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Abstract

We investigate the effects of a generic noise source on a prototypical adiabatic quan-

tum algorithm. We take an alternative eigenvalue dynamics viewpoint and derive

a generalised, stochastic form of the Pechukas-Yukawa model. The distribution of

avoided crossings in the energy spectra is then analysed in order to estimate the

probability of level occupation.

We find that the probability of successfully finding the system in the solution

state decreases polynomially with the computation speed and that this relationship

is independent of the noise amplitude. The overall regularity of the eigenvalue dy-

namics is shown to be relatively unaffected by noise perturbations. These results

imply that adiabatic quantum computation is a relatively stable process and pos-

sesses a degree of resistance against the effects of noise. We also show that generic

noise will inherently break any symmetries, and therefore remove degeneracies, in

the energy spectrum that might otherwise have impeded the computation process.

This suggests that the conventional stipulation that the initial and final Hamilto-

nians do not commute is unnecessary in realistic physical systems. We explore the

effects of an artificial noise source with a specifically engineered time-dependent am-

plitude and show that such a scheme could provide a significant enhancement to the

performance of the computation.

Finally, we formulate an extended version of the Pechukas-Yukawa formalism.

This provides a complete description of the dynamics of a quantum system by way

of an exact mapping to a system of classical equations of motion.
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Chapter 1

Introduction

“And therefore, the problem is, how can we simulate the quantum

mechanics? There are two ways that we can go about it. We can give

up on our rule about what the computer was, we can say: Let the

computer itself be built of quantum mechanical elements which obey

quantum mechanical laws. Or we can turn the other way and say: Let

the computer still be the same kind that we thought of before–a logical,

universal automaton; can we imitate this situation?” - R.P. Feynman [1]

Interest and research in the field of quantum engineering has steadily grown over

recent years. This is because it offers a direct opportunity to experiment with and

even utilise the very phenomena that differentiate the quantum mechanical picture

of the universe from that of the classical one.

Quantum computing is one area of quantum engineering in particular that has

received a lot of attention since the discoveries of Shor’s factoring algorithm [2], and

Grover’s search algorithm [3] during the 1990’s. Both of these algorithms demon-

strate the power of harnessing explicitly quantum mechanical processes to perform a

computational process. This allows them to perform in a more efficient manner than

is possible using classical resources. The idea of storing and processing information

quantum mechanically was first proposed by Feynman in 1981, [1], while discussing

the problems of simulating physics with computers. Simulating quantum mechanical

systems on a classical computer is a computationally demanding task as the number

of dimensions of the phase space needed to describe the state of the quantum system

scales exponentially with its size. Hence, Feynman proposed the idea of building

a computer that works and stores information on a quantum mechanical level so

it can inherently work with the high dimensional phase spaces needed to describe

these quantum systems. The concept of a quantum computer was later solidified by

Deutsch in 1985 [4] when he defined a quantum generalisation of the classical uni-

1
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versal Turing machine. Deutsch, in conjunction with Jozsa, then went on to develop

one of the first quantum algorithms that could be shown to be exponentially faster

than any possible classical deterministic counterpart [5]. Although the Deutsch-

Jozsa algorithm is of little practical use, it paved the way for further research in to

whether quantum mechanical information processing techniques could be used to

solve other computational problems. The discovery of Shor’s aforementioned fac-

toring algorithm [2], which offers an exponential speedup in time over its classical

counterparts, and Grover’s search [3], which offers a polynomial speedup, showed

that quantum computing could offer significant improvements in computational ef-

ficiency for practical real world problems. Since then a number of other quantum

algorithms have been discovered for a wide variety of different problems (an up to

date list of which can be found at http://www.its.caltech.edu/ sjordan/zoo.html).

The standard paradigm of quantum computing that has developed over recent

years is analogous to a classical digital computer, as a register of qubits (quantum

bits) are manipulated using a universal set of quantum logic gates. However, this ap-

proach requires a delicate balance between attempting to isolate the system from its

environment but at the same time maintaining precise control over individual qubits,

which unfortunately appears as though it may not be experimentally achievable in

the near future. In light of this realisation a number of alternative approaches have

been proposed; one of which is adiabatic quantum computing (AQC) [6]. AQC in-

volves slow adiabatic evolution from a configuration with an easily reachable ground

state to one where the ground state encodes the solution to the problem in hand. In

this scheme precise time-dependent control of individual qubits is no longer required

and it benefits from an inherent robustness against some of the effects of decoher-

ence by remaining in the instantaneous ground state at all times [7, 8, 9]. Crucially,

it has also been shown to be polynomially equivalent to the standard gate model

of quantum computing in [10, 11]. There have also been some results that suggest

that noise may actually have some positive effects on an AQC process, which is an

interesting and counter-intuitive prospect [7, 12].

In this thesis we aim to further explore the role and effects of noise in the

paradigm of adiabatic quantum computing. This is clearly an important consid-

eration as all realistic physical systems will be subject to some form of noise. To do

this we will make use of a novel eigenvalue dynamics based approach. It is felt that

this approach is worth exploring as it offers an alternative viewpoint to the standard

Schrödinger picture which may provide some extra insight.
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1.1 Thesis overview

The remainder of this chapter will be devoted to a review of the field of AQC and

some theoretical tools that will be of use in the following chapters. In chapter 2,

we derive a generalised form of the Pechukas-Yukawa model of eigenvalue dynamics

that incorporates a generic noise model. Appropriate numerical methods for solving

this system of equations are also discussed.

In chapter 3, we derive the problem Hamiltonian for the adiabatic equivalent of

the CNOT gate as an example of a prototypical quantum algorithm. Then in the

following chapters 4, 5 and 6, we go on to explore how the presence of noise affects

the properties and performance of this example algorithm. In chapter 4, we study

the energy spectra of the CNOT gate and look at the effects of noise on its statistical

properties. We investigate the effects of noise on the statistics of level occupation

and the success rate of the CNOT algorithm in chapter 5. Based on the previous

results, in chapter 6 we envision a system where a specifically engineered noise signal

is used to enhance the performance of our prototypical quantum algorithm.

Also, in chapter 7, we derive a novel extended version of the Pechukas-Yukawa

model that provides a complete description of the dynamics of the quantum system.

Then in chapter 8 we draw together our results and make some final conclusions,

as well as proposing a number of possible directions in which this work could be

taken in the future.

1.2 Quantum information processing devices

1.2.1 Basic postulates and notation

In this section we will briefly review the basic postulates of quantum mechanics,

mainly as a way of codifying the notation used throughout this thesis. The four

basic postulates of quantum mechanics that can be used to describe any closed

system are as follows;

1. State: The state of any closed quantum system at a particular point in time

is completely described by the state vector, |ψ(t)〉, which is a unit vector in

the Hilbert space associated with the system’s degrees of freedom.

2. Evolution: The evolution of a closed quantum system is described by a uni-

tary transformation, i.e. the state |ψ (t1)〉 is related to the state |ψ′ (t2)〉 by

|ψ′ (t2)〉 = U (t1, t2) |ψ (t1)〉, where U (t1, t2) is a unitary operator (i.e. one

that obeys UU † = U †U = I) that depends only on the times t1 and t2. In
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terms of continuous time, the unitary evolution of a closed quantum system is

generated by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (1.2.1)

where ~ is Planck’s constant (taken as 1 from herein) andH(t) is the Hermitian

operator (i.e. one that obeys H = H†)known as the Hamiltonian.

3. Measurement: Quantum measurements are described by a set of measure-

ment operators, {Mm}, that act on the state space of the system and satisfy

the completeness relation
∑

m M†m Mm = 1. If a measurement is performed on

a system in state |ψ(t)〉, then the probability of result m occurring is given by

p(m) = 〈ψ(t)|M†m Mm |ψ(t)〉 (1.2.2)

and after the measurement the state of the system “collapses” to

Mm |ψ(t)〉√
〈ψ(t)|M†m Mm |ψ(t)〉

. (1.2.3)

4. Composite systems: Composite systems, made up of a number (n) of dis-

tinct physical systems, have a state space that is the tensor product of the

state spaces of the constituent subsystems. A composite system is said to

be in a product or separable state if its state be constructed from the tensor

product of the subsystem’s states, i.e.|ψ1(t)〉 ⊗ |ψ2(t)〉 . . . |ψn(t)〉. Whereas an

entangled state is defined as one where the overall state of composite system

cannot be described in terms of single qubit states.

The Hamiltonian operator, H(t), of a system is crucial, as if we have knowledge

of this, then we can completely describe the dynamics of the system. In terms of this

thesis, an important point to note is that because the Hamiltonian is a Hermitian

operator it will have an instantaneous spectral decomposition of the form

H(t) =
∑
n

xn(t) |n(t)〉 〈n(t)| , (1.2.4)

where the xn(t) are the instantaneous eigenvalues describing the energy levels of the

system at time t, and the |n(t)〉 are their corresponding normalised eigenvectors,

known as the eigenstates. The collection of all n eigenstates forms the instantaneous

energy eigenbasis of the Hamiltonian at time t. These energy levels and eigenstates
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satisfy the following instantaneous eigenvalue equation;

H(t) |n(t)〉 = xn(t) |n(t)〉 , (1.2.5)

which is simply the time-independent version of the Schrödinger equation.

In some situations it is often more convenient to work with the density matrix,

or density operator, instead of the state vector. This is defined as

ρ =
∑
i

pi |i〉 〈i| , (1.2.6)

where pi is the probability of the system being found in a given pure state |i〉. This

alternative formulation is particularly suited to dealing with statistical mixtures of

states and is often used when dealing with dissipation and composite systems. The

equation of motion for the density matrix is the Von Neumann equation,

i~
d

dt
ρ(t) = [H(t), ρ(t)] . (1.2.7)

The density matrix formulation will be of particular use in chapter 7.

1.2.2 Quantum computing

In [4], Deutsch showed that the Church-Turing principle,

“Every finitely realisable physical system can be perfectly simulated by

a universal model computing machine operating by finite means”.

(restated in a more physical way), is compatible with quantum mechanics and that

any real (dissipative) finite system can be simulated by a universal quantum com-

puter. As mentioned in section 1, he then went on to describe the first universal

model of quantum computation, essentially a quantum generalisation of a Turing

machine [13]. Unfortunately, like the Turing machine before it, this model of uni-

versal quantum computation proved unwieldy in practical situations. An equivalent

model more akin to classical digital computation, where logic gates are applied to

a register of quantum bits (qubits), was then developed. This is commonly known

as the quantum circuit or gate model. In [14], DiVincenzo proposed a set of five

requirements for a physical implementation of a gate model quantum computer.

These criteria allow us to completely describe the operation of a gate model quan-

tum computer;

1. A scalable physical system with well characterized qubits
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2. The ability to initialize the state of the qubits to a simple fiducial state, such

as |0000...0〉

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

The first DiVincenzo criterion calls for scalable, well characterised qubits. As a

qubit is the quantum analogue of a bit, it is simply a two-level quantum system.

The 0 and 1 states of a classical bit correspond to the computational basis states of

a qubit,

|0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
, (1.2.8)

therefore a qubit in an arbitrary state can be described by

|ψ〉 = α |0〉+ β |1〉 =

(
α

β

)
where 〈ψ|ψ〉 = |α|2 + |β|2 = 1. (1.2.9)

In the density matrix formulation, the state of a qubit can be expressed as follows;

ρ =
I + r · σ

2
, (1.2.10)

where r = (x, y, z) is the Bloch vector which describes a point in the Bloch sphere

and σ = (σx, σy, σz) is a vector of the Pauli matrices;

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (1.2.11)

The Bloch sphere is a unit sphere which provides a convenient geometrical repre-

sentation of a qubit’s state space. The Bloch vector of pure states will lie on the

surface of the sphere, whereas the points representing mixed states will fall within

it. There are a number of different candidates for physical realisations of qubits,

e.g. single electrons, trapped ions, superconducting circuits and laser polarisation,

these will be discussed in more detail in section 1.2.3.5.

The fourth criterion asks for a “universal” set of quantum gates, this is a set

of gates with which any arbitrary quantum operation can be reproduced. A simple

example of which would be the set of the Hadamard gate, the π/8 phase rotation
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gate and the CNOT gate;

HAD =
1√
2

(
1 1

1 −1

)
, ROT =

(
1 0

0 e
π
4
i

)
and CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

(1.2.12)

a finite combination of these 3 gates can be used to construct any possible quantum

circuit to any desired accuracy [15].

The third DiVincenzo criterion is generally considered to be the most difficult

to meet experimentally. It involves finding a type of qubit that is sufficiently well

isolated from noise sources in its environment to remain quantum coherent but is

still readily controllable. This is a very difficult compromise to meet as all five

DiVincenzo criteria must be kept in mind. Error-correcting codes could be used to

protect the information stored in the register against the effects of decoherence by

storing a single logical qubit across a number of physical qubits. They therefore

require significantly larger physical systems, but simply adding more qubits requires

more control lines and adds more potential noise sources, which in turn means more

sophsticated error-correcting codes that require even more qubits. This leads to

another difficult compromise that has to be met experimentally to find a system

that satisfies all five of the DiVincenzo criteria.

The DiVincenzo criteria give us an excellent framework to use when considering

potential realisations of a gate model quantum computer. They also serve to high-

light the important balance between decoherence and controllability that must be

met to build this type of device. In light of the difficulties of finding this balance,

a number of alternatives to the gate model of quantum computation are being ex-

plored. Adiabatic quantum computing is a promising alternative paradigm to the

gate model. It has been shown to be computationally equivalent to the gate model

and also avoids some of the difficult experimental compromises that need to be met

to build a gate model quantum computer.

1.2.3 Adiabatic quantum computing

1.2.3.1 Basic principles

AQC was first proposed as a method of solving the n-SAT satisfiability problem

by Farhi et al. in [6]. In AQC an n-qubit quantum system (2n dimensional Hilbert

space) is prepared in an initial configuration with an easily reachable, non-degenerate

ground state. The system is put in to the ground state of the initial configuration
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(Hi) and then over time it evolves into a final configuration (Hf ) that encodes the

problem to be solved. The quantum adiabatic theorem states that if a Hamiltonian

varies slowly the probability to excite the system out of its original state will be

approximately equal to 0 [16]. Therefore, provided the evolution time (T ) is long

enough the quantum computer will remain in the instantaneous ground state at all

times. The ground state at the end of the computation (at t = T ) encodes the

solution to the problem at hand and can then be read out. A diagram explaining

this method is shown in Fig. 1.2.1.

Figure 1.2.1: Schematic diagram of a generic adiabatic quantum computation where
the system is prepared in the ground state of the initial Hamiltonian (Hi) and then
evolves adiabatically slowly to a final Hamiltonian (Hf ) that encodes the problem.

In the original paper by Farhi et al. in [6] they take the evolution of the system

to be a smooth linear interpolation from Hi at time t = 0 to Hf at time t = T at a

rate of T−1;

H(t) =

(
1− t

T

)
Hi +

(
t

T

)
Hf . (1.2.13)

The Hi and Hf are usually chosen such that they do not commute (i.e. [Hi, Hf ] 6=
0), this is to avoid degeneracies that may obstruct the computation in a closed

system. If we assume that the system is initially prepared in the ground state (i.e.

|ψ(0)〉 = |0(t = 0)〉) and that the ground state energy gap is finite throughout the

computation (i.e. x1(t)− x0(t) > 0 for 0 ≤ t ≤ T ), the quantum adiabatic theorem

can be defined as

lim
T→∞

P (n = 0; t = T |n = 0; t = 0) = lim
T→∞

|〈0(t = T )|ψ(T )〉|2 = 1. (1.2.14)

In the context of AQC P (n = 0; t = T |n = 0; t = 0) is known as the success

probability as it denotes the probability of the system being found in the eigenstate
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that encodes the result of the algorithm at the end of the computation time. This

implies that in practice if T is sufficiently long enough the probability of the system

being excited out of the ground state is arbitrarily small, i.e. P (n > 0; t = T |n =

0; t = 0) � 1 and the condition for the validity of this statement can be shown to

be

T � α

∆2
01

(1.2.15)

where

α = max
0≤t≤T

∣∣∣∣〈n = 1; t| d
dt
H(t) |n = 0; t〉

∣∣∣∣ and ∆01 = min
0≤t≤T

(x1(t)− x0(t)) . (1.2.16)

We expect the magnitude of the maximum matrix element of the change of H(t)

during T (α) to be of the order of a typical eigenvalue. Thus, we expect the minimum

ground state energy gap (∆01) to be the determining factor of the length of the

computation time (T ).

The DiVincenzo criteria set out in section 1.2.2 can be used to compare the

adiabatic quantum computing paradigm to the standard gate model. Decoherence

(the effects of a system’s coupling to its environment) is a major issue in all physical

realizations of quantum information processing systems. In the standard gate model

of quantum computing, error correcting codes are used to fight the effects of deco-

herence by encoding a fault tolerant logical qubit into a number of noisy physical

qubits, therefore a significant number of physical qubits will be necessary to perform

computations involving only a few qubits of information. This affects the scalability

of the system required by the first DiVincenzo criteria . However, AQC has an

inherent robustness against the effects of decoherence and it is believed that error

correcting schemes will not be necessary, therefore relatively few physical qubits will

be needed to perform useful computations. The effects of noise and decoherence on

AQC will be discussed in greater detail in section 1.2.3.4 and then throughout the

rest of this work.

To fulfil the second, fourth and fifth DiVincenzo criteria, the precise control and

measurement capability of individual qubits is required. To achieve this level of

control experimentally it would require the use of a large number of external control

lines which would be a major source of noise. However, in AQC we only require

global control and measurement capability over the system which should limit the

number of control lines, and therefore potential sources of decoherence, needed in

physical realisations.

The fourth DiVincenzo criterion asks for a “universal” set of quantum logic gates;

a universal set of gates is one that can be used to simulate any other combination
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of gates and in principle allow any possible algorithm to be implemented on the

computer. It has been proven that AQC is a universal model of computation as any

universal quantum circuit can be encoded into an adiabatic quantum algorithm with

at worst a polynomial time complexity overhead (as detailed in section 1.2.3.2).

1.2.3.2 Algorithms

Adiabatic quantum computing was first proposed as a method of solving the boolean

satisfiability, or SAT, problem in [6]. In an n bit system an instance of the k-SAT

problem is specified by a Boolean formula of the form

C1 ∧ C2 ∧ . . . ∧ CM , (1.2.17)

where the Boolean clauses Ca are either True or False depending on the values of

a subset of k bits. Solving the SAT problem involves testing all 2n possible as-

signment combinations; which in the limit of large n, generally becomes intractable

on a classical computer. Problems whose solution space grows exponentially with

input size are usually hard to deal with on a classical computer as each potential

solution has to be checked individually. These appear to be one of the main po-

tential areas of application for quantum computing. Quantum computing aims to

exploit quantum mechanical phenomenon to try to solve these types of problem in

a more efficient manner than is possible classically; the superposition principle is

particularly important when dealing with these types of problem as it allows the

quantum computer to operate on the entire solution space.

To recast the k-SAT problem instance into the form of an adiabatic quantum

algorithm, for each of the clauses we define a corresponding “energy” function (hCa)

that applies an energy cost to any binary combination that satisfies it,e.g.

hCa =

{
0, for any binary combination which satisfies clause Ca
1, for any binary combination which violates clause Ca

(1.2.18)

and an associated operator (HCa) of the form

HCa |ψ〉 = hCa |ψ〉 (1.2.19)

where |ψ〉 are the computational basis states of the n qubit system. The operator

HCa only depends on the clause Ca and only acts on the subset of k qubits related

to that clause. The problem Hamiltonian is therefore of the form

Hk−SAT = HC1 +HC2 + . . .+HCM . (1.2.20)
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The ground state of Hk−SAT encodes the binary combinations that minimise the

total “energy” and therefore satisfy all of the clauses if the problem instance is

solvable (i.e. the “energy” cost of the resulting combinations are zero).

The SAT problem is a type of combinatorial search problem, i.e. it involves

finding the combinations of a discrete set of items that meet a set of specified

requirements. AQC is particularly suited to solving problems of a combinatorial

nature (search or optimisation) as a lot of them can be written in the form of an

“energy” cost function that requires minimisation and hence recast as an adiabatic

quantum algorithm using the method described above, e.g. MAXCUT, Exact Cover,

The Traveling Salesman , Max Independent Set, n-queens, etc..

The SAT problem is often studied in the literature as a prototypical example of

the type of problem that AQC will be applied to (e.g. as in [17, 18]). It belongs to the

complexity class NP-complete, as do a number of the other combinatorial search

and optimization problems mentioned above. NP problems are a class of problems

whose solutions can be verified, but not necessarily calculated, efficiently in a time

that scales polynomially with the input size. An NP problem belongs to the subset

NP-complete if any other NP problem can be efficiently recast into the form of

that problem, i.e. if that problem can be solved efficiently therefore so can any other

NP problem. The question as to whether NP-complete problems can be solved

efficiently using AQC is an open one and it is one of the main reasons that these

types of problems are studied. In their original paper on AQC, Farhi et al. showed

that certain “easy” instances of the SAT problem could be solved efficiently using

AQC. Then in [19] Van Dam et al. then demonstrated that a family of “hard” search

problems with a time complexity lower bound that scales exponentially with system

size for AQC can be constructed. However, Farhi et al. subsequently showed that

the exponential lower bound “hard” search problems could be overcome by choosing

an alternate interpolation path between Hi and Hf in [20]. A recent paper, [21],

conjectures that adiabatic quantum computing will fail to solve random instances

of NP-complete problems because of the appearance of an exponentially small

ground state energy gap (∆min) towards the end of the evolution. However, they

estimate that this exponentially small gap only appears as the system size exceeds

the bound of n & 86000 qubits and a more recent paper, [22], shows analytically

that there will always be an adiabatic path along which no such exponentially small

gaps occur for another example of an NP-hard optimisation problem.

Two of the most famous quantum algorithms are Grover’s search ([3]) and Shor’s

factoring algorithm ([2]) for the gate model. Shor’s algorithm can be used to find

the prime factors of a given N -bit integer in a time that scales O((logN)3), which

is exponentially faster than the best classical algorithm. A factoring algorithm for
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adiabatic quantum computers was proposed in [23] and implemented experimen-

tally with an NMR system to find the prime factors of 21. The adiabatic factoring

algorithm described in [23] requires fewer qubits to factor an integer of a given

length than Shor’s algorithm. Numerical results appear to show that it also scales

in polynomial time, however this has not been verified analytically like it has for

Shor’s algorithm. Grover’s search algorithm allows a given item in an unstructured

database of N items to be found in a time that scales proportionally to O
(√

N
)

,

whereas a classical search would on average take a time that scales O(N). An adi-

abatic version of Grover’s algorithm was proposed in [6], however it was found to

offer no advantage over a classical search when using AQC with a basic linear in-

terpolation scheme (i.e. (1.2.13)). In [24], Roland and Cerf show that by locally

adjusting the evolution rate to make sure adiabatic theorem is met for an infinites-

imal time interval the polynomial speedup of Grover’s search can be recovered for

the adiabatic version. They then explored the use of the adiabatic quantum search

further in [25] by showing that the nesting of one quantum search within another

allows searches of structured databases to be performed in a manner more efficient

than is possible classically.

The equivalence of adiabatic quantum computing and the gate model was first

shown in 2004 by Aharonov et al.in [10], where they demonstrated that any quantum

circuit can be efficiently simulated (i.e. with at worst a polynomial overhead) by

an adiabatic quantum computer. A more intuitive proof of the equivalence of AQC

and the cicuit model was then presented in [11] by Mizel, Lidar and Mitchell using

an approach known as “ground state quantum computing” (GSQC).

1.2.3.3 The GSQC method

The GSQC method allows an arbitrary quantum circuit with N steps involving M

qubits to be encoded into the form of a problem Hamiltonian suitable for AQC. In

this method each of the M qubits in the circuit is pictured as a single electron that

can occupy the states in an array of 2 × (N + 1) quantum dots; where the rows in

the array represents either the |0〉 or |1〉 states of the qubit. The state of the mth

qubit during the nth step of the algorithm is given by the probability amplitude

of the electron being found on the quantum dots denoted by the indices (m,n, 0)

and (m,n, 1). They then define fermionic creation (annihilation) operators, c†mn0

(cmn0) or c†mn1 (cmn1), that create (annihilate) an electron in the relevant dot. These

operators can be used to construct the (unnormalised) ground state that contains
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the results of the algorithm, for a single qubit (m = 0) we have

∣∣ψN〉 =

(
C†00

[
1

0

]
+ C†01U01

[
1

0

]
+ . . .+ C†0NU0N . . . U01

[
1

0

])
|vac〉 , (1.2.21)

where the creation operators are grouped into the row vectors C†mn =
[
c†mn0, c

†
mn1

]
,

Umn is the 2× 2 unitary matrix that describes the nth step of the algorithm acting

on the mth qubit and |vac〉 is the vacuum state. This ground state can also be

constructed recursively in terms of the different steps of the algorithm,

∣∣ψj〉 =
(

1 + C†0jU0jC0(j−1)

) ∣∣ψj−1〉 , (1.2.22)

where |ψ0〉 = C†00 |vac〉. The state (1.2.22) can be easily generalised for the case of

M non-interacting qubits,

∣∣ψj〉 =
M∏
i=0

(
1 + C†ijUijCi(j−1)

) ∣∣ψj−1〉 , (1.2.23)

where |ψ0〉 =
∏M

i=0C
†
i0 |vac〉. To realise the state (1.2.23) they construct a Hamilto-

nian of the form

H =
M∑
i=0

N∑
j=0

hji (Uij), (1.2.24)

, where the single qubit, single step terms hji (Uij) are of the form

hji = ε
(
C†ij − Ci(j−1)†U

†
ij

) (
Cij − Ci(j−1)Uij

)
, (1.2.25)

where ε sets the energy scale. This basic non-interacting Hamiltonian, (1.2.24), can

then be easily modified to account for the interaction required for multi-qubit gates.

In section 3.1, the problem Hamiltonian for the adiabatic equivalent of a CNOT

gate will be constructed explicitly as an example of the GSQC method.

1.2.3.4 Noise and decoherence

Noise is a general term that can be used to describe any uncontrolled artefacts that

affect the evolution of a physical system. In the context of adiabatic quantum com-

puting we can identify two main sources of noise; control errors and decoherence.

Control errors will arise through imperfect implementation of the time-dependent

Hamiltonian and are essentially uncontrolled deviations of the interpolation path

from Hi to Hf . Decoherence or dissipation in a quantum mechanical system de-
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scribes the quantum noise processes caused by the interaction of the system with

its environment. In practice all quantum systems are open, as it is impossible to

perfectly isolate one from its environment. This interaction of a quantum system

with its environment leads to non-unitary, irreversible evolution of the system as

they become entangled with each other and the system of interest therefore evolves

into a mixed state. The effects of dissipation can be separated into two distinct

types of process in a given basis of orthogonal eigenstates:

• Relaxation or state-mixing: When the Bloch vector describing the state

of the system diffuses in the latitude direction, e.g. parallel to the z-axis of

the Bloch sphere.

• Dephasing or decoherence (when used in its narrower meaning):

When the Bloch vector diffuses in the longitude direction, e.g. the x-y plane

of the Bloch sphere.

It is possible to make a number of intuitive arguments that suggest AQC will be

intrinsically more resistant to the effects of noise than the gate model of quantum

computing. We can first say that for the types of optimisation and search algorithms

that AQC is applied to the phase of the ground state will have no effect on the

result, therefore we can assume pure dephasing is not an issue. By evolving the

system adiabatically slowly we aim to keep it in the ground state at all times, this

will automatically protect it against the effects of relaxation. Also, by keeping the

system at low temperatures where kBT < ∆01 we can try to control the effect of

interactions with the environment that cause transitions between eigenstates.

The natural fault tolerance of AQC was first studied by Childs, Farhi and Preskill

in [7]. They numerically studied the effects of decoherence and unitary control errors

on the adiabatic algorithm for the exact cover problem. They found that neither

of the different types of error had a significant effect on the scaling of the success

probability as a function of the computation time for the relatively small problem

instances (n ≤ 4 bits in the case of decoherence) they could simulate efficiently.

These conclusions were later verified by more analytical means in the papers of

Roland and Cerf: [9], and Ashhab et al.: [8].

A lot of analyses of the performance of AQC tend to neglect the effects of noise

from their models because of AQC’s apparent natural fault tolerance. However,

some results have suggested that noise may play a subtle but important role in the

performance of adiabatic quantum algorithms. Childs et al. noted that in some cases

a unitary control error could increase the success probability of the computation by

providing an alternate interpolation path between Hi and Hf . They also noted that

relaxation caused by interaction with a low temperature environment can help keep
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the system in the ground state and therefore also improve the success probability.

A paper by Amin, Love and Truncik, [12], explored the idea that in some situations

decoherence can enhance the performance of AQC in more detail. They showed that

thermal mixing around the minimum ground state gap as well as relaxation after

the avoided crossing could help improve performance.

1.2.3.5 Physical realisations

Adiabatic quantum computation was first demonstrated experimentally using nu-

clear magnetic resonance (NMR) by Steffen et al. in 2003 in[26]. They solved a

three qubit instance of the NP-complete MAXCUT optimisation algorithm and

showed that the results were in agreement with the predictions of a simple theo-

retical model that included decoherence. In NMR quantum computing, the nuclear

spins of specific individual atoms in large molecules are identified and used as qubits.

The molecules as a whole therefore represent individual quantum computers. Algo-

rithms can then be implemented by performing operations on an ensemble of these

molecular quantum computers using RF pulses that address the specific spins that

represent qubits. NMR spectroscopy can then be used to readout the ensemble av-

erage of the solution state. Unfortunately, NMR implementations are not scalable

because of the exponential decrease of the signal-to-noise ratio with the system size

[27]. However, these results provided a good experimental proof of principle for

AQC.

Currently, superconducting flux qubits are widely considered to be among the

most promising candidates for the experimental implementation of an AQC system.

These devices consist of small loops of superconducting metal interrupted by a num-

ber of weak links, which are known as Josephson junctions, as shown schematically

in Fig. 1.2.2(a). They are designed such that when the loop is threaded by an

external magnetic field, a persistent current will flow around the loop. The com-

putational basis states are then defined as clockwise and anti-clockwise circulating

currents. This device can be thought of as a double well potential with respect to the

applied flux where the left and right hand wells correspond to the clockwise or anti-

clockwise circulating currents that represent the computational basis states. This

type of qubit can be readily coupled together and controlled inductively and readout

can be performed by probing one of the qubit’s macroscopic quantum variables; the

circulating current ([28]), the flux within the loop ([29]) or the phase ([30]). These

devices also have the advantage that they can be produced using similar fabrication

techniques to those commonly used in the micro-electronics industry, which bodes

well for the scalability. It is also possible to realise a degree of controllability over
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(a) (b)

Figure 1.2.2: (a) shows a schematic of a single persistent current qubit of the Delft
type [32]. (b) shows the micrograph of a device consisting of three inductively
coupled flux qubits in resonant tank readout circuit, reproduced from [33].

the inductive coupling elements which is required by the fourth DiVincenzo criterion

for universal quantum computation [31].

This leaves us with the crucial third DiVincenzo criterion to consider; long de-

coherence times. By operating flux qubits at low temperatures they gain a degree

of inherent protection against the effects of noise, as we can assume that the gap

between the two lowest energy states (∆01) will be much larger than kBT , therefore

suppressing thermal excitation. The main sources of noise in flux qubit systems are

therefore background magnetic fluctuations. These can be caused by impurities and

defects in the substrate and superconducting wires, as well as circuit elements like

control lines, coupling devices and readout probes. A number of systematic studies

of the noise in flux qubits have found it to be characterised by a low frequency 1/f

or coloured noise spectrum [34, 35]. Flux qubits with a decoherence time of the or-

der of 10−5s have been demonstrated, e.g. [36], but the question of whether a large

number of them can remain quantum coherent long enough for an AQC operation

to be performed remains open. Despite this, there have been a number of promising

experimental results with flux qubit systems.

In 2006, van der Ploeg et al. demonstrated a system of three coupled flux

qubits that could be used to encode a realisation of the MAXCUT problem in

[33], as shown in Fig. 1.2.2(b). They then made use of a resonant tank circuit

to measure the ground state susceptibility, it was then shown that this could be

used to construct the ground state flux diagram and therefore the solution to the

MAXCUT problem. These results demonstrated a number of the key elements

needed to build an AQC system using flux qubits. Recently, in [37] D-Wave Systems
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Inc. demonstrated a device consisting of 8 flux qubits with programmable couplings

that can be used to solve adiabatic quantum algorithms which can be described by

an Ising model problem Hamiltonian. They show that the results of an example

computation are in agreement with an explicitly quantum mechanical theoretical

model as oposed to a classical description of the system. Although this device is

limited to solving a certain class of problems it represents an important step in the

process of implementing a practical, large scale AQC system.

1.3 Eigenvalue dynamics

In the field of quantum chaos, which involves the study of the quantum mechanics

of classically chaotic systems, a lot of information about the nature of a system can

be determined by the analysis of the distribution of its energy spectrum. In a lot of

the spectroscopic experiments used to measure this distribution, the energy levels

are determined as a function of some external parameter, e.g. the distribution of the

energy levels of a hydrogen atom in the presence of a strong magnetic field gradually

become chaotic as the strength of the perturbing field is increased. Motivated by

this, in [38] Pechukas derived a set of equations motion for the dynamics of the

energy eigenvalues of a quantum system with a Hamiltonian of the form

H(λ(t)) = H0 + λ(t)V, (1.3.1)

where H0 is the Hamiltonian of the unperturbed system, V is the perturbation

and the perturbation strength λ(t) plays the role of “time” in the system. In [39],

Yukawa simplified Pechukas’s equations of motion to the form

∂

∂λ
xn =vn,

∂

∂λ
vn =

∑
k 6=n

2 |lnk|2

(xn − xk)3
, (1.3.2)

∂

∂λ
lnm =

∑
k 6=m,n

lnklkm

(
1

(xn − xk)2
− 1

(xm − xk)2

)
,

by introducing a new set of dynamical variables, where xn are the instantaneous

energy eigenvalues of the system that obey the standard relation (1.2.5), vn = Vnn

are the diagonal matrix elements of the perturbation, lnm = (xn−xm)Vnm for n 6= m

and Vnm are the off-diagonal matrix elements of the perturbation. This system

of equations motion (1.3.2) is now known as the Pechukas-Yukawa model. These

equations of motion are analogous to those of a classical one-dimensional gas with
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cubic repulsion where the xn take the role of the positions of the gas particles, the

vn their velocity or momenta and the lnm represent the strength of the interaction

between particles n and m. In fact, as no assumptions or simplifications are made

in the derivation of (1.3.2), the mapping of the dynamics of the eigenvalues of the

quantum system to those of the classical 1D gas is exact. The initial conditions

for the Pechukas gas will contain all the information about the Hamiltonian of the

quantum system, (1.3.1), and this simple, generic form of Hamiltonian can be used

to describe a wide range of physical systems.

In [40] Zagoskin, Savel’ev and Nori used the Pechukas-Yukawa equations to

model an adiabatic quantum computer. The Hamiltonian (1.3.1) can be used to

describe the operation of an adiabatic quantum computer by assuming the per-

turbation takes the form of a large bias, i.e. V = ZHb where Z � 1, and that

Hi = H(λ = 1) = H0 + ZHb has a unique and easily achievable ground state. In

this case the final Hamiltonian that encodes the algorithm will take the form of the

unperturbed Hamiltonian, i.e. Hf = H(λ = 0) = H0. This scheme is sometimes

referred to as “quantum annealing” (see [41]) because the perturbation term in the

Hamiltonian (V ) plays a similar role to the “temperature” in simulated annealing

(i.e. it is a source of disorder that is gradually reduced to try to find a desired

ground state), however it is essentially the same as the linear interpolation scheme

of (1.2.13). Using an eigenvalue dynamics approach to model an adiabatic quantum

computer is a particularly relevant and insightful method because knowledge of how

the energy spectrum evolves as a function of time can provide a lot of information

about the performance of the algorithm. For example, the minimum ground state

energy gap width can be easily extracted. Also, being able to identify and analyse

the distribution of avoided crossings between pairs of adjacent energy levels in the

spectrum is advantageous because of Landau-Zener-Stückelberg tunneling. Landau-

Zener-Stückelberg tunneling ([42, 43, 44]) is a mechanism by which there exists a

finite probability of tunneling between the states of a quantum system as it moves

through an avoided level crossing at a finite rate and in the absence of noise it

is the sole factor that determines the success probability of an adiabatic quantum

algorithm.

1.4 Random matrices

Random matrix theory was originally developed in the 1950’s by Wigner as a way of

trying to describe the energy spectra of complex nuclei and it has more recently been

successfully applied in the field of quantum chaos. The main principle of random

matrix theory is that the Hamiltonian is thought of as a large matrix with randomly
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distributed elements which belongs to a large class or ensemble of matrices that

have similar general properties and symmetries, i.e. that it is the properties of the

matrix as a whole and not individual elements that determine the trends in the

corresponding eigenspectrum. The individual matrix elements are often assumed

to obey Gaussian distributions, which allows the definition of the three ensembles;

the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE)

and the Gaussian symplectic ensemble (GSE). These three ensembles are defined by

the type of transformation the constituent matrices are invariant under and there

properties are summarized in the table 1.1 ([45, 46]).

GOE GUE GSE
Time-reversal symmetry Yes No Yes

Spin-1/2 interaction No n/a Yes
Matrix elements real complex real-quaternionic

Transformation invariance orthogonal unitary symplectic

Table 1.1: Summary of the properties and symmetries of the three Gaussian ensem-
bles of random matrix theory [45, 46].

Throughout this work we will only be concerned with the GOE and GUE. They

will be useful as a means of modeling different types of generic Hamiltonians. The

probability distribution functions for the matrix elements of N×N random matrices

drawn from the GOE and GUE are

p(H11, . . . , HNN) =

(
A

π

)N/2(
2A

π

)N(N−1)/2

exp

(
−A

∑
n,m

H2
nm

)
and (1.4.1)

p(H11, . . . , HNN) =

(
A

π

)N/2(
2A

π

)N(N−1)

exp

(
−A

∑
n,m

[
(Re(Hnm))2 + (Im(Hnm))2

)]
(1.4.2)

respectively ([45, 46]), where A is determined by the variances 〈H2
nn〉 = 1/2A and

〈H2
nm〉 = 1/4A. An interesting property of the Gaussian ensembles is that in all

three cases the average density of states is described by Wigner’s semicircle law;

which is of the form

〈ρ(E)〉 =


A
π

√
2N
A
− E2, for |E| <

√
2N
A

0, for |E| >
√

2N
A

(1.4.3)

([45, 46]).

In the papers [17] and [18] the authors attempted to determine whether the

statistical properties of the energy spectra of adiabatic quantum computers can
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be described using the predictions of random matrix theory and hence discover

whether it is applicable to use random matrix theory to predict the behaviour of

AQC for large problem instances. In general they found that for problem instances

of increasing complexity the degree of regularity of the spectrum decreased meaning

random matrix theory becomes more applicable. In particular, the bulk of the

eigenspectrum (i.e. eigenstates from the centre of the spectrum) appear to be well

described by random matrix theory. Whereas the properties of the top and bottom

parts of the energy spectrum, the latter of which is of critical importance in AQC,

do not appear to fit the predictions of random matrix theory quite as well, meaning

it may not be applicable in those regions. Another way in which random matrices

have been used in the study of adiabatic quantum computing is as a simple way of

representing noise in the Hamiltonian; this was done by Roland and Cerf in [9].



Chapter 2

Generalised Pechukas-Yukawa

model

2.1 Generalised Pechukas-Yukawa equations

As mentioned in section 1.3 the Pechukas-Yukawa model offers a method of exploring

the dynamics of the energy eigenvalues of a quantum system. This model is partic-

ularly appropriate for studying an adiabatic quantum computer as it is based on a

Hamiltonian of a similar form and knowledge about the behaviour of the lowest few

energy levels is crucial when analysing the performance of adiabatic quantum algo-

rithms. We aim to explore the effects of noise on an adiabatic quantum computer,

therefore we need to generalise the Pechukas-Yukawa equations to the stochastic

case. This can be done by including an additional term in the Hamiltonian, δh(λ),

which accounts for the effects of noise on the system. At this point we need not

make any assumptions about the exact form of the stochastic variable δh(λ). We

follow the derivation of the standard Pechukas-Yukawa equations described in [46],

except that we start with the following Hamiltonian;

H(λ(t)) = H0 + λ(t)V + δh(λ(t)) (2.1.1)

where the perturbation strength λ(t) is interpreted as ‘time’.

The instantaneous eigenvalues of H(λ) are denoted by xn(λ) and the correspond-

ing eigenfunctions by |n(λ)〉;

H(λ) |n(λ)〉 = xn(λ) |n(λ)〉 . (2.1.2)

21
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The eigenfunctions obey the orthogonality relation

〈n|m〉 = δnm, (2.1.3)

which after differentiation with respect to ‘time’ (λ) gives(
∂

∂λ
〈n|
)
|m〉+ 〈n|

(
∂

∂λ
|m〉
)

= 0. (2.1.4)

If we now introduce the operator

H = i
∂

∂λ
, (2.1.5)

with matrix elements

Hnm = 〈n|H |m〉 , (2.1.6)

which allows (2.1.4) to be written as Hnm = H∗mn, i.e. H is hermitian.

We can now derive an equation for the ‘time’ evolution of the matrix elements

of an arbitrary operator A

d

dλ
〈n|A |m〉 =

(
∂

∂λ
〈n|
)
A |m〉+ 〈n| ∂A

∂λ
|m〉+ 〈n|A

(
∂

∂λ
|m〉
)
, (2.1.7)

using the completeness relation,
∑

k |k〉 〈k| = 1, we get

d

dλ
〈n|A |m〉 =

∑
k

[(
∂

∂λ
〈n|
)
|k〉 〈k|A |m〉+ 〈n|A |k〉 〈k|

(
∂

∂λ
|m〉
)]

+〈n| ∂A
∂λ
|m〉 .

(2.1.8)

Using the definition (2.1.5) we have

dAnm
dλ

= i
∑
k

(HnkAkm − AnkHkm) +

(
∂A

∂λ

)
nm

, (2.1.9)

which, when written in matrix notation and H is interpreted as a Hamiltonian, is

simply the equation of motion for an operator A in the Heisenberg picture

dA

dλ
= i[H,A] +

∂A

∂λ
. (2.1.10)

If we insert the Hamiltonian H(λ) for A in (2.1.9) we have

ẋnδnm = iHnm(xm − xn) + Vnm + ˙δhnm, (2.1.11)

where the dot denotes differentiation with respect to ‘time’ and ˙δhnm is the instan-
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taneous ‘time’ derivative of an element of the noise matrix, which arises from the

partial derivative term of (2.1.9). For n = m (2.1.11) gives

ẋn = Vnn + ˙δhnn (2.1.12)

and for n 6= m it gives

Hnm =
Vnm + ˙δhnm
i(xn − xm)

. (2.1.13)

Next we insert V for A in (2.1.9) to get

V̇nm = i
∑
k

(HnkVkm − VnkHkm) . (2.1.14)

For n = m in (2.1.14), using (2.1.13), we obtain

V̇nn =
∑
k 6=n


(
Vnk + ˙δhnk

)
Vkn

xn − xk
−
Vnk

(
Vkn + ˙δhkn

)
xk − xn

 (2.1.15)

=
∑
k 6=n

2VnkVkn + ˙δhnkVkn + Vnk ˙δhkn
xn − xk

(2.1.16)

as for k = n the contribution to the sum is HnnVnn − VnnHnn = 0. For n 6= m in

(2.1.14) we get

V̇nm =
∑
k 6=n,m


(
Vnk + ˙δhnk

)
Vkm

xn − xk
−
Vnk

(
Vkm + ˙δhkm

)
xk − xm


+ i(HnnVnm − VnnHnm) + i(HnmVmm − VnmHmm) (2.1.17)

where the second and third terms are the contributions to the sum for k = n and

k = m respectively. This can be rearranged to give

V̇nm =
∑
k 6=n,m

[
VnkVkm + ˙δhnkVkm

xn − xk
+
VnkVkm + Vnk ˙δhkm

xm − xk

]
+ i(Hnn −Hmm)Vnm + iHnm(Vmm − Vnn). (2.1.18)

The second term can be removed by the substitution

Vnm = V̂nm exp

[
i

∫
(Hnn −Hmm)dt

]
. (2.1.19)
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as the V̂nm obey the same equation of motion as the Vnm but without the second

term of (2.1.18); therefore we may assume that Hnn = 0 and write Vnm instead of

V̂nm without loss of generality. Using the identity (2.1.13), the third term in (2.1.18)

can then be rearranged to give

V̇nm =
∑
k 6=n,m

[
VnkVkm + ˙δhnkVkm

xn − xk
+
VnkVkm + Vnk ˙δhkm

xm − xk

]

− (Vnm + ˙δhnm)(Vnn − Vmm)

xn − xm
(2.1.20)

V̇nm =
∑
k 6=n,m

[
VnkVkm + ˙δhnkVkm

xn − xk
+
VnkVkm + Vnk ˙δhkm

xm − xk

]

− Vnm(Vnn − Vmm)

xn − xm
−

˙δhnm(Vnn − Vmm)

xn − xm
. (2.1.21)

Equations (2.1.12), (2.1.16) and (2.1.21) form a closed system of equations de-

scribing the dynamics of the energy eigenvalues of H(λ), similar to those originally

derived by Pechukas in [38].

We can now introduce the new dynamical variables vn and lmn as done by Yukawa

in [39].

vn = Vnn (2.1.22)

lnm = (xn − xm)Vnm, n 6= m (2.1.23)

If we imagine that the energy eigenvalues xn take the role of the position of the nth

particle in a 1D classical gas, the new variables vn and lmn are analogous to the

particle’s velocity and the particle-particle repulsion strength respectively. The new

variables vn and lmn can be substituted into equations (2.1.12), (2.1.16) and (2.1.21)

to derive a system of equations describing the dynamics of the 1D classical gas.

Substituting (2.1.22) into (2.1.12) gives the equation of motion for the nth particle’s

position

ẋn = vn + ˙δhnn. (2.1.24)

Substitution of (2.1.23) into (2.1.16) gives the equation of motion for the nth parti-

cle’s velocity

v̇n =
∑
k 6=n

[
2lnklkn

(xn − xk)2(xk − xn)
+

˙δhnklkn
(xn − xk)(xk − xn)

+
lnk ˙δhkn

(xn − xk)2

]
, (2.1.25)
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as V is a hermitian matrix lnk = −l∗kn for k 6= n, therefore we can write

v̇n =
∑
k 6=n

[
2 |lnk|2

(xn − xk)3
+
lnk ˙δhkn − ˙δhnklkn

(xn − xk)2

]
. (2.1.26)

If we then differentiate (2.1.23) with respect to ‘time’;

l̇nm =
d

dλ
(xnVnm − xmVnm) (2.1.27)

= (xnV̇nm + ẋnVnm)− (xmV̇nm + ẋmVnm) (2.1.28)

= V̇nm(xn − xm) + Vnm(ẋn − ẋm). (2.1.29)

Then equation (2.1.24) and the identities (2.1.22) and (2.1.23) can be substituted

into give;

l̇nm = V̇nm(xn − xm) +
lnm(vn − vm)

(xn − xm)
+
lnm( ˙δhnn − ˙δhmm)

(xn − xm)
. (2.1.30)

The new variable lnm can then be substituted into (2.1.21);

V̇nm =
∑
k 6=n,m

[
lnklkm

(xn − xk)2(xk − xm)
− lnklkm

(xm − xk)2(xn − xk)
+

˙δhnklkm
(xn − xk)(xk − xm)

+
lnk ˙δhkm

(xn − xk)(xm − xk)

]
+
lnm(vm − vn)

(xn − xm)2
+

˙δhnm(vm − vn)

(xn − xm)
(2.1.31)

Combining equations (2.1.30) and (2.1.31) we derive an equation of motion for the

particle-particle repulsion strength in the eigenvalue gas (N.B. the second term in

(2.1.30) will cancel the first term outside the sum in (2.1.31)),

l̇nm = (xn − xm)
∑
k 6=m,n

[
lnklkm

(
1

(xn − xk)2(xk − xm)
− 1

(xm − xk)2(xn − xk)

)

+
lnk ˙δhkm − lkm ˙δhnk
(xm − xk)(xn − xk)

]
+ ˙δhnm(vm − vn) +

lnm( ˙δhnn − ˙δhmm)

(xn − xm)
. (2.1.32)

The (xn − xm) can then be taken inside the sum to give

l̇nm =
∑
k 6=m,n

[
lnklkm

(
1

(xn − xk)2
− 1

(xm − xk)2

)
+

(xn − xm)(lnk ˙δhkm − lkm ˙δhnk)

(xm − xk)(xn − xk)

]

+ ˙δhnm(vm − vn) +
lnm( ˙δhnn − ˙δhmm)

(xn − xm)
. (2.1.33)
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We now have the following dynamical equation system to describe the motion of

the energy eigenvalues of the Hamiltonian H(λ(t)) = H0 + λ(t)V + δh(λ(t));

ẋn =vn + ˙δhnn,

v̇n =
∑
k 6=n

[
2 |lnk|2

(xn − xk)3
+
lnk ˙δhkn − ˙δhnklkn

(xn − xk)2

]
, (2.1.34)

l̇nm =
∑
k 6=m,n

[
lnklkm

(
1

(xn − xk)2
− 1

(xm − xk)2

)
+

(xn − xm)(lnk ˙δhkm − lkm ˙δhnk)

(xm − xk)(xn − xk)

]

+ ˙δhnm(vm − vn) +
lnm( ˙δhnn − ˙δhmm)

(xn − xm)
.

When the noise term δh(λ) equals zero at all times this simply reduces to the normal

Pechukas-Yukawa system as expected.

We have derived a generalised stochastic form of the Pechukas-Yukawa model of

eigenvalue dynamics. This retains the key feature of the standard Pechukas-Yukawa

equations as it is also an exact mapping of the quantum eigenvalue dynamics to a

classical gas. It is also done without making any assumptions about the nature of

the noise source δh(λ) and can therefore be used to model a wide range of different

physical systems.

2.2 Random matrix Noise model

In order to close the generalised Pechukas-Yukawa system of dynamical equations

(2.1.34) we need to consider the exact nature of the noise term δh(λ). In reality,

noise in most physical systems arises from a number of different sources via different

mechanisms, because of this it seems reasonable to assume that, by the central limit

theorem, the sum of their effects will be a random term in the Hamiltonian with

independent Gaussian distributed elements. Therefore, we take the noise term δh(λ)

to be a random matrix drawn from the Gaussian ensembles of random matrix theory

described in section 1.4; this is similar to the noise model used in [9].

The generalised Pechukas-Yukawa model depends on the derivative of the noise

term, ˙δh(λ), because of this we require a noise source which obeys a simple stochastic

differential equation. As mentioned in section 1.2.3.5, some of the most promising

physical realisations of adiabatic quantum computers are built using superconduct-

ing qubits and the noise observed in these types of devices has a coloured (non-flat)

frequency spectral density [34]. Therefore, we will assume that the elements of the

noise matrix evolve in time according to a simple stationary stochastic process which
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has a coloured spectral density, the Ornstein-Uhlenbeck process [47];

˙δhij(λ) = −τδhij(λ) + εηij(λ) (2.2.1)

where τ is the correlation time, ε is the noise amplitude and η(λ) is a random

matrix valued function with 〈η(λ)〉 = 0 and 〈η(λ)η(λ′)〉 = δ(λ − λ′), i.e. a white

noise process.

2.3 Numerical methods and testing

As an initial test of the generalised Pechukas-Yukawa model, a simple simulation

that numerically solved the equations (2.1.34) with the random matrix noise model

was developed in MATLAB. We assume that the perturbation takes the form of a

large bias, i.e. V = ZHb where Z � 1. The problem (Hf = H0) and bias (Hb)

Hamiltonians are taken to be random matrices drawn from the Gaussian unitary

ensemble. The noise term (δh(λ)) is taken as a random matrix drawn from the

Gaussian orthogonal ensemble and is assumed to evolve in time according to equation

(2.2.1).

The system of equations (2.1.34) is complex and the noise term will fluctuate

on a relatively fast time scale compared to the trajectories of the eigenvalues, be-

cause of this the stability of the numerical methods that are used is an important

consideration. Multistep methods, such as the Adams-Moulton predictor corrector,

are particularly stable as they use data from a number of the preceding points to

compute the next point [48]. This is in comparison to single-step methods, like the

Runge-Kutta method, which only use data from the previous point in the calculation.

The Adams-Moulton method essentially works by fitting a cubic polynomial through

the last n (which defines the order of the method) data points and then calculating

a rough approximation of the integral from the current point to the next; this is the

predictor step. The results from the predictor step are then used in the corrector

formula to calculate a more accurate value of the integral at the next data point.

The Adams-Moulton method requires the first n data points to be calculated using

a single-step method. In the simulation a variable order Adams-Moulton method is

used to solve (2.1.34) and a simple 2nd order Runge-Kutta method is used to solve

(2.2.1). We also attempt to improve numerical accuracy by using a finer time step

towards the end of the computation, because the Pechukas gas will contract as the

large bias Hamiltonian is turned off and we therefore expect the majority of level

and avoided crossings to occur when λ(t) & 0.

Figure 2.3.2 shows an example of the energy spectrum of a 4-qubit system calcu-
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lated using the generalised Pechukas-Yukawa model derived in section 2.1. A noise

amplitude of ε = 0.1, a large bias strength of Z = 10 and a short correlation time

of τ = 0.1 were used; the magnitude of these values will be typical of those used

throughout the rest of this work. The results are compared to those found by direct

diagonalization of H(t) at a number of points in time and it is found that they agree

to approximately 3 decimal places which corresponds to a relative error of less than

0.5%, indicating the accuracy of the numerical methods used.

Knowledge of how the energy spectrum of an adiabatic quantum computer

evolves over time allows the identification of the critical points in the computa-

tion process. Namely, any avoided or level crossings, as at these points there will

be a finite probability of the system tunneling out of its current state. The main

tunneling mechanism at these critical points will be Landau-Zener-Stückelberg tun-

neling ([42, 43, 44]) and the probability of excitation from |m〉 to |m+ 1〉 via this

mechanism is given by;

PLZS = exp

− ∆2
m,m+1

|〈m|ZHb |m+ 1〉|
∣∣∣λ̇∣∣∣
 , (2.3.1)

where ∆m,m+1 is the minimum separation between levels xm and xm+1, as shown in

Fig. 2.3.1, and |λ̇| is the computation speed. Unless stated otherwise, we will always

assume that system undergoes uniform evolution, therefore |λ̇| = 1
T

, where T is the

computation time. These critical points can be readily found by searching for the

minima of |xm(λ)− xm+1(λ)|. Then the sequence of critical points in the spectrum

that can lead to excitation out of the ground state can be identified. By applying

equation (2.3.1) at these points it is possible to calculate how the level occupation

changes over time and hence find the success probability of the computation. This

method yields a tree-like structure with branches between adjacent levels at avoided

crossings; the probability of occupation can then be visualised as diffusing across this

tree structure. The algorithm used to perform this analysis is shown in Fig. 2.3.3

and copy of the MATLAB code is listed in appendix A. A two-state approximation

is often used when looking at an AQC operation, e.g. as in [12], this assumes that

the minimum gap between the ground and first excited states is the limiting factor

for transitions out of the ground state. The algorithm for estimating occupation

described here can be viewed as a natural extension of the two-state approximation.
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Figure 2.3.1: Example showing a critical point in the energy spectrum of an adiabatic
quantum computer, namely an avoided crossing between the ground and first excited
state. The minimum gap at this point is denoted ∆min.
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(a) Energy spectrum over time

(b) Relative error

Figure 2.3.2: Plots showing a comparison of the energy spectrum calculated using
the generalised Pechukas-Yukawa model and the results of direct diagonalisation
(crosses) for a 4-qubit system with GUE Hamiltonians and GOE random matrix
noise where Z = 10, ε = 0.1 and τ = 0.1.
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Figure 2.3.3: Flowchart describing algorithm used to estimate the occupation prob-
abilities as a function of time for a given energy spectrum based on analysis of the
critical points.
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The CNOT gate

3.1 The CNOT problem Hamiltonian

As an example of a prototypical quantum algorithm, we will study the adiabatic

equivalent of the CNOT gate. This can be constructed using the GSQC method

described in 1.2.3.3. The CNOT gate is a two qubit gate which in conjuction with

single qubit roatations forms one of the simplest sets of universal quantum gates. In

this family of universal gates the inter-qubit action of the CNOT gate is necessary

to generate the entanglement that is required for quantum computation, because of

this it is a fundamental building block in quantum circuits.

As described in section 1.2.3.3, we can construct a problem Hamiltonian using

the GSQC method by visualising each qubit as an array of quantum dots that share

a single spin polarised electron. A single CNOT gate is a 1 step, 2 qubit algorithm so

we require an array of 8 quantum dots (effectively 4 physical qubits) for the GSQC

version, this system is shown schematically in Fig. 3.1.1. The CNOT gate will flip

the state of the target qubit (m = 1) if the state of the control qubit (m = 0) is in

state 1, therefore we require an identity operator to be applied to m = 1 if m = 0 is

in the state 0 and if m = 0 is in 1 we need a NOT gate to be applied to m = 1. The

single qubit NOT operation is simply described by the well known Pauli matrix σx.

The multi-qubit recursion relation for the solution state, (1.2.23), for this operation

can be written as

∣∣ψ1
〉

=
(
I + c†010c000C

†
11IC10 + c†011c001C

†
11σxC10

) ∣∣ψ0
〉
, (3.1.1)

where the 2nd and 3rd terms in the brackets apply the identity and NOT operations

respectively in the relevant situations. The Hamiltonian for this operation takes the

32
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form;

HCNOT =
(
c†010C

†
11 − c

†
000C

†
10

)
(C11c010 − C10c000)

+
(
c†011C

†
11 − c

†
001C

†
10σx

)
(C11c011 − σxC10c001)

+ C†00C00C
†
11C11 + C†01C01C

†
10C10, (3.1.2)

where the first and second terms are modifications of the single qubit, single step

terms in (1.2.24) that apply identity and NOT operations respectively in the relevant

situations. The third term in (3.1.2) is required to penalise states in which one qubit

has gone through the CNOT gate without the other.

Figure 3.1.1: Schematic of the quantum dot array used to encode a CNOT gate into
Hamiltonian form using the GSQC method.

In order to write the Hamiltonian (3.1.2) explicitly we need to define the fermionic

creation and annihilation operators explicitly. The theoretical arrays of quantum

dots used to represent a single qubit have a basis of 5 possible states, the vacuum

state plus the electron occupying each dot in turn, which we describe with the

following basis vectors in a 5D Hilbert space;

|vac〉 =


1

0

0

0

0

 , |m00〉 =


0

1

0

0

0

 . . . |m11〉 =


0

0

0

0

1

 (3.1.3)
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We know that the fermionic creation operators must satisfy the following relations;

C†m00 |vac〉 = |m00〉 , C†m01 |vac〉 = |m01〉 , C†m10 |vac〉 = |m10〉 , C†m11 |vac〉 = |m11〉

and
{
Ci, C

†
j

}
= δij, (3.1.4)

and from these relations it is straightforward to write 5× 5 matrices that perform

the desired operation, e.g.

c†m00 =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (3.1.5)

The creation operators for the M = 2 qubit system of the CNOT gate are then

constructed by taking the tensor product with the identity operator, e.g.

C†000 = C†00 ⊗ I and C†100 = I ⊗ C†00. (3.1.6)

Using equation (3.1.2) we can then construct the CNOT Hamiltonian in the 25D

composite Hilbert space, this can then be truncated to the required 16D ((2 (N + 1))M

where M = 2 qubits and N = 1 steps) Hilbert space by tracing out the vacuum

state.

3.2 Initial conditions

The ground state energy of a GSQC Hamiltonian, such as HCNOT (3.1.2), is iden-

tically 0 by design [11]. To ensure that we arrive at the desired solution state, as

opposed to a state that appears correct but corresponds to starting in a different

initial state, it is necessary to add a perturbation to the Hamiltonian defining the

initial state, Hinput. This perturbation ensures that states corresponding to un-

desired inputs are pushed well above the low-lying states that play a role in the

computation. If we assume that the our system begins in one of the computational

basis states, the CNOT gate has four possible operations. These four operations

and the appropriate perturbations that define their initial states are shown in Table

3.1, where the constant µ simply sets the energy scale.

As mentioned in section 1.3 all the information about the form of the problem

Hamiltonian (Hf = H0 = HCNOT + Hinput) is encoded in the initial conditions of
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IN OUT Hinput

|00〉 |00〉 −µ
(
c†000c000 + c†100c100

)
|01〉 |01〉 −µ

(
c†000c000 + c†101c101

)
|10〉 |11〉 −µ

(
c†001c001 + c†100c100

)
|11〉 |10〉 −µ

(
c†001c001 + c†101c101

)
Table 3.1: The operations of the CNOT gate for the four computational basis states
and their corresponding Hinput. In Hinput, µ sets the energy scale.

the eigenvalue gas (i.e. xn(λ = 1), vn(λ = 1) and lmn(λ = 1)). For the sake of

generality, the initial conditions for the Pechukas gas are calculated using a first

order perturbation theory expansion in terms of Z−1 at λ(t) = 1, where

Hi = H(1) = H0 + ZHb + δh(1) ≡ Z
(
Hb + Z−1H0 + Z−1δh(1)

)
. (3.2.1)

For the initial eigenvalue positions, we have

xn(1) = ZHb

∣∣n(0)
〉

+
〈
n(0)
∣∣ (HCNOT +Hinput)

∣∣n(0)
〉

+
〈
n(0)
∣∣ δh(1)

∣∣n(0)
〉
, (3.2.2)

where we assume that Hb has a nondegenerate, well spaced energy spectrum with

eigenvalues En. Using the definitions (2.1.22) and (2.1.23), this gives

xn(1) = zEn + (HCNOT +Hinput)nn + (δh(1))nn , (3.2.3)

vn(1) = zEn, (3.2.4)

lnm(1) = (En − Em) z
(
(HCNOT +Hinput)nm + (δh(1))nm

)
. (3.2.5)

This approach should be more representative of a generic implementation of an AQC

system than direct calculation from a specific Hb.

Throughout this work, the initial noise term δh(1) will be a random matrix

drawn from the GOE with amplitude ε. We will take the numerical constants

µ = 0.1, Z−1 = 0.1 and τ = 0.1. We always assume that at λ(t) = 1 the ground

state is occupied with probability 1.



Chapter 4

The energy spectra of the CNOT

gate

The numerical methods discussed in section 2.3 were used to solve the generalised

Pechukas-Yukawa system, (2.1.34), for the example of the CNOT gate, (3.1.2), with

generic initial conditions calculated perturbatively, (3.2.5).

We start by examining the case of an idealised system where there is an absence

of noise, ε = 0.The energy spectra as a function of the perturbation strength or

‘time’ λ(t) for the 4 operations of the CNOT gate are shown in Fig. 4.0.1. Initially,

at λ = 1 we have a well spaced spectrum due to the large bias z, as required in

the AQC scheme. As λ(t) decreases and the perturbation is switched off we see a

contraction of the eigenvalue gas to a densely packed region near λ & 0. At λ = 0,

the system reaches the final state that encodes the results of the computation and

we can see that the xn(0) are in good agreement with the values found by direct

diagonalisation of H(0) = HCNOT +Hinput = H0; This confirms the accuracy of the

numerical methods set out in section 2.3.

The final region, where λ & 0, will be of crucial importance to the success of

computation process, as it is in this region of closely packed levels where avoided and

level crossings between adjacent levels will be found and therefore where tunneling

out of the ground state is most likely to occur. In the idealised noiseless situation

shown in Fig. 4.0.1 there are number of level crossings between adjacent energy

levels in this region in all four spectra. Crucially, in the |01〉 → |01〉, |10〉 →
|11〉 and |11〉 → |10〉 operations there are crossings between the ground and first

excited states, which therefore means there is 0 probability of the system being

successfully found in the ground state at λ = 0. These degeneracies correspond to

different solutions of the characteristic equation having the same eigenvalue because

of symmetries in the HamiltonianH(λ). These degeneracies are clearly not desirable

36
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in an AQC system as they obstruct the computation process.

The |01〉 → |01〉, |10〉 → |11〉 and |11〉 → |10〉 operations represent examples of

when the usual stipulation that [Hi, Hf ] 6= 0 has not been met. This situation could

be avoided by an alternative choice of initial conditions (Hb) but a suitable choice

may not be so clear if you have a particularly complex problem Hamiltonian or if

there are limitations on the controllability of the system. However, the effects of

noise have not been taken into account yet. The addition of a generic perturbation

to the system should break the symmetries and split the degeneracies; in reality, all

physical systems will be subject to some form of perturbation from noise.

The ‘time’ dependence of the velocities (vn(λ)) and coupling strengths (lmn(λ))

of the eigenvalue gas particles were also investigated. Figure 4.0.2 shows the ‘time’

dependence of vn(λ) for the |00〉 → |00〉 operation in an ideal noise-free system. We

can see that level velocities are constant at the start of the computation process

when the levels are well spaced. As λ(t) → 0 and the eigenvalue gas contracts

the 1/ (xn − xk)3) term in the equation of motion for vn(λ) in (2.1.34) becomes the

dominant term and we see some variation in the velocities of the close packed levels,

although some do remain constant. The inter-particle coupling strengths (lmn(λ))

are all shown to be constant in ‘time’ in Fig. 4.0.3. This arises from the initial

values calculated using (3.2.5), a number of them are equal to 0. We can see that

for the coupling strengths that are initially non-zero there will be no other non-zero

couplings that can contribute to the sum in the equation of motion (2.1.34) and

therefore all l̇mn(λ) = 0.

We now investigate the effects of the noise model described in section 2.2 on the

dynamics of the eigenvalue gas. Throughout this work, we will consider noise at a

range of different amplitudes (ε); usually ε = 0.025, 0.05, 0.075 and 0.1. We can

see from the equations (2.1.34) that the noise should have a significant effect on the

dynamics as all three equations of motion are strongly dependent on ˙δh(λ). The

effects of the noise should be particularly noticeable as λ(t) is near zero and the

levels become more densely packed, because a number of the noise terms depend on

the inverse of the gaps between levels.

In Fig. 4.0.4 we can see that the main effect of the noise on the energy spectra

is to split all the degeneracies into avoided crossings, as expected. This means there

will always be a finite success probability for all 4 operations of the CNOT gate when

ε > 0. The majority of these avoided crossings are in the densely packed region where

λ & 0 and this is therefore where we expect excitation out of the ground state to

occur. The algorithm described in section 2.3 will be used to analyse the sequences

of crossings in these spectra and estimate the level occupations. It is important

to note that the noise perturbations will drive the xn(0) and therefore |0(λ = 0)〉
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Figure 4.0.1: The energy spectra of the 4 possible operations of the adiabatic CNOT
gate in the absence of noise. The blue crosses show the results of direct diagonali-
sation of the relevant H0 and agree with the evolution of the Pechukas-Yukawa gas
to 4 significant figures.



CHAPTER 4. THE ENERGY SPECTRA OF THE CNOT GATE 39

Figure 4.0.2: Plot showing the particle velocities (vn(λ)) for the |00〉 → |00〉 opera-
tion of the CNOT gate in the absence of noise.

Figure 4.0.3: Plot showing the non-zero particle-particle coupling strengths (lmn(λ))
for the |00〉 → |00〉 operation of the CNOT gate in the absence of noise. All the
other coupling strengths for this operation are equal to zero at all times.
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away from the ideal solution state. This is clearly an undesirable effect on an AQC

process and it will be considered in greater detail in the following chapter 5.

The effects of a coloured noise source on the ‘time’ dependence of the level

velocities (vn(λ)) and coupling strengths (lmn(λ)) are shown in Fig. 4.0.5 and Fig.

4.0.6 respectively. In both cases, we see rapid fluctuations when λ(t) is close to zero.

This is because the noise terms in the equations of motion become the dominant

terms in the dynamics, as they depend on the rapidly fluctuating ˙δh(λ) and the

inverse of the gaps. The lmn(λ) = 0 in the ideal case now also show some fluctuation

because of the noise term outside the sum in the equation of motion. These results

serve to confirm the fact that noise has a considerable effect on the eigenvalue

dynamics in the last crucially important moments of the computation process.

As mentioned in section 1.4, the applicability of random matrix theory to closed

AQC systems has been studied previously in [17] and [18] by looking at the distri-

butions of gaps in the spectra. We now go on to investigate the effects of noise on

the nearest neighbour spacing statistics. The distribution of the average energy gap,

∆m,m+1, at avoided crossings for each noise realisation of the |00〉 → |00〉 operation

at a range of noise amplitudes is shown in Fig. 4.0.7. The distributions are Gaus-

sian in shape and shifted away from zero, which shows that we have level repulsion

at avoided crossings, as expected. The mean values of the distributions, ∆m,m+1,

appear to generally increase with ε which can be explained by the fact that noise

fluctuations in the trajectories of the energy levels will drive them apart, widening

the gaps.

The minimum gap between the ground and first excited states, ∆01, is often

seen as the limiting factor in AQC and the results of [17] and [18] suggest that it

sometimes shows different behaviour to spacings in the bulk of the spectrum. The

spacing distribution for the gaps at avoided crossings between x0(λ) and x1(λ) for

the |00〉 → |00〉 operation are shown in Fig. 4.0.8(a). The distribution is unimodal

and has an elongated tail reminiscent of the Wigner distributions of random matrix

theory [46]. The mean of the distribution is approximately constant, although we do

see some variation as a result of the noise. We also see a degree of level repulsion as

the distribution has a lack of small spacings and is shifted away from zero gap. This

will be due to the fact that we have intrinsic level repulsion, i.e. we have ∆01 6= 0

when ε = 0.

In the ground state gap distribution for the |01〉 → |01〉 operation, shown in Fig.

4.0.8(b), we have a more Poissonian-like distribution with an abundance of smaller

gaps, which shows a lack of level repulsion. This is because it has a degeneracy

at ε = 0 and it therefore has no intrinsic level repulsion and the non-zero gap is

created by the noise. The mean gap width, ∆01, can be seen to clearly increase
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Figure 4.0.4: The energy spectra of the 4 possible operations of the adiabatic CNOT
gate in the presence of coloured noise of amplitude ε = 0.1.
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Figure 4.0.5: Plot showing the particle velocities (vn(λ)) for the |00〉 → |00〉 opera-
tion of the CNOT gate in the presence of coloured noise of amplitude ε = 0.1.

Figure 4.0.6: Plot showing the non-zero particle-particle coupling strengths (lmn(λ))
for the |00〉 → |00〉 operation of the CNOT gate in the presence of coloured noise of
amplitude ε = 0.1.
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Figure 4.0.7: Plot showing the distributions of average energy gap width (∆m,m+1)
at avoided crossings in the energy spectra of each noise realisation for the |00〉 → |00〉
operation of the CNOT gate at a range of noise amplitudes. The mean val-
ues of the distributions are ∆m,m+1 = 0.1262, 0.1250, 0.1275 and 0.1296 for
ε = 0.025, 0.05, 0.075 and 0.1 respectively.

proportionally with the noise amplitude. The ground state spacing distributions for

the |10〉 → |11〉 and |11〉 → |10〉 operations are similar to that of the |01〉 → |01〉
operation, as they also have no intrinsic level repulsion.

For spacings between states in the bulk of the spectrum we will have some

multimodal distributions as they tend to be involved in a greater number of avoided

crossings. An example of this is shown in Fig. 4.0.9 for ∆45 for the |01〉 → |01〉
operation, where we have a Poissonian peak at small spacings and then a Gaussian

peak at larger spacings.

The Brody parameter offers a convenient method of determining whether an

energy spectrum is regular or irregular. If the system’s spectrum is regular we know

that its dynamics are controlled by symmetries and conservation laws; whereas if

they are irregular, the dynamics will be complex and chaotic resulting from a lack of

symmetries. The Brody distribution interpolates from a regular Poissonian nearest

neighbour spacing distribution at q = 0 to an irregular Wigner nearest neighbour

spacing distribution for the GOE at q = 1,

p(s) = (q + 1)aqs
qe−aqs

q+1

(4.0.1)
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(a) |00〉 → |00〉

(b) |01〉 → |01〉

Figure 4.0.8: Distribution of minimum ground state energy gaps for the |00〉 →
|00〉 and |01〉 → |01〉 operations of the CNOT gate at a range of noise am-
plitudes. The gap width is renormalised by ∆01/∆01. The mean values of
the distributions for ε = 0.025, 0.05, 0.075 and 0.1 respectively are: ∆01 =
0.0480, 0.0461, 0.0399 and 0.0423 for the |00〉 → |00〉 operation and ∆01 =
0.0007, 0.0013, 0.0017 and 0.0029 for the |01〉 → |01〉 operation.
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Figure 4.0.9: Distribution of minimum gaps between x4(λ) and x5(λ) in the
bulk of the spectrum for the |01〉 → |01〉 operation of the CNOT gate at a
range of noise amplitudes. The gap width is renormalised by ∆45/∆45. The
mean values of the distributions are ∆45 = 0.1190, 0.1236, 0.1171 and 0.1249 for
ε = 0.025, 0.05, 0.075 and 0.1 respectively.
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where q is the Brody parameter,

aq =

[
Γ

(
q + 2

q + 1

)]q+1

, (4.0.2)

s are the dimensionless nearest neighbour energy gaps and Γ(q) is Euler’s gamma

function [46]. The Brody parameter therefore acts as a measure of the regularity

of an energy spectrum. In order to calculate the Brody parameter we must first

renormalise the density of states to unit average local level density, so that spacings

across the spectrum are comparable. This procedure is known as unfolding and

was done by smoothing the integrated density of states by fitting a cubic spline

to it; the unfolded energy eigenvalues were then taken from the equation for the

spline. The Brody distribution function can then be fitted to the nearest neighbour

spacing distribution of the unfolded energy levels so that the Brody parameter for

the spectrum can be extracted. This procedure was carried out for the energy levels,

xn, at each point in λ(t) and the average value of the Brody parameter as a function

of ‘time’ was calculated for each of the four CNOT gate operations.

The results for ε = 0 and 0.1 are shown in Fig. 4.0.10 and we can see that the

increase in irregularity is negligibly small, which is surprising considering we have

a reasonably large random matrix term, δh(λ), in the system’s Hamiltonian. This

suggests that the overall dynamics of the system are dominated by the problem

(H0) and the bias (Hb) Hamiltonians as opposed to the irregularities caused by the

noise. These results could suffer from small sample size effects as we have a relatively

small spectrum of 16 levels, but as shown in [49] averaging over an ensemble of noise

instances should alleviate these.

We have studied the effects of noise on the operations of the adiabatic CNOT

gate by looking at their eigenvalue dynamics and spectral statistics. We have shown

that there exists a number of level crossings in the spectra for the case of an ideal

noise-free system (ε = 0). Crucially, in some cases there are level crossings between

the ground and first excited state, which means there will be a zero probability of

successfully remaining in the ground state. The introduction of noise into the system

breaks all the degeneracies, allowing a finite success probability. As the amplitude

of the noise is increased we see a widening in the gaps at avoided crossings. The

irregular noise term does introduce some fluctuations into the eigenvalue dynamics,

but we have shown that the overall dynamics of the system remain regular even

at relatively large noise amplitudes. This suggest that the system has a degree of

inherent stability and robustness against the effects of noise.
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Figure 4.0.10: The Brody parameter, q, as a function of ‘time’ for all four operations
of the CNOT gate with ε = 0 and 0.1. These values of q are found by fitting the
Brody distribution to the unfolded nearest neighbour spacing distribution and the
average value of the coefficient of determination was R2 = 0.7488.



Chapter 5

The statistics of level occupation

for the CNOT gate

It is desirable to be able to run an adiabatic quantum computation process relatively

quickly, but at the same time we must try to ensure that the system remains in the

ground state so that solution can be accurately read out. Therefore, a compromise

between speed and adiabaticity must be reached. Knowledge of the relationship

between the computation rate or speed, λ̇ = 1/T , and the success probability, i.e.

the probability of the system being found in the ground state at λ(t) = 0 given

that it was initially in the ground state with certainty, P (0(λ = 0)|0(λ = 1)),

will be very informative when trying to find this balance. The effects of noise

on this relationship are also an important consideration that should be taken into

account. In order to investigate this relationship, the energy spectra for an en-

semble of 50 random noise realisations for each of the 4 CNOT gate operations

were generated using the numerical techniques discussed in section 2.3 for solv-

ing the generalised Pechukas-Yukawa system ((2.1.34)). These spectra were then

analysed using the level occupation algorithm described in section 2.3 to find the

average success probabilities at a range of different computation speeds. It is im-

portant to note that this algorithm allows us to calculate the probability of the

system being found in the final ground state of the system’s total Hamiltonian (i.e.

H(λ = 0) = Hf + δh(λ = 0) = (HCNOT + Hinput) + δh(λ = 0)) as opposed to the

solution state (i.e. the ground state of Hf = HCNOT + Hinput). The distinction

between these two variables when noise comes into effect will be discussed later on

in this section.

The success probability as a function of computation speed for the |00〉 → |00〉
operation at a range of noise amplitudes is shown in Fig. 5.0.1, including the case

of an ideal closed system (ε = 0). In general, we see a polynomial increase in
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success probability as the speed decreases, i.e. P ∝ T−γ. As the speed decreases

further we find that the success probability tends to unity, as expected from the

adiabatic theorem (1.2.14). These general trends and the polynomial dependence

are in agreement with the findings of [40] for random problem Hamiltonians drawn

from the GUE. A fit to the polynomial region of the ε = 0 curve yields a scaling

exponent of γ ≈ 4/3, whereas for ε > 0 we find the scaling exponents to all be

γ ≈ 1. The fact that this scaling remains constant as ε increases is heartening in

terms of the performance of AQC. When the noise source is switched on we see a

significant prefactor shift of the curves towards slower speeds as well as a decrease

in γ. This means that in some situations a speed 102 slower is required to achieve

the same chance of success. This is because the introduction of noise will split

any degeneracies into avoided crossings and it will also lead to fluctuations in the

level trajectories creating more avoided crossings. This increase in the number of

avoided crossings results in more opportunities for the system to be excited out

of the ground state and into higher levels, therefore a significantly slower speed is

required to achieve the same success probability as in the ideal case. This effect is

clearly not favourable, but some degree of noise is an inevitability in any physical

system and its effects must be considered.

An interesting feature to note in Fig. 5.0.1 is that, as ε increases we see a prefac-

tor shift in the curves back towards faster computation speeds. This can be seen as

being beneficial in the context of AQC as it means that the success probability at

a given computation speed increases linearly with noise amplitude.This occurs be-

cause stronger noise fluctuations will widen the energy gaps at avoided crossings, as

predicted by Fig. 4.0.7 where the average energy gaps generally increase with noise

amplitude, and therefore decrease the chance of excitation at that particular avoided

crossing. However, at |λ̇| ≈ 10−5 we see a change in the scaling and the curves of

increasing amplitude reverse in order. This can be explained by looking at whether

higher levels come into play in terms of the occupation, as shown in Fig. 5.0.2. For

small ε, we see a very sudden switch from P1 � P0 to P0 � P1 at |λ̇| ≈ 10−5 and no

occupation of the higher levels. This shows that the avoided crossing between x0(λ)

and x1(λ) is the limiting factor, meaning the success probability saturates quickly

and the gradient of the logarithmic plot stays constant. For larger ε, we have a more

complicated evolution of the level occupation as higher levels come into effect and

therefore the switch from P1 � P0 to P0 � P1 is not as sudden meaning the success

probability saturates more slowly and the gradient decreases. This slow down in

scaling is proportional to ε which leads to the reversal of the ordering of curves of

constant ε seen in Fig. 5.0.1.

The dependence of the success probability on the computation speed for the
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Figure 5.0.1: Plot of average success probability against computation speed for the
|00〉 → |00〉 operation of the CNOT gate at various noise amplitudes.

|01〉 → |01〉 operation of the CNOT gate is shown in Fig. 5.0.5. For this operation,

we do not have a curve for an ideal system (ε = 0) to compare the effects of noise

against, as the success probability will be zero at all speeds when ε = 0, because of

degeneracy between the ground and first excited states. The same general trends

seen in Fig. 5.0.1 hold true in Fig. 5.0.3, in that the success probability increases

polynomially with computation time before saturating at one. In this case, we also

have constant scaling exponents of γ ≈ 1 and therefore an approximately inverse

linear relationship between success probability and computation speed. We can also

see that the prefactor shift of the curves is much greater than in Fig. 5.0.1. This

will be due to the fact that noise will have a much greater influence on the gap

widths at avoided crossings, as they are the result of noise-induced level splitting

in this case. The increase in success probability with noise amplitude remains for

all speeds and we do not see the reversal seen in Fig. 5.0.1. This is because the

noise-induced ground state gaps in the spectrum of the |01〉 → |01〉 operation are

generally narrower than those seen in the spectrum of the |00〉 → |00〉 operation

and therefore the occupation will still be able to spread into higher excited states

at relatively slow speeds. This means we do not see the sudden switch in behaviour

as ε increases that we have for the |00〉 → |00〉 operation.

Another feature in Fig. 5.0.3 is the fluctuation in the ε = 0.1 curve at |λ̇| ≈ 10−3.

This can again be explained by looking at the role that higher levels play in the level
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(a) ε = 0.025

(b) ε = 0.1

Figure 5.0.2: Plot of average occupation of the lowest 5 levels at λ(t) = 0 for the
|00〉 → |00〉 operation at ε = 0.025 and 0.1. The occupation of all levels above n = 4
is zero.
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Figure 5.0.3: Plot of average success probability against computation speed for the
|01〉 → |01〉 operation of the CNOT gate at various noise amplitudes.

occupation statistics. Figure 5.0.4 shows that at |λ̇| ≈ 10−3 the occupation of the

first and second excited states both fall away quickly as the success probability

increases. This switch in occupations will lead to the fluctuation we see in Fig.

5.0.3.

The dependence of the success probability on the computation speed and noise

amplitude for the |10〉 → |11〉 and |11〉 → |10〉 operations of the CNOT gate are

shown in Fig. 5.0.5 and Fig. 5.0.6 respectively. They both show very similar trends

to the |01〉 → |01〉 case in Fig. 5.0.3 and in all three cases we find a constant scaling

exponent of γ ≈ 1. This is to be expected as they all have similar spectra, where

noise fluctuations and symmetry breaking create the sequences of avoided crossings

across which the occupation diffuses. There is a kink in the ε = 0.025 curve of Fig.

5.0.5; this can be explained by the same mechanism that causes the one seen in the

ε = 0.1 curve of Fig. 5.0.3. We can also see that the ε = 0.05 and ε = 0.075 curves

in Fig. 5.0.6 cross; this is readily explained by the mechanism that leads to the

crossing of curves of constant ε in the |00〉 → |00〉 case.

As we have seen, there are situations where an increase in noise amplitude will

increase the success probability of an AQC process, but it may not be wholly benefi-

cial, as it will also drive the final state of the system away from the desired solution
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Figure 5.0.4: Plot of average occupation of the lowest 5 levels at λ(t) = 0 for the
|01〉 → |01〉 operation at ε = 0.1. The occupation of all levels above n = 4 is zero.

Figure 5.0.5: Plot of average success probability against computation speed for the
|10〉 → |11〉 operation of the CNOT gate at various noise amplitudes.
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Figure 5.0.6: Plot of average success probability against computation speed for the
|11〉 → |10〉 operation of the CNOT gate at various noise amplitudes.

state. This will affect the probability of the measurement of the final state yielding

the correct result. This is a different issue to the aforementioned success probability

in that, even if the system evolves at an infinitely slow rate, so that it will be in the

ground state at λ = 0 with certainty, if noise perturbations have driven |ψ(λ = 0)〉
away from the ideal solution state the correct answer will not always be found upon

measurement. This is an important effect that must be accounted for when we are

studying the effect of noise in an AQC system.

To investigate this we introduce a measure of closeness between the ideal ground

state (i.e. when ε = 0) and the noise perturbed ground state (i.e. where ε > 0),

namely the fidelity of the final state;

F = |〈0ideal(λ = 0)|0noise(λ = 0)〉|2 . (5.0.1)

We calculate the fidelity by direct diagonalisation of; H0 = HCNOT +Hinput to find

|0ideal(λ = 0)〉 and, H0 + δh(0) to give |0noise(λ = 0)〉. This is then averaged over

an ensemble of noise realisations. Another way of taking this issue into account

would be to define success probability of an AQC in the presence of noise as P =

|〈0ideal|ψ(0)〉|2 instead of simply the ground state occupation at λ = 0, as in [7]. This

is not possible with our current approach as we do not have specific knowledge of the

state vector, but we can look at the relationship between these two important factors.
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Figure 5.0.7: Plot showing the average fidelity of the final state and average success
probability as functions of noise amplitude for the |00〉 → |00〉 operation.

In other recent work [50] (manuscript included in appendix C), we investigated the

time average of this quantity for a large set of random problem instances and found

that it generally increased smoothly with the final ground state occupation, although

these results did not take into account the effects of noise.

The fidelity of the final state and the success probability of the |00〉 → |00〉
operation are shown as functions of noise amplitude in Fig. 5.0.7. As ε increases,

|0noise(λ = 0)〉 is driven further away from |0ideal(λ = 0)〉 and the fidelity decreases

linearly. We can also clearly see that success probabilities that are comparable to

the fidelity lie at speeds above the reversal in Fig. 5.0.1, as they too decrease linearly

with ε.

Figure 5.0.8 shows the relationship between the fidelity, success probability and

noise amplitude for the |01〉 → |01〉 operation of the CNOT gate. In this case, we can

see that the success probability at a given speed increases linearly with ε, whereas

the fidelity of the final state decreases linearly, so we have a trade-off between these

two effects. Therefore, at the intersection of the lines we have an optimal noise

amplitude that maximises both the fidelity and the success probability.

The fidelity and the success probability of the |10〉 → |11〉 and |11〉 → |10〉
operations behave in a similar fashion to the |01〉 → |01〉 operation, as seen in

Fig. 5.0.9 and Fig. 5.0.10 respectively. This is because their spectra show similar

trends and properties and therefore they show similar behaviour with respect to

level occupation.
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Figure 5.0.8: Plot showing the average fidelity of the final state and average success
probability as functions of noise amplitude for the |01〉 → |01〉 operation.

Figure 5.0.9: Plot showing the average fidelity of the final state and average success
probability as functions of noise amplitude for the |10〉 → |11〉 operation.
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Figure 5.0.10: Plot showing the average fidelity of the final state and average success
probability as functions of noise amplitude for the |11〉 → |10〉 operation.

Certain types of algorithms, particularly optimisation problems like the traveling

salesman (TSP), are suited to a less stringent version of AQC known as approximate

adiabatic quantum computation (AAQC). In AAQC we require only that the system

remains close to, but not necessarily in, its ground state, as for optimisation problems

like the TSP this will still yield a near-optimal result. This relaxation of requirements

will allow the computation process to be run at significantly faster speeds [51]. The

fact that we do not see a significant deviation away from the ground state in Fig.

5.0.2 and Fig. 5.0.4, even when the success probability ∼ 0, for a generic adiabatic

algorithm is a promising result for AAQC.

To summarise, we have found that the success probability of the CNOT gate

algorithm scaled polynomially as a function of computation speed. This scaling

was shown to be independent of the amplitude of the noise, which is a promising

point to note in terms of the performance of a realistic AQC process. Somewhat

counterintuitively, we have also seen that in some situations, noise increases the

success probability at a given speed, particularly when there are degeneracies in the

energy spectra. However, it was noted that this increase comes at the expense of

the fidelity of the final state, but an optimal compromise between the two factors

exists. We have shown that an insight into spectral properties and statistics can be

useful when trying to explain level occupation phenomena.



Chapter 6

The CNOT gate with an artificial

noise source

In the previous chapter, 5, we saw that the intrinsic noise in a physical system can

improve the performance of an AQC in some situations. We now look at this from

a different viewpoint and envisage a system with a negligibly low level of intrinsic

noise and try to enhance its performance by adding a specifically tailored artificial

noise source. This can be seen as a stochastic search for an alternative, and possibly

more efficient, path between the initial and final Hamiltonians than simple linear

interpolation.

To achieve this we require a perturbation term with a time-dependent amplitude,

which is large enough to widen the energy gaps at avoided crossings throughout the

majority of the computation process but then tends to zeros as λ(t)→ 0. We need

to be particularly careful in the region where λ(t) & 0 where the energy levels are

densely packed and the majority of excitation occurs, as we would like to retain

positive effects of noise, while at the same time minimising the negative effect on

the fidelity of the final state. As an example of this scheme, we retain the same

noise model used throughout this work except that we introduce a time-dependent

amplitude of the form

ε(λ) = ε0 tanh(αλ), (6.0.1)

where α is a constant determining the rate of decay as λ(t) & 0.

The dependence of the success probability on the computation speed for the

|00〉 → |00〉 operation with an artificial noise source is shown Fig. 6.0.1. The

constant α was varied in order to find the type of behaviour we were looking for. It

was found that a value of α = 10 yielded a significant prefactor improvement, up to

102 in some cases, over the results for a noise source with a constant amplitude. This

improvement occurs because we have strong noise fluctuations that drive the levels
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and their trajectories away from each other in the early part of the computation

process where there is little chance of excitation. Then as the system moves into the

critical final part of the evolution where the levels are densely packed, the strength

of the artificial perturbations are reduced to zero to avoid creating any more avoided

crossings and therefore reducing the chance of excitation.

The effects of an artificial noise source on the success probabilities of the other

operations of the CNOT gate are shown in Fig. 6.0.2, Fig. 6.0.3 and Fig. 6.0.4. A

value of α = 10 was again used and the results are compared to those for a noise

source with a constant amplitude. We again see a significant prefactor improvement.

Particularly for the |11〉 → |10〉 operation, where there is a remarkable improvement

of over 5 orders of magnitude. These improvements will occur for the same reasons

described for the |00〉 → |00〉 operation.

Another advantage of this scheme is the fact that the artificial noise will not affect

the fidelity of the final state. As we can see from (6.0.1), ε(0) = 0 and therefore the

final ground state will coincide with the desired solution state yielding F = 1.

In this chapter we have shown that it is possible to drastically improve the

performance of an AQC by the addition of a specifically engineered artificial noise

source. This would allow the same computation to be run at speeds of up to 105

times faster while still maintaining the same success probability. This scheme can

also be realised in such a way that it will have no adverse effect on the fidelity of

the final ground state. Although these results are heartening, it is important to

note that they are based on the assumption that we have a physical system with a

negligibly small amount of intrinsic noise, which in terms of current technologies is

fairly unrealistic. Despite this, these results do lend support to the idea that simple

linear interpolation between initial and final Hamiltonians is not always the most

efficient evolution path. This idea is an important consideration which should be

taken account of when discussing the performance of AQC, e.g. as in [20].
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Figure 6.0.1: Plot of average success probability against computation speed for the
|00〉 → |00〉 operation of the CNOT gate with an artificial noise source at a range of
values for ε0 and α = 10. For comparative purposes, the results for a noise source
with a constant amplitude of ε = 0.025 are also shown.

Figure 6.0.2: Plot of average success probability against computation speed for the
|01〉 → |01〉 operation of the CNOT gate with an artificial noise source at a range of
values for ε0 and α = 10. For comparative purposes, the results for a noise source
with a constant amplitude of ε = 0.1 are also shown.
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Figure 6.0.3: Plot of average success probability against computation speed for the
|10〉 → |11〉 operation of the CNOT gate with an artificial noise source at a range of
values for ε0 and α = 10. For comparative purposes, the results for a noise source
with a constant amplitude of ε = 0.1 are also shown.

Figure 6.0.4: Plot of average success probability against computation speed for the
|11〉 → |10〉 operation of the CNOT gate with an artificial noise source at a range of
values for ε0 and α = 10. For comparative purposes, the results for a noise source
with a constant amplitude of ε = 0.1 are also shown.



Chapter 7

The extended Pechukas-Yukawa

system

In the results presented in chapters 5 and 6, the level occupation probabilities are

estimated by analysis of the structure of the energy spectrum. However, as noted

in chapter 5 it would be beneficial to have a complete description of the state of a

quantum system, as opposed to just the occupations. In light of this we now derive

a novel extended version of the Pechukas-Yukawa framework that allows a complete

description of the quantum state.

If we start with the operator equation of motion derived during the derivation

of the generalised Pechukas-Yukawa model (2.1.9),

d

dλ
Anm = i

∑
k

(HnkAkm − AnkHkm) + 〈n| ∂A
∂λ
|m〉 , (7.0.1)

and insert the density operator, ρ = |ψ〉 〈ψ|, for A we have

d

dλ
ρnm = i

∑
k

(Hnkρkm − ρnkHkm) + 〈n| ∂ρ
∂λ
|m〉 . (7.0.2)

The term outside the sum, the partial time derivative of ρ is described by the Von

Neumann equation, ∂ρ/∂λ = −i [H, ρ] and we also know that

∂ρ

∂λ
=
∂ρ

∂t

∂t

∂λ
, (7.0.3)

therefore we have

〈n| ∂ρ
∂λ
|m〉 =

∂t

∂λ
〈n| − i [H, ρ] |m〉 = −i ∂t

∂λ
(〈n|Hρ |m〉 − 〈n| ρH |m〉) , (7.0.4)

where H is the Hamiltonian not the operator H. We can define the density operator
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as an element by element sum

ρ =
∑
a,b

ρab |a〉 〈b| , (7.0.5)

and insert it into (7.0.4) to give

〈n| ∂ρ
∂λ
|m〉 = −i ∂t

∂λ

∑
a,b

ρab (〈n|H |a〉 〈b|m〉 − 〈n|a〉 〈b|H |m〉) . (7.0.6)

Using the eigenvalue equation H |n〉 = xn |n〉 we have

〈n| ∂ρ
∂λ
|m〉 = −i ∂t

∂λ

∑
a,b

ρab (xa 〈n|a〉 〈b|m〉 − xm 〈n|a〉 〈b|m〉) , (7.0.7)

due to orthgonality, 〈n|m〉 = δnm, the only non-zero contribution to this sum will

come when n = a and m = b, which gives

〈n| ∂ρ
∂λ
|m〉 = −i ∂t

∂λ
ρnm (xn − xm) . (7.0.8)

Therefore we have

d

dλ
ρnm = i

∑
k

(Hnkρkm − ρnkHkm)− iρnm (xn − xm) , (7.0.9)

where Hab is defined by the following identity found during the derivation of the

standard Pechukas-Yukawa model [46]

Hab =
Vab

i (xa − xb)
, (7.0.10)

which is analogous to equation (2.1.13) for the generalised Pechukas-Yukawa system.

If we first consider the diagonal elements of the density matrix, i.e. where n = m

in (7.0.9), we have

d

dλ
ρnn = i

∑
k 6=n

(Hnkρkn − ρnkHkn)− 0. (7.0.11)

Then, using (7.0.10) and the Yukawa dynamical variable, lnm = (xn − xm)Vnm, we
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have

d

dλ
ρnn =

∑
k 6=n

(
Vnkρkn

(xn − xk)
− ρnkVkn

(xk − xn)

)
, (7.0.12)

=
∑
k 6=n

(
Vnkρkn + ρnkVkn

(xn − xk)

)
, (7.0.13)

=
∑
k 6=n

(
lnkρkn + ρnklkn

(xn − xk)3

)
. (7.0.14)

As both l and ρ are Hermitian we can say that

d

dλ
ρnn =

∑
k 6=n

(
2 |lnkρkn|

(xn − xk)3

)
= ṗn, (7.0.15)

where pn are the occupations or populations of a given eigenlevel n.

If we now consider the case of the off-diagonal elements of ρ, i.e. where n 6= m

in (7.0.9), we have

d

dλ
ρnm = i

∑
k 6=n,m

(Hnkρkm − ρnkHkm)− i ∂t
∂λ
ρnm (xn − xm) . (7.0.16)

Using (7.0.10) and lnm = (xn − xm)Vnm we have

d

dλ
ρnm =

∑
k 6=n,m

(
Vnkρkm

(xn − xk)
− ρnkVkm

(xk − xm)

)
− i ∂t

∂λ
ρnm (xn − xm) , (7.0.17)

=
∑
k 6=n,m

(
lnkρkm

(xn − xk)2
+

ρnklkm
(xm − xk)2

)
− i∂λ

∂t
ρnm (xn − xm) . (7.0.18)

These terms, ρnm, describe the inter-level coherences, i.e. the matrix element be-

tween eigenstates |n〉 and |m〉.
We now have a pair of equations,

ṗn =
∑
k 6=n

(
2 |lnkρkn|

(xn − xk)3

)
ρ̇nm =

∑
k 6=n,m

(
lnkρkm

(xn − xk)2
+

ρnklkm
(xm − xk)2

)
− i∂λ

∂t
ρnm (xn − xm) , (7.0.19)

that when used in conjunction with the standard Pechukas-Yukawa equations, (1.3.2),

form a closed system of classical equations of motion that fully capture both the

dynamics of the eigenvalues and the state of the system. They therefore completely

describe the dynamics of the quantum system and this is done without making
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any simplifications or assumptions. It may also be possible to generalise (7.0.19)

to the dissipative case by starting with a master equation instead of the Von Neu-

mann equation. These equations could be a useful result as they allow the use of

techniques and approaches from classical physics, that do not neccesarily have a

quantum analogue, to be readily applied to quantum mechanical systems.



Chapter 8

Conclusions

In this work we have derived a generalised stochastic form of the Pechukas-Yukawa

model of eigenvalue dynamics. This allowed us to take into account the effects of a

simple, yet generic, coloured noise source on the system’s evolution. We used this

approach to study an example of a prototypical adiabatic quantum algorithm which

involves 4 qubits; the GSQC form of the CNOT gate.

We have studied the energy spectra and their spectral properties and seen how

noise affects these. In particular, we showed that the presence of noise will break any

degeneracies in the spectrum that might obstruct the computation process without

significantly disturbing the regularity of the eigenvalue dynamics. We then studied

the effects of noise on the statistics of level occupation by analysing the sequences

of avoided crossings in the spectra that can lead to excitation out of the ground

state. In general, we found that the success probability scales polynomially with the

computation speed and noise introduces a shift of prefactor into this relationship. We

then investigated a theoretical situation where we have the opportunity to greatly

improve the success rate of the computation by the addition of a specifically tailored

artificial noise source. Finally, we formulated an extended version of the Pechukas-

Yukawa model that provides a complete description of the dynamics of the quantum

state, as well as the eigenvalues. This maintains the key benefit of being an exact

map to a classical system of equations of motion. We have demonstrated that an

eigenvalue dynamics approach can offer an insightful alternative to the Schrödinger

picture, as we have shown that detailed knowledge of a quantum system’s energy

spectrum and its properties can help explain the system’s behaviour. From these

results there are two main conclusions we can draw.

The first is on the relative robustness of an AQC process against the effects

of noise. In chapter 4, we showed that despite the addition of a relatively strong

irregularity into our system, i.e. noise, the overall eigenvalue dynamics remain

regular. This is a promising result, as it means that small random fluctuations in
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the Hamiltonian should not lead to radical changes in the dynamics of the system

and therefore we can expect the results of the computation to be reasonably close

to the desired results. This demonstrates the stability of the AQC process in the

presence of noise. We have also shown that the polynomial dependence of the success

probability on the computation speed is independent of the noise amplitude. This

result demonstrates the robustness of the performance of AQC in the presence of

noise. In fact we have shown that in some situations, noise can provide a linear

increase in the success probability at a given speed. Although this improvement

comes at the cost of the fidelity of the final state, there exists a noise amplitude that

offers an optimal compromise. The idea of noise providing an improvement in the

performance of a device is counter-intuitive, however there is some precedence for

this in the context of AQC, [7, 12].

The second main conclusion we can draw from this work is with regards to the

choice of initial conditions in AQC. We have analysed situations where symmetries

in the Hamiltonian lead to degeneracies in the spectrum, including some where de-

generacies between the ground and first excited state would lead to failure of the

computation process. We have shown that in realistic systems, where the perturba-

tive effects of noise are taken into account, all of these symmetries and degeneracies

will be broken naturally. This means there will always be a finite success probability

in practical AQC systems and therefore we can say that the conventional stipula-

tion that the initial and final Hamiltonians do not commute is unnecessary. In

fact, it is when the initial and final Hamiltonians commute that we see the greatest

noise-enhancement of the performance. This is an important result as it removes a

restriction on the choice of initial Hamiltonian that may prove practically impossible

to realise for universal AQC.

These results have been published in [52] and a copy of the manuscript is included

in appendix B.

8.1 Suggestions for further work

We believe there are a number of different directions in which this work could be

taken that may provide some fruitful and insightful results.

The most straightforward extension of this work would be to look at the effects

of noise on different types of adiabatic quantum algorithms. Determining how the

computation time of a given algorithm scales with input size (no. of qubits), effec-

tively the algorithmic efficiency, is a crucial step in evaluating its performance and

practicality. Therefore, it would be interesting to investigate how noise affects this

scaling in an algorithm with a variable input size. As mentioned in section 1.2.3.2,
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an example of an NP-complete algorithm that is often studied is the boolean satis-

fiability (SAT) problem and that prior attempts to determine whether AQC can be

used to efficiently solve this problem have been mixed. It is currently believed that

relatively easy SAT problem instances, which have a high degree of structure to

them, can be solved efficiently using AQC (e.g. as in [6]), but there is some debate

as to whether this holds for hard instances of the SAT problem (e.g. as reviewed in

[17]). So far, to our knowledge, the effects of noise on the efficiency on the different

types of SAT problem instances have not been directly explored. It could be the

case that the addition of noise may affect the structure in the Hamiltonian that

determines the efficiency of that particular problem instance.

When discussing the efficiency of any computational algorithm it is necessary to

consider its performance in the limit of large system sizes. Unfortunately, the num-

ber of dimensions of the Hilbert space required to describe the state of a quantum

information processing system in the Schrödinger picture grows exponentially with

the number of qubits; this means it is very difficult to try to evaluate the behaviour

of quantum algorithms in the limit of large input sizes. The method of numeri-

cally solving the Pechukas-Yukawa equations used in the simulations in section 2.3

suffers from the same scalability problems as directly solving the Schrödinger equa-

tion (i.e. the dimension of the phase space needed to describe the state of the

eigenvalue gas grows exponentially with the input size). However, the eigenvalue

gas described by the Pechukas-Yukawa equations is a classical system unlike the

Schrödinger equation, which means that techniques for dealing with large systems

from classical statistical physics are applicable. The use of Klimontovich’s kinetic ap-

proach (described in [53]) is proposed in [40]; where the Pechukas-Yukawa system of

equation are rewritten as a BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) type

chain of equations for the macroscopic (or average) distribution functions f1 = 〈F1〉,
f2 = 〈F2〉, g2 = 〈G2〉,..., where

F1(x, v, t) =
∑

1≤i≤N

δ(x− xi(t))δ(v − vi(t)), (8.1.1)

F2(x
(m), v(m), x(n), v(n), l(mn), t) =

∑
1≤i<j≤N

δ(x(m) − xi(t))δ(v(m) − vi(t))

δ(x(n) − xj(t))δ(v(n) − vj(t))δ(l(mn) − lij(t)) and (8.1.2)

G2(l, t) =
∑

1≤i<j≤N

δ(l − lij(t)) (8.1.3)

are the microscopic distribution functions. Then using the standard method of
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truncating the BBGKY chain an equation of motion for f1 can be derived. Recent

results have suggested that the bulk of the eigenspectrum of an adiabatic quantum

computer may have little effect on the overall dynamics of the system (see [18]) and

that it is the eigenlevels on the edges of the spectrum that are important. This means

that large systems could be investigated by directly simulating a few eigenvalues on

the edges of the spectrum using the Pechukas-Yukawa equations and then taking

account of the long-range influence of the bulk of the spectrum statistically using

the kinetic equations.

In section 6, we explored the idea of making use of a controllable artificial noise

source to try to improve the performance of an AQC operation. A more obvious

choice of variable to control is the computation speed,
∣∣∣λ̇∣∣∣, as we know that decreas-

ing this will directly increase the success probability. However, at the same time

we would clearly like to be able to run practical computations as fast as possible.

In light of this, we envision an AQC system whose speed is dynamically controlled.

This would allow the computation to be run relatively quickly for the majority of the

evolution but then the speed could be reduced at the critical points where excitation

out of the ground state may occur (e.g. near avoided crossings), therefore allowing

a high rate of success to be achieved at relatively short total computation times. To

realise this we would require a type of continuous, weak measurement that could

detect when the system is approaching one of these critical points. In [29], non-

destructive continuous measurement of the ground state curvature of a flux qubit

was demonstrated experimentally using the impedance measurement technique with

a high quality tank circuit. The ground state curvature would be a suitable control

variable, as we expect it to increase at avoided crossings. This could be readily

modeled using the Pechukas-Yukawa formalism as the ground state curvature will

be proportional to |l01(λ)|. To properly analyse the effects of this control system we

will need to be able to calculate the probabilities of level occupation in the contin-

uum within the Pechukas-Yukawa formalism as opposed to the discrete algorithm

detailed in section 2.3; the derivation of a novel extension of the Pechukas-Yukawa

equation that would allow this is detailed in chapter 7. The computation speed

within these equations can be defined in a such way that it is dynamically related to

|l01(λ)|. We therefore have all the necessary components to model an AQC system

where the computation speed is dynamically controlled via a feedback loop that

performs continuous measurement of the ground state curvature and then analyse

the effects of this control system on the success probability. Feedback control sys-

tems are widely used in many engineering applications and their theory is a well

understood branch of control systems theory [54]; we would be able to draw on this

knowledge when designing a feedback controller for an AQC system.
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In other recent results, [50] and appendix C, we have explicitly investigated

the relationship between the success probability and the minimum ground state

energy gap in AQC. We show that there exists a rich structure in the distribution

of these two figures of merit. The structure of distinct sharp edges and densely

populated bands seen in the distribution is reminiscent of the projection of a higher

dimensional surface on to a plane. One possible explanation of this could be that the

the structure we see is the shadow of the system’s surface of adiabatic invariance. An

adiabatic invariant is a constant of motion of a dynamical system that is preserved

in the adiabatic limit, because of this they can be considered to be an asymptotic

statement. They are well known in classical mechanics [55]. Knowledge about the

adiabatic invariants of an AQC could prove to be very insightful, as it would improve

our understanding of the relationship between the system’s control parameters and

measures of its performance. This could have a major impact on algorithm and

system design in the field of AQC. The Pechukas-Yukawa formalism would be a

particularly useful tool in this endeavour. By taking advantage of the fact that

it reduces the dynamics of a quantum system to a system of classical equations of

motion; approaches and techniques from the study of adiabatic invariants in classical

mechanics could then be applied. For instance, the action of a classical system is

always an adiabatic invariant. It would be possible to write a Hamiltonian and

Lagrangian for the Pechukas gas and therefore formulate the action integral for a

generic quantum system.



Appendix A

Program listings

A.1 Simulation programs

The following MATLAB script and dependent functions will generate the energy

spectra for a large set of noise realisations applied to a specific operation of the

adiabatic CNOT gate;

1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 %CNOT gate noise ins tance generator

3 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 %This s c r i p t genera te s a s e t number o f random noise in s tance s and app l i e s them

5 %to the e vo l u t i on o f the ada i a ba t i c CNOT gate us ing the g ene ra l i s e d

6 %Pechukas−Yukawa model

7 %

8 %Dependencies : co l oured no i s e .m, g e n e r a l i s e d p e r t u r b i n i t i a l .m,

9 %genera l i sed pechukas yukawa sys tem .m

10 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11

12 clc

13 clear

14

15 global l e v e l s nu vec tau lambda step lambda length dh vec ;

16

17 %Seed random number generator

18 RandStream . setDefau l tStream (RandStream( ’ mt19937ar ’ , ’ seed ’ ,100) ) ;

19

20 %Define cons tant s and parameters

21 l e v e l s =16; %no . o f energy l e v e l s in the system

22 momenta=l e v e l s ˆ2 ; %no . o f l mn needed to de s c r i b e the i n t e r a c t i o n s in the ←↩
Pechukas gas

23 CNOT op=1; %CNOT operat ion |00> −> |00>
24 ep s i l o n =−0.1; %energy s c a l e

25 z=10; %bia s

26 Eb=[−8:−1 ,1:8] ; %Eigenspectrum of H b ( i n i t i a l Hamiltonian )

27 d=−0.1;

28 dd=[d , d , d , d , d , 0 , 0 , 0 , d , 0 , 0 , 0 , d , 0 , 0 , 0 ] ;

29 %apply smal l random per tu r ba t i on s to eigenspectrum of H b

30 for k=1: l e v e l s

31 Eb(k )=Eb(k ) +1.5∗(dd (k ) /d) ;
32 end

71
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33 tau =0.1; %noise c o r r e l a t i on time

34 n r epea t s =50; %no . o f r epea t s at each g iven noise ampl i tude

35 amp range = [ 0 . 0 2 5 , 0 . 0 5 , 0 . 0 7 5 , 0 . 1 ] ; %noise ampl i tudes

36 lambda step =0.005; %noise time s t ep

37 l ambda f in e s t ep =0.00001; %f in e s t ep to use when i n t e g r a t i n g f o r lambda ( t ) near 0

38 lambda=1:− lambda step : 0 ; %noise time i n t e r v a l

39 lambda f ine=[1:− lambda step :0 .1 ,0 .1 − l ambda f in e s t ep :− l ambda f in e s t ep : 0 ] ; %←↩
Pechukas i n t e g r a t i on time i n t e r v a l

40 lambda length=length ( lambda ) ;

41 s a v e d i r=’C:\Documents and Se t t i n g s \phrdw2\My Documents\CNOT data \00 to00 ’ ; %root ←↩
d i r e c t o r y

42

43 %Set up CNOT Hamiltonian

44 c 00=zeros (5 ) ;

45 c 00 (1 , 2 ) =1;

46 c 00=qo ( c 00 ) ;

47 c 01=zeros (5 ) ;

48 c 01 (1 , 3 ) =1;

49 c 01=qo ( c 01 ) ;

50 c 10=zeros (5 ) ;

51 c 10 (1 , 4 ) =1;

52 c 10=qo ( c 10 ) ;

53 c 11=zeros (5 ) ;

54 c 11 (1 , 5 ) =1;

55 c 11=qo ( c 11 ) ;

56 I=i d en t i t y (5 ) ;

57 c 000=tenso r ( c 00 , I ) ;

58 c 100=tenso r ( I , c 00 ) ;

59 c 001=tenso r ( c 01 , I ) ;

60 c 101=tenso r ( I , c 01 ) ;

61 c 010=tenso r ( c 10 , I ) ;

62 c 110=tenso r ( I , c 10 ) ;

63 c 011=tenso r ( c 11 , I ) ;

64 c 111=tenso r ( I , c 11 ) ;

65 H cnot=c 010 ’ ∗ ( c 110 ’∗ c 110+c 111 ’∗ c 111 ) ∗ c 010 − c 010 ’ ∗ ( c 110 ’∗ c 100+c 111 ’∗ ←↩
c 101 ) ∗ c 000 − c 000 ’ ∗ ( c 100 ’∗ c 110+c 101 ’∗ c 111 ) ∗ c 010 + c 000 ’ ∗ ( c 100 ’∗ ←↩
c 100+c 101 ’∗ c 101 ) ∗ c 000 . . .

66 +c 011 ’ ∗ ( c 110 ’∗ c 110+c 111 ’∗ c 111 ) ∗ c 011 − c 011 ’ ∗ ( c 110 ’∗ c 101+c 111 ’∗ c 100 ←↩
) ∗ c 001 − c 001 ’ ∗ ( c 101 ’∗ c 110+c 100 ’∗ c 111 ) ∗ c 011+c 001 ’ ∗ ( c 101 ’∗ c 101+←↩
c 100 ’∗ c 100 ) ∗ c 001 . . .

67 +(c 000 ’∗ c 000+c 001 ’∗ c 001 ) ∗( c 110 ’∗ c 110+c 111 ’∗ c 111 )+(c 010 ’∗ c 010+c 011 ←↩
’∗ c 011 ) ∗( c 100 ’∗ c 100+c 101 ’∗ c 101 ) ;

68 i f CNOT op==1

69 de l ta H cnot=qo ( ep s i l o n ∗( c 000 ’∗ c 000+c 100 ’∗ c 100 ) ) ;

70 e l s e i f CNOT op==2

71 de l ta H cnot=qo ( ep s i l o n ∗( c 000 ’∗ c 000+c 101 ’∗ c 101 ) ) ;

72 e l s e i f CNOT op==3

73 de l ta H cnot=qo ( ep s i l o n ∗( c 001 ’∗ c 001+c 100 ’∗ c 100 ) ) ;

74 e l s e i f CNOT op==4

75 de l ta H cnot=qo ( ep s i l o n ∗( c 001 ’∗ c 001+c 101 ’∗ c 101 ) ) ;

76 end

77 H=H cnot+de l ta H cnot ;

78 H trunc=truncate (H, { 2 : 5 , 2 : 5 } ) ;

79

80 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
81 for a=1: length ( amp range )

82 amp str ing=num2str( amp range ( a ) ) ;
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83 cu r r e n t d i r=s t r c a t ( save d i r , ’ \amp pt ’ , amp str ing ( 3 :end) ) ; %save d i r e c t o r y f o r ←↩
current noise ampl i tude

84

85 amp=amp range ( a )

86 for n=1: n r epea t s

87

88 %Generate a s e t o f no ise matr ices and t h e i r d e r i v a t i v e s

89 h i n i t=amp.∗ wigner ( l e v e l s , 1 ) ;

90 h i n i t v e c=reshape ( h i n i t , l e v e l s ˆ2 ,1) ;

91 nu vec=zeros ( length ( lambda ) , l e v e l s ˆ2) ;

92 for k=1: length ( lambda )

93 nu=amp.∗ wigner ( l e v e l s , 1 ) ;

94 nu vec (k , : )=reshape (nu , 1 , l e v e l s ˆ2) ;

95 end

96

97 h vec=zeros ( length ( lambda ) , l e v e l s ˆ2) ;

98 [ lambda , h vec ]=ode23 ( @co loured no i se , lambda , h i n i t v e c ) ;

99

100 dh vec=zeros ( length ( lambda ) , l e v e l s ˆ2) ;

101 for k=1: length ( lambda )

102 dh vec (k , : )=−tau∗h vec (k , : )+nu vec ( ( length ( lambda )−round( lambda (k ) / ←↩
lambda step ) ) , : ) ;

103 end

104

105 %Solve g ene ra l i s e d Pechukas equa t ions to generate the energy spectrum

106 %for t h i s noise ins tance

107 x v l i n i t i a l=g e n e r a l i s e d p e r t u r b i n i t i a l ( f u l l ( H trunc ( : , : ) ) , z ,Eb , h i n i t ) ←↩
;

108 [ lambda f ine , x v l ]=ode113 ( @general i sed pechukas yukawa system , ←↩
lambda f ine , x v l i n i t i a l ) ;

109

110 %Save the data f o r t h i s no ise ins tance

111 f i l e name=s t r c a t ( cu r r en t d i r , ’ \ run ’ ,num2str(n) , ’ . mat ’ ) ;

112 save ( f i l e name , ’n ’ , ’amp ’ , ’ x v l ’ , ’ h vec ’ , ’ dh vec ’ )

113

114 disp (n)

115 end

116 end

1 function dh=co l ou r ed no i s e ( lambda , h)

2 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 %Coloured noise d i f f e r e n t i a l equat ion

4 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 %This func t i on re turns the vec to r form of the d e r i v a t i v e o f the random matrix

6 %noise term \ de l t ah (\ lambda ) in the g ene ra l i s e d Pechukas−Yukawa model .

7 %It ’ s e vo l u t i on i s de s c r i b ed the Ornstein−Uhlenbeck process .

8 %I t re turns the d e r i v a t i v e in a form s u i t a b l e f o r the ODE so l v e r s u i t e .

9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
10

11 global l e v e l s nu vec tau lambda step lambda length dh vec ;

12 dh=zeros ( l e v e l s ˆ2 ,1) ;

13 nu=zeros (1 , length ( l e v e l s ˆ2) ) ;

14 %f ind va lue s o f whi te noise term \nu(\ lambda ) at \ lambda us ing l i n e a r ←↩
i n t e r p o l a t i o n

15 for k=1: l e v e l s ˆ2

16 nu(k )=interp1 ( [1 :− lambda step : 0 ] , nu vec ( : , k ) , lambda , ’ n ea r e s t ’ ) ;

17 end

18 %Ornstein−Uhlenbeck equat ion
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19 for k=1: l e v e l s ˆ2

20 dh(k )=−tau∗h(k )+nu(k ) ;

21 end

1 function [ x v l i n i t i a l ] = g e n e r a l i s e d p e r t u r b i n i t i a l (H 0 , z ,Eb , dh)

2 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 %Per turba t i v e i n i t i a l cond i t i ons f o r g ene ra l i s e d Pechukas−Yukawa equat ions

4 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 %This func t i on re turns the i n i t i a l cond i t i ons f o r the g ene ra l i s e d Pechukas−
6 %Yukawa equat ions . These are c a l c u l a t e d p e r t u r b a t i v e l y to the 1 s t order in

7 %terms of Zˆ−1. The problem Hamiltonian , d e r i v a t i v e o f the noise term , z ,

8 %and the energy spectrum of H b are passed in .

9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
10

11 [ l e v e l s , momenta]= s ize (H 0 ) ;

12 momenta=momenta ˆ2 ;

13

14 %Calcu la t e i n i t i a l p o s i t i o n s

15 x=zeros ( l e v e l s , 1 ) ;

16 for k=1: l e v e l s

17 x (k )=z∗Eb(k )+H 0 (k , k )+dh(k , k ) ;

18 end

19

20 %Calcu la t e i n i t i a l v e l o c i t i e s

21 v=zeros ( l e v e l s , 1 ) ;

22 for k=1: l e v e l s

23 v (k )=(z ) ∗Eb(k ) ;
24 end

25

26 %Calcu la t e i n i t i a l coup l ing s t r en g t h s

27 l=zeros (momenta , 1 ) ;

28 for k=1:momenta

29 [ r , c ]= ind2sub ( s ize (H 0 ) , k ) ;

30 i f (H 0 ( r , c ) ˜=0 | |dh( r , c ) ˜=0) && r˜=c

31 l ( k )=z ∗(H 0 ( r , c )+dh( r , c ) ) ∗(Eb( r )−Eb( c ) ) ;
32 end

33 end

34

35 x v l i n i t i a l=zeros (1 , l e v e l s ∗2+momenta) ;

36 x v l i n i t i a l ( 1 : l e v e l s )=x ( : ) ;

37 x v l i n i t i a l ( ( l e v e l s +1) : ( 2∗ l e v e l s ) )=v ( : ) ;

38 x v l i n i t i a l ( (2∗ l e v e l s +1) : ( 2∗ l e v e l s+momenta) )=l ( : ) ;

1 function [ dx dv dl ]= genera l i s ed pechukas yukawa system ( lambda , x v l )

2 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 %Genera l i sed Pechukas−Yukawa d i f f e r e n t i a l equat ion systems

4 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 %Function to s o l v e the extended Pechukas−Yukawa equat ion system for an

6 %arb i t r a ray quantum system with n energy l e v e l s , f o r use with ode45 . The

7 %de r i v a t i v e s o f the noise term de l t a h are passed in as g l o b a l v a r i a b l e

8 %which i s a c e l l array conta in ing the d e l t a h d o t matrix f o r each po in t in

9 %time .

10 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11

12 global l e v e l s nu vec tau lambda step lambda length dh vec ;

13

14 momenta=l e v e l s ˆ2 ;

15 dx dv dl=zeros ( ( l e v e l s ∗2+momenta) ,1 ) ;
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16

17 %Extract current va lue s o f x , v , l and d e l t a h d o t to work with

18 x=zeros ( l e v e l s , 1 ) ;

19 x ( : )=x v l ( 1 : l e v e l s ) ;

20 v=zeros ( l e v e l s , 1 ) ;

21 v ( : )=x v l ( ( l e v e l s +1) : ( 2∗ l e v e l s ) ) ;
22 l=zeros ( l e v e l s , l e v e l s ) ;

23 for p=1:1: l e v e l s

24 for q=1:1: l e v e l s

25 i f p˜=q

26 l (p , q )=x v l (2∗ l e v e l s+sub2ind ( s ize ( l ) ,p , q ) ) ;

27 end

28 end

29 end

30 dh=zeros ( l e v e l s , l e v e l s ) ;

31 dh in te rp=zeros (1 , l e v e l s ˆ2) ;

32 for k=1: l e v e l s ˆ2

33 dh in te rp (k )=interp1 ( [1 :− lambda step : 0 ] , dh vec ( : , k ) , lambda , ’ n ea r e s t ’ ) ;

34 end

35 dh=reshape ( dh interp , l e v e l s , l e v e l s ) ;

36

37 %Calcu la t e d i f f e r e n t i a l f o r po s i t i on dx n=v n

38 dx=zeros ( l e v e l s , 1 ) ;

39 for n=1:1: l e v e l s

40 dx (n , 1 )=v(n)+dh(n , n) ;

41 end

42

43 %Calcu la t e d i f f e r e n t i a l f o r v e l o c i t y dv n=2∗sum ( | l n k |ˆ2/( x n−x k ) ˆ3) where

44 %k˜=n

45 dv=zeros ( l e v e l s , 1 ) ;

46 for n=1:1: l e v e l s

47 for k=1:1: l e v e l s

48 i f n˜=k

49 dv (n , 1 )=dv (n , 1 ) +2∗((abs ( l (n , k ) ) ˆ2) /(x (n)−x (k ) ) ˆ3)+( l (n , k ) ∗dh(k , n)−dh( ←↩
n , k ) ∗ l ( k , n ) ) /(x (n)−x (k ) ) ˆ2 ;

50 end

51 end

52 end

53

54 %Calcu la t e d i f f e r e n t i a l f o r r e l a t i v e angular momentum

55 %dl nm=sum( l n k ∗ l km ∗(1/(( x n−x k ) ˆ2)−1/((x m−x k ) ˆ2) ) ) where k˜=n ,m

56 d l=zeros ( l e v e l s , l e v e l s ) ;

57 for n=1:1: l e v e l s

58 for m=1:1: l e v e l s

59 i f n˜=m

60 dl (n ,m)=dh(n ,m) ∗( v (m)−v (n) )+( l (n ,m) ∗(dh (n , n)−dh(m,m) ) ) /(x (n)−x (m) ) ;

61 for k=1:1: l e v e l s

62 i f ( k˜=n)&&(k˜=m)

63 d l (n ,m)=dl (n ,m)+l (n , k ) ∗ l ( k ,m) ∗ ( 1/ ( ( x (n)−x (k ) ) ˆ2)−1/((x (m)−x (k ←↩
) ) ˆ2) ) . . .

64 +((x (n)−x (m) ) ∗( l (k ,m) ∗dh(n , k )− l (n , k ) ∗dh(k ,m) ) ) / ( ( x (n)−x (k ←↩
) ) ∗( x (k )−x (m) ) ) ;

65 end

66 end

67 end

68 end

69 end
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70

71 %Construct d x d v d l

72 dx dv dl ( 1 : l e v e l s )=dx ( : ) ;

73 dx dv dl ( ( l e v e l s +1) : ( 2∗ l e v e l s ) )=dv ( : ) ;

74 for p=1:1: l e v e l s

75 for q=1:1: l e v e l s

76 i f p˜=q

77 dx dv dl (2∗ l e v e l s+sub2ind ( s ize ( d l ) ,p , q ) )=dl (p , q ) ;

78 end

79 end

80 end

A.2 Analysis programs

The following MATLAB script is designed to calculate the level occupation statistics

averaged over a large set of noise realisations by analysis of the eigenvalue gas

spectrum;

1 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 %Leve l occupat ion ana l y s i s

3 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 %Scr i p t f i l e to ana lyse the c r i t i c a l po in t s ( avoided c ro s s i n g s ) in the

5 %energy spec t ra o f the ad i a ba t i c CNOT gate and es t imate the l e v e l occupat ions

6 %as the system moves through the c r i t i c a l po in t s us ing the LZS eqn

7 %for a number o f d i f f e r e n t noise in s tance s and save a l l the r e s u l t s to a s i n g l e

8 % .mat f i l e . The average occupat ion va lue s are a l s o c a l c u l a t e d .

9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
10

11 clc

12 clear

13

14 %Define cons tant s and parameters

15 l e v e l s =16; %no . o f energy l e v e l s in the system

16 momenta=l e v e l s ˆ2 ; %no . o f l mn needed to de s c r i b e the i n t e r a c t i o n s in the ←↩
Pechukas gas

17 n r epea t s =50; %no . o f r epea t s at each g iven noise ampl i tude

18 amp range = [ 0 . 0 2 5 , 0 . 0 5 , 0 . 0 7 5 , 0 . 1 ] ; %noise ampl i tudes

19 lambda step =0.005; %noise time s t ep

20 l ambda f in e s t ep =0.00001; %f in e s t ep to use when i n t e g r a t i n g f o r lambda ( t ) near 0

21 lambda=1:− lambda step : 0 ; %noise time i n t e r v a l

22 lambda f ine=[1:− lambda step :0 .1 ,0 .1 − l ambda f in e s t ep :− l ambda f in e s t ep : 0 ] ; %←↩
Pechukas i n t e g r a t i on time i n t e r v a l

23 lambda length=length ( lambda ) ;

24

25 dlambda=logspace (0 ,−20 ,100) ; %range o f sweep ra t e s dlambda=1/computation time

26

27 %Se l e c t d i r e c t o r i e s to ana lyse

28 dir name=c e l l ( 1 , 3 ) ;

29 dir name {1 ,1}= ’C:\Documents and Se t t i n g s \phrdw2\My Documents\PhD work\1 s t year \ ←↩
CNOT Pro j ec t \00 to00 tDepNoise \amp pt025 ’ ;

30 dir name {1 ,2}= ’C:\Documents and Se t t i n g s \phrdw2\My Documents\PhD work\1 s t year \ ←↩
CNOT Pro j ec t \00 to00 tDepNoise \amp pt05 ’ ;

31 dir name {1 ,3}= ’C:\Documents and Se t t i n g s \phrdw2\My Documents\PhD work\1 s t year \ ←↩
CNOT Pro j ec t \00 to00 tDepNoise \amp pt075 ’ ;
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32 dir name {1 ,4}= ’C:\Documents and Se t t i n g s \phrdw2\My Documents\PhD work\1 s t year \ ←↩
CNOT Pro j ec t \00 to00 tDepNoise \amp pt1 ’ ;

33

34

35 %occupat ion data w i l l be s to red in a c e l l array , each c e l l conta ins a

36 %ta b l e d e t a i l i n g the l e v e l occupat ion over time fo r t ha t p a r t i c u l a r noise

37 %ins tance . Each row of the c e l l array conta ins occupat ions c a l c u l a t e d f o r a

38 %d i f f e r e n t sweep ra t e

39 f i n a l o c c upa t i o n=c e l l ( length ( dlambda ) , n r epea t s ) ;

40

41 for d=1: length ( dir name )

42 for n=1: n r epea t s

43 f i l e name=s t r c a t ( dir name{d} , ’ \ run ’ ,num2str(n) , ’ . mat ’ ) ;

44 load ( f i l e name , ’ x v l ’ ) ;

45

46 n

47

48 xs=x v l ( : , 1 : 1 6 ) ;

49 i f i s s o r t e d ( xs ( 1 , : ) )==0 %check to make sure the energy e i g enva l u e s are ←↩
sor t ed in ascending order

50 swap=1;

51 swap count=l e v e l s ;

52 while swap==1

53 swap=0;

54 for k=1: swap count−1
55 i f xs (1 , k )>xs (1 , k+1)

56 temp=xs ( : , k+1) ;

57 xs ( : , k+1)=xs ( : , k ) ;

58 xs ( : , k )=temp ;

59 swap=1;

60 end

61 end

62 swap count=swap count−1;

63 end

64 end

65

66 for s=1: length ( dlambda )

67 avo i d ed c r o s s i n g s=zeros ( 5 , 1 ) ; %save in rows o f l e v e l numbers m & n , ←↩
gap width , lambda array index , gap centre po in t

68

69 for k=1:( l e v e l s −1)
70 x gap=(xs ( : , k+1)−xs ( : , k ) ) ;
71 g min=0;

72 lambda index=0;

73 for m=2:( length ( lambda f ine )−1)
74 i f x gap (m)<x gap (m−1)&&x gap (m)<x gap (m+1)

75 g min=[g min , x gap (m) ] ;

76 lambda index=[ lambda index ,m] ;

77 end

78 end

79 g min=g min ( 2 :end) ;

80 lambda index=lambda index ( 2 :end) ;

81 for l =1: length ( g min )

82 avo i d ed c r o s s i n g s =[ avo ided c ro s s i ng s , [ k ; k+1; g min ( l ) ; ←↩
lambda index ( l ) ; ( xs ( lambda index ( l ) , k )+(g min ( l ) /2) ) ] ] ;

83 end

84 end
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85 avo i d ed c r o s s i n g s=avo i d ed c r o s s i n g s ( : , 2 : end) ;

86

87 i f avo i d ed c r o s s i n g s (1 , 1 )˜=1&&avo i d ed c r o s s i n g s (2 , 1 ) ˜=2

88 %i f there are no d i s t i n c t avoided c ro s s i n g s between the ground ←↩
and

89 %f i r s t e x c i t e d s t a t e s the l im i t i n g gap i s s imply the minimum at

90 %lambda ( t )=0

91 ground gap=xs (end , 2 )−xs (end , 1 ) ;

92 avo i d ed c r o s s i n g s = [ [ 1 ; 2 ; ground gap ; length ( lambda f ine ) ; ( xs (end , 1 ) ←↩
+ground gap ) ] , a v o i d ed c r o s s i n g s ] ;

93 end

94

95 no avo i d ed c r o s s i n g s=length ( a vo i d ed c r o s s i n g s ) ;

96 s t a r t p o i n t=avo i d ed c r o s s i n g s (4 , 1 )−2;
97 occupat i on l eng th=length ( lambda f ine ( s t a r t p o i n t : end) ) ;

98 occupat ion=zeros (16 , o c cupat i on l eng th ) ;

99 occupat ion (1 , 1 ) =1;

100

101 l a s t a v o i d e d c r o s s i n g =1;

102 c u r r e n t t o p l e v e l =1;

103 for k=2: occupat i on l eng th

104 for l =1: no avo i d ed c r o s s i n g s

105 i f avo i d ed c r o s s i n g s (1 , l )<=cu r r e n t t o p l e v e l&&←↩
avo i d ed c r o s s i n g s (4 , l )==(s t a r t p o i n t+k)

106 %anti−c ro s s ing has occured so r e c a l u l a t e l e v e l ←↩
occupat ions

107 l mn=abs ( x v l ( ( s t a r t p o i n t+k) , sub2ind ( [ l e v e l s , l e v e l s ] , ←↩
avo i d ed c r o s s i n g s (1 , l ) , a v o i d ed c r o s s i n g s (2 , l ) ) ) ) ;

108 P LZS=exp(−( a vo i d ed c r o s s i n g s (3 , l ) ˆ3) /( l mn∗dlambda ( s ) ) ) ;

109 occupat ion ( : , k )=occupat ion ( : , k−1) ;
110 occupat ion ( avo i d ed c r o s s i n g s (1 , l ) , k )=occupat ion ( ←↩

avo i d ed c r o s s i n g s (1 , l ) , k−1)−occupat ion ( ←↩
avo i d ed c r o s s i n g s (1 , l ) , k−1)∗P LZS ;

111 occupat ion ( avo i d ed c r o s s i n g s (2 , l ) , k )=occupat ion ( ←↩
avo i d ed c r o s s i n g s (2 , l ) , k−1)+occupat ion ( ←↩
avo i d ed c r o s s i n g s (1 , l ) , k−1)∗P LZS ;

112

113 l a s t a v o i d e d c r o s s i n g=k ;

114

115 i f c u r r e n t t o p l e v e l<avo i d ed c r o s s i n g s (2 , l )

116 c u r r e n t t o p l e v e l=avo i d ed c r o s s i n g s (2 , l ) ;

117 end

118 end

119 end

120 i f l a s t a v o i d e d c r o s s i n g˜=k

121 %anti−c ro s s ing hasn ’ t occured so l e v e l occupat ion s t ay s the ←↩
same

122 occupat ion ( : , k )=occupat ion ( : , k−1) ;
123 end

124

125 [ nanrow , nancol ]= find ( isnan ( occupat ion ( : , : ) ) ) ;

126 occupat ion ( nanrow , nancol )=0;

127 [ infrow , i n f c o l ]= find ( i s i n f ( occupat ion ( : , : ) ) ) ;

128 occupat ion ( infrow , i n f c o l )=0;

129

130 %save the l e v e l occupat ion at lambda ( t )=0

131 f i n a l o c c upa t i o n { s , n}=occupat ion ( : , end) ;
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132 end

133 end

134 end

135

136 averaged occupat ions=zeros ( l e v e l s , length ( dlambda ) ) ;

137 var occupat i ons=zeros ( l e v e l s , length ( dlambda ) ) ;

138 %average l e v e l occupat ions at t=0 over the 50 noise in s tance s

139 for k=1: length ( dlambda )

140 for l =1: l e v e l s

141 l o c cupa t i on=zeros (1 , n r epea t s ) ;

142 for m=1: n r epea t s

143 l o c cupa t i on (1 ,m)=f i n a l o c c upa t i o n {k ,m}( l , 1 ) ;

144 end

145 averaged occupat ions ( l , k )=mean( l o c cupa t i on ) ;

146 var occupat i ons ( l , k )=var ( l o c cupa t i on ) ;

147 end

148 end

149

150

151 s av e f i l e n ame=s t r c a t ( dir name{d} , ’ \ f i n a l o c c upa t i o n 1 .mat ’ ) ;

152 save ( s ave f i l e name , ’ dlambda ’ , ’ f i n a l o c c upa t i o n ’ , ’ ave raged occupat ions ’ ) ;

153 end
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Abstract

We investigate the symmetry breaking role of noise
in adiabatic quantum computing using the exam-
ple of the CNOT gate. In particular, we analyse
situations where the choice of initial Hamiltonian
produces symmetries in the Hamiltonian and de-
generacies in the spectrum. We show that, in these
situations, the conventional stipulation that the ini-
tial and problem Hamiltonians do not commute is
unnecessary as noise will inherently play the role of
a universal symmetry breaking perturbation and
split any level crossings that may impede or ob-
struct the computation. The effects of an artificial
noise source with a tailored time-dependent ampli-
tude are also explored and it is found that such a
scheme could offer a considerable performance en-
hancement. These results are found using a novel,
generalised version of the Pechukas-Yukawa model
of eigenvalue dynamics.

1 Introduction

Recently there has been a lot of interest in alterna-
tive paradigms to the standard approach to quan-
tum computing (i.e. the quantum circuit model).
Adiabatic quantum computing (AQC) is a promis-
ing example which is particularly suited to solving
optimisation problems [1]. AQC involves slow adia-
batic evolution from a configuration with an easily
reachable ground state to one where the ground
state encodes the solution to the hard computa-
tional problem in hand. This scheme is believed to
have a number of advantages over the “standard”
approach, namely, the precise time-dependent con-
trol of individual qubits is no longer required, and it
benefits from an inherent robustness against some

of the effects of decoherence by remaining in the
instantaneous ground state at all times [2, 3, 4].
Crucially, AQC has been shown to be polynomially
equivalent, under certain conditions, to the stan-
dard gate model of quantum computing [6, 7]. The
effects of noise on AQC are generally considered
to be detrimental but manageable [2, 3, 4]. It was
nevertheless stated that its effect can increase the
success probability of AQC in some situations by;
providing an alternative evolution trajectory [2], or
by thermal relaxation back to the ground state [5].
Here, we investigate a more general effect of noise
on AQC.Namely, how noise inherently breaks any
hidden symmetries in the Hamiltonian and, thus,
splits any level crossings in the energy spectrum
which could impede or even prevent the computa-
tion.

AQC can be described by the following Hamilto-
nian;

H(λ(t)) = H0 + λ(t)ZHb, (1)

where the ground state of the final Hamiltonian,
H0, encodes the desired solution, ZHb is a large
bias term (with Z � 1) and the initial config-
uration, H(λ = 1) = H0 + ZHb, has an easily
reachable, non-degenerate ground state. In order
for there to be a high probability of the system re-
maining in the ground state as the bias is switched
off, the rate of change of the control parameter λ(t)
must be sufficiently slow to suppress excitation via
Landau-Zener-Stückelberg tunneling [8, 9, 10].

In AQC, the initial and final Hamiltonians are
usually chosen such that no symmetries exist in
H(λ(t)) by ensuring that they do not commute.
This is done to ensure that there are no degen-
eracies in the energy spectrum during the evolu-
tion. However, this restriction on the choice of ini-
tial Hamiltonian may prove practically impossible
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to realise for generic problems. In [11] the example
of the adiabatic equivalent of the CNOT gate is dis-
cussed as an example of a prototypical quantum al-
gorithm. It was shown that, the choice of a generic
Hb could lead to an abundance of level crossings in
the energy spectrum for the |00〉 → |00〉 operation
of the CNOT gate. The influence of these level-
crossings on the performance of the adiabatic quan-
tum algorithm was not considered there. However,
the effects of level crossings in the spectrum were
discussed in [1] and it was noted that the addition
of an appropriate sort of perturbation to the sys-
tem will break the symmetries and therefore split
any level crossings. The question of how to provide
an appropriate perturbation still remains open.

In this paper, we propose that noise will inher-
ently fulfil the role of the crucial symmetry break-
ing perturbation in physical implementations of an
AQC system and as a result of this, the condition
that H0 and Hb do not commute is no longer re-
quired. The CNOT gate algorithm is again used as
an example of a prototypical quantum algorithm
and we show that the performance of this generic
algorithm is relatively resistant to the effects of
noise, in agreement with [2, 3, 4]. As reported in
[2], we find that in some situations the presence of
noise increases the success probability, we then go
on to explore the relationship between this increase
in success probability and the fidelity of the final
state. We also discuss the idea of using a tailored
artificial noise signal to try and enhance the perfor-
mance of the adiabatic quantum computation pro-
cess. To do this, we derive and utilise a generalised
stochastic version of the Pechukas-Yukawa equa-
tions [12, 13]; where the dynamics of the energy
eigenvalues are mapped exactly on to the classical
dynamics of a 1D gas of Brownian particles with a
mutual repulsive force.

2 Generalised Pechukas-
Yukawa model

The standard Pechukas-Yukawa model is derived
from a Hamiltonian of the form (1). However, to
incorporate a source of noise in to the model we
start with the following Hamiltonian;

H(λ(t)) = H0 + λ(t)ZHb + δh(λ(t)), (2)

where the perturbation strength λ(t) plays the
role of ‘time’ and the new stochastic term δh(λ)
describes random fluctuations in the Hamiltonian
due to an external noise source. The instanta-
neous eigenvalues and eigenfunctions of (2) are de-
noted xn(λ) and |n(λ)〉 respectively; H(λ) |n(λ)〉 =
xn(λ) |n(λ)〉. By following the same procedure as
the derivation of the standard Pechukas-Yukawa
model, as detailed in [14], we arrive at the following
generalised system of equations;

ẋn =
∂xn
∂λ

=vn + ˙δhnn,

v̇n =
∂vn
∂λ

=
∑
k 6=n

[
2 |lnk|2

(xn − xk)3
+
lnk ˙δhkn − ˙δhnklkn

(xn − xk)2

]
,

(3)

l̇nm =
∂lnm
∂λ

=
∑
k 6=m,n

[
lnklkm

(
1

(xn − xk)2
− 1

(xm − xk)2

)

+
(xn − xm)(lnk ˙δhkm − lkm ˙δhnk)

(xm − xk)(xn − xk)

]

+ ˙δhnm(vm − vn) +
lnm( ˙δhnn − ˙δhmm)

(xn − xm)
.

where vn(λ) = 〈n|ZHb |n〉 and lnm = (xn −
xm) 〈n|ZHb |m〉 for n 6= m. These generalised
equations can be used to describe a wider array
of physical systems because of the inclusion of
the δh(λ) term without any additional assump-
tions or approximations. Note that if the noise
term δh(λ(t)) is identically zero the system of equa-
tions (3) simply reduces to the standard Pechukas-
Yukawa equations. The equations (3) describe the
dynamics of the energy eigenvalues of the Hamil-
tonian (2), but also correspond to the classical dy-
namics of a 1D interacting gas, where the nth par-
ticle has position xn(λ) and velocity vn(λ) and the
strength of the inter-particle force between the nth
and the mth particles is described by lnm(λ).

In order to close the system of equations (3),
we need to consider the nature of the noise term
δh(λ). In general, noise in any physical system
arises from a number of independent sources and
therefore as a consequence of the central-limit the-
orem it seems reasonable to assume that the sum
of their effects will result in a random Hamiltonian
with independent Gaussian distributed elements.
Such a Hamiltonian will be drawn from one of the
Gaussian ensembles of random matrix theory. Re-
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cent measurements of the low frequency flux noise
in superconducting flux qubits exhibit a coloured
noise spectrum [15]. We therefore assume that the
noise term, δh(λ), evolves in time as a Ornstein-
Uhlenbeck type process, which is a simple example
of a random process with a coloured spectrum:

˙δh(λ) = −τδh(λ) + εη(λ) (4)

where τ is a correlation time, ε is the noise ampli-
tude, and η(λ) is a random matrix valued stochas-
tic process where 〈η(λ)〉 = 0 and 〈η(λ)η(λ′)〉 =
δ(λ− λ′).

3 The CNOT gate

As mentioned previously AQC has been shown to
be polynomially equivalent to the circuit model
of quantum computing.The ‘ground state quantum
computing’ (GSQC) formalism, described in [7], of-
fers the most practical method of constructing a H0

that encodes an arbitrary M qubit, N step quan-
tum circuit. In the GSQC formalism, each of the
M qubits in the circuit is viewed as a single electron
that can occupy the states in an array of 2×(N+1)
quantum dots; where the rows in the array repre-
sents either the |0〉 or |1〉 states of the qubit. The
state of the mth qubit during the nth step of the
algorithm is given by the probability amplitude of
the electron being found on the quantum dots de-
noted by the indices (m,n, 0) and (m,n, 1). This
theoretical construction only incurs a polynomial
overheard (O(N)) in hardware.

The CNOT gate is one of the simplest entangling
quantum gates and when used in conjunction with
single qubit rotations it forms a set of universal
gates. Therefore, any quantum algorithm can be
constructed using a combination of these gates, be-
cause of this property we assume that the adiabatic
CNOT gate is a representative example of a proto-
typical adiabatic quantum algorithm. To construct
H0 for a CNOT gate using the GSQC formalism,
we envisage an array of 8 quantum dots (as shown
in the inset of Fig. 3), which corresponds to a sys-
tem of 4 physical qubits. Following the procedure

described in [7] we can then write;

HCNOT =
(
c†010C

†
11 − c

†
000C

†
10

)
(C11c010 − C10c000)

+
(
c†011C

†
11 − c

†
001C

†
10σx

)
(C11c011 − σxC10c001)

+ C†00C00C
†
11C11 + C†01C01C

†
10C10, (5)

where c†mnj is a fermionic creation operator that
creates an electron on the corresponding quantum

dot, C†mn =
(
c†mn0, c

†
mn1

)
and σx is a Pauli ma-

trix. The ground state energy of the CNOT Hamil-
tonian (5) is zero. To specify the initial state
of the qubits before the gate operation we add
a small energy penalty to (5); e.g. of the form

HInit = µ
(
c†000c000 + c†100c100

)
for the operation

|00〉 → |00〉.
We numerically solve the equations (3) and (4).

For stability reasons we use the multi-step Adams-
Moulton method to solve (3). For the sake of gen-
erality, the initial conditions for the Pechukas gas,
xn(λ = 1), vn(λ = 1) and lnm(λ = 1), are cal-
culated using a perturbation theory expansion in
terms of Z−1 as at λ = 1, H(1) = H0 + ZHb +
δh(1) ≡ Z

(
Hb + Z−1H0 + Z−1δh(1)

)
. We assume

that H(1) has a non-degenerate, well spaced en-
ergy spectrum. Note that the initial conditions
contain all the information about the final Hamil-
tonian H0. The initial noise term δh(λ = 1) will be
a random matrix drawn from the GOE with ampli-
tude ε. Throughout the paper, we take µ = −0.1,
Z−1 = 0.1 and τ = 0.1.

4 Energy spectra

Figure 1(a) shows the energy spectra of the CNOT
gate acting on the |00〉 and |11〉 computational ba-
sis states. In both cases, the results from the eigen-
value dynamics simulations agree with the results
of direct diagonalisation of H0 to four significant
figures. In both of the spectra, there is an abun-
dance of level crossings which arise because of the
symmetries of H(λ(t)).

Degeneracies between the ground and first ex-
cited states occur in the |11〉 → |10〉 operation,
which will result in a success probability of zero
for this ideal case. This case can be viewed as an
example of AQC with an “improper” choice of ini-
tial configuration, i.e. where [H0, Hb] = 0. It is
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Figure 1: (a) The energy spectra of |00〉 → |00〉
and |11〉 → |10〉 operations of the adiabatic CNOT
gate in the absence of noise. The solid grey dia-
monds show the results of direct diagonalisation of
the H0. (b) Examples of the spectra for |00〉 → |00〉
and |11〉 → |10〉 operations of the CNOT gate with
a GOE random matrix noise term in the Hamilto-
nian with amplitude ε = 0.1. For illustrative pur-
poses, different line styles are used to denote the
different energy levels and the third plot in each of
the subfigures shows an enlarged view of a region
of the |11〉 → |10〉 spectrum containing a number
of crossings.

clear that the addition of any type of perturbation
(e.g. noise) will break these symmetries, therefore
splitting the degeneracies and resulting in a finite
success probability. The results of the addition of
noise are shown in plot Fig. 1(b) and it is evi-
dent that there are now no degeneracies in either
of the spectra. The spectra for the |01〉 → |01〉 and
|10〉 → |11〉 operations were found to show similar
trends to the |11〉 → |10〉, in that they also ex-
hibited a degeneracy between the ground and first
excited states in the absence of noise.

5 The effects of noise on level
occupation statistics

To properly characterise the effects of noise on the
adiabatic quantum algorithm for the CNOT gate

it is necessary to look at its effects on the prob-
ability of level occupation and in particular the
success probability of the algorithm (i.e. P (n =
0;λ(t) = 0|n = 0;λ(t) = 1)). During the evolu-
tion of an adiabatic quantum computer the main
mechanism by which the system can tunnel from
one state to another is Landau-Zener-Stückelberg
tunneling [8, 9, 10]. This occurs when the sepa-
ration of two adjacent energy levels is at a local
minimum (i.e. at an avoided or level crossing) and
the probability of excitation from |n〉 to |n+ 1〉 via
this mechanism is given by

PLZS = exp

 −∆2
min

|〈n|ZHb |n+ 1〉|
∣∣∣λ̇(t)

∣∣∣
 (6)

, where ∆min is the minimum separation between
xn and xn+1. We assume that the system under-
goes uniform evolution (i.e. |λ̇| = 1

T , where T is
the computation time) and that the system can ini-
tially be found in the ground state with certainty
(i.e. P (n = 0;λ(t) = 1) = 1). Given this informa-
tion, it is possible to calculate the level occupations
as a function of time by identifying all the avoided
or level crossings in the spectrum and applying the
LZS equation, (6) to them.

Figure 2 shows the dependence of the average
success probability on the computation speed at
a range of noise amplitudes for the |00〉 → |00〉
and |11〉 → |10〉 operations. In general, the suc-
cess probability scales polynomially with the speed,
i.e. P ∝ T−γ with γ ≈ 1, before approaching
unity asymptotically. The exponent is different to
those found in [11] for Hamiltonians drawn from the
GUE, however there is no reason to expect a single
exponent to hold universally for all choices of H0.
From a computational performance point of view,
it is important to note that the scaling exponent
is independent of the noise amplitude, ı.e. only a
prefactor change. This prefactor change could ac-
tually be viewed as being beneficial as we can see
that the success probability at a given computa-
tion speed increases linearly with the noise ampli-
tude (also shown in Fig. 3). This occurs as ∆min

increases proportionally with ε and hence this ef-
fect is more pronounced for the |11〉 → |10〉 opera-
tion where the existence of the ground state gap is
purely due to noise-induced level splitting. As the
|01〉 → |01〉 and |10〉 → |11〉 operations also have
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Figure 2: Plot of the success probability, averaged
over a number of noise realisations, against compu-
tation speed for the |00〉 → |00〉 and |11〉 → |10〉
operations of the CNOT gate at various noise am-
plitudes. Fits to the polynomial regions, i.e. where
P ∝ T−γ , of the curves yield exponents of; γ = 4/3
for the ε = 0 case of the |00〉 → |00〉 operation, and
γ ≈ 1 for all other cases.

degenerate ground state gaps, their success prob-
ability curves behave in a very similar way to the
plot shown in Fig. 2 for the |11〉 → |10〉 operation.

The increase in success probability with the
noise amplitude (at a specific speed) may not be
wholly beneficial though, as it will come at the
cost of the fidelity of the final state (i.e. F =
|〈0ideal(λ = 0)|0noise(λ = 0)〉|, where 0 ≤ F ≤ 1).
This is because the noise fluctuations will drive the
state away from the ideal (i.e. in the absence of
noise) path of evolution. The dependence of the
fidelity on noise amplitude is shown in Fig. 3. The
fidelity of the final state is an important quantity
which needs to be maximised to ensure that read-
out will yield the desired solution. For the three
operations where the existence of the ground state
gap is due to noise-induced level splitting, there will
be a noise amplitude that offers the optimal com-
promise between the success probability and the
fidelity at a given speed and this is shown by the
intersections of the curves in Fig. 3. These re-
sults suggest that the conventional stipulation that
[H0, Hb] 6= 0 is unnecessary in practical realisa-
tions, as when the effects of a generic noise source
are taken in to consideration, any hidden symme-
tries in H(λ(t)) will be broken naturally.

Figure 3: Plot showing the trade-off between the
fidelity of the final state (dashed line and crosses)
and the average success probability (solid lines and
shapes) as functions of noise amplitude for the
|01〉 → |01〉 operation. The inset schematic shows
the GSQC representation of the |01〉 → |01〉 oper-
ation of the CNOT gate.

6 Effects of an artificial noise
source

So far we have viewed δh(λ) as the natural effect of
a number of noise sources that are coupled to the
system. If we now envisage a physical system with
a negligible level of intrinsic noise. In this situation,
it may be beneficial to add an artificial random per-
turbation to the system. This would be in order to
break any degeneracies in the spectrum and offer an
alternate, and possibly more efficient, path between
the initial and final Hamiltonians. A perturbation
term with a time-dependent amplitude, which is
large enough to widen the energy gaps at avoided
crossings throughout the majority of the computa-
tion process but then tends to 0 as λ(t)→ 0, would
be preferable. For example we could take

ε(λ) = ε0 tanh(αλ) (7)

, where α is a constant determining the rate of de-
cay at λ(t) & 0. This would ensure that δh(λ)ij will
not be significantly larger than H0ij at λ(t) & 0,
where the bias term is small and the levels are
densely packed. The results of simulations per-
formed using a time-dependent amplitude of the
form of (7) are shown in Fig. 4. On average, a
given success probability can be achieved at a much
faster computation speed, with an improvement of
over 102 in some cases. In this idealised situation
it is also clear to see that the fidelity of the final
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Figure 4: Plot of the success probability, averaged
over a number of noise realisations, against compu-
tation speed for the |00〉 → |00〉 and |11〉 → |10〉
operations of the CNOT gate with an artificial
noise source with a time-dependent amplitude and
α = 10.

solution state would be unaffected (i.e. F = 1) by
this artifical noise signal as ε(λ = 0) = 0.

7 Conclusions

We generalise the Pechukas-Yukawa equations to
the stochastic case by including an additional noise
term in the Hamiltonian. This was used in conjunc-
tion with a simple, yet generic, noise model, based
on random matrices and a coloured stochastic pro-
cess, to investigate the effects of noise on the adia-
batic algorithm for the CNOT gate. We found that,
in general, the success probability of the algorithm
scaled polynomially as a function of computation
speed and this scaling was independent of the am-
plitude of the noise. We demonstrate that when the
effects of noise are taken in to account, the criteria
used to select an initial configuration for the system
may be relaxed and it is not necessary to avoid sym-
metries in the Hamiltonian. This is because, the
presence of noise will break any degeneracies in the
energy spectrum, crucially those that exist between
the ground and first excited states. In these situa-
tions, the success probability at a given computa-
tion speed was found to increase linearly with noise
amplitude. It was noted that this increase comes at
the expense of the fidelity of the final state, but an
optimal compromise between the two factors exists.
The effects of an artificial noise source with a time-
dependent noise amplitude were also investigated.
This scheme was found to offer significantly higher

success probabilities at relatively fast computation
speeds and could be engineered in such a way that
the fidelity of the solution state is unaffected.
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Abstract

We explore the relationship between two figures of merit for an adi-
abatic quantum computation process: the success probability and the
minimum gap between the ground and first excited states. We study a
generic adiabatic algorithm and show that a rich structure exists in the
distribution of these two important variables. In the case of two qubits,
the success probability is to a good approximation a function of the min-
imum gap, the stage in the evolution at which the minimum occurs and
the computation time. This structure persists in examples of larger sys-
tems and appears to be closely linked to the choice of initial and problem
Hamiltonians.

1 Introduction

The promise of a qualitative advantage of quantum computers over classical ones
in solving certain classes of problems has led to a massive effort in theoretical
and experimental investigation of controlled, quantum-coherent systems. The
standard model of quantum computing is analogous to classical computing in
that it involves the precise manipulation of individual qubits in a register to ap-
ply logic gate operations. However, the requirement of precise time-dependent
control of individual qubits has been found to be hard to achieve experimen-
tally while still maintaining the quantum coherence of the system. A number
of alternative approaches have been proposed, of which adiabatic quantum com-
puting (AQC) is a promising example. It involves the evolution of a quantum
system from a simple Hamiltonian with an easily-prepared ground state to a
Hamiltonian that encodes the problem to be solved. If the system is initially
prepared in the ground state and the time evolution occurs slowly enough to
satisfy the adiabatic theorem, the final ground state that satisfies the problem
at hand can be read out with a high probability [1].

The AQC process requires a Hamiltonian that interpolates from a simple
initial configuration, Hi, to one that encodes the problem under consideration,
Hf . A Hamiltonian for linear interpolation can be written

H(s) = (1− s)Hi + sHf , (1)
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where s ∈ [0, 1] is the reduced time s = t/T , T being the computation time.
The instantaneous eigenvalues and eigenstates of the Hamiltonian of an n-qubit
system are given by

H(s) |`; s〉 = E`(s) |`; s〉 , with E0(s) 6 E1(s) 6 · · · 6 E2n−1(s). (2)

The instantaneous state of the system is given by |ψ(s)〉, the solution of Schrödinger’s
equation, which in the reduced time reads

d

ds
|ψ(s)〉 = −iTH(s) |ψ(s)〉 . (3)

The system is initially in the ground state of Hi: |ψ(0)〉 = |0; s = 0〉.
At the end of the evolution we require a measure of how closely the state

vector, |ψ(1)〉, corresponds to the desired result, |0; s = 1〉. This is provided by
the success probability

P =
∣∣〈0; s = 1 |ψ(1) 〉

∣∣2. (4)

It was shown in [1] that for P to be arbitrarily close to 1, the following condition
must be satisfied:

T � E
∆2

min

(5)

where

E = max
06s61

∣∣∣∣〈1; s

∣∣∣∣dHds
∣∣∣∣ 0; s

〉∣∣∣∣ (6)

is of the order of a typical eigenvalue of H and

∆min = min
06s61

(
E1(s)− E0(s)

)
(7)

is the minimum gap, which occurs at reduced time(s) s∗ : E1(s∗) − E0(s∗) =
∆min. If E is considered constant, by (5) ∆min is the variable which determines
the T that is required. It is clear that P will also be directly related to T and
therefore ∆min. These two variables, P and ∆min, are used interchangeably
throughout the literature to quantify the performance of a given computation
(e.g. contrast [2] with [3]), and are assumed to increase monotonically with
each other. The question of how either of these variables varies with system
size, n, is an important one that is often addressed. However, the exact nature
of the relationship between these two important figures of merit has not been
adequately explored.

We explore the relationship between P and ∆min by looking at the statistical
distributions of these two variables over a large set of generic problem Hamilto-
nians (Hf ). We start by considering a simple two-qubit system and show that
a rich structure arises in the scatter plots of success probability against ∆min.
We then go on to look at the scatter plots in three-, four- and five-qubit systems
and find that, although some of the finer details of the structure are washed out,
some remain. We propose that the structure in the distributions arises through
our choice of Hamiltonians.
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2 A generic adiabatic algorithm

We wish to look at the distribution of the success probability and ∆min over a
large set of problem Hamiltonians. We use a simple, yet generic, model that is
scalable and can be readily solved numerically. For Hi, we use a Hamiltonian
that is easy to construct and whose ground state can be readily found:

Hi = −
n∑

i=1

σ(i)
x = −

n∑
i=1

I⊗ · · · ⊗ σx ⊗ · · · ⊗ I, (8)

where σa, with a = x, y or z, denote the usual Pauli matrices, n is the number
of qubits in the system and the index i denotes which qubit the operator is
applied to. This Hi is simply a transverse field acting on all the qubits and its
ground state is an equal superposition of all 2n computational basis states.

For Hf , we use a Hamiltonian where all possible couplings between the n
qubits are realised in the z-direction, with random strengths:

Hf =

2n−1∑
x=0

Jx

n⊗
i=1

(σz)xi =

2n−1∑
y=0

fy |y〉〈y| (9)

where xi is the ith digit in the binary representation of x and Jx are the cou-
pling coefficients. These will be selected from a given random distribution. Hf

is diagonal in the computational basis so that the binary-ordered set of states
|y〉 is a permutation of the energy-ordered set of states |l; s = 1〉 defined in eq
2. A Hamiltonian of this type can easily be used to encode any finite compu-
tational optimisation problem (minimisation of a function f : {0, 1}n → R) by
choice of the {Jx}, including NP-hard problems such as the travelling salesman
problem (TSP). It is important to note that, at present, only one- and two-qubit
interactions are experimentally feasible, although the TSP can be implemented
with this restriction [4].

For each sample in the scatter plots, we solve the Schrödinger equation
numerically over the parameterised time, s, for a given computation time, T ,
using the Dormand-Prince method [5]. This is an adaptive step-size algorithm;
solutions accurate to fourth- and fifth-order in ∆s are used to estimate the local
error in the former. If it is less than the desired tolerance, then the fifth-order
solution is used for the integration. Otherwise the step-size ∆s is decreased.

3 Two-qubit simulations

Fig. 1 is a scatter plot of success probability against minimum gap for a large
set of problem instances, with the coupling coefficients drawn from the uniform
distribution U(−3, 3). The computation time is T = 5. Observe the sharp upper
and lower edges. The lower bound of the success probability is always 1/4 for
infinitesimally small ∆min. This arises when J1 = J2 = J3 = 0, which means
there is four-fold degeneracy at s = 1 and the system remains in its original
ground state.

It is important to verify that this structure is independent of our choice of
random distribution of coupling coefficients and that is also not an artifact of
the pseudo-random number generators used. Fig. 2 also shows scatter plots of
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Figure 1: Success probability against minimum gap for a two-qubit system at
a computation time of T = 5. The Ji have been chosen from the uniform
distribution U(−3, 3) for the 500, 000 random problem instances. The data
points are coloured by |J3|.

success probability and minimum gap, but in this case the coupling coefficients
are drawn from a Gaussian distribution, N (0, 12) (mean µ = 0, standard de-
viation σ = 1). The trends and structure in the distributions are similar to
those shown in Fig. 1. However, there are some subtle differences in sharpness
between the Gaussian and uniform cases. For a large minimum gap, the lowest
probability occurs for large |J3|, so we see a sharp cutoff in the uniform case
and a rougher, more sparsely populated edge in the Gaussian case. In general
though, this shows that the results are independent of our choice of coupling
coefficients and, as a different psuedo-random number generator routine was
used, we can say that the results are not a numerical artifact.

Four computation times are shown: T = 5, 10, 20 and 40. As this increases,
the distribution shifts and tends towards a success probability of 1, as expected
from the adiabatic theorem.

The two interesting features of these scatter plots are the well-defined sharp
edges and the densely-populated bands. It is clear that the bands correspond
to groups of Hamiltonians with similar |J3|. The bands where J3 = 0 can be
seen as two separable one-qubit evolutions for J1 and J2, so the total success
probability is simply the product of the one-qubit success probabilities. Another
interesting point to note is that the bands of similar Hf gradually reverse in
order in the distribution as the computation time T is changed.

We have supplemented the uniform random data with sets of Ji chosen on
a rectangular grid with the same cut-offs. These have the advantage that all
problem Hamiltonians with a given value of J3 can be plotted in the (J1, J2)-
plane and coloured by their minimum gap or success probability; see Fig. 3.
These two plots can be considered first- and second-order stability diagrams
respectively.

The first part of Fig. 3 (minimum gap) can be explained as follows: dark
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(a) T = 5 (b) T = 10

(c) T = 20 (d) T = 40

Figure 2: Success probability against minimum gap for a two-qubit system at
computation times of T = 5, 10, 20 and 40. The Ji have been chosen from the
Gaussian distribution N (0, 12) for the 500, 000 random problem instances. The
data points are coloured by |J3|.

lines correspond to problem Hamiltonians with a degenerate ground state.

triply-degenerate

{
J1 = J2 = J3

J1 = J2 = −J3

doubly-degenerate



J1 = J2 and J1, J2 ∈ (−J3, J3)

J1 = J3 and J2 > J3

J2 = J3 and J1 > J3

J1 = −J3 and J2 < −J3
J2 = −J3 and J1 < −J3

These lines separate Hf with different ground states: those in the top-right have
|11〉; working clockwise, the others have |10〉, |00〉 and |01〉.

The second part of Fig. 3 (success probability) is harder to interpret. As
expected, there is a broad correspondence between lines of low P and those
of low ∆min. The difference, due to second-order corrections, is not presently
understood. Nor is the interesting observation that Hf with high P are gathered
around the points of triple degeneracy.

These plots suggest a projection of a surface onto the (∆min, P ) plane; we
seek to find a suitable parameterisation of the set of Hamiltonians to collapse it
onto a low-dimensional surface. We find that a plot of P against the minimum
gap ∆min and the position s∗ of the gap indeed shows that all points lie close to
a curved surface (which rises with increasing T ). This is understandable, since
those two parameters largely determine the shape of the lowest two energy levels.
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Figure 3: Minimum gap (left) and success probability (right) as a function of
(J1, J2) at fixed J3 ≈ 1.22, T = 5. Each coloured point in the plane is a problem
Hamiltonian. Observe that points with high success probability (yellow) are
nested around the points of triple degeneracy.

Figure 4 shows a projection of this surface onto the (∆min, s
∗) plane. Visual

inspection shows that the colour is to a good approximation a function only of
position in the plane. Note that the position of the points depends only on the
Hamiltonian parameters, while the probability depends also on the computation
time.

Figure 4: Scatter plot of position s∗ of minimum gap against minimum gap
∆min. The Ji have been chosen from the uniform distribution U(−3, 3) for the
50, 000 random problem instances. Points are coloured by the success probabil-
ity P at T = 5.

4 Larger systems

We have shown that the relationship between the success probability and ∆min is
not just a case of trivial proportionality for simple two-qubit systems. However,
it is important to determine whether the interesting structure in this relationship
remains in larger systems. To determine whether these densely-populated bands
represent groups of problem instances that have followed similar evolution paths
for the state vector (e.g. the system remaining mostly in the ground state, then
being excited at a single avoided crossing), we calculated the average overlap
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with the ground state:

δ =

∫ 1

0

ds
∣∣〈0; s |ψ(s) 〉

∣∣2. (10)

The points in Fig. 5 are coloured with respect to this average overlap value, δ,
and we can see a smooth graduation across the figures, with the average overlap
with the ground state increasing with the success probability. The exception to
the smooth graduation of δ is the densely populated band where δ ≈ 1. This
band must consist of cases with a degenerate or near-degenerate ground state at
s = 1, as it includes cases which remain close to the instantaneous ground state
throughout the majority of the evolution but have a low success probability.
These results also lends credence to the idea that the structure is closely linked
to the choice of Hamiltonians.

(a) n = 2 (b) n = 3

(c) n = 4 (d) n = 5

Figure 5: Distributions of success probability against ∆min for two-, three-, four-
and five-qubit systems over a set of 100, 000 random problem instances, with
T = 40. The colouring of the points denotes δ, average overlap of the state
vector with the instantaneous ground state.

We note that these distributions are reminiscent of the 2D projections of the
higher-dimensional equilibrium surfaces seen in catastrophe theory [6]. In this
case success probability, ∆min and δ are all internal variables of the system and
not independent control parameters, so we are looking at a different situation to
those usually studied in catastrophe theory. Identifying the nature of this sur-
face and the dimensions of the phase space that it exists in is an important task,
as it could have a major impact on adiabatic algorithm design. At this point
we can conjecture that the constraint originates from an adiabatic invariant of
the Hamiltonian. We find it strange that, to the best of our knowledge, there
has been no research on adiabatic invariants of adiabatic quantum computers.A
systematic investigation of adiabatic invariants of quantum computers espe-
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cially adiabatic and approximately adiabatic computers could yield important
information about their behaviour and make a major impact on the adiabatic
algorithm design.

5 Conclusion

We have shown that the relationship between the success probability and the
minimum ground state gap may not be as straightforward as is often assumed.
There is a rich structure of distinct sharp edges and densely-populated bands
in the distribution, particularly in smaller systems. A partial explanation has
been proposed, whereby this is the projection of a higher-dimensional surface;
identification of the parameters governing this surface will guide understanding
of the set of problems amenable to adiabatic quantum computing. We do not
propose a definitive explanation of the origin of this rich structure: this remains
an open question. However, we do suggest that there is some evidence that
some of this structure could arise by our choice of Hamiltonians. We speculate
that a systematic investigation of adiabatic invariants of quantum computers
— especially adiabatic and approximately adiabatic computers — could yield
important information about their behaviour and have a major impact on adi-
abatic algorithm design.
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