformation. 

Sarwar et al. (2009) have done a detailed analysis on the specific cutting energy for 

bandsawing different work piece materials. Rajemi et al. (2010) have looked at the 

minimal energy required for turning and the optimal conditions for machining a 

product. Kuzman and Peklenik (1990) have done an energy evaluation of the cold 

forming process. Other studies on other processes as cited by Gutowski et al. (2009) 

include grinding (Baniszewski, 2005; Ghosh et al., 2008), Laser Direct Metal 

Deposition (Morrow et al. 2004), Electric Induction Melting (Jones, 2007), injection 

moulding (Mattis et al. 1996; Thiriez and Gutowski, 2006). Gutowski et al. (2009) 

analysed the energy demand of 36 processes out of 10 manufacturing technologies and 

showed that recent high technology processes like thermal oxidation and electrical 

discharge machining (EDM) drilling require larger specific electrical energy 

requirements than more traditional manufacturing processes, see Figure 4.12.  
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. Material 

Hardness 
 [Brinell 

hardness 
number] 

Specific cutting 
energy, Up  

 [W/ mm3 per 
sec] (Hp/ in3 per 

min) 

Cutting Speed, V 
(m/min, ft/min) 

 
Feed per tooth, ft 

(mm/tooth, 
inch/tooth 

Density 
(kg/m3) 

Aluminum Alloys 30 - 150 0.98 (0.36) 120 -140, 400 - 450 
0.28 – 0.56, 0.011 - 
0.022 

 
2712 

Magnesium 
Alloys 

40 - 90 0.49 (0.18) 180- 250, 600 - 800 
0.2 - 0.5, 
0.008 - 0.02 

 
1770 

Tungsten 200 6.24(2.3) 10 – 25, 30-70 
0.025 – 0.08, 
0.001-0.003 

 
19600 

Copper 80 2.98 (1.1) 30 – 45, 100 - 150 
0.15 – 0.30, 
0.006 - 0.012 

 
8930 

Titanium 80-100 3.26 (1.2) 25 – 30, 80 – 100 
0.1 – 0.2, 
0.004 - 0.008 

 
4500 

Brass 150 - 200 2.25 (0.83) 60 – 90, 200 - 300 
0.18 – 0.36, 
0.007 - 0.014 

 
7700-8700 

Bronze - 1.36 (0.50) 45 – 55, 150-180 
0.05 – 0.25, 
0.002 – 0.010 

 
8900 

Malleable iron - 1.55 (0.57) 33 – 40, 110-130 
0.15 – 0.30, 
0.006-0.012 

 
6800-7800 

Stainless steel 100 1.36 (0.5) 30 – 37, 100-120 
0.08 – 0.15, 
0.003-0.006 

 
7480-8000 

Steel, Low 
carbon 

175-225 1.63 (0.60) 90 – 185, 300-600 
0.01 – 0.18, 
0.0005-0.007 

 
7480-8000 

Steel, Medium 
carbon 

225-275 1.95 (0.72) 45 – 140, 150-450 
0.01 - 0.13, 
0.0004-0.005 

 
7480-8000 

Steel, Hardened 275-325 2.39 (0.88) 15 – 70, 50-225 
0.005 – 0.08, 
0.0002-0.003 

 
7480-8000 

Cast iron, soft 150-180 0.81 (0.30) 25 – 33, 80-110 
0.2 – 0.4, 
0.008-0.016 

 
6800-7800 

Cast iron, 
medium 

180-220 1.7 (0.63) 18 – 45, 60-150 
0.2 – 0.33, 
0.007-0.013 

 
6800-7800 

Cast iron, hard 220-300 2.5 (0.92) 25 – 28, 80-90 
0.15 – 0.30, 
0.006-0.011 

 
6800-7800 

Gray cast iron 220-260 1.52 (0.55) 15 – 26, 50-85 
0.25 – 0.46, 
0.010-0.018 

 
6800-7800 

Unalloyed steel 110 1.36 (0.5) 48 - 68, 160-220 
0.1 – 0.35, 
0.004-0.012 

 
7850 

Unalloyed steel 150 2.2 (0.81) 36 - 45, 120-150 
0.05 – 0.25, 
0.002 – 0.01 

 
7850 

Unalloyed steel 310 2.93 (1.08) 27 - 40, 90-130 
0.025 – 0.2, 
0.001 – 0.008 

 
7850 

Low alloy steel 125-225 2.52 (0.93) 27 - 38, 90-125 
0.05 – 0.13, 
0.002 – 0.005 

 
7850 

Low alloy steel 225-425 3.31 (1.22) 25 - 33, 70-110 
0.025 – 0.1, 
0.001 – 0.004 

 
7850 

High alloy steel 150-300 2.96 (1.09) 15 - 27, 50-75 
0.01 – 0.2, 
0.0005 – 0.008 

 
7850 

High alloy steel 300-450 4.59 (1.69) 9 - 18, 30-60 
0.005 – 0.07, 
0.0002-0.003 

 
7850 

Nodular cast iron 160 1.21 (0.45) 33 - 43, 110-140 
0.28 – 0.56, 
0.011 - 0.022 

 
6800-7800 

Table 4.8: Average values of energy per unit material removal rate and recommended speeds and feeds 
(Kalla et al., 2009). 
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Figure 4.12: Work in form of electricity used per unit of material processed for various manufacturing 
processes as a function of the rate of material processing (Gutowski et al., 2009)   
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4.5 Management of Energy Data 

One of the main challenges with modelling energy consumption within a manufacturing 

system is monitoring and managing energy data. In recent years Muller and Loffler 

(2010), Chiotellis et al. (2010), Herrmann et al. (2010) all noted an evident lack of 

monitoring of energy flows within a factory. In particular Muller and Loffler (2010) 

believe that the availability of energy related data in industry during the planning 

process is still very rare. In addition to the lack of monitoring systems, the amount of 

information required can be very complex and requires a robust framework to deal with 

information on all levels. As a result they have all proposed various information formats 

to aggregate energy values for decision making within production. 

Muller and Loffler (2010) believe that detailed analysis of energy consumption can help 

with decision making and planning. Current energy systems in industry only provide 

highly aggregated data such as per factory or per building, very rarely per production 

line. As such they have suggested using energy profiles to indicate the relevant modes 

of operation as seen in Figure 4.13: Switch on (I), normal operation (II), switch to 

standby (III), standby (IV), and switch off (VI). Energy consumption projections can 

then be made from the data collected. They believe that although these analyses are 

uncommon in industry today, they need to be established in order to meet future 

requirements (e.g. energy management systems according to EN 16001 (British 

Standards Institution, 2009). Figure 4.14 also shows how energy data be used in the 

planning process. Chiotellis et al. (2010) also propose having a data base of energy 

profiles for production machines which can be used to create energy labels for 

production equipment.  

Like Muller and Loffler (2010), Hermann et al. (2010) also believe that the effective 

metering of energy flows provides detailed information that improves the management 

of the manufacturing system and provides the foundation for energy efficient planning. 

They have applied smart metering for industrial purposes like production planning. 
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Figure 4.13: Load profile during a representative period of operation (Muller and Loffler, 2010)

Figure 4.14: Energy related activities within the planning process and management of energy related data 
(Muller and Loffler, 2010)  
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First applied in private households, smart metering substituted analogue metering and 

reading of the consumed electrical work by computerising the process, tracking not only 

the electrical work but also the characteristics of specific power consumption. Industrial 

smart metering comprises of sensors, processors and analysers to capture, transfer and 

resolve energy and resource flows in manufacturing systems. They also have assigned 

energy and resource flows to hierarchical levels starting top-down from factory, to 

machine tool level and have enabled the production of guidelines for energy metering 

requirements on each of those levels. As data volumes will increase exponentially lower 

down the levels it is important to set the correct resolution and address them through 

appropriate hardware and software systems, see Figure 4.15.  

Vijayaraghavan and Dornfeld (2010) also noted the need for various energy analyses at 

various levels as shown in Figure 4.16. They recommend that for the analysis of 

complex manufacturing processes and systems, software tools would need to have the 

following capabilities: 

- Concurrent monitoring of energy use with process data 

- Standardised data sources 

- Scalable architecture for large data volumes 

- Modular architecture to support analysis across different manufacturing scales.  

 

 

Figure 4.15: Resulting data volume from 64-bit measurement values depending on its temporal
resolution (ranging from 1.5 min up to 10 ms) from a single data output. (Hermann et al., 2010) 
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Figure 4.16: Examples of analysis across various levels. (Vijayaraghavan and Dornfeld, 2010)
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Based on these requirements, Vijayaraghavan and Dornfeld (2010) have developed an 

automated energy monitoring system using two key components: an interoperability 

standard for manufacturing data that can normalise data exchange in the manufacturing 

system, and a rules engine and complex event processing system to handle data 

reasoning and information processing.  

In their system they used MTConnect, a data exchange standard based on XML, to 

achieve standardization of data in machine tools during data collection. It is an XML-

based standard and describes the structure of manufacturing equipment along with the 

near real-time data occurring in the equipment. It allows a way for logically organizing 

data from equipment without being constrained by physical data interfaces. With 

MTConnect, the operational data of the machine tool can be monitored in context with 

the energy consumption data. Diaz et al. (2009) also proposes using MTConnect to 

improve the energy performance of a machining centre as shown in Figure 4.17.  

To gather the information into a centralised area, several researchers have been working 

to produce a database of energy information. Overcash et al.(2009) at the University of 

Wichtita are working with various researchers to produce a Life Cycle Inventory of 

processes based on engineering rule-of-practice analysis by quantifying input material, 

energy requirements, material losses and machine variables.  

 

Figure 4.17: Unified monitoring scheme using MTConnect (Diaz et al., 2009)
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This database known as Unit Process Life Cycle Inventory, UPLCI (2010) will involve 

50-70 unit processes and will consist of energy and mass profiles for each unit process 

life cycle which follows the German DIN8580 standard on manufacturing processes 

terms and definitions as the basis for its taxonomy with 6 main process groups – 

Original forming, Transforming, Separating, Joining, Coating and Finishing and Change 

of material properties (as shown in Figure 4.21). The database, when complete, will 

provide a comprehensive source of energy information on a range of commonly used 

manufacturing processes. The benefit of using the UPLCI database is that the energy 

values can be adjusted for each case to include major variables affecting the process 

operation. 

Another similar initiative is the ‘Cooperative Effort on Modelling Process Emissions in 

Manufacturing’, CO2PE which is led by Duflou (2009) at the University of Leuven to 

cluster forces in different continents, involving machine builders as well as academics, 

to analyse existing and emerging manufacturing processes for their ecological impact in 

terms of direct and indirect emissions.   

 

 

 

CO2PE 
taxonomy for 

Processes

2.1 Pressure forming
2.2 Tension Compression Forming
2.3 Tension Forming
2.4 Bending 
2.5 Shear Forming

2. Forming

1.1 Liquid initial material state
1.2 Primary shaping fibre-reinforced plastic
1.3 Pappy, mushy initial material state
1.4 Granular or powder initial material state
1.5 Scarf or Steam initial material state
1.6 Gas initial material state
1.7 Prototypes from ionized state

1. Primary Shaping and/or Original 
Forming

3.1 Separating
3.2 Cutting with geometrically defined 

cutting edges
3.3 Cutting with geometrically non-

defined cutting edges
3.4 Non Conventional Machining
3.5 Disassembly
3.6 Cleaning

3. Separating

4.1 Assembling
4.2 Filling 
4.3 Press Fitting 
4.4 Joining by primary shaping 
4.5 Joining by forming
4.6 Welding
4.7 Soldering 
4.8 Gluing
4.9 Textile joining 

4. Joining

5.1 Melt Dipping
5.2 Coating with material which is in the 

grain/powder state of aggregation
5.3 Coating through welding 
5.4 Coating through soldering 
5.5 Coating with material which is in the 

gas/steam state
5.6 Coating with material which is in the 

ionised state of aggregation

5. Coating and Finishing

6.1 Stiffen through plastic deformation
6.2 Thermo-mechanical treatment 
6.3 Coating through welding 
6.4 Sintering, burning 
6.5 Magnetizing 
6.6 Irradiating 
6.7 Photo-chemical process

6. Change of Material Properties

7.1 Compressed air supply
7.2 Drives 
7.3 Part manipulation 
7.4 Process liquids
7.5 Waste Reducing

7. Auxiliary Processes 

8.1 Time Studies 
8.2 Power Studies 
8.3 Emissions Studies 

8. Measurements and Modelling 

9.1 Process routing
9.2 Production scheduling 

9. Production and Process Planning

Figure 4.18: Taxomony of Processes used by CO2PE (UPLCI, 2010)



 

Chapter 4 73 

 

Substantial research has been targeted to document, analyse and reduce process 

emissions for a wide range of available and emerging manufacturing processes 

(Chiotellis et al., 2010; Pusavec et al., 2010; Devoldere et al., 2007; Herrmann et al., 

2007, Gutowski et al., 2007). Duflou will employ a centralised overview and 

coordinating effort which will avoid redundancy in data collection efforts while 

facilitating direct communication between parties with overlapping interests and 

expertise needs. The effort will be based on the matrix as seen in Figure 4.19.  

 

 

4.6 Chapter Summary  

This chapter has provided an overview of the research that has been done on the product 

level and on a manufacturing systems level. LCA is the principal methodology used to 

analyse the energy flows over a product’s life cycle. Different variations of the 

methodology has been created to either limit the analysis to a specific impact or to focus 

the scope of the study to a particular life cycle phase. LCA often use datasets that are 

based on distinct values for different materials and processes where the energy use of a 

process is typically given as a function of mass. This is typically a source of significant 

Figure 4.19: Operational cooperative scheme for data collection and analysis (Duflou, 2009) 
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error within complex design geometry with very lengthy and difficult processes and 

operations. As such the literature review has highlighted a research gap and has 

indicated a need for a greater understanding of the impact of processing time and 

geometry on the energy consumption from the manufacture of a product.    

The research on a manufacturing systems level has shown that the energy consumption 

of a process is not a constant rate but highly influenced by a wide range of issues. On 

the enterprise level, much of the considerations are based on logistics and the supply 

chain which are both very application dependant hence it has been excluded from the 

scope of this research. The energy considerations discussed in this thesis will focus on 

the facility level to the tool-chip level especially since the literature review has indicated 

that processing parameters and operational procedures both have a significant effect on 

the energy use of production equipment. A more accurate and straight forward energy 

estimation of manufacturing activities is required to provide greater transparency of the 

energy use within production so that more effective energy saving strategies can be 

implemented. The need for improved management and monitoring of energy 

consumption within a manufacturing facility has led to a proliferation of energy 

management software tools which will be discussed in the next chapter.  

 

  



 

Chapter 5 75 

 

Chapter 5 Review of Commercially Available Software 
for Energy Management and Analysis within 
Manufacturing Systems 

5.1 Introduction 

This chapter reviews the common commercial tools and software currently available for 

assessing, monitoring and managing energy consumption in the manufacturing industry. 

The initial part of this chapter looks at methods to assess energy consumption across a 

product life cycle while the latter sections look at methods that focus on energy use 

within a manufacturing facility.  

5.2 Overview of Commercial Software 

Energy software tools can be categorised into two main approaches:   

1) Product life cycle based,  

2) Energy management based, 

The analysis of energy embodied within a product is typically established through the 

use of LCA based software which uses generic process data from a pre-existing life 

cycle inventory database. Currently most LCA software is unable to attribute energy 

consumption and model energy flows from overhead processes such as heating and 

lighting within a production facility to a product. To monitor and analyse the energy 

consumption within a building or a facility, the second group of software systems 

(energy management) is used. This allows the energy consumption within a specific 

manufacturing facility to be tracked and monitored and the software enables detailed 

analysis of the energy consumption. Both categories of software will be further 

evaluated and described in the following sections.  
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5.3 Product life cycle based software  

As discussed in Chapter 4, Life Cycle Assessment is commonly used to assess the 

environmental impact of products. Since these assessments often require the processing 

of large amounts of data, software tools have been developed to manage the data and 

facilitate the calculations. The LCA approach is the de facto standard used by most 

software for the environmental assessment of a product. In this section only the 

commonly used LCA software that are able to determine the energy consumed over the 

life cycle of a product will be reviewed, for an extensive survey of generic LCA 

software, refer to Jönbrink et al. (2000). The commonly used commercial LCA software 

includes SimaPro7.0, GaBi 4.0, Team 4.0, Umberto 6.1 as well as CES Ecoselector 

(Machado and Cavenaghi, 2009).   

Ten commonly used software packages were evaluated based on the energy modelling 

requirements identified from the research work in this thesis to determine if there was a 

software package that would be suitable for modelling the embodied product energy of 

a product during the production phase.  

The software were evaluated based on the following aspects –  

 The modelling of energy flows within production 

Is the software able to model the use of energy within a manufacturing facility 

and attribute the energy to the production of a unit product? 

 The consideration of facility energy consumption  

Does the software allow for the consideration of facility energy consumption 

(e.g. heating, lighting, ventilation)?  

 Decision support 

Are there any decision support tools within the software to enable the user to 

provide directions for energy improvements? 

 Energy efficiency considerations 

Does the software provide energy efficiency evaluations or benchmarking of 

the product being assessed?  
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All the LCA tools reviewed were able to establish the embodied energy of a product 

using data from inbuilt databases or external databases like Eco Invent. As long as the 

processes required were known and the parameters could be defined, the software are 

able to calculate the energy that was required to produce the product. Comprehensive 

LCA packages such as SimaPro 6.0 (Pre Consultants, 2011), GaBi 4.0 (PE International 

GmbH, 2007) and TEAM 4.0 (Ecoliban Group, 2011) are able to model energy 

embodied within a product across different life cycle phases but the final embodied 

energy is attributed within the overall environmental impact of the product and hence a 

singular embodied energy value cannot be established.      

Other LCA software that calculates the embodied energy of product is the Cambridge 

Engineering Selector, CES, Eco Audit Tool (Granta Design Ltd, 2011), CarbonScope 

(CleanMetricsTM, 2011) and EcoFly 3.0 (PlesTech, 2010). Unlike the other LCA 

software which requires time consuming data input, these can provide a quick 

estimation of the energy usage and CO2 footprint of a product design by calculating the 

energy embodied by each manufacturing process by attributing a generic energy 

consumption rate per mass of material processed for a specific process. Eco Fly has the 

additional advantage of having a ‘Concept Review’ module that manages the concept 

selection process. A range of efficiency targets can also be set which can be used to 

evaluate different product design concepts. 

WattzOn (Synthesis Studios, 2009) is a web based tool that enables users to calculate 

the energy consumption of a person’s lifestyle and also contains a database of the 

average embodied energy of typical products. The database has 21 categories of 

different products from appliances to pet products and the embodied energy of a range 

of products has been calculated over their life cycle. For example a 340g electric kettle 

with a lifespan of 5 years has an embodied energy of approximately 95.7 MJ. 

In addition, most LCA software is unable to model the specific energy flows within a 

production system. Of the software reviewed only Umberto® (developed by the Institute 

for Environmental Informatics, Hamburg GmbH) is able to conduct energy and material 

flow analysis through graphical modelling and visualisation within the program (ifu, 

2011). The energy flows modelled were static and thus unable to model changing 

production rates and variations in processing parameters.  
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Only two LCA software – Athena® Environmental Impact Estimator developed by 

Athena® Sustainable Materials Institute (2011) and Building for Environmental and 

Economic Sustainability Software, BEES developed by the National Institute of 

Standards and Technology (NIST, 2011) consider energy consumed within a facility 

and are able to assess the energy requirements of building services such as heating, 

lighting and ventilation and attribute this energy to an entity. Both Athena® 

Environmental Impact Estimator and BEES can provide decision support by combining 

the environmental and economic performance (costs of initial investment, replacement, 

operation, maintenance and repair and disposal) into an overall performance measure 

using a multi attribute decision analysis. However both software are for assessing 

buildings and are not applicable to the assessment of general products.    

Of the software reviewed, only 1 was able to model energy flows within a production 

system, 2 considered the energy consumption within facilities, 3 provided decision 

support for energy improvements and 1 provided energy efficiency considerations. An 

overview of the review is shown in Table 5.1. 

There is a distinct lack of LCA tools that are able to model the energy consumption 

within a production system and that can account for both process energy and the energy 

required by the building services. All the LCA software use generic data when 

calculating the energy required by manufacturing process which is based on a per unit 

mass basis with limited flexibility for the addition of customised energy data from a 

specific production plant. Most of the LCA software provides a detailed breakdown of 

the environmental impact of the product over the life cycle which only highlights the 

life cycle phase that is most energy intensive, but provided little or almost no detailed 

breakdown on the energy embodied by the product. Consequently there is a lack of 

information that can be used to support decision making within design or production.  

Energy efficiency considerations are also not included in many of the software.  

The next section will review the software tools that can monitor and track energy flows 

within a production facility.  
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Name of Software Developer 
Availability 

Availability Applicability 
Calculation of 

embodied 
energy 

Modelling of 
energy flows 

within 
Production 

Consideration 
of facility 
energy 

consumption 

Decision 
Support for 

energy  efficient 
improvements  

Energy 
efficiency 

considerations Desktop 
Web-
based 

SimaPro 6.0 Pre Consultants   Licensed  Products      

GaBi 4.0 PE international   Licensed Products      

TEAM 4.0 Ecoliban Group   Licensed Products      

CES Eco Audit Tool  Granta Design   Licensed Products      

EcoFly 3.0 PlesTech   Licensed Products      

CarbonScopeTM CleanMetrics   Licensed Products      

WattzOn Synthesis Studios   Freeware Products      

Umberto 5.0 
Institute for 

Environmental 
Informatics 

  Licensed Products      

Athena® 
Environmental impact 

estimator 4.1 

Athena Sustainable 
Materials Institute   Beta version 

is free 
Buildings      

Building for 
Environmental and 

Economic 
Sustainability, BEES 

National Institute of 
standards and 

Technology 
  Freeware Buildings      

Table 5.1: Evaluation of LCA based software that consists of energy modelling features
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5.4 Energy Management Systems 

Energy management systems, EMS, are typically used to help companies control their 

energy use by systematically tracking and planning energy use in equipment, processes, 

buildings, industrial facilities and entire corporations. The European standard for energy 

management systems is EN 16001 (British Standards Institution, 2009) which requires 

organisations to measure and assess actual energy use and record significant changes 

through tracking past, present and unexpected energy consumption.  

The most basic form of energy management tools are in the form of a spreadsheet where 

utility bills are entered and an analysis is carried out with the collected data. An 

example of an Excel based tool is the Energy Lens by BizEE (2011). The Quick Energy 

Profiler, Quick PEP, by the U.S Department of Energy Industrial Technologies 

Program, DOE- ITP, (U.S DOE, 2011a) is another simple tool that helps users to 

establish a baseline for the energy consumed within a plant or facility.  

For large amounts of data, a database management system is required. Using modern 

computer based monitoring and control systems, which are designed to operate on a 

plant wide basis, can yield further major improvements in energy efficiency. This can 

be integrated within a thorough energy management program which usually consists of 

metering and monitoring of energy consumption, identifying and implementing energy 

saving measures, and verifying savings with proper measurements. These software 

systems such as Optima (Optima Energy Management) bring together groups of 

readings, calculating totals and averages, and indicating trends and optimum operating 

conditions within a single platform. Other systems like T&D Solution (Itron, 2011), 

AVReporter (KONsys, 2011), xChangepoint (EPS Corp, 2011) and eSight (eSight 

Energy Group, 2011) can be based on real time information obtained remotely though 

special energy meters that transmit energy consumption data to a server.  

Fully comprehensive software solutions like Energy Management Application Platform 

(EnerNOC, 2011), Hara Environmental and Energy Management (Hara, 2011) and 

EnergyCAP (EnergyCAP Inc., 2011) include more sophisticated features such as 

planning and scheduling tools to optimize energy use and supply, energy balance 

management tools to support the real time monitoring and control of peak energy 
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demand, and in-depth evaluation tools that correlate external variables such as weather, 

production and building occupancy on energy usage.  

Other energy tools have also been developed for the modelling and analysis of energy 

consumption of a building. Energy Plus (DOE Building Technologies Program) is the 

primary software tool used for energy performance analysis of commercial buildings 

and enables multi-zone air flows and heat balances to be modelled (U.S DOE 2011b). 

The Opt E-plus and SUNREL (both by National Renewable Energy Laboratory) enable 

the optimization of building design by simulating various designs and technology 

options against energy performance (NREL, 2011). The tool facilitates many 

simultaneous calculations and thus can manage thousands of simulations incorporating 

dynamic interactions between the building envelope, the external environmental and its 

occupants.    

The DOE-2 is a portable program that is compatible with most computer systems and 

provides designers and researchers with a quick energy analysis of various building 

parameters and the impact on thermal comfort of the occupants (Hirsch, 2009). Various 

level details on the building design or alternative design options can be included based 

on the user’s requirements.   

Specific process support tools have been developed by the U.S DOE-ITP to aid with 

identifying and analysing energy system savings opportunities within a plant or facility 

(US DOE, 2011a). The suite of tools cover a range of services typically found in 

production plants such as compressed air, motors, pumps, process heating and steam. 

For example the MotorMaster+ and AIRMaster+ uses plant specific data and evaluates 

the energy consumption of motor and compressed air systems based on various 

equipment configuration system profiles. They also provide estimates of energy savings 

that can be made from a range of energy efficiency measures. In addition MotorMaster+ 

provides purchasing decision support and analysis through the evaluation of the cost 

effectiveness of repairing or replacing motors. The other tools that provide efficiency 

assessments are the Fan System Assessment Tool, the Pumping System Assessment 

Tool, Process Heating Assessment and Survey Tool and Steam System Tool Suite .  
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System 
Level 

Name of Software Developer 

Overall System 

Energy Lens BizEE               
Quick Plant Energy Profiler (Quick PEP) U.S DOE- ITP               

Optima Optima Energy Management               
T+D Solution Itron               
AVReporter KONsys               

xChangepoint EPS Corp               
eSight Esight Energy Group               

Energy Management Application Platform EnerNOC               
Hara Environmental and Energy 

Management 
Hara               

EnergyCAP EnergyCAP Inc.               

Building 

Energy Plus U.S DOE- BTP               
Opt E-plus National Renewable Energy 

Laboratory, NREL 
              

SUNREL               
DOE-2 

Lawrence Berkeley National 
Laboratory               

Compressed Air AIRMaster+ 

U.S DOE- ITP 

              
Fan Fan System Assessment Tool (FSAT)               

Motors MotorMaster+International               

Process 
Process Heating and Survey Assessment 

Tool (PHSAT)               

Pumps Pumping System Assessment Tool (PSAT)               
Steam Steam System Tool Suite (SSST)               

Table 5.2: Evaluation of various energy management software 



 

   

Chapter 5  83 

 

5.5 Chapter Summary 

This chapter has provided a brief review of the commercial software that is available. 

Typically the evaluation of embodied energy of a product is based on a LCA approach 

which is supported by generic databases that provides energy consumption data on the 

different processes. Ten commonly used software packages were reviewed and it was 

found that most were not able to integrate plant specific data and also did not support 

the modelling of energy flows within a production system. As such, correlation of 

production variables and design features of a product on embodied energy were not 

possible.  

Energy management systems on the other hand were able to model and monitor the 

energy flows within a production system and the software systems were able to 

correlate production variables to the plant energy consumption. However the energy 

breakdown is based on a plant perspective and could not provide a detailed breakdown 

of energy embodied within a product. Most of the tools provided a comprehensive set of 

energy analyses and evaluations based on energy information that can be entered 

manually or through automatic readings from meters. Some process specific tools also 

provided decision support based on energy and economical considerations on replacing 

processing equipment.  

This chapter has highlighted a lack of tools that can model energy flows within a 

production system from a product viewpoint. The modelling of embodied energy in a 

product based on plant specific data will enable manufacturers to evaluate the energy 

efficiency of the processes used in the production of the product, thereby providing 

them with a starting point for the reduction of the product’s environmental impact. 

Chapter 7 details the novel framework for modelling energy flows during the 

manufacture of a product which will provide the basis for modelling embodied energy 

during the production phase.  

The next chapter will describe the research methodology applied in this research.  
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Chapter 6 Research Methodology 

6.1 Introduction 

This chapter provides an overview of the research methodology used within this thesis. 

The chapter begins with a brief overview of existing research methodologies before 

defining in detail the four defined stages of the methodology used. These stages include 

the initial review of literature together with the corresponding refinement in the research 

hypothesis, and model development for energy efficiency assessment.  

6.2 A Brief Overview of Research Methodology 

According to the Oxford Dictionary, research is a) “the systematic investigation into the 

study of materials and sources in order to establish facts and reach new conclusions”; b) 

“an endeavour to discover new or collate old facts etc. by the scientific study of a 

subject or by a course of critical investigation”. According to Creswell (2003) it is the 

process of making claims and then refining or abandoning some of them for other 

claims more strongly warranted. There are a number of different research design 

methods being used for management, social sciences and engineering which includes 

the scientific method, analytical method, empirical method, survey method, action 

research, case study research, quasi-experimental, etc.  

Research methods are conventionally divided into quantitative, qualitative and mixed 

each with differing underlying approaches, tools and techniques. Quantitative methods 

are mainly concerned with rigorous objective measurement in order to determine the 

truth or falsehood of particular pre-determined hypothesis and involve the use of post 

positivist claims for developing knowledge, use of strategies of inquiry such as 

experiments and surveys, and collection of data on predetermined instruments. On the 

other hand, a qualitative method is largely inductive and involves the inquirer making 

knowledge claims which are based on primarily on constructivist perspectives and uses 

narrative, phenomenologies or case studies. Increasingly so, there is an emphasis on 
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developing an appropriate integrated mix of qualitative and quantitative research 

method which builds on complementarities between methods in order to build on 

strengths, crosscheck and triangulate the information which is most crucial for 

addressing the particular research questions concerned (Mayoux 2005). The mixed 

method involves researcher making knowledge claims on pragmatic grounds (e.g. 

consequence-orientated, problem-centred, and pluralistic) and employs strategies of 

inquiry that involve collecting data either simultaneously or sequentially to best 

understand the research problems (Creswell 2003). The research methodology adopted 

by this thesis is closely related to mixed method research. For the initial development of 

the framework, a qualitative method is used to establish the different energy issues and 

considerations from various sources of literature. For the equations associated with the 

framework, a quantitative method is applied through the use of a case study and is 

further described in the next section.  

6.3 Research Methodology Adopted in this Thesis 

The proposed research methodology consists of four distinct phases: research 

background, framework and model development, testing and validation and thesis 

conclusions. The methodology adopted is in line with those traditionally used within 

typical engineering research. Figure 6.1 provides an overview of the research approach, 

highlighting how various stages of the research are grouped within the four phases.  

The research assertion was developed as a result of increasing legislative pressures on 

industry with new energy directives such as ‘Eco-Design of Energy using Products’ The 

European Commission, 2005) and ‘Energy End-Use Efficiency and Energy 

Services’(The European Commission, 2006) to increase their understanding of energy 

usage. During the establishment of the research background for the thesis, via literature 

survey, it became apparent that there was a need for energy rationalisation and demand 

control, and tools that were capable of modelling energy consumption during the 

manufacture of products so that energy intensive processes can be identified.  
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Figure 6.1: Outline of research methodology 
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This would facilitate decision support during the design process providing designers or 

engineers with process energy consumption as a performance measure. The research 

question was defined and its validity was confirmed through an extensive literature 

review and survey of relevant research.  

The final establishment of the aim, objectives and scope of the research moved the work 

into the second phase (i.e. framework and model development). Based on the 

examination of energy flows through manufacturing facilities and production processes, 

two main categories of energy were identified – Indirect and Direct Energy. This led to 

the development of the framework with which energy consumption values could be 

attributed to a product within a manufacturing facility, so as to answer the first and 

second research question “Of the total energy consumed to manufacture a product, how 

much of the energy is used directly by the process and, how much is used by the facility 

that houses the process and the other supporting processes?”  and “when considering the 

energy consumed by the facility that houses the process how can it be attributed to the 

manufacture of a unit product?”. The breakdown of the energy values provided the basis 

for the development of productivity ratios which would answer the third research 

question “how much of the energy consumed by the process is for productive work and 

how much is non-productive?” These ratios could then be used to establish a Design for 

Energy Minimisation (DfEM) approach to aid product designers. The DfEM 

methodology is expected to be an additional design tool that can support the existing 

‘Design for Environment’ toolset which includes Design for End-of-Life, Design for 

Disassembly and Design for Recycling etc. Thus in part answering the last research 

question “how can design influence the energy required to manufacture a product?”. 

The application of the framework and methodology were brought together within a 

holistic software application. A suitable simulation is first identified after which a 

model is established through flow charts and activity diagrams to reflect the system that 

is being analysed. Data requirements are then identified i.e. process times, machine idle 

and active times, cycle times etc. This data needs to be either collected (if it exists) or 

generated (if it does not). Probabilistic distributions of the data also need to be identified 

and parameters need to be chosen. After the model has been built the simulation would 

need to be verified and validated with a case study.  

The third phase is the use of a case study to verify and validate the model which can 

provide include further energy considerations and correlations with design and 

Comment [Y5]: Researh question
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production parameters. Results from the validation can be used for further improvement 

to the simulation tool and the EPE framework.  

The completion of the case study marks the start of the final phase of the research which 

is drawing research conclusions. The results from the research conducted in the third 

phase and the case study are used to validate the research concepts established at the 

start and overall research conclusions will be drawn to highlight the main research 

findings and contributions to knowledge.  
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Chapter 7 Framework for Modelling Embodied 
Product Energy 

7.1 Introduction 

This chapter introduces a framework that has been generated by this research to model 

the energy flows attributed to the production of a product. The model identifies various 

consumers of energy used throughout a manufacturing facility providing an overview of 

energy hotspots within the production system thereby highlighting areas for 

optimisation and investment to improve energy efficiency.  

7.2 ‘Plant’, ‘Process’ and ‘Product’ Perspective on Energy 

Consumption within a Manufacturing Facility 

As discussed in Chapter 4, much of the current research work on energy consumption 

within manufacturing has been established at different levels i.e. Enterprise, Facility, 

Production/Machine Cell, Machine and Tool-chip level. The research in this thesis 

focuses on the energy consuming activities within a manufacturing facility and thus 

excludes any energy consuming activities related on an Enterprise level. The energy 

consumed within a manufacturing facility can be broadly viewed under two different 

perspectives of ‘Plant’ and ‘Process’.  

From a ‘Plant’ level perspective, energy is consumed by the infrastructure and other 

high level services that are responsible for maintaining the required production 

conditions/environment. Examples of ‘plant’ level consumption are lighting, heating, 

air-conditioning and ventilation. Some specialised manufacturing processes may require 

very specific environments which may be more energy intensive; an example is that of a 

cleanroom which requires more stringent specifications on air quality and therefore the 

air filtration system would be more powerful thereby consuming more energy. A subset 

of energy considerations on this level would include: efficiencies of the system 

equipment (e.g. fan and pump efficiencies), as well as the optimal set up arrangement 
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(e.g. luminosity per floor area or volume of air exchange per minute). In some cases, 

substantial amounts of energy are consumed by HVAC systems, for example painting 

processes where the work area needs to be maintained at a specific pressure and air 

quality.  

At the plant level, much of the energy efficiency improvements are encompassed as part 

of a generic Energy Management System (EMS) which would typically involve energy 

audits and monitoring. The investment required to improve the energy efficiency in this 

level could vary significantly. This could include minor costs of replacing light bulbs 

with energy saving ones (which could yield limited energy saving) or significant costs 

of restructuring of the heating systems to parts of the factory. In any case, without any 

prior justification it would be infeasible for a company to continuously invest in facility 

improvements.  

The other group of energy consuming activities occurs on a ‘Process’ level where 

energy is consumed by various production processes required to manufacture a product. 

This includes ‘pre-production processes’ such as material preparation, ‘production 

processes’ like the machining of features, and ‘post-production processes’ such as 

inspection. From this perspective, the existing research work typically has investigated 

areas for energy improvement which relates either to the improvement of operational 

procedures or machine design. The improvement in operational procedures could 

include minimising idle time in a process through better production planning or 

improving the actual transformational process through more effective process planning. 

Likewise the improvement in machine design could include elimination/reduction of 

non-essential activities (e.g. coolant, lubricant) or a more sophisticated approach to 

recovery of waste energy (e.g. kinetic or heat). These improvements are of particular 

interest to the equipment manufacturers as they maximise the efficiency of the 

machines. However such investigations have failed to identify the energy hotspots 

throughout the manufacturing system and therefore without appropriate justification, the 

end users of such equipment would not be able to continuously invest in replacing old 

machinery to improve energy efficiency.  

This highlights a need for energy transparency across a production facility so that 

energy hotspots can be identified. The integration of energy considerations at the plant 

and process perspective into a ‘product’ perspective would give manufacturers an 
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effective indication of which activities and processes are energy intensive and/or energy 

inefficient. Hence this research uses this ‘product’ perspective to systematically identify 

the total energy required to manufacture a product which in this thesis is referred to as 

the Embodied Product Energy as shown in Figure 7.1.  

Although a LCA is typically used to analyse the environmental impact and energy 

consumed across the entire product life cycle, there are a few concerns with utilising 

LCA for energy analysis. These include the data intensive and time consuming nature of 

LCA studies. In addition, within an LCA analysis the energy consumption are modelled 

based on unit mass of material processed. This focus on the use of material mass 

presents a number of shortcomings, which include: 

1. In most cases, the complexity of features within a product rather than the 

absolute mass of material removed or formed determine the energy required 

to carry out the process. 

2. Similarly, in most processes, the manufacturing parameters (e.g. feeds, 

speeds, oven temperature, range and rate of paint spray) significantly 

influences the total energy consumption.  

3. Finally varying operational conditions such as idle time, number of set ups, 

part load etc. would impact the energy requirement within a process.  
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Figure 7.1: EPE represented by Plant and Process activities in a Product Viewpoint
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Therefore the research in this thesis investigates a more in-depth analysis of energy 

requirements based on product design features, manufacturing parameters and 

operational procedures. Such analysis would enable engineers and designers to identify 

the energy hotspots during production and facilitate process design optimisation, 

production and process planning improvements as well as product design 

enhancements. In this approach the energy data from each of the three aforementioned 

perspectives has to be integrated within an energy model as shown in Figure 7.2. 

7.3 A Framework for Modelling Energy Flows within a Production 

System 

In order to develop a detailed breakdown of energy consumption within a production 

facility, there is a need to systematically model the flow of energy across various 

processes. This research has generated a framework, termed ‘Embodied Product 

Energy’, EPE, to model the energy required to manufacture a unit product. In this 

framework, the energy consumption is categorised into two groups: a) Direct Energy 

and b) Indirect Energy. The Direct Energy (DE) represents the energy utilised by the 

manufacturing processes which includes pre-production, production and postproduction 

activities (e.g. casting, machining, spray painting, inspection, etc). 

 

Energy 
Model 

Product

Process
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Setup 

operation

Plant
Transportation Heating & 

Lighting

operation

production 

Pre production Post-production 

Figure 7.2: Integration of energy information from each of the ‘plant’, ‘process’ and ‘product’ 
perspective into a singular energy database 
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The Indirect Energy (IE) is the energy consumed by activities required to maintain the 

‘environment’ in which the production processes are carried out within a production 

plant (e.g. lighting, heating, ventilation, etc.). The IE also extends to storage facilities 

like warehouses and cold storage rooms. The systematic attribution of IE and DE for all 

the processes required to manufacture a product provides the total embodied product 

energy which represents the sum of the DE and IE values for all processes used. An 

overview of the EPE framework is illustrated in Figure 7.3. A combination of theory or 

empirical studies is required to determine the values of the DE and IE and is further 

described in Chapter 8.   

This framework combines energy consumption on a ‘plant’ perspective and on the 

‘process’ perspective to determine the total EPE. A breakdown of IE and DE 

consumption for each process can support decision making involved in energy 

optimisation and rationalisation within a manufacturing facility. It is also possible to 

extend the framework to other non technical processes such as office administration, 

manual handling or transportation, however these are not considered in this thesis.  
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Figure 7.3: Overview of the framework showing the IE and the DE
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A simple example of a product, i.e. an elbow pipe, has been used to illustrate the 

application of the framework in relation to the manufacture of a unit product. There are 

three processes required to manufacture the elbow pipe: casting, grinding and 

inspection. These are depicted in Figure 7.4. 

7.4 Direct Energy  

The Direct Energy (DE) is defined as the energy consumed by various production 

processes required to manufacture a product. In the EPE framework, the DE has been 

further divided into: (i) Theoretical Energy and (ii) Auxiliary Energy. The Theoretical 

Energy (TE) is defined as the minimum energy required to carry out a process (e.g 

energy required to melt a specific amount of metal during casting or removing a specific 

amount of material during a machining operation). In most cases, the value of TE for a 

process can be calculated based on existing knowledge and/or appropriate mathematical 

models as shown in Chapter 4. In applications where the energy values cannot be 

calculated, TE can be estimated from previous empirical studies or literature such as 

SEC tables such as the one shown in Table 4.8.  

The Auxiliary Energy (AE) is defined as the energy consumed by supporting activities 

and auxiliary equipment within a process (e.g. generation of vacuum for sand casting, or 

pumping of coolant for machining). In some production processes, the auxiliary energy 

can be significantly higher than the theoretical energy required for the process. 
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Figure 7.4: Manufacturing process of an elbow pipe.
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The author also recognises that within some processes there are further divisions of 

energy consumption within Direct Energy; for example, the energy loss in the form of 

heat in the casting process or the waste energy in the form of noise and vibration within 

a cutting process.  

However due to the requirements for the development of a generic framework for a 

large variety of production processes, this breakdown of energy wastage has not been 

included in the current EPE framework. This is because the energy consumed as a result 

of the wastage varies from process to process as well as from equipment to equipment. 

Its inclusion in a generic representation is therefore infeasible. In this research such 

energy inefficiencies can be represented in the calculation of the total energy 

consumption as described in Chapter 8.   

In the case of the elbow pipe, the TE for Process 1 which is casting would be the energy 

needed to melt the metal during the casting process and the AE would be the energy 

required by auxiliary activities that supports the casting process such as the generation 

of vacuum for green sand moulding and the hydraulics required to lift the mould. The 

total direct energy for an elbow pipe is the sum of all the theoretical and auxiliary 

energies required by various processes needed to manufacture the pipe as depicted in 

Figure 7.5.  
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Figure 7.5: Direct energy required to manufacture an elbow pipe.
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7.5 Indirect Energy  

The Indirect Energy (IE) is the energy consumed by activities required to maintain the 

‘environment’ in which the production processes are carried out. Broadly speaking, the 

IE for a product consists of the energy consumed by all the processes required to 

manufacture the product (note that storage and transportation between equipment can be 

also classified as individual processes). Products are typically manufactured in batches 

of various quantities, and therefore the IE needs to be attributed to a single unit as a 

function of throughput.    

There are several ways of attributing the IE consumption to various processes within a 

factory. These are described in detail in Chapter 8. In this research, the attribution of IE 

is achieved through the definition of a manufacturing zone which is defined as an 

environment within a production facility (e.g. department, cell, clean room etc.) 

requiring uniform ambient energy. In the case of the elbow pipe, three manufacturing 

zones have been identified, as each process has different indirect energy requirements as 

shown in Figure 7.6. For the casting process heat extraction and ventilation fans and 

lighting are required, for grinding, environment air filtration and lighting are required 

and finally for inspection, standard lighting and ventilation are needed. The total IE for 

a product is the sum of IE required by each zone involved in the manufacture of the 

product for the period of manufacture.  
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Figure 7.6: Indirect energy required to manufacture an elbow pipe.
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7.6 Embodied Product Energy  

The Embodied Product Energy is defined as the total energy required by the processes 

both on a direct level and indirect level. The term ‘Embodied Energy’ is typically used 

to define the energy spent in manufacturing a product, extraction of material, or to fulfil 

a service (Brown, 1996). In this thesis the term ‘Embodied Product Energy’ has been 

used to refer to the energy used in manufacturing products.  The EPE framework allows 

the breakdown of energy consumption for each process to be clearly attributed to a 

product as illustrated in Figure 7.7. In this approach, each process can be established 

independently and brought together to provide a holistic picture of the overall energy 

consumption. The format also allows for other non-manufacturing processes to be 

evaluated using a similar template. For example the process of transportation of the 

finished goods to a warehouse for storage could be assessed in a similar manner to a 

production process requiring DE and IE and included within the framework. More 

detailed description of how each category of energy consumption is included in the 

calculations of total EPE will be provided in Chapter 8.  
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Figure 7.7: Total Embodied Product Energy of elbow pipe.
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7.7 Key Assumptions made within the EPE framework   

A number of assumptions have been made when putting the EPE framework together. 

One of the major assumptions is that the products analysed are produced through 

discrete manufacturing and that the energy consumed by the manufacturing system can 

be expressed in Joules. The framework does not account for manual labour as it is 

beyond the scope of this research. It also does not take into account the embedded 

energy within capital goods such as machinery, equipment and the building. The list of 

key assumptions have been summarised in Table 7.1. 

Assumptions Comments 

1. 
The energy consumed by the processes 
and activities can be expressed in the 
form of Joules  

The International System of Units for 
energy is in Joules (J). 

2. 

The energy consumed in a 
manufacturing facility can be broadly 
categorised into Direct and Indirect 
Energy 

Literature reviewed in this area have made 
similar classifications to energy 
consumption in manufacturing facilities.    

3. 
Manual labour does not contribute to the 
embodied energy of the products within 
this framework 

Energy expanded by a person is difficult to 
account for and as such has been excluded 
from the framework. 

4. 

Non manufacturing processes such as 
administrative activities can be evaluated 
as a process and the energy can be 
attributed to products in a similar fashion. 

Administrative activities can be viewed as a 
process with a IE and DE component (e.g. 
for clerical work the IE would be air-
conditioning and the DE would be the 
energy consumed by the computers) 

5. 
The products analysed through the 
framework are produce through discrete 
manufacturing  

The scope of the framework has been 
limited to just discrete manufacturing as 
most consumer products (toys, cars, 
consumer electronics etc.) are produced in 
this manner. 

6. 
Energy embedded in the machines, 
equipment and building are not 
accounted for in the embodied energy. 

The focus of the framework is to establish 
the energy embodied in the product being 
manufactured and not the equipment that 
makes it.   

7. 

The indirect energy can be attributed to 
an area and the throughput of that area 
is known so that the average indirect 
energy consumption per part can be 
established. 

Indirect energy can be calculated based on 
the types of energy consuming equipment 
present to maintain the environment of the 
area or by taking energy readings of the 
equipment in that area.  

  Table 7.1: List of assumptions in the EPE Framework.

Comment [Y6]: Assumptions1
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7.8 Chapter Summary 

This chapter has introduced the energy modelling framework which is based on the 

definition of the Direct Energy and the Indirect Energy. The DE can be further divided 

to the Theoretical Energy and Auxiliary Energy required by production processes. The 

energy consumed by a manufacturing facility is accounted for by attributing the process 

to a zone which is an area with uniform ambient energy requirement. The total 

embodied product energy is the sum of the DE and IE. Detailed considerations of DE 

(the methods of deriving data) and the IE (e.g. attribution of IE to multiple product 

streams) within the framework is discussed in the next chapter.   
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Chapter 8 Modelling Direct Energy and Indirect 
Energy  

8.1 Introduction 

The previous chapter provides an overview of the EPE framework. In this chapter, the 

calculations of DE and IE within the framework will be explained along with the 

various methods of obtaining relevant energy data. Also further energy analysis of the 

product, process and plant are introduced in the form of “energy efficiency ratios”. An 

example is also used to demonstrate how DE and IE are calculated.   

8.2 Modelling Direct Energy and Indirect Energy  

As outlined in Chapter 7 the EPE framework is based on two main categories of energy 

consumption i.e. Direct Energy (consisting of Theoretical and Auxiliary energy) and 

Indirect Energy. An overview of the EPE framework in relation to the manufacture of 

Product A with n production processes is shown in Figure 8.1. The calculation of DE 

and IE is based on the data for energy consumption which is mainly electrical energy. In 

line with most life cycle analysis methods, the energy required for manual activities 

(e.g. manual assembly) has been excluded from the scope of this research. The methods 

for data collection required by the EPE framework will be discussed in greater detail in 

the next section of this chapter.  
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Figure 8.1: Overview of energy the Embodied Product Energy framework
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8.3 Data collection for EPE framework    

The accuracy of the calculated values for DE and IE to a large extent is dependent on 

the availability and quality of data on energy consumption within a manufacturing 

facility. In addition, the source and the quality of the input data would impact the 

relevance of the results to a specific manufacturing system. There are three main 

methods identified by this research for collecting (or generating) the energy data for 

modelling DE and IE: 

i. Empirical measurements,  

ii. Use of published data and,  

iii. Use of mathematical models.  

In practice, the most preferred method will be to directly measure the energy used by 

each production process and the supporting activities within the manufacturing facility. 

However the number and the range of processes and the variety of the supporting 

activities used within a typical production system makes this infeasible. Therefore, in 

cases where such information cannot be obtained through direct measurements, it is 

possible to utilise the data that is published in previous studies or available through the 

equipment manufacturer, as long as the variations/relations with process being 

considered are known and understood. In some applications where the data is not 

available through empirical studies or published sources, a mathematical model for the 

energy consumption within a process can be developed. The appropriate methods of 

data collection for TE, AE and IE are included in a flow diagram as shown in Figure 

8.2. It should be noted that in most cases, the empirical data may differ from the values 

obtained from the mathematical models, as in practice most processes require more 

energy due to losses from friction, heat and other inefficiencies.   
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Figure 8.2: Establishing the data collection method for TE, AE and IE
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8.3.1 Empirical Measurements 

The most appropriate method of customising an energy model for a manufacturing 

facility is through directly collecting energy data for various production processes. This 

can be achieved through the use of simple energy meters with or without data loggers to 

measure the electricity consumption of the production processes, the supporting 

activities and services required by the factory infrastructure.  

An example of an energy meter is the Chauvin Arnoux C.A 8335 Qualistar Plus which 

provides an on screen graphical display of the energy consumed and enables data to be 

logged and recorded, as shown in Figure 8.3. It can provide real time displays of the 

energy consumption and also record data which can be exported to a PC. A dedicated 

data logger can also be used which is more cost effective. Figure 8.4 shows an example 

of a Chauvin Arnoux data logger L562 monitoring voltage and current in a load centre.  

Another method of obtaining energy data is through industrial smart meters used in 

empirical studies of processes. This is an integrated system composed of sensors, 

processors and analysers to capture, transfer, and identify energy flows in 

manufacturing systems. Smart metering tracks not only the energy consumed but also 

the characteristics of the specific power consumption over time, enabling different 

operating states to be identified. This enables the distinction between the theoretical and 

auxiliary energy used by a process. 

 

Figure 8.3: The Chauvin Arnoux C.A 8335 Qualistar Plus and the graphical outputs when used with the 
Dataviewer Pro 
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Therefore the ability to generate the power profile using energy data enables us to 

distinguish between the amount of energy used to carry out the process and the energy 

used by supporting activities. For example a typical power profile generated through a 

smart metering system has been illustrated in Figure 8.5. This indicates the total energy 

used within a machining cycle with the variations in the power profile indicating the 

Theoretical and Auxiliary energy used by the machine tool within a machining cycle. 

TE is the minimum energy required to carry out the transformation process which in the 

case of milling is the Tip energy (energy used by the tool tip to cut the metal). The rest 

of the power consumed is due to energy required during the start up and idle phases 

which is classed as Auxiliary Energy within the EPE framework.  
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Figure 8.4: A Chauvin Arnoux data logger recording energy data off a load centre

Figure 8.5: Power profile graph show with the area under the graph in green denoting the TE and the 
yellow are denoting AE. 
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8.3.2  Use of Published Data in EPE Framework 

Although the use of empirical data provides the most accurate method of measuring the 

DE and IE values, in most applications the attainment of a complete set of energy data 

through this method is unfeasible due to complexity, cost and available resources. In 

such cases, the use of published or available data from various sources should be 

considered. There are a growing number of energy inventory databases such as UPLCI 

and CO2PE! (see Section 4.6) that are being generated through international research 

activities. Table 8.1. provides a list of similar databases that provide energy data for a 

range of processes. This provides a convenient method to access a large amount of 

energy data for a wide range of production processes that are being considered in these 

studies.  

Another source of energy data is available from a large number of past research related 

to energy analysis of various production processes. A comprehensive list of such 

publications has been identified by this research and is summarised in Table 8.2. 

However, it should be noted that the majority of these research have adopted a list of 

assumptions in their studies. The relevance of these assumptions for the case of the 

production process being modelled needs to be carefully considered.  

Focus Name of Data or Source Type (book/database) 
Creator/ 
Authors 

Processes 
 

Unit Process Life Cycle 
Inventory, UPLCI 

Database 

cratel.wichita.edu/uplci/ 
Wichita State 
University 

Cooperative Effort on Process 
Emissions in Manufacturing, 
CO2PE! 

Database 

www.mech.kuleuven.be/co2pe!/index.php 
University of 
Leuven 

Energy Analysis of 108 
Industrial Processes 

Book 
Brown et al. 
(1985) 

Energy Analysis of Thermal 
Chemical and Metallurgical 
Processes 

Book 
Szargut et al. 
(1988) 

Energy Efficiency in Motor 
driven systems 

Book 
Parasiliti and 
Bertoldi (2003) 

Materials 
Inventory of Carbon and 
Energy, ICE 

Database  

www.bath.ac.uk/mech-eng/sert/embodied/ 
University of Bath 

Materials and 
Processes 
 

EcoInvent2000  
Database 

www.ecoinvent.ch  

Swiss Centre for 
Life Cycle 
Inventories 

Manufacturing Processes for 
Engineering Materials (5th eds) 

Book 
Kalpakjian and 
Schmid (2008) 

Table 8.1: List of sources for process and material energy information  
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8.3.3 Use of Mathematical Modelling to Generate Data for EPE framework 

Another method of ascertaining energy data is via a theoretical approach to model the 

energy used by production processes. Mathematical equations (some of which are based 

on first principles) can be used to calculate the energy requirements from a range of 

parameters such as mass, temperature, hardness, and other processing variables.   

Table 8.2: List of published research work on energy consumption of processes and equipment (*indicate 
studies that have been compiled by Gutowski et al., 2009) 

Domain Area Reference 

Process 

Wafer fabrication Murphy et al. (2003)* 

Nanoscale manufacturing Zhang et al. (2006)* 

Carbon nano fibre production Khanna et al. (2008)* 

Semiconductors Williams et al. (2002); Branham (2008)* 

Injection Moulding Mattis et al. (1996)* 

Sand casting Dalquist and Gutowski (2004)*; Schifo and Radia (2004) 

Grinding Baniszewski (2005)*; Ghosh et al. (2008) 

Laser Machining Chryssolouris (1991) * 

Metal Cutting Sandvik  Coromant (1996)* 

Bandsawing Sarwar et al (2009) 

Machining Munoz and Sheng (1995) * 

Cold Forming Kuzman and Peklenik (1990) 

Steel forging Kubo et al. (1999) 

Waterjet machining Kurd (2004)* 

Machine 
Equipment 

Machining 

Toenissen (2009)* 

Dahmus and Gutowski (2004)* 

Kordonowy (2001)* 

Vijayaraghavana and Dornfeld(2010) 

Herrmann et al. (2007) 

Devoldere et al. (2008) 

Draganescu et al. (2003) 

Injection moulding  

Thiriez and Gutowski (2006)* 

Joseph (2003) 

Kanungo and Swan (2008) 

Electric Motors El-Ibiary (2003) 
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For example in the casting process, the energy, E, required for melting a specific 

material can be calculated using the Equation 8.1 (Ashby, 2008): 

mc(Tm-T) + mL    [Equation 8.1] 

Where, 

m     :  Mass (kg) 

C     :  Specific heat capacity (kJ/kgK) 

Tm  :  Melting temperature (K) 

T    :  Temperature of metal before melting (K) 

L    :  Latent heat of melting (kJ/kg) 

For some processes such as cutting, specific energy consumption values (energy 

consumed per unit of material processed) for various material types have been 

established through empirical studies (Kalpakjian,and Schmid, 2008) and the energy 

requirements for that process can be established by using the specific energy 

consumption values multiplied by the amount of material processed. Whilst these 

models may not always be an accurate representation of the actual case being analysed 

due to the use of a singular energy consumption rate, they serve to provide a good 

approximation of energy data in the absence of empirical energy data.    

A similar approach can be adopted to calculate the total IE used by a facility through a 

mathematical model. For example the energy required to heat a room can be established 

through heat transfer equations as shown in Equation 8.2 (Lienhard and Lienhard 2008): 

ᇱᇱݍ ൌ ݄ሺ ௦ܶ െ ஶܶሻ  [Equation 8.2] 

Where, 

 ᇱᇱ : conductive heat flux (W/m2)ݍ

݄   : convection heat transfer coefficient (W/m2K) 

௦ܶ  : surface temperature (K) 

ஶܶ : fluid temperature (K) 

Some commonly used processes and the respective simplified energy equation is 

summarise in Table 8.3. The energy equations are an approximation of the basic energy 

requirement (i.e. energy for melting, bending, vaporising etc) and more accurate 

mathematical models can be used if known.  These simplified mathematical models can 

be used within the EPE framework, in two different ways: 

Comment [Y7]: Changed sentence 
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i. In applications where the energy data cannot be obtained through empirical 

studies and are not available within published literature. In such cases, through 

identification of appropriate process parameters, the TE, AE and IE for a process 

can be calculated using the appropriate mathematical model.  

ii. In cases where the total energy used for a process has been determined through 

an empirical study, however the independent measurement of the TE and AE do 

not correlate. In such applications, the value of TE can be established through 

the use of appropriate mathematical calculations, which in turn enables the 

deduction of AE for that process. Again, this could also be applicable to IE.  

 Process 
Technology 

Process Type Example 
Energy 

requirement
Equation Reference 

F
or

m
in

g 

Metal Casting and 
heat treatment 

processes 
Sand Casting 

Energy to melt 
metal 

mc(Tm-T) + mL 

m     :  Mass (kg) 

C     :  Specific heat capacity (kJ/kgK) 

Tm  :  Melting temperature (K) 

T   : Temperature of metal before melting (K)

L    :  Latent heat of melting (kJ/kg) 

 

Ashby et al., 
2008 

Processing of metal 
powders, ceramics, 

glasses and 
superconductors 

Sintering 
Energy to melt 

material 

Processing of 
polymers 

Injection 
moulding 

Energy to melt 
the polymer 

Bulk deformation 
processes 

Forging 
Energy to 

deform/bend 
metal 

fV 
f : specific forging energy (kJ/m3) 

V: volume of part to be forged (m3) 
Kalpakjian,and 
Schmid,2008 

C
u

tti
n

g
 

Material removal 
processes 

Machining 

Specific 
energy 

requirements 
in machining 

UV 
U : specific cutting energy (kJ/m3) 
V: volume of part to be removed (m3) 

Kalpakjian,and 
Schmid, 2008 

Material removal 
processes – 

abrasive, chemical, 
electrical and high 

energy 

EDM 
Energy to 
vaporise 
material 

mLv 
m   :  Mass (kg) 
Lv  : Latent heat of vaporisation (kJ/kg) 

 

Ashby et al., 
2008 

Jo
in

in
g 

Joining and 
fastening processes 

Welding 
Energy to melt 

metal 

mc(Tm-T) + mL 

m     :  Mass (kg) 

C     :  Specific heat capacity (kJ/kg) 

Tm  :  Melting temperature (K) 

T   : Temperature of metal before melting (K)

L    :  Latent heat of melting (kJ/kg) 

 

Ashby et al., 
2008 

Table 8.3: Establishing the Theoretical and Auxiliary Energy for some common processes.
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8.4 Calculation of Total DE within EPE Framework 

Once the TE and AE for a process have been established either from one or a 

combination of the three data collection methods described in Section 8.3, the sum of 

the TE and the AE represents the total Direct Energy for that process, as shown in 

Figure 8.6.  

Typically within a production system, a number of processes are required to 

manufacture a product. Assuming a product requires n processes, the total Direct 

Energy required to manufacture a product can be represented as shown in Equation 8.3: 

 

஺ܧܦ ൌ ∑ ሺܶܧሺ݅ሻ஺ ൅ ሺ݅ሻ஺ܧܣ
௡
௜ୀଵ ሻ    [Equation 8.3] 

Where:   

 ,஺ is the total Direct Energy associated with Product Aܧܦ

 ,ሺ݅ሻ஺ is the Theoretical Energy of Process i associated with the manufacture of Product Aܧܶ

 .ሺ݅ሻ஺ is the Auxiliary Energy of Process i associated with the manufacture of Product Aܧܣ

 

 

 

  

DEA

TE(1)A

AE(1)A

TE(2)A

AE(2)A

TE(n)A

AE(n)A

Process 1 Process 2 Process n

IE(2)A IE(n)AIE(1)A

Σ TE(i)A

Σ AE(i)A

Σ IE(i)A

IEAProcess 1 Process 2 Process n

Figure 8.6: Calculating Direct Energy is the sum of all TE and the AE for the processes required to 
manufacture Product A. 
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8.5 Calculation of Total Indirect Energy within EPE Framework  

Each process within a production system requires a specific environment in which to 

operate, and therefore consumes a certain amount of Indirect Energy. The total IE for a 

production system is the sum of these individual IE values for various processes as 

shown in Figure 8.6.  

There are several ways of attributing a proportion of this total IE required to 

manufacture a unit product. The first and the most basic method is to divide the total IE 

value by the number of products produced for a specific period thus averaging the 

energy consumed by the infrastructure and services to each product manufactured.   

The second, more accurate but more complex method is based on two stages. In the first 

stage the total indirect energy is apportioned to the floor area and/or volume of space 

occupied by a single piece of processing equipment or a number of pieces of processing 

equipment within a manufacturing cell. In the second stage, the IE attributed to each 

process (or a group of processes) is divided by the total number of products going 

through that process or cell. These two methods are described in more detail in 

Appendix 1. 

The research reported in this thesis has adopted a hybrid of these two methods through 

the definition of manufacturing zones which are defined as an area with uniform 

ambient energy requirements (e.g. similar lighting, heating and ventilation 

requirements). In this method the IE for each manufacturing zone is identified and 

calculated, and then this IE value for each zone is divided by the number of products 

processed in that zone for a specific period, as depicted in Figure 8.7. This figure 

illustrates a case with two manufacturing zones for a specific period during which six 

products are processed in Zone 1 and four are in Zone 2. The machining and polishing 

processes in Zone 1 require similar lighting intensities and ventilation whereas the 

inspection process requires higher lighting intensities as well more effective air-

conditioning.  
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In this approach, the IE attributed to product A in zone x (i.e. ܧܫ௭௢௡௘ሺ௫ሻಲ
) can be 

calculated based on total Indirect Energy consumed within zone x (i.e. IEzone(xTy)) within 

a specific time frame, Ty (where Ty can be an hour, a shift, a week) divided by the total 

throughput of Product A through Zone X (TPzone(xTy)A) for time frame Ty as expressed in 

Equation 8.4: 

௭௢௡௘ሺ௫ሻಲܧܫ
ൌ ௭௢௡௘൫௫ܧܫ  ೤்൯ / ܶܲ௭௢௡௘൫௫ ೤் ൯஺       [Equation 8.4] 

Where, 

௭௢௡௘ሺ௫ሻಲܧܫ
 is the indirect energy attributed to Product A for Zone x during time Ty 

௭௢௡௘൫௫ܧܫ ೤்൯ is the indirect energy consumed by zone x during time Ty  

ܶܲ௭௢௡௘൫௫ ೤்൯஺ is the throughput of Product A through zone x during time Ty 

Consequently, the total Indirect Energy required by Product A requiring m 

manufacturing zones can be represented as Equation 8.5: 

஺ܧܫ ൌ ∑ ௭௢௡௘ሺ௝ሻ஺  ௠ܧܫ
௝ୀଵ  [Equation 8.5] 

  

IEA IEA

Machining and Polishing Inspection

Total IEzone1

IEAIEA
IEA

Total IEzone2

IEA IEA

IEA

IEAIEA

Figure 8.7: IE is attributed to the product based on the zone it is produced in
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8.6 Calculation of Embodied Product Energy (EPE) 

The previous sections have detailed the methods to calculate the total DE and IE 

required to manufacture a product. Thus, the total Embodied Product Energy for 

Product A (i.e. EPEA) is the sum of the total DE and IE consumed during the 

manufacture of Product A, as depicted below: 

஺ܧܲܧ ൌ  ∑ ሺ݅ሻ஺ܧܦ ൅ ∑ ௭௢௡௘ሺ௝ሻ஺ܧܫ
௠
௝ୀଵ

௡
௜ୀଵ        [Equation 8.6] 

This equation can be further expanded to include the values of TE and AE as depicted 

in Equation 8.7 (see Equations 8.3 and 8.6).   

஺ܧܲܧ ൌ ∑ ሺܶܧሺ݅ሻ஺ ൅ ሺ݅ሻ஺ܧܣ
௡
௜ୀଵ ሻ ൅ ∑ ௭௢௡௘ሺ௝ሻ஺ܧܫ

௠
௝ୀଵ      [Equation 8.7] 

The calculations for total Embodied Product Energy for Product A are illustrated in 

Figure 8.8.  

 

IEzone(1)A

Zone 1

IEzone(2)A IEzone(m)A

Process 1

AE(1)A

TE(1)A

DE(1)A

Process 3

AE(3)A

TE(3)A

DE(3)A

AE(2)A

TE(2)A

DE(2)A

Process 2 Process n

AE(n)A

TE(n)A

DE(n)A

Zone 2 Zone m

Manufacturing Facility

Total Direct Energy of Product A

Total Indirect Energy of Product A

Total Embodied Product Energy of Product A

Figure 8.8: A graphical representation of the EPE framework showing the sum of the TE, AE and IE to 
establish the embodied product energy of Product A
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8.7 Defining Product, Process and Plant Efficiency Ratios  

The assessment of a product’s environmental performance involves a range of 

considerations and is often a difficult and complex task. The comparison of energy 

performance of a product simplifies this process providing a more focused scope for 

assessment. In recent years, there has been an increase in the number of energy labels 

that have been applied to products. These energy labels (e.g. EU label and the US 

Energy Star) have provided consumers with energy information about the performance 

of the product in relation to energy through efficiency ratings. The implementation of 

these labels through legislation and policies has empowered consumers to select 

products with higher energy efficiencies. In addition, manufacturers are increasingly 

forced to improve the energy efficiencies of their products in order to remain 

competitive. However these energy labels only provide an indication of the energy 

efficiency of the products during the ‘use’ phase. Policy makers are increasingly aware 

of the need to ensure energy efficiencies are established throughout the life cycle of the 

product by encouraging efficiencies during the production phase of these products. 

Thus, energy management standards such as ISO 50001 (ISO, 2010) have been 

implemented to help manufacturers monitor and reduce energy consumption within 

their facilities. Energy labelling and benchmarking have also recently been expanded to 

cover production facilities (Plant Energy Performance Indicator), however for such 

complex and integrated systems, comparisons of overall energy use can be difficult as 

each facility is often unique in the services required and the range of products produced.  

The author asserts that the evaluation of energy consumption of a manufacturing system 

through a product perspective as proposed in this research enables the energy efficiency 

of processes, plants and product to be evaluated within the production phase of a 

product life cycle. Using the product as a functional unit, the energy used by the 

processes or production system can be assessed for energy productivity which is defined 

as energy that “add value” during the production of the product. To achieve this, a 

number of ratios relating to TE, DE, and IE have been identified. The ratios compare 

the productive energy versus non-productive energy and enable the efficiency of a 

process and production system to be quantified. These ratios are described in the next 

sections of this chapter.   
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8.7.1 Process Efficiency Ratio 

In this research, ‘process’ is referred to as a manufacturing process which can be 

supported by a number of machines to undertake an activity. For example, the process 

efficiency of a cutting process with just a single 5 axis CNC machine would depend on 

the efficiency of the single machine. In a process supported by more than one resource, 

such as an assembly line, the process efficiency is thus dependant on the efficiency of 

the individual machines summed together. For simplicity, it is assumed that 1 process is 

supported by 1 primary resource (i.e. machine). Complex processes can be viewed as a 

number of smaller processes which can be evaluated individually. The process 

efficiency ratios therefore assess the productivity of the resource used to support the 

process. 

The minimum energy (i.e. the Theoretical Energy) required by the process is compared 

against the energy required by the resource (i.e. the Direct Energy). The comparison of 

the theoretical energy required for a process and the total direct energy consumed by the 

resource carrying out the activities indicates the proportion of energy that has created 

“added-value”. Therefore the Process Efficiency Ratio for a process n when 

manufacturing Product A, ܴܧ௣௥௢௖௘௦௦ሺ௡ಲሻ is defined as TE divided by DE. The value of 

this ratio is always between 0 and 1, as shown in Equation 8.8. A higher value 

of ܴܧ௣௥௢௖௘௦௦ሺ௡ಲሻ (i.e. values closer to 1) is indicative of a smaller percentage of AE, and 

therefore signifies a more efficient process.  

Conversely, a lower value of ܴܧ௣௥௢௖௘௦௦ሺ௡ಲሻ (i.e. values closer to 0) denotes an energy 

inefficient process. A graph of these ratios for various processes required to 

manufacture a product, as depicted in Figure 8.9 can easily be used to identify the 

inefficient processes which require further consideration, improvements and possible 

investment throughout a product’s process chain.  

 

0 ൏ ௣௥௢௖௘௦௦ሺ௡ಲሻܴܧ  ൌ  
்ாሺ೙ಲሻ

஽ாሺ೙ಲሻ
 ൏ 1     [Equation 8.8] 

Where, 

 ௣௥௢௖௘௦௦ሺ௡ಲሻ is the process efficiency ratio for process n when manufacturing product Aܴܧ

ሺ௡ಲሻܧܶ  is the theoretical energy required by process n when manufacturing product A 

Comment [Y8]: Change 7 
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 ሺ௡ಲሻ is the direct energy required by process n when manufacturing product Aܧܦ

The overall ܴܧ௣௥௢௖௘௦௦ሺ஺ሻ for a product can also be determined by replacing the TE and 

DE values of the individual processes for the overall TE and DE values for the product 

as shown in Equation 8.9. This would provide an indication of the overall productivity 

of the processes used to manufacture product A.  

0 ൏ ௣௥௢௖௘௦௦ሺ஺ሻܴܧ  ൌ  
்ாಲ

஽ாಲ
 ൏ 1     [Equation 8.9] 

Where, 

 ௣௥௢௖௘௦௦ሺ஺ሻ is the process efficiency ratio for the manufacture of Product Aܴܧ

TEA is the total theoretical energy required during the manufacture of Product A 

DEA is the total direct energy required during the manufacture of Product A 

 

8.7.2 Product Efficiency ratio 

Similarly, the “Product Efficiency Ratio” (ERproduct) compares the total theoretical 

energy required in the manufacture of a product to the total embodied product energy 

consumed during the production phase. The ERproduct indicates the proportion of 

productive energy that has “added-value” in the manufacture of the product. The 

ERproduct is determined by the ratio of the total TE of the product over the total EPE of 

the product and is between 0 to 1, as shown in Equation 8.10. A higher value of 

ERproduct (i.e. values closer to 1) indicates a smaller percentage of energy was consumed 

by the auxiliary and indirect processes and activities, thus in general signifying greater 
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Figure 8.9: Graphical plot of the process efficiency ratios for n processes
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efficiencies of the processes used to manufacture the product. On the other hand a lower 

value (values closer to 0) of the ERproduct means that a large amount of energy was 

unproductive (i.e. non-value adding) during the manufacture of the product. This could 

be due to inefficient processes and/or non-value adding activities and services such as 

lighting, heating and ventilation. The ratios for each product can be plotted in a graph to 

compare the efficiencies between the products, see Figure 8.10.  

0 ൏ ௣௥௢ௗ௨௖௧ሺ஺ሻܴܧ  ൌ  
்ாಲ

ா௉ாಲ
 ൏ 1   [Equation 8.10] 

Where, 

 ௣௥௢ௗ௨௖௧ሺ஺ሻ is the process efficiency ratio for product Aܴܧ

TEA is the theoretical energy required by product A 

EPEA is the embodied product energy of product A 

 

8.7.3 Plant efficiency ratio 

Lastly, the “Plant Efficiency Ratio”, ERplant is the ratio of the total direct energy 

required to manufacture a product to the embodied product energy of the product. The 

ERplant indicates the proportion of energy that has been used for the processes required 

to manufacture a specific product over the total energy consumed by a production 

plant/system during the manufacture of that specific product. Like the previous two 

ratios, the ERplant is between 0 to 1 as shown in Equation 8.11, where values closer to 1 

indicate minimal indirect energy consumption by the services required by the facility 

infrastructure compared to the production process and is hence indicative of an efficient 
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Figure 8.10: Graphical plot of the product efficiency ratios for n products



 

   

Chapter 8  117 

 

production plant/system. Low values of ERplant (values closer to 0) however indicate 

that a large proportion of energy is consumed by non value-added activities (i.e. the 

indirect energy consumers such as lighting, heating, ventilation) and signifies 

ineffective use of energy during production.  

0 ൏ ௣௟௔௡௧ሺ஺ሻܴܧ  ൌ  
஽ாಲ

ா௉ாಲ
൏ 1   [Equation 8.11] 

Where, 

 ௣௟௔௡௧ሺ஺ሻ is the plant efficiency ratio for a plant or production system during theܴܧ

manufacture of Product A 

DEA is the total direct energy required in the manufacture of product A 

EPEA is the embodied product energy of product A 

 

In companies where the production activities are within a single production plant, the 

ERplant is a clear indication of the efficiency of the production plant which may be used 

in a benchmarking exercise as a comparison against other companies as shown in Figure 

8.11. In industries where the manufacturing activities are based on a number of 

production lines or systems (e.g. within the food sector), it is also possible to compare 

the efficiency of manufacturing systems within a plant.  
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8.8 Chapter Summary 

This chapter has presented the detailed calculations required to establish the embodied 

product energy within the framework proposed in this research. Based on these energy 

values, a number of simple but useful energy efficiency ratios have been defined to 

determine the productivity of the individual process, production system as well as the 

overall efficiency in relation to a product. The ERprocess can be used to assess the 

inefficiencies introduced through non-productive auxiliary energy, the ERplant can be 

indicative of the inefficiencies through the indirect energy and finally the ERproduct  

highlights both the inefficiencies caused by the auxiliary and indirect energyThe 

complexities involved in the implementation of these calculations within a typical 

production system with multiple products clearly highlight the need for the support of a 

computerised system. The flexibilities offered by existing simulation modelling 

software has been utilised to develop appropriate software support. The design and 

implementation of this energy simulation model will be discussed in Chapter 9.  
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Chapter 9 Development of the Energy Simulation 
Model  

9.1 Introduction 

This chapter describes the design and implementation of a simulation model that has 

been generated to support the application of the EPE modelling framework within 

complex manufacturing systems. This energy simulation model can be used to consider 

a number of ‘what-if’ scenarios for optimisation and improvement in energy efficiency 

in manufacturing applications. In addition, the flexibility offered by simulation 

techniques enables a wide range of variation representing process routes, batch sizes, 

production lead times, queuing times, etc. to be incorporated within the model. The 

initial sections of this chapter provide an overview of the model and describe the system 

functionality. The latter sections outline the various outputs generated by the simulation 

model. A case study is used in Chapter 11 to demonstrate capability of the energy 

simulation model.    

9.2 Energy Simulation Model 

In the Energy Simulation Model (ESM) various processes are defined as events, 

products as entities, buffers as queues, product and processing data as attributes and 

energy consumed by the products are defined through variables, as depicted in Figure 

9.1.  

 

EPE Framework
Inputs Outputs

Simulation Model

IE model

DE model

Theoretical 

Auxiliary

Statistical 
distributions

QueuesEvents

Entities Attributes Variables

• Energy consumption  per process
• Energy consumption per product
• Efficiency ratios

• Energy data for processes
• Part/component data
• Processing parameters

Figure 9.1: Inputs and outputs from the simulation model
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Statistical distributions can also be allocated within the simulation model to represent 

batch sizes, processing and queuing times, etc. The ESM model receives input data 

related to part and processing parameters and generates outputs in the form of energy 

data such as energy consumption per process and product as well as efficiency ratios.  

In practice, different batches of products may be manufactured. The use of a simulation 

model provides the additional functionality to address different batch sizes and the 

impact it would have on overall energy consumption and thus the embodied energy per 

product can be established. In addition different product types that have a similar 

process chain (i.e. require same resources) can also be analysed and the impact of 

different product features on energy consumption can also be examined.   

For example a larger batch size, could result in the reduced frequency of the set up and 

therefore lead to energy savings from the elimination of multiple machine start ups. The 

benefit of scale not only reduces material and labour costs but also energy costs as the 

indirect energy of the process would be attributed to a larger quantity. The simulation 

model can be used to assess the impact of varying batch sizes on embodied energy per 

product through the function of throughput time. This can allow the user to compare 

energy efficiency between achieving economies of scale and economies of scope.  

9.2.1 Users of the model 

The model can be tailored for a range of users due to the flexibility of the system. 

However it is believed that the main users of the model would primarily be designers 

and engineers. Designers who have an interest in understanding the energy consumption 

associated with a particular product can use the model to establish overall energy data 

for a product. Figure 9.2 shows illustrates how various batch sizes may have different 

EPE values even when going through similar process chains.  

 

1

Batch 1
Batch size 30

Batch 2
Batch size 40

Batch 3
Batch size 15

Process 1

AE

TE

1
AE

TE

AE

TE

Process 2 Process 3

AE

TE

Process n

Batch 3
EPE= z kJ

Batch 2
EPE= y kJ

Batch 1
EPE= x kJ

Product A Product A

Figure 9.2: The model can help with understanding the impact of different batch sizes on embodied 
energy per product. 

Comment [Y9]: Changes 5.1 
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This would provide them with an overview of the energy used to manufacture the 

product as a result of design decisions (i.e. the impact of designing a product to be made 

from injection moulded plastic instead of turned wood).   

Engineers can also use the model to assess the energy consumed by a specific process 

route and can then compare it to alternative process routes to determine better energy 

efficiency. Production planners too can assess energy requirements of various 

production plans to minimise energy consumption through examining the energy use for 

each schedule.   

The simulation software is able to read a range of energy information, and the outputs 

can be tailored to provide a range of analyses for different users. The domain 

requirements for each type of user, the possible analyses and outputs are summarised in 

Table 9.1. below. The model developed as part of the research is designed to evaluate 

the energy consumption required by the particular process chain base on the product 

features. In addition, it also tests the impact of varying production time (as a result of 

delays and queues) on embodied product energy.  Different batch sizes can also be 

varied to evaluate the impact of varying batch sizes on production time and therefore 

the embodied product energy of the manufactured part.  

User Type Data requirements and inputs Analysis and Outputs 

Designer Design features and the respective 
processes , material type . 

Energy requirement for each design 
feature. 

Engineer 

Details of processes, material type, 
energy data related to the 
resources that carry out the 
processes, data from the 
manufacturing plant. 

Energy requirement to manufacture 
the product using the set processes 
and the efficiency of the processes. 

Operator 
Energy consumption at different 
operational modes and 
configurations.  

The impact of setup changes and 
processing parameter changes on 
the energy requirement of the 
resources.  

Production 

Planner 

Schedules of the jobs and the 
processing times for each batch of 
product. 

Optimal schedule for maximum 
energy efficiency.  

Energy Manager Energy data for processing 
equipment and the facility   

Overall energy consumption of a 
facility and energy breakdown for an 
area or product.    

Table 9.1: Various domain requirements for the energy model for various users.
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9.3 Software Implementation for Energy Simulation Model 

A simulation software package called ArenaTM developed by Rockwell Automation 

(2011) has been utilised to design and implement the energy simulation model. Arena is 

widely used in both industry and academia. It is a general purpose, discrete event 

simulation software and utilises a graphical interface to simplify the model 

development. The model logic is generated through the selection of functional modules 

from the Project bar and placing them within the working area to represent the system 

that is being modelled. The range of functional modules include – “create”, “assign”, 

“dispose” etc. which when placed in the right order enable the flow of products through 

the process to be modelled. Further descriptions of these modules are described in the 

Appendix 2. Figure 9.3 provides an overview of the main working window in Arena 

and highlights the various modules and shows how they can be placed to represent a 

production system.  

 

 

  

‘Create’ Module
The product type and batch sizes 
are defined as entities here. This is 
the point that the product enters the 
system.

‘Assign’ Module
The entities can be given 
various values using this 
module.  Exact values, 
statistical and mathematical  
relationships can also be 
assigned. 

‘Process’ Module
The entities are processed 
within the module based on the 
action specif ied. Processing 
times and the  resources used 
can be specif ied. 

‘Dispose’ Module
The entities leave (removed from the 
model) the system through this 
module.  It is the ending point for 
entities in a simulation model

The Project bar
This panel here contains a list of 
different functions – the flowchart 
modules and the data modules 
used to define the process being 
modelled. 
The flowchart module shapes 
can be used to model a 
manufacturing system. 
It also contains data modules 
which provides access to the 
different spreadsheets such as 
‘entities’, ‘schedules’ and ‘queues’

Toolbar
All the other simulation features are 
accessible through the toolbar e.g. View 
settings, Animation settings, drawing tools, 
simulation run times and speeds etc. 

Module Data Spreadsheet
The data for each module can be 
edited through Arena’s spreadsheet 
interface. 

Figure 9.3: Overview of simulation window in Arena showing the different modelling modules and 
features 
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9.4 Implementation of DE and IE within the ESM 

There are primarily two major tasks involved in the implementation of DE and IE 

within the energy simulation model, as outlined below and explained in the following 

sections.  

i. Definition of the energy data required by the model 

ii. Representation of DE and IE calculations with the model 

9.4.1 Definition of Energy Data within the Model.  

Typically a wide range of data may be required for developing a simulation model. The 

range and amount of data is entirely dependent on the complexity of the manufacturing 

system and the processes being modelled. The data can be entered manually by user or 

automatically imported through spreadsheets. To allocate the data to products passing 

through the system, the ‘Assign’ module is used to tag data to an entity representing the 

product. Furthermore, the energy data is tagged to the products as “attributes” which is 

a specific value that can differ from one entity to another. Attributes can be defined and 

values can be assigned by the user. If the TE and the AE are already known for the 

particular product, the values can be entered directly as shown in Figure 9.4.  

 

Figure 9.4: Entering data directly into the model through the use of the ‘Assign’ Module
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In cases where there is a huge volume of data, it is possible to use Microsoft Excel to 

tabulate the TE and AE data for the processes and the products so that the data can be 

easily imported from databases or managed in a centralised document. Figure 9.5 shows 

a screen print of the ‘Read’ data module and the respective excel file with the energy 

data to be imported.  

The use of the ‘Read’ module reduces the need to input the energy data into individual 

‘Assign’ modules but allows the user to store the data in a single file which can be 

linked to the other ‘Process’ modules in the simulation model. In addition, since a 

majority of data loggers use Excel file formats to store data, the use of Excel provides 

compatibility between Arena and these data loggers and simplifies the data transfer 

process, especially in cases where large volumes of data are involved.  

A similar module called the ‘Write’ module can export the data to an Excel file. This 

can be useful as the graphic generation capabilities in Arena are limited. In Excel 

complex charts and data formatting can be used to present the results in a clear and 

concise manner, as will be demonstrated in Section 9.5. The export of data to Excel 

provides greater flexibility for further data analysis due to Excel’s versatility in data 

processing.  

 

 
Figure 9.5: Using MS Excel to store the data and exporting the data into Arena
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9.4.2 Representation of DE and IE calculations within the model  

As outlined in Chapter 8, in applications where empirical data is unavailable, DE can be 

established through mathematical models which can also be represented within the 

ESM. The equations used to calculate the energy consumption of the product at each 

process is defined through the ‘Variable’ module in Arena. A ‘Variable’ is an element 

of information that reflects the characteristic of the system. In contrast to attributes, 

variables are not tied to any entities (i.e. Products) but applied at the system level. The 

variables are accessible by entities and can be changed by any entity. The data input for 

the variable can be specified using ‘Attributes’ and the equation is then built in a 

separate ‘Assign’ module in the form of an expression.  

In this chapter, the example of a casting process is used to describe the representation of 

IE and DE calculations. For example, to establish the TE of casting, the following data 

is required: mass of the product (m), the latent heat of fusion (L), the specific heat 

capacity (C), melting temperature (Tm) and the room temperature (T). All these can be 

specified within the ‘Assign’ module as attributes with a specific value as shown in 

Figure 9.6. To calculate the energy consumed by a casting process, Equation 9.1 [mL 

+mC(Tm-T)] included in Table 9.2, is used to correlate the attributes to a variable which 

calculates the energy consumed for the process for one entity. Table 9.2 also shows the 

equation used to establish the TE of a Casting process and Equation 9.2 is the 

expression of this equation in the Arena model.  

 
Figure 9.6: Data on the casting process is entered in the model through the ‘Assign’ module as attributes
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 Process 1: 
Casting 

Theoretical Energy 

Actual 
equation 

mL +mC(Tm-T) [ Equation 9.1] 

Key: 

m = mass    (kg) 

T = room temperature  (K) 

C = specific heat capacity  (kJ/(Kg.K)) 

L = latent heat of fusion  (kJ/kg) 

Tm= Melting temperature  (K) 

Equation 
defined in 
the model 

casting_mass * latent heat of fusion + casting_mass * specific heat capacity  * (melting 
temperature - casting room temperature ) [Equation 9.2] 

Key: 

casting_mass = mass     (kg) 

casting_room_temperature = room temperature  (K) 

specific heat capacity = specific heat capacity  (kJ/(Kg.K)) 

latent heat of fusion = latent heat of fusion  (kJ/kg) 

melting temperature= Melting temperature  (K) 

The equations relating to the AE of the process are defined in the same manner. For 

example in a casting process, the AE is derived from the losses through heat generation, 

sand preparation, as well as the operation of the hydraulic system to lift and pour the 

molten metal. The values for each of these are first defined as attributes and then 

correlated through the variable which sums the individual components of AE. The 

equation for AE for casting is shown in Table 9.3, and denoted by Equation 9.3. The 

‘Variable’ modules within the Arena model representing the equation of TE and AE for 

the casting process is shown in Figure 9.7.  

Process 1: 
Casting Auxiliary Energy 

Equation 
defined in 
the model 

 AE Casting heat generation + AE Casting pump + AE Casting sand preparation [Equation 9.3] 

Key: 

AE Casting heat generation  = energy losses through heat generation    (kJ) 

AE Casting pump = energy required for the pumping of hydraulic fluid     (kJ) 

AE Casting sand preparation  = energy required to prepare the sand for                (kJ) 

                                                    the mould for casting     

Table 9.2: Actual equation used to establish TE compared with the equivalent used in the simulation

Table 9.3: The expression used in the ‘Assign’ module to represent the sum of the various AE of the 
casting process 
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Similarly, as detailed in Chapter 8, the IE of a manufacturing zone is a function of the 

throughput of that zone. As such, the duration in which a product spends in a process 

can be used to determine the throughput and consequently the IE that can be attributed 

to the single part.  

The actual duration which a product spends in the process can be defined within the 

‘Process’ module in Arena. The cycle time for the process for the particular product can 

be defined as a constant singular value or can be defined as a mathematical or statistical 

expression (see Figure 9.8). To illustrate the possibility of modelling statistical 

relationships, the duration of the casting process has been modelled based on a normal 

distribution. Other statistical relationships can be expressed in the software and the 

appropriate relationship can be used as and when they are defined based on specific 

requirements. For example, if the cycle time, CT, is not constant but varies according to 

a normal distribution, then it can be expressed as Equation 9.4 – 

 

Figure 9.7: Calculating the TE and AE for the casting process using the ‘Assign’ module to specify an 
equation 
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NORM( Mean , StdDev )  [Equation 9.4] 

Where,  

NORM indicates a Normal distribution 

Mean is the mean value of the cycle time for the process 

StdDev is the standard deviation for the cycle time for the process.  

 

In a similar manner the start time, the processing time and the queuing time for a 

process in the ESM are represented using a number of appropriate attributes that can be 

assigned to various entities. For example, the simulation model is able to assign an 

attribute ‘Start Time’ as the product enters the process which is the current simulation 

time denoted as ‘TNOW’. ‘TNOW’ is a time stamp that the software gives each entity 

when it enters or leaves an event, (see Figure 9.9). Using these time attributes for an 

entity, the IE for a product can be established using the Equation 9.5 as outlined in 

Chapter 8. The expression used in Arena to represent the calculation for IE is shown in 

Table 9.4 and denoted as Equation 9.6.  

 

Process 1: Casting Indirect Energy 

Actual equation 

ܣሺ݉ሻ݁݊݋ݖܧܫ  ൌ ௭௢௡௘ሺ௠ሻ/ܶܲ௭௢௡௘ሺ௠ሻ஺ܧܫ [Equation 9.5] 

Key: 

 ௭௢௡௘ሺ௠ሻ஺ is the indirect energy attributed to Product A in zone mܧܫ

IEzone(m) is the indirect energy consumed by zone m per hour 

TPzone(m)A is the throughput of Product A per hour in zone m 

Model equivalent 

IEzone(m)A = IEzonem /  ( 60/ ( TNOW - arrive time in casting )) [Equation 9.6] 

Key: 

IEzone(m)A =  indirect energy attributed to Product A in zone m 

IEzonem = Indirect energy consumed by zone m per hour          

TNOW = time when entity leaves the process    

Arrive time in casting = time when the entity arrives at the process    

Table 9.4: The equation used in the framework and the equivalent expression used to represent the IE in 
the simulation model 
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Figure 9.8: Specifying the process time within the ‘Process’ module. The process time can be expressed 
as a constant value or as a statistical or mathematical expression. 

Figure 9.9: The Assign module can be used to denote the IE equation which records the time a product 
spends in a process 
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In this chapter a batch of one has been used to describe the model. As described in 

Section 9.2. the effect of multiple product types and impact of larger batches can be 

explored within the model.     

The create module provides the flexibility of adjusting the number of batches that are 

being manufactured as well as the size of the batch. As shown in Figure 9.10, the 

batching details can be specified through the ‘Create’ module.  The model works out 

any queue times or delay times and records the time so that each entity has its unique 

log of processing times and wait times.   

As the indirect energy and auxiliary energy consumption are represented as a function 

of time, the energy consumed by each entity can be established by the model depending 

on the time it takes the entity to pass through the processes.  

 

 

 

  

Figure 9.10: Using the create module to set the number of batches as well as different batch sizes.

Comment [Y10]: Change 5.2.  
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9.5 Output from the Simulation Model 

Once the relevant parameters have been assigned to the processes they can be brought 

together to generate data. There are three main outputs incorporated in the ESM model 

as outlined below and described in the remaining sections of this chapter:  

1. The Real Time Data related to Process Flow  

2. The Embodied Product Energy Data 

3. The Energy Graphs 

9.5.1 The Real Time Data related to Process Flow 

In the simulation model the process flow is represented through the flow diagrams 

which can be animated during the simulation run. An example of a process flow for the 

manufacture of an elbow pipe with three processes, namely Casting, Grinding and 

Inspection is shown in Figure 9.9. In order to maintain simplicity and clarity a 

hierarchal modelling approach has been adopted. The three processes of casting, 

grinding, inspection have been modelled individually and each process has been further 

defined using a ‘Sub model’. The sub model allows the main model to display high 

level information and allows for greater detail to be included in a separate modelling 

window. Figure 9.10 shows the three sub models for casting, grinding and inspection 

processes. The use of the sub models enables complex processes that require multiple 

activities to be decomposed into smaller blocks and also ensures that the correct 

information for that process is included. This also eliminates any confusion between the 

data requirement for different processes. As can be seen in Figure 9.10, the data 

specification for each process can be fairly substantial, the sub models allow each 

process to be handled and managed individually and thus if there are changes to the 

operational parameters, it would be easier to locate and edit the data within the 

appropriate model or submodel.  

 ‘Sub models’ ‘Create’ ‘Dispose
’

‘Assign’ 

 

Figure 9.11: Process flow created for the Elbow pipe using the four main Arena modules
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Casting Process
component 1

Assign values to

component 1
and IE for P1

Calculate TE  AE

0

Submodel for Casting

Casting Process
component 1

Assign values to

component 1
and IE for P1

Calculate TE  AE

     0

Submodel for Grinding

Casting Process
component 1

Assign values to

component 1
and IE for P1

Calculate TE  AE

0

Submodel for Inspection

Figure 9.12: The simulation model for the elbow pipe showing the top level simulation window along 
with the sub model windows with the data input and calculations for each process 

Process Flow 

The manufacturing process 
flow is modelled and shown 
here. 

1.
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9.5.2 The Embodied Product Energy Data    

The second output is the energy data that can be calculated through the modelling 

engine. The energy values for TE, AE and IE which were previously defined as 

‘Variables’ are stored and displayed within the modelling window. In addition to 

providing an overall EPE output, the data for each energy component has been broken 

down so that the TE, AE and IE values for each process can be represented. The 

efficiency ratios are also displayed here as shown in Figure 9.11. During a simulation 

run, the energy data for each entity (i.e. product) varies depending on the mathematical 

relationships or statistical distributions that have been specified. For an overview of the 

energy consumed by all entities the data has to be exported and charted in Excel as 

described in the next section.  

 

Figure 9.13: The output of the simulation model, the values for TE, AE and IE are displayed alongside 
the efficiency ratios  

Embodied Product Energy data 

The TE, AE, IE and efficiency ratios 
for each process are recorded here.  
The final EPE values for the product 
are also displayed here.  

2. 
Entity32 
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9.5.3 The Energy Graphs 

There are 5 different charts created from the data that has been exported to Excel from 

the ESM. These are: 

a) Process Energy Charts  

b) Breakdown of average EPE by Process  

c) Numerical Display of EPE and Energy Efficiency Ratios 

d) Column Chart of overall EPE for the Product  

e) Column Charts of Energy Efficiency Ratio  

An example of a process energy chart is provided in Figure 9.12 which represents the 

breakdown of average values of TE, AE and IE for various parts for Process 1. In this 

figure the black line on the chart represents the EPE value for each entity in Process 1 

which has been plotted on the primary axis and the colour lines are used to represent the 

TE (green), AE (yellow) and IE (red) plotted using the secondary axis. Finally, the 

column chart in Figure 9.12 provides breakdown denoted by the respective colours. 

Both the line chart and column chart is shown in Figure 9.14a.  

The average EPE of each process for Product A is also displayed in a column chart with 

the breakdown of the energy components displayed as the series as indicated by the 

green (TE), yellow (AE) and red (IE), see Figure 9.13. The ERprocess, which denotes the 

efficiency of the process, is also plotted within the same graph on the secondary axis so 

the efficiency of the process can be compared against the energy intensity of the 

process.  

The average EPE value and the Energy Efficiency Ratios for Product A are displayed 

numerically as shown in Figure 9.14c. The average EPE value has also been plotted in a 

column chart with the process displayed as series within the column, see Figure 9.14d. 

The three efficiency ratios are also displayed in a column chart as indicated in Figure 

9.14e.  
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Figure 9.14: An example of the process energy chart showing plot of TE, AE and IE for each entity in 
Process 1. Numerical value at the top indicates the average energy consumed 

Figure 9.15: Chart showing average embodied energy by process. ERprocess for each process are plotted 
on the secondary axis 
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Figure 9.16: Overview of the energy graphs in Excel a) Process Energy Charts, b) Efficiency Ratio Charts, c) Chart of EPE for each product over time, 

d)Average EPE and ER ratios for the product, e)Average EPE and ER ratio per process, f) Breakdown on EPE by Process. 

Energy Graphs 

The outputs from Arena are imported into Excel and the energy data 
for each entity is charted against time to give an average EPE 
value. Efficiency ratios are also charted base on average data.   

3.

a.

b. c. d.

e.
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9.6 Chapter Summary  

This chapter has described the design and implementation of the energy simulation 

model and its outputs. It has also shown that use of a simulation tool can provide greater 

modelling flexibility and greater transparency into energy consumption within 

manufacturing systems. The simulation model is built through creating a process flow 

using flowchart type modules in which product and manufacturing data is assigned. The 

embodied energy is attributed to the product as it moves through the system and the data 

can be exported to Excel where it is presented graphically.  

The research foresees two uses of this software i) the exploration of “what if” scenarios 

to see how changes in process and production operation can impact energy consumption 

and ii) using the breakdown of energy flows and the modelling outputs as a supporting 

tool to improve product design.  

The understanding of how different batch sizing or production scheduling may impact 

energy consumption can aid production planners and engineers in the day to day 

operation of the plant and provide insights for future production planning. In addition, 

the breakdown of energy consumption provided by the simulation can not only be used 

to support decisions for operational improvements but also upstream processes like 

design, as illustrated in Figure 9.15. The application of the energy simulation model to 

support the design process will be described in Chapter 10. In chapter 11 a case study is 

used to illustrate the applicability of the model to support both system and product 

design.  

 

 

Design for Energy 
Minimisation

Final 
Products

Operational 
Improvements

Energy Simulation
Model

Product 
Design

Process 
Planning

Manufacture

DatabaseSimulation Engine

Figure 9.17: The application of energy simulation model to aid operational improvements and product design 
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Chapter 10 A Design for Energy Minimisation 
Methodology 

10.1 Introduction 

This chapter discusses the use of the EPE framework to improve the design process of a 

product. A new design methodology, which aims to minimise the energy consumption 

during the production phase of a product, termed Design for Energy Minimisation 

(DfEM), is proposed in this chapter. In order to be able to define the context and scope 

for DfEM, there is a need to understand the existing design processes and other relevant 

‘Design for X’ (DFX) approaches. Therefore the chapter begins with a brief overview 

of existing design processes and the evolution of DFX, before outlining the details of 

the DfEM and its application within centralised and distributed design applications.   

10.2 Overview of Design for Energy Minimisation 

Design plays a significant role in determining the environmental impact of a product, as 

much as 70% of the environmental damage of a product is established at the start of the 

design activity (Rebitzer, 2002) as shown in Figure 10.1. The energy simulation model 

as discussed in Chapter 9 can be used to improve both the design of products and the 

operation of manufacturing systems. So as to understand the applicability of the energy 

simulation model to the design process, the context for the design process and DfEM 

methodology will first be discussed in the next few sections.  

 

Figure 10.1: The determination and generation of environmental impacts in a product’s life cycle 
(Rebitzer, 2002) 
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10.3 An Overview of the Existing Design Process 

The design process involves a sequence of activities to enable a concept or an idea to 

develop into a detailed solution. The related activities are grouped together where 

certain decisions are made at the end of that stage and the level of detail and finality of 

the design increases with each subsequent stage. There are many different design 

models that can be applied depending on the nature of the product and the scope of the 

product development. A common design model, and the one adopted by this research, is 

by Pugh (1991) which consists of three generic design stages: 1) Conceptual Design, 2) 

Detail Design and 3) Manufacture as shown in Figure 10.2. 

Once the product design specification has been established, the aim of the conceptual 

design stage is to generate ideas by searching for essential problems, combining 

working principles and selecting a suitable concept. The second stage is detail design 

which develops the concept chosen at the previous stage into a more concrete proposal 

with specifications of geometry, materials and tolerances of all parts of the product. 

Production costs and robust performance are the main concern at this stage. Finally the 

focus of the third stage, manufacture, is to minimize the component and assembly cost.  

 
Figure 10.2: The three main design stages - concept design, detail design and manufacture as proposed 

by Pugh (1991) 
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10.4 Evolution of Design for X 

Traditionally design methods were focused on form and function. With the industrial 

revolution and the start of mass production, products were initially designed for 

producibility. Subsequently, the focus of design methods expanded to include quality 

(Taguchi, 1986), safety (Hammer, 1980) and assembly (Boothroyd and Dewhurst, 

1983). The development of the Design for Assembly (DfA) methodology sparked a 

proliferation of various analytical techniques that guide designers towards integrating 

various issues into product design, marking the start of design methodologies that came 

to be known as ‘Design for X’ (Govil and Magrab, 2000). One such method, namely 

‘Design for Manufacturing’ (DfM) led to enormous benefits such as the simplification 

of products, reduction of assembly and manufacturing costs, improvement of quality, 

and reduction of time to market (Kuo, 2001). More recently with the increasing concern 

about climate change and the environmental impact of products, a new design strategy, 

referred to as ‘Design for the Environment’ (DfE) has been developed to minimise 

environmental impacts (Lewis et al., 2001).  

As design decisions greatly influence the overall environmental impact of a product 

environmental considerations should be integrated as early as possible in the design 

phase (Duflou and Dewulf, 2004). As part of the DfE approach, a range of 

environmental issues (e.g. resource consumption, end-of-life disposal, waste 

management, recyclability reusability, use of toxic and hazardous material, etc.) 

associated with a product are to be considered at the design stage. As DfE covers a wide 

scope, specific tools such as Design for Disassembly, Design for Recycling, Design for 

Remanufacture and Design for End-of-Life that focus on a particular life cycle phase or 

environmental aspect have also been developed. However as far as this research could 

establish, there has yet to be an agreed approach for the systematic consideration of 

energy minimisation across a product life cycle. Therefore this research proposes a 

novel Design for Energy Minimisation (DfEM) approach that is integrated with the 

different design stages that can be applied across the life cycle phases and compliments 

the other tools within the DfE family. An overview of the DfE tools, including DfEM, 

and their relation to the tool development timeline is shown in Figure 10.3. The DfEM 

approach presented in this research is detailed in the next section.  
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10.5 Life Cycle Approach to DfEM and Integration with the Design 

Process 

To consider the energy minimisation over a product’s life cycle, a wide range of energy 

use including material, manufacturing, use and end-of-life needs to be investigated. For 

energy consuming products (i.e. electronic products, cars, lights etc.) the ‘use’ phase 

would probably be important, however for many other non-energy consuming products 

(such as furniture and packaging), the production phase may represent a significant 

proportion of energy consumption over its life cycle. In addition the scope of issues to 

be considered is also wide ranging i.e. the type of material used, the processes used, the 

functionality of the product and how the product is transported all have energy 

implications and thus unlike the other DFX tools such as Design for Disassembly or 

Design for Recycling, DfEM needs to be considered at every phase of a product’s life 

cycle. 

The importance of energy considerations during the design process has been recognised 

within the DfE approach, however as far as this research has been able to establish, 

there has been a limited number of systematic and comprehensive approaches that can 

be integrated within the whole design process for reducing energy consumption over the 

product life cycle. The few DfE tools that consider energy consumption are often 

Design for ‘X’

Design for 
Environment

Design for 
Assembly

Design for 
Quality

Design for  
Manufacture

1977 1983 1986 1991
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Figure 10.3: The evolution of design tools over time
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qualitative and highly subjective, with the effectiveness of the tool often dependant on 

the experience of the designer. Those that are quantitative based are highly complex 

models and require information that is usually unavailable at the initial design stages as 

the product details and specifications have yet to be established and are therefore 

unknown. In addition these tools have also gained little acceptance as they are not well 

integrated within the design process.  

The DfEM presented in this research is based on a three stage design process consisting 

of concept design, detail design and manufacture as identified by Pugh (1991) and is 

commonly used within the design community (see Figure 10.4). In addition, the DfEM 

methodology should encompass the entire product life cycle so that energy 

minimisation is considered at every phase of the life cycle and to support a cradle to 

grave approach as shown in Figure 10.4. In practice, the combination of this three stage 

design process and a life cycle design approach necessitates the ability to provide 

support for design decisions at various levels of complexity as indicated in Figure 10.4. 

For example, in the conceptual design there may be a requirement for only a quick and 

simple assessment to highlight the impact of selection of various materials and 

processes. Whereas in detail design, there will be a need for much more comprehensive 

support in the form of predicting the environmental impact for various process 

chains/groups. Similarly, in a manufacturing stage there is a need for different support 

based on energy data collection, monitoring, auditing and assessment. A set of 

appropriate tools to support these varying requirements is described in the next section.  

 

Manufacture

Design for Energy Minimisation

Detail DesignConcept Design

Material Extraction Production Use Disposal

LCA

Simplified or 
Streamlined LCA

Energy Monitoring, 
Auditing and 

Control  Systems

Gap

Figure 10.4: DfEM considerations across the life cycle phases and design phases
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10.6 Tools to support DfEM in Manufacturing  

As outlined in Chapter 6, the scope of this research is limited to the production phase of 

a product life cycle. Therefore in this thesis, only the tools that provide the assessment 

of energy consumption within the production phase are considered.  

In this context, to support the different requirements within the design process, there are 

three main categories of tools that have been proposed within this research, these are   

1) Streamlined Life Cycle Assessments (S-LCA) in the Concept Design phase,             

2) Energy Simulation Models (ESM) during the detail design phase and 3) Advance 

Energy Metering Systems (AEMS) in the production phase as illustrated in Figure 10.5. 

These tools will be described further in the following sections.   
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Figure 10.5: DfEM tools for the production phase
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10.6.1 Streamlined Life Cycle Assessment 

Typically a LCA is used to evaluate the environmental impact of a product which 

includes the energy consumption during production. However for a product that does 

not yet exist it is unrealistic for a designer to have access to all the specific information 

about the materials and processes required for a comprehensive LCA at the early stages 

of product design. The analysis of different categories of environmental impact in 

relation to life cycle phases can help designers formulate the best opportunities for 

implementing these aspects into product planning (O’Shea, 2002).  

In order to minimize the complexity and time taken to conduct a full LCA, streamlined 

models and additional assumptions have been used to reduce the evaluation effort in 

traditional LCA. These condensed LCA are known as streamlined LCA (S-LCA) which 

encompasses a group of approaches designed to simplify and reduce the time, cost and 

effect involved in conducting a full LCA while still facilitating accurate and effective 

decisions. Duflou et al. (2002) have developed an Eco-PaS tool which can be applied in 

the early stage of the design process by estimating the environmental impact of a 

product based on functional requirements rather than technical parameters (which are 

often unavailable at the early design stage) needed by typical LCA applications.   

Additionally, Granta Design (2010) has developed a streamlined LCA tool called the 

Eco Audit tool (part of the Cambridge Engineering Selector (CES) suite of software) 

which uses information about product composition, processing, usage, transportation, 

and disposal. The tool then combines this with eco property data on the materials and 

processes used in the design to calculate the energy usage and CO2 output resulting 

from each stage in the product life cycle as shown in Figure 10.6. This high level 

overview is particularly useful during the first stage of product design (i.e. concept 

design) which can guide the design strategy by identifying materials and processes that 

fulfil the functional requirements at a minimal energy cost for the product. Birch et al. 

(2011) found the CES materials and processes database to be an excellent base for 

greater automation to aid the designer by suggesting alternative materials and processes 

at the design stage.  According to Giudice et al. (2005), the integration of environmental 

aspects upstream of the design process will provide the versatility necessary for 

intervention and improvement of products during their development.  
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10.6.2 Energy Simulation Model 

For the detail design phase of the design process, a greater level of detail is available in 

terms of the design specifications such as part features, dimensions and finishing. This 

information would provide an indication of the manufacturing parameters that were 

required to achieve the design specifications. The energy consumed during the 

production phase can be estimated with greater accuracy at this stage. It is therefore 

proposed that an Energy Simulation Model (ESM) can be used to evaluate the embodied 

energy of the products by modelling energy flows within the production phase of a 

product life cycle. The ESM would aid the decision making in process parameter 

selection, machine selection as well as facility services selection. The ESM would also 

bridge the gap between high level streamlined LCA tools used at conceptual design and 

those used to monitor energy consumption as part of the manufacturing stage.  

There are three main aspects to the ESM - the energy database, the simulation engine 

and a House of Quality (HOQ) based design support tool as shown in Figure 10.7. The 

energy database contains the characterisation of a range of processes. Detailed energy 

data for the processes can either be obtained from measurements within a production 

system or from established studies. The simulation approach reduces modelling efforts 

through pre existing process modules that can be applied to reflect the process chains 

required to manufacture the product for energy evaluations. The simulation engine is 

also highly flexible in the level of detail as well as the range of energy considerations to 

• Material selection 
• Process Selection

Simplified LCA

Figure 10.6: Streamlined Life Cycle Assessment can be conducted through the use of software such as 
CES EcoSelector  
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be modelled. Energy parameters can be adjusted depending on needs and the systematic 

variation of these parameters can also support optimisation analysis and ‘what-if’ 

scenario planning.     

The outputs of the simulation highlight energy hotspots that could provide the focus for 

energy improvements which can then be evaluated against design parameters using a 

HOQ based design support tool for improved product design. Details of the energy 

database, the simulation engine and the HOQ design support tool will be discussed in 

Section 10.7.3.   
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10.6.3 Advanced Energy Metering System 

The last stage of the design process is supported by Advanced Energy Metering 

Systems (AEMS) as shown in Figure 10.8. At this stage, the energy consumption within 

the manufacturing plant is the primary focus of the DfEM strategy. In order to gain an 

accurate picture of the energy consumption in manufacturing, energy management 

systems are used to track and measure the energy used in a production facility, 

providing a breakdown of energy consumption by various elements in a production 

system including both the buildings and production operations. An example of energy 

management software is Optima developed by Optima Energy Management (2010). It 

can track and monitor real time energy consumption, buys energy at best available 

prices and allows budgets and targets to be set for cost savings. Energy management 

systems depend on AEMS to provide energy data from various aspects of the 

manufacturing plant as well as data from external sources affecting energy use such as 

weather and building occupancy. AEMS provides support at the manufacturing stage 

through the monitoring and tracking of energy consumption at set time intervals, 

including real-time. Atypical consumption rates could indicate an incident or anomaly 

on the manufacturing line and could serve as an early warning system for production 

issues. The energy savings made through process and operational improvements as a 

result of changes to product design could be quantified through AEMS.   

 

  

Advanced Energy Metering System

• Energy monitoring of  Processes
• Energy demand management 

Figure 10.8: Advanced Energy Metering systems to track energy use of processes and equipment in a 
manufacturing facility 
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10.6.4 Integration of tools within the DfEM methodology  

Each phase of the design process has its own requirements and focus thereby requiring a 

different set of tools (Pei, 2009). For example, creative based tools such as 

brainstorming and the morphological box are commonly used during the concept design 

phase whilst more analysis based tools such as Failure Mode and Effects Analysis 

(FMEA) and Value Analysis are often applied to evaluate and establish the feasibility 

and robustness of the ideas as well as to determine the most appropriate method of 

realising the product concept. Although these tools can be used independently within 

each phase of the design process, clearly greater benefits could be achieved through 

integration of these tools, as the data/knowledge generated by each can support the 

decisions made in other phases. This is especially true for the DfEM methodology. 

According to Giudice et al. (2006) the environmental objective to be achieved in 

product design (strategic product related, environmental objectives) can be summed up 

in two principal categories: 

 Conservation of resources, recycling, energy recovery 

 Prevention of pollution, waste and other impacts 

These objectives can be achieved through an appropriate combination of design 

strategies some of which include: improvement of materials and energy efficiency; 

optimisation of functionality, avoidance of hazardous materials and energy efficiency, 

and, design for cleaner production and use. The data recorded by the AEMS can be used 

to support the ESM by providing more thorough and precise energy consumption values 

for the production facility and hence improving the accuracy of the simulation model. 

This in turn can improve material and process selection within CES by providing energy 

data sets relating to materials and processing that are customised according to the 

manufacturing plant, thereby increasing its accuracy. In addition, the ESM is also able 

to provide production improvements to increase the energy efficiencies and 

optimisation within production. These improvements can be factored in during the 

concept design phase so that design decisions are a result of optimised functionality as 

well as minimised energy embodiment. Through the integration of the suite of tools for 

DfEM, other design strategies can be established in combination so as to meet the 

environmental objectives. An overview of the DfEM tools is shown in Figure 10.9.  
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Figure 10.9: Application of various tools in a product design process to aid energy minimisation
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10.7 Using Energy Simulation Model (ESM) as part of DfEM 

As shown in Section 10.6.2. the Energy Simulation Model consists of an energy 

database, a simulation engine and a decision support tool. The ESM is primarily based 

on the energy modelling framework described in this thesis. The simulation engine is 

supported by an energy database which would provide a back end database comprising 

of material, process and production energy related data. Together with the product and 

engineering specifications, the simulation engine would be able to establish the energy 

consumed during the production phase of the product. The outputs of the simulation 

will indicate the energy ‘hotspots’ which can then be used to provide focus for energy 

improvements within manufacturing. So as to ensure that these improvements do not 

impede the design and quality of the product, they can be assessed through the decision 

support matrix which evaluates the energy optimisation solutions against the design 

specification of the product.  

Details of the database, the simulation engine and the decision matrix will be further 

described in the following sections.   

10.7.1 Energy Database  

The energy database is the knowledge base element of ESM. Initial data can be 

determined either theoretically or empirically and statistical relationships can eventually 

be established to train the simulation engine to predict the amount of energy consumed 

by the processes and activities for different production parameters such as batching, 

queue times, process routing and process set ups. 

As the energy model becomes more robust, the data output from the predictive models 

can in turn be added into the energy database to build up a comprehensive 

understanding of the energy requirements of processes and manufacturing systems. It 

should be noted that the data related to energy consumption within logistics and reverse 

logistics activities can also be included. The energy database also provides the 

simulation engine with the primary energy information such as energy values associated 

with the manufacturing processes and auxiliary activities. Figure 10.10 shows an 

example of a database model structure.  
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10.7.2 Simulation Engine 

The simulation engine described in detail in Chapter 9 is used to calculate and 

synthesise the energy use and energy efficiency scores for the product which draws on 

the data within the energy database described earlier together with product and 

engineering specifications that would be available at the detail design phase. The energy 

breakdown and efficiency ratios generated by the simulation engine would allow the 

designers or engineers to target the most energy intensive processes for energy 

minimisation. This can provide a focused area for energy optimisation which is essential 

when the parameters that contribute to overall energy consumption are numerous. The 

outputs from the simulation engine can be used to populate a list of manufacturing 

parameters that can be energy optimisation within in the decision support tool which 

forms the next stage of the DfEM process. Figure 10.11 shows a screen print of the 

simulation in Arena and the results output in Excel.  
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Figure 10.11: The model in Arena (top) with data output in Excel (bottom) showing the average EPE for 
a batch of products 
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10.7.3 House of Quality based Design Support Tool 

The decision support tool is the final aspect of the ESM. Using the energy breakdown 

and efficiency assessments obtained from the simulation engine, a range of energy 

improvement measures can be established. There are several key factors to consider 

when designing for energy minimisation. For example the reduction of material usage in 

the design through thinner walls would mean less energy is required during the 

processing of the material, or, having design features that can be manufactured in the 

same set up would eliminate the additional energy consumption for a new set up and 

energy consumed between set ups. Other factors have been listed in Table 10.1. 

These factors need to be taken into account with other design specifications and hence 

should be evaluated together. The HOQ matrix thus provides a tool for correlating the 

design specification against the manufacturing requirements to help the designer or the 

engineer arrive at an ideal solution.  

Key Factors to consider for Design for Energy Minimisation 

Design consideration Impact on energy consumed during manufacture 

Use of minimal wall thickness 
Reduces material usage and therefore the energy for 

processing. 

Use of alternative materials that 
require less energy to process 

Some materials have lower processing temperatures 
and so require less energy to process. 

Design product features so that they 
can be manufactured with minimal 

number of processes 

By minimising the number of different processes, less 
energy is required to set up the machine for a new 
process and less energy is required for holding the 

part between processes.  

Design features so they can be 
manufactured using the minimum 

number of set ups 

Having features that can be manufactured in one set 
up eliminates energy losses during and between set 

ups.  

Design products that be manufactured 
using least energy intensive processes  

Features that can be manufactured using least energy 
intensive processes will reduce energy consumption 

during manufacture. 
Eliminate unnecessary features that 

have to be manufactured using a 
separate process.  

Reduce the number of features that require separate 
operations. 

Design parts to be fabricated to near 
net shape and finish to eliminate the 

need for additional processes 

Eliminates the need for secondary operations, i.e. 
painting, polishing etc.  

Table 10.1: Key Factors to consider for Design for Energy Minimisation

Comment [Y11]: Dfem changes 
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However it is essential that improvements to the production processes can optimise 

energy use without compromising the original design specification. As such there is a 

need for a decision support tool that can evaluate the changes to the processes as well 

production against the design parameters. The House of Quality (HOQ) based design 

support tool that has been developed as part of the ESM and is illustrated in Figure 

10.12. which has been divided into 4 main areas as annotated in the diagram.  

A typical HOQ matrix correlates between different needs (e.g. engineering, 

manufacturing, design). In this tool, a range of design attributes and production related 

energy improvements are assessed against each other (as shown in area 1). The design 

attributes can be derived from a product design specification and would include 

considerations such as aesthetics, ergonomics, costs, functionality and safety.  

The production related improvements follow the embodied product energy framework 

and is divided into 3 different categories of Theoretical Energy (TE), Auxiliary Energy 

(AE) and Indirect Energy (IE). The energy improvements for the TE are typically 

related to the type of manufacturing process used, for the AE, to the production 

equipment used and for the IE, to the processes used to maintain the facility 

environment.  An example of energy improvement under IE would be the use of 

efficient lighting systems. The improvements can vary depending on the production 

facility.  

Depending on the output of the simulation model priority may be given to one category 

over the other (as shown in area 2) and through a correlation matrix (as shown in area 

3), changes to the manufacturing parameters can be evaluated against the functional 

requirements of the product to derive the design that has minimal energy consumption 

during production phases of a product life cycle but also meets the design 

specifications. For example if the output of the simulation indicates that the TE has the 

greatest contribution to the energy used, and energy can be optimised through the 

reduction of cutting speeds. The impact of lower cutting speeds is then considered 

alongside design attributes such as aesthetics. In this case it might be unfavourable as 

lower cutting speeds might result in a surface finishing that is unacceptable for the 

customer.   
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The manufacturing parameters can also be correlated to establish if they are mutually 

supporting or contradictory (shown as area 4). For example reducing feature dimensions 

might reduce cycle time and thus would be a beneficial energy improvement to both on 

the TE and the IE.  
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10.8 Application of DfEM in Centralised and Decentralised Design 

The adoption of the proposed DfEM methodology and simulation tool within a design 

process will depend on the complexity and the number of designers that are involved 

within the product development. In this thesis, two main types of design strategies have 

been adopted to explore how DfEM can be applied within various industrial 

applications. The first is based on the design of a simple product and where the majority 

of the design decisions are controlled and made centrally within a company; the second 

is based on a complex product with a large number of components and subassemblies 

where the design decisions are often distributed across several tiers of suppliers.  

In the case of a simple product design, all of these phases are typically managed by a 

single design team, whereas in the case of a complex product, more than one design 

team is often involved in the design process. In such cases a distributed design model, 

typically referred to as ‘V’ model, is adopted. The ‘V’ model was initially developed in 

Germany for the defence programs and is now commonly used in systems development 

to simplify the complexities associated with it.  

An example of complex designs that are loosely based on the ‘V’ model can be found 

within the Ford Motor company where vehicles consist of a large number of assemblies 

and sub assemblies, many of which are manufactured by their suppliers and they must 

all properly function together. According to Otto and Wood (2001), in the Ford product 

development approach, the specifications for the new vehicles are defined by the 

manufacturer, after which the product attributes are cascaded down to individual 

suppliers. In turn, these suppliers may use one of their component suppliers to 

manufacture the required subassemblies, resulting in the involvement of many designers 

at the system, subsystems, and eventually the component levels. Figure 10.13 shows the 

difference in the product development between a simple product and a complex product.  

For a simple product like a plastic chair, various energy considerations and goals can be 

defined for the product at the start of the development phase and while creating a 

Product Design Specification (PDS). The respective tools and applications are shown in 

Figure 10.14. In this case, the CES Eco Selector can be used to assess the energy 

requirements for extraction, preparation and processing of various plastics to further 

narrow down the list of materials that meet the function requirements for this product. 
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This evaluation may show that of the Acrylonitrile-Butadiene-Styrene (ABS) and 

reinforced Polypropylene (PP) can both fulfil the product specification, but PP is the 

least energy intensive to extract and prepare. After selection of the material, the DfEM 

can then be used to evaluate the various production processes that can be used to 

manufacture the chair using the PP, and provide an indication of the least energy 

intensive processes. In this case due to specific product geometry, the feasible processes 

that can be adopted are high impact injection moulding and gas assisted injection 

moulding. The evaluation of these two processes indicates that the gas assisted injection 

moulding will potentially consume more energy due to requirements for compressed air. 

This information could aid the decision making when deciding on the best method of 

manufacturing of the product and provide designers with a greater insight into energy 

consumption. Finally during the actual production of the chair, advanced energy 

metering and management systems can be used to monitor the real time energy 

consumption by injection moulding, process cooling, drying ovens, heating and 

ventilation systems as well as lighting to improve the efficiency of the production 

facility. 

Concept Design  (CD)

Detail  Design (DD)

Vehicle

System

Subsystems

Components

Manufacture (M) Manage Program

Optimize

Concept Design  (CD) Detail  Design (DD) Manufacture (M) Manage Program

ChairSimple Product

Complex Product

Planning System Level 
Design

Detail Design Testing and  
Refinement

Product
Launch

Concept 
Development

Production 
Ramp up

Design Process

Figure 10.13: Characterisation of the product development process for simple and complex products 
(Adapted from Otto and Wood, 2001) 
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The application of DfEM in large complex products requires more detailed 

consideration, as often a range of designers are involved in the design process. There 

are two scenarios in which DfEM can be applied in the creation of a complex product.  

In the first scenario, the DfEM methodology is applied independently by the design 

teams in the other levels i.e. design levels 2 and 3, as illustrated in Figure 10.15. The 

individual teams can apply the DfEM method and specify the design features with the 

goal of minimising energy requirements over the components life cycle for the parts 

they were contracted to design.   

In the case of a car, the design of various components such as a headlight is either 

subcontracted to a tertiary level design firm or the OEMs are responsible for the design 

management of the part. They can apply the DfEM methodology on a local level, i.e. to 

the light bulb to determine the best way to design and produce the part for energy 

minimisation as from which develop their own energy product specification.  

The light bulbs which are on the tertiary supply tier are then integrated with the 

headlight module through a secondary level design firm, who could implement the 

DfEM methodology on the module. The DfEM methodology is used independently 

throughout the supply chain as the suppliers or design firms in the respective tiers are 

responsible for the component that they have been subcontracted to design/produce.  
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Figure 10.14: Application of DfEM to a Simple product with one design level
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The energy specifications of each individual component or module can be centrally 

managed through a database so that information from the respective tier can be gathered 

and amalgamated for the level above. The information can also be added to the 

Ecodesign Knowledge System (Dewulf, 2003) which provides a centralised system for 

environmental and design knowledge which provides a platform for sharing knowledge 

that can be transferred to other design projects (Dewulf and Duflou, 2004).  

The overall energy information of the product, i.e. the car, can be established through 

the energy specifications of each individual part and component. This system is 

particularly useful in light of the EuP directive where manufacturers have to state the 

amount of the energy used in the manufacture of a product. The database can also serve 

as a knowledge base for OEMs, contractors and subcontractors to share knowledge 

which can help their DfEM process as well as benchmark against other competitors.  

This bottom up approach would provide manufacturers with the opportunity to improve 

the energy performance of their manufacturing facilities based on their capabilities and 

capacity. However for small contractors with limited resources, implementing an in-

house DfEM process might not be possible.  
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Design Level 2

Design Level 3
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‐‐‐‐‐‐‐‐‐‐‐‐‐
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‐‐‐‐‐‐‐‐‐‐‐‐‐
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‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐

Specification 1.1
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐‐‐‐‐
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‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐

Figure 10.15: Independent use of DfEM across the supply chain
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In the second scenario, the team responsible for the overall product i.e. Design level 1, 

applies the design for energy minimisation to the product system (including components 

and subcomponents) and disseminates the design criteria and specifications to the other 

design teams as shown in Figure 10.16. As such DfEM needs to be employed 

throughout the “design chain” activities, and the coordination of these activities needs to 

be managed by the company at the top level to ensure the common goals are cascaded 

throughout the design chain.  

Clearly in support of this coordination process, a centrally managed database of energy 

related information needs to be made available to all the design levels. This will enable 

the designers to retrieve information related to the products at the levels above or below 

the level that they are working at. For complex products with a large number of 

components, the team at the top level may not have all the information and knowledge 

to establish the initial specification, so the database can enable the contract 

manufacturers themselves who have expert knowledge on the specific components to 

share knowledge with the design team at level 1 and enable a more realistic energy 

specification to be created in the first place. As the database grows, it would be easier 

for the company at the top to generate the DfEM specification.    
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Figure 10.16: Application of DfEM tools to distributed design for complex products such as a car 
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10.9 Chapter Summary 

Design is an integral part of any product development process and much of the 

decisions taken at this stage accounts for the majority of the financial and environmental 

cost of a product. Therefore to reduce the energy consumption of a product during the 

production phase, energy considerations need to be included at the design stage. By 

identifying where the energy is used during production and how productively it is used, 

the designer gains an insight into the energy effectiveness of the process in relation to a 

product. This knowledge can empower the designer to intelligently explore the 

suitability of a product feature, a material and consequently the chosen manufacturing 

process with energy minimisation in mind.  

The DfEM methodology presented in this chapter has been developed with the 

requirements of modern design challenges in mind and provides tools for high level 

design decisions as well as lower level energy auditing. The ESM tool specifically 

developed as part of this research bridges the gap between the two. The simulation tool 

would enable designers to do ‘what if’ scenarios to identify the most practical and 

economically feasible design improvements that could reduce the need for energy 

consumption during manufacture. The decisions for energy minimisation can now be 

taken at the early stages of the design process.  

The implementation of the EPE framework within a practical application necessitates 

the development of a decision support tool that is capable of representing the 

complexity involved in modelling and calculating the AE, TE, DE and IE for various 

processes in a typical production system. Especially for complex products like cars that 

may consist of thousands of components, a model is required to record and analyse the 

processing parameters of each component and relate it to the energy consumption that 

can be attributed to each component. This chapter has also demonstrated the 

applicability of the ESM model within the design phase and has shown how DfEM can 

be incorporated within the design chain of both simple and complex products.  
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Chapter 11 Case Studies  

11.1 Introduction 

This chapter discusses two sets of case studies that have been used to demonstrate the 

applicability of research concepts related to the Embodied Product Energy framework 

and associated simulation model described within this thesis. The chapter begins by 

providing an overview of these case studies. In the first case study, a simple example 

product has been used to demonstrate various calculations and methods for energy data 

generation described as part of the EPE framework. The second case study is used to 

evaluate the applicability of the energy simulation model and demonstrate how this 

model can be used to support the minimisation of energy consumption during 

production phase of a product’s life cycle through a combination of improvements in 

operation and product design.  

11.2 Description of the Case Studies 

This thesis has introduced several new facets to energy modelling within a production 

system through the development of the EPE framework. The energy considerations on a 

process and facility level are integrated within the framework to provide a novel 

viewpoint in energy modelling based on a product view to provide greater transparency 

of the breakdown of energy consumption and to highlight energy hotspots for further 

analysis. The case studies aim to assess the validity of the modelling approach for the 

energy consumption during the manufacture of the products. The energy framework and 

simulation model described in the earlier chapters will be used to establish the energy 

intensive processes associated with the manufacture of these products, which follows 

with an assessment of the efficiencies of the manufacturing processes and production 

system through the use of energy efficiency ratios developed in this thesis. The results 

of the analysis will then be used to support design improvements through the DfEM 

methodology previously discussed in Chapter 10. The specific issues that will be 

addressed by these case studies are: 
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 Applicability of the framework  

 The implementation of the simulation model 

 Assessment of the suitability of the efficiency ratios.  

 The use of simulation outputs to support design for energy minimisation 

The case studies have been selected to provide an exemplification of the framework and 

the simulation model. The first case study is based on a single product and is designed 

to show how the framework can be applied and to demonstrate the calculations 

involved. A simple product, an elbow pipe requiring three production processes was 

assessed using the EPE model and the DE and IE was established by using published 

data based on other similar products.  

The second case study demonstrates the capabilities of the simulation model and 

evaluates the functionality of the efficiency ratios. The results of the analysis are also 

applied to the Design for Energy Minimisation methodology to show how the energy 

simulation can be used to improve design decisions. The three metal products 1) a 

solenoid cover found in an air freshener dispenser, 2) a mini metal football table and 3) 

a bucket tooth used in excavators, have been selected for the second case study. These 

products were chosen as they were fairly simple products requiring commonly used 

manufacturing processes such as casting, milling and drilling. An overview of both case 

studies is shown in Figure 11.1. 
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Figure 11.1: Overview of case study 1 and case study 2
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11.3 Case Study 1: Application of EPE Framework in the Case of a 

Simple Product 

This case study is based on the fabrication of an aluminium alloy elbow pipe that 

requires 3 main processes in its production, namely casting, grinding and inspection. 

Each process requires a different manufacturing environment, with casting carried out 

in Zone 1, grinding in Zone 2 and ultrasonic inspection in Zone 3.  

Table 11.1 shows the processes required in the fabrication of the elbow pipe and the 

associated equations and method used to establish the TE, AE and IE. In this example, 

the elbow pipe will be denoted as Pipe A. The DE values for this product will be 

determined through theoretical equations as well as empirical methods. The assumed 

throughputs of the product are 24 units/hr for Zone 1, 20 units/hr for Zone 2 and 30 

units/hr for Zone 3 based on typical throughput rates in a production plant that makes a 

similar product. The values used in the calculations are summarised in Table 11.2.   

 Case Study 1 

 

Pipe A

Product 
Detail 

Elbow Pipe 

Material Aluminium Alloy 

Processes 
required  

Casting 
(zone 1) 

24 parts/hour 

Grinding 
(zone 2) 

20 parts/hour 

Inspection 
(zone 1)  

30 parts/hour 

TE 
Equation 

mC(Tm-T) + mL 
 
 
m, Mass of part (kg) 

C, Specific heat capacity (kJ/kg) 

T, Temperature of  metal before 
melting (K) 

Tm, Melting temperature of metal (K) 

L, Latent heat of melting (kJ/kg) 

UV 
 
 

U,  specific cutting energy (J/mm3) 

V,  volume of part to be removed (mm3) 

NPT 

N,  number of transmitters 

P,  power of transmitters (W) 

T,   duration of operation (sec) 

AE Determined empirically Determined empirically Determined empirically 

IE for each 
zone 

Determined empirically Determined empirically Determined empirically 

Table 11.1: Processes required by case study 1 and the respective equations used to establish the TE for 
the processes   
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Data Inputs for Case Study 1 

Energy 
attribution 

Parameters 

Elbow Pipe 

 

C
a

st
in

g 

TE 

m, Mass of part (kg) 0.5  

C, Specific heat capacity (kJ/kgK) 0.46  

T, Temperature of metal before melting (K) 298.15  

Tm, Melting temperature of metal (K) 1809.2  

L, Latent heat of melting (kJ/kg) 272  

AE 

Vacuum generation (kJ) 100 

Process Inefficiencies (kJ) 50 

IE 

Tp, Throughput (parts/hr) 24 

IEzone1 (kJ/hr) 4000 

G
ri

nd
in

g 
 

TE 

U, Specific Grinding Energy (KJ/mm3) 0.050   

V, Volume of material removal (mm3) 3360 

AE 

Coolant Pump (kJ) 137  

Process Inefficiencies (kJ) 60 

IE 

Tp2, Throughput of zone 2 (parts/hr) 20 

IEzone2 (kJ/hr) 1200 

In
sp

ec
tio

n 
 

TE 

N, number of transmitters 8 

P, power of transmitters (W) 0.5 

t, duration of operation (sec) 120 

AE 

Conveyor System (kJ) 76 

Process Inefficiencies (kJ) 25 

IE 

Tp3, Throughput of zone 3 (parts/hr) 30 

IEzone3 (kJ/hr) 1000 

Table 11.2: List of data inputs for Case Study 1 
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11.3.1 Calculating DE for Product A  

To establish the total DE for Pipe A the DE for each process needs to be calculated. The 

theoretical and the auxiliary energy for casting, grinding and inspection will first be 

calculated separately and subsequently added together at the end to establish the total 

DE.  

11.3.1.1 DE for Process 1 (Casting)  

The TE required by the casting process can be calculated by using Equation 8.1 which 

is the energy needed to melt the metal. Using a similar elbow pipe, it was weighed and 

found to have a mass of 0.5 kg which was then used for the calculations. As noted in 

most casting processes, the metal ingot is heated from room temperature to melting 

point which is 1809.2 K for the aluminium alloy. The equation and values for the other 

parameters are shown in Table 11.3. The main contributors to the AE of the casting 

process were the generation of a vacuum for the mould and general process 

inefficiencies. The data for AE was established empirically and is also shown in Table 

11.3.  

TE(1)A = mC(Tm-T) + mL   [Equation 8.1] 

Where, 

M is the mass of the part that is cast (kg) 

C is the specific heat capacity of the material cast (kJ/kgK) 

Tm is the melting temperature of the material (K) 

T is the temperature of the material before melting (K) 

L is the latent heat of melting of the material (kJ/kg) 

Energy Parameter Value Calculation 

TE 

m 0.5 kg 

TE(1)A = mC(Tm-T) + mL 

         =0.5*0.46(1809.2-298.15)+0.5*272 

         =   484 kJ 

C 0.46 kJ/kgK 

Tm 1809.2 K 

T 298.15 K 

L 272 kJ/kg 

AE 
Vacuum 100 kJ AE(1)A : Vacuum + Process Inefficiencies 

          =  100 + 50 
          =  150 kJ Process Inefficiencies 50 kJ 

Table 11.3: The values of the parameters for the elbow pipe for the casting process and the calculation of 
theoretical energy. 
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11.3.1.2 DE for Process 2 (Grinding)  

After casting, the part is sent for grinding to achieve the required surface finish. The TE 

required by the grinding process for Pipe A, was determined using Equation 11.1 and 

the specific grinding energy is estimated to be 0.050 kJ/mm3 as given by Rao (2000). In 

the grinding process, 3360 mm3 of material is removed from each pipe. The main 

contributors to the AE of the grinding process are the pumping of coolant and general 

process inefficiencies. The data for AE was established empirically and is also shown in 

Table 11.4.  

TE(2)A = UV  [Equation 11.1] 

Where, 

U is the specific grinding energy of the material (J/mm3) 

V is the volume of material removed (mm3) 

 

Energy Parameter Value Calculation 

TE 

U 0.050  kJ/mm3 
 

TE(2)A    = UV 

             = 0.05  X 3360 

             = 168 kJ  V 3360 mm3 

AE 

Coolant 137 kJ 
AE(2)A = Coolant + Process Inefficiencies 
           =  137 + 60 
           =  197 kJ Process Inefficiencies 60 kJ 

 

11.3.1.3 DE for Process 3 (Inspection)  

Once the part has been cast and the desired surface finish has been attained through the 

grinding process, it is sent for inspection to check for internal flaws and to ensure 

uniformity in its thickness. This is achieved through sending ultrasonic pulse-waves 

through the pipes. The TE required by the inspection process for Pipe A, is determined 

using Equation 11.2 which works out the energy required by the ultrasonic transmitters 

base on the power rating and the number of transmitters. It is assumed that 8 

transmitters each with a power of 0.5W are used in the inspection process. The final 

energy consumption of the TE is tabulated in Table 11.5. The main contributor to the 

AE of the inspection process is due to the conveyor system which provides an 

Table 11.4: The calculation of the TE and AE for process 2, Grinding
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automated transportation for the parts from the grinding process to the inspection 

process. The data for AE was established empirically and is shown in Table 11.5.  

TEሺ3ሻA : Ntrans * P *T   [Equation 11.2] 

Where, 

Ntrans is the number of transmitters 

P is the Power of transmitter (W) 

T is the duration of operation (s) 

 

Energy Parameter Value Calculation 

TE 

Ntrans 8 
TE(2)A = Ntrans * P *T   

           = 0.48 kJ 
P 0.5 W 

T 120 sec 

AE 

Conveyor system 76 kJ 
AE(3)A   = Conveyor System 
             =  101 kJ 

Process Inefficiencies 25 kJ 

 

11.3.2 Calculating IE for Pipe A  

To establish the total IE for Pipe A, the energy consumed by the services required for 

the facility needs to be calculated. The areas with uniform ambient energy requirements 

are classed as a single zone. In the case of the elbow pipe, each of the processes has 

different IE requirements thus they have been allocated to different zones. Casting has 

been denoted as Zone 1, the grinding process as Zone 2 and the inspection process as 

Zone 3.  The IE for Zone 1 is based on the energy consumed for lighting, specialised air 

conditioning and air extraction for the casting process and for Zone 2 is based on 

lighting and ventilation and, Zone 3 is based on a higher lighting density and air 

conditioning. The IE has been assumed to be 4000kJ per hour for Zone 1, 1200 kJ per 

hour for Zone 2 and 1000 kJ per hour for Zone 3. The attribution of energy consumed 

by each zone to a unit product manufactured within the zone can be calculated using the 

Equation 8.4 shown below and the results are shown in Table 11.6.  

 

Table 11.5: The calculation of the TE and AE for process 3 Inspection
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௭௢௡௘ሺ௠ሻಲܧܫ
ൌ  ௭௢௡௘ሺ௠ሻ/ܶܲ௭௢௡௘ሺ௠ሻ஺      [Equation 8.4]ܧܫ 

Where, 

 ௭௢௡௘ሺ௠ሻ஺ is the indirect energy attributed to Pipe A for Zone m per hourܧܫ

IEzone(m) is the indirect energy consumed by zone m per hour 

TPzone(m)A is the throughput of Pipe A per hour in zone m 
 

Energy Parameter Value Calculation 

IE(1)A 

IEzone1 4000 kJ/h ܧܫ௭௢௡௘ሺଵሻಲ ൌ ௭௢௡௘ሺଵሻ/ܶܲ௭௢௡௘ሺଵሻ஺ܧܫ           

= 4000/24 

= 167 kJ TPzone1 24 /hr 

IE(2)A 

IEzone2 1200 kJ/hr 
௭௢௡௘ሺଶሻಲܧܫ

ൌ ௭௢௡௘ሺଶሻ/ܶܲ௭௢௡௘ሺଶሻ஺ܧܫ           

= 1200/20 

= 60 kJ TPzone2 20 /hr 

IE(3)A 

IEzone3 1000 kJ/hr 
௭௢௡௘ሺଷሻಲܧܫ

ൌ ௭௢௡௘ሺଷሻ/ܶܲ௭௢௡௘ሺଷሻ஺ܧܫ           

= 1000/30 

= 33 kJ TPzone3 30 /hr 

 

11.3.3 Calculating EPE for Pipe A  

To establish the EPE for Pipe A, the sum of the DE for all the processes (i.e. process 1, 

2 and 3) are added to the sum of IE for the zones (i.e. zones 1,2 and 3) as denoted by 

Equation 8.6. The final EPE calculations are shown in Table 11.7. 

஺ܧܲܧ ൌ  ∑ ሺ݅ሻ஺ܧܦ ൅ ∑ ሺ݆ሻ஺݁݊݋ݖܧܫ
௠
௝ୀଵ

௡
௜ୀଵ   [Equation 8.6] 

Where, 

 ௭௢௡௘ሺ௠ሻ஺ is the indirect energy attributed to Pipe Aܧܫ

IEzone(m) is the indirect energy consumed by zone m per hour 

TPzone(m)A is the throughput of Pipe A per hour in zone m 

 

Using the EPE model, the final EPE of Pipe A, the elbow pipe is calculated to be       

1360 kJ. Of the total EPE, the DE accounted for 1100 kJ while the IE accounted for the 

balance. To assess the efficiency of the processes the efficiency ratios will be calculated 

next.  

Table 11.6: The calculation of IE for all 3 processes
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Energy Parameter Value (kJ) Calculation 

DEA 

TE(1)A 484 

DEA=  ∑ ሺ݅ሻ஺ܧܶ
ଷ
௜ୀଵ ൅             ሺ݅ሻ஺ܧܣ

 = 484+168+0.48 +150+197+101 

= 652.48 + 448 kJ 

≈1100 kJ 

TE(2)A 168 

TE(3)A 0.48 

AE(1)A 150 

AE(2)A 197 

AE(3)A 101 

IEA 

IE(1)A 167 
IEA= ∑ ሺ݆ሻ஺݁݊݋ݖܧܫ

ଷ
௝ୀଵ  

= 167+60+ 33 

= 260 kJ 

IE(2)A 60 

IE(3)A 33 

EPEA 

஺ܧܲܧ ൌ ∑ ሺ݅ሻ஺ܧܦ ൅ ∑ ሺ݆ሻ஺݁݊݋ݖܧܫ
ଷ
௝ୀଵ

ଷ
௜ୀଵ             

= 1100 + 260 

= 1360 kJ 

 

 

11.3.4 Efficiency Ratios of Pipe A 

The efficiency ratios for the processes, product and production system (previously 

described in Chapter 8) can be determined using Equations 8.8 to 8.11 as shown below. 

The calculations are summarised in Table 11.8.  

0 ൏ ௣௥௢௖௘௦௦ሺ௡ಲሻܴܧ  ൌ  
்ாሺ೙ಲሻ

஽ாሺ೙ಲሻ
 ൏ 1     [Equation 8.8] 

0 ൏ ௣௥௢௖௘௦௦஺ܴܧ  ൌ  
்ாಲ

஽ாಲ
 ൏ 1     [Equation 8.9] 

0 ൏ ௣௥௢ௗ௨௖௧஺ܴܧ  ൌ  
்ாಲ

ா௉ாಲ
 ൏ 1  [Equation 8.10] 

0 ൏ ௣௟௔௡௧ܴܧ  ൌ  ஽ா

ா௉ா
 ൏ 1   [Equation 8.11] 

 
 
 
 

Table 11.7: The calculation of the EPE for Pipe A.
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Energy 
Efficiency 

Ratios 
Parameter Value Calculation 

ERprocess 

ERprocess(1A ) 0.76 

 

0 ൏ ሻܣ௣௥௢௖௘௦௦ሺܴ݊ܧ  ൌ  
ܣ݊ܧܶ

ܣ݊ܧܦ

 ൏ 1      

 

ERprocess(1A) = 484/634  

= 0.76 

 

ERprocess(2A) =168/365 

 = 0.46 

 

ERprocess(3A) = 0.48/101.48 

= 0.0048 

 

ERprocess(2A) 0.46 

ERprocess(3A) 0.0048 

ERprocess(A) 0.59 

0 ൏ ௣௥௢௖௘௦௦஺ܴܧ ൌ
TEA

஺ܧܦ
൏ 1  

 
 ERprocess(A) = 652.48/1100.48  

= 0.59 

 

ERproduct ERproduct(A) 0.48 

 

0 ൏ ௣௥௢ௗ௨௖௧஺ܴܧ  ൌ  
஺ܧܶ

஺ܧܲܧ
 ൏ 1 

 

ERproduct(A) = (484+168+0.48)/(1360.48) 

  = 0.48 

 

ERplant ERplant(A) 0.81 

 

0 ൏ ௣௟௔௡௧ሺ஺ሻܴܧ  ൌ  
ܧܦ

ܧܲܧ
 ൏ 1    

 

ERY = 1100.48/1360.48 

  = 0.81 

 

 

The ERprocess(݊஺ሻ for Process 1A (casting), Process 2A (grinding) and Process 3A 

(Inspection) was calculated to be 0.76, 0.46 and 0.0048 respectively. The overall 

ERprocess for the manufacture of Product A was 0.59, the ERproduct for Pipe A was 0.48 

and the ERplant was 0.81.   

Table 11.8: Calculation of efficiency ratios for the process, product and production system. 



 

   

Chapter 11  172 

 

11.3.5 Analysis of Results for Case Study 1 

In the manufacture of the elbow pipe (Pipe A), the casting process consumed the 

greatest amount of energy (800 kJ) followed by grinding (425 kJ) and the inspection 

process (135 kJ), as shown in Figure 11.2. Despite casting being the most energy 

intensive, only a small proportion of the total process energy is wasted through non- 

productive activities related to IE and AE. This is apparent by the high value for the 

ERprocess for casting (0.76). However in the case of the grinding and inspection 

processes, despite being less energy intensive, more than half of the total process energy 

is due to the non-productive activities related to the auxiliary and indirect energy 

requirements. This is reflected in the low process efficiency ratios for the grinding 

(0.46) and inspection processes (0.0048), as shown in Figure 11.3.  The poor process 

efficiency of the inspection process is due to the large proportion of energy required to 

power the conveyor system in comparison to a small amount of energy required to 

power the transmitters for the inspection process.   
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Figure 11.2: Breakdown of energy consumption for the manufacture of the elbow pipe (Pipe A) 

Figure 11.3:  Plot of Process Efficiency Ratios, ERprocess(n), for each of the processes used to manufacture 
Pipe A – casting, grinding, ultrasonic inspection 
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In general, the processes required in the manufacture of Pipe A consumed more energy 

for “value added” processing (i.e. TE) than for the supporting auxiliary activities (i.e. 

AE). The theoretical energy accounts for almost half of all the energy consumed (48%) 

by the processes, as illustrated in the pie chart in Figure 11.4.  

Furthermore the comparison the TE and the EPE through the ERproduct(A) which is 0.48 

for Pipe A indicates that the product could theoretically be manufactured more 

efficiently. This highlights potential for energy improvements to the auxiliary processes 

and the provision of facilities services. For example, the operational procedures of 

production equipment (e.g. grinding machine or conveyor systems) could be further 

examined to reduce auxiliary energy consumption from idle modes of operation or 

unnecessary supporting processes.    

Overall on a facility level, the production system is fairly efficient as reflected in a high 

ERplant(A) ratio of 0.81. This is indicative that from the total energy consumed, only 19% 

of the energy can be attributed to indirect energy consumption by the facility. The ratios 

have been summarised in a column graph as shown in Figure 11.4. Despite the 

relatively small proportion of IE, further energy improvements can be made to the 

facility services in Zone 1 (Casting) as it was the highest IE consumer. For example 

heat recovery systems can be installed within the facility to minimise the energy load of 

the air conditioning systems within the casting facility.  
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Figure 11.4: Pie chart indicating the percentage breakdown of TE, AE and IE for Pipe A (left) and the 
efficiency ratios for the process, product and plant (right) 
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11.4 Case Study 2: Multiple Products  

The second case study is based on three metal products each with different processing 

requirements. The first product is a coil sheath for an air freshener dispenser and is 

called Product A in this case study. It is made of cast iron and is first cast then milled 

and inspected upon completion. The second product is a mini football table (Product B) 

first milled from a block of aluminium followed by a drilling process and finally 

inspected. The third product is a bucket tooth for an earth excavator (Product C) which 

is produced from cast iron steel and then inspected. The casting process requires a 

dedicated environmental ancillary plant services such as fume extraction and air 

filtering and is therefore categorised as Zone 1. The milling and the drilling process are 

both located in a similar processing environment that requires basic lighting and HVAC 

systems and is categorised as Zone 2. As the inspection process is automated, the lack 

of human operators mean that the ambient temperature is not as tightly regulated and as 

such the energy requirements of the environment is different to the other processes. This 

is carried out in Zone 3 in this case study. The product details and their processing 

requirements are summarised in Table 11.9.   

 Case Study Products 

 

Product A 

 

Product B 

 

Product C 

 

Product 
Detail 

Coil Sheath for an  
Air freshener Dispenser 

Mini Football Table Excavator Bucket Tooth 

Material Iron Aluminium Cast Iron Steel 

Processes 
required  

Casting 
(zone 1) 

30 parts/hour 

Milling 
(zone 2) 

25 parts/hour Casting 
(zone 1)  

20 parts/hour Milling 
(zone 2) 

30 parts/hour 

Drilling 
(zone 2)  

25 parts/hour 

Inspection 
(zone 3) 

90 parts/hour 

Inspection 
(zone 3)  

100 parts/hour 

Inspection 
(zone 3) 

60 parts/hour 

Table 11.9: Summary of product details used in the case study. 
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Several assumptions have been made in this case study. The list of assumptions have  

been compiled in Table 11.10.   

Assumptions Comments 

1. 

The mass of the casting is the 
minimum mass of metal 
required to fulfil the 
specification  

Any waste or losses during the casting process is 
accounted for as part of the AE.  

2. 

The equations used for the 
TE are representative of the 
minimum energy required in 
practice. 

The minimum energy for casting a part is the energy 
needed to raise the temperature of metal to melting 
point and the energy needed to melting it as given by 
Ashby et al. (2008)  

The equation for metal removal is based on previous 
empirical studies from which the specific cutting energy 
has been derived (Kalpakjian and Schmid, 2008) and 
is indicative of the typical energy required to cut the 
specified metal.  

The minimum energy for the inspection process is 
harder to establish. As such an equation for the 
minimum energy consumption of the transmitters was 
used to establish the TE.  

3. 
Auxiliary energy calculations 
can be expressed as a 
function of TE 

According to Gutowski et al. (2008) the energy 
consumed by the auxiliary processes can be up to 4 
times higher than the energy required to actually cut 
the material. The AE for this case study has been 
expressed as a function of TE. The values have been 
varied depending on the complexity of the feature to be 
processed and the number of separate sets up 
required to complete the job, both of which will affect 
the AE required.  

4. 
IE has been assumed to be 
different for different 
processes 

The casting process, zone 1, requires a lot more 
energy for its environment and the values have been 
estimated base on a basic casting environment with 
some lights, air filtration and temperature control and 
HVAC.  

The machining and drilling process share the same IE 
environment, zone 2, and the IE has been estimated 
based on standard lighting density and some HVAC. 

The inspection process, zone 3, has a higher lighting 
density but occupy a smaller area and thus has a lower 
IE value compared to zone 2.  

5. 

The average throughput per 
hour accounts for down times 
and queue times that occur 
over a production period 

It is possible to calculate the EPE for a particular batch 
taking into consideration the respective queue times 
and down times associated with it. However for 
simplicity and for the purpose of the case study an 
average throughput value has been used to account 
for any idle time.    

Table 11.10: List of  key assumptions associated with Case Study 2  

Comment [Y12]: Assumption 2 
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11.4.1  Data Inputs to the EPE Model 

The DE of a product requires the TE and the AE to be established. As exemplified 

through the first case study, the TE can be calculated based on equations that relate the 

part and processing parameters. For example the casting energy required is calculated as 

the sum of the energy required to raise the metal to melting point and the energy 

required to melt the metal. The milling and drilling energies are determined through the 

specific cutting energy and the volume of material that has been removed. Finally the 

inspection process is determined by the number of transmitters, the power of the 

transmitters and then operating time. As the previous case study already demonstrates 

the use of various mathematical equations in great detail, only a brief overview of the 

equations used in this case study are shown in Table 11.11.  

Due to the lack of actual energy data from the processing equipment, the AE has been 

estimated as a function of the TE. In the case of the machining processes such as milling 

and drilling, it has been reported by Gutowski et al. (2008) that the energy consumed by 

the auxiliary processes can be up to 4 times higher than the energy required to actually 

cut the material. So as to demonstrate a range of auxiliary process energy consumed, a 

range of AE has been used and varied according to the part complexity in this case 

study. The AE for the milling process for Product A has been estimated to be 3.5 times 

higher than the TE requirement (due to the need for two separate machine set ups to 

mill the features) and 2 times higher in Product B (requires only 1 set up, but requires 2 

tool changes). For the drilling process it is estimated to be 2.2 times higher for Product 

B. The AE for the casting and the inspection process have also been estimated in a 

similar manner. The full list of data inputs used in this case is shown in Table 11.12. 

The IE consumption of the zones are 8738 kJ/hour for Zone 1, 1988 kJ/hour for Zone 

2and 1500 kJ/hour for Zone 3.  

 Processes 

Casting Milling Drilling Inspection 

E
q

u
at

io
n

 

mC(Tm-T) + mL 
 
m, Mass of part (kg) 

C, Specific heat capacity (kJ/kg) 

T, Temperature of  metal before melting (K) 

Tm, Melting temperature of metal (K) 

L, Latent heat of melting (kJ/kg) 

UV 
 
 

U,  specific cutting 
energy (J/mm3) 

V,  volume of part to be 
removed (mm3) 

UV 
 
 

U,   specific cutting energy 
(J/mm3) 

V,  volume of part to be 
removed (mm3) 

NPT 

N,  number of 
transmitters 

P,  power of 
transmitters (W) 

T,   duration of 
operation (sec) 

Table 11.11: Equations used to calculate the TE of the processes used in Case Study 2 
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Data Inputs for Case Study 

Energy 
attribution 

Parameters 

Product A 

 

Product B 

 

Product C 

 

C
as

tin
g 

TE 

m, Mass of part (kg) 0.48   1.20 

C, Specific heat capacity (kJ/kg) 0.46  0.46 

T, Temperature of metal before melting 
(K) 298.5  298.5 

Tm, Melting temperature of metal (K) 1493.6  1493.6 

L, Latent heat of melting (kJ/kg) 138  138 

AE As a function of TE  (0.4)  (0.8) 

IE 

Tp, Throughput (parts/hr) 30  20 

IEzone1 (kJ) 8738  8738 

M
ill

in
g 

TE 

U, Specific Cutting Energy (J/mm3) 5.6 5.6  

V, Volume of material removal (mm3) 11510 29870  

AE As a function of TE  (3.5) (2)  

IE 

Tp2, Throughput of zone 2 (parts/hr) 30 25  

IEzone2 (kJ) 1988 1988  

D
ril

lin
g 

TE 

U, Specific Cutting Energy (J/mm3)   5.6  

V, Volume of material removed (mm3)  8965  

AE As a function of TE (kJ)  (2.2)  

IE 

Tp2, Throughput of zone 2 (parts/hr)  25  

IEzone2 (kJ)  1988  

In
sp

e
ct

io
n 

TE 

N, number of transmitters 8 8 8 

P, power of transmitters (W) 10 10 10 

t, duration of operation (sec) 12 6 18 

AE As a function of TE (3) (3) (3) 

IE 

Tp3, Throughput (parts/hr) 90 100 60 

IEzone3 (kJ) 1500 1500 1500 

 

Table 11.12: List of data inputs for case study 2 (parenthesis indicate estimated values)
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11.4.2 Use of the Simulation Model 

To automate the calculations required to establish the embodied product energy for each 

of the products, Arena was used to build a model to represent the production processes 

required in the manufacture of the products. The first step was to indicate the point 

where the product enters the system and this is done using the ‘create’ modules. Next, 

‘submodels’ were used to represent the processes casting, milling, drilling and 

inspection. As each of the products had different processing plans, the process routes 

had to be established for each product. Figure 11.5 provides an overview of the ‘create’ 

modules, ‘submodels’ and the process routes used in the simulation model.   

Within each submodel, the part and processing parameters are assigned as ‘attributes’ 

and the equations relating the parameters are entered as ‘variables’. The data inputs are 

entered through the ‘attributes’ modules and the equations are entered as ‘variables’. 

Figures 11.6 to 11.9 show the attributes (product data) and the variables (equations) that 

have been entered within the model for the four processes for respective products. As 

the entities (products) move through the system they are assigned the attributes and the 

respective energy values at each process are calculated using the variables. The model 

stores the energy information which is then shown and exported after the simulation 

run.   

 

 

 

  

Part A

zone 1 zone 2 zone 3

Casting MillingPart B

Part C

InspectionDrilling

0      

0      

0      

Figure 11.5: The ‘Create’ modules indicate the point where the products enter the system and the
‘Submodels’ represent the various production process. The products are then routed
through the system according to the processes they require 

‘Create’ modules ‘Submodels’ to represent the processes Process routing 
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Figure 11.6: Overview of the data assignments for Process 1 within ArenaTM

a) Submodel for Process 1 showing the flow of Product A and Product C. 

b) Assignments of part attributes for Process 1. The windows show the values for 
Product A (left) and Product C (right) 

c) Assignments of variables for Process 1 for Product A (top) and Product C (bottom).  
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Figure 11.7: Overview of the data assignments for Process 2 within ArenaTM

a) Submodel for Process 2 showing the flow of Product A and Product B. 

b) Assignments of part attributes for Process 2. The windows show the values for Product 
A (left) and Product B (right). 

c) Assignments of variables for Process 2 for Product A (top) and Product B (bottom). 
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Figure 11.8: Overview of the data assignments for Process 3 within ArenaTM

b) Submodel for Process 3 showing the flow of Product B. 

c) Assignments of part attributes for Process 3 for Product B 

a) Assignments of variables for Process 3 for Product B. 
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Figure 11.9: Overview of the data assignments for Process 4 within ArenaTM

c) Submodel for Process 4 showing the flow of Product A and Product B. 

d) Assignments of part attributes for Process 4. The windows show the values for Product A 
(top left), Product B (top right) and Product C (bottom centre). 

c) Assignments of variables for Process 4. The windows show the values for Product A (top 
right), Product B (top left) and Product C (bottom centre) 
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Once the attributes and the variables have been assigned and calculated, the generic 

equations for summing the individual energy components (i.e. TE, AE and IE) from 

each process are assigned within a separate module to establish the Product’s total TE, 

AE, IE and EPE. The efficiency ratios are also assigned in the same manner using the 

equations discussed in Chapter 8 in a separate module as shown in Figure 11.10. A set 

of detailed energy data is exported to Excel using the ‘write’ modules (see Figure 11.11) 

during the simulation run where the data is further evaluated and presented in the form 

of graphical charts as shown in Figure 11.12. The overall TE, AE, IE as well as the final 

Embodied Product Energy for each product is calculated and displayed under the 

process flow models after the simulation run is complete as seen in Figure 11.13.   

 

 

 

A
Efficiency Ratios

Calculate

for Product A
Calculate EPEs

export data A

Figure 11.10: The ‘Assign’ modules and the respective data inputs to calculate the EPEs (left) and the 
Efficiency ratios (right) for Product A 

Figure 11.11: The detailed energy information is exported to Excel through the use of the ‘Read/Write’
module and is created within a submodel. The screenprint shows the submodel for exporting energy data
for Product A. The inset shows the settings for the export of the TE (Process 1) for Product A  
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Figure 11.12: Graphical outputs of exported data within Excel. The final EPE and ER results for the 
three products are displayed within a single worksheet (left). The detailed energy breakdown for each
process is displayed within individual worksheets (right) 

Figure 11.13: Overview of simulation model within ArenaTM showing showing the process flow, the 
modules used for the calculation of the energy values, submodules that export the detailed energy and the
embodied energy results Product A, B and C  
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11.4.3 Results of Case Study 2 

11.4.3.1 Results for Product A  

The results produced by the ESM for Product A are summarised in Figure 11.14. and 

Figure 11.15. The total Embodied Product Energy for Product A is 1130.26 kJ, where 

Process 1 consumed 753.43 kJ, Process 2 consumed 356.32 kJ and Process 3 consumed 

20.51 kJ. The ERprocess(n) are 0.71 for Process 1, 0.22 for Process 2 and 0.25 for Process 

4. Overall the breakdown of the energy consumed by TE, AE and IE were evenly 

distributed with TE accounting for 35%, followed by the IE at 33% and the AE at 32%. 

As for the efficiency ratios, the ERproduct is 0.35, ERprocess is 0.52, and the ERplant is 0.67 

for Product A. A traffic light system has been incorporated in this ESM to provide an 

immediate visual impact on the efficiencies of the product, process and plant. In this 

system, the efficiency rates between 0 – 0.32 are represented by a red diamond, the rates 

between 0.33 – 0.66 are represented by a yellow triangular symbol and finally the rates 

between 0.67 – 1 are indicated by a green circular symbol. The use of different shapes 

in this traffic light system enables the effective use of the system in black and white 

printouts. In the case of Product A, ERproduct (0.35) is a yellow triangle, ERprocess  (0.52) 

is also a yellow triangle, and finally ERplant (0.67) is a green circle.  

 

  

Figure 11.14: Graphs showing the EPE for Process 1, 2 and 4 used in the manufacture of Product A

Figure 11.15: Graphs showing the EPE breakdown of Product A (left) and the various efficiency ratios 
for Product A (right) 
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Figure 11.16: Overview of results for Product A
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11.4.3.2 Results for Product B  

Similarly, the results produced by the ESM for Product B are summarised in Figure 

11.17 and Figure 11.18. The total Embodied Product Energy for Product B is 758.91 kJ, 

where Process 2 consumed 541.58 kJ, Process 3 consumed 200.41 kJ and Process 4 

consumed 16.92 kJ. The ERprocess(n) are 0.33 for Process 2, 0.31 for Process 3 and 0.25 

for Process 4.  

Overall the AE accounted for the largest proportion of EPE at 59% followed by the TE 

at 29% and the IE at 12%. As for the efficiency ratios, the ERproduct is 0.29, ERprocess is 

0.33, and the ERplant is 0.88 for Product B and therefore these are represented by a red 

diamond, yellow triangle and green circle respectively as illustrated in Figure 11.19.   

 

 

  

Figure 11.17: Graphs showing the EPE for Process 2, 3 and 4 used in the manufacture of Product B 

Figure 11.18: Graphs showing the EPE breakdown of Product B (left) and the various efficiency ratios 
for Product B (right) 
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Figure 11.19: Overview of results for Product B
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11.4.3.3 Results for Product C  

Like the previous products, the results produced by the ESM for Product C are 

summarised in Figure 11.20 and Figure 11.21. The total Embodied Product Energy for 

Product C is 1953.19 kJ. Process 1 consumed 1922.43 kJ, Process 4 consumed 30.76 kJ. 

The ERprocess(n) are 0.56 for Process 1and 0.25 for Process 4.  

Overall the TE accounted for the largest proportion of EPE at 42% followed by the AE 

at 34% and the IE at 24%. As for the efficiency ratios, ERproduct is 0.42, the ERprocess is 

0.40 and the ERplant is 0.76 for Product C and are represented by two yellow triangles 

and one green circle as depicted Figure 11.22.   
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Figure 11.20: Graphs showing the EPE for Process 1and 4 used in the manufacture of Product C

Figure 11.21: Graphs showing the EPE breakdown of Product C (left) and the various efficiency ratios 
for Product C (right) 
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Figure 11.22: Overview of results for Product C
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11.4.4 Analysis of the Results for Case Study 2 

As outlined in Chapter 8, a number of simple but useful energy efficiency ratios have 

been defined to determine the productivity of the individual process, production system 

as well as the overall efficiency in relation to a product. In general, the ERprocess can be 

used to assess the inefficiencies introduced through non-productive auxiliary energy, the 

ERproduction can be indicative of the inefficiencies through the indirect energy and finally 

the ERproduct highlights both the inefficiencies caused by the auxiliary and indirect 

energy. 

Product C is the most energy intensive to manufacture of the three products, with a total 

of 1953.19 kJ. Despite having the highest embodied energy, when compared with the 

other two products, the product efficiency ratio indicates that Product C (ERproduct = 

0.42) was manufactured most efficiently. However, the ERproduct is still relatively low 

and the overall energy breakdown shows that there is scope for energy reduction in the 

AE and the IE. The detailed breakdown per process shows that Process 1 which is the 

casting process accounts for majority of the energy consumption for Product C and 

energy improvements can be made to the auxiliary activities such as maintaining the 

temperature of the molten metal, sand preparation, materials handling and moulding and 

core making.  

In contrast, Product B required the least amount of energy to manufacture (758.01 kJ) 

but had the lowest ERproduct ratio of 0.29. This indicates that although a relatively small 

amount of energy was embodied in Product B, much of the energy was required for 

non-productive activities and services as represented by the high proportion of AE 

(59%). Product B also has the lowest ERprocess ratio at 0.33, which suggests that most of 

the energy consumed by the production processes is due to the auxiliary processes. A 

closer examination of the energy results shows that all three processes (i.e. processes 2, 

3 and 4) have low individual ERprocess(n) ratios (all lower than 0.35). The graphs showing 

the energy breakdown on the processes indicate that a large proportion of auxiliary 

energy is consumed by the milling and drilling processes. These two processes could be 

a starting point for energy improvements to minimise the inefficiencies associated with 

Product B. Potential energy improvements for machining processes include looking at 

operational set up to minimise idle time, which is achieved through high speed loading 

and unloading of systems or reducing set up times of work pieces and/or preloading of 
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cutting tools. Other improvements can include optimising the auxiliary processes like 

the coolant and lubricant pumps by installing variable motors or by applying an inverter 

motor and accumulator.  

Product B may have the lowest process efficiencies, but it has the best production 

efficiency as established by the ERplant ratio. It has the highest score at 0.88 whilst 

Product A is the lowest at 0.67. A closer look at the energy results for Product A 

indicates that Process 1 (Casting) accounts for majority of the indirect energy 

consumption. Product C also requires the casting process for its manufacture and energy 

breakdown shows that a significant amount of indirect energy has also been consumed. 

Therefore the building services associated with casting could be highlighted as the main 

priority for improvement and optimisation so as to reduce facility energy consumption.  

One of the other outputs generated by the ESM in cases where there are multiple 

products (or a multiple production system) are being modelled is a summary result sheet 

as shown in Figure 11.23. A comparison of the various ratios between the products as 

well as a breakdown of the embodied energy for each product by process is included in 

this summary result sheet. The summary sheet also shows the overall EPE as well the 

overall TE, AE and IE breakdown for each product. The efficiency ratios are also 

plotted against the three products. This allows for a quick comparison between products 

and clearly highlights the product that is the least or most efficient during the 

production phase.  

11.4.5 Using the Results to support Design for Energy Minimisation 

Overall the results indicate that Product C not only embodied the largest amount of 

energy, but also embodied the largest amount of non-productive energy from auxiliary 

and indirect energy sources at 1126.46 kJ as compared with 734.36 kJ for Product A 

and 540.95 kJ for Product B. Therefore, Product C is selected to illustrate the use of the 

decision support matrix proposed as part of the Design for Energy Minimisation 

methodology as previously described in Chapter 10, a list of possible energy 

improvements to the manufacturing operations for Product C will be evaluated against 

the design specification to determine the improvements that can be effected through 

design changes.  
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Figure 11.23: Overview of results for Products A, B and C. 
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A high level list of improvements to the processing parameters and manufacturing 

operations is compiled based on the casting process. Some of the recommendations for 

improvements include: 

a) Reduce casting weight 

b) Improvements the gating system,  

c) Reducing the complexity of cores and mould 

d) Reduce scrap rates 

e) Increase throughput 

f) Improve fume extraction 

The recommendations are grouped based on the energy component they can impact 

(e.g. reduction of casting weight) impacts the TE required by the process. A list of 

common design specifications such as aesthetics, performance, size etc. is listed on the 

left column in the HOQ matrix depicted in Figure 11.24 which shows the full list of 

recommendations and the design specifications.  

The recommendations are compared against the design specifications for correlations. 

Reduction of the casting weight will affect the aesthetics, performance, size, weight and 

possibly the standard specifications; therefore they are given a ‘1’. Those that have no 

correlations are given a ‘0’. Based on this approach, the ‘Reduce casting weight’ and 

‘Reduce complexity of cores and moulds’ both have a relatively high number of 

correlations of 6 and 4 respectively. These two areas provide a starting point for 

designers to re-evaluate the design of the product to further reduce the embodied energy 

from the manufacturing process. As the TE was the largest contributor to the embodied 

product energy for Product C, reducing the TE has been prioritised first, follow by the 

AE, and the IE. Therefore, the design engineer might first choose to reduce the weight 

of the casting by redesigning the part to have thinner walls or eliminating certain 

features. If the design changes cannot be fulfilled the engineer can then consider the 

next priority which is the reduction of core and mould complexity. This can be done by 

simplifying the internal geometry of the part so that number of holes and undercuts are 

minimised thus requiring less processing during the fabrication of the cores and moulds, 

thereby reducing the amount of auxiliary energy required during manufacture.  The 

reduction of casting weight can complement the reduction of core and mould 

complexity as indicated by the ‘+’ at the top of the HOQ matrix. In addition, the 
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reduction of casting weight and the simplification of the cores and moulds may result in 

faster processing times, and hence increase the throughput which in turn reduces the 

need for indirect energy consumption. A comprehensive list of other processing 

interdependencies are shown in Figure 11.24.  

 

Product and Plant Information

Potential Improvements to Processing Parameters and Operations

TE AE IE

Product C: Excavator Tooth
Production Plant: 
Metal works Inc. 
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Figure 11.24: Decision support matrix for the DfEM process used for the casting process for Product C
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11.5 General Outcomes from the Case Studies  

The case studies described in this chapter have effectively demonstrated the 

applicability of the Embodied Product Energy (EPE) framework, its associated energy 

simulation model and the ‘Design for Energy Minimisation’ support tool as developed 

as developed by this research.  

In the first case study, the single product (elbow pipe) demonstrated that the various 

energy components established as part of the EPE framework can not only highlight 

how much energy was used, but also how productively it has been used; demonstrating 

that the most energy intensive processes may not necessarily be the least energy 

productive process as verified by the energy ratios.  

In the second case study, the EPE framework can be integrated with a simulation model 

to aid the analyst when dealing with numerous products with different process flows. As 

shown, the model provides a high degree of customisation with the flexibility for 

various sources of data to be entered and for various correlations to be established 

within the simulation model.   

Undertaking these case studies have shown that even with the help of simulation 

software, it is a data intensive process. As such, the integration of the ESM with 

appropriate databases would potentially provide greater benefits. The energy simulation 

model can also be further improved by linking detailed product and process data from 

the production system being analysed, thus improving the accuracy and relevance of the 

resulting embodied energy values. These case studies have also shown that the DfEM 

approach provides valuable decision support enabling further design improvements to 

minimise the energy consumption within a manufacturing system.   

Overall the case studies have demonstrated the effectiveness of energy flow modelling 

approach generated by this research to provide greater transparency of energy 

consumption during the production phase of a product. In addition, the flexibility 

offered by ESM enables a wider range of results tailored to the specific needs of various 

potential users within a manufacturing facility (e.g. operators, production planners, shop 

floor maintenance and designers) to be generated.  
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Chapter 12 Concluding Discussions 

12.1 Introduction 

The discussion provided by this chapter brings together the major issues examined by 

this research and reports on the research contribution provided in this thesis. The first 

part of the chapter highlights the main research contributions, while the latter part 

presents a discussion based on the broad headings identified as the research scope in 

Chapter 2, to highlight the key findings and knowledge gained from the research.  

12.2 Research Contributions and Achievements 

The author has identified the following as the important contributions made by this 

research and have ranked and listed them by importance below: 

i. Generation of a new approach for energy flow modelling in manufacturing 

applications based on a product viewpoint. This novel approach, integrates the 

existing methods for optimisation at process and plant perspectives to highlight 

the energy ‘hotspots’ during a product lifecycle, thus providing support for 

prioritisation of investment and energy optimisation activities.  

ii. Development of a novel and comprehensive energy flow modelling framework 

based on the identification of different energy consumers in a production system 

to highlight energy intensive processes and activities present in the manufacture 

of a product. Through the framework, the DE provides an indication of the 

energy required by the resources to carry out the process use to make the 

product and the IE is indicative of the energy consumed by the facility.  This 

method provides a systematic way of establishing the energy required to 

manufacture a product thus providing answers to the first and second research 

question “of the total energy consumed to manufacture a product, how much of 

the energy is used directly by the process” and “how much is used by the facility 

that houses the process and other supporting processes?”    

Comment [Y13]: Rank contributions 
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iii. Design and implementation of a novel energy simulation model to measure the 

energy embodied in a product which assesses the energy efficiency of the 

product, processes and plant in support of manufacturing and design 

improvement decisions. 

iv. The research has shown how design decisions can influence the energy required 

to manufacture a product and through the definition of a novel ‘Design for 

Energy Minimisation’ methodology, it has provides support in minimising 

energy consumption over a product life cycle through improvement in product 

design, by systematically applying appropriate energy modelling tools at each 

stage of the design process.  Several key design factors that impact energy 

consumed during manufacture have also been compiled and the impact on 

energy consumption during manufacture explained. Some of the design factors 

to consider include the use of minimal wall thickness, the use of alternative 

materials that require less energy for processing, designing features so they can 

be manufactured using the minimum number of set ups and with minimal 

number of processes.    

v. The research has defined a new approach to attributing energy consumed by the 

infrastructure (Indirect Energy) through the use of zones to product throughput. 

The approach groups areas with similar ambient requirements into zones and the 

average energy consumption for the zone over a fixed period of time is then 

averaged to the number of products being made in that area over the same time 

frame. This provides a greater understanding of indirect energy consumption  

and allows the energy consumed by the facility to be allocated to the product 

thus answering the research question “when considering the energy consumed 

by the facility that houses the process how can it be attributed to the 

manufacture of a unit product?”.  

vi. Highlighting the paramount importance of energy rationalisation and 

optimisation within manufacturing industry and underpinning the imperative 

point that investment in green sources of power generation alone are insufficient 

to deal with the rapid rise in energy demand in the near future.  
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12.3 Concluding Discussion 

The following subsections draw together and discuss the results of the main research 

activities and use the research scope to structure the evaluation of research 

achievements.  

12.3.1 Review of the sources of power generation and various trends in energy 

consumption within the industrial sector 

To establish the context for the research, an extensive review was conducted on a wide 

range of issues ranging from sources of power generation to energy related legislation 

and their implications for the manufacturing industry. This research has highlighted that 

the rationalisation and optimisation of energy use is of paramount importance for 

manufacturers in light of escalating environmental, economical and legislative 

pressures. The concern over the use of energy has been exacerbated by the compelling 

body of evidence showing the rise in global temperature is very likely the result of the 

increase in greenhouse gas emissions which has been largely due to the industrial scale 

combustion of fossil based energy. The problem is further compounded, in part, by the 

growing energy demand from developing countries as they attempt to meet the energy 

requirements for their economic and industrial growth through the relatively low cost 

energy generated by fossil fuels. Much of the demand for fossil based fuel is due to the 

industrial activities which accounts for more than a third of global energy consumption. 

Against this backdrop, it is imperative that the manufacturing industry adopts the 

concept of ‘lean energy’ through the use of energy efficient processes and activities, in 

order to not only meet stringent legislative targets but more importantly minimise 

financial risk from volatile energy prices whilst maintaining production outputs. The 

consideration of these issues highlights the requirement for greater transparency of 

energy use within a production system so as to provide manufacturers with a clearer 

understanding of energy consumption and efficiencies of their processes and activities. 

This has been the main justification for this work and has significantly influenced the 

definition of the objectives of this research.  
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12.3.2 Review of energy management and modelling research, tools and software 

The second part of the literature review highlighted two main categories of energy 

related research, i.e. those based on manufacturing system and those based on product 

life cycle. The review of research on energy considerations within a manufacturing 

system has identified different approaches for energy evaluation and analysis. The 

majority of this existing research is based on facility perspective improvements (through 

better building design and infrastructure services) and process energy improvements 

(through operational and production set-ups). While these tools allow the improvement 

of energy consumption within a plant and process, they do not provide an indication of 

the energy requirements attributable to a product, and less so over its life cycle. The 

second category of energy research is based on considerations of various stages in 

product life cycle, often through a life cycle assessment exercise. However, the 

literature review has highlighted that LCA is often complex and data intensive, and the 

attempts at simplifying the method often lead to assumptions that can affect the 

relevance of the results for a specific application. Moreover, the energy analyses 

conducted within LCA are often based on a ‘constant per mass’ basis which fails to 

consider the complexity of operations required to manufacture a product and the impact 

that such varying complexities of operations has on energy consumption.  

As such the literature review has identified a gap in the existing approaches for 

modelling energy flows within a production system based on a product view that could 

highlight the energy hotspots during a product life cycle and can account for the 

complexities of production operations required to manufacture a product. The research 

presented in this thesis addresses this shortfall in energy assessment capability.   

This disparity was also reflected in the review of commercial tools. Commercially 

available LCA software packages use generic energy data and are limited in dynamic 

modelling capabilities. As such, it is difficult to identify energy inefficiencies within 

current software packages in relation to the manufacture of a product and the 

improvements needed in operational parameters. The review thus highlighted the need 

to produce an energy modelling tool, such as the energy simulation model proposed in 

this research to support the modelling and rationalisation of energy consumption during 

the manufacture of a product, enabling energy optimisation both within production 

activities and product design.    
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12.3.3 Development of a framework to model embodied product energy 

In the initial part of the research, it became apparent that there was a wide range of 

energy considerations within a manufacturing system that need to be identified and 

assigned to production processes. Therefore, a simple but holistic energy flow 

modelling framework based on two main categories of energy consuming activities has 

been developed, namely direct energy and indirect energy. The direct energy 

encompasses the energy consumed by the processes and activities involved in the 

transformation of material into the finished product, taking into account both the 

theoretical and auxiliary energy required; and the indirect energy encompasses the 

energy consumed by services required to maintain the environment in which the 

transformational processes occur. In addition, the method of attributing indirect energy 

by zones based on the energy intensity of the production environment provides a greater 

simplicity and accuracy over other approaches that are based on averaging energy use 

over production output or attribution of energy consumption based on area/volume 

occupied by the machinery and equipment.  

From the literature review, it was noted that detailed data related to energy consumption 

within manufacturing facilities is often lacking and the research recognises that there 

may be occasions where directly obtaining this data through monitoring and metering 

maybe infeasible. Therefore as part of the framework, the research also established three 

methods of systematically obtaining, calculating and measuring energy data for 

processes and supporting activities within a manufacturing system through theoretical 

and/or empirical studies or through existing and relevant databases. 

Furthermore, the energy efficiency ratios developed in this research provide a simple 

but effective method of assessing the energy productivity within a manufacturing 

system. TE, AE and IE values are used in these ratios to identify inefficient processes, 

products or production systems, and can play a fundamental role in determining where 

investments should be made for further energy improvements and energy optimisation.  

In addition, there has been an increase in the number of environmental labels that have 

been applied within the manufacturing sector in recent years. For example, labels such 

as the EU Energy label and the US Energy Star have provided consumers of electrical 

and electronic products with energy information about the performance of the product, 

which has empowered consumers to select products with higher energy efficiencies. 
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This on other hand has forced manufacturers to improve the energy efficiencies of their 

products in order to remain competitive. The academic and industrial communities 

together with policy makers have also highlighted the need to establish similar energy 

efficiency labels for machinery and production systems used within a typical 

manufacturing facility. Thus, energy management standards such as ISO 50001 (ISO, 

2010) have been implemented to help manufacturers monitor and reduce energy 

consumption within their facilities. The energy efficiency ratios introduced by this 

research provide a platform for further investigation in establishing such energy labels 

not only for production plants and processes but also allows the scope of current 

product based energy labels to be expanded from the ‘use’ phase to consideration of the 

entire lifecycle.  

The author asserts that the use of the energy modelling framework, alongside the 

efficiency ratios can provide a greater level of transparency of energy consumption 

within the production phase of a product life cycle, yet simplifying the complexities 

associated with traditional life cycle assessment methods.   

12.3.4 Development of an energy simulation model to support energy efficiency 

optimisation 

The implementation of the energy flow modelling framework within a complex product 

clearly needs software support in order to deal with the large amount of data required 

for a range of processes that need to be modelled. The use of simulation techniques 

enables a hierarchical multi-level modelling approach to be adopted. i.e. each process or 

event within the model could represent a supplier across a supply chain, a department 

within a factory, a production line within a manufacturing cell, or even a range of  

activities within a single production process. The level of detail included in a simulation 

depends on the resolution of the model required and the availability of the data.  

The development of the energy simulation model has also addressed the primary 

research question which was defined as “How much energy is required to manufacture a 

unit product?” Therefore it is argued that a carefully developed energy simulation 

model which provides a detailed representation of the manufacturing system can be 

used to estimate the energy required for new product designs. 
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Although the model has been set up to replicate existing processing lines and 

equipment, the author believes that the utilisation of the energy simulation model 

provides the flexibility for predicting the effectiveness and impact of process 

improvements before committing to a large investment. 

12.3.5 Use of the energy simulation model to improve product design 

The Design for Energy Minimisation methodology, together with the simulation tool 

presented in this thesis, enables designers to do ‘what-if’ scenario planning to identify 

the most practical and economically feasible design improvements that can reduce the 

need for energy consumption during manufacture. In addition to supporting operational 

decisions, the modelling of Embodied Product Energy provides energy transparency 

right back to the design process, enabling designers to select the most energy efficient 

materials and processes whilst fulfilling the requirements of the product design 

specification. Such an approach will potentially enable businesses to go beyond the 

incremental improvements achievable via existing energy management systems, and 

enable them to consider energy efficiency and utilisation across both the design and 

production phases of a product life cycle.  

The author recognises that a holistic DfEM approach should consider the full design 

process from conceptual design through to detail design and manufacture, whilst also 

considering the energy consumption throughout the entire product life cycle (material, 

production, use and end-of-life). The existing streamlined LCA tools mostly provide 

support during the concept design stage by providing high level energy information of 

each phase of a product’s life cycle whilst Advanced Energy Metering Systems 

provides support at the production phase through the monitoring and tracking of energy 

consumption within the manufacturing facility. This has highlighted a need for a tool to 

support the designers at the detail design stage and can generate energy data based on a 

range of proposed production processes and operational parameters. The Energy 

Simulation Model developed as part of this research bridges the gap between the high 

level streamlined LCA tools used at conceptual design and those used to monitor and 

manage energy consumption as part of the manufacture stage of the design process. 

This ensures that the energy considerations are included within various design decisions 

and incorporated within the entire design process.  
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12.3.6 Demonstration and validation of the applicability of the research concept 

The primary objective of the case studies presented in this thesis was to demonstrate 

and validate the applicability of the research concepts. The purpose of the first case 

study was to show the application of the framework together with the range of 

calculations involved in generating a detailed breakdown of energy consumption using a 

simple product. Whereas, the second case study was to demonstrate an example of a 

more complex multi product flows within a manufacturing system, using the energy 

simulation model.   

The first case study shows that various energy values related to direct and indirect 

energy can be calculated using the equations provided as part of the EPE framework. 

Whilst it is possible to calculate these values manually in the case of a simple product, 

this case study also highlights that in the case of more complex products involving a 

wide range of production processes (possibly within a number of suppliers in a supply 

chain) a software support is imperative for implementation of EPE framework. The 

second case study illustrated the effective use of such software support through 

implementation of an energy simulation model.  

The second case study also demonstrated the benefits of integrating the energy 

considerations at the facility and process perspectives (within a product viewpoint) to 

identify the energy hotspots within a manufacturing system that should be the focus of 

energy optimisation activities.  In addition, the comprehensive graphical capabilities 

provided by the simulation model underlines the potential for a range of energy analysis 

that can support a wide range of potential users within a manufacturing business.  

Furthermore, the second case study shows the complexities associated with acquiring 

accurate energy information required for the development of the simulation model.  

This emphasises the importance of three key issues:  

1) The importance of the implementation of advanced metering and monitoring 

systems to collect actual data for energy consumption,  

2) The need for integrating the simulation model with other existing manufacturing 

software for data sharing and analysis, and 
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3) Finally, the requirements for careful design and customisation of such 

simulation model tailored to the specific requirements of various potential users 

(e.g. designers, production operators, planners, maintenance managers) within a 

manufacturing application.  

12.3.7 The vision for the future of Energy Efficient Manufacturing 

The current emphasis in the majority of large scale public and private investments is 

currently targeted at the generation of green (renewable) sources of energy. The review 

and analysis undertaken in this research has clearly highlighted that energy demand is 

set to rapidly escalate, with predicted demand increasing by 36% between 2035 and 

2008 (with oil still being the dominant fuel) according to recent forecasts figures 

released by the International Energy Agency (IEA, 2010b). This clearly highlights that 

whilst investments in alternative sources of fuel is essential, in the short term the 

rationalisation and optimisation of energy use will be of paramount importance and will 

provide much greater dividends.  

The reduction of energy use provides benefits to manufacturers that extend beyond 

environmental and cost considerations in today’s volatile world. The decoupling of 

energy use and productivity, whilst maintaining the value of products and services is the 

key to long term sustainability of businesses in the face of tighter legislation on energy 

consumption. The significant reduction of the dependence on raw materials like oil, coal 

and gas in an increasingly resource constrained world will safeguard the future 

prospects of industrial organisations.  

This research has developed a holistic approach to the modelling of energy consumption 

during the manufacture of a product. This approach can help to ensure that products are 

designed and manufactured with minimal energy use. However, the main domain for 

this research has been mainly on discrete part manufacture within sectors such as 

automotive, aeronautical, electrical and electronic etc. However within manufacturing 

industry, some of the most energy intensive applications are within the process industry 

(petro-chemical, pharmaceutical, food, etc.) which highlights the need for specific 

research targeted at this industry. 
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The fundamental outcome of the author’s work has been that the importance of future 

research on maximising the energy productivity within all manufacturing sectors cannot 

be underestimated, as failure to do so will have significant repercussions on the survival 

of business and preservation the environment for future generations.   

12.4 Limitations of the Research 

The research reported in this thesis has investigated an area which is highly complex 

and diverse in its scope. Research into modelling energy consumption within a 

manufacturing system requires further development and lacks standardisation and 

congruency across industrial sectors. This is further compounded by the general lack of 

energy data from industry.  The scope of the research has therefore focused on the 

production phase of the product life cycle and the range of case studies undertaken by 

this research was therefore selected under these constraints. In this context, the 

limitations of the research are summarised below.  

12.4.1 Range and detail of case studies 

Some data within the case studies has been estimated based on assumed energy 

consumptions according to processing parameters. As such some data used within the 

case studies was based on synthesised data. The assumptions have been detailed within 

the relevant sections in Chapter 11. Ideally the research could have benefitted from the 

validation through an industrially based case study in which facility specific data are 

used for comprehensive energy simulation modelling. This has been identified as one of 

the scopes for future work based on the research reported in this thesis, as outlined in 

Chapter13.    

12.4.2 Consideration of integration of the software within other existing support 

systems  

The ESM model was developed using Arena, a commonly used software package. 

However, within a typical manufacturing company other software models may have 

been developed to simulate a range of other functions (e.g. line balancing, layout 

planning, production scheduling etc.). The integration of these models within an 

application to share information could significantly reduce the modelling effort and 

time. In addition, it is acknowledged that the development of software systems lies 

outside the author’s primary skill-set and as such a more sophisticated model could have 
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been developed to integrate other features and functionality, such as those highlighted in 

Chapter 13. 

12.4.3 Implication of consideration of other sources of energy other than electricity 

Although most of the production equipment described in this thesis and used within the 

case studies are electrically powered, and no specific reference have been made to the 

source of energy used. However the EPE framework uses the International System of 

Units for energy –Joules (J) in all the calculations, and as such the framework is 

applicable to other sources of energy such as gas, oil and heat which can be easily 

represented in Joules.  

12.4.4 Energy cost and carbon footprint considerations  

There are significant differences in the cost of energy in different countries based on 

technology and fuel available for power generation. At present, the costs of ‘green’ 

energy generated through renewable sources (e.g. solar, wind and tidal) are typically 

higher than those from fossil derived sources (e.g. coal, oil and gas). One of the main 

contributors to this higher cost of ‘green’ energy is the perceived savings from carbon 

levies due to their lower carbon footprints.  

The primary objective of this research has been to minimise the amount of electrical 

energy used in manufacturing applications. This research has not considered the issues 

relating to cost and carbon footprint associated to the various sources of power 

generation. 
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Chapter 13 Conclusions and Further Work 

13.1 Introduction 

This chapter identifies the major conclusions drawn from the author’s research, and 

proposes possible avenues for further extension of this work.  

13.2 Conclusions from the Research 

The conclusions drawn from this research are as follows: 

i. The research has clearly highlighted the importance of the optimisation of 

energy consumption within manufacturing systems due to commonly reported 

environmental impact associated with power generation, the recent proliferation 

of national and international legislations and the rising cost of fuel.  

ii. The survey of current research work on the energy modelling and management 

tools has shown that these tools are often developed with a focus on energy 

consumption either through a plant perspective or a process perspective. This 

indicates a distinct lack of energy flow modelling approaches that integrates 

energy considerations at both the high (factory) level and the low (machinery 

and equipment) level which can be attributed to the manufacture of a product 

within a production system.  

iii. The consideration of current application of energy modelling and energy 

management in this research has indicated that in most cases there is a lack of 

good quality energy data being collected and recorded within manufacturing 

systems. In addition, in applications where significant energy data is being 

collected through advanced energy metering and management systems, this data 

is not effectively used to its full potential. This research has introduced a 

systematic method for collecting energy data through theoretical and/or 

empirical studies or through existing and relevant databases. 
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iv. The research has shown that the lack of energy considerations during ‘product 

design’ and ‘operational planning’ are often due to the wide ranging decision 

complexities. This highlights a need for a structured, simple, and effective 

energy flow modelling within manufacturing systems. The Embodied Product 

Energy framework developed by this research provides such a simple but 

holistic framework that can attribute both productive and non-productive energy 

consuming processes and activities thus increasing the energy transparency and 

identifying energy hotspots within a production system.   

v. The efficiency ratios proposed as part of the framework provides an effective 

method of identifying inefficiencies within processes, product or production 

system which can play a fundamental role in determining where investments 

should be made for further energy improvements and energy optimisation. 

Furthermore, a major outcome of this research is the first step towards 

establishing energy efficiency labels for the processes and production systems, 

the requirement for which has been highlighted by the academic and industrial 

practitioners.  

vi. The research has underlined the shortcomings associated with existing 

manufacturing software to support the energy related decisions, thus the 

requirement for improved functionality within both design and operational 

planning activities. The Energy Simulation Model created as part of this 

research provides such capabilities through correlation between design 

specifications (material and process selection, feature dimensions, and etc.) 

manufacturing parameters (e.g. set up times, batch sizing queuing times etc.) and 

the total energy consumed during the manufacture of a product.  

vii. The research has shown that the design process has fundamental implications in 

the amount of energy used through a product life cycle and hence significant 

energy savings is often only feasible through design improvements. The energy 

flow modelling proposed by this research provides transparency right back to the 

design process, enabling designers to select the most energy efficient materials 

and processes whilst fulfilling the requirements of the product specification.  

viii. The design process is a complex multitask activity and any ‘Design for Energy 

Minimisation’ methodology should include support for energy related decisions 

at different stages of the design process (concept design, detail design, and 
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manufacture). The ‘Design for Energy Minimisation’ approach proposed in this 

research has integrated a range of tools (including an energy simulation model 

that specifically supports the requirements within the detail design stage) to 

enable designers to assimilate energy considerations through all stages of the 

design process.  

ix. The case studies described in this thesis have effectively demonstrated the 

applicability of the research concepts. These case studies have also shown the 

requirements for a significant amount of energy data to be able to develop 

effective decision support for a wide range of potential users (designers, 

operations planners, maintenance managers etc.).  This on one hand is indicative 

of the time and effort required to develop a customised energy simulation model 

tailored to the specific requirements of a manufacturing facility, but on the other 

hand has clearly highlighted energy optimisation potential that can be achieved 

through greater insight into the inefficiencies of the processes and associated 

activities.  

x. The fundamental conclusion drawn from this research is that investments in 

green sources of power generation alone are insufficient to deal with the rapid 

rise in energy demand, thus energy optimisation and rationalisation within 

businesses is of paramount importance for a global, long term, and sustainable 

energy strategy for the manufacturing industry.  

13.3 Further Work 

The author recognises the following areas of work as the most valuable extensions of 

the current research. 

13.3.1 Establishment of a comprehensive central energy database  

The existing manufacturing energy databases are still limited in the range and the detail 

of the energy information on manufacturing processes such as documenting correlations 

between processing parameters and the impact on energy use. This makes the tabulation 

of production specific energy data especially challenging where such data cannot be 

obtained directly from the actual process. Therefore further research is needed to 

develop a comprehensive understanding of the relationships between the various 

equipment parameters (machine model and condition) and operational procedures (set 
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up times, idle times etc.) through which a holistic and detailed manufacturing energy 

consumption database can be established. The provision of such a database would 

augment the existing understanding of process and operational parameters and their 

influence on energy use within a process which can support further analysis such as 

those defined in this thesis. The author appreciates that the establishment of such 

databases are beyond the means and capabilities of any single organisations, thus 

highlighting the importance of international collaborative efforts such as CO2PE and 

UPLCI in this area.  

13.3.2 The Development of a more Sophisticated and Comprehensive Energy 

Simulation Model  

The energy simulation model developed in this research was designed primarily to 

demonstrate applicability of the EPE framework. The development of an industrial 

based energy simulation model requires substantial modelling effort and software 

competency. The improvement on software implementation is required not only to 

simplify the use of this model for a range of potential users within manufacturing 

applications, but to also improve the data handling and integration via modules 

developed using programming languages such as Visual Basic.  

The energy flow models included in the EPE framework considers the energy 

consumption within a single factory. The flexibility offered through both the research 

concepts included in this framework and modern simulation techniques enables the 

consideration of energy flow modelling from a broad enterprise level to a focused single 

process level. The author has envisaged a hierarchical multi level approach to 

simulating energy flows as depicted in Figure 13.1. In this approach the definitions of 

models and sub-models similar to those included in Arena, can be used to incorporate as 

much or as little complexities within an extended enterprise consisting of various 

suppliers, manufacturers with global production facilities, and the range of functional 

departments and production cells in their facilities.   

These comprehensive models can provide the foundations for benchmarking to 

ascertain the lowest energy consumption levels that can be consumed. This can be done 

by using equipment specifications and empirical results available in industry to establish 

an energy consumption guideline for a range of processes.   

Comment [Y14]: Ascertain lowest 
energy 
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Facility level

Supplier 1

Machine Cell 1

Supplier 2

Department 1Department 1 Department 2

Machine Cell 2 Machine Cell 3 Machine Cell 1 Machine Cell 2Machine Cell 1 Machine Cell 2 Machine Cell 3

Departmental level

Machine Cell level

Enterprise level

M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3 Machine level
M/C 1 M/C 2 M/C 3 M/C 1 M/C 2 M/C 3

Figure 13.1: Application of EPE framework to other levels through a hierarchical approach
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13.3.3 Consideration of Economic Cost Benefits 

This research has focused on the amount of energy consumed during the production of a 

product. A more holistic approach would be to also include cost benefit analysis related 

to this energy consumption. Therefore the author purports that one of the most 

important extension to the scope of this research will be the consideration of cost issues 

and their impact on energy related decision making within manufacturing applications. 

The consideration of pay back periods is one of the key decision factors in committing 

any substantial investments for energy rationalisation and optimisation, for most 

manufacturers.  

13.3.4 Extending the Design for Energy Minimisation Approach to other Life Cycle 

Phases  

As with most DFX tools which improves design from just one perspective, DfEM only 

provides a singular view focusing on energy consumption during production. The 

reduction of energy consumption in the production phase may have an adverse effect on 

the other stages of the life cycle. Clearly the scope of this approach has to be extended 

to consider the energy considerations related to wider issues within a product life cycle 

such as the energy requirements during the use phase, logistics and reverse logistics and 

end-of-life. In addition, in current modern applications, the need for reconfigurability of 

manufacturing facilities due to short product and production lifecycle is well 

documented. Therefore a modern design approach should consider a simultaneous 

approach encompassing design considerations of the products, processes to manufacture 

the products and production systems in which these processes are incorporated. 

Therefore an extension of research scope is proposed based on the multi design 

viewpoints, as illustrated in Figure 13.2, to include simultaneous considerations for 

product, process and production design.  
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Process View

Plant View

Product View

Review and 
Implementation

Design for Energy Minimisation
(Plant View)

Detailed planningPreliminary Planning

Material 
Extraction

Fabrication Use Demolishment

LCA

Reviews and Testing

Design for Energy Minimisation
(Process View)

Detail DesignSpecification

Material 
Extraction

Manufacture Use Disposal

LCA

Figure 13.2: Application of the DfEM approach to the Product, Process and Plant view point
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Appendix 1 

Other Methods of Attributing Indirect Energy 

 

Introduction  

This appendix shows the other methods that can be used to attribute Indirect Energy to a 

product.  It also compares the two methods listed here against the method that has been 

adopted in this research (the use of zones) to illustrate the difference.  

 

A1.1 Averaging IE over the throughput 

A1.2 Using area/volume to attribute IE 

A1.3 Using zones to attribute IE 

A1.4 Comparison of methods 
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A1.1 Averaging IE over the throughput 

The basic method of establishing IE is to average IE of the facility over the number of 

products or parts that have been manufactured in the facility. The indirect energy of 

Product A in facility m can be represented by equation A1.1 as shown below. 

 

IEA=IEfacility(m) / TP area(m)A    [Equation A1.1] 

Where, 

 ஺ is the indirect energy attributed to Product Aܧܫ

IEfacility(m) is the indirect energy consumed by the area per hour 

TParea(m)A is the throughput of Product A per hour in zone m 

 

If there are 3 processes within a facility and the indirect energy for the facility is 1200 

kJ/hr on average and the throughput of the production system is 6 per hour, then the IE 

for Product A is 200 kJ as illustrated in Figure A1.1. 

IEA=IEfacility(m) / TP area(m)A 

= 1200/6 

200 kJ 

 

 

  

efacility

IE A IE A IE A

1200 kJ/hr

200 kJ 200 kJ 200 kJ

IE A IE A IE A

200 kJ 200 kJ 200 kJ

Figure A1.1: The IE for each process is based on average occupied area or volume.



 

   

Appendix 1  A4 

 

A1.2 Using area/volume to attribute IE  

The second method is the attribution of the energy consumed by the environment to the 

area or volume that is occupied by the process. This method assumes that the energy 

intensity per area is constant across the manufacturing facility and thus the greater the 

area occupied by a process, the greater the use of the facility based energy. In some 

factories, floor space maybe optimised by having production lines across multiple 

stories, in such cases, volume instead of area can be used as the factor for calculation. 

The IE of the process is determined based on the percentage of the total area/volume of 

the factory as depicted by equation A1.2.  

IEA=∑ ሼܧܫ௙௔௖௜௟௜௧௬ ܺ %௣௥௢௖௘௦௦ሺ௜ሻ/ ܶ ௣ܲ௥௢௖௘௦௦ሺ௜ሻ஺ ሽ     ௡
௜ୀଵ  [Equation A1.2] 

Where, 

 ஺ is the indirect energy attributed to Product Aܧܫ

IEfacility is the indirect energy consumed by the facility per hour 

TPprocess(i)A is the throughput of Product A per hour for process i 

%process(i) is the percentage of the total facility volume that process i occupies 

 

Assuming there are 3 processes and the IE is for the facility is 1200 kJ/hr on average 

and the machining process occupies 45% of the volume, the other two processes, 

polishing and cleaning they occupy 30% and 25% of the volume respectively as 

illustrated in Figure A1.2.  

 

Machining

45% 

Polishing

30%

Cleaning

25%

1200 kJ/hr
Total IE

IE machining IE polishing IE cleaning

1200 kJ/hr

540 kJ/hr 360 kJ/hr 300 kJ/hr

Figure A1.2: The IE is based on the proportion of occupied area/volume
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If the throughput of the machining process is 6 then the IE attributed to the machining 

process for Product A can be calculated based on Equation A1.3 and illustrated in 

Figure A1.3.  

IEA for Machining =ܧܫ௙௔௖௜௟௜௧௬ ܺ %௣௥௢௖௘௦௦ሺ௠௔௖௛௜௡௜௡௚ሻ/ ܶ ௣ܲ௥௢௖௘௦௦ሺ௠௔௖௛௜௡௜௡௚ሻ஺      

[Equation A1.3] 

IEA for Machining = 1200 X 0.45/6  

IEA for Machining = 90 kJ 

Where,  

 ஺ for machining is the indirect energy attributed to Product A during the machining processܧܫ

IEfacility is the indirect energy consumed by the facility per hour 

TPprocess(machining)A is the throughput of Product A per hour for the machining process 

%process(machining) is the percentage of the total facility volume that the machining process 
occupies 

By the same method, the IE of each part for the polishing process which has a 

throughput of 6 is 60 kJ as shown in Equation A1.4: 

IEA for Polishing = 1200 X 0.30/6  [Equation A1.4] 

IEA for Polishing = 60 kJ 

The IE for of each part for the cleaning process which has a throughput of 1 is 50 kJ as 

shown in Equation A1.5: 

IEA for Polishing = 1200 X 0.25/6        [Equation A1.5] 

IEA for Cleaning = 50 kJ 

As the product moves through the three processes – machining, polishing and cleaning 

consecutively, then the total IE for the product is the sum of the IE for each process 

which is 200 kJ as shown previously in Equation A1.6.  

IEA=IEmachining + IEpolishing + IEcleaning    [Equation A1.6]  

IEA= 90+60+50 

= 200 kJ 
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A1.3 Using zones to attribute IE  

Whilst the second method of using floor area and volume has greater accuracy for the 

IE values for each process than the first method, it does not take into consideration the 

differences in energy intensities of the environment required. For some processes such 

as packaging and inspection the environmental conditions are very different. The 

packaging line may only require lighting but the inspection line may require a 

cleanroom environment which includes lighting, ventilation as well as air filtration 

systems. The energy intensity of the cleanroom is thus significantly higher than the 

energy requirements of the packaging line environment even though both processes may 

occupy similar floor areas. In this case, a third method is needed which groups 

processes that have similar IE requirements together and classes the environment with 

similar energy intensities as a zone. As described in Chapter 8, the IE attributed to 

product A in zone x (i.e. ܧܫ௭௢௡௘ሺ௫ሻಲ
) can be calculated based on total Indirect Energy 

consumed within zone x (i.e. IEzone(xTy)) within a specific time frame, Ty (where Ty can 

IEAIEA IEA

Machining
45% 

Polishing
30%

Cleaning
25%

IE machining

IEAIEAIEA

1200 kJ/hr
Total IE

IE machining IE polishing IE cleaning

1200 kJ/hr

540 kJ/hr 360 kJ/hr 300 kJ/hr

Figure A1.3: The IE is attributed to a product based on the proportion of occupied area/volume and 
process throughput 



 

   

Appendix 1  A7 

 

be an hour, a shift, a week) divided by the total throughput of Product A through Zone X 

(TPzone(xTy)A) for time frame Ty as expressed in Equation A1.7: 

௭௢௡௘ሺ௫ሻಲܧܫ
ൌ ௭௢௡௘൫௫ܧܫ  ೤்൯ / ܶܲ௭௢௡௘൫௫ ೤் ൯஺       [Equation A1.7] 

Where, 

௭௢௡௘ሺ௫ሻಲܧܫ
 is the indirect energy attributed to Product A for Zone x during time Ty 

௭௢௡௘൫௫ܧܫ ೤்൯ is the indirect energy consumed by zone x during time Ty  

ܶܲ௭௢௡௘൫௫ ೤்൯஺ is the throughput of Product A through zone x during time Ty 

Thus for Zone 1, where IEzone1 is 600 kJ/hour, and the TPzone(m)A is 6/hr, the IE for each 

product is: 

IEzone(1)A  = 600/6  

= 100 kJ  

By the same method, the IE for Product A for zone 2 which consists only of the 

cleaning process is 600/6 = 100 kJ. 

 

  

IEA IEA

Machining and Polishing Cleaning

Total IEzone1

IEAIEA IEA

Total IEzone2

Zone 1  Zone 2 

600 kJ/hr 600 kJ/hr

IEA IEA

IEA

IEA

IEA

IEp2

IEA

Product A

Figure A1.4: The IE is attributed to the product based on the zone it is produced in.  
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A1.4 Analysis of each method 

The three methods of establishing IE for Product A for each process are summarised in 

Table A1.1.  As seen from the table, the allocation of IE to each process for Product A 

varies greatly depending on the method used. Using the third method as described in 

Chapter 8 (based on zones) provides greater accountability of the energy used by the 

manufacturing environment. The cleaning process requires more indirect energy due to 

more stringent requirements for air quality and lighting compared to the machining and 

polishing process which only requires basic HVAC and lighting systems. As seen from 

the calculations, the attribution of IE required by the cleaning process to each product is 

much higher using the zone based method which reflects the higher indirect energy 

requirements of the cleaning process. The other two methods, using the average energy 

values or using floor area, are unable to reflect the energy intensity of the process 

accurately. The use of averages assumes that the energy intensity of the manufacturing 

environment required by each process are equal and the use of floor area and volume 

assumes that the energy requirements are proportional to the area or volume occupied 

by the production equipment. The zone based method which has been adopted within 

the framework proposed in this thesis provides a more accurate accountability of energy 

use base on the level of energy requirement for the production process.    

Method of IE Attribution 
Total IE for 
Product A 

(kJ) 

Breakdown on IE for Product A by Process (kJ) 

Machining Polishing Cleaning 

7.4.1 Based on average 
across all processes 

200 66.6 66.6 66.6 

7.4.2 
Based on floor area 

occupied by the 
process 

200 90 60 50 

7.4.3 Based on zones  200 
Zone 1 Zone 2 

100 100 

  

Table A1.1: Comparison of IE breakdown by process for various methods of IE attribution
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Appendix 2 

Details of the Modelling Modules used within Arena 

 

Introduction  

This appendix provides details of the modelling modules within Arena that have been 

used within the simulation model described in Chapter 9. An overview of creating a 

process chain within the simulation is first given followed by a more detailed 

description of the individual modules -‘Create’, ‘Assign’, ‘Process’ and ‘Dispose’ 

required to model the process chain.   

 

A2.1 Overview of creating a process chain 

A2.2 The ‘Create’ module 

A2.3 The ‘Assign’ module 

A2.4 The ‘Process’ module 

A2.5 The ‘Dispose’ module 
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A2.1 Overview of creating a process chain 

A simple process route can be created using Arena, products can be modelled as 

entities, which could represent the parts or products being manufactured and processes 

can be modelled as events. The use of Arena to model processes also provides the 

flexibility of having multiple process routes and handling various processing parameters 

for different products.  

The software has it own “language” and it is important to understand the various 

terminologies that it uses so that the right information can be entered and assigned, 

which can subsequently be understood by the software.  

There are four basic modules typically used to model a process chain within the Arena 
program:  

1) Create 

2) Assign 

3) Process 

4) Dispose 

An overview of each of the modules are shown in Figure A2.1 which shows a screen 

print of the Arena window with the main modelling panel where the system being 

modelled is graphically represented using flowchart representations. The figure shows a 

production system consisting of 3 manufacturing processes in sequential order with 1 

product stream going through the system. The process chain is linked through the use of 

connector lines, in the Figure A2.1 the process flow starts at the top with the ‘Create’ 

module and ends at the bottom with the ‘Dispose’ module.  

A process chain can easily be created by selecting and placing the modules in the main 

working window on the right. Through the use of these modules process chains can be 

created to represent processing lines or production systems within an actual 

manufacturing facility. Various configurations of process chains can be created by 

simply altering the connections between modules, thus providing a great deal of 

flexibility for the user.  

Figure A2.1 also shows the project bar where the various other modelling functions can 

be found. The project bar provides access to the different modules which have been 
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grouped into – basic processes, advance transfer and advance processes. More complex 

process chains can be modelled using these additional modules such as the ‘Decide’ 

module which allows entities to pass through a different process chain depending on its 

property, for an in-depth description on modelling complex multiple process chains 

refer to Kelton et al. (2009).   

The toolbar provides access to the standard file management functions such as ‘save’, 

‘new’ and ‘open project’. In addition formatting and animation functions are also found 

here. The selection of various graphs that provides statistical displays during the 

simulation runs can also be toggled from here.  

.  

 

 

 

  

‘Create’ Module
The product type and batch sizes 
are defined as entities here. This is 
the point that the product enters the 
system.

‘Assign’ Module
The entities can be given 
various values using this 
module.  Exact values, 
statistical and mathematical  
relationships can also be 
assigned. 

‘Process’ Module
The entities are processed 
within the module based on the 
action specif ied. Processing 
times and the  resources used 
can be specif ied. 

‘Dispose’ Module
The entities leave (removed from the 
model) the system through this 
module.  It is the ending point for 
entities in a simulation model

The Project bar
This panel here contains a list of 
different functions – the flowchart 
modules and the data modules 
used to define the process being 
modelled. 
The flowchart module shapes 
can be used to model a 
manufacturing system. 
It also contains data modules 
which provides access to the 
different spreadsheets such as 
‘entities’, ‘schedules’ and ‘queues’

Toolbar
All the other simulation features are 
accessible through the toolbar e.g. View 
settings, Animation settings, drawing tools, 
simulation run times and speeds etc. 

Module Data Spreadsheet
The data for each module can be 
edited through Arena’s spreadsheet 
interface. 

Figure A2.1: Overview of simulation window in Arena showing the different modelling modules used to
create a process chain. 
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 A2.2 The ‘Create’ module 

The ‘Create’ module allows entities to enter the model. Entities are individual items 

being processed through the system such as a part or a product. The entities are defined 

by an Entity module which provides data to the modelling system but is not graphically 

represented within the system flow. They are the dynamic objects in the simulation and 

represent the objects moving through the system. The entities are created either by the 

user or automatically by the software, move through the system and then are disposed 

off. In a production system, it would be the parts to be processed (i.e. the component is 

created, processed by the milling machine, then leaves). Data is entered within the 

Entity spreadsheet as seen in Figure A2.2.  

Within the window is possible to specify entity types, the number of entities that enter 

the system per hour the statistical distribution of the arrival etc.  It is also possible to 

create different kinds of entities (different Entity Type) that go through different 

processing routes. In the complex conceptual model, 3 entities can be specified to each 

represent different components through the different process routes; this has been 

demonstrated in the case study in Chapter 10.  

 
Figure A2.2: Arena window with the ‘Create’ module selected and the data entry window for the module 

open 
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A2.3 The ‘Assign’ module 

The ‘Assign’ module allows specific parameters to the given to the entity, this includes 

specific values, or values assigned through statistical distributions or values derived 

from mathematical relationships. For example if an entity has a mass of 0.5 kg the 

assign module can be used to tag information onto the entity has it passes through the 

system as shown in Figure A2.3. This is useful when product parameters need to be 

specified for calculating the energy values in the Energy Simulation. Besides allocating 

fixed values, it is also possible to incorporate mathematical equations and statistical 

distributions.  

 

 

 

  

Figure A2.3: The ‘Assign’ module as well as the data window showing how to tag information to an 
entity. In this case the entity is given a mass of 0.5 kg whenever it passes through this module. 
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A2.4 The ‘Process’ module 

The ‘Process’ module allows a process to be performed on each entity. In a production 

system, this could be a milling process or a casting process. The process is represented 

as a duration of time and can have resources allocated to it such as a milling machine 

and/or a human operator. A screen print of the ‘Process’ module and the resource 

window is shown in Figure A2.4.  

 
 

FigureA2.4: The ‘Process’ module as well as the data window showing the allocation of resources to the 

process 
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A2.5 The ‘Dispose’ module 

The ‘Dispose’ module represents the departure of each entity from the system, i.e. the 

part has been manufactured. Figure A2.5 shows a print screen of the modelling window 

with the three modules – ‘Create’, ‘Process’ and ‘Dispose’ placed together to create a 

complete system flow in the simulation area. 

 

 

  

Figure A2.5: Arena window showing the simple system created with the 4 modules.



 

   

Appendix 3 A16 

 

Appendix 3 

Conference Paper 

 

Improving Product Design based on Energy Considerations 

 

Introduction  

This paper was presented at the 18th CIRP International Conference on Life Cycle 

Engineering, Braunschweig, Germany, May 2nd- 4th 2011.  
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Improving Product Design based on Energy Considerations 
Yingying Seow, Shahin Rahimifard 

 Centre for Sustainable Manufacturing and Reuse/Recycling Technologies, Loughborough University, UK 

 

Abstract 

The industrial sector consumes a significant amount of the world’s energy supply; the rationalisation of energy 

consumption would provide the most effective method of reducing greenhouse gas emissions attributed to manufacturing 

and use of products. Energy consumed across the various stages of a product’s lifecycle varies significantly depending on 

the product design and its application.  In non-energy using products such as furniture, food, and clothing, the material 

preparation and production phases represent a significant proportion of energy consumption over the product lifecycle. 

This paper proposes a new design methodology targeted at these products to minimise energy consumption during 

‘production’ phase.  

Keywords:  

Energy efficiency; Design for the Environment; Low Carbon Manufacturing 

18th CIRP International Conference on Life Cycle Engineering, Braunschweig, 2011 

1 INTRODUCTION 

Increasingly, energy consumption of products has become the 
focus of environmental concerns due to carbon emissions from the 
combustion of fossil fuels for energy generation.   As energy 
demand continues to grow and fossil fuels remain the main source 
for power generation in the foreseeable future [1] the most effective 
method of CO2 reduction is still through the rationalisation of energy 
consumption. This has led governing bodies to introduce a number 
of energy auditing and accreditation standards, such as European 
directives on the ‘Eco-Design of Energy using Products (EU 
Directive 2005/32/EC)’ and ‘Energy End-Use Efficiency and Energy 
Services (EU Directive 2006/32/EC)’.   

According to Otto and Wood [2], 80% of the environmental damage 
of a product is established after 20% of the design activity is 
completed. Decisions made early in the conceptual design phase 
can influence the outcome of a design exercise more significantly 
than any optimisation step later on in the design process [3]. 
Therefore environmental considerations should be integrated early 
in the design phase during the product development process, see 
Figure 1 [4]. The most commonly adopted method is ‘Design for 
Environment’ (DfE) which is concerned with the impact of design 
throughout the lifecycle, from material preparation and manufacture 
to use and end-of-life management of a product [5]. 

 

Figure 1: Conceptual representation of environmental ‘lock-in’ over 
a product’s development cycle [4]. 

 

 

 

 

DfE considers a range of environmental issues associated with a 
product including resource consumption, end-of-life disposal, waste 
management, recyclability reusability and use of toxic and 
hazardous materials. 

Energy is clearly consumed across the various stages of a product 
lifecycle; furthermore the level of energy consumed in each lifecycle 
phase significantly varies depending on the product. For example in 
the case of electrical products, the greatest contributor to 
environmental impact is often due to the consumption of electricity 
during the ‘Use’ phase, thus the reduction of this energy use during 
this stage has been the focus of most design tools and guidelines. 
However in the majority of manufacturing applications, the 
production phase still represents a significant proportion of energy 
consumed over a product’s lifecycle, in particular for non-energy 
consuming products. This highlights the need to investigate the 
opportunities for optimisation of energy consumption during the 
production through design improvements.  

This paper proposes a new design methodology which aims to 
minimise the energy consumption during the manufacturing phase 
of a product. This is achieved by providing a detailed breakdown of 
energy flows attributed to the production of a product and utilise this 
energy data to improve the design process. The initial section of the 
paper provides an overview of ‘Design for X’ approaches, together 
with an overview of the established design methodologies used in 
most applications. The latter part of this paper describes the Design 
for Energy Minimisation (DfEM), during manufacture and outlines its 
application in the design of a chair. 

 

2 PRODUCT DESIGN AND THE APPLICATION OF DFX 
TOOLS 

2.1 Product Design Process  

A common design model as proposed by Pugh [6] consists of four 
generic stages: 1) Specification, 2) Conceptual Design, 3) Detail 
Design and 4) Manufacture. As illustrated in Figure 2. 
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The first stage involves planning of the design task by collecting 
information about the customer requirements and creating a 
product design specification. The next step is to generate ideas by 
searching for essential problems and combining working principles 
and selecting a suitable concept. The third stage is detail design 
which develops the concept chosen at the previous stage into a 
more concrete proposal with specifications of geometry, materials 
and tolerances of all parts in the product. Production costs and 
robust performance are the main concern at this stage.  Finally the 
last stage is manufacturing and typically at this stage the main 
design aim is to minimize the component and assembly cost.  

Various design for ‘X’ (DfX) tools can be applied to each design 
stage. DfX is a term that is used to represent a variety of 
considerations that must be made whilst designing a product and 
stems from the fact that designers cannot be subject experts on 
every factor that arises during the design process. It can be used in 
the early stages of concept design as a benchmarking tool as well 
as helping to simplify new un-built concepts [2]. For example 
Design for Life Cycle which considers the environmental impact of a 
product from cradle to grave, may mean a radical design change to 
a vehicle such as powering a car from renewable energy to 
minimize the impacts from the use of fossil fuels.  Other DfX tools 
like Design for Manufacture and Assembly might be considered to 
minimize the number of parts thereby reducing manufacturing and 
assembly costs and time.  Figure 3 shows an example of how the 
various DFX tools alongside others, can support the different 
phases in the product development process.  

More recently with the increasing concern about climate change 
and the environmental impact of products, a new generation of DfX 
tools have been developed to help designers reduce these impacts 
through their design. These tools aim to integrate environmental 
considerations in the design of new products to reduce the overall 
environmental impact of a product [8,9] as most of the 
environmental impact in a product’s lifecycle is ‘locked in’ into the 
product at the design stage when materials and production process 
are selected, and product performance is largely determined. 

 

Figure 2: Pugh’s product design model showing the 4 central stages 
of the product design process [6].  

 

Figure 3: Application of various design tools in problem solving, 
product synthesis and in product development [7]. 

As there is no single measure for environmental impact, various 
tools and techniques have been developed under the DfE strategy 
some of which are: Design for recyclability [10], Design for 
disassembly [11], Design for Lifecycle [12], Lifecycle Costing [13], 
Sustainable design [14] and Design for End-of-life [15].  

This research paper is proposing a new framework for improving 
product design through energy considerations. To demonstrate how 
a Design for Energy Minimisation approach can be adopted across 
the various design stages, 3 generic phases of Concept design 
(CD), Detail design (DD) and Manufacture (M) in line with Pugh’s [6] 
design methods have been used.  

2.2 Design for Energy Minimisation Approach  

DfEM is a wide ranging consideration that not only includes energy 
consumed during the Use phase, but also considers the other 
stages in the lifecycle. This is currently supported by Life Cycle 
Assessment (LCA) which is used to compile and evaluate the 
environmental burdens of the product from the material production 
to part manufacture, product assembly, operation, servicing, 
maintenance and end-of-life disposition [16]. However there are two 
main shortcomings with conducting a LCA:  

1) The inventory analysis required in a LCA is time consuming due 
to the complexity and data intensive nature of the process. In 
various studies conducted [17,18,19] the industry found this 
process to be too complex and requiring a great deal of effort for 
existing products. The data intensive nature of a LCA coupled with 
the lack of accurate data related to the energy consumption across 
the entire lifecycle of a product often results in significant 
assumptions and simplifications [19]. This is perhaps even greater 
for a product that does not yet exist as it is unrealistic for a designer 
to have access to all the specific information about the materials 
and processes required for a comprehensive LCA at the early 
stages of product design i.e. concept design phase. 

2) On a more specific level, the energy data available in existing 
Life cycle inventory (LCI) databases such as the Ecoinvent [21] 
database is based mainly on industry sectors located in Switzerland 
and Western Europe and is therefore not always relevant for 
products that are manufactured in a different location. In addition, 
much of the process energy data is indicated as kJ per unit weight 
of material processed which does not provide any indication of how 
much energy was used by the manufacturing facility, how much  
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was for the actual processing and how much was from the 
supporting auxiliary processes.  The total energy consideration 
established through the LCI can only provide a generic ballpark 
energy consumption value which may not be reliable for processes 
which are executed in a different way in other manufacturing 
environments. Hence there is a need to consider the energy flow 
modelling during the ‘manufacturing’ phase in more detail.  

For these reasons, there have been a number of recent 
developments in the following two areas:  

a. In order to minimize the complexity and time taken to conduct a 
full LCA, simplified models and additional assumptions have 
been used to reduce the evaluation effort in traditional LCA. 

These condensed LCA are known as streamlined LCA (S-LCA) 
which encompasses a group of approaches designed to simplify 
and reduce the time, cost and effect involved in conducting a full 
LCA while still facilitating accurate and effective decisions. For 
example, Granta Design [22] has developed a simplified LCA tool 
called the Eco Audit tool (part of the Cambridge Engineering 
Selector (CES) suite of software) which uses information about 
product composition, processing, usage, transportation, and 
disposal. The tool then combines this with eco property data on the 
materials and processes used in the design to calculate the energy 
usage and CO2 output resulting from each stage in the product 
lifecycle, see Figure 4. This high level overview is particularly useful 
during the first stage of product design (i.e. concept design) which 
can guide the design strategy by the identifying the lifecycle phase 
which has highest environmental impact.  

b. In order to gain an accurate picture of the energy consumption 
in manufacturing, energy management systems are now used 
to track and measure the energy used in a production facility, 
providing a breakdown of energy consumption by various 
elements in a production system including both the buildings 
and production facilities. 

An example of energy management software is Optima developed 
by Optima Energy Management [23]. It can track and monitor real 
time energy consumption, buys energy at best available prices and 
allows budgets and targets to be set for cost savings. Whilst AEMS 
provides correlation with external factors affecting energy use such 
as weather and building occupancy, much of the data is related to 
building energy consumption and only provides a high level 
breakdown of a plant’s energy consumption by generic areas. 

 

Figure 4: Inputs and outputs for the Eco Audit Tool [21].  

 

In this context, the authors argue that a holistic DfEM approach 
should first provide support across the design process from concept 
design to manufacture and should secondly consider the energy 
consumption throughout the entire product life cycle. S-LCA tools 
such as CES mostly provides support during the concept design 
stage by providing high level energy information of each phase of a 
product lifecycle whilst AEMS provides support at the manufacture 
stage through the monitoring and tracking of energy consumption 
within the manufacturing facility. This highlights the need for a tool 
at the detail design phase that can provide energy data that is 
sufficiently detailed to correlate production processes and operation 
parameters to energy consumption. It is therefore proposed that an 
Energy Simulation Model (ESM) can be used at the detail design 
phase to bridge the gap between high level simplified LCA tools 
used at conceptual design and those used to monitor energy 
consumption as part of the manufacturing stage, as illustrated in 
Figure 5. This is achieved through a framework to model energy 
flows within the manufacturing phase of a product lifecycle and to 
support the detail design activities within the product design 
process which is described in the next section.   

 

3 ENERGY SIMULATION MODELLING FRAMEWORK 

Much of the current work on energy consumption within production 
or manufacturing can be broadly viewed under two different 
perspectives of ‘plant’ and ‘process’. The work directed at the ‘plant’ 
level has focused on the energy consumed by infrastructure and 
other high level services that are responsible for maintaining the 
required production conditions/environment [24, 25]. Examples of 
such energy consuming activities would be heating and lighting, 
transportation equipment and ventilation systems [26 ]. On the other 
hand, research concentrating on the ‘Process’ levels have targeted 
energy consumption of the individual equipment, machinery and 
workstation within a production system [27, 28].  

This research proposes a third perspective which considers the 
energy consumed by a product as it is being manufactured and 
attributes the energy used on the plant and process levels to single 
unit of product made. This also includes energy that is required for 
pre-production (i.e. material preparation), production (i.e machining) 
and post production (i.e. packaging). This ‘product’ perspective 
along with the other two ‘plant’ and ‘process’ viewpoints on energy 
modelling are depicted in Figure 6.  

Currently most energy analysis of a product is conducted through a 
LCA methodology which typically uses the weight of the material 

 

 

Figure 5: DfEM should support the design process as well as the 
product’s lifecycle. 
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being processed as the basis for the calculation. This paper 
proposes a different approach to energy modelling which differs 
from traditional LCA calculations by taking into account the amount 
of material being processed as well as the processing time required 
to convert these materials to finished products.  For example in the 
case of machining processes, it is not only the weight of the 
material removed but also the complexity of the required operations 
(e.g. number of holes or slots), hence the total processing time, can 
greatly influence the energy consumption. 

In this framework, the energy consumed within a manufacturing 
facility is categorised into Direct Energy and Indirect Energy. The 
Direct Energy (DE) represents the energy utilised by the 
manufacturing processes used to produce the product. This 
includes pre-production, production and post-production processes 
(e.g. casting, machining, spray painting, inspection, etc). The 
Indirect Energy (IE) is the energy consumed by activities required to 
maintain the ‘environment’ in which the production processes are 
carried out within a manufacturing plant (e.g. lighting, heating, 
ventilation, etc.). Further details of this framework can be found in 
Rahimifard and Seow [29]. In this approach, the EPE model is not 
only able to detail the energy consumption for the various 
processes, but also highlights the energy hotspots within a 
manufacturing facility to support energy efficient manufacturing [30]. 
Energy intensive or energy inefficient processes can be identified 
for replacement or improvement.  

The energy simulation model consists of a simulation engine, an 
energy database, and a decision support tool, see Figure 7. The 
simulation engine is based on the framework and has been 
developed to allow a number of ‘what-if’ scenarios for the analysis 
and evaluation of energy consumption during the manufacturing 
phase of a product life-cycle. The simulation engine which has been 
developed using ArenaTM, a discrete event simulation and 
automation software from Rockwell Automation is capable of 
modelling various manufacturing process flows for different 
products and can be expanded to include product or process 
variations. Additional production variations such as batch sizing, 
lead times and queue times can also be included. The energy 
database also provides the simulation engine with the primary 
energy information such as energy values associated with the 
manufacturing processes and auxiliary activities.  

Initial data can be determined either theoretically or empirically and 
statistical relationships can eventually be established to train the 
simulation engine to predict the amount of energy consumed by the 
processes and activities for different production parameters such as 
batching, queue times, process routing and process set ups. 

 

Figure 6: Different Perspectives of Energy Modelling.

 

Figure 7: Energy simulation model consists of the decision support 
tool, the energy model data base and the modelling engine. 

As the energy model becomes more robust, the data output from 
the predictive models can in turn be added into the energy 
database to build up a comprehensive understanding of the energy 
requirements of processes and production systems. It should be 
noted that the data related to energy consumption within logistics 
and reverse logistics activities can also be included.  

The final aspect of the energy simulation model is the decision 
support tool which correlates various design and processing 
parameters with energy consumption data derived from the energy 
database. Using a correlation matrix, the energy intensity and 
efficiency of various manufacturing parameters can be evaluated 
against the functional requirements of the product to derive at a 
design that has minimal energy consumption during manufacturing. 

This energy simulation model not only supports operational 
decisions but also provides energy transparency right back to the 
design process, enabling designers to select the most energy 
efficient materials and processes whilst fulfilling the requirements in 
the product specification. Such an approach will potentially enable 
businesses to go beyond the incremental improvements achievable 
via existing energy management systems to consider energy 
efficiency and utilisation across both the design and manufacturing 
phases of a product life cycle. 

 

4 APPLYING DFEM TO PRODUCT DESIGN 

4.1 Tools to aid DfEM 

As mentioned before, the adoption of DfEM methodology involves a 
series of tools that can be applied at the different stages in the 
product design process. For example at the conceptual design 
phase where high level decisions are required for concept selection 
a simplified LCA package like CES Eco Selector could be adopted 
to provide an overview of the energy requirements for a new design 
within a product lifecycle. CES Selector can provide support to 
determine the appropriate materials based on specific product 
specification [31] and relate the energy consumption to the selected 
materials. It can also provide designers with a rough estimate of the 
energy requirements of processes which can aid decision making 
when short listing suitable processes. 
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     Figure 8: Application of various tools in a product design process to aid energy minimisation 

In the second phase- detail design, where product structure, 
assemblies and components are established, there is a need for 
more detailed considerations of the relationships between product 
attributes and production processes required for manufacturing. At 
this stage the decision support tool can be used to identify trade-
offs between energy intensity of processes and functional 
requirements. After a process has been chosen, the energy 
simulation model can be used to evaluate the energy consumption 
during the manufacture, and hence provide appropriate information 
during the selection of least energy intensive processes or setting 
process parameters so that they consumed the least energy. In a 
similar manner during the final phase (i.e. manufacturing stage), 
production machinery and facilities need to be monitored to 
improve energy flows and efficiency. Advance energy 
management systems can be used to measure, record and 
improve the energy consumption within a production system and 
track energy demand of the manufacturing site. 

4.2 Application of DfEM to a Product 

DfEM was applied to the design and manufacture of a plastic chair 
to evaluate the areas where energy consumption could be 
minimised. In the case of a simple product like a plastic chair, 
various energy considerations and goals can be defined for the 
product at the start of the development phase and while creating a 
Product Design Specification (PDS).  In this case, the CES Eco 
Selector can be used to assess the energy requirements for 
extraction, preparation and processing of various plastics to further 
narrow down the list of materials that meet the functional 
requirements of this product.   

This evaluation may show that of the Acrylonitrile-Butadiene-
Styrene (ABS) and reinforced Polypropylene (PP) can both fulfil 
the product specification, but PP is the least energy intensive to 
extract and prepare. After selection of the material, the energy 
simulation model can then be used to evaluate the various 
production processes that can be used to manufacture the chair 
using the PP, and provide an indication of the least energy 
intensive processes. In this case due to specific product geometry, 
the feasible processes that can be adopted are high impact 
injection moulding and gas assisted injection moulding.  The 
evaluation of these two processes indicates that the gas assisted 

injection moulding will potentially consume more energy due to the 
high energy requirements for compressed air.  The energy model 
is therefore able to determine energy hotspots at the same time 
provide a breakdown of the energy consumed by the direct 
processes, auxiliary processes as well as the indirect processes 
from the facility.  

This information could aid the decision making when deciding on 
the best method of manufacturing of the product and provide 
designers with a greater insight into energy consumption. Finally 
during the actual production of the chair, AEMS can be used to 
monitor the real time energy consumption by injection moulding, 
process cooling, drying ovens, heating and ventilation systems as 
well as lighting to improve the efficiency of the production facility.  

Although these tools can be used independently within each phase 
of the design process, clearly greater benefits could be achieved 
through integration of these tools, as the data/knowledge  
generated by each can support the decision made in other phases. 
For example, the data collected from the AEMS can help to 
improve and expand the database used by the ESM, providing 
more accurate energy consumption values for the actual 
production facility rather than a generic plant.  Likewise, ESM can 
help CES by providing more customised data for the processes 
carried out at the facility so that an accurate streamlined LCA can 
be carried out for subsequent products designed and 
manufactured at the plant. 

  

5 CONCLUSIONS  

Design is an integral part of any product development process and 
much of the decisions taken at this stage accounts for majority of 
the financial and environmental cost of a product. Therefore to 
reduce the energy consumption of a product during the 
manufacturing stage, energy considerations need to be included at 
the design stage. By identifying where the energy is used during 
production and how productively it is used, the designer gains an 
insight into the energy effectiveness of the process in relation to a 
product. This knowledge can empower the designer to intelligently 
explore the suitability of a product feature, a material and 
consequently the chosen manufacturing process with energy 
minimisation in mind.   
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The DfEM methodology presented in this paper together with the 
simulation tool would enable designers to do ‘what if’ scenarios to 
identify the most practical and economically feasible design 
improvements that could reduce the need for energy consumption 
during manufacture.  

As with most DfX tools which improves design from just one 
perspective, DfEM only provides a singular view focusing on energy 
consumption during production. The reduction of energy 
consumption in the manufacture phase may have an adverse effect 
on the other stages of the life cycle.  

Clearly the scope of this approach has to be extended to consider 
the energy considerations related to wider issues within a product 
life cycle such as the energy requirements during the use phase, 
logistics and reverse logistics and end-of-life. As such this approach 
should be used in conjunction with other LCM tools to evaluate the 
overall life cycle impact of the product to ensure that the absolute 
environmental impact is reduced and not increased. The matter of 
minimising energy consumption of a production system must be 
addressed as part of a multi objective optimization problem. 
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Abstract 

Energy is an inextricable part of life in the 21st century, thus its availability and utilisation 
will become increasingly important with the concerns over climate change and the 
escalation in worldwide population. This highlights the need for manufacturing businesses 
to adopt the concept of ‘lean energy’ based on the use of the most energy efficient 
processes and activities within their production facilities. The energy consumption in 
manufacturing facilities can be reduced by either using more efficient technologies and 
equipment, and/or through improved monitoring and control of energy used in 
infrastructure and technical services. The research reported in this paper adopts a novel 
approach to modelling energy flows within a manufacturing system based on a ‘product’ 
viewpoint, and utilises the energy consumption data at ‘plant’ and ‘process’ levels to 
provide a breakdown of energy used during production. 

 
Keywords:  

Sustainable Development, Modelling, Energy Efficient Manufacturing 

 
1 INTRODUCTION 

Energy is the most fundamental resource for future economic growth and prosperity and its consumption is 
expected to continue to grow over the coming decades, with world energy demand estimated to be 45% 
higher in 2030 than today’s levels [1]. The worldwide ‘industrial’ energy consumption is predicted to 
increase by 40% in 2030 from 2006 levels [2]. A study has suggested that this could be exacerbated by a 
potential shortfall in energy supply due to declining fossil based energy sources as shown in Figure 1 [3].  
Furthermore, it is commonly reported that for the foreseeable future, the main source of power generation 
will be from fossil fuels [1, 2] and therefore the rationalisation of energy consumption still provides the most 
effective method of CO2 reduction. Governments have consequently responded by introducing a number 
of energy related legislation, audits and accreditation. More recently European regulations have 
specifically addressed energy usage with the introduction of Directives such as Eco-Design of Energy 
using Products (EU Directive 2005/32/EC) and Energy End-Use Efficiency and Energy Services (EU 
Directive 2006/32/EC). 

 

 
Figure 1: Growing gap between energy supply and demand. (Adapted from Chefurka [3]) 

Environmental practices and strategies in manufacturing businesses have changed over the past two 
decades, from simply meeting the regulations and legislative requirements to increasingly adopting a 
proactive approach in being environmentally responsible with respect to their products and processes.   

Supply (fossil based) Supply (non-fossil based) Demand



 

   

Appendix 4  A25 

 

Nowadays, environmental challenges are seen as competitive business opportunities rather than 
insurmountable cost burdens. It is therefore claimed that the increasing number of legislation and 
directives along with rising cost of fuel will provide significant impetus for manufacturers to reduce energy 
consumption.  

The major research assertion made is that the efficiency and productivity of energy consumption in 
manufacturing applications has to be carefully examined, highlighting a need for methodologies and tools 
that can provide a detailed breakdown of energy usage within a manufacturing system. The authors 
believe that this work can support minimisation of energy consumption during manufacture and influence 
design decisions for even greater energy savings. This paper outlines a novel modelling framework to 
represent the total energy required to manufacture a unit product. The initial part of the paper provides a 
brief overview of existing research work in this area, with the main sections outlining the framework for 
modelling Embodied Product Energy (EPE) during manufacture and concludes with a case study that used 
discrete event simulation to establish the EPE. 

 
2 A BRIEF REVIEW OF MOST RELEVANT RESEARCH 

In recent years, there has been a significant growth in research activities directed at environmentally 
conscious/benign manufacturing [4,5] with a common aim of creating goods and services using processes 
and systems that are non-polluting, at the same time conserving energy and natural resources.  The 
energy consumption is one of the main considerations within a Life Cycle Assessment (LCA) study [6], 
however due to the information intensive nature of LCA and the lack of accurate data related to energy 
demand across a product life cycle (in particular during the manufacturing phase), significant assumptions 
and simplifications are often made. This has motivated numerous research programmes to investigate 
energy consumption within a manufacturing facility so as to gain a better understanding of the energy use 
and breakdown.  

The existing research in this area can be broadly viewed under two different perspectives of ‘plant’ and 
‘process’ level. The first area, the ‘plant’ level perspective, has focused on the energy consumed by 
infrastructure and other high level services that are responsible for maintaining the required production 
conditions or environments. Examples of such energy consuming activities would be ventilation, lighting, 
heating and cooling within a facility [7]. Energy Management Systems (EMS) are commonly used to 
monitor these activities [8]. For example, Boyd [9] utilises a statistical analysis approach to determine the 
manufacturing Energy Performance Indicators based on ‘plant level’ variables. This work has been 
integrated into the American Energy Star performance rating system of manufacturing facilities. 

On the other hand, the research targeting the energy consumption at the process level has concentrated 
on individual equipment, machinery and workstations within a production system. For example, as part of 
an international initiative on  ‘Cooperative Effort on Modelling Process Emissions in Manufacturing’ 
(CO2PE) [10], substantial research has been targeted to document, analyse and reduce process emissions 
for a wide range of available and emerging manufacturing processes [11,12]. The taxonomy used to 
structure the data is shown in Figure 2.  

Overcash et al. [13] along with a group of other engineers are working to produce an engineering rule-of-
practice-based analysis of separate unit processes used in manufacturing and the information is collated in 
the form of a unit process life cycle inventory (UPLCI) which would help the evaluation of manufactured 
products through the quantification of various parameters including: input materials, energy requirements, 
material losses and machine variables. Their work also uses a similar process taxonomy adopted by the 
CO2PE initiative.  

In addition, the process specific energy assessment investigated by Gutowski et al. [14] has taken a step 
further to develop generalised ‘equipment-level’ energy models, using average energy intensities of 
different manufacturing processes to evaluate the efficiency of processing lines. However, the 
considerations of energy flows at plant or process level cannot provide an overview of “how much energy 
is required to manufacture a unit product”. The remaining sections of this paper will discuss a distinctly 
different approach based on a ‘product’ view which is not only capable of providing an estimation of total 
energy but also a breakdown of energy usage within the facility. 
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Figure 2: Taxomony of Processes used by CO2PE. [10] 

 

3 MODELLING ENERGY CONSUMPTION DURING MANUFACTURING PHASE 

3.1  Product viewpoint for energy flow modelling  

The proposed approach in this research is based on a product viewpoint and investigates the combination 
of energy used both at the plant and process levels, with the aim of representing the amount of energy 
attributed to the manufacture of a unit product, as depicted in Figure 3. The complexities, assumptions and 
simplifications typically included in a LCA study, highlights the need for such an approach when modelling 
EPE during the manufacturing phase.  

 

3.2 Indirect and Direct Energy 

In this approach, the energy consumed by various activities within a manufacturing application is 
categorised into two groups: Direct and Indirect Energy. The Direct Energy (DE) is defined as the energy 
used by various processes required to manufacture a product (e.g. casting, machining, spray painting, 
inspection etc.), whereas the Indirect Energy (IE) is the energy consumed by activities  to maintain the 
‘environment’ in which the production processes are carried out within the factory or manufacturing plant 
(e.g. lighting, heating and ventilation). 

 

 
Figure 3: Plant, Process and Product Viewpoints to Energy Flow Modelling during Manufacture. 
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Further in the EPE framework, the DE is divided into: i) Theoretical Energy (TE) refers to the minimum 
energy required to carry out the process (e.g. energy required to melt a specific amount of metal during 
casting, or removing a specific amount of material during machining operation); and ii) Auxiliary Energy 
(AE) as the energy required by the supporting activities and auxiliary equipment for the process (e.g. 
generation of vacuum for sand casting, or pumping of coolant for machining). It should be noted that the 
value of AE also includes non-productive modes such as machine tool start-up, standby and cleaning.  

In the case of IE, the energy consumed by various activities such as lighting and heating may be required 
by a number of processes, and/or a process may require specific environment (e.g. clean room for 
inspection). Therefore, in this approach, a manufacturing facility is considered as a number of ‘zones’ 
where a ‘zone’ is defined as an area within the manufacturing plant with similar indirect energy 
requirements. 

The EPE model utilises data related to the DE and IE at both the ‘plant’ and ‘process’ levels to represent 
the total energy required to manufacture a product. The total embodied product energy is the sum of all the 
energy used by the processes required to manufacture the product and the energy consumed by the 
environment in which the processes are in, as illustrated in Figure 4. A combination of theory or empirical 
studies is required to determine the values of the DE and IE, as detailed in the next section.  

 
Figure 4:  Framework for Modelling Embodied Product Energy. 

 

3.3 Modelling Embodied Product Energy 

A systematic approach has been used to calculate the DE and IE for various processes required in the 
production chain of a product. In most cases the value of the TE for a process can be calculated based on 
existing knowledge and/or appropriate mathematical models. Most of the traditional production processes 
depend on material removal, melting, vaporisation or deformation, and therefore the energy required can 
be determined through a number of specific process parameters. For example in the machining process, 
the TE can be calculated based on values for the specific cutting energy for the material, U, and volume of 
the material to be removed, V, i.e. (U x V). Likewise, the AE can be calculated based on system 
specifications (e.g. data from equipment manufacturers), and where data is unavailable, empirical studies 
can be conducted to measure energy required for the auxiliary processes. In the case of IE, the energy 
attributed to a product is calculated based on total energy consumed within a zone (per hour) divided by 
number of products processed in that ‘zone’ per hour. The sum of the TE and AE (i.e. the DE) together 
with the IE for all the processes within a production system represent the total embodied energy of the 
product, as illustrated in Figure 4. An example based on the machining of a simple part with the details of 
the calculations using the EPE framework is detailed in Seow and Rahimifard [15].  

In this approach, the EPE model is not only able to detail the energy consumption for the various 
processes, but also highlights the energy hotspots within a manufacturing facility. Such energy intensive 
processes can then be examined to improve their efficiency or where possible be replaced with a less 
energy intensive process. In addition, more detailed assessments of the process efficiencies can be made 
by considering the ratio of TE to AE (with a higher value for TE and lower value for AE representing an 
energy efficient process) and similarly the ratio of DE to IE (with a higher value for DE and lower value for 
IE representing an energy efficient production system). Further details on the efficiency ratios can be found 
in Rahimifard and Seow [16]. The EPE model can also be used to examine the impact of other production 
parameters such as number of required setups, batch sizes, production schedules, etc. This could provide 
an insight into identifying optimum setup patterns and batch sizes, as well as opportunities to explore other 
causal factors that may affect the energy consumption of the processes. 

 

Embodied 
Product Energy
of Product  A

TE(1)A

AE(1)A

TE(2)A

AE(2)A

TE(n)A

AE(n)A

Process 1 Process 2 Process n

IE(m)AIE(1)A

Σ TE(i)A

Σ AE(i)A

Σ IE(j)A

Zone1 Zone m

TE(3)A

AE(3)A

IE(2)A

Zone 2

Direct Energy 

Indirect Energy 

Process 3



 

   

Appendix 4  A28 

 

3.4 Energy Simulation Model 

The implementation of EPE framework within a practical application necessitates the development of a 
decision support tool, capable of representing the complexity involved in measuring, modelling and 
calculation of the DE (TE, AE) and IE for various processes in a typical production system. An energy 
simulation model is also required to establish ‘what-if’ scenarios for the analysis and evaluation of energy 
consumption during the manufacturing phase of a product life-cycle. Through the use of a simulation 
model, the manufacturing process flows can then be easily altered for different products and the model 
can be expanded to include product or process variations. Additional production variations such as batch 
sizing, lead times and queue times can also be included in the model.   

The simulation model shown in Figure 5 has been based on a single production system and includes the 
various processes and manufacturing zones required to produce 3 different parts A, B and C.  Subsets of 
data relating to Theoretical Energy are calculated by the simulation tool using appropriate mathematical 
models representing various processes (see the example case study). This calculated data is 
complemented with actual (real) data related to the Auxiliary Energy and Indirect Energy, recorded by 
advance metering devices and commercial energy management systems used within empirical studies. 
The manufacturing system has been modelled using software developed by Rockwell Automation called 
ArenaTM which is a general purpose, widely used software in both industry and academia [17]. It is a 
discrete event simulation and automation software and uses SIMAN processor and simulation language.  

 

 

Figure 5:  Screen print of the simulation model in ArenaTM showing details of the energy values and charts.  

 

In the model, the manufacturing system comprises of 1 milling machine, 1 drilling machine, 1 spray 
painting booth and an ultrasonic inspection centre. The product is a metal component that comes in three 
variations. Part A is a milled part with several holes drilled in it; Part B is an asymmetrical profile that is 
milled and Part C is a square plate with one hole drilled in each corner. The production steps as well as 
the processing times are given in Figure 6. The parts each require different sets of processes and have 
different processing times. The parts are processed in batches of 10 and are assigned to the workstation 
once they become available.  
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Figure 6:  Simulation of energy flow during manufacture. 

 

Table 1: Calculation of TE and AE for the casting process for the part. 

The TE for the cutting processes – milling and drilling have been calculated based values for the specific 
cutting energy, U, and volume of material removed ,V, using the equation (U x V). Similarly for ultrasonic 
inspection, the values for the number of transmitters, Ntrans, power of transmitter (P) and duration of 
transmission, T, were used to calculate the TE requirement, using the equation (Ntrans x P x T). The TE for 
spray painting together with AE for all the other processes were determined empirically. In this example, 
the IE requirements were different due to the specific nature of each process; therefore 3 manufacturing 
zones have been defined for this application. The attribution of IE for a single part in each zone was 
calculated based on the total IE consumption per hour divided by the throughput for each zone. A 
summary of the equations and energy considerations is given in Table 1.  

In this example, the IE requirements were different due to the specific nature of each process. Both the 
milling and drilling processes had similar requirements and so were grouped within the same zone. 
Individual zones were assigned for spray painting and inspection. The attribution of IE for a single part in 
each zone was calculated based on the total IE consumption per hour divided by the throughput per hour 
for each zone, which took into account waiting and queuing times, set-up times, part loading and unloading 
times, etc. It is argued that the inclusion of such miscellaneous (non-productive) times provides a greater 
degree of accuracy in the attribution of Indirect Energy to a product and enables further analysis of 
productive versus non-productive energy consumption. Where two processes share a zone as in the case 
of Product A, the IE consumed by each individual process in that zone is the average of the IE for zone 1 
established for Product A. In this case, the IE of product A for zone 1 was found to be 34.56 kJ and 
therefore the IE for process 1 and 2 is 34.56/2 = 17.56 kJ.  

In this case study, Product A required the most amount of energy during manufacture followed by Product 
B and Product C, see Figure 7.  Process 3 required the most energy and process 4 required the least 
energy. Both Products A and B can reduce its embodied product energy by eliminating Process 3. From a 
design perspective, this could provide an opportunity for designers to eliminate the need for a spray 
coating on the finished product, perhaps embracing the metallic look of the original material, thus reducing 
the embodied product energy.  Alternatively, as much of the energy consumed in Process 3 is attributed to 
the auxiliary process, further studies can be conducted to identify inefficiencies in these auxiliary 
processes such as the compressed air system, thereby improving the efficiencies or if possible, eliminating 
them.  In this case perhaps a variable motor could be installed for the compressed air system if only a 
small load is required.  
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Figure 7:  Results of Energy modelling showing EPE during the manufacturing phase for each product and for each 
process. 

Clearly, the EPE framework not only provides an overview on how much energy is required to manufacture 
a unit product, but also enables further investigation of various factors that play a major influence on the 
energy consumption within a production system. Therefore it is argued that such energy simulation models 
can be used as effective decision tools to minimise the energy used during the operations and to support 
the implementation of ‘Energy Efficient Manufacturing’.  

It should be noted that with the flexibility offered by modern simulation tools, it is feasible to develop more 
complex models representing a larger production system for products that consist of a number of 
components. In such cases, the embodied energy for individual components is calculated and added 
together to represent the total EPE for the product assembly. Furthermore, the assembly and 
transportation activities can also be included in the EPE calculation if required. In a production system with 
automated assembly and/or transportation activities, the energy flows for these processes can be 
modelled like any other manufacturing workstation. However, the modelling of manual assembly and 
transportation activities present a particularly interesting challenge for the calculation of TE and DE due to 
a judgemental approach required for representing the energy consumption by a human operator. This is a 
commonly reported challenge for other lifecycle studies and one that needs further investigation.  

The results from the modelling can also be used to support other tools such as the one recently developed 
by Duque Ciceri et al. [18] which estimates the material’s embodied energy and manufacturing energy for 
a product for a quick life cycle energy analysis. The tool detailed in [18] uses data from a compilation of 
empirical studies, as such the EPE framework proposed in this paper could provide a structured approach 
for more energy studies to be conducted, thereby improving the accuracy of processing energy data 
available for use. Other possibilities of using simulation include process planning. For example, Chiotellis 
et al. [19] has used simulation to evaluate the energy consumption of various production plans. The energy 
model can also support operational improvements within the manufacturing facility by identifying energy 
intensive and/or energy inefficient direct processes and auxiliary processes.  

However the authors believe the greatest energy savings through a product’s lifecycle will come from 
product design as 90% of the lifecycle costs are determined in the design stage [20, 21]. Therefore this 
provides a great opportunity to further investigate the implementation of the EPE modelling framework 
within a Design for Energy Minimisation methodology as illustrated in Figure 8.    

 

Figure 8: A ‘Design for Energy Minimisation’ approach 
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4 CONCLUDING REMARKS 

The renewable energy technologies provides great potential for power generation in the long-term, 
however the rationalisation of energy consumption will still provide the greatest opportunity for CO2 
reduction in the short to medium term. In the longer term energy rationalisation may also benefit through 
reduced dependency and demand especially if renewable technologies continue to remain costly and 
unreliable. In addition, the expected rapid rise in the cost of energy together with increasing number of 
legislative and social requirements highlight the importance of adopting an ‘energy efficient manufacturing’ 
approach in future applications. The concept of ‘lean energy’ based on the use of the most energy efficient 
processes and activities within the production facilities is the most effective way of reducing energy costs 
whilst maintaining outputs.  

Although a number of commercial tools have been utilised to track and monitor energy use in a factory and 
across various workstations, the detailed breakdown of energy consumption within various processes and, 
more importantly, its attribution to total energy required for the manufacture of a unit product is not well 
understood. This paper highlights the need for greater transparency of energy consumption across 
manufacturing processes and outlines a modelling framework to represent the ‘Embodied Product Energy’. 
In addition to supporting operational decisions, the modelling of the EPE provides energy transparency 
right back to the design process, enabling designers to select the most energy efficient materials and 
processes whilst fulfilling the requirements of the product specification. Such a “Design for Energy 
Minimisation” approach will potentially enable businesses to go beyond the incremental improvements 
achievable via existing energy management systems to consider energy efficiency and utilisation across 
both the design and manufacturing phases of a product lifecycle. 

Furthermore, LCA studies are data intensive and often based on assumptions inappropriate for the product 
being assessed. The energy model described in this paper could be integrated as part of the data 
provision, offering data that is of a greater degree of relevance in conjunction with predetermined 
databases (e.g. Ecoinvent), enabling a more accurate assessment of the product’s impact during the 
manufacturing phase.  

The next stage of the research will explore the implementation of the EPE framework within a simulation 
model capable of supporting complex ‘what-if’ scenarios during both the product development and 
operational planning, and also able to provide an estimation of energy required to manufacture a unit 
product. 
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Abstract 

Energy is an inextricable part of life in the 21st century, thus its availability 
and utilisation will become increasingly important with the concerns over 
climate change and the escalation in worldwide population. This highlights 
the need for manufacturing businesses to adopt the concept of ‘lean energy’ 
based on the use of the most energy efficient processes and activities within 
their production facilities. The energy consumption in manufacturing facilities 
can be reduced by either using more efficient technologies and equipment, 
and/or through improved monitoring and control of energy used in 
infrastructure and technical services. The research reported in this paper 
adopts a novel approach to modelling energy flows within a manufacturing 
system based on a ‘product’ viewpoint, and utilises the energy consumption 
data at ‘plant’ and ‘process’ levels to provide a breakdown of energy used 
during production. 

 
Keywords:  

Sustainable Development, Environmental, Energy Efficient 
Manufacturing 

 
1 INTRODUCTION 

Energy is the most fundamental resource for future economic growth and 
prosperity and its consumption is expected to continue to grow over the 
coming decades, with energy demand estimated to be 45% higher in 2030 
than today’s levels, as depicted in Figure 1 [1]. The worldwide ‘industrial’ 
energy consumption is predicted to grow from 175.0 quadrillion Btu in 2006 
to 245.6 quadrillion Btu in 2030 [2]. Furthermore, it is commonly reported 
that for the foreseeable future the main source of power generation will be 
from fossil fuels and therefore the rationalisation of energy consumption still 
provides the most effective method of CO2 reduction. Governments have 
consequently responded by introducing a number of energy related 
legislation, energy auditing and accreditation. More recently European 
regulations have specifically addressed energy usage with the introduction 
of Directives such as Eco-Design of Energy using Products (EU Directive 
2005/32/EC) and Energy End-Use Efficiency and Energy Services (EU 
Directive 2006/32/EC). 
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Figure 1: Increase in world primary energy demand by region.  
(source: World Energy Outlook[1]) 

Environmental practices and strategies in manufacturing businesses have 
changed over the past two decades, from simply meeting the regulations 
and legislative requirements to increasingly adopting a proactive approach 
in being environmentally responsible with respect to their products and 
processes.  Nowadays, the environmental challenges are seen as 
competitive business opportunities rather than insurmountable cost burdens. 
It is therefore claimed that the increasing number of legislation and 
directives along with rising cost of fuel will provide significant impetus for 
manufacturers to reduce energy consumption.  

The major research assertion made is that the efficiency and productivity of 
energy consumption in manufacturing applications has to be carefully 
examined, highlighting a need for methodologies and tools that can provide 
a detailed breakdown of energy usage within a manufacturing system. This 
paper outlines a novel modelling framework to represent the total energy 
required to manufacture a unit product. The initial part of the paper provides 
a brief overview of existing research work in this area, with the main 
sections outlining the framework for modelling of Embodied Product Energy 
(EPE) during manufacture. 

 
2 A BRIEF REVIEW OF MOST RELEVANT RESEARCH 

In recent years, there has been a significant growth in research activities 
directed at environmentally conscious/benign manufacturing [3,4] with a 
common aim of creating goods and services using processes and systems 
that are non-polluting, at the same time conserving energy and natural 
resources.  The energy consumption is one of the main considerations 
within a Life Cycle Assessment (LCA) [5] study, however due to the 
information intensive nature of an LCA and the lack of accurate data related 
to energy demand across a product life cycle (in particular during the 
manufacturing phase), in most cases significant assumptions and 
simplifications are often made. Therefore, there have been a number of 
research programmes that have attempted to investigate the energy 
consumption within a manufacturing facility. These can be broadly viewed 
under two different perspectives of ‘plant’ and ‘process’ level. The work 
directed at plant level consideration has focused on the energy consumed 
by infrastructure and other high level services that are responsible for 
maintaining the required production conditions/environment.  
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Examples of such energy consuming activities would be ventilation, lighting, 
heating and cooling within a facility [6]. Energy Management Systems (EMS) 
are commonly used to monitor these activities [7]. For example, Boyd 
utilises a statistical analysis approach to determine the manufacturing 
Energy Performance Indicators based on ‘plant level’ variables. This work 
has been integrated into the American Energy Star performance rating 
system of manufacturing facilities [8]. 

On the other hand, the research targeting the energy consumption at 
process level has concentrated on individual equipment, machinery, and 
workstation within a production system. For example, as part of an 
international initiative on ‘Cooperative Effort on modelling Process 
Emissions in manufacturing (C02PE) [9], substantial research has been 
targeted to document, analyse and reduce process emissions for a wide 
range of available and emerging manufacturing processes [10,11]. In 
addition, the process specific energy assessment investigated by Gutowski 
et al. [12] has taken a step further to develop generalised ‘equipment-level’ 
energy models, using average energy intensities of different manufacturing 
processes to evaluate the efficiency of processing lines. However, the 
considerations of energy flows at plant or process level cannot provide an 
overview of “how much energy is required to manufacture a unit product”. 
The remaining sections of the paper discuss a distinctly different approach 
based on a ‘product’ view which is not only capable of providing an 
estimation of total energy but also a breakdown of energy usage within the 
facility. 

 

3 MODELLING ENERGY CONSUMPTION DURING MANUFACTURING 
PHASE 

3.1  Product viewpoint for energy flow modelling  

The proposed approach based on product viewpoint investigates the 
combination of energy used both at the plant and process levels, and aims 
to represent the amount energy attributed to the manufacture of a unit 
product, as depicted in Figure 2. The complexities, assumptions and 
simplifications typically included in a LCA study, highlights the need for such 
approach on modelling EPE during the manufacturing phase.  

 
Figure 2: Plant, Process and Product Viewpoints to Energy Flow Modelling during 

Manufacture.  
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3.2   Indirect and Direct Energy 

In the proposed approach, the energy consumed by various activities within 
a manufacturing application are categorised into two groups: Direct and 
Indirect Energy. The Direct Energy (DE) is defined as the energy used by 
various processes (e.g. casting, machining, spray painting, inspection etc.) 
required to manufacture a product, whereas the Indirect Energy (IE) is the 
energy consumed by activities (e.g. lighting, heating and ventilation) to 
maintain the ‘environment’ in which the production processes are carried out 
within the factory or manufacturing plant. 

Similarly in the EPE framework, the DE has been divided into: i) Theoretical 
Energy (TE) which is the minimum energy required to carry out the process 
(e.g. energy required to melt a specific amount of metal during casting, or 
removing a specific amount of material during machining operation); ii) 
Auxiliary Energy (AE) which is the energy required by the supporting 
activities and auxiliary equipment for the process (e.g. generation of vacuum 
for sand casting, or pumping of coolant for machining). It should be noted 
that the value of AE also includes any non-productive modes such as 
machine tool start-up, standby and cleaning.  

In the case of IE, the energy consumed by various activities such as lighting 
and heating may be required by a number of processes, and/or a process 
may require specific environment (e.g. clean room for inspection). 
Therefore, in this approach a manufacturing facility is considered as a 
number of ‘zones’ where a ‘zone’ is defined as an area within the 
manufacturing plant with similar indirect energy requirements. 

The EPE model utilises data related to the DE and IE at both the ‘plant’ and 
‘process’ levels to represent the total energy required to manufacture a 
product, as shown in Figure 3. A combination of theory or empirical studies 
is required to determine the values of the DE and IE, as detailed in the next 
section.  

 

 

 Figure 3:  Framework for Modelling Embodied Product Energy. 
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3.3 Modelling Embodied Product Energy 

A systematic approach has been used to calculate the DE and IE for various 
processes required in the production chain of a product. In most cases the 
value of the TE for a process can be calculated based on existing 
knowledge and/or appropriate mathematical models. Most of the traditional 
production processes depend on melting, vaporisation or deformation, and 
therefore the energy required can be determined through a number of 
specific process parameters. For example in the casting process, the TE 
can be calculated based on values for the latent heat of melting of the 
material (L), specific heat capacity of the material (C), temperature of  the 
material (T), melting temperature of the material (Tm) and finally, mass of the 
material (m), i.e. mC(Tm-T) + mL. Likewise, the AE can be calculated based 
on system specifications (e.g. data from equipment manufacturers), and 
where data is unavailable, empirical studies can be conducted to measure 
energy required for the auxiliary processes. In the case of IE, the energy 
attributed to a product is calculated based on total energy consumed within 
a zone (per hour) divided by number of products processed in that ‘zone’ per 
hour. The sum of the TE and AE (i.e. the DE) together with the IE for all the 
processes within a production system represent the total embodied energy 
of the product, as illustrated in Figure 4.  

In this approach, the EPE model is not only able to detail the energy 
consumption for the various processes, but also highlights the energy 
hotspots within a manufacturing facility. Such energy intensive processes 
can then be examined to improve their efficiency or where possible be 
replaced with a less energy intensive one. In addition, more detailed 
assessments of the process efficiencies can be made by considering the 
ratio of TE to AE (with a higher value for TE and lower value for AE 
representing an energy efficient process) and similarly the ratio of DE to IE 
(with a higher value for DE and lower value for IE representing an energy 
efficient production system). The EPE model can also be used to examine 
the impact of other production parameters such as number of required set 
ups, batch sizes, production schedules, etc. This could provide an insight 
into identifying optimum set up patterns and batch sizes, as well as 
opportunities to explore other causal factors that may affect the energy 
consumption of the processes. 

 

Key: Theoretical Energy (TE), Auxiliary Energy (AE) & Indirect Energy (IE)  

Figure 4: Depiction of EPE of Product ‘A’ produced using n processes. 
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3.4   An Example of the application of EPE 

A simple part requiring only the machining process is used to demonstrate 
the application of EPE modelling. The part is made from aluminium alloy 
with an output rate of 30 parts per hour from the machining shop used in this 
example. The production of the part involves traditional machining of a 
pocket in the middle with some grooves and slots to indicate a football pitch 
and four holes on each end. The TE was calculated based on the specific 
cutting energy of the material, U (kJ/mm3) and the volume of material 
removed, V (mm3). The AE was established through measuring the energy 
consumption of the milling machine and its auxiliary equipments such as 
pumping of coolant and other non machining activities (e.g. set up, tool 
change, controller etc.). The IE was determined through the overall indirect 
energy consumption for the zone, in this case 4 sets of florescent lights in 
the machining shop (each tube with a 240v, 36W rating). Finally, based on 
the throughput of 30 parts per hour, the time in machining zone was 
determined to be 2 minutes. The calculations for the TE, AE and IE are 
summarised in Figure 6. In this example, the AE clearly consumes the 
greatest proportion of total energy at 60%, followed by the IE at 21%, and in 
fact the TE represents the least amount of the ‘Embodied Product Energy’ 
(i.e. 19%).  

The authors claim that this EPE modelling framework provides a great 
opportunity to further investigate factors that play a role in the energy 
consumption during the manufacturing of a product. The implementation of 
the EPE framework with a decision support tool to minimise energy 
consumption in manufacturing applications represents the next phase of the 
research. 

 

Figure 5: Calculation of TE and AE for the casting process for the part. 

 

 

 

 

  

TE(1)A : UV

= 0.0011 X30126

=33.14 kJ

AE(1)A : Coolant + Non Machining Activities

= 12.5 + 88.5

= 101 kJ

IE(1)A : IEzone1/(60/Tzone1)

= 1036.8/ (60/2)

= 34.56 kJ

U = Specific cutting energy, kJ/mm3

V = Volume of material removed, mm3

ΣAE = 101 kJ

Σ TE = 33 kJ

Σ IE = 35 kJ

IEzone1 =  Average IE consumed in  
the zone per hour, kJ/hr

Tzone1 = Time part spends in zone 1, 
mins

EPE= Σ TE + Σ AE + Σ IE = 169 kJ
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4 CONCLUDING REMARKS 

The renewable energy technologies provides great potential for power 
generation in the long-term, however the rationalisation of energy 
consumption will still provide the greatest opportunity for CO2 reduction in 
the short to medium term. In addition, the expected rapid rise in the cost of 
energy together with increasing number of legislative and social 
requirements highlight the importance of adopting an ‘energy efficient 
manufacturing’ approach in future applications. The concept of ‘lean energy’ 
based on the use of the most energy efficient processes and activities within 
the production facilities is the most effective way of reducing energy costs 
whilst maintaining outputs.  

Although a number of commercial tools have been utilised to track and 
monitor energy use in a factory and across various workstations, the 
detailed breakdown of energy consumption within various processes and 
more importantly its attribution to total energy required for the manufacture 
of a unit product is not well understood. This paper highlights the need for 
greater transparency of energy consumption across manufacturing 
processes and outlines a modelling framework to represent the ‘Embodied 
Product Energy’. In addition to supporting operational decisions, the 
modelling of the EPE provides energy transparency right back to the design 
process, enabling designers to select the most energy efficient materials 
and processes whilst fulfilling the requirements in the product specification, 
as depicted in Figure 6. Such a “Design for Energy Minimisation” approach 
will potentially enable businesses to go beyond the incremental 
improvements achievable via existing energy management systems to 
consider energy efficiency and utilisation across both the design and 
manufacturing phases of a product life cycle. 

Furthermore, LCA studies are data intensive and often based on 
assumptions inappropriate for the product being assessed, the energy 
model described in this paper could be integrated as part of the data 
provision, offering data that is of a greater degree of relevance in 
conjunction with predetermined databases (e.g. Ecoinvent), enabling a more 
accurate assessment of the product’s impact during the manufacturing 
phase.  

The next stage of the research will explore the implementation of the EPE 
framework within a simulation model capable of supporting complex  ‘what-
if’ scenarios during both the product development and operational planning, 
and also able to provide an estimation of energy required to manufacture a 
unit product. 

 

Figure 6: A ‘Design for Energy Minimisation’ approach 
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Abstract 

Green sources of power generation and efficient management of energy demand are among the 

greatest challenges facing manufacturing businesses. A significant proportion of energy used in 

manufacturing is currently generated through fossil fuels. Therefore in the foreseeable future, the 

rationalisation of energy consumption still provides the greatest opportunity for reduction of 

greenhouse gases.  A novel approach to energy efficient manufacturing is proposed through 

modelling the detailed breakdown of energy required to produce a single product. This approach 

provides greater transparency on energy inefficiencies throughout a manufacturing system and 

enables a 20-50% reduction of energy consumption through combined improvements in production 

and product design. 

 

Keywords: Sustainable Development, CO2 Emission, Energy Efficient Manufacturing 

 

1  INTRODUCTION 

Energy is a key component in the development of modern society; it promotes economic growth and 

improves the quality of life. The escalation in worldwide population has contributed to the rising energy 

consumption, and demand levels are estimated to be 45% higher in 2030 than current levels [1].  As a 

consequence of our strong dependence on energy, there is a growing concern about energy availability 

and its environmental impacts. Much of our electricity is still generated from carbon based sources such 

as coal, oil and gas (see Figure 1) which accounts for more than half of the world’s greenhouse gas 

emissions [2]. This has led to governments introducing an array of environmental legislation, energy 

auditing and accreditation standards. Therefore, energy demand and its rationalisation are now gaining 

greater visibility within modern manufacturing businesses. Improving energy efficiency is not only one of 

the most significant ways to reduce the overall environmental impacts, but could also represent 

substantial cost savings and competitive advantages [3].  
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The research reported in this paper highlights the need for appropriate methods and tools within 

manufacturing businesses that can provide a breakdown of energy usage within their production facilities, 

and enabling them to assess the efficiency and productivity of their energy consumption. The paper 

outlines a novel modelling framework to represent the total energy required to manufacture a unit 

product. A case study has been used to demonstrate how product and production efficiencies can be 

assessed using this Embodied Product Energy (EPE) model. 

 

2 A FRAMEWORK FOR MODELLING EMBODIED PRODUCT ENERGY DURING 

MANUFACTURE 

A number of modelling approaches have been used to investigate the energy consumption within a 

manufacturing facility. 

 

Figure 1: World primary energy demand by fuel [4] 

These can be viewed under two generic perspectives of ‘plant’ and ‘process’ levels.  At the ‘plant’ level, 

most of the research work has focused on modelling and reducing the energy consumed by infrastructure 

and other high level services (e.g. ventilation, lighting, heating and cooling) which are responsible for 

maintaining the required production conditions/environment [5,6]. On the other hand, research on the 

‘process’ level has focused on modelling the energy consumption of equipment, machinery and 

workstations in production facilities [7,8]. Whilst these areas of research have identified various methods 

for improving energy used by buildings, technical services and production processes [9], it is argued that 

the independent considerations of energy consumption at ‘plant’ and ‘process’ levels are unable to 

provide an overview of “how much energy is required to manufacture a unit product?”.  

At present, the energy considerations from the ‘product’ viewpoint are included as part of the Life Cycle 

Assessment (LCA) studies. However, the data intensive nature of a LCA coupled with the lack of 

accurate data related to the energy consumption across a product life-cycle often results in significant 

assumptions and simplifications [10], thus highlighting the need for a more holistic approach on 

modelling EPE during the manufacturing phase. The proposed framework aims to represent the amount 

of energy attributed to the manufacture of a unit product through the integration of energy used both at 

the ‘plant’ and ‘process’ levels. This modelling approach could further support detailed LCA studies, 
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providing a greater insight into the energy consumption during the manufacturing phase of a product life-

cycle.  

In the EPE framework, the energy consumed by various activities within a manufacturing application is 

categorised into two groups: Direct and Indirect Energy. The Direct Energy (DE) is defined as the energy 

used by various processes (e.g. casting, machining, spray painting, inspection, etc.) required to 

manufacture a product, whereas the Indirect Energy (IE) is the energy consumed by activities (e.g. 

lighting, heating, ventilation, etc.) to maintain the ‘environment’ in which the production processes are 

carried out within a manufacturing plant. Furthermore in this framework, the DE has been divided into : i) 

Theoretical Energy and ii) Auxiliary Energy, as depicted in Figure 2. The Theoretical Energy (TE) is 

defined as the minimum energy required to carry out the process (e.g. energy required to melt a specific 

amount of metal during casting or removing a specific amount of material during a machining operation). 

In most cases, the value of the TE for a process can be calculated based on existing knowledge and/or 

appropriate mathematical models (e.g. the total energy for Grinding (Utotal) based on specific energies of 

ploughing (Upl), chip formation (Uc), primary rubbing (Upri_r), and secondary rubbing (Usec_r), using the 

equation Utotal=0.5(Upl+Uc)+Upri_r+Usec_r) [11]. 

 

Figure 2: The Embodied Product Energy Framework for Modelling Energy Flows during Manufacture 

The Auxiliary Energy (AE) is the energy required by the supporting activities and auxiliary equipment for 

the process (e.g. generation of vacuum for sand casting or pumping of coolant for machining). The AE for 

a process can often be determined or measured through empirical studies. Therefore the total Direct 

Energy consumed by product A, requiring n processes can be represented as : 

஺ܧܦ ൌ ෍ሺܶܧሺ݅ሻ஺ ൅ ሺ݅ሻ஺ܧܣ

௡

௜ୀଵ

ሻ         ሾ૚ሿ     

In the case of IE, the energy consumed by various activities such as lighting and heating maybe used by a 

number of processes or in some applications a process may require specific processing environment (e.g. 

clean room for inspection). Therefore within the EPE framework, a production facility is considered as a 

number of zones where a ‘zone’ is defined as an area within the manufacturing plant with similar Indirect 

Energy requirements.  This is comparable to defining cells or departments within a traditional production 

system based on similarity of processes (e.g. a machining cell) or products (e.g. a food production line), 
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except that in this case the grouping of activities is based on similarity of Indirect Energy requirements. In 

this approach, the IE attributed to product A in zone m (i.e. IEzone(m)A) can be calculated based on total 

Indirect Energy consumed within zone m per hour (i.e. IEzone(m)) divided by the total number of product 

A processed in that zone per hour (i.e. 60/Tzone(m)A), where Tzone(m) is the time product A spends in 

zone m, as expressed in Equation 2 : 

ሺ݉ሻ஺݁݊݋ݖܧܫ ׷ ሺ݉ሻ/ሾ݁݊݋ݖܧܫ 
60

ሺ݉ሻ஺݁݊݋ݖܶ
ሿ     ሾ૛ሿ     

Consequently, the total Indirect Energy required by product A requiring m manufacturing zones can be 

represented as: 

஺ܧܫ ൌ ෍ ሺ݆ሻ஺      ሾ૜ሿ݁݊݋ݖܧܫ

௠

௝ୀଵ

 

Finally, the total Embodied Product Energy during the manufacturing phase of product A life cycle can be 

calculated by summing the DE for n processes together with the IE for m zones within a production 

system, as depicted below: 

஺ܧܲܧ ൌ  ෍ ሺ݅ሻ஺ܧܦ ൅ ෍ ሺ݆ሻ஺݁݊݋ݖܧܫ

௠

௝ୀଵ

௡

௜ୀଵ

    ሾ૝ሿ 

Furthermore, a number of ratios of TE, DE, and IE have been identified in order to assess and analyse the 

efficiency of processes, products and production systems.  For example, the ratio of TE over DE (see 

Equation 5) is referred to as the ‘Efficiency Ratio for a process (ERprocess)’ and can be used to analyse the 

productivity of a process, as shown in Figure 3. Ideally where possible, the Auxiliary Energy for a 

process should be minimised as the AE can often be considered as non value-added energy consumption. 

Therefore, a higher value of ERprocess (i.e. values closer to 1) is indicative of a very efficient process.  

Similarly, the ratio of TE over EPE is defined as the ‘Efficiency Ratio for a product (ERproduct)’ and the 

ratio of DE over EPE is referred to as ‘Efficiency Ratio for a production system (ERproduction)’, as depicted 

in Equations 6 and 7.  The higher value of ERproduct (i.e. values closer to 1) indicates a higher efficiency of 

energy consumption during the manufacture of a product, due to minimal energy being used through AE 

and IE in producing the product. Finally, the ERproduction can be used to analyse the productivity of a 

manufacturing system where a higher value (i.e. values closer to 1) is indicative of effective use of energy 

during production, as the IE can also be considered as non value-added energy consumption. 
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3  ENERGY SIMULATION MODEL  

The implementation of EPE framework within a practical application necessitates the development of a 

decision support tool, capable of representing the complexity involved in modelling and calculation of the 

AE, TE, DE and IE for various processes in a typical production system.  An energy simulation model 

(see Figure 4) has been developed to allow a number of ‘what-if’ scenarios for the analysis and evaluation 

of energy consumption during the manufacturing phase of a product life-cycle.   

 

Figure 3: The Efficiency Ratio for a Process 

The simulation model shown in Figure 4 has been based on a single production system and includes the 

various processes and manufacturing zones required to produce a simple product.  A subset of data related 

to Theoretical Energy is calculated by the simulation tool using appropriate mathematical models 

representing various processes (see the example case study). This calculated data is complemented with 

actual (real) data related to the Auxiliary Energy and Indirect Energy, recorded by advance metering 

devices and commercial energy management systems used within empirical studies. 

It should be noted that with the flexibility offered by modern simulation tools, it is feasible to develop 

more complex models representing a larger production system for products that consist of a number of 

components.   

 

Figure 4: Simulation of Energy Flow Modelling during Manufacture 
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In such cases, the embodied energy for individual components are calculated and added together to 

represent the total EPE for the product assembly.  Furthermore if required, the assembly and 

transportation activities can also be included in the EPE calculation. In production system with automated 

assembly and/or transportation activities, the energy flows for these processes can be modelled like any 

other manufacturing workstation.  However, the modelling of manual assembly and transportation 

activities present a particularly interesting challenge for the calculation of Theoretical and Direct Energies 

due to a judgemental approach required for representing the energy consumption by a human operator. 

This is a commonly reported challenge for other life-cycle studies and one that needs further 

investigation. 

One of the main objectives proposed for the practical use of such energy simulation models is to increase 

their accuracy and resolution using a number of case study products (i.e. to train the models), so that they 

could be used as a design support tool capable of ‘predicting’ energy requirements for new product 

designs in various applications, as will be discussed later in the paper. 

 

4  AN EXAMPLE CASE STUDY 

A simple part (i.e. an elbow pipe) requiring 3 main processes, namely Casting, Spray Painting and 

Ultrasonic Inspection, is used to demonstrate the application of EPE modelling.  The part is made from an 

aluminium alloy.  

The TE for casting process has been calculated based on values for the latent heat of melting of the 

material (L), specific heat capacity of the material (C), temperature of  the material (T), melting 

temperature of the material (Tm) and finally mass of the material (m), using the Equation [mC(Tm-T) + 

mL]. Similarly for Ultrasonic Inspection, the values for number of transmitters (Ntrans), power of 

transmitter (P) and duration of transmission (T) were used to calculated the TE requirement, using the 

Equation [Ntrans * (PT)].  Finally the TE for the Spray Painting together with AE for all three processes 

were measured empirically. 

In this example, the IE requirements were different due to the specific nature of each process, therefore 3 

manufacturing zones have been defined for this application. The attribution of IE for a single part in each 

zone was calculated based on the total IE consumption per hour divided by the throughput for each zone, 

which in this case were 12 parts per hour for the casting process, 20 parts per hour for spray painting and 

30 parts per hour for the ultrasonic inspection process. It should be noted that in this case study, the times 

spent in each zone were inclusive of queuing (waiting) time, set-up time, part loading and unloading 

times, etc., and therefore these times were greater than the actual processing time of the part.  It is argued 

that inclusion of such miscellaneous (non-productive) times provides a greater degree of accuracy in the 

attribution of Indirect Energy to a product and enables further analysis of productive versus non-

productive energy consumption. 
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These calculations and the associated values for the TE, AE, IE and the total Embodied Product Energy 

for the case study product are summarised in Table 1 and illustrated in Figure 5.  

 

 

Figure 5: Breakdown of Energy Consumption for the Manufacture of Case Study Product 

 

In this case study, the TE clearly consumes the greatest proportion of total energy at 48%, followed by the 

AE at 33%, and in fact the IE contributes the least to the total EPE (19%). Furthermore, the values of 

ERprocess, ERproduct, and ERproduction are all relatively very high (i.e. 0.59, 0.48, and 0.80 respectively), 

representing efficient processes, product, and production system. Clearly, the EPE modelling framework 

not only provides an overview on how much energy is required to manufacture a unit product, but also 

enables further investigation of various factors that play a major influence on the energy consumption 

within a production system. Therefore, it is argued that such energy simulation models can be used as 

Table 1: Equations for Calculating EPE for a Simple Elbow Pipe Fitting 

Calculation of EPE for Product A 

Process 1: Casting Process 2: Spray Painting Process 3: Inspection Total 

TE(1)A : mC(Tm-T) + mL 
         =   0.5*0.46(1809.2-298.15)+0.5*272 
         =   484 kJ 

m     :  Mass (kg) 
C     :  Specific heat capacity (kJ/kg) 
Tm  :  Melting temperature (K) 
T     :  Temperature of metal before melting (K) 
L    :  Latent heat of melting (kJ/kg) 

TE(2)A : determined empirically 
           = 168 kJ 
 

TE(3)A : Ntrans * P *T 
         =   8 x 0.5 x 2  
         =   4 W * 2  
         =   0.24 kJ/min * 2  
         =   0.48 kJ 

Ntrans   :  Number of transmitters 
P        :  Power of transmitter (W) 
T        :  duration of use (mins) 

∑TEA 
652 kJ 

AE(1)A : Vacuum + Process Inefficiencies 
          =  100 + 50 
          =  150 kJ 

AE(2)A : Pump + Process Inefficiencies 
          =  125 + 60 
          =  197 kJ 

AE(3)A : Conveyor System  
          =  101 kJ 

∑AEA  
448 kJ 

IE(1)A : IEzone1/(60/Tzone(1)A) 
        =   2000/(60/5) 
        =   167 kJ 

IEzone1   :  Average IE consumed in the zone per  
                  hour (kJ/hr) 
Tzone1    :  Time part spends in zone 1 (mins) 

IE(2)A : IEzone2/(60/Tzone(2)A) 
         =  1800/(60/3) 
         =  60 kJ 

IEzone2   :  Average IE consumed in the zone 
                  per hour (kJ/hr) 
Tzone2   :  Time part spends in zone 2 (mins) 

IE(3)A : IEzone3/(60/Tzone(3)A) 
         =  1000/(60/2) 
         =  33 kJ 

IEzone3  :  Average IE consumed in the zone 
                  per hour (kJ/hr)  
Tzone3   :  Time part spends in zone 3 (mins) 

∑ IEA 
260 kJ 

EPE (1)A = 800 kJ EPE (2)A = 425 kJ EPE (3)A = 135 kJ 
∑EPEA = 
1360 kJ 
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effective decision tools to minimise the energy used during the operations and to support the 

implementation of ‘Energy Efficient Manufacturing’. 

In addition to supporting operational decisions, the EPE framework could also provide energy 

transparency right back to the design process, enabling designers to select the most energy efficient 

materials and processes whilst fulfilling the requirements in the product specification, as depicted in 

Figure 6. Such a “Design for Energy Minimisation” approach will potentially enable businesses to go 

beyond the incremental improvements achievable via existing energy management systems, and to 

consider energy efficiency and utilisation across both the design and manufacturing phases of a product 

life-cycle. 

 

5 CONCLUDING DISCUSSIONS 

The existing commercial energy management tools provide a high level overview of energy consumption 

within a manufacturing system, hence are unable to model the detailed breakdown of energy flows among 

various processes, workstations and production zones. More importantly, they cannot determine the 

specific energy attribution for the manufacture of a unit product. The recent rise in the energy cost 

together with the increasing number of legislative and social requirements highlight the importance of 

adopting an ‘Energy Efficient Manufacturing’ approach in future manufacturing applications.  

 

 

Figure 6: Utilisation of Energy Simulation Model to Support both Design and Operational Decisions 

To support such approach, the energy consumption in manufacturing facilities can be reduced by either 

using more efficient technologies and/or equipment to improve production processes, and also through 

more efficient monitoring and control of energy used in infrastructure and technical services to optimise 

the ‘plant’ level activities. The major research assertion made is that step change improvements in the 

productivity of energy consumption within manufacturing (and remanufacturing [12]) applications can 

only be effectively achieved through integration of these global factory level and local process level 

energy considerations through a novel framework based on a product viewpoint.  The Embodied Product 
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Energy framework and the associated energy simulation tools not only enable a reactive approach to 

minimise energy consumption through improved operational decisions but also support a proactive 

approach to improve product design by eliminating non-productive energy intensive processes. Finally, it 

is claimed that significant reduction in energy consumption within manufacturing applications can only 

be gained through such proactive “Design for Energy Minimisation” approach. 
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