

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Verification of Knowledge Shared across Design and

Manufacture Using a Foundation Ontology

By

Najam Akber Anjum

Under the supervision of
Dr. Jenny Harding &

Dr. Bob Young

A Doctoral Thesis

Submitted in partial fulfillment of the requirements
for the award of

Doctor of Philosophy of Loughborough University

August 2011

© by Najam Akber Anjum 2011

2

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis, that the

original work is my own except as specified in acknowledgments or in footnotes, and

that neither the thesis nor the original work contained therein has been submitted to

this or any other institution for a degree.

………………………………………… (Signed)

Najam Akber Anjum

…………………………… (Date)

3

Abstract

Seamless computer-based knowledge sharing between departments of a manufacturing

enterprise is useful in preventing unnecessary design revisions. A lack of interoperability

between independently developed knowledge bases, however, is a major impediment in the

development of a seamless knowledge sharing system. Interoperability, being an ability to

overcome semantic and syntactic differences during computer-based knowledge sharing can

be enhanced through the use of ontologies. Ontologies in computer science terms are

hierarchical structures of knowledge stored in a computer-based knowledge base. Ontologies

have been accepted by all as an interoperable medium to provide a non-subjective way of

storing and sharing knowledge across diverse domains. Some semantic and syntactic

differences, however, still crop up when these ontological knowledge bases are developed

independently. A case study in an aerospace components manufacturing company suggests

that shape features of a component are perceived differently by the designing and

manufacturing departments. These differences cause further misunderstanding and

misinterpretation when computer-based knowledge sharing systems are used across the two

domains. Foundation or core ontologies can be used to overcome these differences and to

ensure a seamless sharing of knowledge. This is because these ontologies provide a common

grounding for domain ontologies to be used by individual domains or department. This

common grounding can be used by the mediation and knowledge verification systems to

authenticate the meaning of knowledge understood across different domains. For this reason,

this research proposes a knowledge verification framework for developing a system capable of

verifying knowledge between those domain ontologies which are developed out of a common

core or foundation ontology. This framework makes use of ontology logic to standardize the

way concepts from a foundation and core-concepts ontology are used in domain ontologies

and then by using the same principles the knowledge being shared is verified. The Knowledge

Frame Language which is based on Common Logic is used for formalizing example ontologies.

The ontology editor used for browsing and querying ontologies is the Integrated Ontology

Development Environment (IODE) by Highfleet Inc. An ontological product modelling

technique is also developed in this research, to test the proposed framework in the scenario of

manufacturability analysis. The proposed framework is then validated through a Java API

specially developed for this purpose. Real industrial examples experienced during the case

study are used for validation.

Keywords: Foundation ontologies, domain ontologies, knowledge verification, ontology
mediation, Common Logic, Manufacturability analysis

4

Dedication

To ammi, pappa

And

Mariya

5

Acknowledgements

I thank first of all, Allah the Almighty, the One, Who blessed me with the knowledge I
possess today.

I am, then, most thankful to my supervisors Dr. Jenny Harding and my co-supervisor Dr. Bob
Young for providing me the most needed guidance and for their constructive criticism which
made possible the completion of this research and the production of this thesis.

I am grateful to IMCRC for funding my studies at Loughborough University, to our industrial
collaborators who allowed me to spend some time in their manufacturing facility during my
secondment, and to people at Highfleet Inc. for their support in building an understanding
of the ontological formalism used in this research.

I am most appreciative of the support my parents provided me through continuous
encouragement despite bearing a tough life, both financially and emotionally, due to my
studies. I am also thankful to my wife for patiently living a lonely life during the undue
extensions of my PhD in the last stages.

I must also say a big thank you to Tish for helping me in building the understanding of KFL
and IODE and to Rahul for helping me in learning Java.

I also owe my humble gratitude to all the other group members including Zahid, George,
Claire, and Keith and all the other friends, staff and students of Loughborough University
who supported me in any way during my studies.

6

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

CG Conceptual Graphs

CGIF Conceptual Graph Interchange Format

CIM Computation Independent Model

CL Common Logic

CLIF Common Logic Interchange Format

DAML DARPA Agent Markup Language

DARPA Defense Advanced Research Projects Agency

DL Description Logic

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

EIF European Interoperability Framework

FOL First Order Logic

IC Integrity Constraint

ICT Information and Communications Technology

IDEF Integration DEFinition

IMKS Interoperable Manufacturing Knowledge System

IODE Integrated Ontology Development Environment

KFL Knowledge Frame Language

KIF Knowledge Interchange Format

MAFRA Mapping FRAmework

MDA Model Driven Architechture

MOF Meta Object Facility

NIST National Institue of Standards and Technology

7

NLP Natural Language Processing

ODM Ontology Definition Metamodel

OIL Ontology Inference Layer

OMG Object Management Group

ONION ONtology compositION

OWL Web Ontology Language

PIM Platform Independent Model

PSL Process Specification Language

PSM Platform Specific Model

QOM Quick Ontology Mapping

QVT Query View Transformation

RDF Resource Description Framework

RL Reference Line

RP Reference Point

SBO Semantic Bridge Ontology

SCL Simple Common Logic

SMIF Semantic Manufacturing Interoperability Framework

STEP STandard for the Exchange of Product model data

SUMO Suggested Upper Merged Ontology

SUO Standard Upper Ontology

UML Unified Modelling Language

UNSPSC United Nation Standard Products and Services Code

VMO Verification Meta Ontology

XML Extensible Markup Language

8

Glossary of Terms

Core-concepts ontology: A core-concepts ontology is more specific than the foundation

ontology but very general as compared to a domain ontology. For example a manufacturing

core-concepts ontology will have all the concepts related to the whole product lifecycle.

Concepts from this ontology then can be used to build a domain ontology for design,

production, assembly, etc.

Domain ontology: Domain ontologies provide vocabularies about concepts within a domain
and their relationships, about the activities taking place in that domain, and about the
theories and elementary principles governing that domain.

Foundation ontology: Foundation ontology describes very general concepts and provides

general notions under which all root terms in existing ontologies should be linked.

Ontology alignment: An automated or semi-automated discovery of correspondences

between two ontologies.

Ontology articulation: A way in which the fusion or merging of ontologies has to be carried

out.

Ontology mapping: A process in which concepts in two or more ontologies are connected

with a relation.

Ontology mediation: The process of reconciliation between two or more ontologies.

Ontology merging: The process of creating a new ontology which is the union of source

ontologies for the purpose of obtaining a bigger and richer knowledge base.

Query: A query is an expression evaluated over a model.

Transformations: performed to build a target model from a source model so that the
source and target models are compatible according to the relations defined.

View: A model completely derived from another model.

9

Table of Contents

Chapter 1: Introduction .. 13

1.1. Research introduction ... 14
1.2. Research background and scope .. 16

1.2.1. Computer Systems Interoperability .. 17
1.2.1. Concurrent Engineering .. 17
1.2.2. Knowledge Management ... 17

1.3. The IMKS project ... 18
1.4. Significance of this research ... 19
1.5. Aims and objectives .. 21
1.6. Overview of the thesis .. 22

Chapter 2: Research Methodology .. 24

2.1. Chapter overview .. 25
2.2. What was the goal .. 26
2.3. What was needed to achieve this goal ... 26
2.4. How the goal was achieved – The core methodology .. 27

2.4.1. Literature Review .. 27
2.4.2. Case Study .. 28
2.4.3. Requirements identification ... 28
2.4.4. Solution development and testing .. 28

2.5. Conclusion ... 29

Chapter 3: Ontologies – A technical review ... 30

3.1. Chapter overview .. 31
3.2. Ontologies ... 31

3.2.1. Ontology defined .. 32
3.3. Classifications of ontologies .. 34

3.3.1. Classification on the basis of formalization or machine readability ... 34
3.3.2. Classification on the basis of Level of rigor... 35
3.3.3. Classification on the basis of Logic ... 36
3.3.4. Classification on the basis of level of generality ... 36
3.3.5. Other classifications ... 36

3.4. Ontology Development ... 38
3.5. Model Driven Architecture ... 41

3.5.1. Meta Object Facility ... 43
3.5.2. MDA and Ontologies .. 44
3.5.3. Ontology Definition Metamodel (ODM) ... 44
3.5.4. Query/View/Transformation Language (QVT) ... 46
3.5.5. Suitability of MDA for ontology development .. 48

3.6. Ontology Development Formalisms ... 50
3.6.1. Knowledge Interchange Format (KIF) ... 50
3.6.2. Ontolingua .. 50
3.6.3. XML – the eXtensible Markup Language .. 51
3.6.4. Resource Description Framework ... 51
3.6.5. OIL – the Ontology Inference Layer .. 51

10

3.6.6. DAML+OIL ... 52
3.6.7. OWL – Web Ontology Language .. 52
3.6.8. Common Logic .. 53

3.7. Existing Foundation Ontologies .. 54
3.7.1. Process Specification Language (PSL) ... 54
3.7.2. SUO (Standard Upper Ontology) .. 57
3.7.3. Suggested Upper Merged Ontology (SUMO) .. 57
3.7.4. WordNet ... 58
3.7.5. Cyc Ontology ... 59

3.8. Conclusions ... 59

Chapter 4: Literature review ... 61

4.1. Chapter overview .. 62
4.2. Cross-domain knowledge verification .. 62

4.2.1. Ontology Mapping .. 63
4.3. Ontology Mismatches ... 65

4.3.1. Conceptualisation Mismatches... 66
4.3.2. Explication Mismatches .. 68
4.3.3. Other mismatches .. 70

4.4. Ontology matching and mapping tools and techniques ... 74
4.4.1. Heuristics-based ontology matching approaches... 74
4.4.2. Foundation ontology based ontology matching ... 92

4.5. Conclusions ... 100

Chapter 5: An introduction to Common Logic based ontology development formalism . 102

5.1 Chapter overview .. 103
5.2 Knowledge Frame Language (KFL) .. 103

5.2.1 KFL properties ... 104
5.2.2 KFL relations .. 105
5.2.3 KFL functions ... 106
5.2.4 KFL facts .. 107
5.2.5 KFL rules .. 108
5.2.6 Other essential parts of a KFL ontology .. 109

5.3 Integrated Ontology Development Environment (IODE) .. 112
5.3.1 The Fact Asserter .. 112
5.3.2 The Query tool .. 113

5.4 Conclusions ... 114

Chapter 6: Ontology-based manufacturing knowledge sharing 115

6.1 Chapter overview .. 116
6.2 Concurrent Engineering and Ontologies ... 116

6.2.1 Ontologies as Models .. 117
6.2.2 Feature-based ontological modelling of engineering components... 119

6.3 Feature-based modelling approach used in this research .. 120
6.3.1 Feature definition.. 121
6.3.2 Feature aggregation ... 122
6.3.3 A working example ... 123

6.4 Ontological models ... 126

11

6.4.1 The core-concepts ontology .. 126
6.4.2 Formalization of the ontology ... 127
6.4.3 Ontology population – knowledge base building.. 130

6.5 Manufacturability verification .. 132
6.5.1 Individual feature manufacturability constraint ... 133
6.5.2 Manufacturing constraints due to feature dependability ... 134

6.6 Conclusions ... 137

Chapter 7: The case study ... 138

7.1. Chapter overview .. 139
7.2. Purpose and scope of the case study.. 139
7.3. Case study findings ... 140

7.3.1. Information flow study ... 140
7.3.2. The component study ... 143

7.4. Case study findings summarized ... 151
7.5. Conclusions ... 154

Chapter 8: A novel knowledge verification framework for foundation ontology based
knowledge bases .. 155

8.1. Chapter overview .. 156
8.2. Revisiting the findings so far ... 156
8.3. A novel knowledge verification framework .. 157
8.4. Design of the verification framework ... 159

8.4.1. Foundation and core-concepts ontologies ... 159
8.4.2. Domain ontologies ... 159
8.4.3. Knowledge bases .. 160
8.4.4. Inconsistency preventing axiomatizations .. 161
8.4.5. The verification mediator ... 165

8.5. Implementation of the verification framework .. 168
8.5.1. The industrial scenario explained ... 168
8.5.2. Six steps of verification mediation .. 171

8.6. Conclusions ... 176

Chapter 9: Validation of the proposed verification framework 177

9.1 Chapter overview .. 178
9.2 Design of experiment .. 178

9.2.1 Experimental ontologies ... 178
9.2.2 Manufacturing knowledge to be shared ... 180
9.2.3 Design of the Java API ... 184

9.3 The validation experiment – functioning of the API ... 187
9.4 Discussion and conclusions ... 191

Chapter 10: Conclusions and further research ... 193

10.1. Chapter overview .. 194
10.2. A brief review of research findings ... 194

10.2.1. Research findings analyzed .. 194
10.2.2. Contributions to the field of study .. 196

12

10.3. Further research.. 197
10.3.1. Broader specialization and concepts correspondences .. 197
10.3.2. The Verification Meta Ontology (VMO) .. 198
10.3.3. Research on exploring the possible inconsistencies.. 200

10.4. Closing remarks ... 200

Publications.. 202

References ... 203

Appendix I – Formalized ontologies for figure 8.5 .. 214

1- Foundation and core-concepts ontology .. 214
2- Design domain ontology ... 216
3- Manufacturing domain ontology .. 218

Appendix II - The Experimental Ontologies ... 220

1- The foundation and core-concepts ontology .. 220
2- The design domain ontology ... 225
3- The manufacturing domain ontology ... 231

Appendix III – The requirements document - Interoperable Manufacturing Knowledge
Systems (IMKS)... 241

13

Chapter 1: Introduction

14

1.1. Research introduction

Ever soaring competition and ever increasing customer demands have forced manufacturers

to identify new ways of improving quality, reducing costs and shrinking the time to market

their products. In order to get the product design ‘right first time’, instead of going through

several cycles of design modification to get the final product, manufacturers need to avoid

making mistakes in the first place. This prevention of errors, in turn, requires all the

departments of a manufacturing enterprise to work in unison and produce a design suitable

for all the product lifecycle stages. The designer of the product, therefore, needs to be

aware of all the complexities of manufacturing, inspection, assembly, maintenance, use and

disposal of the product to be designed. This task is usually performed by bringing key people

from all the stakeholder departments to the table to finalize the product design through

critical analyses and technical discussions. The present age of computers has made this task

easier by allowing product designers to browse computer-based networked knowledge

bases for all the technical issues before finalizing the design. On a larger scale, there can be

Information and Communications Technology (ICT) based inter-enterprise cooperation for

sharing knowledge and information. For this to happen, however, independently developed

knowledge management systems need to be compatible with each other. In computer

science research, this problem of compatibility is studied under the title of interoperability.

The European Interoperability Framework (EIF) defines interoperability as “the ability of

information and communication technology (ICT) systems and of the business processes

they support to exchange data and to enable the sharing of information and knowledge”

(European Communities, 2004). Networked businesses today encounter recurring

difficulties due to limitations in interoperability between enterprise systems (Panetto and

Molina, 2008). Similar interoperability problems occur when departments within a

manufacturing enterprise share information and knowledge among themselves through ICT-

based knowledge management systems. Such systems assist in organizing information and

management, but their ability to represent and share manufacturing knowledge is very

limited (Young et al, 2010).

The necessary functionality of interoperable systems for ‘enabling the sharing of

information and knowledge’ requires the knowledge management systems to overcome

several types of incompatibilities and heterogeneities between sets of knowledge residing in

15

independently developed computer-based knowledge management systems. These

differences occur because engineers working in different parts of the organization or

different groups, with time, develop their own vocabulary for particular issues, elements or

activities and this results in different information models (Lin and Harding, 2007). Two types

of incompatibilities may occur. Semantic incompatibility occurs when the same word is

interpreted differently by the two parties involved in knowledge sharing and syntactic

incompatibility occurs due to the use of a different terminology to represent the same thing

(Lin et al, 2004). To overcome these differences, ontologies are used. Ontologies, provide

the basic structure or armature around which knowledge bases can be built (Devedzic,

2002). The word ontology may be confused with the same word in philosophy where it

means the study of the kinds of things that exist (Chandrasekaran et al, 1999). In computer

science studies, ontology is a hierarchical structure of terms. Essentially, it includes a

vocabulary of terms and some specification of their meaning (Uschold and Jasper, 1999).

The use of ontologies does not completely alleviate the problem of semantic heterogeneity

but it helps in designing systems which can do so. Knowledge bases are therefore built

around ontologies and in the event of knowledge sharing these ontologies first interact to

reach an agreement on the meaning of the terms used in the knowledge bases. Once that

agreement is reached, the knowledge is shared seamlessly. Reaching an agreement over the

meaning of a term, however, is a contentious issue. In the field of knowledge management

the resolution of this issue is known as knowledge verification and is the main focus of this

thesis.

Verification of knowledge requires the overcoming of semantic and syntactic mismatches

between the ontologies. This is usually achieved by one of two ways. In the first case a

general upper ontology (also called a foundation ontology) is agreed upon by ontology

developers, who then extend this general ontology with concepts specific to their field. The

extensions of this foundation can be called domain ontologies if the concepts they contain

are more specific to a domain of interest. Finding correspondence between these domain

ontologies is easier, if their development is performed in a way consistent with the

definition in the upper or foundation ontology (Noy, 2004). The other method of finding

similarities involves the analysis of various characteristics of the two ontologies. These

characteristics may include the structure of ontology, definitions of concepts, and instances

16

Computer
systems inter-

operability

Concurrent
engineering

Knowledge
Management

Presented
research

Figure 1.1. Scope of research

of classes (Noy, 2004). Ontological concepts having similar characteristics are then declared

similar. This process of finding similarities between two ontologies is also called ‘ontology

matching’. The existing tools for ontology matching are mostly based on the second

method. These tools, however, are limited in their automation and accuracy of matching

results. As a result, a significant level of human intervention is required to successfully

match ontologies which is extremely cumbersome and time consuming (Anjum et al, 2010).

The foundation or upper ontologies, on the other hand, provide a basic platform for the

ontology builders to commit to and this makes the process of ontology matching more

automatic and accurate, which is the main assumption of this research. Since foundation

and domain ontologies are the two most important concepts from the point of view of this

research, they are explicitly defined below:

Foundation ontology ‘describes very general concepts and provides general notions under

which all root terms in existing ontologies should be linked’ (Gomez-Perez et al, 2004).

Domain ontologies ‘provide vocabularies about concepts within a domain and their

relationships, about the activities taking place in that domain, and about the theories and

elementary principles governing that domain’ (Gomez-Perez et al, 2004).

The research explained in this thesis proposes a framework for matching two domain

ontologies for the purpose of knowledge verification. The proposed framework is tested on

domain ontologies of production and design concepts specialized from a manufacturing

foundation ontology. The following text further describes the background, scope and

significance of this research.

1.2. Research background and scope

As shown in figure 1.1, this research belongs to an

area which lies at the juncture of three main

research areas including computer systems

interoperability, concurrent engineering in

manufacturing, and knowledge management. The

following descriptions of each of these areas aim

to further narrow down the scope of this research.

17

1.2.1. Computer Systems Interoperability
Within the research area of computer systems interoperability, the presented research lies

in the region of ‘mediation of ontological knowledge sources’. More specifically, it targets

the reconciliation of those ontologies which are developed independently of each other but

are committed to a single foundation and core concepts ontology. The terms mediation and

reconciliation are used here to define a process where concepts existing in different

ontologies are compared with each other to find similarities. The similarities established

through this process help in a seamless and correct transfer of information and knowledge

between ontological knowledge sources. The process of reconciliation and similarity finding

requires the semantic and syntactic differences between ontologies to be overcome. In the

presented research the ontological formalism i.e. the syntax used to build ontologies, is

fixed as Common Logic. This fixation of the ontology development formalism leaves only the

semantic difference to be tackled during the process of ontology matching. These semantic

differences are the main focus of this research.

1.2.1. Concurrent Engineering
The methodology of concurrent engineering aims to simultaneously detect and consider

manufacturability conflicts and constraints at early design stages (Li and Shen, 2009). Within

the concurrent engineering research paradigm, this research is limited to the application of

concurrent engineering in manufacturing. Concurrent engineering in this sense, involves a

thorough scrutiny of the design of an engineering product, by the manufacturing people,

during the early stages of its inception. It is assumed that previously stored and formalized

manufacturing knowledge is used by the designer to optimize the design. This is where the

research touches the boundaries of knowledge management.

1.2.2. Knowledge Management
Nonaka’s SECI cycle of knowledge management divides the process of knowledge creation

into four distinct stages. These stages are Socialization, Externalization, Combination and

Internalization, hence SECI (Nonaka, 1994). The research explained in this thesis does not

deal with the process of Socialization where face to face interaction of people results in

knowledge transfer. Rather it remains within the boundaries of ICT-based knowledge

management where the other three stages of knowledge creation are dealt with.

18

The process of Externalization, in the industrial scenario considered here, means that the

product manufacturing knowledge is captured in the form of manufacturability rules. This

externalized knowledge is then formalized in the form of ontological integrity constraints

hence the process of Combination. This organized knowledge is then made a part of the

manufacturability checking of the product design by making it available to the designer

through an interoperable manufacturing knowledge system. Through this knowledge

system, the product designers make use of this knowledge and create new knowledge of

their own which is the process of Internalization.

This research involves all three dimensions, but since it aims to research an interoperable

knowledge system, its main contribution is in the area of Externalization and Combination.

Thus the idea is that the manufacturability knowledge is to be made available in a form

understandable by all independently developed knowledge systems hence the word

interoperability. More specifically, this research looks at those cases where a semantic

mismatch may occur during the process of manufacturability knowledge sharing between

design and manufacture. At this point it is also important to highlight the fact that this

research is a part of a bigger research project entitled Interoperable Manufacturing

Knowledge System (IMKS). In order to further clarify the scope of the presented research,

the IMKS project is discussed in the next section.

1.3. The IMKS project

IMKS investigates the potential of foundation ontologies and accompanied verification

mechanisms for improving the interoperability of knowledge management software. More

specifically, the project addresses the task of developing flexible systems that can share

manufacturing knowledge across the domains of product design and manufacturing

planning (Young et al, 2010). Figure 1.2 depicts the setting in which this research took place.

A foundation ontology with core manufacturing concepts is developed to provide a platform

for domain ontologies to be based on. The design domain and manufacturing domain

ontologies are then developed by using concepts from the foundation ontology. A

verification system then mediates the two ontological knowledge sources in order to

provide a seamless knowledge transfer across the two domains. This research is therefore

19

aimed at finding ways to verify knowledge when it is shared across design and manufacture

in a scenario where domain ontologies are built out of a common foundation.

1.4. Significance of this research

Before the significance of this research is discussed, it is useful to clearly define it first as

follows:

“This research involves the development of methods to overcome semantic differences

during the process of knowledge sharing between design and manufacture ontological

knowledge sources based on a common foundation ontology.”

The term used in this research to define this overcoming of semantic differences is

‘knowledge verification’.

The title of this research is therefore:

“Verification of knowledge shared across design and manufacture using a foundation

ontology”

The significance of this research is first of highlighted by the importance of ontologies in ICT.

Ontologies have been shown to be valuable in many research contexts for computer-based

communication (Lin and Harding, 2007; Khilwani et al, 2009; Mascardi et al, 2008). Hence,

this work is of general interest in the area of ontology research. In a more focused view, the

significance of this research is proven from the research gap that exists in the area of

automatic ontology mediation. A comprehensive literature review, presented in chapter 4,

shows that the existing tools and methodologies for ontology mediation and matching

require a fair amount of human intervention for the results to be accurate. This is extremely

cumbersome and time consuming. The fundamental reasons for this high human

Foundation and core concepts ontology

Design domain
ontology

Manufacturing
domain ontology

Design Knowledge Base
Manufacturing

Knowledge Base

Knowledge
Verification

Figure 1.2. Interoperable Manufacturing Knowledge System
(IMKS)

20

involvement are the mismatches in the way concepts are defined in ontologies and the way

ontologies are constructed. These mismatches may lead to incorrect interpretation of

knowledge associated to concepts within the ontologies. To overcome this problem,

verification methods are needed which authenticate the true meaning of concepts when

knowledge is shared across different domains of interest. When it comes to knowledge

sharing for the purpose of concurrent engineering in manufacturing, it becomes essential

that a system is present which allows a seamless transfer of manufacturability knowledge to

the product designer in order to obtain an optimum design. This seamless knowledge

transfer requires verification methods which are extremely accurate with minimal human

assistance. This research therefore attempts to find ways to verify the authenticity and

correctness of knowledge during the process of knowledge sharing across different

domains. This will be shown in chapter 8 and 9 of this thesis. The two domains selected in

this research to experiment with the proposed ideas are engineering design and engineering

manufacture. Experimental domain ontologies in these two areas are developed and a

formalized form of these ontologies can be found in the appendices.

Another dimension of the work undertaken in this research is the use of foundation

ontologies. Work on several foundation ontologies can be found in the literature

(Gruninger, 2004; Matuszek et al, 2006; Niles and Pease, 2001) but a comprehensive

methodology for a domain ontology builder to commit to a particular foundation ontology

still needs detailed description. Foundation ontologies are a step towards standardizing the

domain ontology building task which is very useful in making the independently built

knowledge bases interoperable. Foundation ontologies are discussed in chapter 3 and some

work related to foundation and upper ontologies is reviewed in chapter 4 of this thesis.

This research is motivated by the need for achieving interoperability through knowledge

authentication and verification during the process of knowledge sharing in a foundation and

domain ontology based system of knowledge bases. Keeping in view the scope of this

research (section 1.2) the following research questions are therefore asked:

a. How can semantic mismatches between domain ontologies based on a common

foundation ontology be prevented or, if that is not possible, be addressed during the

process of computer aided ontology matching?

21

b. How can knowledge be verified by preventing or addressing semantic mismatches

when sharing knowledge between ontological knowledge sources belonging to

different domains?

In this research, the second research question is answered within the field of engineering

manufacturing and this will be shown in chapter 9 of this thesis. Furthermore, a general

solution to the problem of semantic mismatches during the process of ontology matching is

proposed in chapter 8 by answering the first question. The aims and objectives resulting out

of these research questions are detailed next.

1.5. Aims and objectives

As stated earlier, being part of a bigger project, this research started from a point where

some of the major objectives were already defined by the IMKS project. These objectives

included:

1. To investigate the application of Model Driven Architectures and ontological

formalisms in order to identify rigorous methods for the definition of libraries of

‘world’ objects, processes and relationships which meet the needs of interoperation

in a multi-disciplinary manufacturing knowledge sharing environment.

2. To apply these methods to engineer manufacturing capability ontologies which can

both capture best practice manufacturing methods and enable their sharing across

the key manufacturing domains of design for manufacture, manufacturing planning

and repair.

3. To explore innovations in mapping between ‘world’ and ‘domain’ models that

facilitate flexible, reconfigurable and verifiable intelligent interoperation.

4. To deploy and evaluate the combination of results from objectives 1, 2 and 3

through experimental work within the context of our collaborators product

development environments.

Some constituents of these aims of IMKS set the boundaries for this research. These include:

1. Use of ontological formalisms to develop a library of objects, processes and

relationships.

22

2. Use of mapping to connect domains and world models for verified knowledge

sharing.

3. Use of collaborator’s product development environment which in the case of

ontological formalism is IODE - the ontology editor that has been used to handle

ontologies in the IMKS project.

In the light of these IMKS objectives and boundaries the aims set for this doctoral research

were as follows:

1. To explore the application of ontology matching for the verification of knowledge

shared between ontology-based knowledge bases belonging to different domains.

2. To develop an understanding of the application of ontologies for product modelling

by using concepts from a library of design and manufacturing concepts i.e. a

foundation ontology.

3. To find methods of knowledge verification when manufacturing knowledge

associated with ontological product models is shared across domains.

4. To test these methods using IODE as the ontology editor and Common Logic as the

ontology development formalism.

 These objectives lead to the second step where the requirements of knowledge and

understanding about the relevant academic and industrial issues are to be determined. A

brief description of these is included in the next section.

1.6. Overview of the thesis

The thesis is comprised of ten chapters and three appendices. After outlining the

methodology in chapter 2, the discussion goes on to present a comprehensive technical

review of ontologies in the next chapters. Chapter 3 gives a detailed introduction to

ontologies while chapter 4 reviews the contributions made in the field of ontology

mediation and knowledge verificaiton. Chapter 5 explains the ontology development

formalism used to test the proposed ideas. The study of shape feature based methodologies

led to the development of an ontological product modelling technique which is explained in

chapter 6. Chapter 7 exposes the findings of the case study conducted in an aerospace

components manufacturing facility in order to study the real world industrial

23

interoperability problems. The design and implementation of the proposed verification

framework is explained in chapter 8 and chapter 9 presents the testing and validation of this

proposed framework with the help of the modelling method which was presented in

chapter 6. Chapter 10 concludes the thesis with a description of further research. Also given

in the appendices are the formalized ontologies used in some of the thesis chapters to

explain examples.

24

Chapter 2: Research Methodology

25

2.1. Chapter overview

This chapter outlines the methodology this research followed for identifying the research

problem and then proposing a solution.

A strategy of change management is used to structure this chapter. This strategy requires

one to clearly outline the objectives of change or in other words to know where one wants

to be after the change. These objectives are defined as the research goals in this chapter.

Once that clear picture is established, the current state is then examined and requirements

are identified. This step is performed in this research by reviewing the literature and

through the case study in order to identigy the current interoperability requirements in the

ICT based knowledge sharing systems specifically in the manufacturing industry. Finally the

route to get to the intended state is decided and acted upon. This step comprises of the

development of the solution for the requirements generated in the previous step. The aims

and objectives of the IMKS project provided a wide but clear purpose of the development of

verification methods for knowledge sharing between design and manufacture and this

objective helped in outlining the more specific aims of this research.

Figure 2.1 shows a flow chart depicting the research methodology that was followed to

Literature Review
(Chapter 3, 4, 5 & 6)

Case Study
(Chapter 7)

Requirements
Identification
(Chapter 4 & 7)

Solution
development and

testing
(Chapter 6, 8 & 9)

Write-up

Figure 2.1. Research Methodology

26

achieve the research objectives. The rest of the chapter is composed of a detailed

description of the methodology used.

2.2. What was the goal

 The research goal can be understood with the help of the objectives of this research

outlined in chapter 1. These objectives mainly comprise of first of all the development of an

understanding of the application of ontologies in knowledge verification when shared across

diverse domains and then the development and validation of unique methods to of

knowledge verification specifically in manufacturing engineering.

2.3. What was needed to achieve this goal

The research goal defined in the previous section demands the development of an

understanding in the areas of manufacturing, knowledge management, ontology

development, ontology matching, knowledge sharing through ontological product models

and the ontology building formalism which in this case was Common Logic. The background

of the author provided the essential knowledge of manufacturing and knowledge

management while the rest of the research areas had to be explored in detail. The following

research questions were therefore asked:

1. What is the concept of ontology in computer science?

2. What are the existing ontologies and how are they developed?

3. What do the existing ontologies have in common with the required ontologies?

4. How are ontologies matched and mapped?

5. What are the existing matching tools and what are their limitations?

6. How helpful are the existing matching tools and techniques in verifying shared

knowledge?

7. How are ontologies developed in Common Logic and edited in IODE?

8. How can the capabilities of IODE be used to develop a verification mechanism for

Common Logic based ontologies?

The answers to these questions along with the existing knowledge of manufacturing

processes and knowledge management would lead to the identification of the research

27

problem to be addressed and ultimately to its solution. A description of this process comes

next.

2.4. How the goal was achieved – The core methodology

The required understanding of ontologies, their matching techniques, and existing methods

of knowledge verification were primarily developed through a comprehensive literature

review and partly through a case study conducted in the compressor disc machining facility

of an aerospace components manufacturer.

2.4.1. Literature Review
The main focus of the literature reviewed was on ontologies and their application for

knowledge verification. This led to the study of some selected ontology matching and

mapping tools, techniques, methodologies and frameworks. It was identified that there is a

plethora of tools available for the purpose of ontology matching and therefore a selection of

the tools to be studied had to be made. This selection was made by first reviewing those

research papers which presented the state of the art in this technology and a discussion on

the most popular tools. A detailed study of those tools was then conducted which helped in

recognizing their limitations and the identification of a research gap. This study can be

found in chapter 4 of this thesis. Ideally all of these tools should have been tested on

experimental ontologies in order to gain the real understanding of their capabilities. It was

found, however that most of these tools were not freely available and therefore the

capabilities of these tools and techniques as outlined by the research papers was considered

sufficient. More time, then, was spent on studying the ontology development formalisms

and how a software application for knowledge verification could be developed based on

that formalism. It was identified that the available ontology matching tools are limited in

their capability of automatically detecting and resolving ontological mismatches. These tools

were also found to mostly detect the explication type of mismatches leaving the rest

undetected. A detailed analysis of these tools can be seen in chapter 4. Chapter 4 also

features a review of some of the most significant works on foundation ontology based

ontology matching. This review along with the analysis of other ontology matching tools

helped to identify the research gap in this field. The research gap is discussed in the

conclusions to chapter 4. This research gap was used to determine the requirements for a

verification tool which could address the identified weaknesses of existing tools. However,

28

real industrial examples were needed to totally understand the requirements of the

verification methods and therefore a case study was conducted. A brief description of this

case study is given here whilst a detailed account is provided in chapter 7.

2.4.2. Case Study
The case study particularly helped in identifying the requirements of knowledge and

information flows in manufacturing industry especially between design and manufacture. It

also helped in developing an understanding of how product shape feature based models

could be converted into ontological models to associate manufacturability knowledge to

them for the purpose of sharing this knowledge in order to produce a manufacturable

design. This understanding could only be achieved when the initial academic knowledge of

ontologies and their capabilities was gained through the literature review which preceded

the case study.

2.4.3. Requirements identification
The completion of the case study led to the generation of requirements for a verification

system capable of ensuring that the knowledge shared across design and manufacture is

interpreted correctly and is used for the purpose of producing a design suitable for

manufacturing in the available facilities. In other words it helped in identifying the real

manufacturing world knowledge sharing interoperability problems. A requirements

document was therefore produced, in collaboration with a co-researcher from the IMKS

project, which clearly outlined these interoperability requirements and this document then

proved to be the foundation for the verification system that was later developed. The

requirements document can be seen in the appendices.

2.4.4. Solution development and testing
In the light of the identified requirements a knowledge verification framework was

proposed. Based on this framework, an application Programming Interface (API) was

developed. However, before the development of the API could be started, an adequate

knowledge of the use of ontology building formalism and the functionalities of the selected

ontology development environment was essential. An initial review of the tutorials showed

that the query tool in the ontology editor can play a crucial role in the successful working of

the intended verification mechanism. More effort was therefore spent in learning this tool

and the way queries are written. The resulting knowledge, along with the knowledge of

29

Java, was then used to build an API which generates queries and interprets results

automatically. Once functional, the API was tested on a real design scenario experienced

during the case study and satisfactory results were obtained.

2.5. Conclusion

The main stages of this research were the literature review, the case study, the solution

development, and the testing and validation of this solution. Each of these stages

subsequently helped the next and the research led to some useful findings and results. The

proposed solution was successfully tested on real industrial problems of manufacturability

knowledge sharing.

30

Chapter 3: Ontologies – A technical review

31

3.1. Chapter overview

The last section of chapter 2 briefly explained the scope of the literature reviewed in this

research for identifying the research gap in the area of knowledge verification through

ontology mediation. This chapter, along with chapters 4 and 5, presents a comprehensive

survey of the relevant literature in the field of undertaken research. This survey, first of all,

helps in identifying the research gap and then the identified gap facilitates justification of

the unique and innovative contribution of the research findings. The practical industrial

evidence of the relevance of this research is provided in chapter 7 where the findings of a

case study are presented. Together, chapters 3, 4, 5 and 7 provide a meaningful background

for this research by setting the context for the findings presented later in this thesis.

3.2. Ontologies

Modelling is an essential part of the intellectual activity of human beings (Silvert, 2001). It is

an approximation of reality (Studer et al, 1998). It is reasonable to assume that every single

person has a subjective model of his or her own to make sense of this world. This model is

constructed as people experience the events around them and the accuracy of this model

determines the level of their intelligence and problem solving ability. The challenge of

Artificial Intelligence (AI) is therefore the challenge of constructing an accurate model of the

world in a computer interpretable form. The fundamental questions to be asked and

answered in this regard should be about the existence of things. In the field of metaphysics,

the systematic explanation of being as an answer to this question is called an ontology

(Gomez-Perez et al, 2004). In this sense an ontology is a particular system of categories

accounting for a certain vision of the world (Maedche, 2002). It is a model of discourse

participants (Nirenburg and Raskin, 2004). The term ‘Ontology’, however, is not limited to

the subject of metaphysics only. Researchers in the field of Information Science also use this

term for defining a hierarchical arrangement of concepts and their relations, together with

the constraints on those objects and relations between them (Alexiev et al, 2005; Antoniou

and Van Harmelen, 2008). Ontologies in this sense provide a basis for shared meaning

(Young et al, 2007). They provide a common terminology that helps to capture key

distinctions among concepts in different domains, which aids in the translation process

(Schlenoff et al, 2000). It is evident from these opinions about ontologies that, in both

32

philosophy/metaphysics and information science, studies of ontology have a similar aim.

Both of them try to build a model of the world by defining the existence of things, their

classifications and relationships. It is, however, the latter which is the subject of this

research. In the next sections, ontology and issues essential for a thorough understanding of

this concept are discussed.

3.2.1. Ontology defined

As defined above, an ontology attempts to define concepts, their mutual relationships and

constraints on those relationships. It is a lexicon of terminology along with some

specification of the meaning of terms in the lexicon (Gruninger et al, 2000). This same

notion is defined by different authors using different words. The most frequently quoted

definition is

‘An ontology is an explicit specification of a conceptualization’ (Gruber, 1993a).

This definition was later modified as:

‘An ontology is an explicit and formal specification of a shared conceptualization’ (Studer et

al, 1998).

These definitions state some essential conditions for a specification of something to be an

ontology. First of all, an ontology should be explicit. This explicit nature needs the concepts

and constraints to be defined objectively leaving no space for any subjective interpretation.

This is usually done by defining axioms and imposing constraints on the use of certain

terminologies. Secondly, an ontology should be formal. A classification of ontologies on the

basis of their formality shows that the more formal an ontology becomes, the more easily

interpretable it is by computers (Gomez-Perez et al, 2004). Formality, therefore, refers to

the attribute of an ontology which enables it to be read by computers. Thirdly, an ontology

should be shareable. This implies that a non-shareable arrangement of explicitly defined

concepts even if they are properly axiomatized and constrained will not form an ontology.

The scope of this sharing, however, is arguable. A discussion on sharing leads one to the

concept of ‘Ontological Commitment’ which will be discussed later. The word

conceptualization in the above definitions refers to ‘an abstract model of a phenomenon in

the world by having identified the relevant concepts of that phenomenon’ (Studer et al,

33

1998). It is an ‘abstract, simplified view of the world that we wish to represent for some

purpose’ (Gruber, 1993a).

A mathematical definition has also been offered for an ontology by (Kalfoglou and

Schorlemmer, 2003). According to this definition, ‘an ontology is a pair O = (S, A), where S is

the (ontological) signature – describing the vocabulary – and A is a set of (ontological)

axioms – specifying the intended interpretation of the vocabulary in some domain of

discourse’. Analysis of the process of ontology formation indicates that it is a process of a

gradual addition of meaning to data and then to information in order to produce shareable

knowledge. Recalling the fundamental concepts of knowledge management defining data,

information and knowledge, a marked similarity can be observed in the way these terms are

defined and the way ontologies are formed. Data are defined as discrete numbers or words

like 200, 235, 222 … or ‘horse’, ‘sky’, ‘Sofia’… When some meaning is added to these

numbers and words they become information. For example, 200, 235 and 222 are the

number of students registered in a particular course for three consecutive years. In a similar

theme, when some more detail is added to this information it gets converted into

knowledge. For example, the reasons for the rise and fall in the number of registered

students. The concept of the hierarchy of knowledge gives a graphical representation to this

notion. Figure 3.1 represents the commonalities in the concepts of the knowledge hierarchy

by most authors (Zack, 1999; Gupter and Sharma, 2004; Awad and Ghaziri, 2004). The

reason for explaining the knowledge hierarchy here is to appreciate that an ontology is

formed in an identical manner. Data and information are arranged in the required way and

then some meaning is given to them by defining axioms and imposing certain constraints.

When this knowledge is made sharable it gives shape to an ontology. Thus another way of

defining an ontology, as determined during this research, is as follows:

Figure.3.1. Hierarchy of Knowledge

Data

Information

Knowledge

Wisdom

34

“An ontology is a sharable arrangement of objectively defined knowledge obtained by

connecting, axiomatizing and constraining data.”

Wisdom in this way, thus, is the combined use of these ontologies. This is because the use of

knowledge in a certain way creates wisdom as shown in figure 3.1.

From the point of view of this research, however, the definition of ontologies given by

(Uschold and Gruninger, 1996) is appropriate. According to them:

“An ontology is a formal description of the entities within a given domain, the properties

they possess, the relationships they participate in, the constraints they are subject to, and

the patterns of behaviour they exhibit”.

In view of the way ontologies are used in this research, the above definition appears most

fitting and therefore may be referred to whenever the word ontology is used in this thesis.

Having decided upon the definition of ontology, it is now necessary to look into different

types of ontologies to gain full knowledge of this field. The next sections therefore, further

explicate the concept of ontology by looking into its classifications.

3.3. Classifications of ontologies

Different classifications of ontologies can be found in the literature. Ontologies are classified

on the following major bases:

1. Formalization or machine readability

2. Level of rigor i.e. light weight or heavy weight

3. Logic i.e. logic-based or non-logic based and

4. Level of generality

These classifications are discussed further below.

3.3.1. Classification on the basis of formalization or machine readability

Firstly, the level of formality divides ontologies into four categories, i.e. highly informal,

semi-informal, semi formal and rigorously formal (Gomez-Perez et al, 2004). Ontologies

expressed in natural language are categorized as highly informal. Those which are

35

constructed in a restricted and structured form of natural language are referred to as semi-

informal. Semi-formal ontologies are written in a formally defined language while rigorously

formal ontologies are so named because they provide carefully defined terms along with

machine readable semantics and axioms. Ontologies built in Ontolingua and OWL (two

ontology development languages) can be designated as semi-formal ontologies (Gomez-

Perez et al, 2004). The ontologies developed in this research for testing the proposed

verification framework also belong to this category.

3.3.2. Classification on the basis of Level of rigor

An alternate classification is done by taking into account the rigor of restriction and

constraints on terminology semantics which splits ontologies into heavy weight and light

weight ontologies. Light weight ontologies entail just relationships and properties of a

taxonomically arranged collection of terms while heavyweight ontologies also add axioms

and constraints on the use of these terms (Gomez-Perez et al, 2004; Alexiev et al, 2005). The

ontology expressiveness spectrum (McGuinness, 2003) in Figure 3.2 shows a detailed

continuum of attributes of ontologies starting from light-weight to more heavy-weight

ontologies. Different types of currently available ontologies shown in the figure like

WordNet, Cyc, etc. will be considered later in this chapter when the currently available

W
or

dN
et

D
M

O
Z

Ya
ho

o!
D

ic
ti

on
ar

y

U
N

SP
SC

Co
nt

ro
lle

d
Vo

ca
bu

la
ry

D
ub

lin
 C

or
e

RD
F(

S)
O

nt
ol

og
ie

s

O
W

L
O

nt
ol

og
ie

s

Cy
c

Heavy-weight ontologies

Light-weight ontologies

Term list

Thesaurus

Information Hierarchy

Formal taxonomy

Frames (class-property)

Range/value restrictions

Limited logic constraints

Very expressive constraints

Fig 3.2: An ontology expressiveness spectrum

36

ontologies are discussed. The example ontologies developed in this research represent

heavy-weight ontologies.

3.3.3. Classification on the basis of Logic

The third classification is on the basis of the logic of the ontologies and it gives two types;

Logic-based and non logic-based ontologies. A logic-based ontology explicitly specifies the

semantics of terminologies through ontological definitions and axioms while a non logic-

based ontology uses predefined and agreed upon meanings of terminologies and the

context in which they are going to be used (Yang and Zhang, 2007). The ontologies written

in this research for testing purposes belong to the category of non-logic based ontologies

because the terminologies used in these ontologies are not supported by axioms. Rather

they are universally agreed upon terms belonging to the domain of manufacturing

engineering

3.3.4. Classification on the basis of level of generality

The fourth classification is made on the basis of the level of generality of an ontology.

Different types of ontologies in this scenario are Top-level ontologies, Domain ontologies,

Task ontologies and Application ontologies (Guarino, 1998). The level of generality increases

as we go towards the top-level ontology from the application ontology level. Top-level or

Foundational ontologies describe very general concepts. They serve very large communities

from different domains. Domain ontologies contain the vocabulary from a specific domain

obtained by specializing the concepts introduced in the top-level ontology. Task ontologies

as their name suggests are related to a specific task within a domain. For example, the task

of drilling a hole in the domain of manufacturing engineering. And finally, application

ontologies are the most general type of ontologies. They represent roles performed in a

certain ontology (Maedche, 2002). Ontologies written in this research contain a foundation

ontology of core manufacturing concepts which is then used to develop two domain

ontologies belonging to the domains of design and manufacture.

3.3.5. Other classifications

Several other forms of classifications and ontology designations can further be found in the

literature. For example, content ontologies (Mizoguchi et al, 1995), communication

37

Table 3.1: Classifications of Ontologies

S.No Basis of Classification Classification Description Source

1
Formalization or
Machine Readability

Highly Informal ontologies

The more formal that ontology is the more machine
readable it is.

(Gomez-Perez et al, 2004)
Semi-informal ontologies

Semi-formal ontologies

Rigorously formal ontologies

2
Rigor of Restrictions and
Constraints

Light weight ontologies Less rigorous Alexiev et al (2005),
(Gomez-Perez et al, 2004) Heavy weight ontologies More rigorous

3 Logic
Logic-based ontologies

Uses axioms and constraints along with the
definitions of terminologies

Yang and Zhang (2007)
non logic-based ontologies

Uses terminologies with pre-agreed definition and
use

4 Level of Generality

Top level or Foundation ontologies

Generality decreases from top to application
ontology

Guarino (1998)
Domain ontologies

Task ontologies

Application ontologies

5 Use

Content
Ontologies

Domain ontologies (same as in 4)
Expresses conceptualization specific to a particular
work area

(Mizoguchi et al, 1995)
Task ontologies Specific to a certain task in a domain

Communication Ontologies For two way communication

Indexing Ontologies For case retrieval

Meta or Knowledge Representation Ontologies For knowledge sharing

6 Conceptualization

Structure

Terminological ontologies Such as lexicons

Van Heijst et al (1997)

Information ontologies Such as database schemata

Knowledge modelling ontologies
Includes a richer internal structure containing
conceptualization of knowledge.

Subject

Generic ontologies (Top level as in
4)

Defined conceptualizations are generic across many
fields.

Domain ontologies (same as in 4)
Expresses conceptualization specific to a particular
work area

Application Contains method and task specific extensions

38

ontologies, indexing ontologies, meta or knowledge representation ontologies (Gomez-

Perez et al, 2004), terminological ontologies, information ontologies, and knowledge

modelling ontologies (van Heijst et al, 1997). However, these ontology types are already

covered by the earlier defined classifications in one way or another and therefore are not

discussed in detail here. Some aspects of these classifications can be seen in Table 3.1 which

gives a consolidated view of all the classifications discussed here.

The classifications of ontologies reviewed above precisely identify the types of ontologies

that are used in this research. To gain further understanding of this concept, it is also

necessary to review the way ontologies are developed.

3.4. Ontology Development

Since ontologies can be considered as approximations of reality, their development is a

modelling process and several issues need to be considered before starting this process. For

example, a decision needs to be made whether an ontology is to be built from scratch or if it

should be constructed based on an already existing ontology, what methodology and

language should be used for its development, how should the compatibility issues be

resolved and most importantly what should it be able to answer. Figure 3.3 (on the next

page) gives a comparison of a few of the commonly quoted ontology development

methodologies in the literature. There seems to be a consensus on some typical steps which

include

1. Identification of scope and purpose of the ontology,

2. Definition of concepts and terms fundamental to the domain to which the ontology

belongs,

3. Formalization and codification of the ontology in a suitable language,

4. Population of the ontology, and

5. Evaluation of the ontology.

One of the most important and critical issues, when starting to construct an ontology, is to

determine what things exist in the domain which are to be modelled (Masolo et al, 2001). A

good way of defining the scope of an ontology is to ask some competency questions

(Gruninger and Fox, 1995). These competency questions are not only asked in the beginning

39

Uschold & Gruninger (1996)

1- Identify purpose and scope

2- Build the ontology

• Identification of the key concepts
and relationships in the domain of
interest

• Production of precise unambiguous
text definitions for such concepts
and relationships

• Identification of terms to refer to
such concepts and relationships

2a – Ontology Capture

3- Evaluation
 Technical judgement of the ontologies,

their associated software environment,
and documentation with respect to the
requirements specification, competency
questions and real world

4 - Documentation

2b – Ontology Coding
 • Develop a meta-ontology (define

classes, entities and relationships)
• Choose a representation language

capable of supporting the meta
ontology

• Write the code

Guidelines for each phase
• Clarity
• Coherence
• Extensibility
• Minimal ontological commitment
• Minimum encoding bias

METHONTOLOGY (Fernendez et al, 1997)

1- Specification
• Purpose
• Level of formality
• Scope

2- Conceptualization

 • Glossary of Terms (GT)
- Concepts
- Verbs

3- Formalization

4- Integration

• Inspect available meta-
ontologies (Cyc, Ontolingua
etc.)

• Identify similar terms and
entities

• Asses similarity of semantics
and syntax

• Consider using translators

5- Implementation

 Use a meta-ontology supporting
environment, which should include:
a lexical and syntactic analyze, a
translators to guarantee portability,
a browser for inspection of
ontologies, a searcher, and an
evaluator

Maintenance

Acquiring Knowledge
 Documenting
 Evaluating

Pl
an

ifi
ca

tio
n

A
ct

iv
it

ie
s

States

Noy & McGuinness (2000)

1- Determine the domain & scope of the ontology

• What is the domain that the ontology will
cover?

• For what we are going to use the ontology?
• For what types of questions the information

in the ontology should provide answers?
• Who will use and maintain the ontology?

2- Consider reusing existing ontologies

 • Ontology Libraries (DAML ontology
library www.daml.org/ontologies,
Ontolingua library
www.ksl.stanford.edu/software/ontoling
ua/)

• Publicly available commercial ontologies
(UNSPSC, RosettaNet, DMOZ, WordNet)

3- Enumerate important terms in the ontology

4- Define the classes and the class hierarchy

• Top-down development process
(starting from most general)

• Bottom-up development process
(starting from most specific)

• Combination development process
(starting from most important)

5- Define the properties of classes – slots

• Intrinsic properties
• Extrinsic properties
• Physical or abstract part
• Relationships

6- Define the facets of the slots

• Slot cardinality (how many values?)
• Slot-value type (string, number, Boolean,

enumerated, instance etc.)
• Domain and Range of slots

7- Create instances

Li et al (2007)

1-Specification

• Scope determination
• Granularity selection

2- Acquisition
• Concept acquisition
• Relationship acquisition
• Lexical term acquisition

3- Formalization
 • Taxonomic formalization

• Relationship formalization
• Lexical term formalization

4- Population

• Manual population
• Automatic population

5- Evaluation

• Principled evaluation
• Empirical evaluation

6- Maintenance

• EO maintenance
• EL maintenance

Fig 3.3: Comparison of some ontology development methodologies

http://www.daml.org/ontologies�
http://www.ksl.stanford.edu/software/ontolingua/�
http://www.ksl.stanford.edu/software/ontolingua/�

40

to determine the scope and purpose but should also be asked at the formalization stage.

They are named as formal competency questions and are asked to ensure consistency

between the planned ontology in natural language and the one developed formally. Once

these questions are decided, the ontology should be designed keeping in mind the answers

to these questions. When defining terms and conceptualizations in class hierarchies, three

different approaches can be followed (Noy and McGuinness, 2001).

1. A top-down approach in which the ontology is started from the most general classes.

2. A bottom-up approach where the most specific terms are defined first and

3. Middle-out approach where the most important terms in the middle are the starting

point.

The last approach is recommended (Uschold, 1996) because it prevents the ontology

becoming too specific with high level of granularity and thus reduces the chances of

inconsistencies. This is, more or less, the way experimental ontologies in this research have

been constructed by.

In addition to the common ontology development steps stated above there are some steps

which exist in every ontological development process but are not explicitly mentioned by

every author. For example, (Uschold and Grüninger, 1996) and (Fernandez et al, 1997)

emphasize the need for ontology documentation. It is argued that documentation of each

and every step of the development process is very important for future modifications and

more importantly for the sharing of ontologies. The processes of knowledge acquisition,

evaluation of ontologies and its documentation are considered to be an ongoing process

(Fernandez et al, 1997). (Li et al, 2007) and (Fernandez et al, 1997) believe that after the

ontology has been developed, it is also necessary to evaluate and maintain it from time to

time (on an ongoing basis). Maintenance involves the modification and evolution of

ontologies as the need arises. (Uschold and Grüninger, 1996) give some general guidelines for

the entire ontology development process. They define the parameters of clarity, coherence,

extensibility, minimum ontological commitment, and minimum encoding bias. Clarity refers

to the quality of an ontology to effectively communicate the intended distinctions.

Coherence is the internal logical consistency of an ontology. Extensibility reflects the

provision in an ontology to extend it with new definitions and hierarchies in the future.

41

Minimum ontological commitment helps in increasing the extensibility of an ontology.

Making as few claims as possible about the world being modelled gives freedom to the

committed parties to instantiate and specialize the ontology as needed. And finally,

minimum encoding bias means that the conceptualizations in the ontology should be

defined at the knowledge level without depending upon a specific symbol-level encoding.

(Noy and McGuinness, 2001) and (Fernandez et al, 1997) also recommend that existing

ontologies are used with the new ones through integration. Ontology libraries like the

Ontolingua library and DAML ontology library can be used to browse for suitable ontologies.

Furthermore, some commercially available ontologies like UNSPSC, Cyc ontology, WordNet,

RosettaNet, DMOZ can also be used for integration.

A more generalized view of the ontology development process can be taken from an

approach called the model driven architecture. A closer look at its steps reveals that it

covers all of the ontology development steps discussed above in a more structured and

organized way. Following is a brief introduction to this approach and its comparison with

ontology development processes.

3.5. Model Driven Architecture

MDA or model driven architecture (Miller and Mukerji, 2003) is an approach intended to

make software application design and development more structured, traceable, portable,

interoperable and reusable. It attempts to separate the specification of the operation of a

system from the details of the way the system uses the capabilities of its platform. It is

CIM

PIM

PSM

Marking, Mapping
& Transformation

MDA

Fig. 3.4: Model Driven Architecture

42

model driven because models are the basic building blocks of its structure. The term model

here refers to a simplification of a system built with an intended goal in mind in order to

answer questions in place of the actual system (Bezivin and Gerbe, 2001). MDA divides the

process of application design and development into three main models. These are:

1- Computation Independent Model (CIM),

2- Platform Independent Model (PIM) and

3- Platform Specific Model (PSM).

The first step of making a computation independent model refers to the process of

specifying requirements and the environment in which the application is going to work. CIM

is totally independent of any programming or modelling language and is just a

representational model of system requirements and scope.

A Platform Independent Model on the other hand is more formal and requires the help of

some representational software or language like UML2 to provide a more detailed view of

the application, the information flow inside it and the definitions and capabilities of

different modules constituting the application.

The Platform Specific Model is the computer coding or the most formal level. Here the PSM

is transformed into a machine understandable form which computers can execute.

The processes of Marking, Mapping and Transformation take place in-between PIM and

PSM. Marking refers to the process of indicating the roles of different PIM elements in

mapping which are to be transformed into PSM elements. Mapping provides specifications

for transforming a PIM into PSM for a particular platform (Miller and Mukerji, 2003). This

marking and mapping not only fulfils the documentation requirements of the ontology

development methodologies but also makes the whole process more traceable and easily

modifiable. This can, on one hand, help in the maintenance and evaluation of the ontologies

and on the other the rectification of the system in case any inconsistencies are found. The

main goal of MDA is to move human involvement in an application producing process from

PSM towards CIM and PIM and automate the transformation process from one model to

another (Djuric et al, 2005b). In addition to the three step route of producing an application,

MDA also gives a four layered meta-modelling architecture, as shown in Figure 3.5, and

43

several complementary standards provided by the Object Management Group (OMG).

These standards are Meta-Object Facility (MOF), Unified Modelling Language (UML) and

XML Metadata Interchange (XMI) (Djuric et al, 2005a).

3.5.1. Meta Object Facility

MOF, the meta-object facility, is a framework to specify, construct and manage technology

neutral metamodels. It can therefore be used to define any modelling language such as

UML. Metamodels defined in MOF can be transformed into XML documents and schemas by

using XMI the XML Metadata Interchange (Djuric et al, 2005b). The MDA definition of

metadata includes database schema, UML models, workflow models, business process

models, business rules, API definitions, configuration and deployment descriptors, and so on

(Frankel et al, 2004). It is important to note here that for any modelling language to be used

with MDA tools, it must be based on MOF (Cranefield and Pan, 2007) and therefore to add a

kind of metadata to the kinds of metadata that MDA tools can manage, it is necessary to

define a MOF model of that kind of metadata. Such a model is known as a metamodel

(Frankel et al, 2004). To cater for ontological engineering and extend the interoperability

capabilities of MDA, the Object Management Group (OMG) has come up with a set of

standard metamodels and mappings between them known as the Ontology Definition

Metamodel (ODM) which is discussed in the following sections.

MOF

UML
metamodel

UML
Profile

Custom
metamodel

UML
models

Models based on
custom

metamodel

Instances (Database, Knowledge base, ...)

M3 Layer
Meta-metamodel

M2 Layer
metamodel

M1 Layer
model

M0 Layer
instance

Figure 3.5: Depiction of the OMG’s four layered architecture

44

3.5.2. MDA and Ontologies

Frankel et al (2004) compare the MDA technologies and the Semantic Web. According to

them, one of the important distinctions between them is their focus. The emphasis of MDA

(through MOF) is on automating the physical management and interchange of metadata.

Knowledge representation, on the other hand focuses more on the semantics embodied in

the content of the metadata and the automated reasoning over the content. To get the best

of both worlds, a standard was therefore needed to support ontology development. This

need was met through the OMG’s Ontology Definition Metamodel (ODM). The ontological

knowledge base development process can be leveraged by developing the MOF

metamodels of the existing knowledge bases and through mappings from such models to

and from ODM, MOF and ODM-based knowledge engineering metadata (Frankel et al,

2004).

3.5.3. Ontology Definition Metamodel (ODM)

The Ontology Definition Metamodel is designed to enable interoperability between

different ontology development languages including RDF(S), OWL, Topic Maps (TM) and

Common Logic (CL). It enables Model Driven Architecture (MDA) standards to be used in

ontological engineering (Djuric et al, 2005a). It caters for the forward and reverse

engineering of ontologies, enabling development of ontologies in UML tools and

implementation of such ontologies in OWL [and other ontology development languages]

without loss of fidelity (Frankel et al, 2004). It is a collection of three main sets of standards

based on MOF (OMG, 2008b). These standards need to be followed during ontology

development in order to make the ontologies interoperable. It is comprised of:

1- Metamodels, for ontology development,

2- Mappings between these metamodels as well as mappings to and from UML,

3- A set of profiles that enable ontology modelling through the use of UML-based tools.

3.5.3.1. ODM Metamodels:

The version one of the ODM by OMG defines four normative metamodels (OMG, 2008a),

including the metamodels for RDF, OWL, Common Logic (CL) and Topic Maps (TM). These

metamodels are defined with the help of a few diagrams. The Common Logic (CL)

metamodel, for example, consists of five different diagrams that represent the

45

infrastructure on which an ontology should be built in order to comply with ODM. These

diagrams are:

1- The phrase diagram,

2- The terms diagram,

3- The atoms diagram,

4- The sentences diagram,

5- The Boolean sentences diagram and

6- The quantified sentences diagram

The phrase diagram provides mechanisms for grouping and scoping the elements that

constitute an ontology authored in Common Logic or any of its syntactic variants. The Terms

diagram provides additional insight into the core syntactic elements of Common Logic

including names, commented terms and term sequences or functional terms. Atom

diagrams can be used to handle equations. Atoms are also handled by the sentence diagram

along with other sentences including Boolean, quantified, irregular and commented

sentences. The Boolean sentences diagram further elaborates the handling of Boolean

sentences. Similarly, the quantified sentence diagram provides further description of

handling quantified sentences (OMG, 2008b). Figure 3.6 shows the main constituents and

their mutual connections in a phrase diagram for common logic.

Name

Exclusion Set Module Importation Sentence Comment

Phrase

Text

Identifier

Figure 3.6: Depiction of the Phrase Diagram

46

3.5.3.2. Mappings

ODM provides informative mappings from each metamodel to and from OWL Full, except

for Common Logic. Currently, CL only has a mapping from OWL Full but a lossy (that which

loses details while transferring information) reverse mapping defined in QVT from CL to

OWL is planned. ODM also gives a direct two way mapping between UML and OWL and a bi-

directional mapping between UML and CL is also planned (OMG, 2008b).

3.5.3.3. UML Profiles

Profiles allow a user to generate an ontology description in an ontology development

language from an ontology represented in UML. Currently, UML profiles provided by ODM

enable the use of UML notation and tools for ontology modelling and facilitate generation

of corresponding ontology descriptions in RDF, OWL and TM. A UML profile for CL is under

consideration and may become a part of ODM in the future (OMG, 2008b).

3.5.4. Query/View/Transformation Language (QVT)

QVT is a language based on MOF 2.0 defined by the Object Management Group for

automated model transformation. The QVT standard is considered essential to make MDA a

success (Gardner et al, 2003). The language dimensions of QVT consist of three named

language levels of Core, Relations and Operational Mappings. The core and relations layers

comprise the declarative part of QVT while the operational mapping is imperative in nature.

Operational mappings permit transformations to be defined using a complete imperative

approach (operational transformations) or allow complementing relational transformations

by providing imperative operations for implementing the relations (hybrid approach). The

relations language specifies the relationships between MOF models. The core language is a

small model/language which only supports pattern matching over a flat set of variables by

evaluating conditions over those variables against a set of models. The operational

mappings language is a standard way to be used for imperative implementation by

populating the trace models of the relations language. The QVT black box represents the

plug-in facility which can be used to utilize transformation resources expressed in other

languages with a MOF binding (OMG, 2008a).

Before going into more details of the language some associated terminologies need to be

understood.

47

‘A query is an expression evaluated over a model’. A query may result in one or more

instances from the model over which it is evaluated. For example a query can be: ‘return all

instances with no subclasses’.

The term ‘View’ refers to a model completely derived from another model. Changes in the

view are dependent on the changes in the source model. If allowed, changes in the view can

lead to changes in the source model. A defined reverse mapping is therefore necessary back

to the base model in this case. Views are generated via transformations. A query is a

restricted kind of view while a view is a restricted kind of transformation in which the target

model cannot be modified independently of the source model (Gardner et al, 2003).

A Relation is the specification of a multi-dimensional transformation. Relations are not

executable, they are only used to check the consistency of two models against one another

and thus help in determining the validity of mapping between the models.

Mappings on the other hand are transformation implementations. They are used to refine

the relations. A transformation therefore can either mean a relation or a mapping

(Appukuttan et al, 2003).

Transformations are performed to build a target model from a source model in a manner

that source and target models are compatible according to the relations defined

(Hausmann, 2003).

In the context of MOF, the transformations between the models are defined at the

Source
Meta-Model

Meta-Meta-Model

Target
Meta-Model

Source
Model

Target
Model

define transformation

apply transformation

instantiates

instantiatesinstantiates

instantiates

Figure 3.7: Model Transformation in MOF Context

48

metamodel level and are executed at the model level (Belaunde et al, 2008). The important

thing to note here is that for QVT to be used as a transformation language, both the source

and target models have to be instances of the same meta-metamodel i.e. MOF as shown in

Figure 3.7. Mappings to any non-OMG language should be obtainable by defining a MOF

metamodel for such a language (Gardner et al, 2003).

During the translation between metamodels, every single element in the source model may

not have a corresponding element in the target model. This situation is called structure loss.

To minimize the effects of this structure loss QVT retains the association between the

source and target model elements in a mapping. This transformation itself is stored as a

model as shown in Figure 3.7. Hence one can always trace back a given model instance to its

original location (Colomb et al, 2004).

Some tools based on QVT are also available to perform automatic transformation between

models. SmartQVT is a tool designed as a QVT parser, compiler and launcher. It implements

the operational mappings in QVT and generates Java executable code realizing the

transformations. SmartGen is a SmartQVT based code generator which complements the

capabilities of SmartQVT. It produces text files and their directories from models (Belaunde

et al, 2008).

3.5.5. Suitability of MDA for ontology development

Two main dimensions of implementation of MDA standards in the development of

ontologies can be observed from the above review. Firstly, MDA can be used as a

methodology to develop an ontology. The structured flow involving the development of a

CIM, PIM and then PSM makes the process of ontology building more traceable and well

managed. The second dimension, which is more complex but equally useful, is the use of

MDA standards to structure the ontology itself. These standards specifically include MOF

based ODM. A review of these standards shows that an ontology based on a MOF

metamodel can be made more interoperable with other ontologies developed using the

same metamodel. This gives rise to two questions. First of all “what are the languages

supported by ODM?” and secondly “how acceptable are these standards in the industry?”

49

As far as the acceptability of these standards in the industry is concerned, the latest

specifications of ODM show that big companies like IBM, TATA, Sun Microsystems and

France Telecom (Orange Mobiles) are involved in the development of these standards. For

the language support, it can be seen from the above review that the ontology definition

metamodel (ODM) defines or aims to define standards for and transformations between

RDFS, OWL and CL (among others) which are currently the three main ontology

development languages (Corcho and Gomez-Perez, 2000; Mizoguchi, 2004; Pulido et al,

2006). Interoperability can therefore be enhanced, on one hand, by using the

transformation support of ODM between metamodels of other major languages and on the

other hand through an easier and more efficient knowledge verification process during

mapping. Ontologies based on the same infrastructure will be less likely to have mismatches

and therefore the knowledge verification task would be simpler. Another MOF based

standard, the QVT language, complements ODM in the transformation efforts between

models. If some specific deliverables of an ontology do not conflict with the ODM

metamodel specifications, then developing an ontology based on it seems to create a win-

win situation. If an ontology has to be developed, why not develop it using the ODM

standards. The only valid objection that can be raised against the use of ODM is it not being

an ISO standard. If in future it acquires the ISO status then it would be an important

consideration when planning to construct an ontology.

The knowledge verification solution proposed in this research takes inspiration from the

way model transformation takes place in MDA as shown in figure 3.7. The proposed solution

also resembles aspects of the IMKS project where a foundation ontology acts as the meta-

meta model while the domain ontologies subsume it as meta models with their instances

being the assertions in the knowledge base in the form of models of engineering

components and activities.

Having reviewed the ontology development methodologies, the next step is to understand

the formalization of ontologies by using ontology development formalisms. The next

sections, therefore, scan the research area of ontology development languages and

formalisms.

50

3.6. Ontology Development Formalisms

An ontology, being an explicit and formal specification of a shared conceptualization (Studer

et al, 1998), requires a language for its construction which can efficiently provide a means to

shape up its essential characteristics. Five kinds of components are believed to specify an

ontology namely: concepts, relations, functions, axioms and instances (Visser et al, 1997). To

represent these components formally, ontology building languages should:

• Have a compact syntax.

• Be highly intuitive to humans.

• Have well-defined formal semantics.

• Be able to represent human knowledge.

• Include reasoning properties.

• Have the potential for building knowledge bases.

• Have a proper link with existing web standards to ensure interoperability

(Pulido et al, 2006).

Some of the contemporary languages bearing these attributes and discussed here are

Knowledge Interchange Format (KIF), Ontolingua, XML, RDF, RDF(S), OIL, DAML+OIL, OWL

and Common Logic (CL).

3.6.1. Knowledge Interchange Format (KIF)

The Knowledge Interchange Format, as its name suggests, was developed to interchange

knowledge formally between disparate computer programs (Bechhofer, 2000). KIF has

declarative semantics and is based on first order predicate logic (Corcho and Gomez-Perez,

2000). KIF is the most expressive language among the languages used for representing

ontologies. It allows the representation of concepts, n-ary relations (relations among more

than two individuals), functions, axioms, instances and procedures. This high expressivity is

however a trade-off with its reasoning power. (Corcho et al, 2003).

3.6.2. Ontolingua

KIF along with a few extensions, forms another ontology language called Ontolingua. The

first of the extensions is an additional syntax to support the axiom representation in KIF and

51

the second is the incorporation of a Frame Ontology to define object-oriented and frame-

language terms (Bechhofer, 2000). With these extensions Ontolingua is capable of building

ontologies in any of the following three manners: (1) using exclusively the Frame Ontology

vocabulary if axiom representation is not needed, (2) using KIF expressions and (3) using

both languages simultaneously (Corcho and Gomez-Perez, 2000). The weakness of

Ontolingua is that it does not have an inference functionality (Mizoguchi, 2004).

3.6.3. XML – the eXtensible Markup Language

XML, the eXtensible Markup Language, is a W3C endorsed standard for document markup.

XML is a descendant of SGML (Standard Generalized Markup language) in which HTML was

developed (Harold and Means, 2004). Although in contrast to HTML, XML allows user

defined tags, computer agents cannot be guaranteed to determine the intended

interpretation of its tags (Pulido et al, 2006). RDF (Resource Description Framework), on the

other hand, provides interoperability between applications that exchange machine-

understandable information on the Web (Bechhofer, 2000). A brief description of RDF

follows.

3.6.4. Resource Description Framework

Through its Object-Attribute-Value triples, RDF is capable of forming a semantic network.

RDF is based on the XML syntax but is different from it in that RDF is a data representation

model rather than a language (Mizoguchi, 2004). An RDF data model consists of three object

types: resources, properties and statements but it cannot define the relationships between

properties and resources. This shortcoming is overcome through the RDF vocabulary

description language which is also known as the RDF Schema (RDFS). RDF(S) is a term usually

used to represent a combination of RDF and RDFS (Gomez-Perez et al, 2004). RDF(S) is not

very expressive and it just allows the representation of concepts, concepts taxonomies and

binary relations. To further aid the semantic web development, three more languages were

developed as extensions of RDF(S) namely OIL, DAML+OIL and OWL (Corcho et al, 2003).

3.6.5. OIL – the Ontology Inference Layer

OIL, the Ontology Inference Layer is an Ontology Interchange Language and it has a well

defined syntax in XML, RDF and RDF Schema and therefore can be used as a standard

52

language for ontology representation on the web. It is frame-based, hence, it provides a

context for modelling aspects of a domain through classes, subclasses, attributes and

properties. Another important element of OIL is Description Logics (DL). DL describes

knowledge in terms of concepts and roles (Fensel et al, 2001). In contrast to the high

expressive power of Ontolingua, OIL starts with a very simple and limited core language.

This is done to encourage the development of further extensions to the language with

varying degrees of expressive power (Horrocks et al, 2000).

3.6.6. DAML+OIL

In response to the limitations of RDF and RDF(S), the DAML (DARPA Agent Markup

Language) group was formed by the Defence Advanced Research Projects Agency (DARPA).

DAML-ONT was developed as a result with the power of expressing more sophisticated RDF

class definitions than were permitted by RDFS. This language was then soon combined with

the Ontology Inference Layer (OIL) to form DAML+OIL (Ouellet and Ogbuji, 2002). DAML+OIL

has well defined model-theoretic semantics as well as an axiomatic specification that

determine the language’s intended interpretations (Pulido et al, 2006). It also adds DL-based

KR primitives to RDF(S). Concepts, taxonomies, binary relations, functions and instances can

all be represented in DAML+OIL (Corcho et al, 2003).

3.6.7. OWL – Web Ontology Language

Based on DAML+OIL, OWL is designed to become a common language for ontology

representation on the semantic web. It is designed as a vocabulary extension of RDF (W3C,

2004). Being a language for the semantic web; extensibility, modifiability and

interoperability are its main features (Mizoguchi, 2004). It is less powerful than the first

order predicate logic in logical expressions for axiom writing ((Masolo et al, 2001;

Mizoguchi, 2004). Although, its compatibility with SHOE and DAML+OIL gives it a good

expressive power its expressiveness still has some drawbacks. It is not easy to use, its

reasoning is not very efficient and some of its constructs are very complex. Its complexity is

one of the causes which divide it into three different types (Pulido et al, 2006). Two of these

OWL versions, i.e. OWL DL and OWL Lite are basically the subsets of OWL Full (W3C, 2004).

53

3.6.7.1. OWL Lite

OWL Lite is suitable for describing classification hierarchies (Delugach, 2008). It is easier to

implement and is designed to provide users with a functional subset that will get them

started in the use of OWL. This is done mainly to support tool builders to construct tools

using a very simple form of language (Delugach, 2008).

3.6.7.2. OWL DL

DL in ‘OWL DL’ stands for Description Logic. The main reason for having the OWL DL

sublanguage is to support the existing description logic business segment. This is because

tool builders have developed powerful reasoning systems which support ontologies

constrained by the restrictions required for OWL DL. Although the language constructs of

both DL and Full are similar, the use of some of these and RDF features is what makes them

different. OWL DL imposes some constraints on its mixture with RDF while OWL Full allows

free mixing of OWL with RDF Schema.

3.6.8. Common Logic

Common Logic (CL) is a framework for a family of logic-based languages. It is designed and

developed as a medium for transmitting logical content on an open communication network

(ISO/IEC 24707:2007(E), 2007). Its main purpose is to provide interoperability for both

syntax and semantics for a family of first order logic languages (Delugach, 2008). CL does not

have a single syntax; instead, common abstract semantics for CL syntaxes are prescribed by

ISO. Three different syntaxes are specified namely: Common Logic Interchange Format

(CLIF), Conceptual Graph Interchange Format (CGIF) and Extended Common Logic Markup

Language (XCL). The syntax of CLIF is based on KIF, that of CGIF is founded on conceptual

graphs (CG), while XCL is based on XML. CL contains declarative semantics which make it

possible to understand the meaning of an expression written in SCL without the help of an

interpreter (Frankel et al, 2005). CL is more expressive than OWL DL and OWL Lite while

OWL Full’s expressiveness is comparable to CL’s. However, CL being based on first order

logic (FOL) has an edge over OWL Full because FOL is older and more developed than

description logic (Delugach, 2008).

The ontology development languages discussed here have developed with the gradually

increasing demands of interoperability and knowledge sharing. Every new language fills the

54

loop holes left by the preceding one. This trend had led these languages to progressively

excel. The selection of a specific language for a job, however, depends upon the objectives

to be achieved. Each one of these languages has its own peculiar strengths and weaknesses

depending upon the task at hand. A close scrutiny is therefore needed before a decision can

be made about their selection for a particular assignment. The reason why CL is used in this

research is mainly due to its high expressiveness. The syntax of CL used here is KFL

(Knowledge Frame Language) which allows the ontology builder to bind up to five different

classes into one relation ([Anonymous], 2010). This capability cannot be found in any of the

ontology development languages reviewed here.

Available literature on ontology classification, development and the languages for this

purpose has been reviewed so far. It is also useful to evaluate some of the already

developed ontologies which are being used for the purpose of knowledge sharing. This

review is what follows.

3.7. Existing Foundation Ontologies

The ontologies discussed below, in no way represent the entire ontology landscape. These

ontologies, however, can be considered as representative of their specific domain or

broader working area. The PSL ontology for example is useful for representing processes

while the Cyc ontology is a very general purpose ontology and can be mapped with other

ontologies to provide inferential support about the commonsense knowledge. WordNet on

the other hand is helpful in the natural language processing area. These ontologies are

further discussed below.

3.7.1. Process Specification Language (PSL)

PSL or process specification language is an ontology designed to aid semantically sound

exchange of process information between different manufacturing setups (Gruninger,

2004). It defines a neutral representation for manufacturing processes that supports

automated reasoning (NIST, 2003). Included in these processes are scheduling, process

modelling, process planning, production planning, simulation, project management,

workflow and business process reengineering (Gruninger, 2004). It facilitates

interoperability by means of the development of translators between PSL and native

55

formats of the applications intending to interoperate. Without a standard language like PSL,

the number of translators needed for interoperability between ontologies are n(n-1). While

in the presence of a standard like PSL this number reduces to n. This is because only the

two-way translation between native ontologies and PSL is needed (Schlenoff et al, 2000).

The primary component of PSL is an ontology containing some primitive concepts which are

claimed to be adequate to define simple manufacturing, engineering and business

processes. In order to make it explicit, and to make the semantics of the ontological terms

sharable, the concept in a PSL ontology is defined by using three notions;

1. Language

2. Model theory

3. Proof theory

The Language part of the ontology consists of a set of symbols and the specification for the

use of these symbols to make meaningful sentences. The grammar used for PSL is roughly

based on the grammar of KIF (Knowledge Interchange Format) which is based on first order

logic. The main purpose of Model Theory is to give a mathematical form to the semantics or

meanings of the terms in the language. The Proof Theory further consists of three

components (Schlenoff et al, 2000);

1. The PSL Core

2. Foundational Theories

3. PSL Extensions

The PSL core is a set of primitive axioms written in CLIF (Common Logic Interchange Format)

to support the non logical part of the PSL lexicon. Its purpose is to axiomatise a set of

semantic primitives for describing some fundamental concepts of manufacturing processes.

The expressiveness of the PSL core is limited and therefore a set of extensions are used to

enhance it (NIST, 2008). The foundational theories overcome the weaknesses of PSL core by

providing precise definition of and axiomatisations for its primitive concepts. PSL extensions

on the other hand add more complex processes to PSL core concepts. Since PSL core is a

very basic and primitive ontology, it needs extensions for expressing concepts with higher

levels of complexity (Schlenoff et al, 2000).

56

Figure 3.8 shows the way in which the PSL ontology can be used to facilitate interoperation

between disparate computer systems. The process starts from mapping between ontology A

and ontology B with the PSL ontology. But this mapping can only be done for the

overlapping areas of the two applications (the cross hatched area in the figure). The rest of

the information has to be translated syntactically and semantically first into KIF syntax and

then into the native terminology of an ontology. Two translators are used here and four

different types of translations take place. First A’s syntax and terminology is converted into

a KIF syntax of A’s terminology. Secondly, to acquire the required information from PSL

ontology, A’s terminology is translated into PSL’s terminology within the KIF syntax. Thirdly,

this PSL terminology is converted into B’s terminology still staying in KIF syntax. Finally, KIF

syntax with B’s terminology is translated into B’s syntax and B’s terminology (NIST, 2008).

Hence, the PSL ontology is used as a top or upper level ontology while ontologies of

application A and application B act as domain ontologies belonging to design or

manufacturing as an example.

A user interface can be developed to separate the entire processing from the user’s view.

This can be done by using the textual PSL encoding language which can provide a user

friendly point and click interface to perform the whole process. A set of PSL tools may also

KIF Syntax
A’s Terminology

KIF Syntax
PSL Terminology

A’s Syntax and A’s Terminology

Ontology A

B’s Syntax and B’s Terminology

Ontology B

KIF Syntax
B’s Terminology

PSL Ontology

Fig. 3.8 : Mapping and translation process through the PSL ontology

Mappings

Mappings

Translation

Translation

57

be used to obtain mapping support for the overlapping knowledge between the two

ontologies (NIST, 2008).

3.7.2. SUO (Standard Upper Ontology)

The Standard Upper Ontology is a foundation or upper ontology covering a very general

range of ideas. It is being developed by the SUO working group (SUO WG) under the IEEE

Standards Association (IEEE SA). It is a foundation ontology because it will not include

concepts specific to a certain domain, rather it will provide a base and a structure upon

which other domain ontologies (like engineering, finance, medical) would be constructed

(SUO WG, 2003). It will provide definitions for general-purpose terms and acts as a basis for

these domain ontologies. It is estimated to contain around 2500 terms and on average ten

definitions for each term. It is built in a simplified version of KIF called SUO-KIF (Niles and

Pease, 2001). The main purpose of SUO is to provide automated reasoning and

interoperability between several diverse areas. The key target areas are e-commerce,

education and understanding of natural languages. Some other candidate ontologies are

also entailed by SUO including SUMO, OpenCyc, IFF, 4D Ontology, MSO and Lattice of

Theories. A few of these participating ontologies are discussed further in the following text.

3.7.3. Suggested Upper Merged Ontology (SUMO)

SUMO is an ontology obtained by mapping and merging several other publicly available

ontologies into a single comprehensive form. It was developed with extensive help from the

SUO working group. It is claimed to be the only ontology which has been mapped to all of

the WordNet Lexicon (SUMO, 2009). It is developed to aid research in the fields of search,

linguistics and reasoning. The language used for knowledge representation in SUMO is KIF-

SUO. SUMO also includes the PSL Core but due to its limited variety of processes, some

more verb classes are added to define a more comprehensive sub-ontology of processes.

The root node of SUMO is divided into Physical and Abstract classes. The Physical class

contains all those entities which have a position in time and space while the Abstract class

includes everything else. Figure 3.9 shows the top level of SUMO (Niles and Pease, 2001).

SUMO consists of 11 sections. These sections include representation of the structure of the

ontology through relations, some fundamental ontological notions, numeric information,

58

mereotopological content such as part-whole relations, knowledge about physical

measurement units, and process, object and attribute types (Pease et al, 2002).

3.7.4. WordNet

Although not holding a unanimously agreed status of being an ontology, the inclusion of

WordNet in this section is due to its widespread use in the ontology development

community for obtaining linguistic support. WordNet is the largest freely available lexical

database of English developed in Princeton University. It contains nouns, verbs, adjectives

and adverbs grouped together into sets of cognitive synonyms called ‘synsets’. These

synsets express distinct concepts and are interlinked through conceptual-semantic and

lexical relations (WordNet, 2006). There are around 80,000 noun synsets in WordNet (Deng

et al, 2009). WordNet has become the lexical database of choice for Natural Language

Processing (NLP). This is because words present in WordNet can formally be distinguished

by their context and subject (Boyd-graber et al, 2008). The quality and quantity of relations

between the four main parts of speech constituting WordNet are not very rigorous. For

example, the number of links present between the terms are limited and are not exhaustive,

there are no cross-part of speech links, and the weight or strength of relations between

terms is not considered (Boyd-graber et al, 2008). Some expansion efforts are being done

for WordNet. Deng and colleagues (Deng et al, 2009) for example have started a project to

associate images to the terms in WordNet. The resulting lexicon will be called ImageNet and

Physical
Object

SelfConnectedObject
ContinuousObject

CorpuscularObject
Collection

Process
Abstract

SetClass
Relation

Proposition
Quantity

Number
PhysicalQuantity

Attribute

Fig. 3.9: SUMO Top Level

59

is expected to contain 50 million cleanly labeled, full resolution images (50-100 per synset)

(Boyd-graber et al, 2008).

3.7.5. Cyc Ontology

The primary aim of the Cyc project is to develop a large knowledge base appropriate for

supporting reasoning in a range of domains (Matuszek et al, 2006). Developed by Cycorp,

Cyc ontology is a part of Cyc technology, which is claimed to be the world’s largest and most

complete general knowledge base and commonsense reasoning engine. It contains 3 million

assertions and describes more than 300,000 terms (Cycorp Inc., 2009). The part of the

ontology available to the public is called OpenCyc and it provides a foundation of concepts

plus an expressive language called CycL that supports the Cyc ontology. The openCyc is

therefore useful for ontology developers. CycL provides a quoting mechanism which enables

the user to differentiate between the knowledge defining a concept and the knowledge

about the terms defining the concept. The Cyc foundation ontology provides knowledge

representation about the individuals and their relationships with space time and human

perception. The Cyc knowledge base is traditionally subdivided into three parts namely the

Upper, Middle and Lower ontology depending on the level of generality of concepts it

represents (Matuszek et al, 2006). A more extensive version of Cyc has recently been made

available for research purposes under a research licence and is called ResearchCyc. Three

recent additions to the Cyc technology are a natural language query tool, a template based

fact entry tool and ontology exporter which enables the user to export selected portions of

the knowledge base to OWL files (Cycorp Inc., 2009).

A brief review of these top level ontologies was necessary because the presented research

also involves the use of a foundation ontology for knowledge verification through ontology

mediation.

3.8. Conclusions

This chapter presented an introduction to the concept of ontologies. It is clear that

ontologies can be used as a means to develop interoperable computer-based knowledge

sharing systems. Some foundation ontologies exist which are already being used for this

purpose.

60

Knowledge sharing through ontologies, however, is not without its weaknesses. The next

chapter, therefore, looks into the problems that may occur during the process of knowledge

sharing through ontologies.

61

Chapter 4: Literature review

62

4.1. Chapter overview
This chapter first establishes that ontology matching and mapping is directly linked to the

process of verification of knowledge shared through ontologies and then a review of the

literature on existing tools and techniques for ontology mediation is presented.

4.2. Cross-domain knowledge verification

When formalized knowledge is shared between different domains, prevention of its

subjective interpretation becomes necessary. This process of authentication of the

interpretation of knowledge, in this research, is referred to as knowledge verification. In the

field of software development the term verification is usually used in conjunction with the

term ‘validation’ and has slightly different connotations. Verification in this sense refers to

the correct building of the product while validation ensures building the right product

(Boehm, 1984). It is clear that in this sense these two processes correspond to a very early

stage of the development of knowledge bases and they actually provide a means to

measure the quality of knowledge in a knowledge base (Preece, 2001). Another description

of verification is given by (Gupta, 1993). According to him knowledge verification involves

1- Checking the completeness, consistency and correctness of knowledge,

2- Determining the accuracy and consistency of the reasoning mechanism in

interpreting and applying the knowledge in the knowledge base to solve problems

and

3- Comparing the system with its human counterparts and grading it thereof.

The above three points indicate that verification can either be required for the knowledge

contained by a knowledge base or for the software application and ontology (Lucanu et al,

2005) which organizes, facilitates accesses and presents knowledge needing verification. For

the verification of knowledge itself, there can be five main approaches (Preece, 2001):

1. Inspection: is the process of human proofreading the text. This is the most

commonly used and the least reliable technique of knowledge verification.

2. Static Verification: verifies the knowledge base by checking the logical anomalies

(mostly redundancy and conflict). Redundancy is the uselessness of knowledge while

conflict is the mutual inconsistency in the logical statements of the system.

63

3. Formal Proof: is a more thorough form of logical analysis than the static verification

and it is used during the development process to verify the specified requirement of

formal artefacts. This technique supports both verification and validation (Meseguer

and Preece, 1996).

4. Cross-Reference Verification: is performed by cross checking the KBS for a particular

knowledge entity at different levels. This cross checking can also be performed by

using the different views of a knowledge model e.g. product view, product life cycle

view etc. (Preece, 2001).

5. Empirical Testing: is done by executing different use cases. This testing can either be

functional based or structure based depending upon the requirement of verification.

To verify the functioning of the software application or the authenticity of the

ontology working behind it the Use Case technique can be used. PRONTO is a

software tool used for this purpose (Coenen et al, 2000). It operates by using the

ontology to generate test cases. These test cases are then carried out against the

knowledge base. In case of failure either the ontology or the knowledge base is

checked for errors and is redefined. The success of the test case verifies both the

knowledge and the knowledge-based system.

An important point to note here is that there is a difference in the verification of knowledge

in a general sense and the verification of knowledge associated with ontologies. The

ontology-based information sharing approaches usually rely on mapping between

ontologies (Kaza and Chen, 2008). Mapping is the process in which correspondences are

found and established between concepts in two ontologies. These correspondences are

important for knowledge verification because establishment of similarities between two

ontologies ensures that the understanding of knowledge shared through these ontologies is

correct. Due to its importance, the ontology mapping and other relevant processes are

explained further in the next subsection.

4.2.1. Ontology Mapping

Mapping is the process in which for each concept in the source ontology a corresponding

concept with similar semantics in the target ontology is found (Ehrig and Sure, 2004). This is

64

not a standalone process, it is just a small ‘fragment of a more ambitious task concerning

the alignment, articulation and merging of ontologies’ (Kalfoglou and Schorlemmer, 2003).

1. Ontology alignment is the automated or semi-automated discovery of

correspondences between two ontologies (Lourdusamy and Ganapathy, 2008),

2. Ontology articulation defines a way in which the fusion or merging of ontologies

has to be carried out (Kalfoglou and Schorlemmer, 2003) and

3. Ontology merging is the process of creating a new ontology which is the union of

source ontologies for the purpose of obtaining a bigger and richer knowledge base

(Lourdusamy and Ganapathy, 2008).

These three processes are represented graphically in Figure 4.1. Typically, a mapping

process consists of three main stages (Bruijn et al, 2006).

1. Mapping discovery,

2. Mapping representation and

3. Mapping execution

Since there needs to be a similarity in the ontologies to be mapped, the mapping discovery

stage involves a search for this similarity. Once the similarities are detected a mapping plan

is generated in the mapping representation stage and finally the mapping is executed. It is

important to note that there is an implicit assumption here about the syntactic structure of

ontologies. This three-stage process assumes that the two ontologies to be mapped are

written in the same language while in the real world scenario this might not be the case

Fig. 4.1. Different Ontology Integration Methods

Ontology A Ontology B

Merging

C=Merge(A,B)

Ontology A Ontology B

Alignment Articulation

Ontology A Ontology B

Articulation
ontology

65

(Lourdusamy and Ganapathy, 2008). Hence a more comprehensive and complete

representation of the mapping process is given in figure 4.2, which also includes the process

of ontology import.

 To emphasize, it is reiterated that the knowledge verification in this research is all about

the stage of mapping discovery or similarity finding across two ontologies belonging to

different domains. This stage, however, is not straight forward especially when ontologies

from different domains are mapped. This is because; first of all, there can be semantic

differences in the use of concepts across different domains. Secondly, when ontologies are

developed independently, there can be differences in their structure and content, otherwise

known as ontological mismatches (Visser et al, 1997). The understanding of these

mismatches is, therefore, essential for understanding the similarity-finding across two

ontologies. These mismatches are discussed next.

4.3. Ontology Mismatches

Due to the possible heterogeneous nature of ontologies, the mapping process is subjected

to mismatches in their components and building blocks. Being the specification of a

conceptualization, an ontology consists of five components and sets of their definitions.

These are: a set of Class definitions, a set of Function definitions, a set of Relation

definitions, a set of Instance definitions and a set of Axiom definitions (Visser et al, 1997).

Differences in the way these five components are defined give ways in which ontologies can

mismatch. This section on Ontology Mismatches is mainly based upon the work of Visser et

Fig. 4.2 The Mapping Process

?

Os

Import ontologies

?

?

?

??

?

?
Similar

Similar

OT

Find similarities Specify mapping Mapped ontologies

66

al (1997) but in addition to this categorization, some other mismatches identified by other

authors are also briefly listed afterwards.

The work of Visser et al (1997) is a pioneer in the ontology mismatch area and is quoted by

several authors such as (Hameed et al, 2004; Chungoora and Young, 2008; Smart and

Engelbrecht, 2008). They divide ontological mismatches into two main categories.

Conceptualization mismatches and Explication mismatches. These categories are explained

next with the help of an example illustrated in figure 4.3 (on next page).

4.3.1. Conceptualisation Mismatches

These mismatches occur either due to a difference in the way conceptualisations are

distinguished in two ontologies or the way they are related to each other in an ontology.

Hence, two different types of mismatches are Class mismatches and Relation mismatches.

4.3.1.1. Class Mismatch

This mismatch occurs due to the way classes in two ontologies are differentiated from each

other. This mismatch can further be divided into two types namely a categorisation

mismatch and aggregation level mismatch.

4.3.1.1.1. Categorisation mismatch
A categorisation mismatch takes place when two similar classes in two ontologies contain

different subclasses. For example a class Engine can have subclasses titled Engine Block,

Inlet Manifold, Exhaust Manifold or the subclasses can be Cylinders, Ignition assembly, Fuel

injector etc.

4.3.1.1.2. Aggregation level mismatch
An aggregation level mismatch arises when two ontologies define a similar class at different

levels of abstraction. For example, in Figure 4.3, in Ontology 1, the class FailsWhen defines

the cases of cylinder head failure at a higher level of abstraction by giving a reason for the

cylinder pressure loss. It shows the minimum cylinder pressure as a subclass of the

machined surface flatness reduction and the hardening of the sealing gasket. While in

ontology 2 the class FailsWhen directly gives the minimum pressure value without going

into the details of the reasons of this pressure loss.

67

10mm

120mm

240mm

25mm

25mm h1
h2

h3
h4 h5

100mm A

 B

Cylinder Head

isMadeOf

Cast_Iron(SAE 1018)

Contains

Machined_Surface

Plain_Holes

Tapped_Hole

Involves

Surface_Machining (Parameters: Feed(a)^Speed(b))

Drilling

Tapping (h1:location(10,100)^size(M10)^h2:location(h1+120,100)^size(M10))

IsUsedFor

Cylinder_Sealing (min_cylinder_pressure (x N/m2))

Holding_CamShaft

Holding_SparkPlug

FailsWhen

Machined_Surface_Flatness < yµ

Sealing_Gasket_Hardness > z bhn

cylinder_pressure < x N/m2

cylinder_pressure < x N/m2

Ontology 1

Cylinder Head

CastedWith

Cast_Iron(BS 080A15)

Contains

Machined_Surface

Plain_Holes

Tapped_Hole
Drilling

IsUsedFor

Cylinder_Sealing

Maintaining_Pressure (min_cylinder_pressure (x N/m2))

Contains_IgnitionAssembly

FailsWhen

Cylinder_Pressure < x N/m2

Involves Surface_machining (specifications: Feed(a)^Speed(b))
Involves

Tapping (h1:location(10,100)^size(M10)^h2:location(130,100)^size(M10))

Ontology 2

Figure 4.3. Two ontologies of a cylinder head with some mismatches
(Figure is developed especially for explaining examples)

68

4.3.1.2. Relation Mismatch

This mismatch happens due to the difference in relations and attributes of classes. Three

further subdivisions of this type of mismatch are structure mismatch, attribute assignment

mismatch and attribute type mismatch.

4.3.1.2.1. Structure mismatch
This type of mismatch comes up when a conceptualisation is specified in two ontologies

using a similar set of classes or subclasses but the structuring and relation setting is

different. For example, in Figure 4.3, ontology 1, the cylinder heads ontology has two

different classes namely Contains and Involves for defining the components of a cylinder

head and the manufacturing processes involved respectively. While in ontology 2 the

manufacturing processes are a subclass of Contains class.

4.3.1.2.2. Attribute assignment mismatch
This mismatch occurs when two ontologies assign attributes to two similar classes

differently. For example, in Figure 4.3, ontology 1, the minimum pressure attribute is

assigned to Sealing_Cylinders, which is a sub class of UsedFor. While in ontology 2 this

attribute is assigned to Maintaining_Pressure which is also a subclass of UsedFor. These two

ontologies in this scenario face an attribute assignment mismatch.

4.3.1.2.3. Attribute type mismatch
This type comes into play when two ontologies in their classes contain similar instances but

these instances differ in the way they are defined. For example, in Figure 4.3, ontology 1

assigns the instance of SAE 1018 to Cast_Iron which is a subclass of isMadeOf class. While in

ontology 2 the instance of the same set of class and subclass is BS 080A15. These two

instances represent the same type of cast iron but differ in the selection of standards. SAE is

an American standard while BS is British. The two ontologies face the attribute type

mismatch here.

4.3.2. Explication Mismatches

Explication mismatches are due to the difference in the way conceptualisations are defined

in an ontology. The definitions of classes, relations and instances are considered to be a 3-

tuple. Terms, definiens and concepts i.e. Def=<T,D,C> (Visser et al, 1997). An explication

mismatch can arise when any of these three components of the 3-tuple in two ontologies

69

are different in some way. The relation between the terms, definiens and concepts is that

definiens use terms to define a concept. For example, the definition of a Pen can be ‘a

writing device’ or it can be ‘a hollow cylinder with an ink refill’. Both of these definitions

attempt to describe the concept of a pen but they use different definiens and different

terms. In the first one the definiens target the application of the pen while in the second the

structure of a pen is made the basis of its description. With these differences in terms,

definiens and concepts, there can be six combinations of explication mismatches in

ontologies. These are: concept mismatches (C-Mismatches), definiens mismatches (D-

Mismatches), term mismatches (T-Mismatches), concept and definien mismatches (CD-

Mismatches), concept and term mismatches (CT-Matches) and finally term and definien

mismatches (TD-Mismatches). These mismatches are discussed below.

4.3.2.1. Concept Mismatches (C-Mismatches)

These mismatches occur when the same concept in two ontologies is defined using different

terms and different definiens. For example, the definition of a pen as explained above uses

different terms and different definiens but describes the same concept.

4.3.2.2. Definien Mismatches (D-Mismatches)

These mismatches arise when in two ontologies different definiens but same terms are used

to define a similar concept. For example, in Figure 4.3, ontology 1, the subclass ‘Tapping’

contained by the main class ‘Involves’ is defined with these terms:

[h1:location(10,100)^size(M10)^h2:location(h1+120,100)^size(M10)] where the location of

hole h2 is stated by adding the x-coordinate of h1 into the distance between h1 and h2.

While in ontology 2, the same hole is located by using its original coordinates i.e. (130, 100).

In this case the coordinates (h1+120, 100) and (130, 100) define the same conceptualization

i.e. h2 using the same terms but the approach to defining them is different. In other words

they use different definiens. This type of mismatch is called the definien mismatch.

4.3.2.3. Term Mismatches (T-Mismatches)

If in two ontologies, two similar concepts are described by using identical definiens but

different terms then a term mismatch occurs. An example can be the way feed and speed

for the process of machining is described in two ontologies in Figure 4.3. In ontology 1 the

term Specification is used to designate the feed and speed for machining while in

70

ontology 2 the term of Parameters is used to explain the same concept. This type of

mismatch is referred to as the term mismatch.

4.3.2.4. Concept and Definien Mismatches (CD-Mismatches)

This type of mismatch occurs when definiens in two ontologies use similar terms to describe

two different concepts. For example, the tool used for the tapping process (making threads

in holes) is called a Tap. The same term is also used for a liquid dispensing pipe. Hence the

definitions ‘liquid_dispensing_pipe’ and ‘threading_tool’ both refer to the same term i.e. a

Tap but use different definiens and describe two entirely different concepts. This type of

mismatch is called a concept and definiens mismatch.

4.3.2.5. Concept and Term Mismatches (CT-Mismatches)

These mismatches take place when two different concepts are defined by using different

terms but the definiens used to describe the concepts are similar in two ontologies. for

example in an ontology of Automobiles, a cylinder head can be defined as’ cylinder head →

covers_cylinders ^ maintains_pressure but similar definiens can be used to describe a CNG

fuel cylinder top → covers_cylinders ^ maintains_pressure. Hence, similar definiens are

used to define different terms and different concepts.

4.3.2.6. Term and Definien Mismatches (TD-Mismatches)

Finally, mismatches occurring due to ontologies referring to a similar concept but using

different terms and definiens. For example the third subclass of the class Used_For in two

ontologies in Figure 4.3 uses different terms and definiens to describe the function of a

cylinder head to hold a spark plug. In ontology 1 the subclass is named as Holding_SparkPlug

while in ontology 2 the similar subclass is named as Contains_IgnitionAssembly.

4.3.3. Other mismatches

Mismatches explained by other authors mostly overlap with those described by Visser and

colleagues. For example categorization and aggregation level mismatches of Visser et al are

similar to the scope differences of (Wiederhold, 1994) and scope mismatch of Klien (2001)

and Qadir et al (2007). Similarly, the concept and definiens mismatches of Visser et al have a

counterpart as attribute scope mismatch in Wiederhold (1994) and homonym terms

mismatch of Klien (2001). On the explication mismatch side, the concept and definiens

71

mismatch of Visser et al (1997) has an equivalence in Wiederhold (1994) and Klien (2001)

with the names of ‘attribute scope’ and ‘homonym terms’ mismatch respectively. Similarly,

the ‘term mismatch’ and ‘definien mismatches’ of Visser et al (1997) are referred to as

‘naming differences’ and ‘encoding differences’ respectively in Wiederhold (1994).

Other mismatches not finding any commonality with mismatches described by Visser et al

(1997) are explained below.

4.3.1.1. Concept Description Mismatches

Known as Modelling Convention mismatch in (Chalupsky, 2000), this type of mismatch

comes under the class mismatch of Visser et al who define different types of class

mismatches but do not explicitly mention this type. A concept description mismatch occurs

when a concept is defined using different sub or super-classes. For example, Chalupsky

(2000) states that to distinguish between tracked and wheeled vehicles, a choice can be to

make two subclasses Vehicle as Tracked-Vehicle and as Wheeled-Vehicle. Alternatively, an

attribute of Wheeled can be defined with a relation of Traction-type.

4.3.1.2. Model Coverage and Granularity Mismatch

This is another type of the class mismatch of Visser et al defined by Klien (2001) and

Chalupsky (2000) as model coverage and granularity mismatch. As the name suggests, this

mismatch occurs when two ontologies define the same concept with different levels of

granularity. For example, a list of names can come under a class Persons or to make it more

detailed, the class Person can further be divided into Male and Female. This mismatch

appears to be similar to the aggregation level mismatch of Visser et al (1997) but this

similarity is not recognized by Klien (2001) and Chaplusky (2000).

4.3.1.3. Single vs. Multi-Valued Property

This is the first of three mismatches Qadir and colleagues (2007) claim to be different from

the mismatches pointed out by other authors before them. This mismatch occurs when a

data-type or object property represents the same class but takes a different number of

values in two ontologies. The authors give an example of a class named Bank_Account. In

the ontology of one bank, this class might take just one value because that bank does not

72

allow its clients to have more than one account but in another, the class with same name

might allow multiple values according to its policy.

4.3.1.4. Unique vs. Non-Unique Valued Property

This mismatch occurs when in one ontology a property can hold only one value that

uniquely determines the subject, while in another ontology there can be multiple values but

they cannot identify the subject uniquely (Qadir et al, 2007). An example quoted from the

authors explaining this situation is where in one ontology of a university a student is

identified by a unique rank number which is recognized by all departments while in another

ontology the university requires multiple ranks corresponding to different departments and

none of them individually determines the student uniquely.

4.3.1.5. Alignment Conflict among Disjoint Relations

A mismatch occurring when a disjoint relation in one ontology is not valid in the other. For

example a class Student can be declared as disjoint with the class Employee in one ontology

while in another a student is allowed to be an employee of an institution as well (Qadir et al,

2007).

4.3.1.6. Syntactic Mismatches

Unlike Visser et al (1997), Wiederhold (1994) and Klien (2001) also give details of possible

syntactic mismatches. These mismatches occur due to the difference in ontology

development language used by the two ontologies. In the use of different languages, not

only the syntax differs but the expressivity of language can also be a barrier in successful

translation and mapping of two ontologies. Since this research covers ontologies built in the

same language, a review of these mismatches is not relevant here and is therefore not

further discussed. Table 4.1 gives a consolidated view of the semantic mismatches reviewed

above.

It has already been established that ontological knowledge verification heavily depends

upon the task of similarity finding or mapping discovery between the ontologies used to

share knowledge. This means, that tools need to be developed that help the user in doing so

by overcoming the above discussed and other ontological mismatches. A review of the

73

Table 4.1. The mismatches framework (Mm stands for ‘mismatch’)

Mismatch
Category

Visser et al (1997)
Wiederhold
(1994)

Klien (2001) Chaplusky (2000) Qadir et al (2007)
Cummulative
Mismatches

Co
nc

ep
tu

al
iz

at
io

n
M

m

Cl
as

s
M

M

Categorization Mm
Scope
Differences

Scope Mm

Scope Mm
Categorization Mm

Aggregation-level
Mm

Aggregation-level Mm

Concept
Description

Modelling Conventions
Concept Description
Mm

Model Coverage
and Granularity
Mm

Model Coverage and
Granularity Mm

 Coverage Mm

Single vs Multi valued
property

Single vs Multi valued
property

Unique vs Non-unique
valued property

Unique vs Non-unique
valued property

Re
la

ti
on

 M
M

Structure Mm Structure Mm

Attribute-
assignment Mm

Attribute-assignment
Mm

Attribute-type Mm Attribute-type Mm

Alignment conflict among
disjoint relations

Alignment conflict
among disjoint
relations

Ex
pl

ic
at

io
n

M
m

Concept & Term Mm Concept & Term Mm
Concept & Definiens

Mm
Attribute
Scopes

Homonym Terms
Mm

Concept & Definiens
Mm

Concept Mm Concept Mm

Term & Definiens Mm
Synonym Terms
Mm

 Term & Definiens Mm

Term Mm
Naming
Differences

 Term Mm

Definiens Mm
Encoding
Differences

Encoding Mm Definiens Mm

74

literature on ontology mapping shows that there are plenty of tools available for this

purpose. It is therefore necessary that these tools are reviewed, and required

improvements are identified. This review is presented next. The review of these tools in the

next section is, of course, not exhaustive and there are a number of other tools present to

perform the task of ontology matching. The selection of these tools is made on the basis of

the frequency of their appearance in the books and journal papers on ontology matching

and mapping tools and techniques.

4.4. Ontology matching and mapping tools and techniques

(Noy, 2004) identifies two main approaches to mapping discovery. One set of methods,

called the heuristics-based approaches, rely on the matching of several characteristics of

ontologies to find similarities. The other set of approaches establishes a common grounding

with an upper-level or foundation ontology in order to facilitate the process of similarity

finding or mapping discovery. In the following text, the existing heuristic-based techniques

are explored first and then the foundation ontology based approach is discussed.

4.4.1. Heuristics-based ontology matching approaches

This section first reviews some of the existing heuristics-based ontology matching and

mapping tools and then presents an analysis of these tools for their capability to overcome

the mismatches identified in the previous section. Below these tools and techniques are

discussed in more detail.

4.4.1.1. MAFRA – MApping FRAmework

As shown in Figure 4.4, the conceptual framework of MAFRA is divided into five horizontal

and four vertical dimensions. The horizontal dimensions represent the sequential flow of

the mapping process while the vertical dimensions symbolize the ongoing support for the

horizontal dimensions to operate.

The mapping process starts with the Lift and Normalization stage where the two ontologies

to be mapped are brought to the same level in terms of syntax and structure. This step

attempts to eliminate the syntactic differences and makes the semantic differences clearer

75

and more evident (Maedche et al, 2002). The output of this stage is a list of normalized

lexica as the authors claim.

The next stage concentrates on finding the similarities between two ontologies in order to

locate their linking points. This is the mapping discovery stage. Mainly two types of

similarities are used namely the lexical similarity and the property similarity. Lexical

similarity looks for identical concepts while the property similarity targets the concept

attributes and relations of concepts with each other. The strategy adopted for similarity

identification is to first scan the target ontology from bottom to top and then from top to

bottom. The bottom to top scanning aims for the property similarity while top to bottom

attempts to identify the lexical similarity. For each concept in the source ontology the entire

target ontology is scrutinized and similarities are established.

 In the semantic bridging phase the similarity points identified by the previous stage are

used as stepping stones and a so called bridge is built between the two ontologies. The aim

of this stage is to establish correspondences between the similar concepts in the two

ontologies before the transformation and translation of instances from the target to the

source ontology. This is done by forming a Semantic Bridge Ontology (SBO). Five distinct

steps are involved in this stage.

It starts with concept bridging where by using the knowledge obtained from a thesaurus

(like WordNet) terminological similarities or relations are found (synonymy, hypernymy etc).

Postprocessing

Execution

Semantic Bridging

Similarity

Lift &
Normalization

Co
op

er
at

iv
e

Co
ns

en
su

s
B

ui
ld

in
g

GUI

Ev
ol

ut
io

n

D
om

ain Know
ledge &

Constraints

Fig. 4.4. Horizontal and vertical layers of MAFRA conceptual architecture

76

Secondly, the properties, i.e. attributes and relations, of previously matched concepts are

compared and matched. This is the point where the involvement of a domain expert might

arise due to a difference in properties of the two matched concepts.

Thirdly, those instances in the source ontology are considered which cannot be matched

with any of the target instances or concepts. This is the inference stage where on the basis

of a similarity in the super-concepts of two different sub-concepts in two ontologies,

inferences are made so as to declare and bridge the two non similar concepts. Again at this

stage, human involvement might be necessary in order to examine the possibility of the two

concepts being similar. Alternatively a history developed over time of the validated

inferences can also be used to automatically authenticate the reliability of a particular

inference.

Fourthly, the bridges established in the first three stages are verified and refined. This step

is considered to be a complementary stage of the similarity module and is optional

(Maedche et al, 2002).

Finally, the transformation specification step comes into play and provides directions for the

execution stage on transforming and translating the instances from the target to the source

ontology. Having assigned similarities and established bridges, the execution dimension

finally transforms the marked concepts and instances for the source ontology.

The last horizontal module of the MAFRA conceptual structure i.e. post processing, verifies

the object identity of the mapped concepts between the two ontologies. It ensures that the

two concepts represent the same object in the real world.

Among the vertical dimensions of MAFRA, the evolution module helps in modifying the

mapping according to the changes that take place in the source and target ontology with

time. The cooperative consensus building provides coordination between the two

communities, to which the two ontologies belong. This coordination is aimed at reaching a

consensus on the validity of mapping relations and the interpretations of concepts. The role

of ontological commitment appears useful here. The domain knowledge and constraints

module provides some external help for the correct interpretation of concepts and their

properties during the mapping discovery phase. This can be done by using different thesauri

77

or lexical taxonomies like WordNet. Finally, the graphical user interface attempts to make

the handling of the whole MAFRA process easier and more manageable by providing a

software interface useful in supporting the human intervention.

The uniqueness of this framework lies in the formation of a Semantic Bridge Ontology which

matches the notion of articulation ontology in its description (Lourdusamy and Ganapathy,

2008). MAFRA is implemented as a plug-in of KAON which is an open-source ontology

management infrastructure (Maedche et al, 2002).

4.4.1.2. PROMPT Suite

PROMPT suite (Noy and Musen, 2003) is a collection of four tools for ontology management.

Among these tools, IPROMPT is designed to be an interactive ontology merging tool,

ANCHORPROMPT helps in ontology mapping, PROMPTDIFF is a tool for comparing ontology

versions and the fourth tool, PROMPTFACTOR provides help in factoring out a part of an

ontology to form a sub-ontology. PROMPT suite is implemented as an extension or plug-in

to the Protégé ontology editing environment. In the scenario of ontology mapping both

ANCHORPROMPT and IPROMPT should be discussed because the latter provides the basis

for the functioning of the former. The other two tools are not relevant from the ontology

mapping point of view and therefore will not be discussed further.

IPROMPT is an interactive ontology-merging tool. It is interactive because it leads the user

through the entire merging process. Although it is a merging tool, it does include the

mapping discovery phase of the ontology mapping process. Its similarity detection function

is primarily based on the lexical similarity of concepts and the relations (local context)

between these concepts. But in addition to that it also suggests mapping on the basis of the

Make initial suggestions

Select the next operation

Perform automatic updates

Find inconsistencies and potential problems

Make Suggestions

Fig. 4.5. IPROMPT Algorithm Flow

78

information it stores from user’s actions. Furthermore, the Protégé component-based

architecture allows users to plug in any term-matching algorithm. Figure 4.5 illustrates the

flow of its algorithm. Users select the next operation after receiving suggestions from

IPROMPT about the possible mappings. User actions are then incorporated and resulting

changes are analyzed. It then highlights the problems arising due to these actions and again

suggests possible actions. This process continues until a satisfactory result is obtained.

ANCHORPROMPT first finds the similar concepts in two ontologies. Alternatively these

similarity suggestions can also be taken from the IPROMPT tool. The discovery phase of this

tool is, however, more rigorous. It takes as input a set of pairs of similar terms (anchors)

from two ontologies and automatically suggests semantic similarity between two apparently

different terms. This is done by traversing along the path through which the two anchors are

joined in the hierarchy. The algorithm works on the rule that if the concepts at the start and

end of two hierarchical paths in two ontologies are equal then the terms connecting these

concepts are also equal despite a difference in their names. As an example, consider Figure

4.6, which shows two ontologies modelling a cylinder head. A closer look at two ontologies

reveals that there are several paths from top to bottom where the starting and ending

nodes are similar but not necessarily the terms in-between. For example, Cylinder Head to

Fastening Bolt or Cylinder Head to Fuel Cavity. ANCHORPROMPT calculates the number of

nodes in each path and assigns a length. The length of a path is one less than the number of

nodes present in it. It then calculates a similarity score based on the number of apparently

Ontology 1 Ontology 2

Fig. 4.6. Two Cylinder Head Ontologies
(Figure is developed especially for explaining examples)

Cylinder Head

Spark Plug

Ceramic Coating

Body

Sparking Tip

Fuel Cavity

Fuel Atomizer
Fuel
Injector

Fastening Bolts
Wire

Connection
Assembly

Cylinder Head

Cam Shaft Assembly

Cams

Shaft

Middle RodFuel Cavity

Fuel Atomizer
Fuel
Dispenser

Fastening Bolts
Holder Body

Shaft
Holders

79

similar nodes. The paths with equal lengths are then compared and probability of

apparently dissimilar terms to be similar is calculated. This probability depends upon the

similarity score calculated earlier. Allowable length of detected paths is down to the user’s

discretion and longer paths are discouraged because of the possibility of less precise and

wrong results.

As an example, consider the two paths in Figure 4.7, taken out of the ontologies in Figure

4.6. Here the starting and the ending concepts or terms are similar and therefore the two

paths are anchored. Their similarity score is zero because no term apart from the starting

concept matches with its counterpart node. This means that ANCHORPROMPT suggests Fuel

Injector to be similar to Fuel Dispenser which is correct even though the similarity score was

zero. Conversely, now consider the path “Cylinder Head – Cam Shaft Assembly – Shaft

Holders – Holder Body – Fastening Bolt”. This path is compared with two different paths in

figure 4.8 and 4.9 but with similar anchors. In Figure 4.8, the similarity score is zero while in

Cylinder Head

Cam Shaft Assembly

Shaft Holders

Holder Body

Fastening Bolts

Cylinder Head

Spark Plug

Connection Assembly

Wire

Fastening Bolts

Fig. 4.8. Two similarly anchored paths with incorrectly
suggested similarities and similarity score of 1

Cylinder Head

Fuel Injector

Fuel Atomizer

Cylinder Head

Fuel Dispenser

Fuel Atomizer

Fig. 4.7. Two paths with correctly detected similar
terms

80

Figure 4.9 the similarity score is 1. Although the suggestions made are wrong in both

comparisons a score of 1 means that the comparison in Figure 4.9 is more likely to reveal

similar concepts than the comparison in Figure 4.8. To make this comparison process more

reliable, ANCHORPROMPT uses a median score as the threshold below which all the

similarity measures are neglected.

Finally, ANCHORPROMPT also allows users to set the Equivalence-group size for classes,

where the Equivalence-group size is the number of synonyms or is-a relations contained in

an ontology. For example, the class Cylinder Head can have an is-a relation with a term,

Engine Cover. The Equivalence-group size in this case will be 2. This size can be used to alter

the classes scanned by ANCHORPROMPT to find similarities.

4.4.1.3. GLUE

GLUE is an ontology mapping system based on the machine learning approach. The word

GLUE is not an acronym and its name actually comes from the fact that the semantic

correspondences act as a ‘glue’ to bind the ontologies together in a semantic web (Doan et

al, 2002). In GLUE, similarity measures are defined based on the joint probability distribution

of the concepts involved. That is to say, for any two concepts A and B, P(A,B), P(A,B’), P(A’,B)

and P(A’,B’) are calculated. Where P(A,B’) is the probability that an instance in a particular

domain belongs to concept A but not to concept B. Similarly, P(A’B’) is the probability that

an instance in a domain does not belong to either A or B. An application can then be used to

calculate a similarity measure based on these probabilities. Two applications used by the

Cylinder Head

Cam Shaft Assembly

Shaft

Cams

Fastening Bolts

Fig. 4.9. Two similarly anchored paths with incorrectly
suggested similarities with similarity score of 2

Cylinder Head

Cam Shaft Assembly

Shaft Holders

Holder Body

Fastening Bolts

81

authors to demonstrate GLUE are the Jaccard coefficient and Most-Specific-Parent similarity

measures. Figure 4.10 shows the conceptual architecture of GLUE.

In the first step the ontologies to be mapped pass through the ‘Distribution Estimator’. Here

the joint distribution probabilities for certain instances are calculated. The Base Learner

here calculates the probability of the two concepts in two ontologies being similar using

different criteria. These criteria may include the checking of similarity in concept names,

concept attributes, concept instances etc. Two learners are specifically described by the

authors namely the Name Learner and the Content Learner. As their names suggest, the

former targets the names of instances while the later aims for their textual content. The

Meta Learner in the distribution estimator combines the probabilities provided by the base

learners and computes an accumulated probability by giving a certain weight to each base

learner as defined by the user. The joint distribution probabilities are then passed on to the

Similarity Estimator at the next level. This module generates a similarity matrix based on the

similarity measure defined by the user. Two similarity measures, as cited above, could be

the Jaccard Coefficient and Most-Specific-Parent. Finally, the Relaxation Labeller applies

some heuristics and domain constraints on this similarity matrix to find the most optimal

Relaxation Labeler

Similarity Estimator

……

Meta Learner M

Base Learner LkBase Learner L1D
is

tr
ib

ut
io

n
Es

ti
m

at
or

Joint Distributions: P(A,B), P(A, notB), …

Similarity Matrix

Common knowledge
& Domain
constraints

Similarity
function

Taxonomy O1

(tree structure
+

data instances)

Taxonomy O2

(tree structure
+

data instances)

Mappings for O1, Mappings for O2

Fig. 4.10. Working of the GLUE architecture

……

82

mapping configuration between the two ontologies. GLUE has been evaluated by using both

of the above stated similarity measures and satisfactory results were obtained (Doan et al,

2002).

4.4.1.4. QOM

Quick Ontology Mapping is so named because it is a technique which is claimed to have a

lower run time complexity than other mapping approaches (Ehrig and Staab, 2004) and

therefore is quick. From the point of view of this literature, however, the thing which is

important in this approach is its process flow. The authors give a very generic type of

mapping process which is said to subsume nearly all mapping techniques as shown in figure

4.11. This process flow is then used to analyze QOM.

The process starts with the Feature Engineering step where the ontologies to be mapped

are brought to a level or a state in which they can easily be processed for similarity

calculations. QOM exploits RDF triples for this purpose. The output of this process in QOM is

a set of candidate-mappings, which are the possible sets of concepts to be checked for

similarity.

Fig. 4.11. QOM Mapping Process

Feature Engineering

Search Step Selection

Similarity Computation

Similarity Aggregation

Interpretation

1

2

3

4

5

6

Iteration

Input

Output

83

The next step ‘Search Step Selection’ helps in choosing or restricting a certain area within

the ontology in which the user is most interested for mapping in a specific iteration. QOM

uses the structure of the ontology to make this choice. First of all the candidate mappings

are ordered in a certain manner and some of them are totally discarded to increase

mapping efficiency. Different strategies can be used to limit the number of candidate

mappings. These limits can be set by either fixing a certain percentage of candidates to be

processed or by considering label similarity. Additionally, a specific area in which mappings

are found in previous attempts can be fixed for candidate selection or a top down approach

can be used for this purpose.

The similarity computation step then uses different features of ontological entities to assess

their similarity across the two ontologies. Four ontological entity features specifically

mentioned are Concepts, Relations, Instances, and Property Instances. The similarity

measures mentioned for this step are:

1. Object Equality, which uses the previously established iteration history or logical

assertions to declare the two objects identical.

2. Explicit Equality checks if the logical assertions about the entities under consideration in

two ontologies prove them similar.

3. String Equality looks for similarity in two concepts or entities in two ontologies by going

through each character and comparing it with its possible counterpart in the other

ontology.

4. String Similarity checks if the two concepts are nearly similar with minor differences in

their names. Depending on the amount of difference a score between zero and 1 is

assigned to each concept.

5. Dice Coefficient first finds the union and intersection of the sets of instances of two

concepts in two ontologies. A ratio of cardinalities of the intersection to the union of

these sets is then taken to calculate the similarity index.

6. SimSet measures similarity through an approach called Multidimensional Scaling. In this

technique it is assumed that if two entities have equal similarity distances from some

other identical entities around them in the two ontologies, then the two entities are

similar.

84

Table 4.2. Ontological features and corresponding similarity measures used in QOM

Comparing Feature Similarity Measure

Concepts

Label string similarity

URI string equality

sameAs relation SimSet

direct properties SimSet

properties of direct super-concepts SimSet

direct super-concepts SimSet

direct sub-concepts SimSet

concept siblings SimSet

direct instances SimSet

instances of sub-concepts SimSet

Relations

Label string similarity

URI string equality

sameAs relation explicit equality

domain & range object equality

direct super-properties SimSet

direct sub-properties SimSet

property siblings SimSet

property instances SimSet

Instances

label string similarity

URI string equality

sameAs relation explicit equality

direct parent-concepts SimSet

property instances SimSet

Property Instances
domain & range object equality

parent property SimSet

Table 4.2 shows the features and similarity measures used in QOM. These similarities are

then aggregated using algorithms of choice to get a single similarity value, which is then

used to interpret mapping between the two ontologies either automatically or manually.

Having completed the first round with a specific similarity feature the whole process is

repeated with a different similarity feature. In QOM, lexical knowledge is given preference

over knowledge structure when selecting the next iteration criterion. The authors of this

technique believe that the restrictions imposed in step two, the search step selection, is

what makes QOM more efficient than other similar techniques. However, in addition to its

algorithm, QOM also serves as a framework of ontology mapping which any tool can use.

85

4.4.1.5. ONION

The ONtology CompositION system (ONION) attempts to semi-automatically resolve the

terminological heterogeneity between ontologies and establishes articulation rules for

meaningful interoperation. Through the use of an algorithm several heuristics are defined to

achieve this aim. The authors of this technique claim that combining the information

obtained by using multiple heuristics provides a better match between semantically related

terms in the ontologies (Mitra and Wiederhold, 2002). In ONION this is done by finding

linguistic similarity followed by structural matching. Based on a library of heuristic matchers,

an automated articulation generator (ArtGen) suggests articulations. These suggested

articulations are then rejected or accepted by a human expert. Articulation rules missed by

ArtGen can also be defined manually.

The heuristic matchers used by the automated articulation generator are classified into

iterative and non-iterative algorithms.

4.4.1.5.1. Non-Iterative Algorithms
As the name suggests, the non-iterative algorithms identify the matching concepts in one

pass without a second attempt. The linguistic matching in ONION is performed this way.

Here a similarity score is assigned to the potentially similar terms and depending upon a

user defined threshold an articulation is generated or ignored. The similarity detection is

done either through a thesaurus-based word relater or a corpus-based word relater.

Thesaurus-based word relater uses dictionaries and thesauri like WordNet to find out if the

two terms in two ontologies mean the same. The corpus-based word relater, on the other

hand, uses a corpus of documents belonging to the domain of the ontologies to be matched

and calculates word similarity scores based on the similarity of the contexts in which the

words appear in the documents. The context is calculated by taking the cosine of context

vectors. These context vectors represent the frequency of one word appearing in a 1000-

character neighbourhood of another. This method is used to generate a table of word

similarities to be used by the linguistic matcher. ONION does not use any instance based

heuristics but the matcher can be extended to use instance information if needed.

4.4.1.5.2. Iterative Algorithms
Two types of algorithms that use multiple iterations to generate semantic matches between

the concepts in two ontologies are used in ONION. The first one works on the principles of

86

Structure-based heuristics and targets the subsumptions of those concepts already found

similar through other heuristics. The second one uses inference-based heuristics where

ontology rules are used to infer similarity or relations between concepts in two ontologies

(Mitra and Wiederhold, 2002).

4.4.1.6. FCA-Merge

FCA-Merge is a semi-automatic ontology merging method, which employs natural language

processing and formal concept analysis techniques to merge two ontologies. In the first step

of linguistic processing, instances are extracted from a given set of domain-specific

documents. A lattice of concepts is then derived from the extracted instances by using

mathematical techniques taken from Formal Concept Analysis. At this stage, human

intervention takes place and the lattice of concepts is explored and transformed to the

merged ontology by the ontology engineer (Stumme and Maedche, 2001). Figure 4.12

shows the schematic of the FCA-Merge process. The figure shows how instances extracted

from a set of documents D along with the two ontologies O1 and O2 are passed through

Linguistic
Processing

Linguistic
Processing

FCA-
Merge

Lattice
Exploration

O2

O1

D

R1

R2

Onew

K1

K2

K

Fig. 4.12. FCA-Merge Ontology Merging Method

I1

doc1

doc2

doc3

doc4

doc4

doc5









Concept1

Concept2

Concept3

Concept4

























Fig. 4.13. The contexts K1 and K2 obtained through the linguistic processing of instances from the documents

I2

doc1

doc2

doc3

doc4

doc4

doc5









Concept1

Concept2

Concept3

Concept4





















87

linguistic processing to obtain two sets of formal contexts K1 and K2. The lattice K is then

formed by merging the two formal contexts. The lattice is then analyzed by a human expert

and a merged ontology Onew is created. The FCA-Merge core algorithm derives a common

context from the instances taken from domain-specific documents. This method of context

generation is very similar to the way contexts are generated in ONION. Figure 4.13 shows a

rough depiction of how this context generation works by illustrating matrices obtained

through linguistic processing of the documents. The first matrix shows that instance I1 exists

within the defined vicinity of Concept1, 2, 3 and 4 in doc1 while in doc2 it is just found near

Concept2 and Concept4. The occurrences of an instance near specific concepts enables a

score to be assigned to them showing the likelihood of an instance belonging to a certain

context.

4.4.1.7. Chimaera

Developed by the Stanford University Knowledge System Laboratory (KSL), Chimaera is an

ontology browsing, editing and merging tool. It also offers some testing and diagnostic

features. The merging task from Chimaera’s perspective consists of two main stages.

1. To coalesce two semantically identical terms from different ontologies so that they are

referred to by the same name in the resulting ontology and

2. To identify terms that should be related by subsumption, disjointness, or instance

relationships and provide support for introducing those relationships (McGuinness et al,

2000).

The most unique, and relatively the most useful, feature of Chimaera is its user interface

(UI). An ontology engineer can easily browse, edit and merge ontologies with simple mouse

clicks. This simple UI, however, has its disadvantages as well. The UI is only suitable for

classes and slots and non-slot individuals and facets are not displayed. Furthermore, there is

no support for axiom editing. Still the tool has some unique features like support for

defining and editing disjoint partition information and offers an extensive set of diagnostic

commands (McGuinness et al, 2000). A good display helps the user to perform many tasks

not originally intended by the tool. Such as finding and resolving different structural

mismatches in addition to the lexical dissimilarities in the ontologies to be merged.

88

For merging and evaluation, Chimaera generates name resolution and taxonomy resolution

lists. A Name resolution list presents recommendations to merge two seemingly similar

terms from two different ontologies while a taxonomy resolution list suggests taxonomy

areas that need reorganization. The name resolution list uses term names, presentation

names, term definitions, possible acronyms and expanded forms, names that appear as

suffixes of other names etc. The taxonomy resolution list uses a number of heuristic

strategies, e.g., one strategy involves the detection of those classes that have direct

subclasses from more than one ontology (McGuinness et al, 2000).

4.4.1.8. Analysis of the heuristic-based ontology matching approaches

Table 4.3 shows a comparison of all the ontology matching and mapping tools reviewed

above. These tools are analyzed for the similarity parameters and concept-matching rules

that they use to match ontologies. It can be seen that most of these tools use lexical

matching techniques for matching concepts, their instances and properties across two

ontologies. Many tools use WordNet for finding synonyms and hypernyms of concepts and

their attributes in the ontologies to be mapped. The main differences between these tools

becomes apparent when their matching rules are analyzed. In this regard, an interesting and

unique difference that two of the techniques ONION and FCA-Merge have, when compared

to other techniques, is their use of domain specific documents to identify the context of a

concept. Both of these techniques scan hundreds of textual documents relevant to the

domain a concept belongs to and find the occurrence of terms around the concept. If

refined to make it more accurate, this technique can be very useful in increasing the

automation of mapping techniques to a considerably greater level. The effectiveness of this

and other matching rules can be checked if these techniques are analyzed from the

ontological mismatches viewpoint. This is done in table 4.4 (next page).

Table 4.4 uses the mismatches framework from table 4.2 and forms a matrix showing the

mismatches overcome by these tools. Three symbols are used here to denote the capability

of a particular method to detect and resolve a mismatch as done by Klein (Klein, 2001). ‘A’

stands for automatic and represents a capability of automatically detecting or resolving a

mismatch. ‘U’ stands for user and indicates that the tool offers suggestions to the user to

solve a particular mismatch, and ‘M’ denotes the mechanism provided to the user by a tool

or technique, to detect or resolve a mismatch (Anjum et al, 2010). The table is

89

filled with the help of the review of ontology matching and mapping tools and techniques

presented in this section.

A quick glimpse of this table reveals several empty fields representing a lack of available

features in tools and techniques to detect and resolve conceptualization mismatches. Most

of the tools and techniques provide a mechanism to the user to detect and resolve

mismatches. It can be seen from table 4.4 that QOM (Quick Ontology Mapping) and

Chimaera have a mechanism for the users to detect the conceptualization mismatches. This

is because in QOM, the breadth of scope of similarity measure allows this technique to

cover all of the possible mismatches. In Chimaera, however, it is its detailed and user

Table 4.3. Analysis of ontology matching and mapping tools

S.No. Authors Technique Similarity Parameters Matching rule used

1
Maedch et al
(2002)

MAFRA

(MApping
FRAmework)

Lexical Similarity
Property Similarity
(attributes or relations)

Object Identity
Establishment
Statistical Analysis of
Transformations

2
Noy & Musen
(2003)

I PROMPT Class names Any term-matching
algorithm can be
plugged in 3

Noy & Musen
(2003)

AnchorPROMPT Anchor Points

4 Doan et al (2003) GLUE Concept Instances
Similarity Metrics
(Probability of
similarity of Instances)

5
(Ehrig and Staab,
2004)

QOM (Quick
Ontology
Mapping)

Concepts, relations,
instances and property
instances.

Object equality,
explicit equality, string
equality, string
similarity, dice
coefficient, sim-set
measures

6
Mitra &
Wiederhold (2002)

ONION Concept names
Context extracted
from corpus based
word relator

7
Stumme &
Maedche (2001)

FCA-Merge Concept names
Context extracted
from corpus of domain
specific documents

8
McGuinness et al
(2000)

Chimaera

Term names, presentation
names, term definitions,
possible acronym and
expanded forms, names that
appear as suffixes of other
names

Name resolution list
and taxonomy
resolution list

90

Table 4.4. Effectiveness of contemporary ontology matching tools to handle ontological mismatches

Semantic Mismatches MAFRA PROMPT ANCHORPROMPT GLUE QOM ONION FCA-Merge Chimera
Detection Resolution Detection Resolution Detection Resolution Detection Resolution Detection Resolution Detection Resolution Detection Resolution Detection Resolution

Co
nc

ep
tu

al
iz

at
io

n
M

m

Categorization Mm

M U

M

M

Aggregation-level Mm

A U

M

M

Concept Description Mm

M

M

Coverage Mm

M

M

Single vs Multi valued
property

M

M

M

Unique vs Non-unique
valued property

M

M

M

Structure Mm

M

M

Attribute-assignment Mm

M

M

Attribute-type Mm

M

M

Alignment conflict among
disjoint relations

M

M

Ex
pl

ic
at

io
n

M
m

Concept & Term Mm

M

M

Concept & Definiens Mm
(Homonyms)

M

M

Concept Mm

M

M

Term & Definiens Mm
(Synonyms)

M

M U A U A U A U M U A U A U

Term Mm M

M U A U A U A U M U A U A U

Definiens Mm M

M U A U A U A U M U A U A U

 A Automatic

U Suggests solutions to the user

M Provides Mechanism

91

friendly interface that helps the user to manually detect any kind of mismatches. Table

4.4, on one hand, shows that the available tools and techniques need to be made more

automatic and on the other it indicates that these tools should be modified to target

conceptualization mismatches. It is also clear from table 4.4 that the available tools and

techniques mainly focus on finding the similarities rather than dissimilarities between the

concepts in two ontologies and then establish correspondences. So, the main steps involved

in every technique are:

1. Scanning ontologies for similar concepts,

2. Authenticating the similarity through different algorithms and tools,

3. Establishing correspondences.

The second step is the one which deals with the verification of knowledge in shared

ontologies and it is here that the existing research appears to be focussed more on the

explication side of terminologies and concepts than on the conceptualization side. Table 4.4

shows that only AnchorPROMPT provides an automatic detection of one of the

conceptualization types of similarities. This tool also recommends correspondences that can

be established between specific concepts in the ontologies to be mapped. The other two

tools QOM and Chimaera just provide information about the structure of ontologies so that

it becomes easier for the user to detect some conceptualization similarity (Anjum et al,

2010).

The gap identified here suggests that research is required to find ways through which

different conceptualization mismatches can be detected and resolved in order to give

accuracy to the process of mapping and thus verifying the knowledge being shared. An

improvement in the mapping process will also aid the effort of making these tools and

techniques increasingly automatic. This accuracy and automation is directly proportional to

the interoperability between knowledge systems. Employment of a more accurate and

automated approach is, therefore, vital from the interoperability perspective and needs to

be considered seriously. The art of ontology matching is, however, not limited to the

heuristic-based approaches. The other set of approaches, which require ontologies to be

committed to a common ontology, also exist. This approach is discussed next.

92

4.4.2. Foundation ontology based ontology matching

Ontologies, being the explicit and formal specification of a conceptualization (Gruber,

1993b), provide a good platform for building shareable and interoperable knowledge

repositories. They not only provide a way to preserve knowledge but also enable one to

produce pre-packaged sets of information and knowledge available for individual use or for

constructing large knowledge sets by using them as building blocks (Neches et al, 1991).

These building blocks, if made available in the form of a shared or foundation ontology, can

assist ontology builders to develop their own ontologies. Researchers agree that to make

knowledge bases more shareable and expandable, instead of building them from scratch, it

is more appropriate to develop them out of a single agreed upon foundation or standard

(Neches et al, 1991). Foundation ontologies, as their name suggests, provide the basis for

this standard. They make the expansion and integration of knowledge bases easier. This is

because if two system builders build their knowledge bases on a common ontology, the

system will share a common structure, and it will be easier to subsequently merge and share

the knowledge bases (Swartout et al, 1997). These knowledge bases may also be

accompanied by their own ontologies relevant to a specific domain. Such ontologies are

called domain ontologies and as they provide a set of terms for describing some domain

they can be thought of as taxonomies of relevant objects within that domain (Swartout et

al, 1997). In these ontologies local vocabularies instead of standardized global vocabularies

are formed in a particular context (Yang and Zhang, 2007). Example of domains may include

aerospace, biology, manufacturing, arts etc.

In chapter 3 it was understood that some of the most famous foundation ontologies include

Standard Upper Ontology – SUO (Niles and Pease, 2001), Suggested Upper Merged Ontology

– SUMO (Niles and Pease, 2001), WordNet (Deng et al, 2009), DOLCE (Gangemi et al, 2002),

and Cyc Ontology (Matuszek et al, 2006). Foundation ontologies like these may help to

reduce semantic heterogeneity by restricting domain ontology builders to match their own

conceptualisations against a common foundation, so that all communication is done

according to the constraints derived from the ontology (Schorlemmer and Kalfoglou, 2005).

These constraints, in a way, serve as a means of binding domain ontology builders to an

ontological commitment. Ontological commitment is the process in which interested parties

agree on the use of terminologies in an ontology. It helps in defining precisely the meaning

93

of a term (Gomez-Perez et al, 2004) and thus helps in sharing knowledge accurately with

minimal misinterpretation. It is this agreement, in the form of constraints, which is the basis

of the mediation approach discussed in this thesis.

Existing domain ontologies use foundation ontologies to communicate with other

independently developed ontologies. This is done by first aligning domain ontologies with

concepts in a foundation ontology and then based on these alignments between domain

and foundation ontologies, the similarities between the domain ontologies are established

as shown in figure 4.14. Some examples of this use of foundation or upper ontologies can be

seen in the literature. In all cases, independently developed heterogeneous ontologies are

provided with a pathway to communicate with each other by using an upper ontology as a

semantic bridge. These examples are presented in detail in the next sections.

4.4.2.1. SMIF – Semantic Manufacturing Interoperability Framework

The semantic manufacturing interoperability framework of Changoora and Young (2010)

also uses a foundation ontology and subsumed domain ontologies for semantic

interoperability between knowledge sharing parties. It also features a domain ontology

layer, which assumes that these domain ontologies are formed by specializing concepts

from the foundation ontology as shown in figure 4.15 (next page). The foundation ontology

here, thus, provides a basis to share meaning (Changoora and Young, 2010). The semantic

reconciliation layer uses the logical assertions in the foundation ontology to retrieve

mappings between similar concepts in two domain ontologies. This is done with the help of

semantic mapping concepts. These concepts are formally defined mapping relations with

added remarks for human interpretation. The mapping process involves the use of these

relations to determine similarity between two concepts in independently developed domain

ontologies. In the interoperability evaluation layer, these mappings are retrieved with the

Domain Ontology 1

Fig. 4.14. Communication between domain ontologies via a foundation ontology

Domain Ontology 2

A
lig

nm
en

ts
A

lignm
ents

Foundation Ontology
Communications b/w domain ontologies

94

help of queries aimed at finding correspondences between concepts across two domain

ontologies. The important aspect of this framework is the use of a foundation ontology to

reconcile differences between two domain ontologies.

4.4.2.2. FOS – The Fishery Ontology Services project

Another example of the use of core ontologies for ontology mediation can be found in the

work of Gangemi et al (2004). In this work, a Core Ontology of Fishery (COF) is developed

and used for the purpose of reengineering, alignment, refinement, and merging of fishery

knowledge organization systems. The COF is developed by specializing the DOLCE-Lite-Plus

that is an extension of DOLCE foundation ontology containing ontologies of Descriptions and

Situations. The part of their work that is relevant to this research includes the mapping of

Figure 4.15. A depiction of SMIF

Heavyweight manufacturing ontological
foundation

Common logic based foundation

Ontology
mapping process

concepts

Semantic mapping
concepts

Foundation Layer

Domain Ontology Layer

Semantic Reconciliation Layer

Interoperability Evaluation Layer

?
? ?

?Similar

Similar

Modularization
Proto-ontologies

integration
Extraction of

top-levels

(Proto-)Ontologies
library

Align to
WordNet

Align to core
ontology

Create new core
fragment

Align directly to
foundation ontology

Consistency
checking

Aligned ontology
library

Class exists in
core?

Class exists in
WordNet?

else

Other core seems
needed for class

Figure 4.16. The activity diagram for modularization and alignment

95

domain ontology concepts with the COF. Figure 4.16 shows the step-by-step process. In the

first three steps the domain ontologies, named proto-ontologies, are processed to extract

the top levels. Once these levels are known, the concepts existing in the proto-ontologies

are then matched against the concepts in the COF. This is done manually by making a

certain class in a proto-ontology a sub class of an equivalent concept in the COF. If an

equivalent concept is not found in the COF, the proto-ontology concept is then made a sub

class of a similar concept in WordNet. If the concept to be aligned is very relevant to the

fishery domain, a separate core ontology fragment is made for that concept and is added to

the COF. If none of the above procedures work for a concept in the proto-ontology, it is

aligned with a very general concept in the DOLCE foundation ontology. Once all the

intended concepts are aligned, the consistency of alignments is checked. At this point all the

proto-ontologies are aligned to the concepts in the upper ontologies and thus provide a

bridge to share knowledge seamlessly.

4.4.2.3. Use of SENSUS for air campaign planning

SENSES is a broad coverage ontology developed by extracting and merging information from

existing electronic resources. Being a ‘broad coverage ontology’ it also contains very general

foundation terms such as ‘inanimate object’ along with the core concepts like ‘submarine’

(Swartout et al, 1997). SENSUS has more than 50,000 terms. In their work, Swartout et al

(1997) first add 60 seed terms or domain concepts to the core SENSUS ontology. These

concepts are added to the core concepts manually. This is illustrated in figure 4.17. The

whole path from the newly added domain concept to the root concept in the core ontology

is added to the newly formed ontology. In this way some paths are found to have many

relevant terms which subsume a concept in the domain ontology. In these cases the whole

SENSUS concepts

Domain concepts

Figure 4.17. Linking domain terms to SENSUS

96

sub-tree is added to the newly formed ontology. Once the stage of concepts addition is

completed, the irrelevant concepts are pruned from resulting ontology. After trimming

down the irrelevant concepts and terms, the ontology contained approximately 1600 terms

and concepts.

The authors argue that although this work intended on forming a domain ontology for air

campaign planning, by using the structure of a core ontology, it also provides impetus to a

method for accurate similarity finding during ontology mediation and thus may help in

developing an interoperable system for seamless knowledge sharing.

4.4.2.4. The DOGMA framework

DOGMA (Developing Ontology-Guided Mediation for Agents) is a methodological framework

for ontology engineering (Jarrar and Meersman, 2009). It deals with the cases where a

centralized shared ontology is used to define more specific application ontologies to be used

by certain applications. In this way the centralized ontology provides a basis of shared

meaning. The framework introduces the notion of an ‘Ontology Base’, a ‘Domain

Axiomatization’ and an ‘Application Axiomatization’. Axiomatization here refers to a set of

rules in an ontology defining the intended meaning of a concept and dictating its use. In the

framework, the ontology base is intended to capture plausible domain axiomatizations. A

domain axiomatization is an axiomatized theory that accounts for the intended meaning of

domain vocabularies (Jarrar and Meersman, 2009). Particular applications can commit to

the ontology base through an application axiomatization as shown in figure 4.18. The

authors call this commitment the applications ‘ontological commitment’, which likewise is in

Domain Axiomatization
(Ontology Base)

Application-kind
Axiomatization

Particular
Applications

Figure 4.18. The DOGMA framework

97

the form of axioms and rules. The rationale behind the proposition of this framework is the

fact that a complete and exact meaning of domain vocabulary is impossible to define with

the help of a logical theory such as the axiomatizations mentioned here. This is because the

use of a concept in different domains or at different levels of ontology may be different and

a strict definition may restrict the use of that concept or vocabulary for different domain or

application ontology builders, thus causing difficulties. Due to this reason, it is argued, the

use of a vocabulary should not be precisely defined at the domain or shared ontology level

and some leeway should be left for the application ontology builders to define at their level

when building application ontologies for specific applications. The authors call this strategy

a ‘double articulation’ which is a means of expressing knowledge in a two-fold

axiomatization (Jarrar and Meersman, 2009).

The authors give an example of ‘an ISBN of a book’ to clarify their argument. The use of the

ISBN varies across different application scenarios. A library, for example, may not give it as

much importance as a bookstore does. For a bookstore, the ISBN might be an essential

attribute of a book while for a library it’s the authors’ names that are important. This is

because in some case, for example research theses and various reports, the ISBN is not

available. Library applications, therefore, may not find the use of ISBN appropriate if it is

fixed by the domain axiomatizations. But if its definition is relaxed at the domain level, the

application axiomatization may specify its restricted meaning at the application level for its

use by various applications.

The DOGMA framework provides a very useful insight into the way axioms have to be

defined at different levels in an ontology-based knowledge sharing system. This is

specifically relevant from the point of view of knowledge verification because a logic-based

verification of shared knowledge comprises of a set of rules and axioms that need to be

defined by keeping the DOGMA approach in sight.

4.4.2.5. LOM – A Lexicon-based Ontology Mapping tool

LOM (Li, 2004) is a semiautomatic ontology mapping tool which aids a human engineer to

establish correspondences between two ontologies. It uses four different methods to match

vocabularies from any two ontologies. The first two of these methods are purely heuristic-

based or machine learning methods that involve the matching of lexical similarity through

98

different algorithms. The third method uses WordNet as an external source of knowledge to

help identify synonyms in matching. The final method uses SUMO and a general purpose

mid-level ontology called MILO (Niles and Terry, 2004) to find the ontological category of

each word constituent for matching. Together SUMO and MILO contain more than six

thousand concepts in the top and middle level and most popular synsets of WordNet are

mapped with these concepts. It is these mappings which LOM exploits to find similarities

across two ontologies. This exploitation involves first matching the concepts in the source

ontology with similar terms in SUMO and MILO as suggested by WordNet and then

repeating the same procedure for the terms in the target ontology. This process reveals the

similarity across two ontologies to be matched because the terms that match the same

concepts in SUMO and MILO are determined as similar (Li, 2004).

4.4.2.6. Unstructured vocabulary matching of Aleksovski et al

(Aleksovski et al, 2006) use an OWL DL medical terminology ontology called the DICE

ontology as background knowledge to match two flat unstructured lists of concepts. The

procedure is the same in which concepts in one set of vocabularies are first matched with

similar concepts in the DICE ontology. This matching is called the anchoring match. In the

same way, the vocabularies from the second list are anchor matched with similar concepts

in the DICE ontology. Finally, the vocabularies anchored with the same terms in the DICE

ontology are declared similar. Lexical matching of concept names and their synonyms is

used for the process of anchor matching.

4.4.2.7. Automatic ontology matching of Mascardi et al

With an element of confidentiality in view, (Mascardi et al, 2008) propose an algorithm that

uses upper ontologies to align two heterogeneous ontologies. This algorithm is based on

two functions Align (O1, O2) and Merge (Al1, Al2) where O1 and O2 are the source and

target ontologies respectively while Al1 and Al2 are respective alignments of concepts in O1

and O2 with terms in an upper ontology. The process of ontology matching consists of three

steps. In the first two steps, the Align function tags similar concepts of source and target

ontologies with concepts from an upper ontology and in the final step, these tagged

alignments are merged to obtain similarities between the two ontologies. This process

provides some confidentiality to virtual enterprises wanting to share information without

exposing their ontologies. This is because these enterprises are only required to use the

99

upper ontology as reference without exposing their own ontologies. In their later work, they

(Mascardi et al, 2010) experiment with OpenCyc, SUMO-OWL and DOLCE and use these

foundation ontologies as semantic bridges to match ontologies. Both the concept names

and structural composition are used in this work to find similarities in two ontologies.

4.4.2.8. Analysis of foundation ontology based ontology matching techniques

The work related to the use of foundation ontologies, reviewed here, shows that usually a

vocabulary is developed relevant to a specific domain to provide a shared platform for

building ontologies further down the level. This shared vocabulary is given the name of Core

ontology. It can be seen that this approach prevents any ontological mismatches occuring

because the domain or application ontology builder provides a mapping during the ontology

building stage. This is done by attaching concepts in the newly constructed ontology to a

similar concept in the core ontology subsumed under a foundation or upper ontology. This

attaching of domain concepts, however, may cause inconsistencies as different people may

interpret, and thus use, concepts and terms differently. This inconsistency can be prevented

by using logic-based axioms at the core and domain levels. Care, however, needs to be

taken when defining axioms, as a too tight definition of a concept at the core or foundation

level may hamper its use at the domain level. This can be prevented by allowing, to some

extent, the domain or application ontology builders to define the use of a concept

themselves when building ontologies. The most important fact, from the point of view of

this research, that can be derived from the review of foundation based techniques is that

‘The selection of concepts from the core concepts ontology to build domain ontologies

actually decides if the resulting knowledge is correct or not.’

For example, consider a case where a knowledge expression states a fact about the concept

‘bank’. The word ‘bank’ may refer, either, to the bank of a river or a bank as a financial

institution. It is to be made sure that the correct concept is selected from core concepts

ontology when stating facts in the knowledge base. The emphasis of knowledge verification

techniques using upper ontologies, therefore, has to be on defining ways to prevent an

incorrect use of concepts from the core concept ontology. Jarrar amd Meersman (2008), in

the above presented review, show that axiomatizations can be used for this purpose. For

this reason, knowledge verification in systems with upper and core concepts ontology may

100

comprise of a mechanism that specifies, with the help of axiomatizations, a standard way of

specializing concepts from a core concept or foundation ontology. The similarity finding

technique then can be developed that uses the principles of that standard to discover

correspondences between ontologies committed to the same core. In the tools, techniques

and frameworks reviewed in this chapter, a description of such a mechanism cannot be

found. Such a framework, therefore, is proposed in this research a detailed description of

which is provided in chapter 8. This framework establishes similarities across two domain

ontologies automatically by following concepts in domain or application ontologies to their

origin in the core concept or foundation ontology. This framework is then tested and

validated in chapter 9 by using real industrial examples.

The view of knowledge verification presented in this chapter, however, does not draw the

complete picture of the rationale of knowledge verification from the perspective of this

research. This view is complemented by facts presented in chapter 7, where through a case

study, the industrial needs of knowledge verification are identified. To understand the

rationale behind the proposed framework, the understanding of these industrial needs is

also essential. The next chapter presents a brief review of the application of ontologies in

manufacturing and an introduction to the techniques employed in this research for

modelling ontological engineering product models.

4.5. Conclusions

It is understood that ontologies are specifications of conceptualisations and there can be

differences in ontologies in the way these conceptualisations are specified which give rise to

semantic ambiguities. These ambiguities get translated into incorrect knowledge

understanding if knowledge is shared through ontologies. The challenge of knowledge

verification is therefore the challenge of overcoming these ambiguities by finding similarities

across two ontologies. It is further established that there can be a number of different

ontological mismatches that may occur during ontology development and these mismatches

cause problems in finding similarities between the two ontologies to be matched for

seamless knowledge sharing. A correct discovery of similarities, once made after the

overcoming these mismatches, rectifies the meaning of concepts across different ontologies

and thus verifies the knowledge associated with those ontologies. It is also presented that

101

for finding similarities, two main types of techniques can be found in the literature. The first

type, called the heuristic-based approaches, uses machine learning techniques to find

similarities between two ontologies. The second type makes use of a shared upper ontology

to reconcile differences across two ontologies. The review of these tools, techniques and

frameworks draws the following conclusions:

1- Most heuristic based approaches for ontology matching target and resolve

explication mismatches. Some work therefore needs to be done to develop

techniques aiming at conceptualization mismatches.

2- All heuristic-based tools and techniques require human intervention at some point.

A potential area of improvement, therefore, is the automation of these tools and

techniques.

3- Foundation ontology based techniques resolve the issue of mismatches but bring

into being the problem of inconsistencies when concepts from the core concept

ontology are chosen to build domain or application ontologies and associated

knowledge bases.

4- A plausible solution for these inconsistencies appears to be the use of logical

theories or axiomatizations at different levels of the foundation and core concepts

ontology.

5- The design and development of a mechanism capable of finding similarities between

two ontologies by using their inheritance in the foundation or core ontology is

needed.

These conclusions together with the conclusions of chapter 6 form a set of requirements for

the proposed solution in this research.

102

Chapter 5: An introduction to Common Logic based ontology
development formalism

103

5.1 Chapter overview
A brief introduction to Common Logic has already been given in chapter 3. This chapter now

consolidates that introduction by describing how ontologies are formed in Knowledge

Frame Language (KFL), a formalism based on one of the syntaxes of Common Logic. It also

introduces the ontology editing environment used in this research, which is called

Integrated Ontology Development Environment (IODE). This description is necessary in

order to explain the experimentation in this research which has used this formalism and its

editing environment IODE and therefore frequent examples have been given in the next

chapters using this formalism and references to the editing environment. The inclusion of

this chapter, therefore, makes the description of the research work clearer and more

understandable. ‘KFL reference’ (Highfleet Inc, 2010) is the main source of information

presented in this chapter.

5.2 Knowledge Frame Language (KFL)
The ISO standard 24707 defines a family of logic-based languages under the name of

Common Logic (ISO/IEC 24707:2007(E), 2007). One of the syntaxes of Common Logic given

in this standard is CLIF (Common Logic Interchange Format). KFL, which is the formalism

used in this research, is actually a syntactic layer which sits on top of an extended syntax of

CLIF called ECLIF (Extended Common Logic Interchange Format) ([Anonymous], 2010).

Common Logic has been selected to build ontologies in this research, instead of OWL which

is the most frequently used formalism for building and experimenting with ontologies. This

selection has been made because of the high expressiveness of common logic which is

important to capture the complex relationships which exist in some manufacturing contexts.

As compared to other formalisms which are usually restricted to the creation of binary

relations, CL provides the user with the capability to define ternary (three places),

quaternary (four places) and even quinary (five places) relations ([Anonymous], 2010). In

addition to that CL also provides a highly powerful syntax for logical expressions.

Ontolingua, an ontology development language, was briefly discussed in chapter 3. (Gruber,

1992) defines five essential components of an Ontolingua ontology. These are (1) Class

definition, (2) Relation definitions, (3) Function definitions, (4) Instance definitions and (5)

Axiom definitions. The pioneering work of (Visser et al, 1997) about ontological mismatches

(see chapter 4) is also based on this definition of ontologies and therefore it is reasonable

104

that a KFL ontology is also analyzed on the basis of this 5-tuple. This is done by finding

equivalences in a KFL ontology with the five components as shown below

Gruber’s Class definitions KFL Properties

Gruber’s Relations definitions KFL Relations

Gruber’s Function definitions KFL Functions

Gruber’s Instance definitions KFL Facts

Gruber’s Axiom definitions KFL Rules - A combination of KFL properties, relations
and functions

These five components are defined next in more detail.

5.2.1 KFL properties
A KFL property is the most fundamental constituent of a KFL ontology. Its description,

therefore is necessary because of its frequent use in the examples presented in the next

chapters. One of the main aims achieved in this research by using ontologies is the

modelling of an engineering component. As will be shown in chapter 6, an engineering

component itself, its features, its dimensions, and its measuring units, are all represented

through KFL properties. Furthermore, this constituent is an essential part of the rest of the

four components of a KFL ontology.

The first thing to note here is that, apart from the rules, the directives in a KFL ontology start

with a colon (:) as shown in the following examples. There are three essential directives to

define a class in KFL as shown below.

: Prop concept_1

: Inst Type

: sup Object

The ‘Prop’ directive stands for ‘property’ and is used to define a concept or a class. The ‘Inst’

directive stands for ‘instance’ and is used to associate the newly defined class with one of

the categories predefined in the top level ontology contained by the ontology editing

environment used in this research (a description of this environment, called IODE, is given in

section 5.3 of this chapter). The ‘sup’ directive here defines the property ‘concept_1’ as a

direct subsumption of the concept ‘Object’ predefined in the top level ontology. By using

105

the ‘sup’ directive, through the query tool in IODE, a specific concept can be traced back

through its lineage to its origin. This is particularly useful when a concept in the domain

ontology has to be traced back to its origin in the foundation ontology. This traceability

attribute of an ontology is called the ‘handle’. So for the concepts in a KFL ontology the

handle is its subsumption directive. For example, the feature concept ‘disc’ is defined as

: Prop disc

: Inst Type

: sup features

Which says that there is a class named ‘disc’ which is an instance of ‘Type’ and its super-

class is a class named ‘features’. The reason for emphasizing the existence of a handle here

is that this attribute of a KFL ontology is used in this research to make concepts traceable

during the process of knowledge verification. More on this can be read in chapter 8 where

the process of knowledge verification using KFL ontologies is explained.

5.2.2 KFL relations
A KFL relation is that constituent of a KFL ontology which will be used to bind the shape

features with the engineering component in its ontological model. It is also used, in the

ontologies developed in this research, to relate a shape feature with its measuring

dimensions. A clear understanding of this constituent of the KFL ontology is, therefore,

crucial for the understanding of the relationships between different parts of a KFL ontology

which are shape features, engineering component and their dimensions in this case.

Similar to the definition of classes, relations in a KFL ontology also require at least three

directives. For example a relation named ‘relation_1’ is defined as follows:

: Rel relation_1

: Inst BinaryRel

: Sig concept_1 concept_2

These three lines say that there exists a relation named ‘relation_1’ which is a binary

relation i.e. existing between two concepts, and these two concepts are ‘concept_1’ and

‘concept_2’. The two related concepts are declared in the ‘Sig’ directive which stands for

‘signature’. This signature can be used as a handle to distinguish this relation from other

106

relations with similar names or to match it with an identical relation with a different name

in other independently developed ontologies. A practical example in the field of

manufacturing can be a relation which asserts that a component ‘disc’ has a ‘diameter’. This

is done through a relation named ‘hasDiameter’ as shown below:

:Rel hasDiameter

:Inst BinaryRel

:Sig disc diameter

These assertions say that a binary relation ‘hasDiameter’ exists between the classes ‘disc’

and ‘diameter’. This relation is binary because it exists between two concepts. A ternary

relation can also be defined with an additional concept. For example the measuring unit of

diameter can also be defined within a single relation as follows:

:Rel hasDiameter_mm

:Inst TernaryRel

:Sig disc diameter dia_mm

In these lines, a relation existing between three different concepts is defined within one set

of assertions. The relation here says that the disc has a diameter attribute which is

measured in millimeters. A KFL ontology can have relations between as many as five

different concepts. This is an attribute of this ontology development formalism which makes

it distinct from other similar logic based languages used to write ontologies. However, a

more appropriate way of defining measurement units is through ‘KFL functions’ which is

defined next.

5.2.3 KFL functions
KFL functions are mainly used in this research to define measurement units of numerical

quantities such as geometrical dimensions of an engineering component. Its description and

a clear understanding is, therefore, very important because the integrity constraints and

rules defined in the domain ontologies take decisions depending upon the dimensions of

shape features in an engineering component.

As is the case of the relation definition, functions in KFL are also defined using three

essential directives as shown below:

107

: Fun length_unit

: Inst UnaryFun

: Sig RealNumber -> length_quality

Like relations, functions can also be binary, ternary, quaternary and quinary. They can

therefore bind up to five concepts together under one name. For example, the following

function can be used to define a measuring unit along with its tolerances.

:Fun angle_degrees

:Inst TernaryFun

:Sig RealNumber RealNumber RealNumber -> angle_quality

As in a relation definition, the signature in a function declaration can be used as a handle to

differentiate a function from other functions of similar name or to find a similar function

with a different name in other ontologies. These three lines say that there exists a function

named ‘angle_degrees’ which is a Ternary function, the value contained by it is in the form

of three individual real numbers and it belongs to the concept ‘angle_quality’. A working

example can be 90o with tolerance of +1o and -0.5o. Notice that the signature directive in a

function declaration contains an arrow (->) unlike the relation declaration where there is

simply a gap between the signatures.

5.2.4 KFL facts
KFL ontologies are populated with instances to develop knowledge bases. This is done by

writing a knowledge statement and using it to form or populate the knowledge base. In the

case of KFL ontologies, this knowledge statement is called a ‘fact’ and the processes of

writing and introducing it to the knowledge bases is called ‘fact assertion’. So facts are

asserted in a KFL ontology in order to develop a knowledge base. Their understanding is

extremely important because they are the building blocks of a knowledge base associated

with an ontology. In this research, facts are used to form instances of engineering

components in the knowledge base. The rules written in the manufacturing ontology, by

using the properties, relations and functions, target these facts in order to verify that a

certain piece of knowledge, like the dimensions of a shape feature, is correct and according

to the allowances provided by the manufacturing engineer.

108

Facts, in a KFL ontology, are written in a syntax of common logic called simple common logic

(SCL). An example of a simple fact is given below.

(disc plate1)

This fact says that an instance of the class ‘disc’ exists with the name ‘plate1’. Here the class

‘disc’ needs to be defined earlier in order for this fact to be meaningful. In a similar way,

more detailed facts can be defined. For example a fact using relations and functions is

declared as follows:

(hasDiameter plate1 (diameter_mm 400))

Here the statement uses a relation ‘hasDiameter’ and a function ‘diameter_mm’ to declare

a complete fact saying that the instance of the class disc named ‘plate1’ has a diameter of

400mm. Again, these relations and functions have to be defined earlier as explained in the

previous sections. These facts can be controlled through rules existing in an ontology. The

rule base of a KFL ontology can be used to decide which facts may be asserted and which

may not, and this is very useful in the manufacturability analysis of an engineering

component during its design. The manufacturability analysis through KFL rules is explained

in detail in chapter 8. KFL rules are detailed further in the next section.

5.2.5 KFL rules
Rules can be written in a KFL ontology to assert an assumption in the form of an axiom or to

control the declaration of classes or facts in the form of a constraint. They are like

scrutinizing tools, used by the verification system proposed in this research, to verify the

manufacturability of an engineering component as well as to ensure the consistency of the

use of concepts from the foundation ontology to build the domain ontologies.

The following example can be used to understand the working of these rules, as this rule

makes sure that a complete definition of an instance of a ‘disc’ is provided by the user.

(=> (disc ?x)

(exists (?d ?h)

 (and (hasDiameter ?x ?d)

(hasHeight ?x ?h))))

109

:IC hard "For a complete description of a ‘disc’ both diameter and
height are needed."

The use of the sign of interrogation (?), as seen in the above rule, is made whenever a

variable has to be defined. In the above example therefore, ?x, ?d and ?h are all variables

representing instances of a ‘disc’, its ‘diameter’, and its ‘height’ respectively.

Constraints defined in KFL ontolgies can be hard or soft depending upon the requirement.

This rule is a hard integrity constraint hence ‘IC hard’ in the last row and it says that if there

exists a disc then its diameter and height should also both exist. A hard integrity constraint

stops the user from proceeding with the faulty ontology until the fault is corrected while a

soft integrity constraint just gives a warning to the user without preventing the ontology

being loaded into the editing environment.

5.2.6 Other essential parts of a KFL ontology
The five components defined above form the essential skeleton of a KFL ontology. There are

other parts of the complete KFL file which help in identifying the purpose and scope of the

ontology built in this formalism. For example, a KFL ontology has to start with its Name,

Description and Context it is using. These three attributes have to be defined before

defining the classes and other building blocks. The start of a typical KFL ontology therefore

looks like this:

: Name “Design ontology”

: Description “An ontology containing design concepts.”

: Use MLO

The first two lines are self explanatory but the third line needs some more explanation. The

keyword ‘Use’ is used to inform the ontology editor about the context in which the ontology

is defined. The context shown in the above example is MLO, the Meta Level Ontology

context, which is a context predefined by the ontology editing environment that has been

used in this research. Ontology builders can also define their contexts as shown below:

: Ctx DSN

: Inst UserContext

: supCtx MLO

110

These assertions are similar to other assertions explained in the previous sections having

three main directives (1) name, (2) instance type and (3) super-concept description. A user

context has to be subsumed to a predefined context which is MLO in this case while DSN is

the user defined context. This context can optionally be attached as a prefix of a class,

relation, or function when defining rules or asserting facts. This feature of a KFL ontology is

the most important of all from the perspective of this research. This is because it is the

context which helps the ontology matching systems to distinguish between concepts of

different ontologies. For example, the term ‘mouse’ in the context of computers is entirely

different from a mouse in the context of biology. Likewise, a context prefix attached to an

ontological term aids its identification and differentiation from other similar terms in

different contexts and this is also true in KFL ontologies.

The description of a KFL ontology given in the sections above does not include some

optional directives and keywords because of their irrelevance with respect to the work

presented in this thesis. A consolidation of the examples given above provides an example

of a simple but complete ontology as shown in table 5.1.

The ontology shown in table 5.1 (next page) provides a vocabulary to model a disc shaped

component shown in figure 5.1. The instances of such a disc can be defined by asserting

facts that use the classes, relations and functions defined in the ontology. The following

facts model a disc with a height of 20mm and a diameter of 80mm.

(disc d1)

(hasDiameter d1 (diameter_mm 80))

(hasHeight d1 (height_mm 20))

It can clearly be seen that in order to assert these facts all the classes, relations and

functions defined in the ontology earlier were essential. The rule present at the end of the

ontology makes sure that both diameter and height of the disc are defined because the

20mm

80mm

Figure 5.1 : A simple disc

111

Table 5.1: An example ontology
Code Description

1 : Name “Design ontology” Scope
definition 2 : Description “An ontology containing design concepts.”

3 : Ctx DSN

Context
definition

4 : Inst UserContext
5 : supCtx MLO
6
7 : Use DSN
9

Class
definitions

10 : Prop features
11 : Inst Type

12 : sup Object
13
14 : Prop disc
15 : Inst Type
16 : sup features
17
18 : Prop measures
19 : Inst Type
20 : sup Object
21
22 : Prop diameter
23 : Inst Type
24 : sup measures
25
26 : Prop height
27 : Inst Type
28 : sup measures
29

Relation
definitions

30 : Rel hasDiameter
31 : Inst BinaryRel
32 : Sig disc diameter
33
34 : Rel hasHeight
35 : Inst BinaryRel
36 : Sig disc height
37

Function
definitions

38 : Fun diameter_mm

39 : Inst UnaryFun

40 : Sig RealNumber -> diameter

41

42 : Fun height_mm
43 : Inst UnaryFun

44 : Sig RealNumber -> height
45

Integrity
Constraint

46 (=> (disc ?x)

47 (exists (?d ?h)
48 (and (hasDiameter ?x ?d)

49 (hasHeight ?x ?h)

50 :IC hard "For a complete description of a ‘disc’
both diameter and height are needed."

112

absence of any of these dimensions will leave the model of the disc incomplete. This

integrity constraint prompts the user in case incomplete facts are asserted and thus

maintains the integrity of the ontological model, hence it is called an integrity constraint. A

more detailed way of modelling engineering components in the form of a KFL ontology is

explained in chapter 6. The environment in which these ontologies are loaded and facts are

populated is explained next.

5.3 Integrated Ontology Development Environment (IODE)
The ontology editing tool used for this work is the Integrated Ontology Development

Environment (IODE™) from Highfleet systems. A snapshot of this tool can be seen in figure

5.2. IODE takes as input the ontologies written in the KFL syntax with prescribed file

extensions. Once the ontologies are loaded the knowledge associated with them can be

added, deleted and queried. From the point of view of this research, only the Fact Asserter

and Query tool are important and are therefore explained further in the next sub sections.

Other features of this environment which help the ontology developer in rectifying and

improving the ontology before it is finally loaded into the system are not discussed further

as they are not directly relevant to the research presented in this thesis. The details given

here of the features of this tool are therefore based on the assumption that the ontology is

already free of bugs and has been securely loaded into the system for further use.

5.3.1 The Fact Asserter
The fact asserter, as its name suggests, is used to assert facts to build the knowledge base

once the ontology is loaded into the system. It takes input in the form of Simple Common

Logic (SCL) assertions and optionally checks for integrity constraints. The software

The query
tool

The fact
asserter

The database containing the
ontology

Figure 5.2 : The IODE environment

113

application developed to demonstrate the working of the proposed framework (chapter 8)

in this thesis uses the functionality of this fact asserter to build ontological models of

engineering components. This software application is explained in detail in chapter 9. Figure

5.3 gives a snapshot of the fact assertion tool.

5.3.2 The Query tool
The query tool plays a very crucial role in the working of the proposed verification

framework. It is this tool through which the system establishes similarities between

concepts in the ontologies to be matched. This research features two domain ontologies

one each for engineering design and engineering manufacture. The queries written by the

verification system, enquire about the inheritance of a certain domain concept in the

foundation and core concept ontology. Although this happens automatically because of the

API developed for this task, this can be done manually as well by using the query tool as

shown in figure 5.4.

The queries are to be written in the form of SCL assertions. For example, the following query

is written if the existing instances of the class ‘disc’ are to be listed.

(disc ?x)

To find out the diameter of a disc ‘d1’, the following query can be written.

(hasDiameter d1 (diameter_mm ?y))

Figure 5.3 : The Fact Asserter

114

To find out the diameters of all the instances of class disc the following query is written.

(hasDiameter ?x (diameter_mm ?y))

These queries are written on the same principles on which the facts are written. The only

difference is that the entity in question is replaced with a question mark (?) prefixing an

alphabet or word as can be seen in the examples above. These queries are written in the

query tool and answers are obtained if any. Figure 5.4 shows a snapshot of this tool. The results

obtained can be seen in the bottom part of the tool window. These results are used by the

proposed knowledge verification system to make sense of the concepts in an ontology and

then decide about the similarities between the ontologies to be matched.

5.4 Conclusions
This chapter gives a brief overview of the ontological formalism and ontology editing

environment used in this research. The way ontologies are written in KFL and then

populated and queried in IODE is also explained. This explanation is aimed at making the

working of the proposed framework clearer and more understandable. A detailed use of this

formalism and the introduced tools can be seen in chapter number 7 and 8. Some

description of how ontologies are written in KFL can also be seen in Changoora and Young

(2010).

Query for diameter

Obtained results

Figure 5.4 : The query tool

115

Chapter 6: Ontology-based manufacturing knowledge sharing

116

6.1 Chapter overview

Chapter 5 presented an overview of the ontology development formalism used in this

research. This formalism is used in this chapter to describe a methodology to develop

ontological product models based on distinct shape features. The association of

manufacturability knowledge to these models is also demonstrated using the same

formalism. A brief literature review of the application of ontologies is presented first in

section 6.2 and this is then followed by the modelling technique used in this research in

section 6.3. To avoid any confusion, it is to be noted that the formation of these ontological

product models is neither the development of a foundation nor a domain ontology. These

models are actually formed in the knowledge base by using the concepts available in the

domain ontology. The domain ontology, therefore, acts as a source of domain specific

vocabulary which is used to create knowledge facts in the knowledge base. These

knowledge facts, in this case, are the component models and the manufacturability

knowledge associated to them.

6.2 Concurrent Engineering and Ontologies

An aim of concurrent engineering is to address the problem of insufficient manufacturability

checks through detecting and considering conflicts and constraints at early design stages

concurrently (Li and Shen, 2009) and this technique is accepted by all to improve

productivity (Yoo and Suh, 1999). Ontologies can be used when this process of conflict

detection has to be made automatic and more efficient. Defined as a formal and explicit

specification of a conceptualization (Gruber, 1993b), ontologies are regarded as being useful

to enhance interoperability. It has already been established in chapter 3 that ontologies not

only provide a way to preserve knowledge but they can also provide pre-packaged sets of

information and knowledge for individual use or for constructing large knowledge sets by

using them as building blocks (Neches et al, 1991). It is these building blocks of information

and knowledge which become the foundation of automating the process of concurrent

engineering using ontologies.

Some examples of this approach can be found in the literature. For example, Yoo and Suh

(1999) proposed a computerized concurrent engineering system consisting of three main

parts; (1) an integrated product information model (IPIM) using the STEP standard (ISO/DIS

117

10303-224:2003(E), 2003), (2) a hierarchical database to store these models and (3) an

integrity constraint validation mechanism based on EXPRESS (ISO/DIS 10303-224:2003(E),

2003), which is a formal information modelling language from STEP. They do not talk

specifically about ontologies but their hierarchical database resembles such a concept. In

another work Ma et al (2009) address product feature-level interoperability issues and

develop a collaborative product development system. Although their emphasis is on the

CAD side of feature level information sharing they do use a domain classification ontology to

describe information dependencies across CAD applications. Very recently, Matsokis and

Kiritsis (2010) converted a Semantic Object Model (SOM) into an ontology for better sharing

and exchange of product lifecycle knowledge. SOM is a product item oriented model

capable of storing data of the product’s lifecycle. The reason they give for converting this

model into an ontology is the reasoning capability of this technology along with its data

structure layout. In another recent work, Dutra et al (2010) propose an ontology-based

architecture for collaborative design. This synchronous agent-based architecture helps in

conflict attenuation during the early stages of a collaborative design process. One thing

which is common to all of these approaches is the use of ontologies as models which needs

some more explanation and this is done in the next section.

6.2.1 Ontologies as Models

Modelling is an essential part of the intellectual activity of human beings (Silvert, 2001). A

model is an approximation of reality (Studer et al, 1998). The challenge of artificial

intelligence in information science is therefore the challenge of formalization of this

approximation. The fundamental questions to be answered in this regard are about the

existence of things. In the field of metaphysics, the systematic explanation of ‘being’ as an

answer to this question is called an ontology (Gomez-Perez et al, 2004). In this sense

ontology is a particular system of categories accounting for a certain vision of the world

(Maedche, 2002) and a model of discourse participants (Nirenburg and Raskin, 2004). Most

importantly, ontologies provide a common terminology that helps to capture key

distinctions among concepts in different domains (Schlenoff et al, 2000). In the domain of

manufacturing engineering, a common vocabulary is therefore needed to capture

engineering components in a formalized state. One of the aims of IMKS is to provide that

118

vocabulary in the form of manufacturing core concepts. How this vocabulary can be used to

build ontological models is shown in this chapter.

Some other examples of the use of ontologies for product modelling can be found in the

literature. Horváth et al (1998), for example, to formalize design concepts by using an

ontology paradigm. These design concepts include, along with shapes, design situations and

functioning of design objects. In another work Staub-French et al (2002), formalize a

vocabulary to define different types of design conditions and a feature ontology for

construction and building products. In another relevant work Vegetti et al (2005) define

PRoduct ONTOlogy (PRONTO) to define product concepts, their relationships and required

axioms in the complex product modelling domain. In a further extension of this work,

Gimenez et al (2008) introduce new concepts related to the specifications of mechanisms

for aggregating and disaggregating different kinds of product-related data needed for

Extended Supply Chain (ESC) logistics, as well as representing such data along a product

abstraction hierarchy (Gimenez et al, 2008). Another effort in the product ontology domain

is the work of Tursi et al (2007). They propose product ontologies using the IEC 62264 and

STEP 10303 standards. Syntactic and semantic interoperability is then said to be achieved by

finding correspondences between the terms in two ontologies. Bock et al (2010) at NIST

have defined OPML an Ontological Product Modelling Language. This language claims to

overcome the existing shortcomings of ontological product modelling techniques. It treats

product models as ontological classifications and is capable of capturing partial and high-

level product descriptions. Another effort at NIST has developed a Product Semantic

Representation Language (PSRL). PSRL serves as an interlingua to enable semantic

interoperability (Patil et al, 2005b). It mediates between two heterogeneous ontologies

(Patil et al, 2005b; Patil et al, 2005a) to find correspondences between similar terms.

Mappings are then established to connect terms in two ontologies. The important part of

this work is the feature-based modelling example. In a more relevant work Catalano et al

(2009) propose an ontology-based formalisation of the product design process. The

relevance of this work here is again due to the fact that they also use shape of products to

structure product design workflow. This use of shapes, however, is not as detailed and

comprehensive as used in this research.

119

The research work reviewed above is in no way exhaustive and plenty of other efforts can

be seen in this area. The main aim of this review was to establish that ontologies have been

and are being used for product modelling. The results of these efforts, however, need some

more refinement. The modelling approach proposed in this research and presented in this

chapter, therefore, differs from most of these efforts primarily in its level of details in which

shape features are defined and the product is modelled through their aggregation.

Furthermore, the demonstrated use of ontological product models in manufacturing

knowledge sharing is also what makes this work stand out from the rest. Before this

modelling method is explained, however, it is necessary to understand if an approach based

on shape features is plausible. This can be done by scanning the literature for shape feature

based techniques. This is done in the following section.

6.2.2 Feature-based ontological modelling of engineering components

It is understood that ontologies can not only be used for the preservation of knowledge but

they also help in producing pre-packaged sets of information and knowledge available to be

used as building blocks (Neches et al, 1991). As found in the literature, these building blocks

of information and knowledge become the underpinnings of feature based modelling of

engineering components in the form of ontologies.

Product features are very useful to encapsulate engineering intent into computer systems

(Ma et al, 2009). This is because once these product models are defined, related knowledge

can be attached to them for use. For example, in the field of manufacturing, a model of an

engineering component can have manufacturability knowledge attached to it to be used by

the designer for taking design decisions. The methodologies and software tools to link this

manufacturability knowledge with product models for intelligent design is currently one of

the main collaborative design research problems (Li et al, 2002). Feature-based design and

manufacturing offers an effective way of resolving this problem. Its benefits have been well

recognized and CAD systems largely adopt it both in the mechanical and freeform domains

(Catalano et al, 2009). This is endorsed by the existence of some commercial applications

like FeatureCAM developed by Delcam plc. FeatureCAM is a suite of CAD/CAM software

based on feature based manufacturing technology (Delcam plc, 2010). This software

identifies shape features in a component and then generates the machining data. This is,

120

however, a manufacturing support software and not an interoperable application capable of

allowing seamless sharing of knowledge, which is the main aim of the proposed

methodology in this chapter.

It can be seen, from the above review, that shape feature based modelling of engineering

components is considered to be a useful way of handling manufacturing knowledge and

hence an ontological modelling technique based on shape features is plausible if it adds

more value to the existing methods. The work done in this research, regarding the

ontological modelling of engineering components, shares some commonality in one way or

another with these existing ontology based collaborative design and concurrent engineering

applications. The proposed system, however, is unique in its focus on overcoming the

manufacturability knowledge interoperability problems caused by the differences in design

and manufacturing perceptions of the features of an engineering component.

6.3 Feature-based modelling approach used in this research

Feature-based technology involves the construction of an engineering component by joining

together distinct shape features. Figure 6.1 illustrates how individual features aggregate to

form a complete component. It is obvious that for a feature based modelling method,

individual features have to be defined first followed by their position in 3D space and the

Figure 6.1. A component shown as an aggregation of shape features

121

definition of how they interact with each other. Figure 6.2 shows a geometrical model of a

blob of material in 3D space. It can be seen that certain parameters must be specified for its

definition and position. Geometrical dimensions like its height, width, and angles of the radii

of curved surfaces are defined. Furthermore, its position in the 3D space is defined with the

help of the coordinates of a reference point (RP) and the angles of a reference line (RL). The

definitions of the reference point and reference line, however, are only required when a

feature comes in relation to some other feature in the same 3D space. This happens when

the feature aggregation takes place to form a complete component. Two main parts of this

approach, in this regard, are therefore (1) Feature definition and (2) Feature aggregation.

These two parts are discussed in detail below.

6.3.1 Feature definition

A complete definition of a shape feature primarily requires its dimensional parameters to be

defined. This includes its height, width, diameter, and whatever else is deemed necessary

for its complete definition. A straight hole, for example, can be defined by defining its height

and diameter. Further tolerances can be added in order to aid its manufacture but height

and diameter are the two essential dimensions that are needed for a complete definition of

a hole.

Ø

B mm

A mm

Rp (x,y,z)

RL (α, β, γ)

Figure 6.2. A hypothetical shape feature in 3D space

122

6.3.2 Feature aggregation

Once individual features are defined, they can be put together to form a complete

component. This putting together of shape features requires their positional parameters to

be defined. Positional parameters refer to a shape feature’s orientation in the 3D space. A

straight hole, for example, can exist on a disc at any position making a certain angle with the

surface of the disc. Unlike geometrical dimensions which may include a number of different

parameters, positional parameters can be completely defined by defining just two key

characteristics of a feature. These are its position and its orientation. The position can be

defined by defining the x, y and z coordinates of the feature in the 3D space while the

orientation requires the definition of the angles a shape feature makes with the three axes.

Since a feature is a set of several lines and points, a certain point has to be selected within a

feature to serve as a representation of the entire body. This is called here a ‘reference point

(RP)’. A definition of the x, y and z coordinates of this point places a feature at an exact

point in the three dimensional space. The location of the reference point within the body of

the feature, however, can be a debatable issue and needs to be standardized with mutual

consent. On a similar basis, the definition of the angles a shape feature makes with the x, y

and z axes first requires the definition of a line passing through the body of the shape

feature. This line is named here as a ‘reference line (RL)’ as shown in figure 6.2. Again, the

angles this line makes with the body of the shape feature it belongs to needs to be

standardized. In the approach presented, the position of a reference point is fixed to be at

the geometrical centre of a shape feature while the reference line passes through this

reference point and stays parallel with the side walls of a feature as shown in figure 6.3. In

Φd

x

z

y
l

h

w

RP (1/2l, 1/2w, 1/2h)

RL (90o, 90o, 0o)
RL (90o, 90o, 0o)

RP (1/2d, 1/2d, 1/2h)

h

Figure 6.3. Reference Point and Reference Line standardization

123

this figure, two shape features are shown, a cube and a cylinder (or a hole if taken as a

subtraction feature). It can be seen that the coordinates of the reference points are half of

their dimension in each direction. Hence, for a cube the x-coordinate is half of its length (l),

the y-coordinate is half of its width (w) and the z-coordinate is half of its height (h). Similarly,

in the cylinder, the x and y-coordinates of the reference point are half of its diameter (d)

while the z-coordinate is half of its height (h). With these coordinates, the reference points

of both shapes come exactly in their geometrical centre. For the reference line, it can be

seen that the angles of these lines orient them parallel to the side walls of both shapes or

perpendicular to the x-y plane on which these features are placed. In an ontological model,

these parameters can be fixed either with the help of axioms and constraints or simply as

assumptions to be taken into consideration by the ontology and knowledge base builders. In

the next section this modelling methodology is explained with the help of an example.

6.3.3 A working example

Consider a simple part comprised of a cube and a hole in the middle of one of its sides, as

shown in figure 6.4. An ontological model of such a component should essentially include

the dimensional and positional parameters necessary to completely define the individual

x

z

l

h

w

Figure 6.4. Aggregation of a cube and a hole

Φd

h

l

1/2l

1/2lh

d

1/2d

RP1
RP2

RL1
RL2

y

lh

x

z

Three dimensional view Section view

124

features as well as their assembly or aggregation. For the example in figure 6.4, table 6.1

shows the complete information to be modelled in the form of an ontology. The

standardized parameters are to be fixed by the ontology builders while the parameters in

the first two columns are to be defined by the user asserting knowledge about a certain part

in the knowledge base. The inclusion of the non-standardized parameters, however, can be

made compulsory through integrity constraints which force the knowledge asserter to

define all the essential parameters of a feature for its complete definition. The key to

understanding this approach correctly is the understanding of reference points and

reference lines. Once this is learned properly, the placement of features to form a

component is simple. The most important thing to take care of is the declaration of the

datum point. In the example taken, the reference point of the solid block is taken as the

datum point and thus it can be seen in the figure that the origin of all three axes is at the

Table 6.1. Parameters for the modelling of the component in figure 6.4
S.No Name Value Standardized Parameters

1 Block definition cube1
A Block is a solid rectangular prismatic
object with six flat square planes placed
at an angle of 90o with each other.

2 Block height h

3 Block length l

4 Block width w

5 Hole definition hole1
A hole is a circular cross-section cavity in
a solid object.

6 Hole height h

7 Hole diameter d

8 Block reference point RP1

This point is in the geometrical centre of
the cube.

9 RP1 x-coordinate 0

10 RP1 y-coordinate 0

11 RP1 z-coordinate 0

12 Block reference line RL1
This line passes through the reference
point of the cube and is perpendicular to
the top and bottom planes.

13 RL1 x-angle 90o

14 RL1 y-angle 90o

15 RL1 z-angle 0o

16 Datum point RP1
All the measurements have to be taken
from this point.

17 Hole reference point RP2

This point is in the geometrical centre of
the cavity.

18 RP2 x-coordinate 1/2l – 1/2lh

19 RP2 y-coordinate 0

20 RP2 z-coordinate 0

21 Hole reference line RL2
This line passes from the reference point
of the cavity and is parallel to the sides
surrounding it.

22 RL2 x-angle 90o

23 RL2 y-angle 90o

24 RL2 z-angle 0o

125

solid block reference point i.e. RP1. This declaration has repercussions on all the later

calculations and feature placements. In the figure above, it can be seen that although the

reference points of the two features, i.e. the solid block (RP1) and the hole (RP2), are not

coinciding but both of them lie on the same axis. Since the origin is at the solid block

reference point, which is pre-assumed to be at the geometrical centre of the block, the

coordinates of the two reference points come out to be RP1(0, 0, 0) and RP2(1/2l – 1/2lh, 0,

0) where ‘l’ is the length of the solid block and ‘lh’ is the length of the hole. Since both RP1

and RP2 are on the x-axis, the y and z-coordinates are zero. The declaration of the

coordinates of the reference points on their own, however, is not enough because although

the reference points of the two features lie on the same axis, there are still an infinite

number of orientations on which the two features may attach with each other as shown in

figure 6.5. In this figure, the section view of the block with a hole in the middle, shown in

figure 6.4, is shown with some possible directions of the hole feature without the

declaration of the reference line angles. It can be seen that although RP1 and RP2 are still on

the x-axis, the direction of the hole is changed. To prevent this confusion, the reference line

of the solid block (RL1) and that of the hole (RL2) are declared to be parallel with each other

and with the x-axis as well. Hence, the x, y and z angles being 90o, 90o, 0o, respectively, are

same for both RL1 and RL2. It is again to be understood that all these interpretations and

resulting calculations are based on the assumptions that the reference points of the

Section view

RP1 RP2 x

z

RL1

RL2

Without the declaration of
reference line angles,
these centre lines can be
in any direction

Figure 6.5. Possible directions of the hole feature without the declaration of reference line angles

126

features are at their geometrical centres with the reference line passing through that point

and parallel to the sides, unless otherwise mentioned.

Once the information to be modelled is listed, the next step is to formalize it in the form of

an ontology and the subsumed knowledge base. This is explained in the next section.

6.4 Ontological models

The last section presented an example to explain how an engineering component can be

represented by a shape feature based model. In this section, with the help of hypothetical

ontologies, the component shown in figure 6.1 is modelled in the form of an ontology.

Knowledge Frame Language (KFL, as described in chapter 5) is the ontological formalism

used to explain this ontological modelling.

6.4.1 The core-concepts ontology

 The example ontologies developed to explain the ontological modelling approach are based

on the setting proposed by the IMKS project which features a foundation and a core-

solidBlock

hole

collar

slots

fillet

groove

feature height

length

width

diameter

featureCharacterisitcs

profileTolerance

coordinates

xCoordinate

yCoordinate

zCoordinate

angles

xAngle

yAngle

zAngle

referencePoint

referenceLine

positionalReferences

Foundation Ontology

Figure 6.6. Foundation and core-concepts ontology to be used for the modelling of example component

hasHeight

hasLength

hasWidth

hasRefPoint

subclass

Class

relation

Legend

component
hasFeature

127

concepts ontology subsumed by two domain ontologies one for the domain of engineering

design and the other for engineering manufacture. This example, however, only illustrates

the use of concepts from the core-concepts ontology to build shape feature based

ontological models of engineering components. Figure 6.6 gives a view of a core-concepts

ontology subsumed under a foundation ontology. It can be seen that the concepts

presented in the ontology do not themselves form a model of an engineering component,

rather, they provide a vocabulary to do so. The actual model of the component with all its

dimensions and values is actually formed in the knowledge base by using these concepts. It

is also to be noted that a mere list of concepts does not form an ontological model and

some relations are needed between these concepts to bind them together and to give

shape to a sensible structure. For example, a relation ‘hasDiameter’ may exist which

connects a certain dimension e.g. diameter, to a feature e.g. hole. Some of these relations

are shown in figure 6.6. Furthermore, these dimensions also need measuring units. This is

done with the help of functions in KFL that attach a dimensional parameter to its measuring

unit. The next section gives a formalised form of the ontologies depicted in figure 6.6.

6.4.2 Formalization of the ontology

The complete ontology from figure 6.6 is not formalized here and only those concepts are

created which are needed to build the ontological model of the component shown in figure

6.4. This means, that it is to be assumed that the foundation ontology provides the very

general concepts needed by the core concepts to form knowledge facts. These may include

concepts like Top, AbstractEntity, ConcreteEntity, Particular etc. the formalization of an

ontology in KFL includes the declaration of properties, relations, functions and axioms (as

explained in chapter 5). Only the first three constituents are declared here starting with the

creation of concepts i.e. classes (using KFL properties). Axioms are not written here to keep

the focus on the modelling approach rather than the reasoning capability of the ontology

which will be discussed in detail in chapter 8.

6.4.2.1 Definition of classes

component
:Prop component
:Inst type
:sup Particular

128

feature and positionalReferences classes are also defined in this way.

featureCharacterisitcs
:Prop featureCharacteristics
:Inst type
:sup AbstractEntity

solidBlock
:Prop solidBlock
:Inst type
:sup feature

The hole class is also defined in a similar way subsuming it to the feature parent class.

referencePoint
:Prop referencePoint
:Inst type
:sup positionalReferences

The referenceLine class is also defined in this way subsuming it to the parent class of

positionalReferences.

height
:Prop height
:Inst type
:sup featureCharacteristics

The length, width, diameter, coordinates, and angles classes are also defined

in this way.

xCoordinate
:Prop xCoordinate
:Inst type
:sup coordinates

The yCoordinate and zCoordinate classes are also defined in this way.

xAngle
:Prop xAngle
:Inst type
:sup angles

6.4.2.2 Definition of relations

hasFeature
:Rel hasFeature
:Inst BinaryRel
:Sig component feature

129

hasHeight
:Rel hasHeight
:Inst BinaryRel
:Sig feature height

The binary relations hasLength, hasWidth, hasDiameter, hasRefPoint and

hasRefLine have been defined in very similar ways to the relation hasHeight shown

above.

hasXcoordinate
:Rel hasXcoordinate
:Inst BinaryRel
:Sig referencePoint xCoordinate

The binary relations hasYcoordinate and hasZcoordinate have been defined in

very similar ways to the relation hasXcoordinate shown above.

hasXangle
:Rel hasXangle
:Inst BinaryRel
:Sig referenceLine xAngle

The binary relations hasYangle and hasZangle have been defined in very similar ways

to the relation hasXangle shown above.

datumPoint
:Rel datumPoint
:Inst UnaryRel
:Sig referencePoint

6.4.2.3 Definition of functions

height_mm
:Fun height_mm
:Inst UnaryFun
:Sig RealNumber -> height

The unary functions length_mm, width_mm, diameter_mm, xCoord_mm etc have all

been defined in very similar ways to height_mm shown above.

130

6.4.2.4 Ontology formalization summary
The formalized ontological segments shown in the last section only contain the essential

entities for the formation of an ontological model of the example in figure 6.4. These

formalized concepts have to be a part of the foundation ontology so that the properties,

relations and functions defined here can be used by the domain ontology builders in their

own way and then these domain concepts subsequently by the knowledge base builders to

model engineering components and the associated manufacturability knowledge in the

knowledge base. In one way, these ontological segments are actually a simplified form of

the example foundation ontology developed and used in the validation of the proposed

framework by using industrial case study examples.

In ontological terms, the formation of the ontological product models in the knowledge base

is actually the process of ontology population. This population of the above presented

ontology is done in the next section.

6.4.3 Ontology population – knowledge base building

Figure 6.7 shows the essential instances to be created in order to completely define a

feature, in this case a ‘solidBlock’. It can be seen that to create an instance of the solidBlock

feature the instances of its height, length, width, reference point, and reference line also

need to be created by assigning them a numerical value. The functions defined in the

solidBlock cube1

hasHeight

width_mm 400

hasLength length_mm 400

referenceLine RL1

referencePoint RP1

hasXCoord

hasYCoord

hasZCoord

xCoord_mm 0

yCoord_mm 0

zCoord_mm 0

hasXAngle

hasYAngle

hasZAngle

xAngle_degree 90

yAngle_degree 90

zAngle_degree 0

hasWidth

hasRefPoint

Figure 6.7. Instances of classes

height_mm 400

Legend: Class Instance relation Function Value

131

ontology are used here for this purpose. Similarly to create an instance of a reference point

its x, y and z-coordinates are needed and for a reference line, its x, y and z angles all need to

Table 6.2. Instance of classes – the ontological model of the component in figure 6.4

Description Line Code
Defining an instance of solidBlock named
cube1.

1 (solidBlock cube1)

Defining the dimensional parameters of
cube1 i.e. height, length and width.

2 (hasHeight cube 1 (height_mm 400))
3 (hasLength cube 1 (length_mm 400))
4 (hasWidth cube 1 (width_mm 400))

Defining an instance of referencePoint 5 (referencePoint RP1)
Defining an instance of referenceLine 6 (referenceLine RL1)

Associating the reference point and line
with cube1

7 (hasRefPoint cube1 RP1)
8 (hasRefLine cube1 RL1)

Defining the x, y and z coordinates of the
reference point. Since this point is now
associated with cube1, defining its
coordinates actually positions the cube1 in
3D space. In this case its the datum point
as declared in line 12 so it lies on the origin
i.e. 0,0,0.

9 (hasXcoord RP1 (xCoord_mm 0))
10 (hasYcoord RP1 (yCoord_mm 0))

11 (hasZcoord RP1 (zCoord_mm 0))

12 (datumPoint RP1)

Defining the angles of the reference line of
cube1 and hence orienting it correctly in
3D space.

13 (hasXangle RL1 (xAngle_degree 90))
14 (hasYangle RL1 (yAngle_degree 90))
15 (hasZangle RL1 (zAngle_degree 0))

Defining an instance of hole named hole1 16 (hole hole1)

Defining the compulsory dimensional
characterisitcs of hole1. This includes the
length and the diameter.

17 (hasLength hole1 (length_mm 300))

18 (hasDiameter hole1 (diameter_mm 100))

Instantiating a reference point. 19 (referencePoint RP2)
Instantiating a reference line. 20 (referenceLine RL2)

Associating the instantiated reference
point and line with hole1.

21 (hasRefPoint hole1 RP2)
22 (hasRefLine hole1 RL2)

Positioning hole1 in the 3D space by giving
coordinates to its reference point.

23 (hasXcoord RP2 (xCoordinate_mm 0))
24 (hasYcoord RP2 (yCoordinate_mm 15))
25 (hasZcoord RP2 (zCoordinate_mm 0))

These directives orient hole1 reference
line in the 3D space. Being 90,90,0 and the
reference point on the same axis, the hole
reference line overlaps with that of cube1.

26 (hasXangle RL2 (xAngle_degree 90))
27 (hasYangle RL2 (yAngle_degree 90))

28 (hasZangle RL2 (zAngle_degree 0))

132

be instantiated as well, again with the help of their respective functions. These instances are

then associated with the solidBlock instance with the help of respective relations. In chapter

5, it was shown how instances of classes are created. The same syntax of simple common

logic is used here to create instances of classes defined in the ontology in section 6.4.2.3.

Table 6.2 shows all the instances needed to create an ontological model of the component

shown in figure 6.4. The table also gives a line-by-line description of the code that needs to

be written to instantiate classes created in the ontology. These lines present the

formalization of the information listed in table 6.1. In the same way different components

and assemblies can be modelled in an ontology supported knowledge base. Once these

models are built they can be used to state conditions of manufacturability, which in the case

of an interoperable system, can be used by the designer to examine the design of a product

from the manufacturability point of view. Details of how this can be achieved are explained

in the next section.

6.5 Manufacturability verification

Manufacturability verification of a feature, or a set of features in the form of a component,

can be done by writing ontological rules or integrity constraints. The process of model

creation is the process of the assertion of knowledge facts about the dimensional and

positional parameters of a component. Every fact asserted in the knowledge base is sieved

through these rules and its validity is checked according to the conditions stated in the rule.

These conditions are checked by the ontology browser IODE which has been introduced in

chapter 5. When ontologies are loaded along with a set of knowledge facts, IODE checks for

the integrity of ontological assertions and knowledge statements and gives an error if they

do not comply with either the inbuilt or user written constraints. An example of this can be

seen in figure 6.8 (next page) where a window shows two sections. In the section in the top

part of the window some knowledge facts can be seen which instantiate a hole named h1

and assign the value of 1mm to its diameter. In the bottom part of the window an error

message can be seen which says that there is a hard IC violation and a hole with a diameter

less than 1mm cannot be drilled by using the available tooling. The window shown in figure

6.8 is the fact asserter tool as introduced in chapter 5, which aids in asserting knowledge

facts, or creating ontological models of features and components in our case, in an ontology

that is already loaded into the database. This process of error generation is actually a

133

process of manufacturability verification. If the facts are asserted successfully, the feature or

component modelled is manufacturable. Otherwise the design needs to be changed

according to the limitations of the available manufacturing facility.

Two types of manufacturability limitations may occur. In the first case an individual feature,

independent of other features in the component, may become impossible to manufacture

within a facility due to its dimensions. In the second case a component may become non-

manufacturable due to the way features in that component interact with each other or

certain dimensions of one feature hinder the creation of one or more of the other features.

These two cases are explained here separately.

6.5.1 Individual feature manufacturability constraint

This is the simplest form of manufacturability constraint which may exist due to the

unavailability of a manufacturing method or tool within the facility in which a component

has to be manufactured. Consider a very simple example of a hole. There are certain sizes of

holes that can be produced by a machine or tooling used at that machine. If there is a lower

limitation of the diameter of a hole that can be produced in a manufacturing facility, a

(hole h1)
(hasDiameter h1 (diameter_mm 1))

Assertions canceled. com.kb.client.HardICViolation: A hole with
diameter less than 2mm cannot be drilled with the available
toolings. (integrity constraint ID RootCtx.fidEx("Manufacturing
Ontology",1))

Figure 6.8. Integrity constraint violation pops up an error and knowledge facts are not asserted

Facts asserted

Error received

134

manufacturability constraint shown in table 6.3 needs to be written. The table also shows a

line-by-line code description. It can be seen that this is a simple IF-Then rule where the IF

part of the constraint (lines 1 to 3) states the conditions about the existence of a hole and its

diameter and the THEN part (line 4) declares the conditions that need to be fulfilled in order

for the diameter to be correct. In the end, a statement in quotations holds the message to

be given to the user in case a violation occurs. IC hard before the quotations means this

constraint stops the user from proceeding further with the modelling process unless the

dimension of the feature is changed. Another possible constraint is ‘IC soft’ which only gives

a caution to the user about the violation and does not end the process. The user in that case

can continue with the model creation as the violation may not be very significant. In the

example given here, the minimum size of a hole that can be drilled is 2mm and sizes smaller

than that are declared to be non-manufacturable. In a similar way different constraints for

the size or position of a certain feature can be written. The positional constraints, however,

are needed more when two or more features are used to state a manufacturability

condition. This is explained next.

6.5.2 Manufacturing constraints due to feature dependability

Since, the manufacturability constraint for an individual feature first needs the declaration

of the existence of that feature along with its dimensional parameter (lines 2 and 3 in table

6.3), a rule about more than one feature requires this condition for all of the features that

take part in fulfilling the asserted condition. Furthermore, in the case of one feature, only

Table 6.3. The manufacturability rule for a hole

Description Line Code
Starting the rule with the AND condition.
The symbol => denotes IF.

1 (=> (and

The first condition is that their exists a
hole.

2 (hole ?h)

The second condition is that this hole has a
diameter.

3 (hasDiameter ?h (diameter_mm ?d)))

At this point the THEN part of the
condition starts whcih says that the
diamter has to be greater than 2mm.

4 (gteNum ?d 2))

‘IC hard’ means that this is a hard integrity
constraint which means the user cannot
proceed unless the error is removed. The
statement in the quotations appears in the
error in the asserter window as shown in
figure 6.8

5
:IC hard "A hole with diameter less than 2mm cannot be
drilled with the available toolings."

135

dimensional parameters need to be declared. In the presence of multiple features, the

positional parameters also need to be included in the condition. In fact, it is the positional

parameters which play the most vital role in the verification of manufacturability. Consider

an example where a hole has to be drilled in a solid block of metal. In such a situation, there

is a limit to the wall thickness that is left behind after the drilling of the hole as shown in

figure 6.9. This is due to the inherent machine vibrations which require a certain allowance

between the hole edge and the outer side of the cube for them to be absorbed without

distorting the shape of the cube. In this scenario, two features, i.e. a solid block and a hole,

are dependent upon each other and an integrity constraint requires the declaration of

dimensional and positional parameters that model the component exactly as depicted in

figure 6.9. This integrity constraint is shown in table 6.4 (next page). Lines 3 to 16 model a

solid block by defining its dimensional and positional parameters in the form of variables.

Lines 18 to 30 create the model of a hole through the definition of its parameters. At this

point the IF part of the rule ends and the THEN part starts. Three variables for the

calculations of the difference between the length, height and width of the block and the

diameter of the hole are first introduced. This is done in lines 39, 40 and 41 of table 6.4

respectively. These variables represent the wall thickness of the cube left after the drilling of

the hole. Lines 42 to 44, then, state the minimum possible thickness that is manufacturable

Figure 6.9. An impossible to drill hole in a cube due to machine vibrations

RP1
RP2

Wall thickness is too small to
bear the machine vibrations
during drilling

Motion of the drill bit has some machine vibrations

100
94

3

136

Table 6.4. Integrity constraint for the manufacturability of the component shown in figure 6.9.

Description Line Code
Starting the IF part of the rule 1 (=> (and
 2
Defining a variable ?c being a solidBlock 3 (solidBlock ?c)

Defining the dimensional parameters of ?c
i.e. height, length and width.

4 (hasHeight ?c (height_mm ?ch))
5 (hasLength ?c (length_mm ?cl))
6 (hasWidth ?c (width_mm ?cw))

Defining an instance of referencePoint 7 (referencePoint ?rp1)
Defining an instance of referenceLine 8 (referenceLine ?rl1)
Associating the reference point and line
with ?c

9 (hasRefPoint ?c ?rp1)
10 (hasRefLine ?c ?rl1)

Since rp1 is now associated with ?c,
defining its coordinates actually positions
?c in 3D space.

11 (hasXcoord ?rp1 (xCoord_mm ?rp1x))
12 (hasYcoord ?rp1 (yCoord_mm ?rp1y))

13 (hasZcoord ?rp1 (zCoord_mm ?rp1z))

Defining variables for the angles of the
reference line of ?c

14 (hasXangle ?rl1 (xAngle_degree ?rl1a))
15 (hasYangle ?rl1 (yAngle_degree ?rl1b))
16 (hasZangle ?rl1 (zAngle_degree ?rl1c))

 17
Defining a variable instance of hole ?h 18 (hole ?h)
?hl and ?hd being the variables for the
length and diameter of ?h

19 (hasLength ?h (length_mm ?hl))
20 (hasDiameter ?h (diameter_mm ?hd))

Defining a reference poing variable 21 (referencePoint ?rp2)
Defining a reference line variable 22 (referenceLine ?rl2)
Associating the reference point and line
variables with ?h

23 (hasRefPoint ?h ?rp2)
24 (hasRefLine ?h ?rl2)

Positioning ?h in the 3D space by giving
coordinates to its reference point variable

25 (hasXcoord ?rp2(xCoordinate_mm ?rp2x))
26 (hasYcoord ?rp2(yCoordinate_mm ?rp2y))
27 (hasZcoord ?rp2(zCoordinate_mm ?rp2z))

Defining variables for the angles of the
reference line of ?h

28 (hasXangle ?rl2 (xAngle_degree ?rl2a))
29 (hasYangle ?rl2 (yAngle_degree ?rl2b))
30 (hasZangle ?rl2 (zAngle_degree ?rl2c))

 31

For the two features to be in the position
as illustrated in figure 6.9, these are the
equivalences that need to exist. These
assertions declare the two reference
points to coincide and the lines to overlap

32 (eqNum ?rl1a ?rl2a)
33 (eqNum ?rl1b ?rl2b)
34 (eqNum ?rl1c ?rl2c)
35 (eqNum ?rp1y ?rp2y)
36 (eqNum ?rp1z ?rp2z)

Closing the IF part of the rule and entering
into the THEN part 37)

 38

These conditions say that the differentce
between the diameter of the hole and any
of the sides of a solid block should be
gretater than or equal to 5mm

39 (numMinus ?cl ?hl ?result1)
40 (numMinus ?ch ?hd ?result2)
41 (numMinus ?cw ?hd ?result3)
42 (and (gteNum ?result1 5)
43 (gteNum ?result2 5)
44 (gteNum ?result3 5))

Closing the THEN part and the rule as well 45)

Stating the type of constraint and the error
message to be displayed in case of
violation of the rule

46

:IC hard “The machine vibrations do
not allow the leftover thickness of
the walls to be less than 5mm during
the process of drilling. A smaller
thickness will result in distortion.”

137

without the part getting distorted due to machine vibrations. The last part of the rule

declares this rule to be a hard integrity constraint and states the error message.

One thing to be noted here is that the rule models the hole and cube aggregations in the

same way as was done in table 6.2 apart from one thing. There is no declaration that the

reference point of the cube is the datum point. This is because the rule mainly deals with

the difference in dimensions of the two features which does not require knowledge of the

datum point.

6.6 Conclusions

This chapter described an ontological modelling technique for engineering components and

demonstrated how manufacturability verification can be done through the use of integrity

constraints. It is clear from the examples explained above that an engineering component

can easily be translated into the form of an ontological product model and then

manufacturability constraints can be associated with this model. Since the research

presented in this thesis is related to knowledge interoperability, this modelling method has

to be analyzed accordingly. It is therefore important to find what differences may occur

when models in two independent ontologies are built. This is because these differences

hinder the interoperability of these models and thus render the mechanism of

manufacturability verification ineffective. A review of the literature on ontological

mismatches was presented in chapter 4. This review, however, does not present the full

picture of the problems that occur in practical situations in manufacturing setups. To gain an

understanding of these practical industrial problems a case study in a manufacturing setup

was performed. The findings of this case study are presented in the next chapter.

138

Chapter 7: The case study

139

7.1. Chapter overview

The findings of a case study are presented in this chapter to help understand those

requirements of the undertaken research that are specific to the problem of knowledge

interoperability in the manufacturing industry. These requirements are based on the ways in

which concurrent engineering is applied in design context in a large aerospace company.

This chapter, therefore, first of all highlights the knowledge sharing needs of a typical

manufacturing company and secondly, it provides the practical industrial evidence of the

importance of the research problem at hand.

7.2. Purpose and scope of the case study

An understanding of the real industrial interoperability problems is essential for an effective

design of the proposed interoperable manufacturing knowledge system. In order to achieve

that, a case study was conducted in the compressor disc manufacturing plant of an

aerospace manufacturer. This study had two main dimensions. The first dimension dealt

with the study of communication needs between design and production departments in

order to produce a manufacturable design. As this research is all about computer-based

knowledge sharing, the second dimension entailed the study of the criteria for modelling an

engineering component in the form of an ontology to which knowledge can be attached for

seamless sharing. The literature review in the area of shape feature based design and

manufacture of engineering components (see chapter 6) has already established the

importance and usefulness of ontology techniques. The manufacturing setup of the

aerospace manufacturer, where the case study was conducted, was also aiming to adopt

this engineering methodology and therefore, shape feature based design and manufacture

of engineering products was chosen as the methodology to produce computer-based

models.

This case study, therefore, studied the manufacturer’s existing efforts to standardize some

of the shape features in a compressor disc, and also carried out a fresh analysis of the

geometry, function and manufacturing methods of these discs to examine the existing

shape features and, if needed, introduce some new ones. The case study entailed studies of

detailed drawings, assessment of the intended functions of different areas of a compressor

disc, and the study of the production routes that the disc goes through starting from a

140

forged stock and ending in a polished packed form ready to be delivered. The primary

sources of data were individual one-to-one interviews but the company intranet and

archival information also contributed to this 12 week case study. The following points were

considered during interviews and data analysis:

a. What are the real world design-associated manufacturability problems?

b. What are the design and manufacturing perceptions of product features?

c. In a typical manufacturing setup, what does a designer want a production

engineer to know and what does a production engineer want the designer to

know?

d. What is a typical design modification process?

Once the data and information about the above points was gathered, a tool to analyze the

existing information flows between design and manufacture and to propose improvements

was required. IDEF-0 diagrams (Draft Federal Information, 1993) were therefore used for

this purpose. These diagrams could not be included in the thesis due to a non-disclosure

agreement between the researchers and the case study company. The results of the analysis

of this case study, however, are discussed to argue the nature of knowledge and

information flow between design and manufacture. The understanding achieved by the

analysis of the case study materials and the methods used for the analysis are the most

important aspects of the case study work from the viewpoint of this thesis.

7.3. Case study findings

The findings detailed here are divided into two sections. The first section presents the

analysis of the information and knowledge flows between design and manufacture while

the second section deals with the component which was studied in order to propose a

feature-based knowledge sharing mechanism.

7.3.1. Information flow study
It was understood that the best approach to study the information flow between design and

manufacture was to study the documents that were used by the two departments to

communicate with each other. These documents included part drawings, manufacturing

141

instructions, design change requests, quality improvement initiatives etc. Some important

documents analyzed during the case study are given in table 7.1 along with their description

and purpose. Since, the case study used the shape feature based design and manufacturing

approach, these documents were specially examined for their suitability to carry the same

information when a component is considered as an accumulation of different shape

features. The document names used here are changed from the original titles for the

purpose of maintaining confidentiality.

Most of the documents listed in table 7.1 were used to communicate a certain design

requirement or some information about the component. The most important documents

from the point of view of this research were PDD, GCR, DND, PQII, CPMI, and IMF because

they exchange knowledge that can easily be replaced with a vocabulary based on standard

shape features. The details of these documents can be seen in table 7.1. Since the intent of

this part of the case study was to establish an understanding of the knowledge sharing

Table 7.1. Some important documents analyzed during the case study

Terms Meaning Description

PDD
Preliminary
Design Document

Generated by the design department as an answer to the initial design
requirements from an organizational unit. This is sent back to the
organizational unit which requested the design initially. It contains the
agreement or disagreement about the design requested.

GCR
Geometry Change
Request

Sent to the engineering department usually by manufacturing for requesting
a change in a certain dimension of a component.

DND
Design
Negotiation
Document

A document which is generated by manufacturing to negotiate with
engineering design on a certain dimension of a component. If the
manufacturing department finds a certain part of the component difficult to
make, it suggests changes to the engineering department to make the
manufacturing process easier and more accurate. The engineering
department after analyzing the suggestion and judging its implications on
the performance of the component allows or disallows the change.

PQII
Process Quality
Improvement
Initiative

A document initiated to request a change in the design of a certain part of
the component in order to improve its quality. This improvement in quality
is aimed at achieving better production results.

CPMI
Critical Parts
Manufacturing
Instructions

A document generated by engineering to describe the way critical parts
need to be manufactured.

IMF
Important
Monitored
Features

These are the features which are currently monitored by the manufacturing
department. Their process capability charts are drawn and the results are
used in the design of future similar features.

142

requirements, these documents were analyzed from the point of view of knowledge

exchange. The careful analysis of these documents and the way they were being used

revealed that the information and knowledge they contain and were used to exchange can

certainly be made more meaningful if standard shape features are used. This is because

during the case study it was established that different perceptions of the same part of the

component exist in different parts of the same company. Since these differences have

occurred over time, it is reasonable to assume that they are dynamic in nature i.e. they will

keep changing with time if a benchmark is not defined. Details of these differences are given

in the next section where the component geometry is used for this purpose. It is, however,

very important at this point to keep in mind that when a computer-based knowledge

sharing system is used to exchange knowledge between independently developed

knowledge bases, these differences may get worse rendering the computer systems unable

to establish similarity during the process of knowledge sharing and thus affecting

interoperability. These interoperability problems indicate that there is a need for a dynamic

system where design and manufacture people are provided with a standard vocabulary to

independently develop their own knowledge bases using their own perceptions. Since the

changes in these knowledge bases are made using the same common vocabulary, a

knowledge verification system can use this vocabulary to translate the meanings accurately

across departments. In the case of this research, this vocabulary is provided in the form of a

foundation and core-concepts ontology.

One last thing to note here is that during this part of the case study, it was found that the

documents like the DND and GCR were designed to involve manufacturing people in the

design of a new product or the modification of an existing one. A GCR, for example, is raised

and sent to the designer when the manufacturer has some problems with the production of

a component. Similarly, the DND requires the approval of the manufacturer before the

design of a component is finalized. If analyzed closely, it can be seen that these documents,

in one way or another, deal with the manufacturability of a component. These documents,

therefore, will not be needed in the presence of an automatic manufacturability analysis

mechanism. The focus of this research in presenting potential solutions to the studied

industrial problems is thus on computer-based manufacturability knowledge sharing. The

143

next section explains the findings of the next part of the case study where a component was

studied with special emphasis on manufacturability problems.

7.3.2. The component study

The study focused on a high pressure compressor disc as illustrated in Figure 7.1. Different

parts of this disc are important in different lifecycle stages. These stages include

manufacturing, assembly, maintenance, use, and disposal. This case study, however, only

dealt with the analysis of information and activities of design and manufacturing, and more

precisely, the process of machining for this particular disc. For proprietary reasons, the exact

form of the studied disc is not shown here but the illustrated shape fulfils the essential

requirements to present the study and its findings. One point to note here is that a feature

of an engineering component can include different things, e.g. its shape, its material, or its

colour, however the word feature used in this document refers only to shape features

unless otherwise specified.

7.3.2.1. Design Features
The design of discs of this type usually starts with the modification of an existing component

the geometry of which closely resembles the intended design. A disc is a uniform cross-

Rim

Fillet

Diaphragm

Hole

Fillet

Cob

Circumferential Groove

Figure 7.1. The example component

Loading Slot

144

section component, obtained through a 360o revolution of this cross-section. Its design,

therefore, requires its features to be mainly divided into two categories. The first category

includes those features which exist in the cross-section of the disc throughout its full

revolution. These features are named as 2D or two dimensional features because a two

dimensional image of these features is enough for their definition. The second category

belongs to those features which have a specific location in the disc and a simple cross-

section of the disc at that location is not enough to define their geometry completely. These

features are called 3D or three dimensional features. These features are very important

here because this categorization plays a crucial role in defining the manufacturing processes

associated with these features. The features which are going to be the focus of this study

are listed below.

2D Features 3D Features

Circumferential Groove Loading Slot

Rim Holes

Diaphragm

Cob

Rim-Diaphragm Fillet

Diaphragm-Cob Fillet

The analysis of design features is based on the functionalities attached to them. So the

translation of design requirements into a final component would involve the creation and

incorporation of certain features which fulfill the functional requirements of the intended

design. A designed component, in this case, would therefore be considered as an

accumulation of design features. At this point a design feature can be defined as:

 “A distinct part of an engineering component to which a specific function or a set of

functions can be associated”

When it comes to a set of functions associated to a design feature, a rating has to be

developed which labels a specific functionality according to its importance. Figure 7.2, for

example, illustrates a feature-functionality matrix of the features shown in Figure 7.1.

This feature functionality matrix is especially helpful when a design in modified. This is

because a designer needs to know the unwanted changes that may occur to the

145

functionality of a feature due to an alteration in the design of other features. A more

important reason for such a matrix, which is also more relevant here, is the identification of

distinct features in a component. If a major function can possibly be associated to an

identified feature then that feature qualifies as a design feature. It can be seen in the matrix

that every single listed feature has got at least one major function. This is determined

through their score. A score of 9 makes a certain function the major reason for the existence

of a specific feature in a component. Scores of 5 and 1, similarly, show the lower relevance

of a feature for a particular function. Hence, the reason why the selected disc is divided into

these eight features is the distinct functionality of each of these features and this is the

criteria which can be used to identify design features in any component. For the disc studied

here, three main divisions can be as follows:

Base Features Stress Relieving Features Joining Features

Rim Rim-diaphragm fillet Holes

Diaphragm Diaphragm-cob, fillet Circumferential groove

Cob Loading slot

 There are two different types of divisions for design features defined here. The division

according to the function a particular feature performs is helpful during the initial stages of

design when the concept starts to come into being, while the division into 2D and 3D

features becomes handy during the analysis of the initially proposed design. Examples of

R
im

C
irc

um
fe

re
nt

ia
l

G
ro

ov
e

D
ia

ph
ra

gm

C
ob

R
im

-D
ia

ph
ra

gm

Fi
lle

t

D
ia

ph
ra

gm
-C

ob

Fi
lle

t

H
ol

es

Lo
ad

in
g

S
lo

t

1 Transmit torque 9 5 1 5

2 Join with other discs 1 9

3 Position blades axially 1 9 1

4 Position blades radially 1 9 5

5 Prevent stress concentration 9 9

6 Ensure concentricity when joining with other discs 1 5

7 Balance the radial forces and stresses 9

8 Load blades into the circumferential groove 9

Figure 7.2. A feature functionality matrix

146

this are thermal analysis and stress analysis where the initial analyses are performed mainly

for the 2D features and then the process is further extended to 3D features if necessary.

Other uses of the latter division relate to the manufacturing features which are explained in

the next section. Figure 7.3 gives an image of how a designer might view the cross-section of

this disc in terms of the features of which it is comprised.

7.3.2.2. Manufacturing Features
While the criteria for the identification of design features are the functions they perform,

the criteria used for the recognition of manufacturing features are the manufacturing

methods required for their production. Hence, it is necessary to analyze the manufacturing

processes the selected disc goes through. A look at the production route, or machining

route to be more specific, of the studied disc reveals that it mainly requires the processes of

turning and milling for its production. It is important to note here that the demarcation

made between design features to make them distinct does not work when manufacturing

Milling feature

Turning feature

Drilling feature

Figure 7.4. Manufacturing Features

Figure 7.3. Design Features

Base feature

Joining feature

Stress relieving feature

147

features are to be identified. This is because more than one design features can be

produced during a single manufacturing process. Therefore, a manufacturing feature may

possibly be a combination of several design features. Going back to the division of design

features into 2D and 3D, a connection can be seen between this division and the

manufacturing processes. All two dimensional design features can be produced through the

process of turning while the 3D features are either produced through drilling or milling. This

connection is very helpful when manufacturing knowledge is attached to design features for

the designer to understand. An obvious designation of manufacturing features is therefore

turning features, milling features and drilling features as shown in figure 7.4 and categorized

below.

Turning Features Milling Features Drilling Features

Rim Loading slot Holes

Diaphragm

Cob

Circumferential groove

Rim-diaphragm fillet

Diaphragm-cob fillet

7.3.2.3. Standard Features
One of the main objectives of this case study was to analyze how a standard feature-based

design and manufacturing system may work in a manufacturing setup. For this reason it was

necessary to first define what is considered to be a standard feature. A standard feature is

therefore defined as:

“A geometrical feature, having a specific design function associated to it and a fixed

manufacturing method assigned for its production.”

It was understood after an in depth analysis of the manufacturing methods of features that

to standardize a feature, its manufacturing method, the tooling it uses and the way it is

finally inspected have to be fixed. A feature therefore is standardized if it is always

manufactured and inspected in the same way. For this to happen, a feature designated as a

standard needs to exist in most of the components belonging to a certain part family. This is

because the fixation of a manufacturing and inspection method has to be justified by the

148

high volume of production of a feature or its variants. For this reason, the feature ubiquity

was the primary consideration when features in the selected disc were determined, as

shown in Figure 7.1.

The features shown in Figure 7.1 clearly have distinct functions attached to them as proven

by the matrix in figure 7.2, and their manufacturing methods were also found to be similar

across a range of discs belonging to the same part family. Hence, with a fixed set of tooling,

these features can be designated as standard. This set of eight features, therefore, are

considered to be standard features and will be dealt with as so in the rest of the document.

These standard features provide a common ground for the design and manufacture

domains to use them as the basis for their individual knowledge bases. To further increase

the interoperability, these features can be named by using an existing standard like ISO

10303-224 (ISO/DIS 10303-224:2003(E), 2003). This standard gives a detailed account of

machining features that may exist in an engineering component and therefore can become

the basis of the naming conventions of standard features.

7.3.2.4. Interdependence of standard features and manufacturability limitations
 Since the recognition of features is different in the design and manufacturing domains,

more than one standard feature may get produced in a single manufacturing or machining

operation. For example, the initial turning operation produces the circumferential groove,

the rim, and partly the diaphragm. In another turning operation the cob and rest of the

diaphragm are produced. It is Important to also note here that the interfaces between these

standard features, which are called fillets, are also produced during these operations

because, clearly, in terms of manufacturing they are not a separate entity. Some of these

interdependencies and manufacturing limitations experienced during the case study are

now discussed.

7.3.2.4.1. Limited tool life
During the study some cases were discovered where accumulated machining (i.e. because

of limited tool life) affects the dimensional requirements of a feature. For example, during

the turning of the lower part of the disc, the tool machines the surface starting from cob,

going through the fillet and machining some part of the diaphragm as shown in figure 7.5.

Due to the limited tool edge life, the tool has to be lifted off the surface for replacement.

149

This lifting off of the tool causes a step to be formed on the diaphragm surface. Obviously, a

better and more expensive tool might solve this problem but when the tooling is

standardized, these things have to be taken care of by the designer when prescribing the

dimensional requirements of a feature.

7.3.2.4.2. Undersized fillets
Another case witnessed was when one of the fillets in the disc had a radius smaller than the

smallest available tool. This is shown in figure 7.6. Again a smaller tool can do the job but a

sharper tool tip makes it more delicate and vulnerable to breakage and breaking a tool

during machining might mean ruining the whole component. These are the limitations

Cutting tool moving off the surface

A step or mismatch
occurs when the tool
is lifted Workpiece

Figure 7.5. Limited tool life

Cutting Tool

Radius to be machined
is smaller than the
smallest available tool Workpiece

Figure 7.6. Undersized fillets

150

therefore which need to be considered when a component or features in that component

are designed.

7.3.2.4.3. Tool accessibility limitations
Another limitation which designers need to be aware of is the accessibility of cutting tools.

For the component selected for this case study, the circumferential groove feature posed

this problem. A tradeoff exists between the groove angle that is needed for firm blade

holding and the opening width. Too big an opening might reduce the amount of force

needed by the groove edges to hold the blade and too small an opening offers the problem

of tool asscessibility as shown in figure 7.7. For this reason, the available tools were limited

to a certain range of angles and groove depths that could be achieved.

7.3.2.4.4. Fixture suitability
The way a component is held may also cause problems during its machining. It was found

that the holding location, holding mechanism and tool motion path all contribute to create

difficulties during the machining of a disc.This issue, therefore, also needs to be accounted

for during designing and relevant features need to be modified accordingly.

7.3.2.5. Perceived Interoperability Issues
It has so far been established that the interpretation of different parts of the same

component may differ in design and manufacturing domains. Designers look at a feature

from its functionality point of view while manufacturers try to translate the component

features into the language of manufacturing methods and processes. An example of this

difference is illustrated in figure 7.8. In addition to that for a manufacturer the terms joining

Groove opening too
small for the tool

Workpiece

Figure 7.7. Tool accessibility limitations

151

feature or stress relieving feature do not make any sense and the same features or a

combination of them are identified as drilling features and turning features. This is a typical

example of conceptual differences that may lead to conceptual mismatches when

knowledge is mapped between two domains. But this is not all that may go wrong and some

terminological differences were also found to exist. For example, the part of the disc

between the edge and the centre was known as diaphragm while the manufacturing

engineers and machine operators were calling it a web. Similarly, the central portion was

referred to as a ‘cob’ in design and a ‘hub’ on the shop floor. These conceptual and

terminological differences are a clear indication of the potential semantic mismatches when

knowledge bases are built independently.

To handle these issues, a verification system is needed which mediates between design and

manufacturing knowledge bases to reconcile any conceptual and terminological differences.

This case study provided practical examples of these differences and the verification system

therefore needs to be capable of alleviating these and other similar problems.

7.4. Case study findings summarized

It was established during the study that design and manufacturing engineers have their own

perceptions and views of a component and its features. Designers look at a part from its

functionality point of view while the manufacturing engineers percieve it from the

manufacturing method viewpoint. To ease the solution of this problem, a component can

Design View Manufacturing View

Is the surface
smooth enough
to prevent any
stress
concentration

Is the groove
angle good
enough for
blade holding

Is the fillet radius
suitable for stress
relieving?

Does the designer
allow any
mismatches?

Is the opening
big enough for
the cutting tool
to enter?

Is the fillet radius
achievable using
available tooling?

Figure 7.8. Comparison of designer’s and manufacturer’s views

152

therefore be divided into standard features. These features when dealt with on an individual

basis make it easier for the two parties to associate knowledge to them and thus

understand each other by sharing this knowledge. Figure 7.9 shows how this system works.

A designer designs a component by translating the intended functionalities into physical

features. These features are then analyzed and modified on a detailed basis according to the

function they are supposed to perform. This process gives the features their geometrical

characteristics. An accumulation of these features then produces the whole component. The

output of this entire course of action is an engineering drawing. When this engineering

drawing goes to the manufacturing engineer it is dealt with on the basis of manufacturing

methods and tooling available. This gives rise to the manufacturability issues. A coordination

process then takes place to collect this manufacturing knowledge and make it available to

the designer so that the next time a similar feature is included in a component, the designer

is aware of its manufacturing requrements. Presently this co-ordination process uses

documents listed in the first section of this case study. In the initial stages of the design,

documents like the DND are used. When the component is designed, the manufacturability

issues are resolved by initiating documents like the GCR. This exchange of documents,

Feature function

To hold the blades
and locate them
correctly

1. Groove opening has
to be at least 20mm
to allow the tool to
enter

2. Internal fillet radius
should be at least
2mm for the
available tools to
machine it

3. ……..
Feature
characteristics to
achieve that

Feature
Characteristics

1 Groove depth

2 Pressure face
angle

3 Groove opening
width

4 …..

Operation
number

Operation
Description

T1a Rim face rough
turning

T2a Groove rough
turning

T1b Rim face finish
turning

T2b Groove finish
turning

Manufacturing
knowledge to
achieve that

Manufacturing
Knowledge*

Design Manufacturing

Manufacturing knowledge for designer in the form of rules
and constraints on feature geometry

Figure 7.9. Manufacturing knowledge flow to the designers

* Numerical values are imaginary

153

however, is very time consuming and is not capable of preventing a non-manufacturable

product at its early design stages.

 The process described above can be made automatic and very quick if a computerized

system is in place to stop the designer whenever a manufacturability constraint is violated.

This can be achieved by building interoperable knowledge bases in both the design and

manufacturing domains. The interoperability can be further enhanced by providing a

verification capability within the system. This verificaiton and mediation system would

increase the interoperability of knowledge by reconciling conceptual and terminological

differences between the design and manufacturing domains. This is what this research

encompasses and this case study gave the researcher an idea of the real engineering design

and associated manufacturability problems that need to be resolved through an

interoperable manufacturing knowledge system. The following points more explicitly state

the research requirements identified during the case study:

1- The information flow between design and manufacture is mainly regarding the

manufacturability of a component. This is evident from the analysis of documents

exchanged between design and manufacture.

2- Designing and manufacturing departments perceive engineering components

differently depending upon the aspect that is important to them. Many examples of

this perceptional difference were identified in the case study.

3- In the interpretation of different features of a component, some terminological

differences also exist in addition to the perceptional differences across two

departments as can be seen in the examples given in this chapter.

4- At present, exchange of knowledge is largely achieved through exchange of

documents such as the ones listed in table 7.1. In the presence of a seamless

automated knowledge sharing system the knowledge exchange and the process of

manufacturability analysis can easily be made faster and more efficient.

In the light of these findings, this research proposes a knowledge mediation and verification

framework (described in chapter 8) specifically targeting the manfuacturability analysis at

early design stages of a product. The proposed framework caters for all the semantic i.e.

perceptional and syntactic i.e. terminological differences found during the case study. This

154

verification framework is unique in the way it combines feature-based design and

manufacturing with ontologies thus reaping the benefits of both technologies. Through the

use of ontologies this framework alleviates the problem of semantic and syntactic

differences and through the use of feature-based design and manufacture it provides a

resourceful platform for the manufacturability analysis of components. An automatic

manufacturability analysis software application is also developed which works on the

principles of the proposed verification framework. The validaiton of the verification

application (presented in chapter 9) is purely based on the manufacturability problems

observed during the cases study. This successful case study based validation speaks volumes

of the potential such a seamless knowledge sharing system has for an automated and quick

analysis of the manufacturability of a component in similar manufacturing setups.

7.5. Conclusions

The findings of this case study endorse the understanding developed during the literature

review. In the literature review it was found that there is a requirement of mechanisms

capable of mediating between the independly developed knowledge sources, specifically

those based on ontologies. This case study helps in experiencing the real world industrial

problems where it is understood that the need for verification of knowledge is even greater

when technical knowledge is shared, by using computer based systems, across departments

even when these are departments within the same company. The next chapters aims to

present the proposed solution which is intended to alleviate these knowledge verification

problems.

155

Chapter 8: A novel knowledge verification framework for foundation
ontology based knowledge bases

156

8.1. Chapter overview
After highlighting the research gap in chapter 4, understanding the capabilities of the

chosen ontological formalism in chapter 5, demonstrating the use of ontologies in

manufacturing knowledge sharing in chapter 6, and identifying the industrial knowledge

interoperability problems in chapter 7 the proposed knowledge verification framework can

now be explained in this chapter. Only the design and implementation aspects of the

proposed framework are considered in this chapter. The validation comes in chapter 9.

8.2. Revisiting the findings so far
Before the verification framework is explained, it is useful to revisit the research gap and

industrial interoperability requirements identified in the previous chapters. It was concluded

after the review of ontology mediation techniques in chapter 4 that:

1- Most heuristic based approaches of ontology matching, target and resolve

explication mismatches. Some work therefore needs to be done to develop

techniques aimed at conceptualization mismatches.

2- All heuristic-based tools and techniques require human intervention at some point.

A potential area of improvement, therefore, is the automation of these tools and

techniques.

3- Foundation ontology based techniques resolve the issue of mismatches but

introduce the problems of inconsistencies when concepts from the core concept

ontology are chosen to build domain or application ontologies and associated

knowledge bases.

4- A plausible solution for these inconsistencies appears to be the use of logical

theories or axiomatizations at different levels of the foundation and core concepts

ontology.

5- The design and development of a mechanism capable of finding similarities between

two ontologies by using their inheritance in the foundation or core ontology is

needed.

Since this research is a part of the IMKS project which mainly deals with domain ontologies

underpinned by a foundation ontology, an ontology matching approach which makes use of

these links from domain ontologies to the foundation ontology will be most effective and

appropriate. As point 5 in the above list states, that a mechanism finding similarities through

157

the foundation inheritance identification seems to be the logical solution to the ontology

matching problem in the IMKS scenario, however, some additional challenges also need to

be considered because of the industrial problems identified during the case study which

include the following:

1- The information flow between design and manufacture is mainly regarding the

manufacturability of a component,

2- Designing and manufacturing departments perceive engineering components

differently depending upon the aspect that is important to them,

3- In the interpretation of different features of a component, some terminological

differences also exist in addition to the perceptional differences across two

departments,

4- At present, exchange of knowledge is largely achieved through exchange of

documents. In the presence of a seamless automated knowledge sharing system the

knowledge exchange and the process of manufacturability analysis can easily be

made faster and more efficient.

Thus, the five requirements obtained from the literature review when viewed in the light of

the findings of the industrial case study highlight the need of:

“A knowledge verification system, specializing in manufacturability analysis, capable of

automatically resolving the semantic and syntactic inconsistencies resulting from the

perceptional differences between design and manufacture through the use of logic

The keywords in the above statement are underlined to emphasize the fact that the

proposed solution has to automatically resolve the perceptional differences through the use

of logic. How this is achieved by the proposed knowledge verification framework is

explained next.

 in heavy

weight foundation ontology based knowledge bases.”

8.3. A novel knowledge verification framework
Keeping in view the requirements set by the above presented findings, a novel knowledge

verification framework is proposed in this research. A schematic of this framework can be

seen in figure 8.1. This verification framework proposes the use of logic not to overcome

differences in domain ontologies during knowledge sharing but to prevent them from

158

happening in the first place. This is done firstly at the domain ontology level i.e. during the

process of domain ontology development and secondly at the knowledge base level during

the process of knowledge base population. To materialize this idea into an understandable

form, a verification framework is proposed to contain a set of ‘inconsistency preventing

axiomatizations’ (shown as axioms in figure 8.1) and a ‘verification mediator’. As has

already been explained in chapter 5, the ontological formalism used in this research allows

the user to write integrity constraints and axioms to control the creation of classes in the

ontology and their use in the knowledge base. With this capability in view, the proposed

axiomatizations are aimed at standardizing the way concepts from the foundation and core-

concepts ontology are specialized in the domain ontology. This standard way is needed to

ensure that no inconsistencies are created during the process of concept specialization due

to subjective interpretations of foundation and core concepts by the domain experts. These

constraints are proposed to either exist in the foundation and core-concepts ontology or as

a separate attachable ontology. The ‘verification mediator’, which is the second part of the

proposed verification framework, is designed to detect similarities on the basis of the

assumption that the specializations in the domain ontologies are created by following the

standard way. The design and implementation details of this framework come next.

Verified
facts

Knowledge
facts

Foundation Ontology

Core OntologyPSL Ontology

Mfg
ontology

Design
ontology

Mfg
KB

Design
KB

Verification
mediator

Specializations

Specializations

RepliesQueries

Transformed
facts

Outcomes

Figure 8.1. The verification framework

Inconsistency
preventing
axiomatizations

Inconsistency
preventing

axiomatizations

159

8.4. Design of the verification framework
Figure 8.1 illustrates the setting in which this verification mechanism is designed to work.

Five main components of this framework are:

1- Foundation and core-concepts ontologies,

2- Domain ontologies,

3- Knowledge bases,

4- A set of inconsistency preventing axiomatizations and

5- The verification mediator

A detailed design of each of these components can be a research project in its own right. For

that reason, the presented research only focuses on the last two components which

specifically deal with the verification of knowledge shared between foundation ontology

based domain ontologies. In the following text, a brief description is given of the first three

components while a detailed design description of the last two components is presented.

8.4.1. Foundation and core-concepts ontologies

At the top of figure 8.1, two layers of ontologies can be seen. The first layer is that of the

foundation ontology which then subsumes in the second layer - the PSL ontology and a core

ontology of manufacturing concepts. A description of the PSL ontology can be found in

chapter 3. PSL is used here to provide core-concepts for defining processes. The

manufacturing core-concepts ontology, on the other hand, provides concepts for defining

products. Together, these two ontologies provide the vocabulary for building domain

ontologies through a controlled specialization of their concepts and subsequently the

knowledge base through controlled modelling of design and manufacturing processes.

8.4.2. Domain ontologies

The foundation and core-concepts ontologies hold very general concepts. Which means,

although these concepts can directly be used to build the knowledge base, only a very

general level of modelling can be done without going into the low level details of

manufacturing processes. For this reason, domain ontologies need to be built, with

idiosyncratic and specialized concepts, before knowledge is modeled in the knowledge

bases. These idiosyncrasies depend upon the preferences of a certain domain. Two domains

160

studied during the case study were design and manufacture and therefore two domain

ontologies belonging to these domains are included in the framework.

To explain the proposed framework, those examples from the case study are used where

the domain ontologies are needed to cater for different perceptions and terminologies

existing in different departments. In these cases, therefore, domain ontologies are used as

a source of localized vocabulary to model knowledge in departmental knowledge bases.

These domain ontologies, however, are assumed to have connections in the foundation and

core-concepts ontology with concepts and terms of similar meaning. To make sure that

these connections are built whilst building the domain ontology, it is proposed, that some

axiomatizations and constraints should be used. These are called here the inconsistency

preventing axiomatizations and will be explained later.

8.4.3. Knowledge bases

At the bottom of all the layers of foundation, core-concepts, and domain ontologies lie the

knowledge bases. These knowledge bases are built by using concepts from the domain

ontology of a respective department. Since there are differences in the terminologies used

by the design and manufacturing domain ontologies, the knowledge facts built under these

ontologies will also be different. It is the work of the verification mediator then to identify

similarities and verify knowledge. The scenario that will be used to explain the

implementation of the proposed framework assumes that the design knowledge base

contains the facts that model a component. It is proposed in this research that these design

models of components are examined by the manufacturability constraints existing in the

manufacturing domain ontology before they are finalized. This is done through the

verification mediator as can be seen in figure 8.1. It is shown that, through the use of

queries, the verification mediator verifies facts by first sending them to the manufacturing

knowledge base to be checked by the manufacturability constraints existing in the

manufacturing domain ontology. If no objections are raised by the manufacturing domain

ontology the verification mediator sends the verified facts back to the design knowledge

base for them to be finally asserted in the form of a product model. Further explanation of

the functioning of the verification mediator is given in the implementation section of this

chapter.

161

8.4.4. Inconsistency preventing axiomatizations

Some deliberation is required to enable correct decisions to be made about the type of

constraints which should be written to address the possible inconsistencies that may occur

during concept specialization. The ideal way to address this challenge is to conduct a social

scientific survey to discover the types of inconsistencies that may occur by building

independent ontologies during the process of concept specialization. Alternatively (or

additionally), existing literature on this topic can be searched to find results of any similar

research conducted in the past. The literature on foundation and upper ontologies,

however, does not offer any such knowledge and the scope of this research does not allow

the social science aspects of the use of foundation ontologies to be thoroughly investigated.

Hence, the design and testing of the framework proposed in this research has been based

on possible inconsistencies identified through the industrial case study work reported in

chapter 7. For that reason, some obvious possible inconsistencies are considered in this

research to explain and test the proposed approach. Since the concepts from the

foundation and core-concepts ontology are used first to build the domain ontology and then

the knowledge base, two types of axioms need to be written. The first type is proposed to

scrutinize the concept specialization in the domain ontology and the second type is aimed at

examining the completeness of the knowledge facts in the knowledge base. These two types

are explained below with the help of examples. The word ‘axiom’ is used, instead of

axiomatization, from now on for brevity.

8.4.4.1. Axioms for the domain ontologies
The most vital issue for the foundation ontology based domain ontologies is the linking of

concepts in the domain ontologies to similar concepts in the foundation and core-concepts

ontology. Two types of cases may exist in this regard. In the first case, an independently

developed domain ontology may need to be linked to a foundation by mapping similar

concepts. In the second case, a domain ontology is built by using the concepts from the

foundation ontology as building blocks. In both of these cases, there needs to be a standard

way of linking the concepts in the two ontologies together such that the structure of the

domain ontology is consistent with the foundation and core-concepts ontology. The

compliance to this standard way can be ensured through axioms or integrity constraints

present in the domain ontology. The existence of these axioms is extremely vital for the

162

functioning of the verification mediator which is the second main part of the verification

framework proposed in this research. The reason being that the main assumption on which

the verification mediator works is that the domain ontologies are consistent with the

foundation and core-concepts ontologies in terms of their structure if not content. Hence,

the method of subsuming the domain concepts under similar foundation or core concepts

needs to be defined explicitly. As far as this research is concerned, the standard way of

doing this is defined to be the super-concept relation. This is depicted in figure 8.2 where a

concept named ‘drilling_feature’ in the domain ontology is shown to subsume a foundation

or core concept of ‘hole’. The KFL assertions needed for this subsumption are also shown.

The ‘sup’ directive in these assertions is responsible for the establishment of a link between

the domain and foundation concept. In this case it subsumes the domain concept under

‘FDN.hole’. The prefix FDN here represents the context in which concepts in the foundation

and core are defined. The inclusion of this prefix shows that the class named ‘hole’ exists in

the foundation and core-concepts ontology. The verification mediator works on the

assumption that a ‘sup’ directive for every concept in the domain ontology exists. It is

therefore very important that the inclusion of this directive is ensured. This can be done by

writing the following axiom.

(=> (and (RootCtx.Property ?prop1)

 (RootCtx.Context ?ctx1)

 (RootCtx.contextFor ?prop1 ?ctx1)

 (UserContext ?ctx1)

 (not (= ?ctx1 MLO))

Figure 8.2. Foundation concept subsumption

hole

drilling_feature

Foundation and core-
concepts ontology
(Context: FDN)

Domain ontology

:Prop drilling_feature
:Inst Type
:sup FDN.hole

163

 (not (= ?ctx1 MFG)))

 (exists (?prop2) (and (RootCtx.Property ?prop2)

 (RootCtx.contextFor ?prop2 MFG)

 (sup ?prop1 ?prop2))))

:IC hard "Every class in the domain ontology needs to be subsumed to

a class in the foundation and core-concepts ontology."

The above axiom says what is shown in the ‘IC hard’ directive. This axiom makes sure that

no class in the domain ontology is left unidentified and thus provides a solid platform for the

verification mediator to work from. This is, however, not the only type of inconsistency that

may occur during domain ontology building and linking.

One other type of inconsistency can be the incompleteness of specialization. For example, if

a meaningful shape feature is to be introduced in an ontology then concepts depicting its

dimensional characteristics also need defining. A core-concepts ontology can be made

meaningful in this sense by defining all essential concepts related to a field of knowledge. A

domain ontology, however, needs a check through axioms and constraints on the

completeness of concepts specialized from the foundation and core-concepts ontology.

Consider the segment of a core-concepts ontology with a domain specialization as shown in

figure 8.3. It can be seen that the concept named ‘hole’ in the core-concepts ontology is

specialized in the domain ontology with the name ‘drilling_feature’. For this specialization to

be correct and complete, the foundation concept of diameter and depth also need to be

specialized. To make sure that this happens during domain ontology building, the following

Feature

hole groovefillet

drilling_feature

Foundation and core-
concepts ontology

Domain ontology

dimensional_characterisitcs

depth lengthdiameter

has_diameter

manufacturing_foundation

A concept specialized into the domain
ontology from the core-concepts ontology

Figure 8.3. A specialization example

has_depth

164

axiom can be written.

(=> (and (RootCtx.Property ?p1)

 (RootCtx.Context ?c)

 (RootCtx.sup ?p1 MFG.hole)

 (RootCtx.contextFor ?p1 ?c)

 (not (= ?c FDN)))

 (exists (?p2)(and (Property ?p2)

 (sup ?p2 FDN.diameter) (contextFor ?p2 ?c))))

:IC hard "If there is a specialization of the 'hole' concept then a

specialization for the ‘diameter’ should also exist."

This axiom says that if there exists a class in the domain ontology and that class is a

specialization of the foundation concept ‘hole’, then another class as a specialization of the

foundation concept ‘diameter’ should also exist in the domain ontology.

The above example explains just a few of the many possible inconsistencies that may occur

during the foundation or core concept specialization in the domain ontology. These

examples, however, demonstrate the use of axioms to prevent inconsistencies, which was

the main aim of their explanation. The methodology to prevent any known inconsistency,

therefore, is the same. Axioms can specifically be written for a possible error and hence

inconsistencies can be prevented.

8.4.4.2. Axioms for the knowledge base
When a domain ontology is constructed, the knowledge base is built though the population

of concepts introduced in the domain ontology. There can, however, be a case where

concepts from the foundation and core-concepts ontology are directly used to build a

knowledge fact. To prevent inconsistencies in such a circumstance, axioms are proposed to

exist. For example to make sure that all the essential dimensional parameters of a circular

disc are defined in the knowledge base, the following axiom can be written.

(=> (disc ?x)

 (exists (?d ?h)

 (and (has_diameter ?x ?d)

 (has_height ?x ?h))))

165

:IC hard "For a complete description of a ‘circular disc’ both

‘diameter’ and ‘height’ are needed."

This axiom says that if there exists a hole, then its diameter and depth should also exist and

since it is a hard integrity constraint, it does not allow the user to proceed without

correcting the error. Axioms like these can be written to prevent inconsistencies at the

knowledge base level.

The axioms presented above specifically target certain inconsistencies, generally however,

they attempt to maintain a certain structure of domain ontologies committing to the

foundation. It was explained in chapter 3 that an ontology becomes heavyweight when rules

and axioms are added to it which govern the definition and interpretation of concepts

within them. A foundation and core-concepts ontology, therefore, can have its own axioms

and constraints. In the IMKS project, these axioms and constraints not only prevent the

subjective interpretation of concepts but also dictate their use by domain ontologists. In

such a case, the verification system needs to be designed according to the specialization

controlling constraints of the foundation and core-concepts ontology. The verification

mediator explained in the next section, works on the assumption that the concepts in the

domain ontologies are connected to similar concepts in the foundation or core through the

‘sup’ directive as shown in figure 8.3. It is this link which is used by the verification mediator

to establish similarity between independently developed domain ontologies. The working of

this mediator is explained next.

8.4.5. The verification mediator

The verification mechanism described in this section is essentially an ontology mediation

mechanism that uses the inheritance of domain ontology concepts in the foundation and

core-concepts ontology to establish similarities. Keeping in mind the capabilities and

shortcomings of existing ontology mediation tools, the new tool needs to have the

capability to make the similarity detection process more automatic and accurate when two

foundation ontology based domain ontologies are matched. Figure 8.4 (next page) shows

the working of this mechanism.

This verification mediator works with the help of four modules named (1) Source ontology

inheritance identifier, (2) Target ontology inheritance identifier, (3) Concept matcher and (4)

166

Fact builder and asserter. The role of these modules in ontology mediation and knowledge

verification is described in detail below.

8.4.5.1. Source ontology inheritance identifier
The inheritance identifier is responsible for finding the super-class of a domain ontology

concept in the foundation and core-concepts ontology. This is done by sending queries to

the foundation. It takes a concept from one domain ontology, writes a query to find its

foundation inheritance, receives replies and sends the replies to the ‘domain concept

identifier and concept matcher’ module.

8.4.5.2. Target ontology inheritance identifier
The functioning of this module is similar to the inheritance identifier. However, instead of

finding the super-class of a domain concept, it searches for the sub-class of a concept in the

foundation and core-concepts ontology. This is done by first locating the class names

(received from the source ontology inheritance identifier) in the foundation and core-

concepts ontology and then querying for their sub-classes in the target domain ontology.

Foundation
Concepts

Source ontology
inheritance identifier

Concept Matcher

Manufacturing Foundation Ontology

Core manufacturing concepts

Target ontology
inheritance Identifier2

5

Inheritance
Queries

Inheritance
Queries

Foundation and relevant
production concepts

Replies

4

Equivalent foundation concepts

Verification mediator

Design
Domain
Ontology

Production
Domain

Ontology

2

Design and relevant
foundation conceptsA B C

Fact builder and
asserter

D
Outcome to the designer

1 3

6

Figure 8.4. Working of the verification mediator

167

8.4.5.3. The concept matcher
The concept matcher takes input from the inheritance identifier and domain concept

identifier modules and determines their similarity by analyzing their foundation

inheritances. The rule to follow here is that if the foundation inheritances of two classes in

two domain ontologies are the same then these domain ontology classes are also same.

Once the similarity is established the similar class names are forwarded to the fact builder

and asserter module.

8.4.5.4. The fact builder and asserter
This module starts functioning once the similarities are established. It is, therefore,

technically not a part of the ontology mediation system but does play a role in the

verification of knowledge. The task of the fact building that it involves is writing a knowledge

fact in an ontological formalism and then asserting it in the knowledge base built out of the

domain ontology concepts.

The functioning of this module can be better understood when the functioning of the

verification mediator is explained. This is done in the next section where, with the help of an

industrial scenario, the implementation of the proposed verification framework is explained.

168

8.5. Implementation of the verification framework
It can be understood from the description of the modules of the verification mediator that

the basic principle of its working is based on the exploitation of the link between domain

concepts and their equivalents in the foundation or core-concepts ontology. This link, in the

case of this research, is the inheritance of concepts in the foundation or core-concepts

ontology. The functioning of the verification mediator is therefore explained with the help

of an example explaining a real industrial scenario.

8.5.1. The industrial scenario explained

Figure 8.5 illustrates a real industrial scenario where differences exist in two domain

ontologies committed to a common foundation and core ontology. The core and domain

ontologies bear concepts needed to represent shape features which combine to form the

component shown in figure 8.6. The differences in the domain ontologies have been

intentionally induced for the sake of explaining the working of the verification mediator.

Manufacturing Foundation

Resourcesdimensions

Material MachineMan

shape_feature

rimholecob

work_piece attributecomponent
measurements

dmtr

width

straightLength

Fo
un

da
ti

on
Co

re

Co
nc

ep
ts

D
om

ai
n

Design Manufacturing

Figure 8.5. A specialization and knowledge population example

diameter

part

straight_length

breadth

Kn
ow

le
dg

e
B

as
e

disc

bolt_hole

diaphragm

hub

disc_end

straight_hole

webbing

centre

height

dia

web

length

(disc compDisc)
(diaphragm dphXYZ)
(hasLength dphXYZ (mm 150))
(hasFeature compDisc dphXYZ)

(=> (webbing ?w)
(withLength ?w (mils ?v)))

(lteNum ?v 500))
:IC hard “<code>?w</code> larger than 500mm
in length cannot be produced in the available
machines.”

measures

millimeter

shapes features

169

This is done in light of the evidence obtained in the case study explained in chapter 7. It can

be seen in figure 8.5 that there are four layers in this model of an ontology based knowledge

sharing system. The first layer contains very general foundation concepts while the second

layer holds core manufacturing concepts to be committed to by the concepts in the domain

ontologies existing in the third layer. The fourth layer is that of the knowledge base which

contains ontological models of the components formed by using shape features from the

domain ontologies above. The manufacturability rules aimed at governing the creation and

modification of these models lie in the manufacturing domain ontology. In figure 8.6, the

dotted lines show that the terms in two domain ontologies are connected to their

equivalents in the core-concepts ontology. It can be seen that the two domain ontologies

use different terminologies to represent the same entity in the core-concepts ontology. This

has implications for the facts asserted in the knowledge base. The knowledge facts in the

design knowledge base, in such a situation, need to be translated into the manufacturing

ontology language for the rules existing there to make sense. This is what the verification

mediator does.

The implementation of the framework will now be demonstrated with the help of a

formalized example. The ontological formalism used for the ontology formalization is KFL as

explained in chapter 5.

This length is
changed by the
designer

Component name: compDisc

Figure 8.6. The example component

Rim

Fillet

Diaphragm

Hole

Fillet

Cob

170

It is assumed that the design knowledge base contains the following facts:

(component compDisc)

(diaphragm dphXYZ)

(hasLength dphXYZ (mm 150))

(hasFeature compDisc dphXYZ)

These lines say that an instance of the class ‘disc’ exists with the name ‘compDisc’. This

instance has a feature named ‘dphXYZ’ which is an instance of the class ‘diaphragm’ and the

length of ‘dphXYZ’ is ‘150mm’. In simple words, these facts say that there is a component

which has a diaphragm feature with length 150mm. In an ideal case, these facts, before they

are used to model the component in the design knowledge base, are to be inspected by the

manufacturability rules existing in the manufacturing ontology. One such rule is shown in

figure 8.6 which says that the length of the disc arm (which is diaphragm in the design

domain ontology and webbing in the production domain ontology) should not exceed

500mm for it to be produced in the available machining facility. The rule is as follows:

(=> (webbing ?w)

 (withLength ?w (mils ?v)))

(lteNum ?v 500))

:IC hard “<code>?w</code> larger than 500mm in length cannot be

produced in the available machines.”

In the start of the IC hard statement, it says ‘<code>?w</code>’ which enables this

statement to be modified according to the name of the feature represented by the variable

?w. By writing the IC hard statement in this way makes it understandable to the designer as

the ‘<code>?w</code>’ is replaced by the name of the feature used by the designer. This

will be shown at the end of step 6 of the verification process. The coding of this rule,

however, is purely in the manufacturing ontology language and is not comprehensible by

the computer system in the design knowledge management system. This industrial scenario

poses a problem that needs an ontology mediation mechanism capable of finding

similarities across two ontologies. Following is the description of the verification mediator

which is designed to do exactly this.

171

8.5.2. Six steps of verification mediation

As mentioned earlier, in order for the rule to understand the design component models, the

facts used to build that model need to be translated into the manufacturing ontology

language. This is precisely what the verification mediator is designed to do. It first translates

the facts asserted in the design knowledge base into the language of the manufacturing

domain ontology, it then asserts the translated facts into the manufacturing knowledge

base. Since these facts are now in the manufacturing ontology language, all the

manufacturability rules existing in the manufacturing ontology become valid and thus a

response according to the validity of changes made by the designer is obtained. The

knowledge facts written by the designer for modifying an existing model or for creating a

new model are now asserted or denied depending upon the response obtained from the

manufacturing ontology. The complete kfl coding of the ontologies shown in figure 8.5 can

be seen in Appendix I.

In order to translate the knowledge facts from the design into the manufacturing

terminology, the verification mediator first needs to establish similarities between the

concepts across two ontologies. Since a typical kfl fact consists of concepts, relations and

functions, three types of similarities are to be established named:

1- Concept similarity,

2- Relation similarity and

3- Function similarity.

Once these similarities are established, the facts are translated from one form into another.

Figure 8.4 shows the process of verification taking six steps to complete. These six steps are

explained next by using the example of figure 8.5.

Step 1 – Inheritance queries and foundation concepts

In this step, the ‘source ontology inheritance identifier’ module of the verification mediator

first decomposes the facts asserted by the designer into its elementary concepts. It then

queries the foundation ontology for the inheritances of these concepts one by one. As

mentioned earlier, three types of similarities have to be established i.e. the concept,

relation and function similarity, the ‘source ontology inheritance identifier’ module divides

these three components of the ontology into its constituent elements or concepts.

172

In the example of figure 8.6, following design facts are asserted:

(component compDisc)

(diaphragm dphXYZ)

(hasLength dphXYZ (mm 150))

(hasFeature compDisc dphXYZ)

In step 1, these facts are decomposed as follows:

Concept 1: component

Concept 2: diaphragm

Relation 1: hasLength

Relation 2: hasFeature

Function 1: mm

These relations are further divided into the concepts they hold between.

Relation1: hasFeature

 Relation 1 - concept 1: component

 Relation 1 - concept 2: shapes

Relation2: hasLength

 Relation 2 - concept 1: shapes

 Relation 2 - concept 2: straight_length

In the same way, the functions are also divided into the entities they hold between.

Function 1: mm

 Concept measured: straight_length

Once the facts are decomposed, queries are then generated by the inheritance identifier to

find the foundation inheritance of these concepts. One such query is shown here which

results in the foundation inheritance of the concept ‘component’:

(and (sup DSN.component ?f) (contextFor ?f FDN))

This query says, ‘find that super-concept of DSN.component which has a context of FDN’.

DSN here denote the design ontology context while FDN is the context for foundation

ontology as can be seen in the ontologies in appendix I.

173

Similar queries written for all the concepts return the answers shown in table 8.1.

Table 8.1: Foundation inheritances of design concepts

Design Concept Foundation Inheritance

component part

diaphragm web

shapes shape_feauture

straight_length straightLength

Step 2 – Storage of design and relevant foundation concepts

The results obtained in step 1, as shown in table 8.1, are forwarded in this step

simultaneously to the two modules of the verification mediator named ‘concept matcher’

and ‘target ontology inheritance identifier’. The ‘concept matcher stores these results for

later comparing them with the results obtained in step 4 from the ‘target ontology

inheritance identifier’.

Step 3 – Inheritance queries for the target ontology concepts

In this step, the ‘target ontology inheritance identifier’ takes the results received from the

‘source ontology inheritance identifier’ and generates queries to track down the sub-classes

of the foundation concepts in the manufacturing domain ontology. One such query is given

below which finds the manufacturing ontology subsumption of the foundation concept

‘part’.

(and (Property ?m) (contextFor ?m MFG) (sup ?m FDN.part))

Similar queries are written for other foundation concepts identified in step 1. In case of the

example knowledge sharing system presented in figure 8.5, this step will obtain results

shown in table 8.2 below.

Table 8.2. Foundation inheritances of manufacturing concepts

Foundation Concepts Manufacturing Subsumpitons

part work_piece

web webbing

shape_feauture features

straightLength length

174

Step 4 – Sending foundation and relevant manufacturing concepts

In this step, the results obtained in step 3 are sent to the ‘concept matcher module’ for this

module to compare the foundation inheritances of concepts in design and manufacturing

domain ontologies.

Step 5 – Sending similarity information to the ‘fact builder and asserter module’

In the fifth step, the information received from the ‘target ontology inheritance identifier’

module is used to establish similarities by the ‘concept matcher’ module. This is done by

comparing the foundation inheritances of design concepts received in step 2 from the

‘source ontology inheritance identifier module’ with those received in step 4. In other

words, the information in table 8.1 is compared with that in table 8.2. The results obtained

are shown in table 8.3.

Table 8.3. Established similarities according to the foundation inheritances.

Design Concepts Foundation Inheritances Manufacturing Concepts

component part work_piece

diaphragm web webbing

shapes shape_feauture features

straight_length straightLength length

This comparison of two sets of concepts results in the discovery of similarities across two

domain ontologies. These similarities are shown in table 8.4 below.

Table 8.4. Established concept similarities

Design Concepts Equivalent Manufacturing

Concepts

component work_piece

diaphragm webbing

shapes features

straight_length length

Once similarities between concepts are established, relations and functions existing in the

manufacturing ontology binding the same concepts as in the design ontology are also

declared similar. The relation similarities found in this case are shown in table 8.5.

175

Table 8.5. Relation similarities across two ontologies

Design relation Holding between Manuf.

equivalent

Manuf. relation

hasFeature
component work_piece

hasAttribute
shapes features

hasLength
shapes features

withLength
straight_length length

In the same way, the function similarity is shown in table 8.6 below.

Table 8.6. Function similarities across two ontologies

Design function Measures Manufacturing equivalent Manufacturing function

mm straight_length length mils

The relations and functions mentioned in this example can be seen in the complete

ontology coding presented in appendix I.

The steps explained up to this point fulfill the requirements of ontology mediation and

resulting knowledge verification when text-based knowledge is shared between the

communicating parties. The case considered here, however, is different. In this case, the

manufacturing knowledge to be shared exists in the form of integrity constraints or

manufacturability rules in the manufacturing ontology. To make these rules meaningful, the

established similarities now have to be used to translate the entire design model in to a

manufacturing model to make use of the manufacturing knowledge. The step explained

next is aimed at performing this task.

Step 6 – Translating facts and asserting to verify manufacturability

Since all three types of similarities i.e. concept, relation and function, have now been

established for the facts to be asserted, the facts are translated into manufacturing

language as shown in table 8.7.

Since these facts are now in a comprehensible form for the manufacturing knowledge base,

their assertion results in the manufacturability rule getting activated in case the length is

changed to a value greater than 500mm. The facts modelling the length of the ‘diaphragm’

less than 500mm are successfully asserted in the design knowledge base as they have now

been approved by the manufacturability rules existing in the manufacturing knowledge

176

base. In case of a length value more than 500mm, the integrity constraint statement is

passed on to the designer which says:

“dphXYZ larger than 500mm in length cannot be produced in the

available machines.”

dphXYZ in the above statement is the name of the feature designer gave while asserting

facts. It is to be noted that the process explained above, broadly, is manufacturability

verification. The whole procedure to verify manufacturability, however, involves the process

of similarity finding and knowledge verification which is done in steps 1 to 5 up to the point

where similarities are established.

8.6. Conclusions
In this chapter, the design and implementation of a novel knowledge verification framework

is presented which is the main contribution of this research. The examples of

manufacturability verification are used to explain the working of the verification mediator. A

very simple example of the length of a feature is presented to explain the working and

implementation of the proposed verification framework. In a real industrial scenario,

however, significantly complex cases exist. In order to validate the proposed framework,

one such scenario is chosen from the case study explained in chapter 7. To automatically

perform the task of manufacturability verification, a software application is also developed.

The validation of the proposed framework with the help of this software is presented in the

next chapter.

Table 8.7. Design and translated manufacturing facts

Design facts Translated manufacturing facts

(component compDisc) (work_piece compDisc)

(diaphragm dphXYZ) (webbing dphXYZ)

(hasLength dphXYZ (mm 150)) (withLength dphXYZ (mils 150))

(hasFeature compDisc
dphXYZ)

(containsFeature compDisc
dphXYZ)

177

Chapter 9: Validation of the proposed verification framework

178

9.1 Chapter overview
The description given in chapter 8 covers all the intricate design aspects of the proposed

knowledge verification framework. An implementation scenario was also presented in the

last chapter to further clarify the scope and working of the framework. In continuation with

that, this chapter presents the validation of this proposed framework. This validation is done

through an API developed to mediate between experimental domain ontologies aligned

with a central experimental foundation and core-concepts ontology. This API is designed to

work on the principles of the proposed verification framework and is tested on real

industrial manufacturability issues observed during the case study explained in chapter 7.

9.2 Design of experiment
To validate the workability of the proposed verification framework, an experiment was

conducted which involved the development of a few experimental ontologies and the

population of these ontologies through a Java API specially designed and developed to

automatically perform the tasks of knowledge verification as explained in steps 1 to 6 in the

previous chapter. Following is the detailed description of the components, working, and

results of this experiment.

9.2.1 Experimental ontologies

The first step in validating the framework is the conversion of the component shown in

figure 9.1 into the form of a shape feature based ontological model. A methodology to

create such a model has already been explained in chapter 6. The ontological formalism i.e.

Figure 9.1. A hypothetical component used for the validation of the verification framework

Base Plate

Collar
Fillet

Seal loading slots
Circular Groove

Holes

3D view

Sectioned
side view

Feature
based view

Base Plate

Collar

Fillet

Slots

Circular Groove

Holes

Exploded
view

179

the knowledge frame language is discussed in chapter 5 which is being used to formalize this

model. Before the component could be modeled the ontologies containing the building

blocks for these models i.e. classes, relations and functions need to be built. Three

ontologies were developed for this experiment (1) the foundation and core-concepts

ontology, (2) the design domain ontology and (3) the manufacturing domain ontology. The

foundation and core-concepts ontology bear all the necessary manufacturing concepts

needed for the domain ontologies to take shape. The design domain ontology contains the

shape feature concepts from the design point of view. And, finally, the manufacturing

domain ontology holds concepts similar to the design ontology but from the manufacturing

point of view. Some differences in the structure and content in these ontologies were

intentionally implanted to imitate the situation of an actual industrial scenario experienced

during the case study explained in chapter 7. The coding of these ontologies can be seen in

Appendix II. Concepts in the ontologies were created such that they are enough to build the

ontological model of the component shown in figure 9.1. A noticeable feature of the domain

ontologies is that the concepts contained by these ontologies bear a link to similar concepts

in the foundation ontology. As mentioned earlier, in the case of this research, this link is the

subsumption relation i.e. the concepts in the foundation ontology are declared as parents of

similar concepts in the domain ontologies. For example, consider a small segment of the

design domain ontology taken from Appendix II and shown below.

 129 :Prop featureOrientationLine

 130 :Inst Type

 131 :sup orientationCharacteristics

 132 :sup FDN.referenceLine

It can be seen that the concept ‘featureOrientationLine’ has two subsumption directives one

in line 131 and the other in line 132. The first one places this concept within the hierarchy of

the manufacturing domain ontology itself while the second one links this concept with an

equivalent concept in the foundation and core-concepts ontology. The prefix FDN before

the concept ‘referenceLine’ in line 132 denotes the foundation and core-concepts ontology

context. ‘FDN.referenceLine’ means that this is a foundation ontology concept and ‘sup’

means that this concept is the parent of ‘featureOrientationLine’. It is this subsumption

relation that is being used by the verification mediator to establish similarities between the

concepts in two domain ontologies.

180

9.2.2 Manufacturing knowledge to be shared

In the scenario considered for the validation of the verification framework, as in the

previous example, the manufacturing knowledge exists in the manufacturing ontology in the

form of manufacturability rules. To develop such a rule, an example is taken from the case

study. During the case study it was found that machining tools have a certain life and this

limited life has implications for the design of a component. Consider a case where an

elongated surface has to be turned in one single turning operation as shown in figure 9.2.

Since, the cutting tool tip only has a certain life, the turning operation needs to be

interrupted for tool tip re-sharpening or changing. This disruption in the turning operation

leaves a mark on the surface of the part being turned. Here the whole surface is considered

as a turning feature by the manufacturer while for the designer it contains a base plate and

a round (called a fillet by the manufacturers). In this situation a major manufacturability

limitation is the overall surface profile tolerance. If the plate arm is too long, the tool will

have to be lifted from the surface for sharpening or replacement during the operation which

limits the value of surface profile tolerance that can be achieved. If a bigger and heavier tool

with longer life is used it limits the value of fillet radius that can be achieved in an

uninterrupted single operation. When all of these situations occur simultaneously i.e. a

long arm length, a small fillet radius and a small value of overall surface profile tolerance, it

becomes impossible to manufacture component.

Cutting tool
moving off the
surface

A step or
mismatch
occurs when
the tool is
lifted Workpiece

Figure 9.2. Modelled manufacturability problem

Radius to be
machined is
smaller than the
tool tip

Workpiece

181

Table 9.1 below shows the integrity constraint which defines this manufacturability

limitation. Figure 9.3 can be referred to for a description of the different parameters of the

two shape features.

Table 9.1. The manufacturability rule

Description Code
IF statement starts with an AND condition for the
declarations which follow.

1 (=> (and

The first condition is that an instance of the class
‘cylindrical surface’ should exist. 2 (cylindricalSurface ?cs)

These conditions state that for this rule to be valid,
the three dimensional characterisitcs of the
cylindrical surface should also exist. These three
characteristics are diameter, height and profile
tolerance.

3 (withExternalDia ?cs (externalDia_mm
?csexd))

4 (withHeight ?cs (height_mm ?csh))

5 (withSurfaceProfileTolerance ?cs
(surfaceProfile_mm ?csp))

These conditions are showing the requirements of a
reference point with its coordinates.

6 (datumPoint ?dp1)

7 (onXpoint ?dp1 (xPoint_mm ?xdp1))

8 (onYpoint ?dp1 (yPoint_mm ?ydp1))

9 (onZpoint ?dp1 (zPoint_mm ?zdp1))

These conditions are showing the requirements of a
reference line with its angles.

10 (datumLine ?dl1)

11 (withAlpha ?dl1 (alpha_deg ?xdl1))

12 (withBeta ?dl1 (beta_deg ?ydl1))

13 (withGamma ?dl1 (gamma_deg ?zdl1))

Says that the instance of the cylindrical surface
should have a reference point and line.

14 (hasDatumPoint ?cs ?dp1)

15 (hasDatumLine ?cs ?dl1)

Figure 9.3. Feature dimensional and positional characteristics

RP

RL

Diameter = Ø x mm

Thickness = y mm
½ y mm

(½ x mm, ½ y mm, 0)

½ x mm

α = 90o

β = 0o

γ = 90o

Inner diameter = Ø d mm

Fillet radius = r mm

Breadth = b mm

Thickness = t mm

α = 90o

β = 0o

γ = 90o

½ y mm

(½ d mm, ½ t mm, 0)

½ x mm

RP

RL

A ‘round’ or ‘fillet’

A ‘cylindrical surface’ or ‘base plate’

Reference Point (RP) Reference Line(RL)

182

Table 9.1 continued...

Instance of a fillet should also exist with three of it’s
dimensional characteristics. These include its
diameter, radius and height.

16 (interfaceRound ?ir)

17 (withExternalDia ?ir (externalDia_mm
?irexd))

18 (withInterfaceRoundRadius ?ir
(interfaceRoundRadius_mm ?irr))

19 (withHeight ?ir (height_mm ?irh))

20 (withWidth ?ir (width_mm ?irw))

In the same manner as in case of the cylindrical
surface, the fillet should also have a reference point
and a reference line with all their coordinates and
angles respectively defined. These reference points
are assumed to lie in the geometric centre of both
of these featues. These assumptions are made when
features are formalized in the foundation ontology.

21 (datumPoint ?dp2)

22 (onXpoint ?dp2 (xPoint_mm ?xdp2))

23 (onYpoint ?dp2 (yPoint_mm ?ydp2))

24 (onZpoint ?dp2 (zPoint_mm ?zdp2))

25 (datumLine ?dl2)

26 (withAlpha ?dl2 (alpha_deg ?xdl2))

27 (withBeta ?dl2 (beta_deg ?ydl2))

28 (withGamma ?dl2 (gamma_deg ?zdl2))

29 (hasDatumPoint ?ir ?dp2)

30 (hasDatumLine ?ir ?dl2)

For this rule to be valid, the x, y and z angles of the
reference lines of the two features should be equal.

31 (= ?xdl1 ?xdl2) (= ?ydl1 ?ydl2) (= ?zdl1
?zdl2)

States that the x and z coordinates of the reference
points of two features should also be equal.

32 (= ?xdp1 ?xdp2) (= ?zdp1 ?zdp2)

The difference between the diamters of fillet and
cylindrical surface is assigned to variable ?result1 33 (numMinus ?csexd ?irexd ?result1)

Difference calculated above is greater than 400. 34 (gtNum ?result1 400)

Dividing cylindrical surface height by 2. 35 (numDivide ?csh 2 ?result2)

Dividing fillet height by 2. 36 (numDivide ?irh 2 ?result3)

Adding the two quotients and assignign to ?result4 37 (numPlus ?result2 ?result3 ?result4)

Taking the difference between the y coordinates of
reference points of the two features. 38 (numMinus ?ydp2 ?ydp1 ?result5)

Checking if the addition of heights and difference of
y coordinates are equal. An equality here suggests
that the fillet and cylindrical surface features touch
each other.

39 (= ?result4 ?result5)

Checking if the cylindrical surface profileTolerance is
less than 0.1. 40 (ltNum ?csp 0.1)

For the rule to be valid the two features defined
above must belong to a single part. These two lines
therefore make sure that they both exist in an
instance of a ‘part’ ?prt.

41 (workPiece ?wp)

42 (containsFeature ?wp ?cs)

43 (containsFeature ?wp ?ir)

‘IF’ statement closes and ‘THEN’ statement starts. 44)

If all the above conditions are met then the fillet
radius (?fr) needs to be greature than 10mm. 45 (gteNum ?irr 10))

This statement shows that the above rule is a hard
integrity constraint. The statement in quotations
appears for the system users to read and
understand the manufacturability limitation.

46
:IC hard "Such a small radius at the
disc-collar interface will cause
mismatches."

183

Lines 1 to 43 in table 9.1 define the inter-feature dependency for which the condition in line

45 should be fulfilled. The first line states that the first condition for this constraint to be

true is that a basePlate instance should exist. Lines 2 to 5 add the conditions of the

necessary dimensional characteristics of the basePlate instance. Lines 6 to 15 define a

reference point and a reference line and associate these positional parameters with the

basePlate instance. In the same way lines 16 to 30 define the conditions of the existence of

a fillet along with its dimensional and positional characteristics. Up to this point the two

features are defined separately. Now in order to make it an integrated turning feature,

some positional conditions are to be stated for the constraint to be valid. This is done in

lines 31 to 39. If the coordinates of RP1 which is the reference point of the basePlate are set

to 0,0,0 and that of the fillet reference point RP2 to 0,25,0 then the two features are

aligned, as shown in figure 9.4, provided their reference lines are perpendicular to the x-z

plane. If it is fixed in the foundation ontology that the reference points of these features lie

exactly in their geometrical centers then for these two features to be perfectly aligned the x

and z coordinates of RP1 and RP2 should be equal while the y coordinate of RP2 has to be

the sum of half of the height of the basePlate and half of the height of the fillet. This sum

comes out to be 25 as shown in figure 9.4 and this is exactly what is being stated in lines 31

to 39. Line 35 declares the condition of base plate profile tolerance to be less than 0.1mm

and lines 41 to 43 define the final condition of these two features belonging to a single part

350

RP1

RL1

RP2

RL2

30
10

25
1020

700

100
50

RP2 (0, 25, 0)

RP1 (0, 0, 0)

RL2 (90o, 0o, 90o)

RL1 (90o, 0o, 90o)

Figure 9.4. Position, orientation and size of the base plate and fillet feature

X

Y

X
Y

Z

184

or component. When all the conditions up to line 44 are met, the system then checks for the

fillet radius and fires the integrity constraint in case it falls below 10mm. In an interoperable

knowledge sharing system this constraint cautions the designer of the manufacturability

limitations.

The rule presented in table 9.1 is in its simplest form. This form, however, requires a large

amount of computer memory and in reality needs to be divided into small complementary

parts to be easily interpreted and processed. The actual form in which this rule was used in

this experiment can be seen at the end of the manufacturing domain ontology in appendix

II. After the development of the experimental ontologies and the manufacturability rule, a

software application was required capable of automatically conducting the task of

knowledge verification. The description of this application or the API is given next.

9.2.3 Design of the Java API

This API or the Application User Interface is specifically developed to just deal with one

design scenario but it demonstrates how a more comprehensive software application may

work to verify the knowledge being shared which in this case is the checking of the

manufacturability of a product being designed. However, the more important thing from

this research point of view is the capability of this API to automatically detect similarities

across two ontologies. It does this by working on the principles of the verification

framework explained earlier. This API is designed to take input from the design user in the

form of mathematical values for the geometrical dimensions and positional parameters of a

component. Once these values are obtained, it first finds similarities across two ontologies,

it then translates the design facts into the manufacturing ontology language and asserts

these facts into the manufacturing knowledge base to check their validity and finally sends

the result back to the designer. Figure 9.5 gives some snapshots of the main API window

and its components.

To explain the working of this API, an example is considered here taken from the case study

detailed in chapter 7. Figure 9.4 illustrates the setting in which the two features exist in a

component. This situation is used here to validate the working of the verification framework

and the API. Following is the description of the main API window and its components.

185

9.2.3.1 The main API window
Once the ontologies are available, the concepts contained by them can be used to build the

ontological models of the example component. An organized way of doing this is to create

individual models of its shape features first and then combine them together to form the

whole component. To do this, however, some mathematical values for the geometrical

dimensions and positional parameters are needed. The main API window has the task of

gathering these values and using them in the knowledge facts created to build the product

ontological model. Text boxes can be seen in the main window which are provided to input

the information about the part and the knowledge base where its model is to be created.

The mathematical values of the dimensional and positional parameters assumed here are

shown in figure 9.5. As already mentioned, the API developed for the validation of the

verification framework only deals with one design scenario, therefore only two shape

features i.e. the base plate (called the cylindrical surface by the manufacturer) and the

round (called fillet by the manufacturer) are modeled here. Figure 9.4 depicts the position

Figure 9.5 The API and its components

The complete disc figure window

The similarities result window

The
modification

result
window

The
main

API
window

186

of these two features with respect to each other. The main window contains three clickable

buttons labeled as ‘Modify’, ‘Show Similarities’ and ‘Show Part’. The description of these

three windows comes next.

9.2.3.2 The modification result window
When the button labeled ‘Modify’ is clicked after entering all the required values, the

modification result window is launched and the API performs the six steps of knowledge

verification as explained in chapter 8. The completion of this process either results in the

validation or rejection of the ontological model created though the input values. In the case

of validation, the window informs the user of its acceptance and in the case of the rejection,

an error message taken from the integrity constraint in the manufacturing ontology is

displayed as shown in figure 9.6. This window is also designed to shows the step-by-step

progress as can be seen in figure 9.6.

9.2.3.3 The similarities results window
The similarities results window can be launched by clicking the ‘Show Similarities’ button in

the main window. As it is understood, that design knowledge facts are comprised of certain

concepts. For the verification of the shared knowledge, these concepts first need to find

their equivalents in the manufacturing ontology. This window shows these equivalents as

can be seen in figure 9.7. It was explained in the earlier sections of this chapter that three

Figure 9.6. The modification result window

187

types of similarities need to be established i.e. the property, relation and function similarity.

This window displays these similarities in separate sections as can be seen in figure 9.7. The

ontologies to which these concepts belong can be viewed in appendix II.

Apart from these two windows, the third window which gets launched through the main API

is the ‘Complete disc’ window which is there to just show the complete disc drawing and

therefore does not need a separate explanation.

9.3 The validation experiment – functioning of the API
The API is capable of automatically performing all the six steps of knowledge verification

detailed in chapter 8. The main code is executed when the ‘Modify’ button is clicked. The

code is written to take the design concepts used to build the intended model of the

component being designed. The formalized form of the ontological models of the two shape

features is given in tables 9.2 and 9.3.

Figure 9.7. The ‘Established Similarities’ window

188

Table 9.2. Base Plate ontological model

Description Code
Defining an instance of basePlate named
plate1.

1 (basePlate plate1)

Defining the dimensional parameters of
basePlate i.e. height, diameter and surface
profile tolerance.

2 (hasThickness plate1 (mmThicknessMeasure 30))

3 (hasDiameter plate1 (mmDiaMeasure 700))

4 (hasProfile plate1 (mmProfileMeasure 0.05)

Defining an instance of referenceLine 5 (featureOrientationLine RL1)

Defining an instance of referencePoint 6 (featureOrientationPoint RP1)

Associating the reference point and line
with basePlate

7 (hasOrientationPoint plate1 RP1)

8 (hasOrientationLine plate1 RL1)

Defining the x, y and z coordinates of the
reference point. Since this point is now
associated with basePlate, defining its
coordinates actually positions the
basePlate in 3D space. In this case it lies on
the origin i.e. 0,0,0.

9 (hasXC RP1 (mmXCMeasure 0))

10 (hasYC RP1 (mmYCMeasure 0))

11 (hasZC RP1 (mmZCMeasure 0))

Defining the angles of the reference line of
basePlate and hence orienting the
basePlate in 3D space.

12 (makesAlpha RL1 (degreeAlphaMeasure 90))

13 (makesBeta RL1 (degreeBetaMeasure 0))

14 (makesGamma RL1 (degreeGammaMeasure 90))

Table 9.3. Fillet ontological model

Description Code
Defining an instance of ‘round’ named
round1.

1 (round round1)

Defining the compulsory dimensional
characterisitcs of round1. This includes
the thickness, breadth, inner diameter
and radius. For a description of these
dimensions please refer to figure 9.2b.

2 (hasThickness round1 (mmThicknessMeasure 20))

3 (hasBreadth round1 (mmBreadthMeasure 20))

4 (hasDiameter round1 (mmDiaMeasure 100))

5 (hasRoundRadius round1 (mmRoundRadiusMeasure 5))

Instantiating a reference point 6 (featureOrientationPoint RP2)

Instantiating a reference line 7 (featureOrientationLine RL2)

Associating the instantiated reference
point and line with round1.

8 (hasOrientationPoint round1 RP2)

9 (hasOrientationLine round1 RL2)

Positioning round1 in the 3D space by
giving coordinates to its reference point.
In this case it exists 25mm above the x-z
plane which places it on top of the
basePlate defined earlier. Since its x and z
coordinates are same as that of the
basePlate, it’s centre matches with that of
the basePlate as shown in figure 9.2a.

10 (hasXC RP2 (mmXCMeasure 0))

11 (hasYC RP2 (mmYCMeasure 25))

12 (hasZC RP2 (mmZCMeasure 0))

These lines orient round1 reference line
in the 3D space. Being 90,0,90 it’s
reference line stays parallel to that of the
basePlate as shown in figure 9.2a.

13 (makesAlpha RL2 (degreeAlphaMeasure 90))

14 (makesBeta RL2 (degreeBetaMeasure 0))

15 (makesGamma RL2 (degreeGammaMeasure 90))

189

Table 9.2 presents the KFL coding with a description of every line for the ontological model

of the base plate. It can be seen that first the instance of the base plate is created and then

its geometrical dimensional and positional parameters are created and associated with it.

Similarly, the ontological model of the ‘round’ shape feature is presented in table 9.3. It

follows the same way of creating the instance of the shape feature itself first, followed by

the creation and association of its geometrical dimensional and positional parameters. In

addition to the individual feature models above, a part also needs to be created to which

these features are then declared to be belonging. This is done in the design ontology

terminology as follows:

(engineeringProduct wp1)

(containsFeature wp1 plate1)

(containsFeature wp1 round1)

If these models are created in the manufacturing knowledge in the existing design

terminology, they are not interpretable by the manufacturing ontology and thus will not

Table 9.4. Design and equivalent manufacturing facts for the ‘base plate’ feature

Line Design facts Manufacturing equivalence
1 (basePlate plate1) (cylindricalSurface plate1)

2
(hasThickness plate1
(mmThicknessMeasure 30))

(withHeight Plate1 (height_mm 20))

3
(hasDiameter plate1 (mmDiaMeasure
700))

(withExternalDia Plate1 (externalDia_mm
700))

4
(hasProfile plate1
(mmProfileMeasure 0.05)

(withSurfaceProfileTolerance Plate1
(surfaceProfile_mm 0.05)) (workPiece wp1)

5 (featureOrientationLine RL1) (datumLine RL1)

6 (featureOrientationPoint RP1) (datumPoint RP1)

7 (hasOrientationPoint plate1 RP1) (hasDatumPoint Plate1 RP1)

8 (hasOrientationLine plate1 RL1) (hasDatumLine Plate1 RL1)

9 (hasXC RP1 (mmXCMeasure 0)) (onXpoint RP1 (xPoint_mm 0))

10 (hasYC RP1 (mmYCMeasure 0)) (onYpoint RP1 (yPoint_mm 0))

11 (hasZC RP1 (mmZCMeasure 0)) (onZpoint RP1 (zPoint_mm 0))

12
(makesAlpha RL1
(degreeAlphaMeasure 90)) (withAlpha RL1 (alpha_deg 90))

13
(makesBeta RL1 (degreeBetaMeasure
0)) (withBeta RL1 (beta_deg 0))

14
(makesGamma RL1
(degreeGammaMeasure 90))

(withGamma RL1 (gamma_deg 90))

190

trigger the manufacturability constraint. To verify the manufacturability, therefore, the API

finds equivalences across two ontologies, as shown in figure 9.7, and reforms the knowledge

facts in the manufacturing ontology language. These translated design facts for the ‘base

plate’ feature can be seen in table 9.4. This translation is based on the equivalence taken

from the ‘Established Equivalence’ window.

Similarly, the translated design facts for the ‘fillet’ feature are given in table 9.5. Notice that

in both of these translations, the values and the instance names do not change. This is done

because the designers need to get the result back in the language they are using and by

using the same instance names, the error message generated by the manufacturing integrity

constraint or rule uses these names to describe the manufacturability limitation.

Table 9.5. Design and equivalent manufacturing facts for the ‘fillet’ feature

Line Design facts Translated manufacturing facts
1 (round round1) (interfaceRound round1)

2
(hasThickness round1
(mmThicknessMeasure 20)) (withHeight round1 (height_mm 20))

3
(hasBreadth round1
(mmBreadthMeasure 20))

(withWidth round1 (width_mm 20))

4
(hasDiameter round1
(mmDiaMeasure 100))

(withExternalDia round1 (externalDia_mm
100))

5
(hasRoundRadius round1
(mmRoundRadiusMeasure 5))

(withInterfaceRoundRadius round1
(interfaceRoundRadius_mm 5))

6 (featureOrientationPoint RP2) (datumPoint RP2)

7 (featureOrientationLine RL2) (datumLine RL2)

8 (hasOrientationPoint round1 RP2) (hasDatumPoint round1 RP2)

9 (hasOrientationLine round1 RL2) (hasDatumLine round1 RL2)

10 (hasXC RP2 (mmXCMeasure 0)) (onXpoint RP2 (xPoint_mm 0))

11 (hasYC RP2 (mmYCMeasure 25)) (onYpoint RP2 (yPoint_mm 25))

12 (hasZC RP2 (mmZCMeasure 0)) (onZpoint RP2 (zPoint_mm 0))

13
(makesAlpha RL2
(degreeAlphaMeasure 90)) (withAlpha RL2 (alpha_deg 90))

14
(makesBeta RL2
(degreeBetaMeasure 0)) (withBeta RL2 (beta_deg 0))

15
(makesGamma RL2
(degreeGammaMeasure 90)) (withGamma RL2 (gamma_deg 90))

191

After the individual feature models translation, the association of these features with a part

is translated as follows in table 9.6.

Table 9.6. Design and translated manufacturign facts for feature association

Line Design facts Translated manufacturing facts

1 (engineeringProduct wp1) (workPiece wp1)

2 (containsFeature wp1
plate1)

(containsFeature wp1 plate1)

3 (containsFeature wp1
round1)

(containsFeature wp1 round1)

Once these translations are made, the translated models are asserted in the manufacturing

knowledge base to check if they are acceptable. It can be seen that the values of the base

plate diameter, the base plate surface profile and the fillet radius being 700mm, 0.05mm

and 5mm respectively violate the conditions imposed in the manufacturability rule in table

9.1 and therefore the integrity constraint is triggered. The error message of this integrity

constraint is relayed by the API to the designer through the modification result window as

shown in figure 9.6.

The API explained in this section is very specific and only deals with the situation it has been

designed for i.e the validity of the verification framework proposed in this research. A

general application on a bigger scale, however, can be developed using the same principles.

9.4 Discussion and conclusions
This chapter presented the test and validation of the proposed knowledge verification

framework which is the main contribution of this research. It was shown that the process of

knowledge verification can be made automatic if domain ontologies are aligned with the

foundation and core concept ontology in a standard way, compliance with which is ensured

through specific axiomatizations. The description of an API specifically developed to validate

the working of the verification framework was also given, the successful working of which to

resolve semantic differences experienced during the case study, proves that the proposed

verification framework is practicable and a useful step towards achieving industrial

computer based knowledge systems interoperability.

Before this chapter is concluded, however, some important points need more elaboration.

The knowledge verification framework works on certain assumptions. First of all, it is

192

possible that domain experts decide to directly use the foundation and core-concepts to

build their knowledge bases. In these cases, the types of inconsistencies that may occur

during concept specialization will be different and the process of knowledge verification

proposed in this research will have to be modified accordingly. This verification method,

therefore, only deals with the situations where a difference in the use of terminologies

exists. This creates the need to have separate domain ontologies before a knowledge base is

developed.

Secondly, this verification method only deals with one-to-one correspondences between the

foundation and domain concepts. One-to-many and many-to-one correspondences are not

interpretable by the verification mediator in its current design state. The inconsistency

preventing axiomatizations will need to be modified accordingly to address these other

types of correspondences. More on correspondences will be explained in chapter 10.

Chapter 10 also looks into certain possible extensions of the proposed framework and what

further research is needed to develop them. As a closing remark, therefore, it can be said

that this verification framework is a novel contribution and a significant step towards

achieving automatic ontology matching for the purpose of developing interoperable

computer-based knowledge sharing systems.

193

Chapter 10: Conclusions and further research

194

10.1. Chapter overview
This chapter aims to consolidate the findings previously presented in this thesis. The success

of the research is analyzed through a brief review of the aims and objectives set in section

2.2. After highlighting the contributions to the field of study, this chapter also looks into

some possible further research directions.

10.2. A brief review of research findings
It was found after reviewing the literature that the tools available for ontology matching and

reconciliation lack automation and accuracy and require a fair amount of human

intervention. A solution to this problem has been devised in a way that it prevents the

ontological mismatches from occuring in the first place. This is done by proposing that the

domain ontology builders are provided with ways to align their ontologies with a common

foundation ontology, thus making it easier for the ontology matching and knowledge

verification system to overcome semantic mismatches and thereby find similarities in the

two independently developed domain ontologies. Once the domain ontologies are aligned

with the common foundation and core concepts ontology, the proposed knowledge

verification framework uses these alignments to translate one ontology builder’s language

into the others and thus make knowledge across the two domains understandable. A brief

analysis of the research presented in this thesis is now given so that its success in achieving

its goals can be assessed.

10.2.1. Research findings analyzed

In chapter 1, following aims of this research were set:

1. To explore the application of ontology matching and mapping for the verification of

knowledge shared between ontology based knowledge bases.

2. To develop an understanding of the application of ontologies for product modelling

by using concepts from a library of design and manufacturing concepts i.e. a

foundation and core-concepts ontology.

3. To find methods of knowledge verification when manufacturing knowledge

associated with ontological product models is shared across domains.

4. To test these methods using IODE as the ontology editor and Common Logic as the

ontology development formalism.

195

Chapter 4 explored the ontology matching and mapping techniques thus fulfilling the first

aim. This was done by first reviewing the literature on ontological mismatches that have

been identified by the researchers so far. Secondly, those ontology matching techniques

were reviewed in detail which have been most frequently quoted in the relevant journal

papers. These techniques were then analyzed for their capability to address ontological

mismatches and thus verify knowledge that is shared through ontologies. The result of this

analysis provided a set of requirements for this research to consider when developing

verification methods.

Chapter 6 outlines an ontological product and knowledge modelling technique to meet the

requirement mentioned in point 2. This technique is based on shape feature based design

and manufacturing and in addition to the development of an understanding of the

application of ontologies in product modeling it also provided a way to validate the

proposed knowledge verification framework. This methodology on one hand utilizes the

benefits of shape feature based design and manufacturing for manufacturability analysis

and on the other it makes use of the interoperable nature of ontologies which is useful in

cross domain knowledge sharing as is the case in this research.

Chapter 8 explicates the proposed knowledge verification framework to meet the third aim.

This explanation first includes the detailed design description of the framework and then

the implementation of this framework in a manufacturing scenario is presented. This

description clarifies the suitability of the proposed framework for cross domain

manufacturing knowledge sharing for the purpose of manufacturability analysis.

Finally, chapter 8 explains and chapter 9 validates this proposed verification framework

through a Java API thus fulfilling the last aim. The programming language of Java was learnt

for this purpose and a code was written which performs the six steps of knowledge

verification and sends the verified responses to the designer as described in chapter 9

This API serves two purposes. Primarily it is used in this research for validating the proposed

knowledge verification framework and for showing how this verification can be performed

automatically. Secondly, it also provides a simple and user friendly interface for the design

engineer to use. This is useful from a manufacturing company point of view because a

product designer is usually not familiar with ontologies and knowledge bases and thus this

196

interface solves this problem and serves as a mediator between the designer and the

ontology browsing and handling software which was IODE in the case of this research.

In the light of the above discussion, it can be said that the presented research successfully

meets the aims and objectives that were set in the beginning. The contributions this

research makes in the field of study are now briefly reviewed.

10.2.2. Contributions to the field of study

The main contribution of this research is the proposed novel knowledge verification

framework. This framework is specifically designed to work for a setting in which domain

ontologies are committed to a common foundation and are built by using the concepts from

a core-concepts ontology. This framework is proposed after a comprehensive study of the

available literature and a case study at an aerospace components manufacturing company.

The validity of this framework was tested through the development of a prototype user

interface and afterwards a more detailed version was used to demonstrate more complex

industrial examples, and to verify the design of the proposed framework. The novelty and

uniqueness of this work in comparison with the exisiting tools and techniques of ontology

mediation and knowledge verification lies firstly in its use of axiomatizations at the

foundation and core-concepts level in order to maintain the consistency of domain

ontologies, secondly, in its unique use of these consistency principles (laid by the

axiomatizations) to mediate between two diverse domain ontologies for knowledge

verification, and thirdly, in the unique mechanism of similarity finding. The proposed

framework is also a significant step towards increasing the level of automation and accuracy

of the process of ontology mediation and knowledge verification. This is evident from the

fact that no human intervention was required during the six steps of knowledge verification.

There are, however, certain assumptions on which this framework works. These

assumptions can be relaxed one by one during the further development of this work. Some

possible extentions of this work are discussed later in this chapter.

In addition to the above described contributions, a novel dimensioning and orientation

system was also defined to demonstrate the use of ontologies as geometric product models.

Being a simple method, it gives a convenient way of representing product models in the

form of ontologies. The benefits of these models are twofold. Firstly, being constructed

197

through shape features, they provide an efficient means of attaching manufacturability

knowledge to the shape features. Secondly, being in the form of ontologies, they make it

easier to maintain the semantic and syntactic interoperability across the knowledge bases

existing in different domains. This work is not the main contribution of this research but

nonetheless is a unique step towards achieving a more complete and thorough ontological

modelling technique for engineering components.

10.3. Further research
The ontology matching and knowledge verification technique presented in this research

utilizes the benefits of a foundation and core-concepts ontology and proves that, during the

ontology building process, if the domain concepts are enriched with enough traceability to

their origin in the foundation ontology, the techniques of ontology mediation and

knowledge verification can be made totally automatic and very accurate. The proposed

knowledge verification framework, however, works under certain assumptions and within

some defined boundaries. Further research is therefore needed to extend these boundaries

and to reduce the number of assumptions the proposed system works under. Some possible

research directions in which further development can be done are now given.

10.3.1. Broader specialization and concepts correspondences

A closer look at the proposed knowledge verification technique reveals that the backbone of

the whole process is the connection of domain ontology concepts with their parents or

origin in the core-concepts ontology. For this research, the parent-child relationship or

subsumption is utilized. To make these connections richer and more comprehensive, several

different kinds of relationships can be used. For example, a relationship between the

domain concepts and core concepts may exist which tells the mediation system that these

two concepts are actually similar or that a certain concept is a specialization of a concept in

the core concept ontology. If these options are provided in the core concepts and the

verification system is designed accordingly the same accuracy and automation can be

obtained while making the application of the system broader.

198

A further extension of this idea is the capability of the system to allow multiple

correspondences between the concepts in the foundation and domain ontologies. To

further explain this point, take the example of a concept ‘hole’. The concept ‘hole’ in the

foundation or core-concepts ontology might get specialized as ‘bolt_hole’ or as

‘straight_hole’ in the domain ontology. This is the case of one-to-one correspondence.

Other cases may occur where one-to-many or many-to-one correspondences may be

required. For example, the same concept ‘hole’ in the foundation ontology is to be defined

as a ‘counter_bore’ in the domain ontology as shown in figure 10.1. In this case the newly

defined concept ‘counter_bore’ is a combination of two ‘hole’ features. A standard language

is needed in these types of cases to empower the domain ontology builders to develop

domain concepts by combining two or more concepts from the foundation and core-

concepts ontology. This is an example of many-to-one correspondence because more than

one shape feature from the foundation and core-concepts ontology are used here to form a

single concept of ‘counter_bore’ in the domain ontology. Similar examples can be taken for

one-to-many correspondence where more than one shape features in a domain ontology

corresponds to a single concept in the foundation and core-concepts ontology. Further

research is therefore needed to develop such a standard vocabulary and an accordingly

modified knowledge verification system.

10.3.2. The Verification Meta Ontology (VMO)

The proposed verification framework features a set of inconsistency preventing

axiomatizations to control the specialization of concepts in the domain ontology and the

Figure 10.1. A component shown as an aggregation of shape features

A counter bore

A combination of two ‘hole’ features

199

knowledge base building in the knowledge base. One can argue that although these axioms

provide a standard way of developing the domain ontologies and knowledge base, they

deprive the domain ontology and knowledge base builders of freedom to use the concepts

as they want which in turn may stifle the creativity of users. Further development and

research, therefore, is needed to develop ways of standardized but with more flexible

concept specialization. One such avenue of research can be the development of the

Verification Meta Ontology (VMO).

It has been shown in this research that axioms in the form of KFL integrity constraints can be

used to dictate the use of concepts from the foundation and core-concepts ontology. Similar

options exist in other formalisms for ontology building. The important issue, however, is the

way these rules are used. In the work presented here, these rules are used to make sure

that the concepts from the core are used in a way which is suitable for the mediation system

to function. To make things simpler and more manageable, a rule base in the form of a plug-

in ontology can be developed which is in accordance with the needs of the mediation and

verification system. This ontology is called the Verification Meta Ontology (VMO). The term

‘meta’ is used to indicate that this ontology controls the development of domain ontologies

at the meta level. More on meta levels can be seen in chapter 3 where MDA and its

components are described.

Inspired by the process specification language (PSL), VMO aims to establish a controlled way

of specializing ontological concepts from the foundation or core concept ontology. This

means a core concepts ontology is built separately without worrying too much about the

way concepts are used by the domain ontology builders. Then, to meet the requirements of

the verification system, a separate optionally attachable ontology is developed in the form

of VMO. This optional attachability of the VMO also relieves the domain ontology builders

from unnecessary restrictions on the use of core concepts to model objects. This is because

certain levels of verifiability can be introduced in the VMO for the domain ontology builders

to choose from. So the more they want their ontology verifiable and the knowledge

contained by it to be shareable, the less freedom they are granted in using the concepts in

their own way and vice versa. This way, a balance between the flexibility and verifiability of

the domain models would be achievable depending upon the personal preference of an

200

ontology builder. Figure 10.2 illustrates the way vertical layers of VMO can be used to

control the horizontal layers of domain ontology and if needed the knowledge base building.

The VMO has to be built by the ontology mediation and knowledge verification system

builders in accordance with the techniques this verification system is going to use to find

similarities. It may contain a few classes but mainly a set of rules which govern the use of

concepts from the core concept and foundation ontology. In this way when a VMO is loaded

with the foundation and core concept ontology in an ontology editor, it cautions the domain

ontology and knowledge base builders on the incorrect and untraceable use of core

concepts. In a way VMO is a further developed and more flexible form of the inconsistency

preventing axiomatizations proposed and demonstrated in this research. A useful further

research direction is therefore the development of VMO or a similar rule-base ontology.

10.3.3. Research on exploring the possible inconsistencies

It has already been argued in chapter 8 that no major work in the foundation ontology

literature can be found which gives details of the inconsistencies that have been

experienced in the domain ontologies developed out of a common foundation. Some

research is therefore needed in exploring the possible inconsistencies that domain ontology

builders make when developing their ontologies from an available set of concepts from a

foundation or core-concepts ontology.

10.4. Closing remarks
The research presented in this thesis brings the current scientific understanding a step

closer to developing solutions for interoperable knowledge sharing systems. The

Foundation

PSL Core-Concepts Ontology

VMO
Design
domain

ontology

Design
knowledge

base

Manuf.
domain

ontology

Manuf.
Knowledge

base

Knowledge
verification

system

VMO

Figure 10.2. Knowledge verification architecture with a verification meta ontology

201

improvement, however, is always continuous and further work, therefore, needs to be done

not only in the directions identified in this chapter but in other directions promising useful

developments.

202

Publications

Anjum, N.A., Harding, J.A., Young, R.I.M. and Case, K. Manufacturability verification through
feature based ontological product models. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture. [submitted for review 4 March
2011].

 Anjum, N.A., Harding, J.A., Young, R.I.M. and Case, K. Mediation of foundation ontology
based knowledge sources. Computers in Industry. [submitted for review 24 September
2010].

Anjum, N.A., Harding, J.A. and Young, R.I.M., 2011. Shape feature based ontological
engineering product models. In: 3rd International IFIP Working Conference on
Enterprise Interoperability (IWEI). Stockholm, Sweden. March 23-24.

Anjum, N.A., Harding, J.A. and Young, R.I.M., 2010. Cross domain knowledge verification:
Verifying knowledge in foundation based domain ontologies. In: Proceedings of the
International Conference on Knowledge Engineering and Ontology Development
(KEOD) Valencia, Spain. October 25-28.

Anjum, N.A., Harding, J.A., Young, R.I.M. and Case, K., 2010. Gap analysis of ontology
mapping tools and techniques. In: Popplewell, K., Harding, J.A, Poler, R. and Chalmeta,
R., eds. Enterprise interoperability IV: Making the Internet of the future for the future
of enterprise – Proceedings of the 6th International Conference on Interoperability for
Enterprise Software and Applications (I-ESA). Coventry, UK. April 14-15. pp. 303-312.
DOI: 10.1007/978-1-84996-257-5_28.

Young, R.I.M, Chungoora, N., Usman, Z., Anjum, N.A, Gunendran, G., Palmer, C., Harding,
J.A, Case, K. and Cutting-Decelle, A.-F., 2011. Reference ontologies for manufacturing
based ecosystems. In: 3rd International IFIP Working Conference on Enterprise
Interoperability (IWEI). Stockholm, Sweden. March 23-24.

Young, R.I.M, Chungoora, N., Usman, Z., Anjum, N.A, Gunendran, G., Palmer, C., Harding,
J.A, Case, K. and Cutting-Decelle, A.-F., 2010. An exploration of foundation ontologies
and verification methods for manufacturing knowledge sharing. In: Workshop on
Interoperability for Enterprise Software and Applications (I-ESA). Coventry, UK:
University of Coventry. April 13.

http://dx.doi.org/10.1007/978-1-84996-257-5_28�
http://dx.doi.org/10.1007/978-1-84996-257-5_28�
http://dx.doi.org/10.1007/978-1-84996-257-5_28�
http://dx.doi.org/10.1007/978-1-84996-257-5_28�
http://dx.doi.org/10.1007/978-1-84996-257-5_28�
http://dx.doi.org/10.1007/978-1-84996-257-5_28�

203

References

[Anonymous], 2010. KFL Reference.

Aleksovski, Z., Klein, M., Kate, W.T. and Harmelen, F.V., 2006. Matching Unstructured
Vocabularies using a Background Ontology, In: Proceedings of Knowledge Engineering
and Knowledge Management (EKAW, 2006, Springer-Verlag, pp. 182-197.

Alexiev, V., Breu, M., De Bruijin, J., Fensel, D., Lara, R. and Lausen, H., 2005. Information
Integration with Ontologies: Experiences from an Industrial Showcase. England: Wiley.

Anjum, N., Harding, J., Young, B. and Case, K., 2010. Gap Analysis of Ontology Mapping Tools
and Techniques. Enterprise Interoperability IV, , pp. 303-312.

Antoniou, G. and Van Harmelen, F., 2008. A semantic Web primer. 2nd edn. Cambridge,
Mass.: MIT Press.

Appukuttan, B., Clark, T., Reddy, S., Tratt, L. and Venkatesh, R., 2003. A Pattern based model
driven approach to model transformations, Metamodelling for MDA First International
Workshop York, UK, November 2003 Proceedings, 2003, , pp. 110-128.

Awad, E., M. and Ghaziri, H., M., 2004. Knowledge Management. NJ: Prentice Hall.

Bechhofer, S., 2000. Ontology Language Standardisation Efforts. IST-2000-29243.
Information Management Group, Department of Computer Science, University of
Manchester: OntoWeb.

Belaunde, M., Poivre, S. and Dupé, G., 2008. QVT: language, tools and usages.

Bezivin, J. and Gerbe, O., 2001. Towards a Precise Definition of the OMG/MDA Framework,
ASE '01: Proceedings of the 16th IEEE international conference on Automated software
engineering, 2001, IEEE Computer Society, pp. 273.

Bock, C., Zha, X., Suh, H. and Lee, J., 2010. Ontological product modeling for collaborative
design. Adv.Eng.Inform., 24(4), pp. 510-524.

Boehm, ,B.W., 1984. Verifying and Validating Software Requirements and Design
Specifications. IEEE Softw., 1(1), pp. 75-88.

Boyd-graber, J., Fellbaum, C., Osherson, D. and Schapire, R., 2008. Adding dense, weighted
connections to wordnet.

Bruijn, J.d., Ehrig, M., Feier, C., Martíns-Recuerda, F., Scharffe, F. and Weiten, M., 2006.
Ontology Mediation, Merging, and Aligning. , pp. 95-113.

204

Catalano, C., Camossi, E., Ferrandes, R., Cheutet, V. and Sevilmis, N., 2009. A product design
ontology for enhancing shape processing in design workflows. Journal of Intelligent
Manufacturing, 20(5), pp. 553-567.

Chalupsky, H., 2000. OntoMorph: A Translation System for Symbolic Knowledge, In
Principles of Knowledge Representation and Reasoning, 2000, Morgan Kaufmann, pp.
471-482.

Chandrasekaran, B., Josephson, J.R. and Benjamins, V.R., 1999. What are ontologies, and
why do we need them? Intelligent Systems and their Applications, IEEE, 14(1), pp. 20-
26.

Changoora, N. and Young, R.I.M., 2010. The configuration of design and manufacture
knowledge models from a heavyweight ontological foundation. International Journal of
Production Research, 25(1),.

Chungoora, N. and Young, R.I.M., 2008. Ontology Mapping to Support Semantic
Interoperability in Product Design and Manufacture.

Coenen, F., Bench-Capon, T., Boswell, R., Dibie-Barthélemy, J., Eaglestone, B., Gerrits, R.,
Grégoire, E., Lige, C., Za, A., Laita, L., Owoc, M., Sellini, F., Spreeuwenberg, S.,
Vanthienen, J., Vermesan, A. and Wiratunga, N., 2000. Validation and verification of
knowledge-based systems: report on EUROVAV99. The Knowledge Engineering Review,
15(02), pp. 187-196.

Colomb, R.M., Gerber, A. and Lawley, M., 2004. Issues in Mapping Metamodels in the
Ontology Development Metamodel, 1st International Workshop on the Model-Driven
Semantic Web (MSDW 2004) Monterey, California, USA. 20-24 September, 2004. 2004, .

Corcho, O. and Gomez-Perez, A., 2000. A Roadmap to Ontology Specification Languages,
EKAW '00: Proceedings of the 12th European Workshop on Knowledge Acquisition,
Modeling and Management, 2000, Springer-Verlag, pp. 80-96.

Corcho, O., Fernandez-Lopez, M. and Gomez-Perez, A., 2003. Methodologies, tools and
languages for building ontologies: where is their meeting point? Data Knowl.Eng.,
46(1), pp. 41-64.

Cranefield, S. and Pan, J., 2007. Bridging the gap between the model-driven architecture and
ontology engineering. Int.J.Hum.-Comput.Stud., 65(7), pp. 595-609.

Cycorp Inc., 2009, 2009-last update, Overview of OpenCyc [Homepage of Cycorp Inc.],
[Online]. Available: http://www.cyc.com/cyc/opencyc [4/2009, 2009].

Delcam plc, 2010-last update, FeatureCAM, [Homepage of Delcam plc], [Online]. Available:
http://www.featurecam.com/ [24/12, 2010].

Delugach, H.S., 2008. Towards Conceptual Structures Interoperability Using Common Logic.

http://www.cyc.com/cyc/opencyc�
http://www.featurecam.com/�

205

Deng, J., Dong, W., Socher, R., Li, L.-., Li, K. and Fei-Fei, L., 2009. ImageNet: A Large-Scale
Hierarchical Image Database, CVPR09, 2009, .

Devedzic, V., 2002. Understanding ontological engineering. Commun.ACM, 45(4), pp. 136-
144.

Djuric, D., Gasevic, D., Damjanovic, V., Devedzic and V Chang, S.K., 2005a. MDA-Based
Ontological Engineering. In: S.K. CHANG, ed, Handbook of Software Engineering and
Knowledge Engineering, Vol.3 - Recent Advances. World Scientific Publishing Co.,
Singapore, pp. 203-231.

Djuric, D., Gasevic, D. and Devedzic, V., 2005b. Ontology Modeling and MDA. Journal of
Object Technology, 4(1), pp. 109-128.

Doan, ,AnHai, Madhavan, ,Jayant, Domingos, ,Pedro and Halevy, ,Alon, 2002. Learning to
map between ontologies on the semantic web, WWW '02: Proceedings of the 11th
international conference on World Wide Web, 2002, ACM, pp. 662-673.

Draft Federal Information, 1993. Integration Definition for Function Modeling (IDEF0),
Federal Information Processing Standards.

Dutra, M., Ghodous, P., Kuhn, O. and Nguyen Minh Tri, , 2010. A Generic and Synchronous
Ontology-based Architecture for Collaborative Design. Concurrent Engineering, 18(1),
pp. 65-74.

Ehrig, M. and Staab, S., 2004. QOM – Quick Ontology Mapping. pp. 683-697.

Ehrig, M. and Sure, Y., 2004. Ontology Mapping - An Integrated Approach, 2004, Springer
Verlag, pp. 76-91.

European Communities, 2004. European Interoperability Framework v1. European
Communities.

Fensel, D., Horrocks, I., Harmelen, F.v., McGuinness, D.L. and Patel-Schneider, P.F., 2001.
OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2),.

Fernandez, M., Gomez-Perez, A. and Juristo, N., 1997. METHONTOLOGY: from Ontological
Art towards Ontological Engineering, Proceedings of the AAAI97 Spring Symposium
Series on Ontological Engineering, March 1997, , pp. 33-40.

Frankel, D., Hayes, P., Kendall, E. and McGuinness, D., 2004. The Model Driven Semantic
Web, 1st International Workshop on the Model-Driven Semantic Web (MDSW2004)
Enabling Knowledge Representation and MDA
Technologies to Work Together, 2004 2004, .

Frankel, D., Hayes, P., Kendall, E. and McGuinness, D.L., 2005. Simple Common Logic: A
Constraint Language for the ODM, First International Workshop on Model-Driven
Semantic Web, 2005, Knowledge Systems Laboratory Stanford University.

206

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A. and Schneider, L., 2002. Sweetening
Ontologies with DOLCE, 13th International Conference on Knowledge Engineering and
Knowledge Management (EKAW02), 2002, , pp. 166-182.

Gangemi, A., Fisseha, F., Keizer, J., Lehmann, J., Liang, A., Pettman, I., Sini, M. and Taconet,
M., 2004. A Core Ontology of Fishery and its use in the Fishery Ontology Service Project,
EKAW-CorOnt, 2004, .

Gardner, T., Griffin, C., Koehler, J. and Hauser, R., 2003. A review of OMG MOF 2.0 Query /
Views / Transformations Submissions and Recommendations towards the final
Standard, Metamodelling for MDA First International Workshop York, UK, November
2003 Proceedings, 2003, .

Gimenez, D.M., Vegetti, M., Leone, H.P. and Henning, G.P., 2008. PRoduct ONTOlogy:
Defining product-related concepts for logistics planning activities. Comput.Ind., 59(2-3),
pp. 231-241.

Gomez-Perez, A., Fernandez-Lopez, M. and Corcho, O., 2004. Ontological Engineering: with
example from the areas of Knowledge Manaement, e-Commerce and the Semantic
Web. London: Springer-Verlag.

Gruber, T.R., 1993a. A translation approach to portable ontology specifications. Technical
Report KSL 92-71. Stanford, California 94305: Knowledge System Laboratory, Computer
science depatrment, Stanford University.

Gruber, T.R., 1993b. A translation approach to portable ontology specifications.
Knowl.Acquis., 5(2), pp. 199-220.

Gruber, T.R., 1992. Ontolingua: A Mechanism to Support Portable Ontologies.

Gruninger, M. and Fox, M., 1995. Methodology for the Design and Evaluation of Ontologies,
IJCAI'95, Workshop on Basic Ontological Issues in Knowledge Sharing, April 13, 1995,
1995, .

Gruninger, M., Atefi, K. and Fox, M.S., 2000. Ontologies to Support Process Integration in
Enterprise Engineering. Computational & Mathematical Organization Theory, 6, pp.
381-394(14).

Gruninger, M., 2004. Ontology of the Process Specification Language. In: S. STAAB and R.
STUDER, eds, Handbook on Ontologies. 1 edn. Germany: Springer, .

Guarino, N., 1998. Some Ontological Principles for Designing Upper Level Lexical Resources,
Proc. of the First International Conference on Lexical Resources and Evaluation, 1998, ,
pp. 527-534.

Gupta, U.G., 1993. Validation and verification of knowledge-based systems: A survey.
Applied Intelligence, 3(4), pp. 343-363.

207

Gupter, J.N.D. and Sharma, S.K., 2004. Normal 0 false false false EN-GB X-NONE X-NONE
st1\:*{behavior:url(#ieooui) } Creating knowledge based organizations. London: Idea
Group Publishing.

Hameed, A., Preece, A. and Sleeman, D., 2004. Ontology Reconciliation. In: S. STAAB and R.
STUDER, eds, Handbook on Ontologies. Springer, pp. 231-250.

Harold, E.R. and Means, W.S., 2004. XML in a nut shell: A desktop quick reference. O'Reilly.

Hausmann, J.H., 2003. Metamodeling Relations - Relating metamodels, Metamodelling for
MDA First International Workshop York, UK, November 2003 Proceedings, 2003 2003, .

Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann, M., Goble, C., Harlemen, F.v.,
Klein, M., Staab, S., Studer, R., Motta, E. and Horrocks, I., 2000. The Ontology Inference
Layer OIL.

Horváth, I., Vergeest, J.S.M. and Kuczogi, G., 1998. Development and application of design
concept ontologies for contextual conceptualization, Proceedings of ASME DETC, 1998, ,
pp. 1-16.

ISO/DIS 10303-224:2003(E), 2003. Product data representation and exchange: Application
protocol: Mechanical product definition. .

ISO/IEC 24707:2007(E), 2007. Information technology — Common Logic (CL): a framework
for a family of logic based languages.

Jarrar, M. and Meersman, R., 2009. Advances in Web Semantics I. In: T.S. DILLON, E. CHANG,
R. MEERSMAN and K. SYCARA, eds, Berlin, Heidelberg: Springer-Verlag, pp. 7-34.

Kalfoglou, ,Yannis and Schorlemmer, ,Marco, 2003. Ontology mapping: the state of the art.
Knowl.Eng.Rev., 18(1), pp. 1-31.

Kaza, ,Siddharth and Chen, ,Hsinchun, 2008. Evaluating ontology mapping techniques: An
experiment in public safety information sharing. Decis.Support Syst., 45(4), pp. 714-728.

Khilwani, N., Harding, J.A. and Choudhary, A.K., 2009. Semantic web in manufacturing.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 223(7), pp. 905-924.

Klein, M., 2001. Combining and Relating Ontologies: An Analysis of Problems and Solutions.

Li, J., 2004. LOM: A Lexicon-based Ontology Mapping Tool, Proceedings of the Performance
Metrics for Intelligent Systems (PerMIS, 2004, , pp. 2004.

Li, W.D., Ong, S.K. and Nee, A.Y.C., 2002. Recognizing manufacturing features from a design-
by-feature model. Computer-Aided Design, 34(11), pp. 849-868.

208

Li, W. and Shen, W., 2009. Editorial: Collaborative engineering: From concurrent engineering
to enterprise collaboration. Comput.Ind., 60(6), pp. 365-366.

Li, Z., Raskin, V. and Ramani, K., 2007. A methodology of Engineering Ontology Development
for Information Retreaval, 28-31 August, 2007 2007, Purdue University, West Lafayette
IN, USA.

Lin, H.K. and Harding, J.A., 2007. A manufacturing system engineering ontology model on
the semantic web for inter-enterprise collaboration. Computers in Industry, 58(5), pp.
428-437.

Lin, H.K., Harding, J.A. and Shahbaz, M., 2004. Manufacturing system engineering ontology
for semantic interoperability across extended project teams. International Journal of
Production Research, 42(24), pp. 5099-5118.

Lourdusamy, R. and Ganapathy, G., 2008. Feature Analysis of Ontology Mediation Tools.
Journal of Computer Science, 4(6), pp. 437-446.

Lucanu, ,Dorel, Li, ,Yuan Fang and Dong, ,Jin Song, 2005. Soundness proof of Z semantics of
OWL using institutions, WWW '05: Special interest tracks and posters of the 14th
international conference on World Wide Web, 2005, ACM, pp. 1048-1049.

Ma, Y.S., Tang, S.H., Au, C.K. and Chen, J.Y., 2009. Collaborative feature-based design via
operations with a fine-grain product database. Comput.Ind., 60(6), pp. 381-391.

Maedche, A.,D, 2002. Ontology learning for the semantic Web. Boston: Kluwer Academic
Publishers.

Maedche, A., Motik, B., Silva, N. and Volz, R., 2002. MAFRA - A MApping FRAmework for
Distributed Ontologies, EKAW '02: Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontologies and the Semantic
Web, 2002, Springer-Verlag, pp. 235-250.

Mascardi, V., Locoro, A. and Rosso, P., 2010. Automatic Ontology Matching via Upper
Ontologies: A Systematic Evaluation. IEEE Trans.on Knowl.and Data Eng., 22(5), pp. 609-
623.

Mascardi, V., Rosso, P. and CordÃ¬, V., 2008. Enhancing Communication inside Multi-Agent
Systems â‹† An Approach based on Alignment via Upper Ontologies.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A. and Schneider, L., 2001. The
WonderWeb Library of Foundational Ontologies and the DOLCE ontology.

Matsokis, A. and Kiritsis, D., 2010. An ontology-based approach for Product Lifecycle
Management. Computers in Industry, 61(8), pp. 787-797.

Matuszek, C., Cabral, J., Witbrock, M. and DeOliveira, J., 2006. An Introduction to the Syntax
and Content of Cyc. AAAI Spring Symposium, .

209

McGuinness, D.L., 2003. Ontologies come of age. In: SPINNING THE SEMANTIC WEB:
BRINGING THE WORLD WIDE WEB TO ITS FULL POTENTIAL, ed,
Fensel,D.;Hendler,J.;Lieberman,H;Wahlster,W. Cambridge, MA: MIT Press, .

McGuinness, D., Fikes, R., Rice, J. and Wilder, S., 2000. An Environment for Merging and
Testing Large Ontologies, Proceedings of the 17th International Conference on Principles
of Knowledge Representation and Reasoning (KR-2000), 2000, .

Meseguer, P. and Preece, A.D., 1996. Assessing the Role of Formal Specifications in
Verification and Validation of Knowledge-Based Systems, Procedings of the Third
International Conference on Achieving Quality in Software, 1996, Chapman & Hall, pp.
317-328.

Miller, J. and Mukerji, J., 2003. MDA Guide Version 1.0.1. omg/2003-06-01. Object
Management Group.

Mitra, P. and Wiederhold, G., 2002. Resolving Terminological Heterogeneity In Ontologies.

Mizoguchi, R., 2004. Ontology development, tools and languages. New Generation
Computing, 22(1), pp. 61-96.

Mizoguchi, R., Vanwelkenhuysen, J. and Ikeda, M., 1995. Task Ontologies for Reuse of
Problem Solving Knowledge. In: N. MARS, ed, Towards Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing. Netherlands: IOS Press, pp. 46-57.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T. and Swartout, W.R., 1991.
Enabling technology for knowledge sharing. AI Mag., 12(3), pp. 36-56.

Niles, I. and Pease, A., 2001. Towards a standard upper ontology, FOIS '01: Proceedings of
the international conference on Formal Ontology in Information Systems, 2001, ACM,
pp. 2-9.

Niles, I. and Terry, A., 2004. The MILO: A General-purpose, Mid-level Ontology, IKE, 2004, ,
pp. 15-19.

Nirenburg, S. and Raskin, V., 2004. Ontological Semantics. Cambridge, Massachusetts,
London: The MIT Press.

NIST, 15/4/2008, 2008-last update, Process Specification Language (PSL) [Homepage of
NIST], [Online]. Available: http://www.mel.nist.gov/psl/index.html [4/21, 2009].

Nonaka, I., 1994. A Dynamic Theory of Organizational Knowledge Creation. Organization
Science, 5(1), pp. pp. 14-37.

Noy, N. and McGuinness, D., 2001. Ontology Development 101: A Guide to Creating Your
First Ontology.

http://www.mel.nist.gov/psl/index.html�

210

Noy, N.F., 2004. Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record, 33, pp. 2004.

Noy, N.F. and Musen, M.A., 2003. The PROMPT Suite: Interactive Tools for Ontology
Merging and Mapping. International Journal of Human-Computer Studies, 59, pp. 2003.

OMG, 2008a. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.
formal/2008-04-03. OMG.

OMG, 2008b. Ontology Definition Metamodel: OMG Adopted Specification. ptc/2008-09-07.
OMG.

Ouellet, R. and Ogbuji, U., January 30, 2002, 2002-last update, Introduction to DAML: Part I
[Homepage of O'Reilly], [Online]. Available:
http://www.xml.com/pub/a/2002/01/30/daml1.html [April/20, 2009].

Panetto, H. and Molina, A., 2008. Enterprise integration and interoperability in
manufacturing systems: Trends and issues. Comput.Ind., 59(7), pp. 641-646.

Patil, L., Dutta, D. and Sriram, R., 2005a. Ontology-based exchange of product data
semantics. Automation Science and Engineering, IEEE Transactions on, 2(3), pp. 213-
225.

Patil, L., Dutta, D., Nistir, R.D.S., Patil, L., Dutta, D., Sriram, R.D., Gutierrez, C.M., Patil, L.,
Dutta, D. and Sriram, R., 2005b. Ontology formalization of product semantics for
Product Lifecycle Management.

Pease, A., Niles, I. and Li, J., 2002. The Suggested Upper Merged Ontology: A Large Ontology
for the Semantic Web and its Applications, In Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web, 2002, , pp. 2002.

Preece, A., 2001. Evaluating verification and validation methods in knowledge engineering.
Micro-Level Knowledge Management, 2001, pp. 123-145.

Pulido, J.R.G., Ruiz, M.A.G., Herrera, R., Cabello, E., Legrand, S. and Elliman, D., 2006.
Ontology languages for the semantic web: A never completely updated review. Know.-
Based Syst., 19(7), pp. 489-497.

Qadir, M.A., Fahad, M. and Noshairwan, M.W., 2007. On Conceptualization Mismatches
Between Ontologies. Granular Computing, IEEE International Conference on, 0, pp. 275.

Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J. and Lee, J., 2000. The Process
Specification Language (PSL) Overview and Version 1.0 Specification. National Institute
of Standards and Technology, .

Schorlemmer, M. and Kalfoglou, Y., 2005. Progressive ontology alignment for meaning
coordination: an information-theoretic foundation, AAMAS '05: Proceedings of the

http://www.xml.com/pub/a/2002/01/30/daml1.html�

211

fourth international joint conference on Autonomous agents and multiagent systems,
2005, ACM, pp. 737-744.

Silvert, W., 2001. Modelling as a Discipline. International Journal of General Systems, 30(3),
pp. 261.

Smart, P.R. and Engelbrecht, P.C., 2008. An Analysis of the Origin of Ontology Mismatches
on the Semantic Web, EKAW, 2008, , pp. 120-135.

Staub-French, S., Fischer, M., Kunz, J., Paulson, B. and Ishii, K., 2002. A Feature Ontology to
Support Construction Cost Estimating.

Studer, R., Benjamins, V.R. and Fensel, D., 1998. Knowledge engineering: Principles and
methods. Data & Knowledge Engineering, 25(1-2), pp. 161-197.

Stumme, G. and Maedche, A., 2001. FCA-Merge: Bottom-Up Merging of Ontologies,
Proceedings of the 7th International Conference on Artificial Intelligence (IJCAI’01), 2001,
, pp. 225-230.

SUMO, 22/4/2009, 2009-last update, Suggested Upper Merged Ontology [Homepage of
CIM3.NET], [Online]. Available: http://www.ontologyportal.org/ [4/2009, 2009].

SUO WG, 28/12/2003, 2003-last update, Standard Upper Ontology [Homepage of SUO
Working Group], [Online]. Available: http://suo.ieee.org/ [4/22, 2009].

Swartout, B., Ramesh, P., Knight, K. and Russ, T., 1997. Towards Distributed Use of Large
Scale Ontologies, A. FARQUHAR, M. GRUNIGER, A. GOMEZ-PEREZ, M. USHOLD and P.
VAN-DER-VET, eds. In: AAAI’97 Spring Symposium on Ontological Engineering, 1997, ,
pp. 138-148.

Tursi, A., Panetto, H., Morel, G. and Dassisti, M., 2007. Ontology-Based Products Information
Interoperability in Networked Manufacturing Enterprises, IFAC, ed. In: IFAC Conference
on Cost Effective Automation in Networked Product Development and Manufacturing,
IFAC-CEA'07; IFAC Conference on Cost Effective Automation in Networked Product
Development and Manufacturing , IFAC-CEA'07, 2007-10-02 2007, Elsevier, pp. CDROM.

Uschold, M. and Gruninger, M., 1996. Ontologies: Principles, methods and applications.
Knowledge Engineering Review, 11(2), pp. 93-155.

Uschold, M. and Grüninger, M., 1996. Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review, 11, pp. 93-136.

Uschold, M. and Jasper, R., 1999. A Framework for Understanding and Classifying Ontology
applications, V.R. BENJAMINS, ed. In: IJCAI’99 Workshop on Ontology and Problem
Solving Methods: Lessons Learned and Future Trends, 1999, CEUR Workshop
Proceedings, pp. 11.1-11.12.

http://www.ontologyportal.org/�
http://suo.ieee.org/�

212

Uschold, M., 1996. Building Ontologies: Towards a Unified Methodology, In 16th Annual
Conf. of the British Computer Society Specialist Group on Expert Systems, 1996, , pp. 16-
18.

van Heijst, G., Schreiber, A.T. and Wielinga, B.J., 1997. Using explicit ontologies in KBS
development. International Journal of Human-Computer Studies, 46(2-3), pp. 183-292.

Vegetti, M., Henning, G.P. and Leone, H.P., 2005. Product ontology: definition of an
ontology for the complex product modelling domain, 4th Mercosur Congress on Process
Systems Engineering, 2005, .

Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M. and Shave, M.J.R., 1997. An analysis of
ontological mismatches: Heterogeneity versus interoperability, AAAI 1997 Spring
Symposium on Ontological Engineering, 1997, .

W3C, 2004. OWL Web Ontology Language Reference: W3C Recommendation 10 February
2004. ref-20040210. W3C, http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

Wiederhold, G., 1994. An Algebra for Ontology Composition, In Proceedings of 1994
Monterey Workshop on Formal Methods, 1994, , pp. 56-61.

WordNet, 2006, 2006-last update [Homepage of Princeton University 2006], [Online].
Available: http://wordnet.princeton.edu/ [4/2009, 2009].

Yang, Q.Z. and Zhang, Y., 2007. Semantic Interoperatbility to Support Collaborative Product
Development. In: W.D. LI, S.K. ONG, A.Y.C. NEE and C. MCMOHAN, eds, Collaborative
Product Design and Manufacturing Methodologies and Applications. Springer, .

Yoo, S.B. and Suh, H.W., 1999. Integrity Validation of Product Data in a Distributed
Concurrent Engineering Environment. Concurrent Engineering, 7(3), pp. 201-213.

Young, R., Chungoora, N., Usman, Z., Anjum, N., Gunendran, G., Palmer, C., Harding, J., Case,
K. and Cutting-Decelle, A., 2010. An exploration of foundation ontologies and
verification methods for manufacturing knowledge sharing, Workshop on
Interoperability for Enterprise Software and Applications (I-ESA Workshop, 2010), 2010,
.

Zack, M., H., 1999. Knowledge and strategy. Boston, Mass: Butterworth-Heinemann.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/�
http://wordnet.princeton.edu/�

213

Appendices

214

Appendix I – Formalized ontologies for figure 8.5

1- Foundation and core-concepts ontology

:Name "Example foundation and core-concepts ontology" 1
:Description "Ontologies for the example illustrated in figure 8.6 2
in chapter 8.” 3
 4
:Ctx FDN 5
:Inst UserContext 6
:supCtx MLO 7
 8
:Use FDN 9
 10
 11
;----------------------------- Properties -------------------------- 12
 13
:Prop ManufacturingFoundation 14
:Inst Type 15
:sup Top 16

 17
:Prop dimensions 18
:Inst Type 19
:sup ManufacturingFoundation 20
 21
 :Prop straightLength 22

:Inst Type 23
:sup dimensions 24
 25
:Prop width 26
:Inst Type 27
:sup dimensions 28
 29
:Prop diameter 30
:Inst Type 31
:sup dimensions 32

 33
:Prop Resources 34
:Inst Type 35
:sup ManufacturingFoundation 36
 37
 :Prop Man 38

:Inst Type 39
 :sup Resources 40
 41
 :Prop Material 42

:Inst Type 43
:sup Resources 44
 45
 46
 :Prop shape_feature 47

215

:Inst Type 48
:sup Material 49
 50
 :Prop cob 51
 :Inst Type 52
 :sup shape_feature 53
 54
 :Prop hole 55

 :Inst Type 56
 :sup shape_feature 57
 58
 :Prop web 59
 :Inst Type 60
 :sup shape_feature 61
 62
 :Prop rim 63
 :Inst Type 64
 :sup shape_feature 65

 66
:Prop Machine 67
:Inst Type 68
:sup Resources 69

 70
:Prop measures 71
:Inst Type 72
:sup ManufacturingFoundation 73
 74
 :Prop millimeter 75

:Inst Type 76
:sup measures 77

216

2- Design domain ontology

:Name "Example design domain ontology" 1
:Description "Design domain ontology for the example illustrated in 2
figure 8.6 in chapter 8.” 3
 4
:Ctx DSN 5
:Inst UserContext 6
:supCtx MLO 7
 8
:Use DSN 9
 10
 11
;----------------------------- Properties -------------------------- 12
 13
:Prop measurements 14
:Inst Type 15
:sup Event 16
:sup FDN.dimensions 17
 18
 :Prop dmtr 19
 :Inst Type 20

:sup measurements 21
 22
:Prop straight_length 23
:Inst Type 24
:sup measurements 25
:sup FDN.strightLength 26
 27
:Prop breadth 28
:Inst Type 29
:sup measurements 30
 31

:Prop component 32
:Inst Type 33
:sup Object 34
:sup FDN.part 35
 36
:Prop shapes 37
:Inst Type 38
:sup ConcreteEntity 39
:sup FDN.shape_feature 40
 41
 :Prop disc 42
 :Inst Type 43
 :sup shapes 44
 45

:Prop bolt_hole 46
:Inst Type 47
:sup shapes 48
 49
:Prop diaphragm 50
:Inst Type 51

217

:sup shapes 52
:sup FDN.web 53
 54
:Prop hub 55
:Inst Type 56
:sup shapes 57

 58
 59
:-------------------------- Relations -------------------------- 60
 61
:Rel hasFeature 62
:Inst BinaryRel 63
:Sig component shapes 64
 65
:Rel hasLength 66
:Inst BinaryRel 67
:Sig shapes straight_length 68
 69
;------------------------ Functions -------------------------- 70
 71
:Fun mm 72
:Inst UnaryFun 73
:Sig RealNumber -> straight_lengt74

218

3- Manufacturing domain ontology

:Name "Example design domain ontology" 1
:Description "Design domain ontology for the example illustrated in 2
figure 8.6 in chapter 8.” 3
 4
:Ctx DSN 5
:Inst UserContext 6
:supCtx MLO 7
 8
:Use DSN 9
 10
 11
;----------------------------- Properties -------------------------- 12
 13
:Prop work_piece 14
:Inst Type 15
:sup Object 16
:sup FDN.part 17
 18
:Prop features 19
:Inst Type 20
:sup ConcreteEntity 21
:sup FDN.shape_feature 22
 23
 :Prop disc_end 24
 :Inst Type 25
 :sup features 26
 27

:Prop straight_hole 28
:Inst Type 29
:sup features 30
 31
:Prop webbing 32
:Inst Type 33
:sup features 34
:sup FDN.web 35
 36
:Prop centre 37
:Inst Type 38
:sup features 39

 40
:Prop attributes 41
:Inst Type 42
:sup ConcreteEntity 43
:sup FDN.dimensions 44
 45
 :Prop length 46
 :Inst Type 47

:sup attributes 48
:sup FDN.straightLength 49
 50
:Prop height 51

219

:Inst Type 52
:sup attributes 53
 54
:Prop dia 55
:Inst Type 56
:sup attributes 57
 58

 59
 60
 61
:-------------------------- Relations -------------------------- 62
 63
:Rel hasAttribute 64
:Inst BinaryRel 65
:Sig work_piece features 66
 67
:Rel withLength 68
:Inst BinaryRel 69
:Sig features length 70
 71
;------------------------ Functions -------------------------- 72
 73
:Fun mils 74
:Inst UnaryFun 75
:Sig RealNumber -> length 76
 77
 78
;------------------------ Rules ----------------------------- 79
 80
(=> (webbing ?w) 81

 (withLength ?w (mils ?v))) 82

(lteNum ?v 500)) 83

:IC hard “<code>?w</code> larger than 500mm in length cannot be 84
produced in the available machines.” 85

220

Appendix II - The Experimental Ontologies

1- The foundation and core-concepts ontology

:Name "Foundation Ontology and Core Concepts Ontology" 1
:Description "An ontology with foundation and core concepts" 2
 3
:Ctx FDN 4
:Inst UserContext 5
:supCtx MLO 6
 7
:Use FDN 8
 9
 10
;----------------------------- Properties -------------------------- 11
 12
:Prop foundationTop 13
:Inst Type 14
:sup Top 15
 16
 17
:Prop dimensions 18
:Inst Type 19
:sup foundationTop 20
 21
 :Prop linearDimensions 22
 :Inst Type 23
 :sup dimensions 24
 25
 :Prop length 26
 :Inst Type 27
 :sup linearDimensions 28
 29
 :Prop externalDiameter 30
 :Inst Type 31
 :sup linearDimensions 32
 33
 :Prop internalDiameter 34
 :Inst Type 35
 :sup linearDimensions 36
 37
 :Prop filletRadius 38
 :Inst Type 39
 :sup linearDimensions 40
 41
 :Prop width 42
 :Inst Type 43
 :sup linearDimensions 44

221

 45
 :Prop height 46
 :Inst Type 47
 :sup linearDimensions 48
 49
 :Prop coordinates 50
 :Inst Type 51
 :sup linearDimensions 52
 53
 :Prop x-coordinate 54
 :Inst Type 55
 :sup coordinates 56
 57
 :Prop y-coordinate 58
 :Inst Type 59
 :sup coordinates 60
 61
 :Prop z-coordinate 62
 :Inst Type 63
 :sup coordinates 64
 65
 :Prop geometricalTolerance 66
 :Inst Type 67
 :sup linearDimensions 68
 69
 :Prop concentricity 70
 :Inst Type 71
 :sup geometricalTolerance 72
 73
 :Prop flatness 74
 :Inst Type 75
 :sup geometricalTolerance 76
 77
 :Prop linearProfile 78
 :Inst Type 79
 :sup geometricalTolerance 80
 81
 :Prop circularProfile 82
 :Inst Type 83
 :sup geometricalTolerance 84
 85
 :Prop nonLinearDimensions 86
 :Inst Type 87
 :sup dimensions 88
 89
 :Prop angle 90
 :Inst Type 91
 :sup nonLinearDimensions 92
 93
 :Prop xAngle 94
 :Inst Type 95
 :sup angle 96
 97
 :Prop yAngle 98
 :Inst Type 99
 :sup angle 100

222

 101
 :Prop zAngle 102
 :Inst Type 103
 :sup angle 104
 105
:Prop positionalReferences 106
:Inst Type 107
:sup foundationTop 108
 109
 :Prop referencePoint 110
 :Inst Type 111
 :sup positionalReferences 112
 113
 :Prop referenceLine 114
 :Inst Type 115
 :sup positionalReferences 116
 117
:Prop part 118
:Inst Type 119
:sup foundationTop 120
 121
 :Prop shapeFeature 122
 :Inst Type 123
 :sup part 124
 125
 :Prop baseFeature 126
 :Inst Type 127
 :sup shapeFeature 128
 129
 :Prop disc 130
 :Inst Type 131
 :sup baseFeature 132
 133
 134
 :Prop additionFeature 135
 :Inst Type 136
 :sup shapeFeature 137
 138
 :Prop collar 139
 :Inst Type 140
 :sup additionFeature 141
 142
 :Prop fillet 143
 :Inst Type 144
 :sup additionFeature 145
 146
 :Prop subtractionFeature 147
 :Inst Type 148
 :sup shapeFeature 149
 150
 :Prop hole 151
 :Inst Type 152
 :sup subtractionFeature 153
 154
 155
 :Prop chamfer 156

223

 :Inst Type 157
 :sup subtractionFeature 158
 159
 160
 161
;------------------------------- Relations ----------------------- 162
 163
:Rel hasInternalDiameter 164
:Inst BinaryRel 165
:Sig shapeFeature internalDiameter 166
 167
:Rel hasExternalDiameter 168
:Inst BinaryRel 169
:Sig shapeFeature externalDiameter 170
 171
:Rel hasLength 172
:Inst BinaryRel 173
:Sig shapeFeature length 174
 175
:Rel hasWidth 176
:Inst BinaryRel 177
:Sig shapeFeature width 178
 179
:Rel hasHeight 180
:Inst BinaryRel 181
:Sig shapeFeature height 182
 183
:Rel hasFilletRadius 184
:Inst BinaryRel 185
:Sig shapeFeature filletRadius 186
 187
:Rel isReferenceFeatureFor 188
:Inst BinaryRel 189
:Sig shapeFeature part 190
 191
:Rel hasRefPoint 192
:Inst BinaryRel 193
:Sig shapeFeature referencePoint 194
 195
:Rel hasRefLine 196
:Inst BinaryRel 197
:Sig shapeFeature referenceLine 198
 199
:Rel hasX-coordinate 200
:Inst BinaryRel 201
:Sig referencePoint x-coordinate 202
 203
:Rel hasY-coordinate 204
:Inst BinaryRel 205
:Sig referencePoint y-coordinate 206
 207
:Rel hasZ-coordinate 208
:Inst BinaryRel 209
:Sig referencePoint z-coordinate 210
 211
:Rel hasXangle 212

224

:Inst BinaryRel 213
:Sig referenceLine angle 214
 215
:Rel hasYangle 216
:Inst BinaryRel 217
:Sig referenceLine angle 218
 219
:Rel hasZangle 220
:Inst BinaryRel 221
:Sig referenceLine angle 222
 223
:Rel hasFeature 224
:Inst BinaryRel 225
:Sig part shapeFeature 226
 227
 228
 229
 230
;--------------------- Functions ----------------- 231
 232
:Fun inDia_MilliMeter 233
:Inst UnaryFun 234
:Sig RealNumber -> internalDiameter 235
 236
:Fun height_MilliMeter 237
:Inst UnaryFun 238
:Sig RealNumber -> height 239
 240
:Fun width_MilliMeter 241
:Inst UnaryFun 242
:Sig RealNumber -> width 243
 244
:Fun filletRadius_MilliMeter 245
:Inst UnaryFun 246
:Sig RealNumber -> filletRadius 247
 248
:Fun xCoordinate_MilliMeter 249
:Inst UnaryFun 250
:Sig RealNumber -> x-coordinate 251
 252
:Fun yCoordinate_MilliMeter 253
:Inst UnaryFun 254
:Sig RealNumber -> y-coordinate 255
 256
:Fun zCoordinate_MilliMeter 257
:Inst UnaryFun 258
:Sig RealNumber -> z-coordinate 259
 260
:Fun degree 261
:Inst UnaryFun 262
:Sig RealNumber -> angle 263
 264
:Fun radian 265
:Inst UnaryFun 266
:Sig RealNumber -> angle 267

225

2- The design domain ontology

:Name "Design Ontology" 1
:Description "An ontology with design concepts" 2
 3
:Ctx DSN 4
:Inst UserContext 5
:supCtx MLO 6
 7
:Use DSN 8
 9
;------------------------------ Properties ------------------------- 10
 11
:Prop designTop 12
:Inst Type 13
:sup Top 14
 15
 :Prop engineeringProduct 16
 :Inst Type 17
 :sup designTop 18
 :sup FDN.part 19
 20
 :Prop shapeCharacterisitcs 21
 :Inst Type 22
 :sup engineeringProduct 23
 24
 :Prop designFeature 25
 :Inst Type 26
 :sup shapeCharacterisitcs 27
 :sup FDN.shapeFeature 28
 29
 :Prop stressRelievingFeature 30
 :Inst Type 31
 :sup designFeature 32
 33
 :Prop round 34
 :Inst Type 35
 :sup stressRelievingFeature 36
 :sup FDN.fillet 37
 38
 :Prop foundationFeature 39
 :Inst Type 40
 :sup designFeature 41
 42
 :Prop basePlate 43
 :Inst Type 44
 :sup foundationFeature 45
 :sup FDN.disc 46
 47
 :Prop joiningFeature 48
 :Inst Type 49
 :sup designFeature 50
 51

226

 52
 :Prop boltHole 53
 :Inst Type 54
 :sup joiningFeature 55
 :sup FDN.hole 56
 57
 58
 59
 :Prop dimensionalCharacteristics 60
 :Inst Type 61
 :sup designTop 62
 63
 :Prop straightLength 64
 :Inst Type 65
 :sup dimensionalCharacteristics 66
 :sup FDN.length 67
 68
 :Prop roundedLength 69
 :Inst Type 70
 :sup dimensionalCharacteristics 71
 72
 :Prop diameter 73
 :Inst Type 74
 :sup dimensionalCharacteristics 75
 :sup FDN.externalDiameter 76
 77
 :Prop internalDia 78
 :Inst Type 79
 :sup dimensionalCharacteristics 80
 81
 :Prop thickness 82
 :Inst Type 83
 :sup dimensionalCharacteristics 84
 :sup FDN.height 85
 86
 :Prop breadth 87
 :Inst Type 88
 :sup dimensionalCharacteristics 89
 :sup FDN.width 90
 91
 :Prop roundRadius 92
 :Inst Type 93
 :sup dimensionalCharacteristics 94
 :sup FDN.filletRadius 95
 96
 :Prop tolerances 97
 :Inst Type 98
 :sup dimensionalCharacteristics 99
 100
 :Prop flatness 101
 :Inst Type 102
 :sup tolerances 103
 :sup FDN.flatness 104
 105
 106
 107

227

 108
 :Prop profile 109
 :Inst Type 110
 :sup tolerances 111
 :sup FDN.linearProfile 112
 113
 :Prop concentricity 114
 :Inst Type 115
 :sup tolerances 116
 :sup FDN.concentricity 117
 118
 119
 :Prop orientationCharacteristics 120
 :Inst Type 121
 :sup designTop 122
 123
 :Prop featureOrientationPoint 124
 :Inst Type 125
 :sup orientationCharacteristics 126
 :sup FDN.referencePoint 127
 128
 :Prop featureOrientationLine 129
 :Inst Type 130
 :sup orientationCharacteristics 131
 :sup FDN.referenceLine 132
 133
 :Prop XC 134
 :Inst Type 135
 :sup orientationCharacteristics 136
 :sup FDN.x-coordinate 137
 138
 :Prop YC 139
 :Inst Type 140
 :sup orientationCharacteristics 141
 :sup FDN.y-coordinate 142
 143
 :Prop ZC 144
 :Inst Type 145
 :sup orientationCharacteristics 146
 :sup FDN.z-coordinate 147
 148
 :Prop alpha 149
 :Inst Type 150
 :sup orientationCharacteristics 151
 :sup FDN.xAngle 152
 153
 :Prop beta 154
 :Inst Type 155
 :sup orientationCharacteristics 156
 :sup FDN.yAngle 157
 158
 :Prop gamma 159
 :Inst Type 160
 :sup orientationCharacteristics 161
 :sup FDN.zAngle 162
 163

228

 164
 165
;------------------------- Relations ------------------------------ 166
 167
:Rel hasDiameter 168
:Inst BinaryRel 169
:Sig designFeature diameter 170
 171
:Rel hasInternalDia 172
:Inst BinaryRel 173
:Sig designFeature internalDia 174
 175
:Rel hasStraightLength 176
:Inst BinaryRel 177
:Sig designFeature straightLength 178
 179
:Rel hasBreadth 180
:Inst BinaryRel 181
:Sig designFeature breadth 182
 183
:Rel hasThickness 184
:Inst BinaryRel 185
:Sig designFeature thickness 186
 187
:Rel hasRoundRadius 188
:Inst BinaryRel 189
:Sig designFeature roundRadius 190
 191
:Rel hasProfile 192
:Inst BinaryRel 193
:Sig designFeature profile 194
 195
:Rel isDatumFeatureOf 196
:Inst BinaryRel 197
:Sig designFeature engineeringProduct 198
 199
:Rel hasOrientationPoint 200
:Inst BinaryRel 201
:Sig designFeature featureOrientationPoint 202
 203
:Rel hasOrientationLine 204
:Inst BinaryRel 205
:Sig designFeature featureOrientationLine 206
 207
:Rel hasXC 208
:Inst BinaryRel 209
:Sig featureOrientationPoint XC 210
 211
:Rel hasYC 212
:Inst BinaryRel 213
:Sig featureOrientationPoint YC 214
 215
:Rel hasZC 216
:Inst BinaryRel 217
:Sig featureOrientationPoint ZC 218
 219

229

 220
:Rel makesAlpha 221
:Inst BinaryRel 222
:Sig featureOrientationLine alpha 223
 224
:Rel makesBeta 225
:Inst BinaryRel 226
:Sig featureOrientationLine beta 227
 228
:Rel makesGamma 229
:Inst BinaryRel 230
:Sig featureOrientationLine gamma 231
 232
:Rel containsFeature 233
:Inst BinaryRel 234
:Sig engineeringProduct designFeature 235
 236
 237
;--------------------------- Functions ------------------------- 238
 239
:Fun mmDiaMeasure 240
:Inst UnaryFun 241
:Sig RealNumber -> diameter 242
 243
:Fun mmInternalDiaMeasure 244
:Inst UnaryFun 245
:Sig RealNumber -> internalDia 246
 247
:Fun mmBreadthMeasure 248
:Inst UnaryFun 249
:Sig RealNumber -> breadth 250
 251
:Fun mmStraightLengthMeasure 252
:Inst UnaryFun 253
:Sig RealNumber -> straightLength 254
 255
:Fun mmThicknessMeasure 256
:Inst UnaryFun 257
:Sig RealNumber -> thickness 258
 259
:Fun mmRoundRadiusMeasure 260
:Inst UnaryFun 261
:Sig RealNumber -> roundRadius 262
 263
:Fun mmProfileMeasure 264
:Inst UnaryFun 265
:Sig RealNumber -> profile 266
 267
:Fun mmXCMeasure 268
:Inst UnaryFun 269
:Sig RealNumber -> XC 270
 271
:Fun mmYCMeasure 272
:Inst UnaryFun 273
:Sig RealNumber -> YC 274
 275

230

 276
:Fun mmZCMeasure 277
:Inst UnaryFun 278
:Sig RealNumber -> ZC 279
 280
:Fun degreeAlphaMeasure 281
:Inst UnaryFun 282
:Sig RealNumber -> alpha 283
 284
:Fun degreeBetaMeasure 285
:Inst UnaryFun 286
:Sig RealNumber -> beta 287
 288
:Fun degreeGammaMeasure 289
:Inst UnaryFun 290
:Sig RealNumber -> gamma 291

231

3- The manufacturing domain ontology

:Name "Manufacturing Ontology" 1
:Description "An ontology with manufacturing concepts" 2
 3
:Ctx MFG 4
:Inst UserContext 5
:supCtx MLO 6
 7
:Use MFG 8
 9
 10
;------------------------------ Properties ------------------------- 11
 12
:Prop manufacturingTop 13
:Inst Type 14
:sup Top 15
 16
 :Prop workPiece 17
 :Inst Type 18
 :sup manufacturingTop 19
 :sup FDN.part 20
 21
 :Prop manufacturingFeature 22
 :Inst Type 23
 :sup workPiece 24
 :sup FDN.shapeFeature 25
 26
 :Prop millingFeature 27
 :Inst Type 28
 :sup manufacturingFeature 29
 30
 31
 32
 :Prop straightGroove 33
 :Inst Type 34
 :sup millingFeature 35
 36
 :Prop pocket 37
 :Inst Type 38
 :sup millingFeature 39
 40
 :Prop turningFeature 41
 :Inst Type 42
 :sup manufacturingFeature 43
 44
 :Prop cylindricalSurface 45
 :Inst Type 46
 :sup turningFeature 47
 :sup FDN.disc 48
 49
 :Prop interfaceRound 50
 :Inst Type 51

232

 :sup turningFeature 52
 :sup FDN.fillet 53
 54
 :Prop circularGroove 55
 :Inst Type 56
 :sup turningFeature 57
 58
 :Prop drillingFeature 59
 :Inst Type 60
 :sup manufacturingFeature 61
 62
 :Prop hole 63
 :Inst Type 64
 :sup drillingFeature 65
 :sup FDN.hole 66
 67
 68
 :Prop featureDefinitionalAttributes 69
 :Inst Type 70
 :sup manufacturingTop 71
 72
 :Prop dimensionalAttributes 73
 :Inst Type 74
 :sup featureDefinitionalAttributes 75
 76
 :Prop length 77
 :Inst Type 78
 :sup dimensionalAttributes 79
 :sup FDN.length 80
 81
 :Prop width 82
 :Inst Type 83
 :sup dimensionalAttributes 84
 :sup FDN.width 85
 86
 87
 88
 :Prop height 89
 :Inst Type 90
 :sup dimensionalAttributes 91
 :sup FDN.height 92
 93
 :Prop externalDia 94
 :Inst Type 95
 :sup dimensionalAttributes 96
 :sup FDN.externalDiameter 97
 98
 :Prop innerDia 99
 :Inst Type 100
 :sup dimensionalAttributes 101
 :sup FDN.internalDiameter 102
 103
 104
 :Prop interfaceRoundRadius 105
 :Inst Type 106
 :sup dimensionalAttributes 107

233

 :sup FDN.filletRadius 108
 109
 :Prop surfaceProfile 110
 :Inst Type 111
 :sup dimensionalAttributes 112
 :sup FDN.linearProfile 113
 114
 :Prop flatness 115
 :Inst Type 116
 :sup dimensionalAttributes 117
 :sup FDN.flatness 118
 119
 120
 :Prop positionalAttributes 121
 :Inst Type 122
 :sup featureDefinitionalAttributes 123
 124
 :Prop datumPoint 125
 :Inst Type 126
 :sup positionalAttributes 127
 :sup FDN.referencePoint 128
 129
 :Prop xPoint 130
 :Inst Type 131
 :sup datumPoint 132
 :sup FDN.x-coordinate 133
 134
 :Prop yPoint 135
 :Inst Type 136
 :sup datumPoint 137
 :sup FDN.y-coordinate 138
 139
 :Prop zPoint 140
 :Inst Type 141
 :sup datumPoint 142
 :sup FDN.z-coordinate 143
 144
 145
 :Prop datumLine 146
 :Inst Type 147
 :sup positionalAttributes 148
 :sup FDN.referenceLine 149
 150
 :Prop orientationAngles 151
 :Inst Type 152
 :sup positionalAttributes 153
 :sup FDN.angle 154
 155
 :Prop angleXaxis 156
 :Inst Type 157
 :sup orientationAngles 158
 :sup FDN.xAngle 159
 160
 :Prop angleYaxis 161
 :Inst Type 162
 :sup orientationAngles 163

234

 :sup FDN.yAngle 164
 165
 :Prop angleZaxis 166
 :Inst Type 167
 :sup orientationAngles 168
 :sup FDN.zAngle 169
 170
 171
 172
;------------------------ Relations ----------------------- 173
 174
 175
:Rel withInnerDia 176
:Inst BinaryRel 177
:Sig manufacturingFeature innerDia 178
 179
:Rel withExternalDia 180
:Inst BinaryRel 181
:Sig manufacturingFeature externalDia 182
 183
:Rel withLength 184
:Inst BinaryRel 185
:Sig manufacturingFeature length 186
 187
:Rel withWidth 188
:Inst BinaryRel 189
:Sig manufacturingFeature width 190
 191
:Rel withHeight 192
:Inst BinaryRel 193
:Sig manufacturingFeature height 194
 195
:Rel withInterfaceRoundRadius 196
:Inst BinaryRel 197
:Sig manufacturingFeature interfaceRoundRadius 198
 199
 200
 201
:Rel withSurfaceProfileTolerance 202
:Inst BinaryRel 203
:Sig manufacturingFeature surfaceProfile 204
 205
:Rel isDatumFeatureFor 206
:Inst BinaryRel 207
:Sig manufacturingFeature workPiece 208
 209
:Rel hasDatumPoint 210
:Inst BinaryRel 211
:Sig manufacturingFeature datumPoint 212
 213
:Rel hasDatumLine 214
:Inst BinaryRel 215
:Sig manufacturingFeature datumLine 216
 217
:Rel onXpoint 218
:Inst BinaryRel 219

235

:Sig datumPoint xPoint 220
 221
:Rel onYpoint 222
:Inst BinaryRel 223
:Sig datumPoint yPoint 224
 225
:Rel onZpoint 226
:Inst BinaryRel 227
:Sig datumPoint zPoint 228
 229
:Rel withAlpha 230
:Inst BinaryRel 231
:Sig datumLine angleXaxis 232
 233
:Rel withBeta 234
:Inst BinaryRel 235
:Sig datumLine angleYaxis 236
 237
:Rel withGamma 238
:Inst BinaryRel 239
:Sig datumLine angleZaxis 240
 241
:Rel containsFeature 242
:Inst BinaryRel 243
:Sig workPiece manufacturingFeature 244
 245
 246
 247
 248
;-------------------- Functions ----------------- 249
 250
:Fun innerDia_mm 251
:Inst UnaryFun 252
:Sig RealNumber -> innerDia 253
 254
:Fun externalDia_mm 255
:Inst UnaryFun 256
:Sig RealNumber -> externalDia 257
 258
:Fun height_mm 259
:Inst UnaryFun 260
:Sig RealNumber -> height 261
 262
:Fun width_mm 263
:Inst UnaryFun 264
:Sig RealNumber -> width 265
 266
:Fun length_mm 267
:Inst UnaryFun 268
:Sig RealNumber -> length 269
 270
 271
 272
:Fun interfaceRoundRadius_mm 273
:Inst UnaryFun 274
:Sig RealNumber -> interfaceRoundRadius 275

236

 276
:Fun surfaceProfile_mm 277
:Inst UnaryFun 278
:Sig RealNumber -> surfaceProfile 279
 280
:Fun xPoint_mm 281
:Inst UnaryFun 282
:Sig RealNumber -> xPoint 283
 284
:Fun yPoint_mm 285
:Inst UnaryFun 286
:Sig RealNumber -> yPoint 287
 288
:Fun zPoint_mm 289
:Inst UnaryFun 290
:Sig RealNumber -> zPoint 291
 292
:Fun alpha_deg 293
:Inst UnaryFun 294
:Sig RealNumber -> angleXaxis 295
 296
:Fun beta_deg 297
:Inst UnaryFun 298
:Sig RealNumber -> angleYaxis 299
 300
:Fun gamma_deg 301
:Inst UnaryFun 302
:Sig RealNumber -> angleZaxis 303
 304
 305
 306
 307
;------------------------ Rules -------------------- 308
 309
 310
:Rel conditionalRel_csdp 311
:Inst QuinaryRel 312
:Sig cylindricalSurface datumPoint RealNumber RealNumber RealNumber 313
 314
 315
:Rel conditionalRel_csdl 316
:Inst QuinaryRel 317
:Sig cylindricalSurface datumLine RealNumber RealNumber RealNumber 318
 319
:Rel conditionalRel_irdp 320
:Inst QuinaryRel 321
:Sig interfaceRound datumPoint RealNumber RealNumber RealNumber 322
 323
:Rel conditionalRel_irdl 324
:Inst QuinaryRel 325
:Sig interfaceRound datumLine RealNumber RealNumber RealNumber 326
 327
 328
:Rel conditionalRel_csdim 329
:Inst QuaternaryRel 330
:Sig cylindricalSurface RealNumber RealNumber RealNumber 331

237

 332
:Rel conditionalRel_irdim 333
:Inst QuinaryRel 334
:Sig interfaceRound RealNumber RealNumber RealNumber RealNumber 335
 336
:Rel conditionalRel_wp 337
:Inst TernaryRel 338
:Sig workPiece cylindricalSurface interfaceRound 339
 340
:Rel conditionalRel_eqNum1 341
:Inst QuaternaryRel 342
:Sig datumPoint datumPoint RealNumber RealNumber 343
 344
:Rel conditionalRel_relNum2 345
:Inst QuinaryRel 346
:Sig datumPoint datumPoint RealNumber RealNumber RealNumber 347
 348
:Rel conditionalRel_eqNum3 349
:Inst QuaternaryRel 350
:Sig datumPoint datumPoint RealNumber RealNumber 351
 352
:Rel conditionalRel_eqNum4 353
:Inst QuaternaryRel 354
:Sig datumLine datumLine RealNumber RealNumber 355
 356
:Rel conditionalRel_eqNum5 357
:Inst QuaternaryRel 358
:Sig datumLine datumLine RealNumber RealNumber 359
 360
:Rel conditionalRel_eqNum6 361
:Inst QuaternaryRel 362
:Sig datumLine datumLine RealNumber RealNumber 363
 364
:Rel conditionalRel_numCalc1 365
:Inst QuinaryRel 366
:Sig cylindricalSurface interfaceRound RealNumber RealNumber 367
RealNumber 368
 369
:Rel conditionalRel_numCalc2 370
:Inst TernaryRel 371
:Sig cylindricalSurface RealNumber RealNumber 372
 373
:Rel conditionalRel_numCalc3 374
:Inst TernaryRel 375
:Sig interfaceRound RealNumber RealNumber 376
 377
:Rel conditionalRel_numCalc4 378
:Inst QuaternaryRel 379
:Sig RealNumber RealNumber RealNumber RealNumber 380
 381
 382
 383
 384
(<= (conditionalRel_csdp ?cs ?csdp ?csx ?csy ?csz) 385
 (and (datumPoint ?csdp) 386
 (onXpoint ?csdp (xPoint_mm ?csx)) 387

238

 (onYpoint ?csdp (yPoint_mm ?csy)) 388
 (onZpoint ?csdp (zPoint_mm ?csz)) 389
 (hasDatumPoint ?cs ?csdp))) 390
 391
 392
 393
(<= (conditionalRel_irdp ?ir ?irdp ?irx ?iry ?irz) 394
 (and (datumPoint ?irdp) 395
 (onXpoint ?irdp (xPoint_mm ?irx)) 396
 (onYpoint ?irdp (yPoint_mm ?iry)) 397
 (onZpoint ?irdp (zPoint_mm ?irz)) 398
 (hasDatumPoint ?ir ?irdp))) 399
 400
 401
 402
(<= (conditionalRel_csdl ?cs ?csdl ?csa ?csb ?csc) 403
 (and (datumLine ?csdl) 404
 (withAlpha ?csdl (alpha_deg ?csa)) 405
 (withBeta ?csdl (beta_deg ?csb)) 406
 (withGamma ?csdl (gamma_deg ?csc)) 407
 (hasDatumLine ?cs ?csdl))) 408
 409
 410
 411
(<= (conditionalRel_irdl ?ir ?irdl ?ira ?irb ?irc) 412
 (and (datumLine ?irdl) 413
 (withAlpha ?irdl (alpha_deg ?ira)) 414
 (withBeta ?irdl (beta_deg ?irb)) 415
 (withGamma ?irdl (gamma_deg ?irc)) 416
 (hasDatumLine ?ir ?irdl))) 417
 418
 419
(<= (conditionalRel_csdim ?cs ?csxd ?csh ?cssp) 420
 (and (cylindricalSurface ?cs) 421
 (withExternalDia ?cs (externalDia_mm ?csxd)) 422
 (withHeight ?cs (height_mm ?csh)) 423
 (withSurfaceProfileTolerance ?cs (surfaceProfile_mm 424
?cssp)) 425
 (ltNum ?cssp 0.1))) 426
 427
 428
 429
(<= (conditionalRel_irdim ?ir ?irr ?irxd ?irh ?irw) 430
 (and (interfaceRound ?ir) 431
 (withInterfaceRoundRadius ?ir (interfaceRoundRadius_mm 432
?irr)) 433
 (withExternalDia ?ir (externalDia_mm ?irxd)) 434
 (withHeight ?ir (height_mm ?irh)) 435
 (withWidth ?ir (width_mm ?irw)))) 436
 437
 438
 439
 440
(<= (conditionalRel_wp ?wp ?cs ?ir) 441
 (and (workPiece ?wp) 442
 (cylindricalSurface ?cs) 443

239

 (interfaceRound ?ir) 444
 (containsFeature ?wp ?cs) 445
 (containsFeature ?wp ?ir))) 446
 447
(<= (conditionalRel_eqNum1 ?csdp ?irdp ?csx ?irx) 448
 (and (datumPoint ?csdp) 449
 (datumPoint ?irdp) 450
 (onXpoint ?csdp (xPoint_mm ?csx)) 451
 (onXpoint ?irdp (xPoint_mm ?irx)) 452
 (eqNum ?csx ?irx))) 453
 454
(<= (conditionalRel_relNum2 ?csdp ?irdp ?csy ?iry ?yDistance) 455
 (and (datumPoint ?csdp) 456
 (datumPoint ?irdp) 457
 (onYpoint ?csdp (yPoint_mm ?csy)) 458
 (onYpoint ?irdp (yPoint_mm ?iry)) 459
 (numMinus ?iry ?csy ?yDistance))) 460
 461
(<= (conditionalRel_eqNum3 ?csdp ?irdp ?csz ?irz) 462
 (and (datumPoint ?csdp) 463
 (datumPoint ?irdp) 464
 (onZpoint ?csdp (zPoint_mm ?csz)) 465
 (onZpoint ?irdp (zPoint_mm ?irz)) 466
 (eqNum ?csz ?irz))) 467
 468
(<= (conditionalRel_eqNum4 ?csdl ?irdl ?csa ?ira) 469
 (and (datumLine ?csdl) 470
 (datumLine ?irdl) 471
 (withAlpha ?csdl (alpha_deg ?csa)) 472
 (withAlpha ?irdl (alpha_deg ?ira)) 473
 (eqNum ?csa ?ira))) 474
 475
(<= (conditionalRel_eqNum5 ?csdl ?irdl ?csb ?irb) 476
 (and (datumLine ?csdl) 477
 (datumLine ?irdl) 478
 (withBeta ?csdl (beta_deg ?csb)) 479
 (withBeta ?irdl (beta_deg ?irb)) 480
 (eqNum ?csb ?irb))) 481
 482
(<= (conditionalRel_eqNum6 ?csdl ?irdl ?csc ?irc) 483
 (and (datumLine ?csdl) 484
 (datumLine ?irdl) 485
 (withGamma ?csdl (gamma_deg ?csc)) 486
 (withGamma ?irdl (gamma_deg ?irc)) 487
 (eqNum ?csc ?irc))) 488
 489
(<= (conditionalRel_numCalc1 ?cs ?ir ?csxd ?irxd ?diaDifference) 490
 (and (cylindricalSurface ?cs) 491
 (interfaceRound ?ir) 492
 (withExternalDia ?cs (externalDia_mm ?csxd)) 493
 (withExternalDia ?ir (externalDia_mm ?irxd)) 494
 (numMinus ?csxd ?irxd ?diaDifference) 495
 (gtNum ?diaDifference 400))) 496
 497
(<= (conditionalRel_numCalc2 ?cs ?csh ?CSmidHeight) 498
 (and (cylindricalSurface ?cs) 499

240

 (withHeight ?cs (height_mm ?csh)) 500
 (numDivide ?csh 2 ?CSmidHeight))) 501
 502
(<= (conditionalRel_numCalc3 ?ir ?irh ?IRmidHeight) 503
 (and (interfaceRound ?ir) 504
 (withHeight ?ir (height_mm ?irh)) 505
 (numDivide ?irh 2 ?IRmidHeight))) 506
 507
(<= (conditionalRel_numCalc4 ?CSmidHeight ?IRmidHeight ?yDistance 508
?MPdistance) 509
 (and (numPlus ?CSmidHeight ?IRmidHeight ?MPdistance) 510
 (eqNum ?yDistance ?MPdistance))) 511
 512
(=> (and 513
 (conditionalRel_csdp ?cs ?csdp ?csx ?csy ?csz) 514
 (conditionalRel_irdp ?ir ?irdp ?irx ?iry ?irz) 515
 (conditionalRel_csdl ?cs ?csdl ?csa ?csb ?csc) 516
 (conditionalRel_irdl ?ir ?irdl ?ira ?irb ?irc) 517
 (conditionalRel_csdim ?cs ?csxd ?csh ?cssp) 518
 (conditionalRel_irdim ?ir ?irr ?irxd ?irh ?irw) 519
 (conditionalRel_wp ?wp ?cs ?ir) 520
 (conditionalRel_eqNum1 ?csdp ?irdp ?csx ?irx) 521
 (conditionalRel_relNum2 ?csdp ?irdp ?csy ?iry 522
?yDistance) 523
 (conditionalRel_eqNum3 ?csdp ?irdp ?csz ?irz) 524
 (conditionalRel_eqNum4 ?csdl ?irdl ?csa ?ira) 525
 (conditionalRel_eqNum5 ?csdl ?irdl ?csb ?irb) 526
 (conditionalRel_eqNum6 ?csdl ?irdl ?csc ?irc) 527
 (conditionalRel_numCalc1 ?cs ?ir ?csxd ?irxd 528
?diaDifference) 529
 (conditionalRel_numCalc2 ?cs ?csh ?CSmidHeight) 530
 (conditionalRel_numCalc3 ?ir ?irh ?IRmidHeight) 531
 (conditionalRel_numCalc4 ?CSmidHeight ?IRmidHeight 532
?yDistance ?MPdistance) 533
) 534
 (gteNum ?irr 10)) 535
 536
:IC hard "Such a small fillet radius at the disc-collar interface 537
will cause mismatches538

241

Appendix III – The requirements document - Interoperable
Manufacturing Knowledge Systems (IMKS)

242

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

IMCRC Project: 253

Project: Interoperable Manufacturing Knowledge
Systems (IMKS)

Project deliverable: 2

Deliverable: System’s Requirements Document

Dated 12/05/20 10

Authors Dr. Bob Young
Mr. Zahid Usman
Mr. Najam AkbarAnjum
Dr. George Gunendran

243

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

1- ‐ Introduct ion

This document provides a description of the user and system requirements for the knowledge sharing system to be
developed in the Interoperable Manufacturing Knowledge Systems (IMKS) project. The IMKS project contributes to
research in the area of knowledge management software interoperability within the specific area of product design and
manufacture, but with a specific focus on manufacturing knowledge sharing. Thus, the requirements document for this project
outlines the problems that can be found in sharing manufacturing knowledge across design and manufacture and presents the
user needs and system requirements for the resolution of these problems.

This requirements document is primarily needed to structure the efforts that are going to be made during the development of
the interoperable system. It helps in providing a reference document for the research team and potentially for others
involved in interoperability research, by explaining the support at which the IMKS experimental system being researched is
targeted in terms of both user and system requirements.

A system requirements specification (SyRS) defines the functionality and performance of the system, function partitioning
(software/hardware etc) and the user interaction. Some of the functionality can be performed in hardware and some in
software. It is the job of the SyRS to define the functionality and performance requirements and to allocate these
functions to different disciplines. (IEEE 1998a) A software requirements specification (SRS), on the other hand, addresses
the functionality, external interfaces, performance, attributes, design constraints and implementation issues for the
software. This document is principally a SRS focused on the conceptual approach of the IMKS project.

1.1-‐ IMKS Context

To ensure efficient manufacturability, reparability, use and disposal, the designer is required to take into account all the
respective lifecycle stages while designing the product. To simplify the complexity of this design methodology, concepts like
concurrent engineering have emerged where experts from different domains sit together to mould the design according to
their needs. But in a busy industrial environment, people with specialized domain knowledge are not always available to
provide their input. As a result, to facilitate the sharing of necessary knowledge and information, computer based knowledge
management solutions are being

Figure 1: A comparison of knowledge sharing approaches

244

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

researched. Solutions are required for software systems that have the potential to help the designer in complex tasks
like design for manufacturing.

Derived from the industrial needs, the top level knowledge management requirement view may comprise of a set of
knowledge repositories and a computer based system supporting the dissemination and sharing of knowledge. More
specifically an approach is needed to support the containment of knowledge in an organized form and a mechanism to
overcome the interoperability problems when knowledge is shared between different domains or knowledge sources.
Figure 1 provides a simplified comparison of traditional approaches to systems development and the approach being
researched through the IMKS approach.

Within the scope of manufacture, IMKS is targeted specifically at machining knowledge and how this can be
shared across the design and manufacturing phases of the product lifecycle. The research thus essentially

needs to include:

i. Methods for the formation of sharable specialized design and manufacturing knowledge bases
containing commonly used manufacturing concepts and

ii. Verification mechanisms for the authentication of the knowledge being shared between these
knowledge bases.

1.2-‐ Users and Uses

The users of the IMKS system are engineering designers and manufacturing process planners. Designers are in need of
assessing the manufacturability of the components they design and manufacturing process planners need to identify the
best possible route for the product manufacturing flow. The assumptions made here about the potential users of this
system are:

i-‐ The design users: are assumed to be skilled individuals with some understanding of
manufacturing.

ii-‐ The manufacturing planners: are assumed to have the requisite knowledge of manufacturing
planning and an understanding of the available facilities and their capability.

Hence, for the required product quality, the main use of the developed system in design will be to inform the designer of the
implications of the decisions in choosing a design solution. These implications will relate to an unacceptably increased cost
and time for manufacturing of the product or some technical issues due to the limitations of manufacturing processes.
Within the IMKS project the aim from the designer’s perspective is be able to inform the designer of situations when the
design parameters will require manufacturing to go outside its normal bounds. Similarly the use for a manufacturing
process planner is to obtain a guideline in choosing the preferred manufacturing process plan.

2-‐ User Requirements

Two types of users are discussed in this section: the designer and the manufacturing planner.

2.1-‐Design User Requirements

Before the design user requirements are outlined, it would be appropriate to first list the typical design objectives.
Roughly considered, every design process has an objective of meeting the customer requirements i.e. attaining the
intended quality and producing the cheapest and quickest possible manufacturable design using the available facilities. The
designer therefore may need the preferred standards, previous design history and the product lifecycle knowledge. Figure 2
illustrates these general high level design requirements.

245

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

2.1.1-‐ Design History

The design history is needed to prevent the repetition of mistakes and the reinvention of wheel. If the previous history is made
available to the designer, the follow up of some earlier design decisions may also lead to manufacturability limitations of
the existing facility.

2.1.2-‐ Standards and Specifications

Standards are needed to ensure that the design meets the environmental, technical and legal requirements both of the
company and the user. Some of these standards are possibly dictated by the limitations of manufacturing, assembly,
repair, operations and disposal of the product.

2.1.3-‐ Product Lifecycle Knowledge

To ensure that the designed product is simple to manufacture, assemble and repair, easy to use and its disposal is
managed efficiently, the designer needs to be aware of the requirements and limitations of the lifecycle stages. In the IMKS
scope, the lifecycle stage of manufacturing and within it machining of the product is important. It is therefore necessary to
explore in detail the design user knowledge requirements to understand the machining capabilities and limitations of the
manufacturing facility at hand.

2.1.3.1-‐ Manufacturability Knowledge

The types of manufacturability knowledge that is to be made available to the designer are:

i. Knowledge about the manufacturability of a product.

ii. Archival knowledge which may comprise of best design for manufacture practices and lessons learnt.

246

The manufacturability understanding requires knowledge of the limitations and feasibility of a design from

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

a manufacturing standpoint. A designer is therefore in need of the experience and the manufacturing capability
understanding possessed by the manufacturer. This knowledge is required during the design process, to ensure that the
product is efficiently manufacturable within the available facility.

Although the main aim of every engineering improvement effort is to make the product better and its manufacturing
faster and cheaper, the industrial experience shows that most of the time the impediments in the manufacturing of the
product are technical in nature. That is to say that the things a designer may need to be aware of, from the
manufacturing point of view, are more related to the achievable dimensions and other product parameters than to the
business side of the product.

The link between the designer and manufacturing engineer is traditionally an engineering drawing. An engineering
drawing can be viewed as on output from the design process which translates the functional needs of the product into
manufacturing requirements. These manufacturing requirements include the production of geometry, tolerances,
material specification, and the possible addition of production volume. The fulfilment of all these design requirements
depends upon the available manufacturing facilities and the knowledge which is in manufacturing engineer’s head. When
the drawing is studied, a review by the manufacturer may reveal some of the design requirements are difficult or
impossible to achieve and this in turn may start an iterative process of design modifications. This design for manufacture
iteration could be much faster if the relevant manufacturing knowledge can be conveniently available.

2.2-‐ Design User Queries

A further way of considering designer requirements is to consider the types of manufacturing related question which a
designer may ask during the design process. Typical examples of design queries are

i. Is the designed surface finish achievable on this particular material at the specified angle?

ii. Is the required internal radius obtainable between two surfaces at the specified angle?

iii. Is it possible to obtain the required concentricity between a specific size bore and a cylinder containing
that bore?

iv. Is the needed straightness achievable for a thin and long machined surface of the specified material?

v. Is the designed parallelism obtainable between two slots of certain length and width on this specific
material?

These queries illustrate design user requirements and give a reference point for the definition of system requirements.
Hence the system designed should essentially be capable of answering these sorts of queries.

2.2-‐ Manufacturing User Requirements

The Manufacturing user is the manufacturing planner.

2.2.1 Manufacturing user queries

As in the case of the designer a useful way of considering requirements is to consider some of the types of queries that a
planner might want to answer. The following provides examples of some of the types of queries a manufacturing planner
may come up with during the planning process.

247

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

ii. What is the likely tool life when machining this material?

iii. What is the Standard Time for machining this feature in this material?

iv. Can this tolerance be achieved on a section this thin?

v. What is the preferred manufacturing method for manufacturing this feature on this kind of part made in this
material?

vi. Can a standard fixture be used on this part?

vii. Are there any environmental hazards involved in machining this material?

From these kinds of query the categories of information required by a process planner have been identified in terms of product
information, knowledge of previous plans and best practice, knowledge of manufacturing process capability and resource
availability plus an understanding of general and company specific standards and specifications. These are shown as a use
case diagram in figure 3 below.

248

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

2.2.2-‐ Product Information Models

The first thing which a manufacturing planner needs to start working on the process plan is product information
which is normally captured in engineering drawings and 3D models. 3D models provide a complete geometric
description while the engineering drawing contains:

i. All the geometric and dimensional tolerance requirements

ii. Material information
iii. Critical features information

2.2.3-‐ Previous plans & best practices knowledge

The planning activity relies on previous knowledge being applied to a new set of product requirements. This knowledge can
relate to (i) previous relevant plans and how they have best been used to produce parts (ii) previous knowledge of how best
to produce specific shapes or features given access to specific resources.

A manufacturing planer uses the previous plans as a guide and reference to come with a manufacturing plan. The
Information and knowledge about all the best previous plans which suit the present part or can be helpful in planning it
should be used. As knowledge about new processes, machines and materials becomes available then there is a requirement
to develop an understanding of its applicability and relevance to best practice

2.2.4 Manufacturing Processes

Again the focus of our work is on the machining process so the focus on the requirements of the planner is considered with
respect to machining processes.

2.2.4.1 Machining processes

The Planner requires information about all the processes

1. Which can be performed in house in the plant where the machining is to be performed

2. Which are available through potential outsourcing and

3. About any potential new machining processes which might be incorporated.

2.2.5-‐ Resource Requirement

2.2.5.1-‐ Operator Availability & Skills Knowledge

Operators’ availability and skill level are very important to finalize any manufacturing plans. In a highly dynamic
industrial environment particularly in the automobile sector the availability of labour is a key factor which can affect both
the production as well as quality of product. It is vital to have the right person at right place at the right time. The
Operators’ skill levels can is required by the planner in following ways

1. Operator Skill w.r.t available machines

2. Operator skills w.r.t. processes Information on availability of the workers is

required for planning the process.

2.2.5.2-‐ Machine Availability & Capability

Machines availability, Machine capability are the two key issues for any manufacturing planner in coming up with a rough
plan. Machine capability is not about the process capability but is related to the following 1. the size of the parts the machine
can hold, 2. the machine’s inherent holding device size e.g. chuck or table, 3. the

249

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

numbers of cutting tools the machine can have in an automatic tool changer, 4. the number of axes, 5. the type of
machine and operations which can be performed.

Availability and capability are important mainly in outlining the overall process and to start detailed planning of specific
machines and operations. Machine availability & capability are used against the work piece to be manufactured before
finalizing the machine sequence.

Machine availability requirement is only explored in the sense of

1. The existing equipment and machines available in the plant

2. The regular outsourced machines and equipment available.
3. The potential new evolving technology which might be needed for manufacturing new designs.

2.2.5.3-‐ Cutting Tools and Fixtures Available

These relate directly to the machines as well as processes on machines. They can be listed with respect to machines and
processes. Some of the tools or fixtures might be used on more than one machine. Some tools are specially made to meet
the design requirement which can be achieved with standard and conventional tooling.

Tool and fixtures availability requirement are of following main types

1. The Tools available in the machine tool magazine & fixtures available with machine

2. The tools or fixtures available in plant store

3. Tools and fixture available as standard market products

4. Tools/fixtures required to be ordered as specialised/customised products.

2.2.6-‐Standards and Specification

2.2.6.1-‐ Statistical Process Capability Index

The process capability is required by the planner in finalizing a process in the process plan. It is also used in the
detailed process plan of each process. Process capability index Cpk is the measure of process capability and is a dynamic
standard which can change with the number of parts being machined and can change as process understanding improves.

2.2.6.2. Machining Standard information

These requirements are of information from general standards like Machining Handbooks, British and ISO standards for
machining. These relate to the materials which a tool can machines, tool wear rate, recommended speed, feeds,
environmental hazards, coolants to be used, standard procedure and safety measures etc.

2.2.6.3 Company Specific Standards and Specification

Organisations typically have their own standards and specifications established to formalise methods within the
company. These requirements are of two types.

1. Standard manufacturing procedures and methods

2. Standard manufacturing information
Standard manufacturing information is required which represent the limitations of machines and equipment e.g.
the angles which can be machined, the minimum dimensions which can be machined an inspected etc.

250

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

3. System requirements

Given that the IMKS project is focused on researching manufacturing foundation ontologies and verification methods this
section of the document focuses on the requirements in these two areas. The following figure

shows the systems requirements in context and connection of the design and planning user requirements. As the

diagram shows there are two main system requirements

i. Shareable Manufacturing Knowledge Bases

ii. Verification Methods

3.1-‐ Shareable Manufacturing Knowledge Bases

The IMKS requires to build manufacturing knowledge bases which are sharable across product design and manufacturing
enginering activities. In addition to knolwedge there is a requirment to capture information related to the manufacturing
facilities being used and the types of product which are to be manufactured.

251

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

Other information of relevance would be in the form of Inspection sheets generated from CMM, Process capability,
Maintenance and tool wear.

The knowledge which needs to be captured will be in the form of rules & axioms and can be of the following types.

i. Machine availability and capability

ii. Tools & Fixtures availability and capability
iii. Tool accessibility
iv. Achievable Tolerance & surface finish rules
v. Cost association rules with all the various alternatives
vi. Measurement and Inspection rules.

Within IMKS the sharability of design and manufacturing concepts is being researched through the exploration of sets of
manufacturing foundation ontology concepts as described in the next section.

3.1.1-‐ Manufacturing Foundation Ontology

The KBs need a foundation through which they can interoperate and share. This common foundation requirement is
met by using set of common concepts, relations, function and axioms defined through the development of heavyweight
ontology. Ontology is a lexicon of specialised terminology along with some specification of the meanings of the terms
involved (ISO-‐18629-‐1) while the IMKS project requires a common set of manufacturing terms which can be
specialised to suit the needs of both product design and manufacturing planning.

There is a requirement to identify an ontology to suit the needs of product design and an ontology to suits the needs of
manufacturing planning, both based upon a common manufacturing foundation ontology. It is anticipated that some terms
at eh foundation level may also be commonly used outside of the manufacturing domain. The requirement is therefore to
identify a structured approach to the definition of manufacturing ontologies which can be used to support the development of
knowledge bases which have the potential to be assessed in terms of the level to which their knowledge can be shared. shared
The manufacturing ontology will require concepts, relations, functions and axioms at varying level of specialization from
being very generic to very specific. For example “Feature” is a concept which is generic but It can be specialised in its meaning
for a “product Feature” and further specialised as “Design feature” and “Manufacturing Feature”.

A broad range of concepts need to be formalised within the ontology and includes manufacturing terms typically used in
industry such as the following list of concepts from our academic & industrial exploration.

Some Concepts from Academic and Industrial Exploration

MfgPlan Part PartFamily MfgPartFamily DesignPartFamily Standard Specificcation Material Resource
Operation Inspection InspectionHistory BatchCard Batch CuttingTool Setup Fixture Quality Concession

Wear Life CriticalFeature StandardFeature MfgFeature DesignFeature Dimension Tolerance SurfaceFinish
Function Stress Thermal Analysis MachineTool Turning TwinTurning Cob Rim Web Diaphragm Hub
PartProgram Forge Model MasterModel EnggDwg WPMaterial ToolMaterial CAPP CriticalPartsPlan

FixingProcess MASBuyoff Commodity ReqDoc FunctionalDesignInfo Engine Turbine Compressor Pressure
HorsePower Fan Blade Slot Groove CircumGroove FirtreeSlot LoadingSlot Locking Slot DefenderSlot

InspectionHistroryCard OperatorInstruction InspectionOperatorCard ToolOrder ConditionofSupply
NumberofBlades Force WorkingLoad Load Impact Load 2DFeature 3DFeature Axis Measure
ProcessCapability Cpk SurfaceTreatment Etching BalanceLand BenchInspection Milling Drilling

BinocularInspection Washing ShotPeening NonDestructiveTesting DwgChangeRequest MfgDesignBuyoff
Interface Speed Feed DepthofCut Repeatability Roughness StandaloneDisc Drum SpigotEdge

ConnectingArm Welding BoltHoles Fins ToolAccess ToolAvailibility WeldArm InternalRadius CMMInspection

252

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

CMMProgram ManufacturingKNowledge DesignKnowledge Governance SubSystemreq EnggCangeRequest
DimensionalCharacteriticTable ManufacturingEngr OperationDwg TargetDate Tempearure Pressure

Humidity ProductionPlan Equipment ProcessOwner CommodityOwner MachiningPlan InspectionPlan Stock
Greasing Degreasing Capacity NewKNowledge Validation Balancing Definition DetailCell Cell

3.2-‐ Verification Methods

One of the important considerations in the development of an interoperable system is a knowledge sharing mechanism.
This mechanism should be capable of facilitating the sharing of knowledge between diverse domains without any
misinterpretation. Furthermore, this sharing has to be done by using different knowledge bases developed out of a common
set of concepts as explained earlier in the IMKS context section of this document. This may give rise to the problem of
interoperability between the two knowledge bases and ontologies. This is because although the ontologies are developed
from the same set of concepts, they may have a different architecture for concepts definition and knowledge organization.

To prevent any misinterpretation of concepts, verification methods are needed which certify the understanding
of a concept being shared in a certain context. A major system requirement is therefore a mechanism which authenticates
the veracity of similarities in two ontologies. Within the IMKS scope, two domains selected are design and manufacturing.
The verification system is therefore required to be specially effective in detecting and resolving any misunderstandings in the
interpretation of concepts on manufacturing

Figure 5: Design and Manufacturing differences in terminologies and a need for a common set of concepts

or design side.

Experience from the industry shows that different terminologies are used in design and manufacturing domains to
refer to the same thing. For example, to refer to the portion of a disc connecting the outer and inner edges, designers
might use the term diaphragm while on the shop floor, the word web is used for the same part of the component.
Similarly the terms of cob and hub are used to refer to the same feature in design and manufacturing respectively as
shown in figure 2. Another possibility is of different features having similar names across the two domains. Apart from these
terminological mismatches, there can be certain concepts which are referred to in a particular domain in a specific way.
For example, designers may name different features from the functional point of view while the manufacturer may
categorize them and refer to them from the machine tool or manufacturing method perspective. So there can be a conceptual
difference in

Cob

Cob

Designing

Rim

Design

Disc

Rim

Diaphragm

Diaphragm

Feature A

Feature

Standard

Feature

Feature B

Feature

Feature C

Hub

Manufacturing

Hub Rim Web

Manufacturing

Disc

Rim

Web

253

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

the interpretation of things across the two domains. Due to these problems, if a designer wants to get some knowledge
about the manufacturing method of a certain part of the component, the knowledge system might not be able to find a
match on the manufacturing side unless similar terms or concepts used in two domains are mapped. A requirement is
therefore to have a set of common concepts, as shown in figure 2, to which the concepts in design and manufacturing can be
mapped. It is to be noted that present mapping technologies are not fully automatic and a manual input is needed through
human intervention. Since manual mapping is a very cumbersome and time consuming process, there needs to be a way
through which this mapping and later verification are done automatically. When the mapping is attempted to be made
automatic, the next hurdle to overcome is the problem of mismatches. This can happen when during the similarity
finding stage, the knowledge system interprets two different concepts in two ontologies to be similar and vice versa.

254

Interoperable Manufacturing Knowledge Systems (IMKS)
An IMCRC Integrated Project

Reference:

IEEE, 1998a. IEEE guide for developing system requirements specifications. IEEE,

1998b. IEEE recommended practice for software requirements specifications.

ISO 18629-‐1, ISO TC184/SC4/JWG8, 2004, Industrial Automation System and Integration—Process Specification
Language: Part 1. Overview and Basic Principles.

ISO (CEN/ISO)11354 ,V8.3, (Dec, 2008), Requirements for establishing manufacturing enterprise process
interoperability, PART I:Framework for Enterprise Interoperability.

Young, R.I.M., Harding, J.A., Case, K., 2009, Interoperable Manufacturing Knowledge Systems (IMKS)-‐State of the Art
Review: Ontological Formalisms and Model Driven Approaches

	Chapter 1: Introduction
	1.1. Research introduction
	1.2. Research background and scope
	1.2.1. Computer Systems Interoperability
	1.2.1. Concurrent Engineering
	1.2.2. Knowledge Management

	1.3. The IMKS project
	Significance of this research
	1.5. Aims and objectives
	1.6. Overview of the thesis

	Chapter 2: Research Methodology
	Chapter overview
	2.2. What was the goal
	2.3. What was needed to achieve this goal
	2.4. How the goal was achieved – The core methodology
	2.4.1. Literature Review
	2.4.2. Case Study
	2.4.3. Requirements identification
	2.4.4. Solution development and testing

	2.5. Conclusion

	Chapter 3: Ontologies – A technical review
	Chapter overview
	3.2. Ontologies
	3.2.1. Ontology defined

	3.3. Classifications of ontologies
	3.3.1. Classification on the basis of formalization or machine readability
	3.3.2. Classification on the basis of Level of rigor
	3.3.3. Classification on the basis of Logic
	3.3.4. Classification on the basis of level of generality
	3.3.5. Other classifications

	3.4. Ontology Development
	3.5. Model Driven Architecture
	3.5.1. Meta Object Facility
	3.5.2. MDA and Ontologies
	3.5.3. Ontology Definition Metamodel (ODM)
	3.5.3.1. ODM Metamodels:
	3.5.3.2. Mappings
	3.5.3.3. UML Profiles

	3.5.4. Query/View/Transformation Language (QVT)
	3.5.5. Suitability of MDA for ontology development

	3.6. Ontology Development Formalisms
	3.6.1. Knowledge Interchange Format (KIF)
	3.6.2. Ontolingua
	3.6.3. XML – the eXtensible Markup Language
	3.6.4. Resource Description Framework
	3.6.5. OIL – the Ontology Inference Layer
	3.6.6. DAML+OIL
	3.6.7. OWL – Web Ontology Language
	3.6.7.1. OWL Lite
	3.6.7.2. OWL DL

	3.6.8. Common Logic

	3.7. Existing Foundation Ontologies
	3.7.1. Process Specification Language (PSL)
	3.7.2. SUO (Standard Upper Ontology)
	3.7.3. Suggested Upper Merged Ontology (SUMO)
	WordNet
	3.7.5. Cyc Ontology

	3.8. Conclusions

	Chapter 4: Literature review
	4.1. Chapter overview
	4.2. Cross-domain knowledge verification
	4.2.1. Ontology Mapping

	4.3. Ontology Mismatches
	4.3.1. Conceptualisation Mismatches
	4.3.1.1. Class Mismatch
	4.3.1.1.1. Categorisation mismatch
	4.3.1.1.2. Aggregation level mismatch

	4.3.1.2. Relation Mismatch
	4.3.1.2.1. Structure mismatch
	4.3.1.2.2. Attribute assignment mismatch
	4.3.1.2.3. Attribute type mismatch

	4.3.2. Explication Mismatches
	4.3.2.1. Concept Mismatches (C-Mismatches)
	4.3.2.2. Definien Mismatches (D-Mismatches)
	4.3.2.3. Term Mismatches (T-Mismatches)
	4.3.2.4. Concept and Definien Mismatches (CD-Mismatches)
	4.3.2.5. Concept and Term Mismatches (CT-Mismatches)
	4.3.2.6. Term and Definien Mismatches (TD-Mismatches)

	4.3.3. Other mismatches
	4.3.1.1. Concept Description Mismatches
	4.3.1.2. Model Coverage and Granularity Mismatch
	4.3.1.3. Single vs. Multi-Valued Property
	4.3.1.4. Unique vs. Non-Unique Valued Property
	4.3.1.5. Alignment Conflict among Disjoint Relations
	4.3.1.6. Syntactic Mismatches

	4.4. Ontology matching and mapping tools and techniques
	4.4.1. Heuristics-based ontology matching approaches
	4.4.1.1. MAFRA – MApping FRAmework
	4.4.1.2. PROMPT Suite
	4.4.1.3. GLUE
	4.4.1.4. QOM
	4.4.1.5. ONION
	4.4.1.5.1. Non-Iterative Algorithms
	4.4.1.5.2. Iterative Algorithms

	4.4.1.6. FCA-Merge
	4.4.1.7. Chimaera
	4.4.1.8. Analysis of the heuristic-based ontology matching approaches

	4.4.2. Foundation ontology based ontology matching
	4.4.2.1. SMIF – Semantic Manufacturing Interoperability Framework
	FOS – The Fishery Ontology Services project
	4.4.2.3. Use of SENSUS for air campaign planning
	4.4.2.4. The DOGMA framework
	4.4.2.5. LOM – A Lexicon-based Ontology Mapping tool
	4.4.2.6. Unstructured vocabulary matching of Aleksovski et al
	4.4.2.7. Automatic ontology matching of Mascardi et al
	4.4.2.8. Analysis of foundation ontology based ontology matching techniques

	4.5. Conclusions

	Chapter 5: An introduction to Common Logic based ontology development formalism
	5.1 Chapter overview
	5.2 Knowledge Frame Language (KFL)
	5.2.1 KFL properties
	5.2.2 KFL relations
	5.2.3 KFL functions
	5.2.4 KFL facts
	5.2.5 KFL rules
	5.2.6 Other essential parts of a KFL ontology

	5.3 Integrated Ontology Development Environment (IODE)
	5.3.1 The Fact Asserter
	The Query tool

	5.4 Conclusions

	Chapter 6: Ontology-based manufacturing knowledge sharing
	Chapter overview
	6.2 Concurrent Engineering and Ontologies
	6.2.1 Ontologies as Models
	6.2.2 Feature-based ontological modelling of engineering components

	6.3 Feature-based modelling approach used in this research
	Feature definition
	6.3.2 Feature aggregation
	A working example

	6.4 Ontological models
	The core-concepts ontology
	6.4.2 Formalization of the ontology
	6.4.2.1 Definition of classes
	6.4.2.2 Definition of relations
	6.4.2.3 Definition of functions
	6.4.2.4 Ontology formalization summary

	6.4.3 Ontology population – knowledge base building

	6.5 Manufacturability verification
	6.5.1 Individual feature manufacturability constraint
	6.5.2 Manufacturing constraints due to feature dependability

	6.6 Conclusions

	Chapter 7: The case study
	Chapter overview
	Purpose and scope of the case study
	7.3. Case study findings
	7.3.1. Information flow study
	7.3.2. The component study
	Design Features
	Manufacturing Features
	7.3.2.3. Standard Features
	7.3.2.4. Interdependence of standard features and manufacturability limitations
	7.3.2.4.1. Limited tool life
	7.3.2.4.2. Undersized fillets
	7.3.2.4.3. Tool accessibility limitations
	Fixture suitability

	7.3.2.5. Perceived Interoperability Issues

	7.4. Case study findings summarized
	7.5. Conclusions

	Chapter 8: A novel knowledge verification framework for foundation ontology based knowledge bases
	8.1. Chapter overview
	8.2. Revisiting the findings so far
	8.3. A novel knowledge verification framework
	8.4. Design of the verification framework
	8.4.1. Foundation and core-concepts ontologies
	8.4.2. Domain ontologies
	8.4.3. Knowledge bases
	8.4.4. Inconsistency preventing axiomatizations
	8.4.4.1. Axioms for the domain ontologies
	8.4.4.2. Axioms for the knowledge base

	8.4.5. The verification mediator
	Source ontology inheritance identifier
	8.4.5.2. Target ontology inheritance identifier
	8.4.5.3. The concept matcher
	8.4.5.4. The fact builder and asserter

	8.5. Implementation of the verification framework
	8.5.1. The industrial scenario explained
	8.5.2. Six steps of verification mediation

	8.6. Conclusions

	Chapter 9: Validation of the proposed verification framework
	Chapter overview
	9.2 Design of experiment
	9.2.1 Experimental ontologies
	9.2.2 Manufacturing knowledge to be shared
	9.2.3 Design of the Java API
	9.2.3.1 The main API window
	9.2.3.2 The modification result window
	9.2.3.3 The similarities results window

	9.3 The validation experiment – functioning of the API
	9.4 Discussion and conclusions

	Chapter 10: Conclusions and further research
	Chapter overview
	10.2. A brief review of research findings
	10.2.1. Research findings analyzed
	10.2.2. Contributions to the field of study

	10.3. Further research
	10.3.1. Broader specialization and concepts correspondences
	10.3.2. The Verification Meta Ontology (VMO)
	10.3.3. Research on exploring the possible inconsistencies

	10.4. Closing remarks

	Publications
	References
	Appendix I – Formalized ontologies for figure 8.5
	1- Foundation and core-concepts ontology
	2- Design domain ontology
	3- Manufacturing domain ontology

	Appendix II - The Experimental Ontologies
	1- The foundation and core-concepts ontology
	The design domain ontology
	3- The manufacturing domain ontology

	Appendix III – The requirements document - Interoperable Manufacturing Knowledge Systems (IMKS)

