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Abstract 
 

This thesis focuses on the design optimisation of a brass instrument. The bore profile of 

such an instrument is known to be the primary influence on the sound of the instrument as 

it directly controls the shape of the air-column contained within the instruments' walls. It 

has long been claimed, however, that other factors, such as the wall material and wall 

vibrations, are also significant, although to a lesser degree. In recent years, it has been 

proven that wall vibrations do indeed have an audible effect on the sound (Moore et al 

2005, Kausel et al 2007, Nachtmann et al 2007, Kausel, Zietlow and Moore 2010). This 

effect corresponds to a relative increase in the power of upper harmonics of the sound 

spectrum when vibrations are greatest, and relative increase in the power of the lower 

harmonics, in particular the fundamental, when vibrations are at their least. The result is a 

timbral difference where a greater relative power in the upper harmonics results in a 

'brighter' sound, and where the opposite results in a 'darker' sound. Studies have also found 

that the degree of the wall vibration is increased when the resonant frequencies of the air-

column and those of the instruments' structure align. It is this principle that this work is 

based on. 

The primary objective of this work was to devise a suitable approach for incorporating the 

wall vibration effect into an optimisation method to investigate the optimum designs for 

two scenarios: maximum wall vibration and minimum wall vibration. It was also of interest 

to investigate if there were any design characteristics for each scenario.  

Two analysis methods were investigated for their suitability, namely free and forced 

vibration using finite element analysis (FEA). Different approaches to defining the design 

variables were explored and the suitability of different optimisation algorithms was 

investigated. The free vibration approach was found to be inadequate for this application 

due to the inherent omission of valuable magnitude information. The forced vibration 

approach was found to be more successful, although it was not possible to align a 

resonance with each frequency of interest. 
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1 Introduction 
 

Customisation is a term used to describe the tailoring of a product so that it 

performs best in a specific situation. Where the application of this customisation is 

specific to a person then it is often termed personalisation. A product could be 

deemed customised if it fulfils a defined set of requirements, each of which is 

tailored to a particular situation or individual. Design optimisation techniques can 

be used with the intention of identifying the best design that satisfies these criteria. 

They can be used to speed up the product development process compared with a 

manual design improvement approach, and are of particular benefit for complex 

problems that do not have an intuitive solution.  

In the context of a real world problem, the objective of optimisation would be to 

find the ‘best’ solution within the available means. It is these available means that 

form the basis of design constraints. Constraints can also come in the form of 

manufacturing constraints. The optimal solution taking account of manufacturing 

constraints is not actually the optimal solution to the problem. The presence of 

manufacturing constraints means that the resulting design is sub-optimal, but 

usually this is accepted so that the design can be realised physically. 

Modern manufacturing techniques, in particular additive manufacturing (AM) 

processes (Hopkinson et al 2006, Gibson et al 2009), offer scope for increasing 

optimality by significantly reducing the manufacturing constraints. AM processes 

use a fundamentally different approach to constructing three-dimensional parts than 

compared with traditional processes. In contrast to machining which removes 

material from a billet (subtractive) and moulding which forms molten material to 

the shape of the mould (formative), AM adds material layer by layer (additive). 

There are many different processes under the category of AM, but they all work on 

the same fundamental layer by layer principle. Some use a laser to selectively sinter 

or melt powdered material (selective laser sintering or melting), or to cure liquid 

resin with ultraviolet (UV) light (stereolithography), whilst others deposit material 
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directly by continuously extruding material from single traversing nozzle (fused 

deposition modelling) or jetting droplets from an array of nozzles, similar to an 

inkjet printer (jetting).   

AM heavily relies on a 3-dimensional (3D) representation of the part, commonly 

provided using computer-aided design (CAD) software. This geometry is converted 

to a triangulated mesh known as an STL file (originally derived from the 

STereoLithography AM process), which only represents the surface of the part. 

This STL file is then sliced up into many thin layers (commonly 0.1mm thick) to 

form a slice file which can be read by the AM machines. This slice file is 

commonly in a vector format which provides the cross section boundaries of the 

part for each slice. The boundary is traced by the laser or nozzle and the internal 

solid regions are filled in using a scan pattern. Alternatively, a raster format can be 

used which is essentially a voxel representation of the geometry and is commonly 

used for array based jetting processes. For complex geometry where 3D CAD can 

be prohibitively computationally expensive, geometry can be created directly at the 

slice level, although this approach is less intuitive for the user. 

There are two primary advantages of using AM over traditional processes. Firstly 

there is very little material wastage during production due to its additive nature, and 

secondly there are significantly fewer manufacturing constraints allowing greater 

design freedom, due to its layer by layer approach. This design freedom enables 

more optimal designs to be realised. Both of these advantages mean that AM lends 

itself to producing customised products as a minimum batch size of one can be 

achieved cost effectively. 

The application of this thesis is brass musical instrument design. Brass instruments 

are complex products which have traditionally been manufactured primarily by 

skilled craftworkers. The principles of operation of these instruments is explained 

in chapter 2. In recent years, computer numerical controlled (CNC) processes have 

been employed for some aspects of the production, but still many of the production 

stages are carried out by hand. The personalisation of instruments to suit particular 
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Introduction

traditionally requires close collaboration between the player and an 

master craftworker who can translate their requirements into physical 

reality based on their expertise and trial and error. This means that customised 

instruments are expensive. AM provides scope for manufacturing brass instruments 

column instruments.  

To investigate the feasibility of using AM processes for fabricating these sorts of 

instruments and to understand any manufacturing constraints 
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would also probably require a different material that was significantly stiffer, 

maybe also metallic or glass reinforced plastic. Another advantage of AM is the 

potential for part consolidation. For the pocket trumpet there was an 85% part 

reduction achieved by consolidating most of the instrument into one part. Separate 

parts were only required for valves, slides, springs and the mouthpiece. 

To the author's knowledge this was the first attempt at manufacturing a working 

'brass' instrument using AM processes. Further details can be found in the paper by 

Brackett et al (2008). More recently, a working flute has been manufactured using 

a multiple material AM process (Zoran 2010), though this also currently 

experiences leakage problems around the key holes.  

These instruments were reverse engineered from existing instruments. However, it 

would be more useful to be able to generate new designs so that the effect of 

modifications of the geometry on the sound could be predicted. As was found from 

the literature review of chapter 3, there are existing brass instrument optimisation 

methods but these have limitations. Specifically, they do not take into account the 

effect of wall vibrations which will be explained in the literature review of chapter 

2, nor do they aim to take advantage of AM's design freedoms. 

The topic of this work is therefore the inclusion of the wall vibration effect into the 

design process while also enabling greater optimality by not taking into account 

traditional manufacturing constraints. This will allow for greater customisation of 

the instrument's sound. 

This thesis begins with an introduction to the function of brass instruments and then 

moves to a literature review on the effect of wall vibrations on the sound (chapter 

2) and on existing brass instrument optimisation methods (chapter 3). Chapter 4 

then outlines the research objectives and novelty of this work. Two analysis 

techniques were used for this work, a transmission line model (TLM) and finite 

element analysis (FEA). A general explanation of both of these methods forms the 

content of chapter 5. General details regarding optimisation methods are included 

in chapter 6 along with explanations of how these analysis methods can be 
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incorporated into an iterative optimisation routine to facilitate design modifications. 

Chapter 7 contains the specific details of the implementation of the TLM applied to 

a series of test cases for the optimisation of the bore profile, which is the first stage 

of the overall optimisation framework. The second stage is the optimisation of the 

instrument's structure specifically the wall thickness distribution and support brace 

dimensions. FEA was used for this and the specific optimisation method is detailed 

in chapter 8 with results for a number of test cases in chapter 9. Finally, this thesis 

concludes with chapter 10. 
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2 The Effect of Wall Vibration 
 

2.1 Introduction 

This chapter will provide the reader with a basic understanding of air column 

musical instruments and in particular lip-reed instruments. This is required to better 

understand how different factors can affect the sound. Two primary reviews will 

then be presented. The first being a review of the effect of wall vibrations on the 

sound, and the second being a review of the existing optimisation models currently 

developed for these types of instruments. 

 

2.2 Classification of wind instruments 

Air-column instruments, also known as aerophones, are instruments that produce 

sound through a vibrating column of air, commonly known as woodwind and brass 

instruments. Rather than the terms: ‘woodwind’ and ‘brass’, it is useful to classify 

the instruments with regards to how the air is excited to avoid confusion. In air-

column instruments, the air is excited by means of a vibrating reed. The types of 

reed mechanism which form the classifications of these instruments are: 

• Mechanical (or cane) reed, where there is a vibrating air column and 

mechanical (physical) reed, e.g. clarinet, oboe, saxophone, and bagpipes 

• Air reed, where air is blown over an orifice, e.g. flute, recorder, panpipes, 

ocarinas, and whistles (flute family), organ pipes 

• Lip reed, where the players’ lips vibrate and acts as a reed themselves, e.g. 

trumpet, trombone, tuba, horn etc. (brass family) 

This research is focused on lip reed instruments. The reason for this is primarily 

because the geometries of these types of instruments tend to be more complex than 

air or mechanical reed instruments. They are therefore more difficult to 

manufacture and so a greater benefit could be achieved if manufacturing using AM. 

The one area where air or mechanical reed instruments are more complex than lip 
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reed instruments is in the tone holes and associated key work. While these could be 

manufactured using AM, as was done by Zoran (2010) for a flute, the focus of this 

thesis is on the wall vibrations and not particularly on the keys or valves. In 

addition, lip-reed instruments have a bell at one end making them more sensitive to 

the effect of wall vibrations.  

 

2.3 Fundamentals of lip reed instrument operation 

This section will cover the general operation of the lip reed instruments. This is 

useful for the reader who may be unfamiliar with this and gives context to the 

review of the effect of wall vibrations. Figure 2-1 shows a trumpet with the main 

parts labelled and Figure 2-2 shows a simple schematic of the fundamental parts of 

an uncoiled valve-less instrument. 

 

Figure 2-1 – Parts of a trumpet 

(www.amromusic.com/images/band_instruments/trumpet/parts_of_trumpet.gif). 

 

 

Figure 2-2 – Schematic of a brass instrument (Noreland 1998). 
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The mechanism by which the air column is excited and how the sound is produced 

on a lip reed instrument is actually quite complex. The following section gives a 

basic overview of the mechanism which should be adequate for the reader to 

understand the content of this thesis. In basic terms a lip reed instrument can be 

described as an air source (produced by the player), a vibration source (the players’ 

lips), a resonator (the air contained by the tubing or waveguide), and an impedance 

matcher which enables transmission of the sound outside of the instrument (the 

flared bell end).  

To make a note, the player needs to blow air through the aperture between their lips 

and adjust the shape so that the lips vibrate. With the instrument mouthpiece 

pressed against their lips, the air within the instrument is excited and vibrates at the 

frequency of the lip vibration. This longitudinal sound wave propagates down the 

length of the instrument. To make the air resonate, there needs to be a reflection of 

this disturbance such that a standing wave is set up. Reflection occurs at the end of 

the instrument where there is a change in the conditions for the wave (change in 

impedance). Here there are no longer tube walls guiding the wave and so it diffracts 

outwards spherically. This leads to partial transmission to the room, and partial 

reflection back up the instrument. In fact about 99% of the sound is reflected and 

what is heard by the listener is only 1% of the energy intensity inside the 

instrument (Moore 2002). This may seem curious as brass instruments are often 

thought of as loud instruments, but without this reflection it would be very hard to 

generate this volume as it is the resonance (standing waves) that makes the notes. 

As the ratio of wavelength to bore diameter decreases, e.g. when higher frequency 

notes are played, less of the sound is reflected and it becomes more difficult to 

maintain a standing wave. 

The reflected sound wave travels back up the instrument until it reaches the 

players’ lips. The air then couples with the lips so that they are vibrating in unison. 

The air will resonate easily at its natural frequencies for that length of air column 

and this explains why it is easier to play certain notes than others. It is the 

frequencies that make up the equal temperament musical scale (Figure 2-3) that are 
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resonances (because the players lips closely approximate a closed end). Examples 
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instrument where the majority of music is written for a chromatic scale, and this is 

why it is difficult to play music using just a cylindrical pipe.  

 

 

Figure 2-4 – Pressure and motion waveforms of the resonances for 3 simple pipe shapes 

(www.phys.unsw.edu.au/jw/flutes.v.clarinets.html). 

 

The obvious difference between a trumpet and a cylindrical pipe is the flared bell at 

its end. This flare serves two purposes:  

1) To gradually change the impedance of the pipe to more closely match the 

instruments’ surroundings to allow better transmission of sound to the listener 

(thereby amplifying the sound),  

2) To raise the lower harmonics of the closed pipe so that they more closely fit a 

complete harmonic series. The mouthpiece that connects the players’ lips to the 

pipe also shifts the harmonics, but this time it lowers the higher ones to bring the 

whole range into a useful harmonic series. However, the higher harmonics are not 

perfectly in tune, but can usually be tuned closer during manufacture by making 

modifications to the bore.  

Ultimately, it is down to the player’s skill to keep the notes in tune and any inherent 

tuning difficulties with particular harmonics can to some extent be corrected by 

altering the players’ lips and their playing technique. However, it is clearly 

preferable to get the harmonics as near to perfect tuning as possible. 

Changing the pitch of the resonant frequency can be done in two ways:  
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1) By adjusting the players’ lip vibration frequency so that the air column 

vibrational frequency is altered, or  

2) By adjusting the length of the air column so that the fundamental is at a different 

frequency (increasing length lowers the pitch).  

The latter of these is achieved in lip reed instruments by either adding discrete 

additional lengths of piping and redirecting the flow through the use of valves (e.g. 

trumpet), or by making a continuous change in length through the use of a slide 

(e.g. trombone). Without valves, for example in the case of some bugles, only the 

natural resonance frequencies of that particular length of air column can be easily 

sounded. With valves, you effectively have several ‘bugles’ in one instrument, each 

of different length, allowing additional sets of natural resonance frequencies to be 

sounded. On a trumpet, there are usually 3 valves. The first one lowers the pitch by 

2 semitones (1 tone), the second by 1 semitone, and the third by 3 semitones. With 

a trombone, a slide allows a continuous change of pitch.  

It is actually not that simple to design an instrument with valves because adding the 

lengths of piping together with valve combinations does not produce perfect pitch 

changes (Redfield 1931, Young 1967, Benade 1976, White and White 1980, 

Campbell and Greated 1987, Young 2009). For example, to lower the pitch by 2 

semitones (valve 1), a length increase of 12.2% must be made; to do so by 1 

semitone (valve 2), a length increase of 5.95% must be made. However, to lower 

the pitch by 3 semitones (valve 3), a length increase of 18.92% must be made, but 

this is not the sum of valves 1 and 2 (12.25+5.95=18.20%) so the resulting tone 

using valves 1 and 2 would be sharper than that produced using valve 3 alone. This 

results in difficulties with other combinations. To improve the tuning of certain 

valve combinations, either slides are incorporated into the additional tubing lengths 

or additional valves are used. The player must move the slide while playing 

depending on valve combinations to correct the tuning. 

As well as reflections occurring at the end of the instrument where there is a large 

change in impedance, reflections also occur throughout the instrument at 
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discontinuities, the significance of which depends on the severity of the 

discontinuity. For example, there are reflections where there are step changes 

where there are tuning slides, where there are any indentations in the bore, and also 

where there are sharp bends. This affects the tuning either negatively or positively 

depending on where they are and so these need to be taken into account during 

design/manufacture. Discontinuities are more significant where there is a large 

discontinuity to bore diameter ratio. This is the case in the lead or mouth pipe (the 

conical section between the mouthpiece and the first cylindrical section), which has 

a small diameter. 

The point in the bell at which the wave is reflected is frequency dependant and as 

the frequency increases, the position moves further out of the bell. Therefore, the 

effective length of the instrument is longer than the physical length (depending on 

frequency). To accommodate this, an end correction should be included in design 

calculations (Pyle 1975, Ayers 1995, Moore 2003). For a cylindrical pipe this 

correction is approximately 0.6 times the radius, but for an instrument which is not 

cylindrical, working out the end correction is not so simple. The tuning deficiencies 

usually need to be corrected on a trial and error basis, with a compromise between 

all the different notes to keep the average deviation to a minimum. 

 

2.4 Effect of bore geometry on sound 

By far the most important means of objectively defining a measure of sound quality 

is to look at the input impedance spectrum. Input impedance is a complex function 

of frequency, defined as the quotient of sound pressure and sound flow at the 

interface between the player’s lips and the mouthpiece. In basic terms, it is a 

measure of the ‘resistance’ to the pressure wave put through the instrument. The air 

contained within the instrument will resonate based on the impedance and so the 

impedance should be such that the resonances are at the desired frequencies. On an 

impedance magnitude against frequency graph (Figure 2-5), peaks that are tallest 

and sharpest indicate that that particular tone is easiest to initiate and sustain 



The Effect of Wall Vibration 2 

 

 14 

 

without wavering. The position of these peaks determines the intonation and the 

height determines how easy it is to play the note. The impedance peaks for the 

harmonics of the note being played also need to be at the correct frequency as these 

also sound as that note is played, and form the timbre of the sound that is distinct to 

lip reed instruments. 

 

 

Figure 2-5 – Example impedance against frequency curve (Moore 2002). 

 

The input impedance is directly affected by the internal bore geometry of the 

instrument. The air waves in a tube are contained by the tube walls; when there is a 

change in cross sectional area, the constriction on the air changes depending on if it 

is a positive or negative change and how gradual the change is. This causes an 

impedance mismatch at this point and there is a partial transmission and partial 

reflection of the sound wave. The input impulse responses (reflections) enable 

standing waves to be generated. For correct intonation, the standing waves should 

have resonance peaks located at the harmonics of the vibrating air column of that 

specific length. The partial transmission is the sound that is not reflected and travels 

further down the pipe ultimately leaving the instrument as the heard sound. 

Analysis of how the wave travels down the pipe through its input impulse response 

can be carried out based upon the internal bore dimensions and this can give insight 

into what changes can be made to the geometry to improve the sound. This is 

known as a ‘direct problem’. If it is performed the other way around, i.e. finding 
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the unknown bore geometry based upon the input impulse response (bore 

reconstruction), it is known as an ‘inverse problem’. 

Usually, bore reconstruction is carried out based upon the input impulse response 

and this is generally measured in the time domain using acoustic pulse 

reflectometry (Ware and Aki 1969, Sondhi and Gopinath 1971, Benade and Smith 

1981, Sharp 1996, Kemp 2002, Li 2004). However, it can also be reconstructed 

based upon the input impedance which is generally measured in the frequency 

domain (Mermelstein 1967, Schroeder 1967, Backus 1974, 1976, Kausel 2004). 

The time and frequency domain measurements can be calculated from each other 

using Fourier transforms with varying levels of accuracy, depending on how it is 

done.  

 

2.5 Effect of wall vibration on sound 

2.5.1 Introduction 

The issue of whether the wall vibrations of an air-column musical instrument, such 

as a trumpet, has any effect on the resulting played sound has seen much debate 

over the past 100 years or so. Musicians and instrument makers have long insisted 

that different materials, thicknesses, and post-processes have a noticeable effect on 

the sound (Sanborn 1997, Pyle 1998). These claims have been investigated by the 

research community but scientists have had difficulty in deciding one way or the 

other, with many seemingly conflicting results. It has long been known that it is the 

instrument's bore profile that is the primary factor in influencing the sound as it 

directly determines the shape of the air-column and many sources in the literature 

have concluded that any changes in material or wall thickness do not make any 

difference to the sound, at least not audibly. However, a significant number of 

researchers have concluded just the opposite. More recent research with more 

controlled and detailed experiments has provided conclusive evidence of the wall 

vibration effect and has shed light on the mechanisms of the effect. This section 

will review the literature in this area. 
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2.5.2 Reasons for disagreements in the literature 

There is much disagreement in the literature over the extent to which wall 

vibrations have an audible effect on the sound. There are many that have concluded 

that the wall vibrations have an audible effect, for example: Williams (1903), 

Miller (1909), Richardson (1929), Jeans (1953), Lottermoser (1937, 1938), Barnes 

(1948), Jeans (1953), Rendall (1957), Baines (1962), Lottermoser and Meyer 

(1962, 1964), Taylor (1965), Wogram (1977, 1979), Smith and Mercer (1979), Pyle 

(1981), Watkinson and Bowsher (1982), Lawson and Lawson (1985), Morral 

(1986), Gibiate et al (1997), Runnemalm (1997), Mainstone (1998), Cocchi and 

Tronchin (1998), Runnemalm et al (1999), Hoekje and Morrison (1999), 

Nederveen and Dalmont (1999), Moore (2003), Nederveen and Dalmont (2004), 

Moore et al (2005), Pico and Gautier (2007), Kausel et al (2007, 2008), Nachtmann 

et al (2007), Nief et al (2008). 

In contrast, there are many that have concluded that the wall vibrations have little 

or no effect, for example: Blaikley (1919), Glatter-Götz (1935), Boner and 

Newman (1940), Knauss and Yeager (1941), Parker (1947), Backus (1964, 1965), 

Backus and Hindley (1966), Benade (1967), Backus (1969), Coltman (1971), Smith 

(1986), Heokje et al (1993), Zipser and Franke (1996, 1997), Morrison and Hoekje 

(1997), Angster et al (1998), Fletcher and Rossing (1998), Kob (2000, 2001), and 

Widholm et al (2001), Paquier and Jeannin (2008). 

Gautier and Tahani (1998) and Whitehouse et al (2002, 2003) concluded that they 

still did not know based on their results whether the vibration of the walls were 

large enough to be significant. 

Part of the problem in drawing general conclusions from the literature in this area is 

that there are significant differences in how the research has been carried out. For 

instance, some research has been carried out using physical experiments while 

others have used the theoretical to gain insights into the effect. Another example is 

that different instruments have been used; some studies have been carried out on lip 

reed instruments: 
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• trumpet (Backus 1970, Morral 1986, Hoekje 2003, Moore et al 2002, 2005, 

Moore 2003, 2005, Kausel et al 2010),  

• cornet (Knauss and Yeager 1941), 

• French horn (Pyle 1981, Lawson and Lawson 1985),  

• Viennese horn (Nachtmann et al 2007, Kausel et al 2007) 

• post horn (Dorn et al 2006),  

• bugle (Blaikley 1919), 

• trombone (Wogram 1979, Pyle 1998, Hoekje and Morrison 1999, Smith 1981, 

1986, Nief et al 2008).  

Other studies have been carried out on air-reed woodwind instruments: 

• organ pipe (Williams 1903, Miller 1909, Richardson 1929, Glatter-Gotz 1935, 

Lottermoser 1937, 1938, Boner and Newman 1940, Lottermoser and Meyer 

1962, 1964, Backus 1965, Backus and Hindley 1966, Zipser and Franke 1996, 

Runnemalm 1997, Runnemalm et al 1999, Angster et al 1998, Miklos and 

Angster 1999, Kob and Scholz 1999, Kob 2000, 2001, Nederveen and Dalmont 

1999, 2000, 2004),  

• flute (Coltman 1971, Cocchi and Tronchin 1998, Nedervee and Dalmont 1999, 

2004, Widholm et al 2001) 

• recorder (Nederveen and Dalmont 1999) 

While others have been carried out on mechanical reed woodwind instruments: 

• clarinet (Nederveen and Dalmont 1999, Parker 1947, Backus 1964), 

• French bagpipe (Paquier and Jeannin 2008),  

• saxophone (Gibiat et al 1997) 

In addition, some have fabricated simpler versions of instruments such as: 

• trombone mouthpiece coupled to a pipe (Whitehouse et al 2002, Whitehouse 

2003),  

• clarinet mouthpiece coupled to a pipe (Nief et al 2008). 
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While in principle these are all air-column instruments, the different instruments 

within this categorisation will vary in their sensitivity to wall vibrations (perhaps 

because of the size of the mouthpiece in the case of brass instruments (Moore et al 

2005), and bore diameter) and so care should be taken when comparing results. 

Moore et al (2005) discuss that authors claiming lack of importance of bell have 

used trombones, while those claiming an importance of vibrations have used 

instruments with smaller mouthpieces such as a French horn or trumpet. If, as 

Moore hypothesised, the mechanism of effect was due to the vibrations travelling 

along the instrument to the mouthpiece, it would be expected that instruments with 

smaller openings would be more sensitive to these effects than larger openings. 

This hypothesis was actually disproved later by Kausel et al (2007) / Nachtmann et 

al (2007), but the point still remains that it is quite clear that different instruments 

exhibit different levels of sensitivity. 

There have also been different excitation and measurement approaches used. Some 

studies have used human instrument players to play the instruments (Lawson and 

Lawson 1985, Coltman 1971, Paquier and Jeannin 2008) but it is very difficult, if 

not impossible, for a human player to play consistently because of the tight 

coupling between the lips and the air-column. In the case of Paquier and Jeannin 

(2008) they specifically used a bagpipe instrument because the player just provides 

an air supply and does not directly contact the reeds. A more repeatable approach 

has been to use an artificial mouth (Whitehouse, J.W., 2003, Nachtmann, et al 

2007, Moore et al 2005, Moore 2003, Parker 1947, Backus 1964, Whitehouse et al 

2002, Gilbert et al 1998, Kausel et al 2007, Nief et al 2008b).  

With regards to the sound measurement, some studies have recorded the sound and 

analysed the spectral characteristics to produce quantitative results (Nachtmann et 

al 2007, Moore et al 2005, Moore 2003, Lawson and Lawson 1985, Widholm et al 

2001, Kausel et al 2007, Nief et al 2008), while others have used human listeners to 

subjectively assess the sound (Coltman 1971, Widholm et al 2001, Paquier and 

Jeannin 2008). Some studies analysed steady tones (Whitehouse 2003, Nachtmann 

et al 2007, Moore et al 2005, Moore 2003, Lawson and Lawson 1985, Boner and 
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Newman 1940, Backus 1965, Parker 1947, Backus 1964, Whitehouse et al 2002, 

Kausel et al 2007) while others included transient effects (Kob 2000, 2001, 

Coltman 1971, Widholm et al 2001).  

Lastly, some of the above studies compared two or more instruments constructed 

from different materials, surface coatings, or thicknesses (Glatter-Gotz 1935, 

Lottermoser 1937, Wood 1944, Lottermoser and Meyer 1962, Wogram 1979, Pyle 

1981, Smith 1981, Lawson and Lawson 1985, Pyle 1988, Cocchi and Tronchin 

1998, Paquier and Jeannin 2008). When comparing instances of the instruments 

constructed from different materials it is important to ensure that the internal bore 

profiles of the instruments are actually exactly the same. While some studies claim 

to have been very careful in constructing identical geometries (Glatter-Gotz 1935), 

this is difficult to achieve. As well as the geometry, the weight and balance should 

also be kept as constant as possible which is difficult with different materials. This 

is especially important for instruments which are used in studies where they are 

played by a human. With this in mind, it is possible that some reported observed 

differences in sound could be a result of the slightly different bore profiles, or 

biasing effects, instead of wall effects. This was the case for Boner and Newman 

(1940) who conclude that the small differences observed between materials were 

due to deviations from a true cylindrical shape. In order to counter this problem of 

consistency between instruments of different materials, some studies have used just 

one instrument and damped the wall vibrations (Moore et al 2005, Moore 2003, 

Kausel et al 2007, Nachtmann et al 2007) thereby ensuring the bore profile was 

kept constant and eliminating this potential error. Smith and Mercer (1979) review 

the effect of wall vibrations in the literature. They state that experience rather than 

experiment suggests that the composition of the material is probably less important 

than differences in thickness. 

2.5.3 Effect on sound 

Based on the studies that found that there was an effect, Table 2-1 summarises what 

the reported actual effect was on the sound.  
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Table 2-1 – Summary of effect on sound. 

Researchers Instrument Findings 

Williams 

(1903) 

Organ pipes Hard wood gives a clearer, stronger tone than soft wood. 

Richardson 

(1929) 

Organ pipes Greater or less damping on the tone depending on the 

tube rigidity gives an enhancement of notes in certain 

regions of the scale depending on the tendency to have 

marked natural frequencies. 

Lottermoser 

(1937, 1938) 

Organ pipes Modulation of internal standing wave which supposedly 

accounts for difference in tone owing to wall material. 

Wood (1944) Organ pipes Pitch affected for pipes of different materials identical in 

shape and size. 

Barnes (1948) Organ pipes Tin pipes produce keener strength toned stops. Adding a 

large percentage of lead produces duller tones. 

Jeans (1953) Organ pipes Wood gives heavier but warmer and more mellow tone 

than pipes of metal. Pure tin gives richer tone than 

cheaper metal. 

Rendall (1957) Clarinet Claims a metal clarinet is vapid, dead, or un-interesting. 

Lottermoser 

and Meyer 

(1962, 1964) 

Organ pipes Differences found in the tone harmonic structure. 

Backus (1965) Organ pipes Material negligibly affects tone colour. 

Backus and 

Hundley (1966) 

Organ pipes Suggests that wall vibrations are actually undesirable to 

the sound. 

Wogram (1977) Brass 

instrument 

Extremely thin walled bells give worst response 

characteristics. 

Wogram (1979) Trombone 

 

3dB difference at 3-5kHz between instruments of brass 

and nickel-silver. 

Pyle (1981) French horn Lacquer coating decreases acoustic output of the horn, 

more so at high frequencies than low. Musically 

significant. 

Lawson and 

Lawson (1985) 

French horn Effect of bell vibration on radiated sound exceptionally 

strong, almost as much as the air column. 

Morral, (1986) Trumpet Silver gives a dark sound because the metal damps the 

high frequency vibrations. Brass responds to these high 

frequencies and gives a brighter sound. 

Gibiat et al 

(1997) 

Saxophone 6dB variations in harmonic spectrum of saxophone when 

the pipe was grasped or clamped. 

Gautier and 

Tahani (1998) 

Simplified 

clarinet 

Acoustic resonance frequency shifts. Significant near 

first cut-off frequency of cylindrical tube. 

Pyle (1998) Trombone Noticeably different spectra for lower pitched notes with 

bells of different alloys. Less noticeable for higher 

pitched notes. 

Kob and Scholz Organ pipes Some structural modes significantly change the spectral 
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(1999) components in the transient spectra of the blown pipe, 

whereas in the stationary spectrum the effect is small. 

Hoekje and 

Morrison 

(1999) 

Trombone 

 

Asymmetries in bell lead to enhanced radiation of sound. 

Nederveen and 

Dalmont (1999) 

Clarinet, 

recorder, 

and organ 

pipes 

Influence only found for a very thin walled cylindrical 

organ pipe – level increases of 3dB and perceptible 

sound quality changes observed when upper part of the 

pipe was clamped. Wall porosity was found to affect the 

quality of the resonances by a factor of 2. 

Miklos and 

Angster (1999) 

Organ pipes Found an influence of the wall vibrations on the 

stationary sound but effect could be neglected until the 

wall is not too thin. 

Kob (2000) Organ pipes Wall vibrations only had a significant effect on 

components of the transient spectra which may explain 

perceived timbre differences. 

Hoekje (2003) Trumpet and 

trombone 

Enhancement in radiation from the walls at high 

frequencies. 

Moore (2003) Trumpet Significant effect in the acoustic spectrum between 

damped and undamped bells. Variation largest in lower 

harmonics where the relative power may change by as 

much as a factor of 2. Change attributed to variation in 

viscous boundary layer attributable to vibrating bell 

walls. 

Nederveen and 

Dalmont (2004) 

Organ pipes Effects audible when wall resonance frequency was 

nearly the same as that of the air column. Level changes 

of 6dB and frequency shifts of 20cents were found. 

Moore et al 

(2005) 

Trumpet Bell vibrations made large difference to acoustic 

spectrum. Damping the vibrations results in audible 

increase in power in fundamental frequency component 

and a commensurate decrease in the power in one or 

more of the higher harmonics. 

Kausel et al 

(2007), 

Nachtmann et 

al (2007) 

Viennese 

horn 

Found unexpectedly large differences in timbre for 

damped and undamped instruments. When damped, the 

harmonic and spectral centroids were both significantly 

lowered. Also found some slight unexpected pitch 

differences but it was postulated that instabilities in the 

embouchure could be the reason rather than due to the 

damping. 

Kausel, Zietlow 

and Moore 

(2010) 

Trumpet Found a strong correlation between changes in the sound 

field and changes in the motion of the bell.  
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2.5.4 Discussion on the potential mechanisms of a wall vibration effect 

There are 3 couplings relevant for transfer of vibrations: 

1) Between the players’ lips and the walls,  

2) Between the walls and the external air, 

3) Between the internal air and the walls,  

These couplings have been investigated in the literature to determine the 

mechanisms behind a wall vibration effect. Considering the first coupling, Backus 

(1964) found for a clarinet that the vibrations of the clarinet body were mostly due 

to the reed beating against the mouthpiece, and not to radial vibrations due to 

expansion of the tube by the pressure variation of the internal standing wave. For 

brass instruments, it has been found by Whitehouse (2003) and Moore et al (2005) 

that the most dominant of these couplings is the mechanical coupling of the lips to 

the walls, through the mouthpiece. However, Hoekje (2003) found that the coupling 

between the players’ lips and the structural vibrations, and the coupling between 

the internal air vibrations and the structural vibrations were similar to each other in 

magnitude. Lawson and Lawson (1985) also state that a French horn bell vibrating 

freely will affect the sound field, within specific frequencies, almost as much as the 

air column does. 

In general, the literature seems to conclude that any noticeable effect of wall 

vibrations is not attributable to the radiation of sound from the vibrating walls 

(second coupling) because the sound source of these instruments is the reed 

coupling with the air column. This is different to percussion instruments, or 

instruments with a sound board such as a guitar or violin. The sound produced by 

the vibrating bell of a trombone is approximately of the order of 10,000 times less 

powerful than the sound energy from the resonating air-column (Moore 2005). 

When considering trumpet bells, which are a lot smaller than trombone bells, the 

radiated sound would be a lot lower. Gautier and Tahani (1998) also found that the 

calculated radiated sound power from the lateral wall for mechanical and acoustical 

excitations was much lower than the sound power radiated from the open end of the 

instrument. However, in a later paper, Nief et al (2008a) studied the radiation 
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efficiencies of trombone bell modes to investigate which modes could contribute to 

an audible effect. This indicates that the effect of this coupling may still be relevant 

even if it would appear it is not the most dominant. Lawson and Lawson (1985) 

state that they expect the only region of a French horn where the wall material may 

appreciably have any effect on the sound spectrum is the flared bell region. This is 

because the rest of the instrument is unyielding and approximately cylindrical. 

Pico et al (2007) concluded that in general the vibroacoustic coupling is negligible, 

but for some materials such as polymers, it becomes very important. They describe 

three phenomena that underlie the coupling between the internal air and the 

structural walls: 1) a mechanical resonance, 2) a spatial coincidence effect, and 3) 

an acoustic resonance. The spatial coincidence effect corresponds to the spatial 

matching condition between the acoustic profile and the structural modes (i.e. 

matching mode shapes). If two of these phenomena occur at the same time, the 

vibration effect becomes significant and the acoustic resonances and anti-

resonances of the tube can be significantly altered. Whitehouse et al (2002) also 

states that the magnitude of the wall vibration is dependent on how close in 

frequency the artificially blown resonances and the structural resonances are. 

Nederveen and Dalmont (2004) observed that the resonating air-column in a thin-

walled metal organ pipe interacted with the wall resonance (coupling between the 

internal air and the walls). These effects were audible when a wall resonance 

frequency was nearly the same as that of the air-column. Similar results were found 

by Scholz (2006). The wall vibrations are also much stronger when there is some 

asymmetry in the bell/tube. Perfectly cylindrical pipes tend not to vibrate much, but 

in practice there are always flaws and faults in symmetry which result in more 

prominent vibrations (Pico et al 2007). Nederveen and Dalmont (2004), Pico and 

Gautier (2007), and Nief et al (2008b) found that a non-circular cross-section is 

essential for the effects to be noticeable, and brass instruments, saxophones and 

organ pipes usually better satisfy this criteria than other wind instruments. Kob 

(2001) found for organ pipes that air and structural resonances were likely to 

interact at some frequencies. 
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Initially sceptical about any possible effect of wall vibrations, Moore (Moore 2003, 

Moore et al 2005) carried out a detailed study using a trumpet blown with artificial 

lips and damped the vibrations with sandbags, thus intending to disprove once and 

for all the effect of vibrations. However, audible differences in the resulting sound 

and observable differences in the recorded spectrum were found. Mechanisms for 

this effect were hypothesised as being a change in the thickness of the boundary 

layer on the inside of the bore (which was later discounted), or as the result of the 

vibrations travelling along the instrument to the mouthpiece where they interacted 

with the players lips which directly affected the air-column. They concluded that it 

was likely to be the latter of these two, but could be a combination of the two 

causes.  

Following this study, Kausel, Nachtmann and Mayer (Nachtmann et al 2007, 

Kausel et al 2007) carried out a similar experiment, this time using a horn, with 

damping provided by loose sand instead of sandbags. They also found an 

unexpectedly large difference in the sound when the instrument was undamped and 

damped. They disproved Moore’s hypothesis (Moore et al 2005, Moore 2003) that 

the effect was contributed to by the vibrations travelling along the walls to the 

players lips by decoupling the mouthpiece from the rest of the instrument using 

rubber tubing. They concluded that their observations favour a hypothesis that the 

resulting changes are due to a change in radiation impedance caused by oscillating 

boundary conditions in the bell flare, although another more recent paper by Kausel 

et al (2008) states that the evidence suggests that one mechanism is not sufficient to 

explain the phenomenon. 

2.5.5 Theoretical models that incorporate wall vibrations 

Gautier stands out as being one of the primary contributors to the theoretical study 

of the effect of wall vibrations and the modelling of the couplings between the air 

and walls. Working with others, he has developed useful models that provide 

insight into the potential coupling mechanisms and the extent of their effect.  

In 1998, Gautier and Tahani developed a model of a simplified wind instrument to 

take into account three types of coupling: structure-external fluid, structure-internal 
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fluid, and inter-modal acoustic coupling due to sound radiation at the open end. The 

model allowed calculation of the forced response of the system in the frequency 

domain. Comparing the sound radiation at the open end of the instrument when 

wall vibrations were taken into account and when they were not, there was a small 

difference in the sound power level at each resonant frequency. This resulted in 

small frequency shifts which were particularly significant near the first cut off 

frequency (~7500Hz). 

In their 2007 paper, Pico, Gautier and Redondo, refer to the 1998 paper and note 

that real instruments do not operate in a forced regime. They also refer to the time 

domain model created by Gazengel et al (1995) which simulates self-induced 

oscillations for rigid-walled instruments. This model only uses the input impedance 

to characterise the instrument and treats the walls as rigid. Therefore, Pico et al 

(2007) created an input impedance model that enabled the inclusion of wall 

vibrations which could be used as an input for time domain simulations to study 

their effect. They focussed on the interaction between the plane acoustic mode and 

the symmetric shell modes. The coupling between the structure and external fluid 

was ignored as it was considered negligible for a light fluid in comparison with the 

structure to internal fluid coupling. Because they used a cylinder with a circular 

cross section, they only considered axisymmetric (breathing) modes. They found 

that when a structural resonant frequency was close to an acoustical resonant 

frequency, the acoustic impedance was strongly modified by the wall vibrations. 

They also found that when a mechanical resonance and a spatial coincidence 

occurred simultaneously, the wall vibration effect causes the input impedance to 

change drastically. A spatial coincidence relates to whether the mode shapes match 

(anti-symmetrically or symmetrically). When this occurs, energy exchange between 

the acoustic and structural domain is possible (Basten et al 1998). Pico et al 

compared several different materials: steel, aluminium, Epicea wood, and three 

unspecified polymers. For steel, they found that the wall vibrations had a very 

small influence (they considered it negligible) on the input impedance. For the 

polymers they found a larger influence, for two reasons. Firstly this was because 
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the correction factor imposed on the input impedance was inversely proportional to 

the material density, and secondly because the structural resonant frequencies were 

much lower and so could couple with stronger lower acoustical resonances. For 

aluminium, the effect was close to that for steel, and for wood the effect was 

slightly more significant than for steel, but much less than for the polymer. They 

conclude that the main reasons that the effect of the wall vibrations was small, for 

all but the polymer, was because the resonant frequencies of the breathing 

structural modes were very high. There are actually other structural modes that 

have considerably lower frequencies that were not included in this model because 

they are asymmetric (ovalling modes).  

Including these lower ovalling modes into the model was the study next carried out 

by Pico and Gautier (2007) by using a slightly distorted cylindrical shell model. In 

this case, the total correction factor of the input impedance was calculated as the 

sum of the correction factors for the coupling for a perfectly cylindrical and slightly 

distorted shell. It was found that at low frequencies the effect of the shell distortion 

coupling was more significant than that of the non-distorted one. Pico and Gautier 

then compared the effect of varying the thickness and material of the shell such that 

the first structural ovalling mode was aligned with an acoustical mode. As an 

example, for silver they aligned the first structural mode with the second acoustic 

mode and found important changes in the input impedance due to wall vibrations in 

the distorted shell. They also investigated the effect of the extent of the distortion. It 

was found that the correction factor was highly sensitive to this. However, it was 

acknowledged by the authors that for the higher distortion parameters, the 

assumption in their calculations of a very similar shape for the distorted and non-

distorted shells is probably not reasonable. Finally, they compared different 

structural damping coefficients (0.1, 0.01 and 0.001) and found that for 0.01 and in 

particular 0.001 the wall vibration effect was significant. In 1967, Benade 

compared experimentally the difference between cylindrical and elliptical organ 

pipes. He found that while the wall vibration resonance absorption was a hundred-

fold larger for the elliptical pipe, it was still negligible compared with the other 
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absorption processes. Fletcher and Rossing (1998) also discuss this matter. They 

explain that the reason breathing modes have a higher resonant frequency is 

because an increase in pipe diameter is required, rather than just a simple shape 

deformation in the case of an ovalling mode. Hoekje and Morrison (1999) also 

observe that asymmetries lead to an enhanced radiation of the sound. Nederveen 

and Dalmont (2004) also conclude that non-circular cross sections are essential and 

classes brass instruments and saxophones as examples that do not have exactly 

circular cross section in practice. 

Pico’s and Gautier’s (2007) model was validated against practical experiments by 

Nief et al (2008b) using standard modal analysis techniques to obtain frequency 

response functions (FRFs) and mode shapes of the vibrating walls. In addition, the 

acoustic input of the simplified instrument was measured for a circular and oval 

(~8% ellipticity) cross section cylindrical shell. It was found that the structural 

modes only have a strong influence on the input impedance for the elliptical case. 

However, the authors note that it is not usual for a clarinet to have such an elliptical 

cross section. 

To evaluate the effect of the coupling between the internal air and the structure 

when their resonances matched, two tests were carried out. The first used their 

model to synthesise the sound. It was found that the effect was a varying of the tone 

colour that was audible in listening tests. The second test was to physically play the 

simplified instrument using an artificial mouth with a clarinet mouthpiece. With an 

acoustic and structural resonance matched, the instrument was played with and 

without being grasped by a hand. The sounds were easily differentiable in listening 

tests by a slight timbral change. When the resonances were not matched, there was 

no difference in the sound whether or not the tube was grasped by the hand. For the 

slightly distorted cylindrical tube, it was demonstrated that some slight tone colour 

variations can occur when acoustic resonances coincide with a structural ovalling 

mode. Different instruments were compared by varying the thickness, bore radius, 

length and material properties. They discuss the likelihood of observing the effect 

in real instruments and suggest that for flutes, metal and wooden clarinets, or 



The Effect of Wall Vibration 2 

 

 28 

 

trombone slides, the effect would be minimal due to low ellipticity and relatively 

high structural resonant frequencies. However, for organ pipes the effect would 

likely be significant because of their softer constructions (lead tin alloy), their large 

bore diameter, and the lower structural resonant frequencies. This backs up findings 

from the literature that the wall vibration effect is more noticeable in organ pipes 

than in other wind instruments. They also suggest that the effect may be more 

apparent (although not as much as for organ pipes) in brass instrument bells which 

have large diameters, low mechanical resonant frequencies, and are free to vibrate. 

However, the authors point out that if the effect was observed in real instruments, it 

would only occur for one or a few notes (‘wolf’ notes).  

Following on from the suggestion that the effect would likely be more apparent in 

brass instrument bells than clarinet bores, the same authors (Nief et al 2008a) 

studied the possible effect of a coupling between the vibrating trombone bell and 

the external air. They focussed on whether the modes of vibration could be able to 

radiate sound efficiently enough to contribute audibly to the overall sound. They 

also studied the bell mode shapes using physical modal analysis where practically 

possible and finite element analysis for a fuller view. It was found from radiation 

efficiency calculations that for each mode there is a critical frequency above which 

the efficiency is close to 1. For the examples presented in the paper, the critical 

frequencies in general are quite high. This means that when low frequency modes 

are excited they cannot radiate efficiently. However, some higher frequency modes 

(example shown is ~6000Hz) are able to radiate more efficiently. The scope of this 

work does not cover the actual extent of any effect but considers which modes 

could contribute. A study by Hoekje (2003) seems to back this up as he found that 

there was increased radiation at high frequencies for trumpets and trombones. 

This could mean that if the contribution is significant enough, the power of the 

higher harmonics of the sound would be increased. This effect could be linked to 

the 'brightness' of the sound. 
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2.6 Conclusions 

Drawing general conclusions of the effect of wall vibrations for all air-column 

instruments is not possible. The effects have been shown to differ for different 

instruments. Organ pipes seem to be significantly affected by the wall vibrations; 

other instruments less so. Due to their relatively large flared bells and also their 

slightly distorted bore cross section, lip reed instruments seem to be more sensitive 

to wall vibrations than mechanical or air reed instruments. There also appears to be 

a substantial variation in the quality of the research in this area. Some of the later 

studies, in particular Moore et al (2005), Kausel et al (2007) / Nachtmann et al 

(2007), and Kausel et al (2010) have learned from the inconsistencies and practical 

difficulties with early studies and have eliminated many of their sources of error. 

The theoretical studies validated by experimental testing by Nief, Gautier, Pico, 

Dalmont, and Gilbert also appear to be reliable.  

With regards to what increases the extent of wall vibrations there are a few 

common findings from the literature. Firstly is that the effect is increased when the 

resonant frequencies of the air column and structure approach each other. Some 

studies have also found that it is important for the mode shapes to match. Secondly, 

slight distortion of the cross-section of a cylindrical bore is frequently reported as 

being a key pre-requisite to the wall vibration effect being detected.  

Focussing on lip reed instruments, the actual mechanisms that cause the wall 

vibrations to affect the sound are still not conclusively proven. Certain hypotheses 

have been disproved such as that the vibrations travelled along the instrument to the 

players’ lips which then directly affects the air-column (Moore et al 2005). Recent 

findings (Kausel et al 2007 / Nachtmann et al 2007) favour a hypothesis that the 

resulting changes are due to a change in radiation impedance caused by oscillating 

boundary conditions in the bell flare. However, another more recent paper by 

Kausel et al (2008) states that the evidence suggests that one mechanism is not 

sufficient to explain the phenomenon. 

Looking at the actual effect on the resulting sound it would appear from the more 

recent studies that for the instruments studied (trumpet and horn), increased wall 
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vibrations cause an increase in the relative strength of the higher harmonics. The 

opposite is true for decreased vibrations, with the relative strength of the lower 

harmonics, in particular the fundamental, increasing. Certain timbral descriptions 

relate to the relative strength of the spectral harmonics, such as the ‘brightness’. A 

brighter sound has greater power in the higher harmonics. The opposite of this is 

‘darkness’ which can be described as a greater power in the lower harmonics. This 

is backed up by anecdotal evidence presented by players and instrument makers, 

such as those detailed by Sanborn (1997). A common way to assess the 'brightness' 

is the spectral centroid or alternatively the harmonic centroid where a higher 

centroid value indicates a 'brighter' sound (Nachtmann et al 2007, Kausel et al 

2007, Lichte 1941, Von Bismarck 1974, Grey and Gordon 1978, Beauchamp 1982, 

Kendall and Carterette 1996, Poirson et al 2005, Schubert and Wolfe 2006). 
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3 Brass Instrument Optimisation 
 

3.1 Introduction 

There have been three main contributors so far in the field of lip reed instrument 

optimisation using computational techniques: Kausel (1999, 2001), Noreland 

(2003a, 2003b), Noreland et al (2010) and Braden (2005, 2006b). This chapter will 

review this area by looking at the different aspects of the optimisation methods. 

 

3.2 Modelling approach 

There are several methods that have been used to simulate the behaviour of the 

acoustics of horn shapes which are summarised by Kausel (1999, 2001). At the 

most complex end of the scale is the finite element method (FEM) which is a very 

capable method as it is not limited to a certain frequency range and can model in 

3D. It has been used for simulation purposes in a related field (Kagawa and Omote 

1976), but it is a relatively computationally expensive approach which is 

exacerbated when used within an optimisation loop. At the other end of the scale is 

simple modelling with lumped parameters but this approach does not give results 

accurate enough to be useful for this application. In between these two extremes is 

the transmission line modelling (TLM) approach where the geometry of the 

instrument is split up into many small segments and considered in series as shown 

in Figure 3-1. 

 
Figure 3-1 - Waveguide modelling using truncated conical and cylindrical segments (marked 

in red). 
 

Conical 
segment 

Cylindrical 
segment 
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Referring to the work of Mapes-Riordan (1993) and Causse et al (1984), Kausel 

(1999) explains that when the TLM method uses conical elements and takes wall 

losses into account it is sufficiently accurate in the frequency range normally 

considered of interest for brass instruments (up to 1500Hz). This limit is due to the 

model, in its 1D form, only being able to model the fundamental mode of the 

instrument. As the diameter of the instruments bore becomes larger towards the bell 

this condition is only met for lower frequencies. Therefore the error at this portion 

of the instrument is greater at higher frequencies. The approximate limit of the 

suitability of this approach can be calculated using: 

���� � 0.586��  (3.1) 

where c is the speed of sound in air, and d is the bore diameter (Kausel 1999). 

However, Kausel himself found that the 1D transmission line modelling method he 

used could not cope with the flaring bell very well. Noreland initially used a similar 

1D transmission line model for a slowly flaring horn (Noreland 2003b), but 

recognised that the model was limited by the assumption of 1D wave propagation. 

There is also an inaccuracy with the calculation of the radiation impedance at the 

flared end of the instrument. With both of these points in mind he developed a 

hybrid approach (Noreland 2002, Noreland et al 2010) where the 1D transmission 

line was used to roughly define the instrument shape and then a more accurate 2D 

finite-difference model was used to refine the flaring bell shape. The calculated 

input impedance of the bell was then imposed as a load impedance on the rest of 

the bore. Noreland found that the 1D transmission line model gave significantly 

greater errors than the hybrid approach above 500Hz. 

Braden (2005) also started using a 1D transmission line model and found that a 

more accurate method would be beneficial. Instead of using a hybrid approach, he 

chose to use a multimodal transmission line model to include higher modes. 
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3.3 Relating the geometry to the input impedance 

The geometry of the instrument can be split up into smaller tube segments based 

upon the method by Mapes-Riordan (1993) which is based on work by Keefe 

(1981, 1984, 1990), Causse et al (1984) and Benade (1988). Each segment is 

described by a frequency dependant transmission matrix. The overall geometry of 

the instrument can be adjusted by altering the dimensions of the segments until 

there is a match between the simulated impedance curve and that measured from 

the physical instrument, thereby reconstructing the bore. This process can be 

speeded up using iterative optimisation algorithms. The calculation procedure for 

this approach is not covered in this review, but will be detailed in section 5.3 of 

chapter 5. 

The most commonly used segment types are lossy and lossless cylindrical and 

conical, but Bessel horn functions have also been used (Braden 2005) which were 

found to be a good approximation to a brass instrument bell. The extent of the flare 

can be controlled by a flare parameter and the diameter, D of the horn is given by: 

( )m
yy

B
D

0−
=  (3.2) 

where B and y0 are chosen to give correct diameters and the small and large ends, y 

is the distance from the large open end, and m is the flare parameter.  

Commonly, bends in the instrument are ignored and the segments are arranged 

linearly. This is reasonable for gentle bends but when they are sharp, the effect of 

the bends should be considered (Benade 1976, Noreland 2003a). Bends on 

trumpets, for instance, often tend to be sharp such as around the valve casing or on 

slides. The bend sharpness B is defined as the ratio of the bore radius to the bend 

curvature. Braden (2005) extended the calculation of the transmission matrix (how 

the wave travels through the segment) for curved segments of varying radius and 

plans to include this in an optimisation routine. 

The effect of a bend is similar to that of a flare; the small radius on the inside of a 

constant circular cross-section curve acts as an outward flare and the larger radius 

on the outside of the curve acts as a negative flare. To some extent the negative 



Brass Instrument Optimisation 3 

 

 34 

 

flare offsets the positive, outward flare, but because it is a gentler curve it does not 

do this completely. Therefore, the result is a speed increase through the bend and a 

slight lowering of the impedance (in a similar way to if it was a larger diameter). 

The resonances can be shifted to give a noticeable mode dependent effect when 

playing steady tones and at the beginning of notes (Nederveen 1998).  

The bend can be considered to have a similar effect as that of a closed side hole in a 

wind instrument, and to some extent the spit key hole on a lip reed instrument 

(although these holes tend to be much smaller than woodwind tone holes), which 

has been shown to affect tuning (Nederveen 1998). To compensate for the bend 

effects, the bore diameter of a straight segment can be reduced (Nederveen 1998). 

 

3.4 Objective function 

In order to be able to optimise something, there needs to be an objective way of 

assessing the suitability or performance of a particular design iteration. Being able 

to objectively characterise the sound from a particular instrument is usually 

considered more useful than relying on subjective assessments from musicians, 

although the two forms can be used to validate each other. The difficulty with 

music is that listening analysis is subjective. This can be overcome to some extent 

through appropriate use of statistics, but there are other difficulties such as the 

repeatability of the player. Subjective assessment would likely be more useful when 

aspects of the sound are too complex to be modelled mathematically. Whatever 

methods are used, they should be insightful, reliable, and allow changes made to 

the main influencers of sound quality to be observed. However, while there is no 

such thing as a perfect instrument, there are characteristics of an instrument which 

are desirable across the board.  

‘Sound quality’ as a term is described by several musical aspects as described in 

Table 3-1. Some of these aspects are actually instrument control parameters which 

indirectly affect the outputted sound by either hindering or enabling the player in 

their performance. A recognised problem is the variation in the vocabulary used to 
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describe musical aspects and the variation in understanding and definitions of each 

term. This makes it very difficult to describe the acoustic performance of an 

instrument. Linking these musical terms to scientific definitions is not simple, but is 

necessary in order to be able to fully describe sound quality. 

Aspect Explanation 

Intonation Degree of adherence to the correct pitch (tuning) 

Timbre Tonal colour which gives its characteristic sound (e.g. the difference in sound 

between a trumpet and flute) 

Response How easily a certain tone can be initiated or continued 

Variability How easily the pitch of tones can be controlled of ‘lipped’ up or down to keep 

in tune 

Efficiency Ratio of effort to sound output (input to output) 
Table 3-1 – Summary of aspects of sound quality. 

 

Kausel, Noreland and Braden all used the input impedance to characterise the 

sound quality of the instrument. The target input impedance is either measured 

from an existing instrument or specified manually. The position (frequency) and 

magnitude of the input impedance peaks have the greatest influence on the 

performance, but the width and shape of the peaks are also relevant. The objective 

function is then formulated to give a measure of the performance of the instruments 

geometry. This can take the form of a comparison (e.g. least-squares comparison) 

between two impedance profiles, or specific characteristics of the impedance peaks 

such as their position or magnitude. Different objective functions can be combined 

to provide a single weighted sum objective function. An extension to the least-

squares comparison approach was used by Braden to include windowing. This 

reduced the effect of a certain very bad feature overwhelming more subtle positive 

changes and improved convergence. Braden also used a windowing approach for 

the comparison between the peak frequencies and between the peak magnitudes.  

The total length of the bore of a valved brass instrument such as a trumpet is varied 

by redirecting the air through a combination of tubes. This type of instrument can 

be thought of as a combination of 7 fixed length bores which enables a chromatic 

musical scale to be sounded. Any changes made to the shared parts of the 

instrument such as the mouthpiece, lead pipe, bell etc. would affect all of the 
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valved arrangements. Therefore, the optimisation needs to consider all 

combinations simultaneously. Kausel implemented this capability within an 

optimisation routine while Noreland and Braden stuck to simpler single bore 

representations. Whilst not directly relevant to bore profile optimisation, Young 

(2009) focussed on optimising just the valve tube lengths by minimising the overall 

root mean squared intonation error using a method established by Young (1967). 

This approach is in contrast to that of Redfield (1931), who simply used a trial and 

error approach.  

More recently, Braden (2009) has investigated using a target of increased 

inharmonicity of the resonances for trombone bore optimisation. The reason for this 

was to affect the brightness of the sound by reducing the extent to which the higher 

resonances are excited by the lower resonances. This approach is in contrast to 

simply reducing the magnitudes of the middle to upper resonance peaks which 

would also have the detrimental effect of making the altered resonances more 

difficult to sound and sustain. Applied to quite an uncommon, though not unrelated, 

instrument, Petiot and Tavard (2008) also used a measure of inharmonicity to form 

an objective function for optimising the bore of a marine conch shell, which is a 

traditional instrument of the brass family. 

Feng and Strong (1990) and Debut et al (2005) applied optimisation techniques to 

improve the tuning of a simplified clarinet, also using a rigid walled model, based 

upon a calculation of the input impedance. In these cases though, because of the 

nature of the instrument and the objective of the optimisation, the effect of tone 

holes on the input impedance was included in the calculation.  

A unique approach to brass instrument optimisation was carried out by Poirson et 

al (2007) to integrate subjective and objective assessments of designs into the 

optimisation process. This appears to be the first attempt in the literature to do this, 

and is interesting because it uses the preferences of musicians to provide a starting 

population for optimisation using GAs. They simplify the problem by concentrating 

only on the lead pipe (conical section from mouthpiece to cylindrical section 
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required for the main tuning slide) of the instrument, one of the most influential 

parts on the acoustic performance. Initially the lead pipe is split into 4 sections and 

different combinations of these sections are used to find the players’ preferences. 

Objective impedance results from these lead pipes are also gathered, and compared 

with the subjective results to see if there is a correlation. This information is then 

used to guide the optimisation process which used transmission line modelling to 

calculate impedance. Because the geometry is simple, and the bore narrow, the 

transmission line model used is suitable. They focussed on the intonation attribute 

as they say that that is the one classed as most important. 

 

3.5 Variables 

Braden describes Kausel’s and Noreland’s approaches to varying the instruments 

bore geometry as ‘bottom up’. This term describes the way that a whole instrument 

is formed by varying the dimensions of lots of small transmission line elements 

until a reasonable optimal solution is converged upon. Kausel does not apply 

variable limits (side constraints) and as such it is possible to create designs that 

would not be considered typical for brass instruments. There could be reasons for 

wanting to provide greater geometric freedom to the optimiser, but it is likely that 

substantially atypical designs would not be preferable musically or from a 

manufacturing point of view. Not limiting the possible designs also raises a 

computational efficiency issue.  

Instead of applying side constraints explicitly, an alternative would be to implicitly 

use a function to define the bore profile. Noreland discussed the use of a Bessel 

function which approximates classical horns quite well. Using this approach, the 

number of variables would be reduced to coefficients in the calculation of the 

Bessel curve, such as start and end points and the flare parameter. However, local 

changes to the bore profile would not be achievable using just one function. 

Noreland went on to use spline interpolation to ensure smooth transitions between 

variables. While this approach results in smoother bore profiles which are more 
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likely to be preferable, it does not eliminate ‘wavy’ shapes which are atypical for 

these instruments. 

In contrast to these ‘bottom up’ approaches, Braden devised a ‘top down’ approach 

with the aim of describing what constitutes a reasonable brass instrument, in his 

case a trombone. This approach is based on a design template which is a 

representation of the detailed geometry of the instrument without the exact 

dimensions. The template consists of different elements. These could be single 

elements such as cylinders, cones, bore discontinuities or Bessel horns, or elements 

could be joined together to form list elements which can then be treated as a single 

element. The advantage of this approach is that significant efficiencies can be made 

during the optimisation by not considering parts of the design domain that would 

clearly not result in a feasible design. While a disadvantage of using a template is 

that the general shape of the instrument has to be known in advance, this would 

only really be an issue if a new class of instrument was being designed. 

Expanding on Noreland’s discussion on using a Bessel function, Braden found that 

a very close match to a real trombone bell can be achieved with 5 Bessel-horns of 

different flares. Noreland’s suggestion was to use the Bessel function as a basis for 

interpolating the diameters of cylindrical and conical elements. Instead of this, 

Braden derived the transmission matrix for a Bessel horn element (and also an 

exponential horn element), which could then be used directly thereby improving the 

efficiency of the process further. 

 

3.6 Algorithms 

This section will review what optimisation algorithms have been used in the 

literature for this application. It is not intended to give detailed explanation on how 

each method works, but will summarise the performance of each. 

Several different optimisation algorithms have been used in this area:  
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1) Several forms of genetic algorithm (GA) (Kausel 1999, Braden 2005, Poirson et 

al 2007),  

2) Rosenbrock algorithm (Kausel 1999, Braden 2005),  

3) Levenberg-Marquardt (gradient based) method (Noreland 2003b, Petiot and 

Tavard 2008) 

4) Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton algorithm 

(Bängtsson et al 2003). 

Kausel found that the Rosenbrock algorithm performed best with regards to 

speed/efficiency, stability and acceptability of results when compared with 5 types 

of GA. The Rosenbrock algorithm (ref. Rosenbrock original paper) is a 0th order 

search method which does not require derivatives of the target function but does 

still approximate a gradient search. Initially, the design space is explored in solely 

the coordinate system base vectors. When an improved objective function value is 

found the search step width is increased whilst if a worse result, the step width is 

reduced and the search continues in the opposite direction. Once the objective 

function cannot be improved upon further, the coordinate system is rotated so that 

the first base vector points in the direction of the gradient and the search then 

continues. To reduce the likelihood of getting stuck in local minima, upon rotation 

of the coordinate system, the step widths can be initialised to quite high values 

thereby enabling larger jumps through the design space. 

Braden (2005) also found that the Rosenbrock algorithm outperformed a GA, 

although his GA implementation was able to produce better results than Kausel’s 

GA implementation. The comment was also made by Braden that GAs generally 

perform best in optimisation problems with a low number of variables and so 

would probably be not that worthwhile for brass instrument optimisation where 

there are usually many variables. 

Noreland (2003a) proposes the Levenberg-Marquardt gradient based algorithm 

which he states should converge more quickly than the Genetic and Rosenbrock 

algorithms used by Kausel. This is a combination of the steepest descent and 
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Gauss-Newton methods and is a standard technique used for nonlinear least-squares 

problems (Lourakis 2005). The algorithm behaves like a steepest descent method 

when the current solution is far from the optimal one, but behaves like a Gauss-

Newton method when the current solution is close to the optimal one. This is a 

reasonable choice because the objective function is formulated as a least squares 

problem in this case. However, Noreland notes that gradient based methods, while 

good for iteratively improving geometries of existing instruments, do not 

necessarily provide a globally optimal solution. The Levenberg-Marquardt 

algorithm was also used by Petiot and Tavard (2008) with seemingly reasonable 

results. 

Noreland has also worked with Bangtsson and Berggren (2003) on applying 

optimisation techniques to the shape optimisation of an acoustic horn for 

loudspeakers. The objective was to match the impedance of the surrounding air. For 

this, they used the quasi-Newton method: BFGS, named after the four people that 

independently devised it: Broyden, Fletcher, Goldfarb and Shanno. BFGS is 

considered to be the most effective quasi-Newton method and it performed 

adequately well in this situation with the resulting smooth solution being converged 

upon quickly.  

Poirson et al (2007) make the point that gradient search methods can suffer from a 

lack of robustness if the objective function is not well defined, not continuous or 

not derivable. They also emphasise the difficulty these methods have with escaping 

local minima. They used a GA because their objective function was complex and 

the objective of the research was not its determination. GAs tend to be quite robust 

in these situations. It is well known that GAs perform better with a small number of 

variables and compared with Kausel’s and Braden’s work, there were a lower 

number of variables in this case as only the instrument’s lead pipe was subject to 

optimisation. 



Description of Research Novelty 4 

 41 

 

4 Description of Research Novelty 
 

4.1 Introduction 

This chapter will outline the gaps in the previous research found from the literature 

review. It will then go on to describe the novelty of the research detailed in this 

thesis before stating the specific research objectives. 

 

4.2 Gaps in the research 

The literature reviews of chapters 2 and 3 brought together two aspects of the 

literature in this field of brass instrument design. Firstly, the long-argued topic of 

the effect of wall vibrations on the sound was introduced and the literature in this 

area discussed. Over the last decade, definitive work has been carried out on this 

area proving the long disputed claim that wall vibrations do have an audible effect 

on the sound. This backs up musicians’ assertions that the material choice, wall 

thickness and stiffness have an influence on the sound. 

The second topic reviewed was the analysis and optimisation techniques that have 

been used to model these types of instruments to aid in the design process. In 

general, a one-dimensional transmission line model (TLM) is used to represent the 

instruments’ bore. The exception to this is to use a hybrid approach with TLM for 

the slowly flaring parts and FEA for the rapidly flaring bell region. So far all of 

these techniques have treated the instrument walls as completely rigid based on the 

assumption that the walls have no effect.  

Incorporating the effect of wall vibrations into the optimisation model to improve 

its simulative capabilities is a clear gap in this area. 
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4.3 Research novelty 

The effect of wall vibrations on the sound was discussed in chapter 2. An increase 

in the degree of the wall vibration gives an increase in the relative magnitude of the 

higher frequency harmonics which results in a ‘brighter’ sound. A decrease in the 

degree of the wall vibrations gives an increase in the relative magnitude of the 

lower frequency harmonics, in particular the fundamental, which results in a 

‘darker’ sound. The degree of wall vibration increases when the resonant 

frequencies of the air-column and of the walls (the structure of the instrument) 

align with each other. This thesis investigates ways to incorporate this into the 

optimisation method.  

The first novel part of this work is the development of a suitable optimisation 

framework for the design of brass instruments to take into account the wall 

vibration effect on the sound. This would allow greater customisation of the sound 

to suit a particular player’s personal preference or to suit the style of a particular 

piece of music. 

It was envisaged that modern manufacturing techniques would be used in the 

manufacture of these instruments, in particular additive manufacturing (AM) 

processes (Hopkinson et al 2006, Gibson et al 2009).  AM processes use a 

fundamentally different approach to constructing three-dimensional parts than 

compared with traditional processes. In contrast to machining which removes 

material from a billet (subtractive) and moulding which forms molten material to 

the shape of the mould (formative), AM adds material layer by layer (additive). 

There are many different processes under the category of AM, but they all work on 

the same fundamental layer by layer principle. Some use a laser to selectively sinter 

or melt powdered material, or to cure liquid resin with ultraviolet (UV) light, whilst 

others deposit material directly by continuously extruding material from single 

traversing nozzle or jetting droplets from an array of nozzles (similar to an inkjet 

printer).   

AM heavily relies on the provision of computer aided design (CAD) geometry 

which is usually a 3D representation of the part. This geometry is converted to a 
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triangulated mesh known as an STL file (originally derived from the 

STereoLithography AM process), which only represents the surface of the part. 

This STL file is then sliced up into many thin layers (commonly 0.1mm thick) to 

form a slice file which can be read by the AM machines. This slice file is 

commonly in a vector format which provides the cross section boundaries of the 

part for each slice. The boundary is traced by the laser or nozzle and the internal 

solid regions are filled in using a scan pattern. Alternatively, a raster format can be 

used which is essentially a voxel representation of the geometry and is commonly 

used for array based jetting processes. For complex geometry where 3D CAD can 

be prohibitively computationally expensive, geometry can be created directly at the 

slice level, although this approach is less intuitive for the user. 

There are two primary advantages of using AM over traditional processes. Firstly 

there is very little material wastage during production due to its additive nature, and 

secondly there are significantly fewer manufacturing constraints allowing greater 

design freedom, due to its layer by layer approach. This design freedom enables 

more optimal designs to be realised. Both of these advantages mean that AM lends 

itself to producing customised products as a minimum batch size of one can be 

achieved cost effectively. 

The second novel part of this work is the opening up of the optimisation design 

domain for brass instruments to avoid compromising the design with the traditional 

manufacturing constraints of these types of instruments. 

 

4.4 Research Objectives 

1) Review the literature in the field of research into the effect of wall vibrations 

and of existing brass musical instrument optimisation methods. 

2) Devise a framework for brass instrument optimisation to include the wall 

vibration effect. 

3) Implement a bore profile optimisation method based on the transmission line 

modelling approach and evaluate with a number of test cases. 
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4) Devise a suitable approach for incorporating the wall vibration effect into the 

optimisation method allowing for non-traditional geometries. Preferably, this 

would also result in lightweight designs. 

5) Investigate the optimum designs for two scenarios: maximum wall vibration 

and minimum wall vibration. Are there design characteristics for each scenario? 
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5 Analysis Methods 
 

5.1 Introduction 

This chapter will detail the analysis methods used for the work in this thesis. It 

comprises two main sections: Finite element analysis and transmission line 

analysis. Both of these were used in iterative optimisation routines, the latter being 

used for the bore profile optimisation work contained in chapter 7 with the former 

being used for the structural optimisation work contained in chapters 8 and 9.  

 

5.2 Finite Element Analysis 

Finite element analysis (FEA) was first introduced in the 1950s. It is now a very 

sophisticated tool that is used widely for solving engineering problems. It can be 

used in many instances to reduce experimental testing, saving cost and time. It is an 

approximate numerical technique used where it is inefficient, not necessary, or not 

possible to analyse the exact problem. The main sources for this section are Fagan 

(1992), Bathe (1996), and Hellen (2007). 

There are three broad problem areas that can be investigated using FEA. 

1) Steady state (equilibrium) problems. This is the most common use of FEA 

and is used for elasticity problems where a body under equilibrium conditions 

can be analysed and its displacement predicted. From the displacement, the 

strain and then stress can be calculated. Steady state thermal analysis is also 

often carried out using this method. 

2) Eigenvalue problems. This could be considered an extension of the 

equilibrium problem or a reduction of the transient problem. It can be used to 

determine the natural frequencies and vibrational modes of a component. It can 

also be used for calculating the buckling loads of structures. 

3) Transient (propagation) problems. In an eigenvalue problem, time is not 

explicitly modeled but in a transient problem the loads can be functions of time 
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and dynamic equilibrium is considered. This enables the calculation of 

acceleration and velocity, in addition to displacement, in an elasticity problem. 

This allows the response of the body to be calculated for large displacement 

problems such as impact or dynamic crack propagation problems and is also 

used in transient thermal analysis. 

5.2.1 Method Theory 

The basic principle of FEA is to discretise a problem into many small portions 

(elements). Each of these elements can then be solved more easily than the original 

undiscretised problem could. In this way, FEA is an approximate rather than exact 

method. The description of FEA contained in this chapter will start by explaining 

this discretisation process and how the equations of motion are solved. Linear static 

and dynamic analysis methods are described. 

A simple example of the discretisation process is to consider an object in which the 

distribution of an unknown variable (e.g. displacement) is required. This object is 

represented by a mesh of smaller elements, e.g. triangles, which are connected 

together at their corners (nodes). The displacement variable is assumed to act over 

each element in a predefined way. The number and type of elements are chosen so 

that the variable distribution through the whole object is adequately represented 

when the element representations are combined. The distribution can be defined by 

a polynomial (e.g. linear, quadratic) or trigonometric function. 

After discretisation, the governing equations for each element are calculated and 

then assembled to give the system of equations which describes the behaviour of 

the whole body. These are generally of the form of equation 5.1 where [K] is the 

element stiffness matrix, {U} is the vector of unknown displacements and {F} is 

the vector of applied nodal forces. 

����� � ��� (5.1) 

 

Before the unknown displacements can be calculated, some boundary conditions 

must be specified. This ensures the body does not move through free space (rigid 
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body motion) when loads are applied. Boundary conditions are applied at the nodes 

and control the degrees of freedom of that node (translational and rotational).  

5.2.2 Assumptions and summary 

The assumptions and limitations of linear static analysis should be realised when 

carrying out this type of analysis to ensure the models represents reality with 

sufficient accuracy:  

1) Linear elastic material. The material is assumed to be homogeneous (same 

elastic properties at all points) and isotropic (same elastic properties in all 

directions at any given point). The material must also obey Hooke’s law, i.e. 

stress is directly proportional to strain. Therefore, this type of analysis is 

restricted to loads that do not take the material beyond its elastic limit (yield 

point). It is also assumed that the unloaded structure does not have any initial or 

residual stress. 

2) Small displacements. For example, lateral plate deflections, should be 

substantially less than the thickness of the plate, and beam deflections should be 

substantially less than the smallest beam cross section dimension. Problems 

with large displacements require nonlinear analysis methods to ensure results 

are accurate. 

3) Slowly applied loads. The structure is in static equilibrium so loads must be 

‘slowly applied’. This means that they do not cause any dynamic effects on the 

structure. Impact loads, for example, violate this restriction and are therefore 

not suitable for linear static analysis.  

Linear static problems are solved in one step – a single decomposition of the 

stiffness matrix. Nonlinear problems (geometric or material) require iterative 

solution methods and incremental loading. These are significantly more 

computationally intensive than linear problems. However, using nonlinear methods 

allows large displacements to be modelled accurately, forces that ‘follow’ the 

deformed shape of the structure, nonlinear stress-strain material properties, and 

time varying loads. Nonlinear methods are not included in the scope of this thesis. 

As a summary, the steps involved in a typical linear static FEA are: 
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1) Preprocessing of the model, i.e. discretisation of the problem into selected 

element types. 

2) Calculation of the element matrices and vectors. 

3) Assembly of the element matrices and vectors to give the global (or system) 

equations. 

4) Incorporation of the boundary conditions into the global equations. 

5) Solution of the equations to find the unknown nodal value of the field variable. 

6) Post processing of the results to give strains/stresses heat flows etc. 

5.2.3 Element Selection 

As previously mentioned, FEA is an approximate numerical technique. As the 

number and complexity of the finite elements increase, the approximation should 

improve and eventually converge to virtually the exact answer. However, the 

computational requirement for this will also increase. It is therefore important to 

develop a model that is sufficiently accurate and representative of reality without it 

being uneconomical. 

Many different types of finite element have been defined, their suitability 

depending on the problem being solved. A crucial consideration in choosing an 

element type is whether the element can accurately represent the field variable in 

reality. If a field variable is by nature non-linear then there are generally two 

options. One is to use linear interpolation elements that are small enough so that 

many are used to span the geometry. This will approximate the non-linear variable 

in a piecewise manner. This may be adequate, but another option is to use a higher 

order element which has a non-linear interpolation formulation, e.g. a quadratic or 

cubic polynomial. In general, these element types are better able to represent reality 

but at the cost of significantly increased complexity. An additional advantage in the 

case of 2D and 3D higher order isoparametric elements is that their edges can also 

be non-linear, which enables a better representation of curved geometries. The level 

of distortion in an element will also affect the accuracy of the calculation. Where 

possible, the mesh should be created so that the elements have no distortion. This is 

usually impractical for anything other than trivial geometries so some level of 
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distortion will usually have to be tolerated. Preferably the mesh will be of best 

quality at the areas of the model that are of most interest.  

A common approach to determine if the mesh resolution is sufficient is to carry out 

a relative convergence study. In this type of study, the results from one solution are 

compared to the results from a subsequent solution. In each subsequent solution, 

the mesh is systematically refined either globally or just in specific regions of 

interest. The solution results, for example, displacement or stress are compared and 

when the rate of change of the result approaches an acceptable level then refining 

the mesh further is unnecessary. A choice between computation time and solution 

accuracy can be made from a convergence study. 

The elements used in the work presented in this thesis were 1D beam elements and 

2D shell elements. The beam elements were used to represent the instrument 

support braces while the shell elements were used to represent the instrument walls. 

These two elements will be explained in more detail in the following sections. 

Specific implementation details for this application are included in chapter 8.  

5.2.4 Beam element 

Beam elements are a general form of 1D element and include both translational and 

rotational degrees of freedom at each node. 

Beam theories have been developed based on assumptions of the relatively simple 

and analytical deformation behaviour in the transverse plane. Discretisation into 

finite elements is therefore only needed in the central axis direction meaning that 

the problem of a 3D beam can be treated as 1D. Different beam cross section 

shapes can be used with properties of each section used to evaluate the analytical 

deformation behaviour. When the cross sectional area of a beam is small compared 

to its length, it can realistically be assumed that the transverse shear plane remains 

normal and flat after deformation. When the transverse shear deformation is 

ignored, the beam theory is known as the Euler-Bernoulli theory. It is equivalent to 

the Kirchoff plate/shell theory which will be covered in section 5.2.5 (Hellen 

2007).  
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When the transverse shear deformation is not ignored, the transverse plane remains 

flat but can now rotate out of normal after deformation, this is known as 

Timoshenko beam theory. This is equivalent to Mindlin theory in plates/shells and 

would be used for short, thick beams (Hellen 2007). 

Often, within commercial FEA software, e.g. MSC Nastran1, beam elements are 

categorised into two types, one being simpler and the other more general and 

complex. The simpler of the two supports tension and compression, torsion, 

bending in two perpendicular planes, and shear in two perpendicular planes. It uses 

two grid points (nodes) and can provide stiffness to all 6 DOFs (3 translational, 3 

rotational) of each node. The more complex type of beam element also allows 

tapered cross-sectional area properties, a non-coincident neutral axis and shear 

centre, and cross-sectional warping. The simpler form is adequate for this work so 

more detail is provided below regarding its characteristics and limitations as 

implemented in MSC Nastran: 

• Its plane section must remain plane (Euler-Bernoulli). 

• It must be straight and prismatic (properties cannot vary along its length). 

• The shear centre and neutral axis must coincide (cannot model warping of open 

sections). 

• Torsional stiffening of out of plane cross sectional warping is neglected. 

• Includes optional transverse shear effects (important for short beams). 

• The principal axis of inertia need not coincide with the element axis. 

• The neutral axis may be offset from the grid points (an internal rigid link is 

created). 

5.2.5 Shell element 

Shell elements are usually used to represent parts that have high aspect ratio, i.e. 

those that are thin compared to their area dimensions. For these types of 

geometries, shell elements are usually a much more suitable choice than solid 

elements and are significantly more efficient. A common rule of thumb for 

                                                 
1 From MSC.Software Corporation, Santa Ana, California 
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determining the appropriateness of using shell elements is if the area dimensions 

are 10 times the thickness, then using shells is probably valid. If the ratio is 

substantially smaller then shell elements may still be valid, but comparisons should 

be carried out with thick shell elements or an equivalent finely meshed solid model 

to check. 

Compared to a plate element, which must remain flat, shell elements allow single 

surface curvature (e.g. cylinder) or double surface curvature (e.g. sphere). This 

enables the bending and membrane effects to be coupled. However, the extent of 

the curvature must not be too great to ensure validity. A common rule of thumb is 

that the ratio of curvature to thickness should not exceed 5; however, validity 

should be checked for each individual problem. Assumptions of shells elements 

are: 

• The deflection of the mid surface is small compared to its thickness. 

• The midsurface remains unstrained (neutral) during bending – this applies to 

lateral loads, not in-plane loads. 

• The normal to midsurface remains normal during bending. 

The thickness of a shell element is not modelled using finite elements, rather an 

analytical model is used instead. This improves the efficiency of the model 

significantly compared to using solid elements. Shells can be referred to as ‘thick’ 

or ‘thin’, depending on whether or not the transverse shear deflection is included in 

the calculation of the element stiffness. If the shell is thin, Kirchoff theory is used, 

where transverse shear is not included. If the shell is thick, Mindlin theory is more 

appropriate (Hellen 2007).  

As shown in Figure 5-1, the thickness, t, of the shell element is represented in both 

positive and negative directions perpendicular to the elements midsurface. To 

effectively thicken unequally from the midsurface, an offset can be specified which 

offsets the thickness reference surface. 
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Figure 5-1 – a) 3D view of a flat shell element, b) thickness with no offset specified (equally 

thickened from midsurface), c) thickness with an offset specified (effectively unequally 

thickened from midsurface). 

 

5.2.6 Mixing element types 

In this work, the two types of aforementioned elements, beam and shell, were 

combined into one analysis model. Whem mixing element types it is important to 

ensure compatibility of displacement, rotation and load. In this section, the joining 

of beam elements to shell elements is explained. Figure 5-2 shows an example of a 

beam element joining a shell element at a common node. Where different element 

types are joined in a single mesh, there is the potential for a load and degree of 

freedom discontinuity, primarily involving rotations. This difficulty arises because 

of the different force and moment transferring capabilities of the different element 

types. Solid elements can model forces in 3 translational and no rotational DOFs. 

Shell elements can model forces in 3 translational DOFs and moments out of the 

plane of the shell. Beam elements can model all 6 force and moment DOFs. 

offset t t/2 

Node 

t 

t/2 

midsurface 

a) 

b) c) 

No offset With offset 

t/2 t 
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Figure 5-2 – Example of a beam element joining a shell element at a common node. 

 

Without special consideration, a beam element connected to a solid or shell element 

could behave as if the interface was a ball joint. This is because they cannot handle 

the 3 moment DOFs included in the beam element. A ball joint would result in zero 

stiffness and would mean that the FEA solver would be unable to compute 

equilibrium. The connectivity of the dissimilar element types can be managed by 

correctly constraining the relevant rotational DOFs in a separate step so that the 

model accurately represents the real boundary conditions.  

 

5.2.7 Dynamic Analysis 

Sections 5.2 and 5.2.1 of this chapter introduced linear static FEA and the 

discretisation of a body into finite elements. Dynamic analysis methods were used 

in this thesis and so this FEA explanation is now extended to include this. This 

section will extend the topic to include dynamic analysis. The basic differences 

between dynamic and static analysis are: 

1) Dynamic loads are applied as a function of time. 

2) That dynamic, rather than static, equilibrium is considered. 

3) This time-varying load application induces time-varying responses 

(displacements, velocities, accelerations, forces and stresses). 

These time dependent characteristics make dynamic analysis more complicated 

than static analysis. In a dynamic system, the basic types of motion are 

Shell elements 

Beam element 
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displacement, u and the first and second derivatives of displacement with respect to 

time, t (velocity and acceleration respectively): 

1st derivative of displacement �� � ���� � ��������, � 

2nd derivative of displacement � � �!���! � ���� � "�����#"���$, " 

 

The simplest representation of a dynamic system is a single DOF system. In this 

system, the time-varying displacement of the structure is defined by one component 

of motion, u(t). The velocity and acceleration are derived from u as shown above. 

Figure 5-3 shows the basic components of a dynamic system. 

 

Figure 5-3 – Basic components of a single DOF dynamic system. 

 

Equation (5.2) is the equation of motion that represents the equilibrium condition of 

this system at each point in time. It is the solution of this equation that is the 

objective of dynamic analysis. 

%� &�' ( )�� &�' ( *�&�' � +&�' (5.2) 

 

Dynamic analysis can be split into two basic categories: free vibration and forced 

vibration. 

Free vibration 

Free vibration can be used to analysis the basic characteristics of a system, 

specifically the structural natural frequencies and mode shapes. No load is applied, 

 

m 

p(t) 

u(t) 

b k 

m = mass (inertia) 

b = damping (energy dissipation) 

k = stiffness (restoring force) 

p = applied force 

u = displacement of mass 
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so p(t) in (5.2) is equal to 0. If damping is not included then ,-� &.' � 0 also. 

Therefore the equation of motion for undamped free vibration is 

%� &�' ( *�&�' � / (5.3) 

This has a solution of the form �&�' � 01�$2$� ( 3��12$� (5.4) 

where ωn is the angular natural frequency 45/�. A and B are integration constants 

determined by considering the system’s initial conditions for displacement and 

velocity: 

3 � �&� � /' 

0 � �� &� � /'2$  
(5.5) 

 

Substitution into (5.4) gives: 

�&�' � �� &� � /'2$ 1�$2$� ( �&� � /'��12$� (5.6) 

 

The displacement motion represented by (5.6) is a sinusoidal wave, as shown in 

Figure 5-4 for an undamped single DOF system (damping ratio, 7 � 0). 

 

Figure 5-4 – Displacement motion of an undamped single DOF system. 

 

With regards to damping, if the system is critically damped, i.e. there are no 

oscillations while it returns to its equilibrium position, the solution takes the form: �&�' � �8)�/!%&01�$2�� ( 3��12��' (5.7) 
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where 9: � 9;41 = 7>, and the damping ratio 7 � ,/,?@, where the critical 

damping ratio ,?@ � 2√5� � 2�9;. In this case of critical damping, the value of 

the damping ratio, 7 � 1. 

Figure 5-5 shows the typical displacement with respect to time in the case of 

underdamping where the system oscillates with reducing amplitude. In this case the 

value of the damping ratio is 0 C 7 C 1. 

     

Figure 5-5 – Displacement motion of an underdamped single DOF system. 

 

For free vibration analysis, the generalised eigenproblem is: 

��D� � EF�D� (5.8) 

where G� is the stiffness matrix, H� is the mass matrix, and the solutions are the 

eigenvalues, λ, which represent the square of the natural frequencies, and the 

eigenvectors I� which represent the mode shapes at these natural frequencies. 

There are several methods available for the eigenvalue analysis of structures to 

calculate their natural frequencies and mode shapes. These can be split into two 

categories: transformation and tracking methods. With the transformation methods, 

the eigenvalue equation is transformed first into a special form from which the 

eigenvalues can be easily extracted. With tracking methods, the eigenvalues are 

extracted one at a time iteratively. There are several methods within each category 

although commonly recommended is the Lanczos method, which spans both 

Time, t 
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transformation and tracking categories. It combines their best characteristics and 

therefore has the reliability of the transformation methods and the efficiency of the 

tracking methods. It achieves this by only carrying out the calculations necessary to 

find the roots the user has requested. 

Forced vibration 

This analysis method considers the effect of an applied load on the system’s 

response and the type of loading determines the form of the solution. The simplest 

loading is simple harmonic (sinusoidal) and in this case, the process is known as 

harmonic response analysis. The response of the structure depends on its natural 

frequencies and the applied loading frequency. If the response is required at 

multiple frequencies, then the process is carried out several times using a defined 

frequency sweep. P(t) in (5.2) is no longer equal to 0 as it was in the free vibration 

analysis, but is now JK�L9. as shown in (5.9): 

%� &�' ( *�&�' � +1�$2� (5.9) 

The solution of this takes the form: 

�&�' � 01�$2$� ( 3��12$� ( +/*M = 2!/2$! 1�$2� (5.10) 

 

 

where N � O� &PQR'ST = SU/VWX8SY/STY ZST and [ � -&. � 0'. 

The steady state solution portion of (5.10) is a function of the applied loading and 

the ratio of the frequency of the applied loading to the natural frequency of the 

structure. With damping included the equation of motion is: 

%� &�' ( )�� &�' ( *�&�' � +1�$2� (5.11) 

 

Initial condition solution Steady state solution 
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Owing to the presence of damping, the initial conditions usually decay too quickly 

for them to be important so this portion of (5.10) can be ignored. The solution for 

the steady state response is then: 

�&�' � &+/*'1�$&2� ( \'
]WM = 2!/2$!Z! ( &!^2/2$'! 

(5.12) 

where the phase angle (phase lead), _ � =.`L8X a >bS/STX8SY/STYc. This is required 

because in a damped system, the loading and response are separated by a time 

interval. 

There are two commonly used methods for solving harmonic analysis problems: 

the direct method and the modal superposition method. The direct method solves 

the coupled system equations in terms of forcing frequency directly. The modal 

method makes use of the structural mode shapes to reduce and uncouple the 

equations of motion. This makes the numerical solution more efficient. The choice 

of which method to use depends on the analysis problem. Guidelines for this 

decision are shown in Table 5-1. 

 Modal Direct 

Small model  � 
Large model �  
Few excitation frequencies  � 
Many excitation frequencies �  
High frequency excitation  � 
Non modal damping  � 
Higher accuracy  � 
Table 5-1 – Comparison of suitability of solving method for different problems. 

 

The output of forced vibration analysis is the nodal response of the structure at each 

forcing frequency, such as that shown in Figure 5-6a. Without any damping, the 

response at the structural natural frequencies would be infinite. Clearly this is 

unrealistic as all structures have some degree of damping, so to obtain accurate 

amplitudes, damping should be included, as shown in Figure 5-6b. When looking to 
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obtain accurate amplitudes, the frequency increment should be small enough to 

ensure the actual peak is captured. 

 

 

Figure 5-6 – a) Example frequency dependent structural response, b) effect of damping on 

response amplitude. 

 

Up to this point, this chapter has introduced FEA as an approximate method for 

structural analysis. It has focused on beam and shell elements, and on static and 

dynamic analysis. These were the topics most relevant for the work in this thesis. 

FEA was used for the structural optimisation portion of the work and more details 

on the implementation of this can be found in chapter 8. 

The rest of this chapter covers transmission line analysis which was used for the 

bore profile optimisation aspects of the work.  

 

5.3 Transmission Line Analysis 

This section begins with an explanation of the fundamental equations for 

propagation of a wave. It covers how these can be simplified into a one 

dimensional transmission line model which is suitable for air-column bore profile 

optimisation. This was the approach used for the bore profile optimisation work 

detailed in chapter 7. It is intended that chapters 2 and 3 be read prior to reading 

this section. 
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5.3.1 Equations for acoustic wave propagation 

This section will include the derivation of the relevant wave equations and how 

they can be simplified depending on the application of the model. The physics 

behind lip-reed instrument sound production is very complex and involves many 

effects to be taken into account to fully describe the air flow through the 

instrument. Noreland (2003a) summarises what effects could be taken into account 

when creating models and makes the point that taking all of these into account in 

one model would require “enormous computational resources”. These effects are: 

1. Variation of wavelength. This would require 3D modelling. 

2. Air dynamics modelled by Navier-Stokes equation including thin boundary 

wall layers, non-linearities, and turbulent flow that can appear in the 

mouthpiece. This would require a large number of mesh nodes for 

discretisation. 

3. Non-rigid walls – the walls are not completely rigid and some of the energy is 

lost to wall vibrations. This would require incorporation of the wall vibration 

effect. 

4. Players’ lip movement and mouth cavity volume. This would require accurate 

lip modelling. 

 

While the above effects are all important, they tend to be important in different 

parts of the instrument and in different playing conditions. For the most part of the 

instrument, the tubing is narrow and the wave propagation is, to a good 

approximation, 1D. The parts of the instrument in which the 1D approximation is 

no longer valid are the parts with rapidly changing geometry (e.g. bell). In these 

parts, finite element, finite-difference or boundary-element analysis can be used as 

more valid methods. However, the bell part is much wider than the rest of the 

instrument and, hence, the wall losses are much less significant and do not need to 

be included in the model. This has lead to the development of hybrid modelling 

methods (Noreland 2002). Caussé et al (1984) stated the requirements for a 

computer model of a musical instrument of this type as: 

1. Parametrically controlled geometry.  
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2. Geometry which is accurate and corresponds to actual instrument geometry 

taking into account the detail of the bore variations and discontinuities.  

3. Run at sufficient speed. 

4. Sufficiently precise – i.e. taking account of all relevant instrument 

physics/behaviour (as discussed above). 

Replacing nonlinearity with linearity is another simplification that is often used 

with lip-reed instrument models. When the pressure level is low, non-linear effects 

do not need to be considered in a first approximation. At ‘piano’ or ‘soft’ levels it 

can be considered linear (Caussé et al 1984). However the speed of wave 

propagation can depend on the amplitude of the wave and during the playing of 

‘fortissimo’ or ‘very loud’ music, the pressure can reach up to 20kPa and a sound 

level of 175dB (Noreland 2003a). In these cases, shockwaves can be formed and it 

is no longer valid to consider a linear model as accurate. 

The Navier-Stokes equations describe the motion of fluids. The 1st of these 

equations is the continuity equation and corresponds to the fact that matter cannot 

vanish or appear from nothing (i.e. be created or destroyed). The 2nd equation is the 

momentum conservation equation, which states that changes in momentum only 

happen when there is an external force. These forces are convective, viscous, 

pressure and other forces. The 3rd equation is the energy conservation equation, 

which is basically the 1st law of thermodynamics applied to fluids. 

The Navier-Stokes equations are complex to solve but there are some 

simplifications which can be made. Kausel (2003) and Liu et al (2005) explain that 

to adapt the Navier-Stokes equations for application to typical conditions of linear 

acoustics, it is common to zero all mean flow related terms, neglect heat 

conduction, neglect viscosity, neglect gravity, and assume only small changes of 

pressure and density around their atmospheric values (thereby making linearity 

valid). 

Once the above simplifications have been made, what remains is the wave equation 

which is commonly applied to sound propagation studies in free air or in musical 
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instruments. It is also applicable to light and water waves. For an infinitely long 

horn, the wave equation is (Fletcher and Rossing 1998): 

d>J � 1�> e>Je.>  (5.13) 

where p is the acoustic pressure, c is the speed of sound in air, t is time, and d> is 

the Laplace operator which is defined in 3D cartesian coordinates as: 

d>J � e>Jef> ( e>Jeg> ( e>Jeh> (5.14) 

(5.13) is subject to the condition that on the boundaries: 

L ∙ dJ � 0 (5.15) 

where n is a unit vector normal to the boundary at the point considered. By 

supposing the wave to have a frequency ω, (5.13) is reduced to the Helmholtz 

equation: 

&d> ( k>'J � 0 (5.16) 

where k = ω/c. 

The eigenvalues of the Helmholtz equation correspond with the resonant 

frequencies of the instrument and the eigenfunctions correspond with the mode 

shapes of the wave as it propagates (Kirkup 2007).  According to Fletcher and 

Rossing (1998) who refer to work by Morse and Feshbach (1953), the Helmholtz 

equation is only separable in coordinates that are confocal quadric surfaces or their 

degenerate forms, and only a few of these are suitable for horns. Confocal quadric 

surfaces are quadratic surfaces that share the same focal point. Circular cylindrical 

coordinates and spherical coordinates (conical horn) are both suitable forms. 

The complex geometry of air-column instruments can be considered to be 

comprised of various cavities, tubes and horns connected together in a fairly simple 

way (Fletcher and Rossing 1998). The following section details how transmission 



Analysis Methods 5 

 

 63 

 

line modelling (TLM) can be used as a way of discretising the horn into multiple 

cylindrical and conical segments which are simpler to solve. 

5.3.2 From the wave equation to transmission line matrix elements 

The main source for this section is Fletcher and Rossing (1998). 

Plane Waves 

Plane waves will be introduced first before moving on to spherical waves. Sound 

waves propagate from a point source in a spherical manner. At a distance far from 

the source, a section of a wavefront can be treated as a plane normal to the direction 

of propagation. Idealising the situation, these planes can be extended to infinity to 

leave only one space coordinate, x, measuring distance in the direction of 

propagation. The wave equation can be derived through the following working. 

Figure 5-7 shows ξ  as the displacement of the air during passage of a sound wave, 

so that the element ABDC of in-plane thickness dx moves to A’B’D’C’. 

 

Figure 5-7 – Propagation of a plane wave through a pipe (Fletcher and Rossing 1998). 
 

Taking S to be the area normal to x, the volume of the element A’B’D’C’ becomes: 

1V dV Sdx
x

ξ∂ 
+ = + 

∂ 
 (5.17) 

Taking pa as the total pressure of the air, the bulk modulus2 K is defined by: 

                                                 
2 The bulk modulus of a substance measures the substance's resistance to uniform compression. It is defined 
as the ratio of pressure to relative change in volume. 
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a

dV
dp K

V
= −  (5.18) 

The small, varying part dpa of pa can be called the sound or acoustic pressure, and 

can be written simply as p. Incorporating values of dV and V into (5.18) from (5.17) 

gives: 

p K
x

ξ∂
= −

∂
 (5.19) 

The motion of the element ABDC must be described by Newton’s equations. 

Setting the pressure gradient force in the x direction equal to mass times 

acceleration gives: 

2

2

p
S dx Sdx

x t

ξ
ρ

∂ ∂ 
− = 

∂ ∂   

(5.20) 

which simplified is: 

2

2

p

x t

ξ
ρ

∂ ∂
− =

∂ ∂
 (5.21) 

Substituting p from (5.19) into (5.21) gives: 

2 2

2 2

K

t x

ξ ξ

ρ

∂ ∂
=

∂ ∂
 (5.22) 

By differentiating (5.22) again with respect to x and (5.19) twice with respect to t 

gives: 

2 2

2 2

p K p

t xρ

∂ ∂
=

∂ ∂
 (5.23) 

 

(5.22) and (5.23) are both versions of the one-dimensional wave equation; (5.22) 

refers to the acoustic displacement ξ  and (5.23) refers to the acoustic pressure p. 

Because the wave propagation is in air in this case, it is necessary to decide whether 

the elastic behaviour is isothermal3 or adiabatic4. The temperature will rise in the 

                                                 
3 An isothermal process is a thermodynamic process in which the temperature of the system stays constant:

constantap V nkT= = , where T is the absolute temperature. 
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parts of the wave where compression occurs and will fall where there is expansion. 

To determine whether it is isothermal or adiabatic behaviour, the amount of thermal 

conduction that takes place between these two sets of regions needs to be found. At 

ordinary acoustic wavelengths the pressure maxima and minima are so far apart 

that no appreciable conduction takes place, and so the behaviour is adiabatic. Only 

at very high or low frequencies does it become isothermal, those outside of the 

range of interest here. The equation for adiabatic behaviour is: 

constant
a

p V
γ =  (5.24) 

where γ=Cp/Cv=1.4 (ratio of specific heats of air at constant pressure and at 

constant volume) and pa is the average atmospheric pressure. 

Using logarithmic differentiation on (5.24) and using (5.18) gives: 

aK pγ=  (5.25) 

(5.23) then becomes: 

2 2
2

2 2

p p
c

t x

∂ ∂
=

∂ ∂
 (5.26) 

where 2
a

c K pρ γ ρ= = . 

The possible solutions of the wave equation have the form: 

( ) ( ) ( )1 2,p x t f x ct f x ct= − + +  (5.27) 

where f1 and f2 are completely general continuous functions of their arguments.  

It is usual to treat (5.26) in the frequency domain where the solutions have the 

form: 

                                                                                                                                                    
4 An adiabatic process is a thermodynamic process in which no heat is transferred to or from the working 

fluid:
 

constant
a

p V
γ = , where 1.4

p v
C Cγ = =  (ratio of specific heats of air at constant pressure and 

at constant volume). 
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jkx j t jkx j t
p Ae e Be e

ω ω−= +  (5.28) 

where A and B terms represent waves travelling to the right and the left 

respectively, and k � √=1 . 

Considering a wave of angular frequency ω travelling in the +x direction, then B=0 

and A=1 in (5.28) giving: 

 (5.29) 

Pressure p and displacement ξ  can be connected through (5.21): 

jkp j
t

ξ
ρω

∂
=

∂
 (5.30) 

or using u for the acoustic fluid velocity tξ∂ ∂  and substituting 5 � 9 �⁄ , then: 

p cuρ=  (5.31) 

The acoustic pressure and acoustic fluid velocity in the propagation direction are 

therefore in phase in a plane wave. This makes it useful to define a quantity z called 

the wave impedance: 

p
z c

u
ρ= =  (5.32) 

The wave equation (5.26) is one dimensional. In 3D, this becomes: 

e>Je.> � �>d>J (5.33) 

where d> is the Laplace operator as was defined in (5.14). 

This differential equation can be separated in several coordinate systems to give 

simple treatments of wave behaviour. Among these are rectangular coordinates, 

leading simply to three equations for plane waves of the form of (5.27), and 

spherical coordinates which are considered later. 

 jkx j t
p e e kx t

ω−= → − +
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The above equations have neglected second-order terms by assuming that J ≪ Jn 

so that the resulting wave equation (5.26) or (5.33) is linear. This simplification is 

an adequate approximation even in the very intense sound fields that exist inside a 

trumpet. 

Spherical Waves 

If a time dependence j t
e

ω  is assumed, the wave equation (5.33) takes the form: 

2 2 0p k p∇ + =  (5.34) 

 

This equation is known as the Helmholtz equation and is easily separable. In 

spherical coordinates, the Laplace operator is: 

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

p p p
p r

r r r r r
θ

θ θ θ θ φ

∂ ∂ ∂ ∂ ∂   
∇ = + +   

∂ ∂ ∂ ∂ ∂   
 (5.35) 

where r is the radial distance, θ is the inclination angle and φ  is the azimuth angle. 

The solution to (5.34) is the sum of a series of products of radial functions 

multiplied by spherical harmonics. The intensity pattern can therefore be very 

complicated. However, looking just at the simplest case where p has no dependence 

on θ  or φ  and just spreads out uniformly from a single point, (5.35) becomes: 

2 2

2

1 p
p r

r r r

∂ ∂ 
∇ =  

∂ ∂ 
 (5.36) 

Further simplification is possible by assuming p rψ=  in (5.34) where ψ is the 

wave function: 

2
2

2
0k

r

ψ
ψ

∂
+ =

∂
 (5.37) 

which is simply the 1D wave equation with different terms. The general solution 

for p is therefore a superposition of an outgoing and an incoming wave given by: 
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jkr jkr j tA B
p e e e

r r

ω− 
= + 
 

 (5.38) 

To find the acoustic particle velocity u, the following can be used: 

u p
p

t r
ρ

∂ ∂
= −∇ = −

∂ ∂
 (5.39) 

where the second form of writing is possible since p only depends on r and t.  So to 

find u for the case of an outgoing wave (i.e. B=0): 

1
1 jkr j tA

u e e
r c jkr

ω

ρ
− 

= + 
 

 (5.40) 

The wave impedance for a spherical wave depends on distance from the origin, and 

has the value: 

1

p jkr
z c

u jkr
ρ
 

= =  
+ 

 (5.41) 

 

Propagation in an infinite cylindrical pipe 

The explanation of wave propagation in a pipe will start with the simplest system 

which is an infinite cylindrical pipe with its axis parallel to the direction of 

propagation of a plane wave in the medium. Presuming the pipe walls are rigid, 

perfectly smooth, and thermally insulating, the tube walls have no effect on the 

wave propagation. A pressure wave propagating in the x direction has the form: 

( ) ( ), expp x t p j kx tω = − +   (5.42) 

The resultant acoustic volume flow is: 

( ) ( ), exp
Sp

U x t j kx t
c

ω
ρ

 
 = − +   

 
 (5.43) 

where ω is the angular frequency and S is the pipe cross-sectional area. 
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The acoustic impedance of the pipe at any point x is: 

0

( , )
( )

( , )

p x t c
Z x

U x t S

ρ
= =  (5.44) 

Treating this problem in more detail requires the wave equation to be solved in 

cylindrical polar coordinates ( , ,r xφ ). If a is the radius of the pipe and its surface is 

again taken to be perfectly rigid, then the boundary condition is: 

0
p

r

∂
=

∂
 at r=a (5.45) 

This implies that there is no net force and therefore no flow normal to the wall. The 

wave equation in cylindrical coordinates is: 

2 2 2

2 2 2 2 2

1 1 1p p p p
r

r r r r x c tφ

∂ ∂ ∂ ∂ ∂ 
+ + = 

∂ ∂ ∂ ∂ ∂ 
 (5.46) 

which has solutions of the form: 

( ) ( ) ( )cos
sin, , expmn

mn m mn

q r
p r x p m J j k x t

a

π
φ φ ω

 
 = − +   

 
 (5.47) 

where Jm is a Bessel function and qmn is defined by the boundary condition 

specified in (5.45), so that the derivative ( )'
m mnJ qπ  is zero. 

The thickness of the viscous boundary layer affects the relative magnitude of the 

drag caused by the wall. A convenient parameter to use to describe this effect is the 

ratio of pipe radius to boundary layer thickness: 

1 2

v

p
r a

ω

η

 
=  
 

 (5.48) 

where η is the fluid viscosity.  

Thermal exchange between the air and the walls adds a lossy resistance to the 

otherwise compliant compressibility of the air, and the relative magnitude of this 



Analysis Methods 5 

 

 70 

 

loss depends on the ratio of the pipe radius, a, to the thermal boundary layer 

thickness, as expressed by the parameter: 

1 2

p

t

C
r a

k

ωρ 
=  
 

 (5.49) 

where Cp is the specific heat of air at constant pressure and k is its thermal 

conductivity. The effect of these two loss terms will be to change the characteristic 

impedance, Z0, of the pipe from its ideal real value to a complex quantity. This, in 

turn, will make the wave number, k, complex and lead to attenuation of the 

propagating wave as it passes along the pipe. 

Propagation in a finite cylindrical pipe 

Clearly real pipes are not infinite and so the reflection of the wave from the remote 

end must be allowed for. The impedance at the remote end of the pipe is termed the 

termination or load impedance ZL (at length L). The pressure in the pipe is a 

superposition of two waves, moving in both directions along the pipe, with 

amplitudes A and B, taken as complex quantities so that they can include a phase 

factor. Therefore, at point x: 

( ), jkx jkx j t
p x t Ae Be e

ω− = +   (5.50) 

The acoustic particle velocity is also a superposition of the particle velocities 

associated with these two waves and so multiplying this by S, the acoustic volume 

flow becomes, from (5.44): 

( ), jkx jkx jwtS
U x t Ae Be e

cρ
− 

 = −   
 

 (5.51) 

At the remote end x=L, pressure and flow are related as required by the terminating 

impedance ZL, so that 

( )
( )

,

, L

p L t
Z

U L t
=  (5.52) 
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As shown in (5.44), the pipe characteristic impedance is: 

0

c
Z

S

ρ
=  (5.53) 

To find the complex ratio B/A: 

( )
( )

02

0

LjkL

L

Z ZB
e

A Z Z

−
 −

=  
+  

 (5.54) 

and the power reflected from ZL has a ratio to incident power of: 

22

0

0

L

L

Z ZB
R

A Z Z

−
= =

+
 (5.55) 

Equations (5.50) to (5.53) can be used to calculate the input impedance ZIN at the 

point x=0: 

0IN

A B
Z Z

A B

+ 
=  − 

 (5.56) 

or from equation (5.54): 

0
0

0

cos sin

sin cos
L

IN

L

Z kL jZ kL
Z Z

jZ kL Z kL

 +
=  

+ 
 (5.57) 

 

Propagation in a conical pipe 

Having dealt with infinite and finite cylindrical pipes, this section now discusses 

conically shaped pipes, which are a particular type of horn. Formulation of the 

wave propagation problem in an infinitely long horn requires the solution of the 

wave equation: 

2
2

2 2

1 p
p

c t

∂
∇ =

∂
 (5.58) 
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subject to the condition that . 0n p∇ =  on the boundaries, n being a unit vector 

normal to the boundary at the point considered. Basically, it is supposed that the 

wave has a frequency ω so that (5.58) becomes the Helmholtz equation: 

2 2 0p k p∇ + =  (5.59) 

Solution of this equation is simple provided that a coordinate system is chosen 

which has one coordinate surface that coincides with the walls of the horn and in 

which (5.59) is separable. Assuming a spherical shape to the wave fronts that are 

orthogonal to the horn walls is exact for a conical horn but only an approximation 

for other horns. For a plane wave case, the wave equation is of the form: 

2

2 2

1 1p p
S

S x x c t

∂ ∂ ∂ 
= 

∂ ∂ ∂ 
 (5.60) 

which is also known as the Webster equation. Webster derived this for the plane 

wave case, which is only applicable to horns that are not rapidly flaring. This was 

subsequently modified for spherical wavefronts. Constant pressure is assumed 

throughout the element, which is the same as assuming separability. This is a 

reasonable approximation for non-rapidly flaring horns. The following 

transformation is then made: 

1 2
p Sψ −=  (5.61) 

in the reasonable expectation that, with the even spreading of wave energy across 

the wavefront, ψ  should be essentially constant in magnitude, independent of x. If 

p is also assumed to vary with angular frequency ω and S is written in terms of a 

local equivalent radius a: 

2
S aπ=  (5.62) 

(5.60) then becomes: 

2 2
2

2 2

1
0

a
k

x a x

ψ
ψ

 ∂ ∂
+ − = 

∂ ∂ 
 (5.63) 



Analysis Methods 5 

 

 73 

 

The frequency kcω =  for which we have equality is called the cutoff frequency at 

this part of the horn. A visual estimate of the magnitude of F at a given position x 

can be made by observing that a is essentially the transverse radius of curvature RT 

of the horn at point x, while &�>` �f>⁄ '8X is close to the external longitudinal 

radius of curvature RL, provided that the wall slope da dx  is small. Therefore: 

1

L T

F
R R

≈  (5.64) 

 

This is no longer a good approximation when the wall slope is large and so the 

following equation should be used: 

2

2

1 d a
F

a dx
=  (5.65) 

with a interpreted as the equivalent internal radius measured along the wavefront as 

discussed previously. 

A simple theoretical example is a Salmon horn (Salmon 1946) for which the horn 

function F, and therefore the cutoff frequency ω0, is constant along the whole 

length of the horn. From (5.65), this implies: 

mx mx
a Ae Be

−= +  (5.66) 

where 2
F m=  and m is the flare constant.  

(5.66) can be rewritten as: 

( ) ( )0 cosh sinha a mx T mx = +   (5.67) 

where T is a parameter that controls the shape of the horn. The pressure wave in the 

horn then has the form: 

2 2
0 j t j k m xp

p e e
a

ω − − 
=  
 

 (5.68) 
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and is non-propagating if k<m.  

These expressions should strictly all be interpreted in terms of curved wavefront 

coordinates, but it is usual to neglect this refinement and simply use the plane-wave 

approximation. The values for a for different types of horn can be found as follows: 

For 1T = , it is an exponential horn: 

( )0 expa a mx=  (5.69) 

For 0T = , it is a catenoidal horn: 

( )0 cosha a mx=  (5.70) 

For 01T mx=  and 0m → , it is a conical horn, which is the form that was of 

interest for this work: 

0

0

1
x

a a
x

 
= + 

 
 (5.71) 

with its vertex at –x0 and a semiangle of ( )1
0 0tan a x

− . 

 

5.3.3 Transmission Line Modelling 

Transmission Line Modelling (TLM) is commonly used when looking at waves 

propagating through a waveguide. This modelling technique was introduced in 

chapter 3. It is a compromise in complexity and accuracy between Finite Element 

Analysis (FEA) and the simple lumped parameter model, but has proved to be 

accurate enough up to 1500Hz (Kausel 1999), and wall losses can be taken into 

account. Fundamentally the approach taken by TLM is to produce a discrete model 

which is then solved exactly numerically. Approximations are only made at the 

stage of discretisation. This is different to the traditional approach of using an 

idealised continuous model which is then only solved approximately. 
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The main advantage of TLM is that it is simple to use for a large range of 

applications and more accurate than the classical plane wave model (El-Masri et al 

1996). Because of its lower computational requirement, it lends itself to 

optimisation problems (Kausel 1999) where many iteration loops are required. As 

was explained in chapter 3, TLM makes use of simple geometric segments to build 

up the geometry of a waveguide as shown in Figure 5-8 applied to a brass 

instrument. 

 
Figure 5-8 – Waveguide modelling using truncated conical and cylindrical segments (marked 

in red). 

 

5.3.4 Calculating Input Impedance from Bore Geometry 

There are two general types of transmission line segments: cylindrical and conical. 

There are also loss-free and dissipative versions of both of these types. This section 

details how the dissipative versions of both cylindrical and conical segments are 

combined to form a bore geometry and how to calculate the input impedance from 

that. The calculation steps were coded using MATLAB and the code for this can be 

found in appendix 12.1. 

A wind instrument can be described as an impedance transformer between the 

player and their surroundings. The transmission or transfer matrix, H for a conical 

or cylindrical segment is denoted by: 

o � poXX oX>o>X o>>q (5.72) 

 and the input impedance, ZIN calculated as: 

Conical 
segment 

Cylindrical 
segment 
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rst � oX> ( oXXruo>> ( o>Xru (5.73) 

where ZL is the radiation impedance seen from the end of the instrument. 

The transmission matrix elements are calculated for dissipative cylindrical 

segments (Figure 5-9) as follows, based on calculations from Mapes-Riordan 

(1993). 

 

Figure 5-9 – Dissipative cylindrical segment representation 

 oXX � cosh&z{' oX> � r? sinh&z{' o>X � 1r? sinh&z{' o>> � cosh&z{' 

(5.74) 

where Q is the complex propagation wave number:  

z � 5 �1.045�� ( 1.080��> ( 0.750��� ( k �1 ( 1.045�� �� (5.75) 

where the free wave number k = ω/c, the radian frequency ω = 2πf and c is the 

speed of sound in air (see Table 5-2). And where rv is the ratio of the radius of the 

tube to the thickness of the viscous boundary layer: 

�� � ��9�L�  (5.76) 

where ρ is the equilibrium gas density (see Table 5-2), S is the cross sectional area 

(πr2), n is the shear viscosity coefficient (see Table 5-2), and Zc is the complex 

characteristic impedance: 

L 

r0 r1 
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r? � rR ��1 ( 0.369�� � = k �0.369�� ( 1.149��> ( 0.303��� �� (5.77) 

where Z0 is the characteristic impedance (which considers the ideal case of an 

infinite cylindrical pipe with no reflections): 

rR � ���  (5.78) 

 

The transmission matrix elements are calculated for dissipative conical segments 

(Figure 5-10) as follows, based on calculations from Mapes-Riordan (1993). 

 
Figure 5-10 – Dissipative diverging conical segment representation. 

 oXX � �fXfR� �cosh&z{' = � 1zfX� sinh&z{'� 
oX> � �fRfX� r? sinh&z{' 
o>X � � 1r?� ��fXfR = � 1zfR�>� sinh&z{' ( � z{&zfR'>� cosh&z{'� 
o>> � �fRfX� �cosh&z{' ( � 1zfR� sinh&z{'� 

(5.79) 

where 

fR � �R{{>  (5.80) 

where L is the segment length and can be found using Pythagoras’ theorem: 

{ � ]{X> ( {>>  (5.81) 

x1 

x0 

L 

L1 

r0 
r1 
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and 

{> � �X = �R (5.82) 

 

Entity Value 

c, speed of sound 3.4723 x 102(1 + 0.00166∆T) ms-1 

n, shear viscosity 1.846 x 10-5(1 + 0.0025∆T) kgs-1m-1 

ρ, equilibrium gas density 1.1769 x (1 – 0.00335∆T) kgm-3 
Table 5-2 – Thermodynamic constants. ∆T is the temperature deviation from reference 

temperature of 300K (26.85°C). Values are accurate at standard atmospheric pressure for 

290K ≤ T ≤ 310K. Fletcher and Rossing (1998). 

 

Once a transmission matrix H has been found for each segment, the transmission 

matrix for the whole instrument can be found by calculating the product of all the 

individual matrices: 

o�@�: � oXo>o� … o� (5.83) 

where Hi is the transmission matrix of the ith element from the left. (5.73) showed 

how the input impedance ZIN can be calculated from Hprod and the radiation 

impedance ZL. 

Calculating the radiation impedance, ZL or ZR is different for cylindrical and conical 

segments. The radiation impedance is the loading on the air column at the bell end 

of the instrument, and the way in which the sound radiates into the room as it 

leaves the bell needs to be included in a model. Mapes-Riordan (1993) gave a brief 

overview of the different ways that have been used in the literature to calculate the 

radiation impedance. For the original references the reader is directed to his paper. 

There are many ways to do this but they all make assumptions that rarely simulate 

real life conditions; this is why this part of the model is the most ambiguous, 

particularly for models with large mouth flares. It is also not always clear before 

starting which of the radiation impedance models will be most suitable for a given 

horn contour (Noreland 2002). In the different methods, the mouth of the 

instrument has been considered to be: 



Analysis Methods 5 

 

 79 

 

1. A massless circular piston in an infinite baffle a) with a flare, b) without a flare 

2. An unbaffled massless circular piston a) with a flare, b) without a flare 

3. A spherical cap vibrating radially in a stationary sphere 

4. A hemisphere. 

For this model, the method used by Caussé et al (1984) was used because they 

develop the formula for an un-flanged cylindrical pipe into one that can be used for 

conical segments with spherical wave fronts which is more realistic for the bell 

part. Because the bell part of the instrument will be constructed of conical 

segments, this was considered more appropriate. They use two formulae to 

calculate the planar version, based upon a value for z which is the product of the 

wavenumber k and the radius r of the bell. If z < 1.5, 

r��� � h>4 ( 0.0127h� ( 0.082h� ln h = 0.023h�
( k&0.6133h = 0.036h� ( 0.034h� ln h = 0.0187h�' 

(5.84) 

If 1.5 < z < 3.5, 

r��� � k tan&5∆� ( 0.5k ln �' (5.85) 

where R is the reflection coefficient given by: 

� � �8>√�h p1 ( � 332� � 1h>�q (5.86) 

and ∆l is the end correction given by: 

∆� � 0.634 = 0.1102h ( 0.0018h> = 0.00005h�.  (5.87) 

Adaptation of this for spherical wave fronts is given by: 

r�_¢£¤ � r� ���¥  (5.88) 
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where Sp and Ss are the cross sectional area (planar wave front) and the spherical 

wave front area respectively at the open end of the cone. Sp is calculated as: 

�� � &��R>'2 a1 ( �X{ c (5.89) 

and Ss as: 

�¥ � �&�R ( �X'>16  (5.90) 

where r0 and r1 are the radii of the last segment of the model. 

The difference in results between using spherical and planar wave fronts increases 

with increasing conical segment angle (Mapes-Riordan 1993). To plot input 

impedance against frequency, transmission matrices must be found at each 

frequency required. Only the real part of the resulting input impedance value can be 

plotted, and this corresponds to the magnitude. The imaginary part corresponds to 

the phase. 

 

5.4 Summary 

This chapter detailed the analysis methods used for the work in this thesis. It 

comprised two main sections: Finite element analysis and transmission line 

analysis.  

The first section introduced FEA as an approximate method for structural analysis, 

focusing on beam and shell elements, and on dynamic analysis. These were the 

FEA topics of primary use in the work contained in this thesis. FEA operates on the 

principle that a complex body which is difficult to analyse as a whole can be 

discretised into smaller elements. Each of these elements can be more easily 

analysed individually and then the results can be combined to provide a measure of 

the overall body. 
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The same discretisation principle is used by TLM where the whole instrument bore 

is represented by a series of cylindrical and conical segments. This analysis 

technique has been used by others in the literature for this application as it is 

efficient and sufficiently accurate up to 1500Hz which is the upper limit of the 

range for the instruments in question. This section covered the simplification of the 

general wave equations to the 1D transmission line model and explained how this 

could be used to model waveguides using the input impedance. 

The next chapter will look at optimisation methods in general with focus on the 

specific methods used in this thesis. It will explain how they can be integrated with 

FEA and TLM to iteratively modify the model based on acoustic and structural 

responses. The bore profile optimisation work is contained in chapter 7 and the 

structural optimisation work is contained in chapters 8 and 9.  
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6 Optimisation Methods 
 

6.1 Introduction 

This chapter will introduce design optimisation and cover the general methods used 

and how they can be integrated with FEA. This is as a background to allow more 

detailed explanation of the specific methods used for this work. Optimisation is a 

term used to describe the process of finding the best solution to a specified 

problem. In the context of a real world problem the objective would be to find the 

best solution within the available means. It is these available means that form the 

basis of design constraints.  

This chapter begins with a brief introduction to design optimisation and then moves 

on to include more specific detail of the methods used in this work. 

 

6.2 What is optimisation? 

When discussing optimisation, it is useful to distinguish between different 

meanings of the term. The three main meanings are listed below: 

1) There is the optimum solution to a defined mathematical problem; the actual 

optimum is known as the global optimum but there are also usually many local 

optima. The result of any optimisation algorithm is usually a local optimum but 

the chances of finding a global optimum are increased when using stochastic 

based algorithms. It is also very difficult to prove that any particular result is 

indeed the global optimum.  

2) Any mathematical model is a simplification of reality; the global optimum of a 

mathematical model may not necessarily correlate with the global optimum in 

reality. Clearly, the extent of the model simplification depends on the accuracy 

required.



Optimisation Methods 6 

 

 83 

 

3) Often ‘optimisation’ actually means ‘improvement’ especially in the context of 

design engineering. In general, engineers or designers settle upon a final design 

through a process involving creativity, intuition, testing, analysis and redesign. 

This is usually an iterative process where the performance of design changes is 

assessed and the design is amended based on those results. This process, which 

relies heavily on the experience and skill of the engineer, usually provides good 

results but it is unlikely that the optimal solution would be found in this manner 

due to time constraints. This is especially the case with very complex problems. 

The purpose of mathematical optimisation is to minimise or maximise an objective 

function such that all constraints and convergence criteria are satisfied. This is 

achieved by varying the values of design variables. Figure 6-1a shows a function of 

one design variable. For such a simple function, the minimum is obvious by 

inspection and can be easily calculated. For an iterative numerical searching 

process, a computer needs to follow a robust set of rules to find the minimum. 

Figure 6-1b shows a slightly more complex function with two minima. The 

shallowest of these is known as a local minimum while the deepest is known as the 

global minimum. Figure 6-2 shows a more complex objective function of two 

design variables with many local minima and one global minimum. 

 

  

Figure 6-1 – a) Objective function y=x
2
 of one variable x with a minimum at x=0, and b) 

Objective function y=cos(3πx)/x for one variable x with local and global minima. 
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Figure 6-2 – More complex objective function for two variables x1 and x2 with many local 

minima and one global minimum. This function is known as Rastrigin’s function where the 

global minimum is located at (0,0): � � !/ ( ¦M! ( ¦!! = M/&��1!§¦M ( ��1!§¦!'. 

 

It is difficult for optimisation algorithms to find the global minimum for functions 

such as the one shown in Figure 6-2. This function is often used as a test case to 

evaluate the performance of optimisation algorithms because of its complexity. 

Gradient-based algorithms would struggle to find the global minima and would 

likely get stuck in a local minima. Stochastic based algorithms aim to increase the 

likelihood of finding the global optimum. It is difficult to know whether or not the 

result of an optimisation is actually the true global optimum and so in practice 

usually a result that is significantly better than the original or previous design is 

acceptable. Details of different algorithmic approaches can be found in section 6.4. 

Sometimes the global optimum is actually not the desired optimisation result. 

Robust optimisation aims to find a result that is significantly better than the original 

or previous design but has a degree of insensitivity to the variable and loading 

values. This reduces the significance of the inherent uncertainty of these values 

used in the optimisation model and ensures that the component performs well, not 

just at a narrow range of values. Figure 6-3 shows an objective function with a 

narrow valley (global minimum) and a wide valley (local minimum). In this case, a 

good result for a robust optimisation would be the minimum of the wide valley. 

The global minimum is indeed the best possible design but as soon as the value of 

x1 x2 
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the variable changes slightly, the performance reduces and can quickly become 

worse than the performance at the local minima.  

 

 

Figure 6-3 – Objective function example showing circumstances where robust optimisation 

may be required. While the local minimum does not perform as well as the global minimum at 

the design point, it is much less sensitive to variation in the optimisation parameters, such as 

variable values or loadings. 

 

6.3 Formulating an optimisation problem 

Quantitative treatment of an optimisation problem requires that it be formulated 

mathematically. The optimisation involves the specifying of a set of design 

variables, a design objective expressed in terms of the variables that can be 

minimised or maximised, and a set of design constraints, also expressed in terms of 

the variables. The purpose of the optimisation is then to calculate the optimal 

values for the design variables. The design variables x1, x2, …, xn are assembled into 

a vector x: 

¦ � &¦M, ¦!, … , ¦$'¨ (6-1) 

which belongs to a subset ©of the n-dimensional real space ª; i.e. 

¦ ∈ ¬ ⊂ ®$ (6-2) 

 ª; is used because it is usual for design optimisation problems to have real 

variables. The subset © could represent certain ranges of real values or certain 

types such as integer or standard values. The optimisation objective is expressed as 

a function of the design variables i.e. ¯&¦'. Constraints can be imposed on the 
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variables themselves (side constraints) or the response of the model (design 

constraints). Equality and inequality constraints are expressed respectively as: 

°&¦' � / (6-3) ±&¦' ² / (6-4) 

 

Vector sets of constraints can be defined where  

° � W°M, °!, … , °%MZ¨
 (6-5) 

± � W±M, ±!, … , ±%!Z¨
 (6-6) 

 

The formalised optimisation statement is then 

Minimise:  �&¦' 

Subject to: °&¦' � / ±&¦' ² / ¦ ∈ ¬ ⊂ ®$ 

(6-7) 

 

Often it is the case that there is more than one objective to the optimisation, which 

may conflict with another; for example, it may be required to minimise the mass 

and maximise the stiffness of a component. There are three main approaches to 

handling multiple objectives. Firstly, one of the objectives could be transformed 

into a constraint, so that the objective is to minimise mass while meeting a 

particular stiffness constraint target. This requires the stiffness constraint value to 

be known in advance. Secondly, the objectives could be aggregated into one 

objective through the use of a weighted sum, e.g. ³,k��.�´� �  &µ��¶·.X ¸�`KK' ( &µ��¶·.> ¸ K.���L�KK'. It is usually difficult to know a priori what 

weights to use and so this approach is quite subjective. Often the weights will need 

to be adjusted as understanding of the trade-offs becomes apparent. The third 

approach is to handle the multiple objectives simultaneously and obtain a Pareto 

(optimal) set of results which contains Pareto points of the design space. A point is 

considered Pareto if no feasible point exists that would reduce an objective without 

increasing the value of one or more of the other objectives. Once a Pareto set has 
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been generated, it provides the designer with a more comprehensive overview of 

the design space and an appropriate result can be chosen accordingly as shown in 

Figure 6-4. This process provides the designer with greater transparency over the 

design space, but ultimately a subjective weighting still has to be used to choose a 

design from the Pareto set. 

 

 
Figure 6-4 – Pareto optimal set of results for a multi-objective optimisation. A point is 

considered Pareto if no feasible point exists that would reduce an objective without increasing 

the value of one or more of the other objectives. The feasible set contains points that satisfy the 

optimisation constraints. 

 

6.4 Solving an optimisation problem 

6.4.1 Optimisation approaches 

There are generally two classes of optimisation algorithm, deterministic (gradient-

based) and stochastic (probabilistic or pseudo-random based). Gradient-based 

algorithms rely on variable-to-response sensitivity information which is calculated 

at each design iteration. This provides the optimiser with information about which 

direction to steer the optimisation to improve the value of the objective function. 

This approach is quite efficient but the result is usually just a local optimum 

because they cannot escape local optima. They are therefore sensitive to their 

starting point, i.e. the variables’ initial values. A different starting point would 

likely yield a different local optimum. When using optimisation techniques for 

design tasks in practice, this can be handled in two ways. Firstly, it may not be 

necessary to obtain the actual global optimum, as long as the result is better than 
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the previous best design. This would be more appropriately referred to as design 

improvement. Secondly, to give the gradient-based optimiser greatest chance of 

finding a global optimum, a suitable start point that is close to it could be used. This 

could be achieved through the designer’s own intuition and experience, and through 

initial analyses or testing. Gradient-based algorithms would only find a global 

optimum if the optimisation happened to start near it, or if the optimisation problem 

was very simple.  

Stochastic algorithms aim to improve the chances of locating the global optimum 

by including some randomness or probability in the process. This reduces the 

sensitivity of the optimisation results to the starting point. The gradient sensitivity 

information required for gradient-based algorithms requires the objective function 

and constraints to be differentiable. Usually, this requires the true objective 

function to be approximated into a simpler form that can be differentiated. 

Stochastic methods usually do not require this gradient information. 

6.4.2 Stochastic approach 
Stochastic algorithms are often based on mechanisms found in nature or the 

physical world and while they have the potential to locate a better result, they are 

computationally more expensive and can take a lot longer to converge than the 

gradient-based methods. Müller et al (2002) mention that it has been observed that 

those optimisation algorithms that are the most robust and are capable of solving 

the more complex design problems with multiple loads and constraints, have been 

inspired by natural mechanisms.  

Optimisation of structures in nature aims to conform to the axiom of uniform stress, 

as observed by Mattheck (1998), i.e. they aim to distribute their loading over their 

area to keep the stress uniform and avoid weak points. Examples of these structures 

are trees and bones. As well as structural optimisation, there are other examples in 

nature of optimisation processes. One of the most well known mechanisms of 

optimisation is the principle of natural selection in which genetic algorithms (GAs) 

use the principles of reproduction and inheritance of traits to ‘breed’ optimal 

designs (Goldberg 1953).  
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Other examples of natural principles of optimisation include foraging and 

clustering strategies for ants (Faber 1994, Dorigo et al 1999), the mating process 

for honey bees (Haddad et al 2006), the way female mosquitoes identify and attack 

their target (Bandyopadhyay et al 2006), the ways bacteria react to chemo-

attractants in concentration gradients (Müller et al 2002), the way flocks of birds 

and schools of fish move in a coherent manner (Venter and Sobieszczanski-

Sobieski 2003, 2004), and the way humans and some animals use their memory to 

remember previous bad solutions and to not return to them (Glover 1989, 1995, 

Taillard 1991, Smyth et al 2003, Battiti and Tecchiolli 1994, Klau et al 2002, 

Hansen 1997). In many of the above, the optimisation is achieved through the 

social interactions of creatures with primitive intelligence. All the methods above 

have all been used to create optimisation algorithms which mimic the process. Each 

follows fairly simple rules to create very complex structures or carry out 

challenging activities, for example, creating complicated nests that self regulate 

temperature and gas levels, and finding shortest paths to food, without supervision. 

This is known as swarm intelligence.  

Observing the physical world can also provide inspiration for optimisation 

algorithms: The annealing process in metallurgy is a method for increasing the size 

of the materials crystals and reducing the amount of defects such that a more 

perfect crystalline structure is achieved. This structure is in a minimum energy state 

(optimum) (Kirkpatrick et al 1983, Davis 1987, Amin 1999, Santoro and Tosatti 

2006, Das et al 2005). This aim of achieving a minimum energy state is analogous 

to achieving a desired result in optimisation tasks, and by mimicking the annealing 

process an optimisation algorithm can be developed. Another example of 

optimisation is in music, when trying to find the optimal combination of notes to 

form a harmony (Geem and Kim 2001, Lee and Geem 2004, 2005, Geem et al 

2005). The simulated annealing algorithm is explained in more detail in section 

6.7.5. 
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6.4.3 Gradient-based approach 

The specific methods used by the optimisation algorithms used in this work are 

explained in section 6.7, but as a general introduction, a generic gradient-based 

approach is now described.  

For a particular point within the design space, the gradients of the objective 

function and constraints are calculated and used to determine a search direction. 

The distance to travel in this direction is determined by solving a one-dimensional 

(1D) line search problem. The distance is limited by when the objective function 

cannot be reduced further or when a constraint boundary is encountered. At this 

point a check is carried out to see if the optimum point has been converged upon. If 

not, then the gradients at that point are calculated again and a new search direction 

found. The problem is therefore solved in this iterative manner and the procedure 

can be given by:  

¦¹ � ¦¹8X ( º∗¼¹ (6-8)

where x is the vector of design variables, q is the design iteration number, S is the 

search direction vector, and α* is a scalar value that defines the distance to travel in 

the search direction. The gradient of the objective function F(x) is its first 

derivative with respect to each design variable, d¯&¦' which is approximately 

equal to the first-order forward finite-difference approximation of a derivative: 

d¯&¦' � ½e¯&¦'/efXe¯&¦'/ef>⋮e¯&¦'/ef;¿ ≅ ½¯&¦ ( ∆fX' = ¯&¦'� ∆fX⁄¯&¦ ( ∆f>' = ¯&¦'� ∆f>⁄⋮¯&¦ ( ∆f;' = ¯&¦'� ∆f;⁄ ¿ (6-9)

where ∆f is a small step in the direction x. 

 

Search direction determination 

The objective function gradient vector points in the direction of increasing 

objective function. To minimise the objective function, it would make sense to 

move in the opposite direction to that of the gradient; this would allow the steepest 
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possible descent gradient. The steepest descent method is actually considered 

probably the worst performing first order search method (Vanderplaats 1984) but it 

is useful as a starting point for more sophisticated approaches. The steepest descent 

direction is the negative of the gradient of the objective function, i.e. at iteration q: 

¼¹ � =d¯&¦¹' (6-10)

 

Figure 6-5 presents a geometric interpretation of the method and the optimisation 

algorithm. The progression through the design space is in orthogonal steps and 

because of this, the convergence rate is very low and in many cases convergence 

may require an infinite number of iterations. This method is also used if the 

previous iteration during the optimisation had active or violated constraints while 

the current iteration does not. 

 

  

Figure 6-5 – a) Graphical demonstration of the method of steepest descent (Vanderplaats 

1984) and b) flowchart showing the method steps (Vanderplaats 1984). 

 

In contrast to the steepest descent approach which only uses first derivatives 

(gradients) in the selection of a suitable search direction, the Newton-Raphson 

method uses second derivative information. This generally gives better 

performance, but is computationally quite expensive (Chong and Zak 2001). The 
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conjugate direction method is considered an intermediate between the two 

aforementioned methods (Chong and Zak 2001). It does not perform as well as 

Newton’s method but is much more efficient, requires very little computer storage 

and performs much better than the steepest descent approach.  

Only a simple modification to the steepest descent approach is needed to form the 

conjugate directions method. With the steepest descent approach, the direction of 

search depends only on the local objective function information. While there is an 

orthogonal relationship between successive search directions, this is incidental. 

With the conjugate directions method, the successive search directions bear a strict 

mathematical relationship to one another (Antoniou and Lu 2007), hence the name 

‘conjugate’ commonly meaning ‘joined’ or ‘linked’. This approach uses the 

steepest direction plus a fraction of the previous direction, Æ¹. The Fletcher-Reeves 

conjugate directions method (Fletcher and Reeves 1964) was used in this work 

which is considered quite reliable where the search direction is defined as: 

¼¹ � =d¯&¦¹' ( Æ¹¼¹8X (6-11)

where Æ¹ is defined as: 

Æ¹ � |d¯&¦¹'|>|d¯&¦¹8X'|> (6-12)

 

A graphical representation of the conjugate method in operation is shown in Figure 

6-6 along with the associated flowchart showing the algorithmic steps. It can 

clearly be seen that the optimum is found in significantly fewer steps than with the 

steepest descent method. 
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Figure 6-6 – a) Graphical demonstration of the conjugate directions method, specifically the 

Fletcher-Reeves method (Vanderplaats 1984), and b) flowchart showing the method steps 

(Vanderplaats 1984). 

 

One-dimensional line search 

Once the search direction S has been found, the next step is to find the distance to 

travel in this direction represented by the scalar value α* in Equation 6-8. The 

relationship between the search direction vector, S, and the design variables vector 

x, enables the dimensionality of the problem to be reduced to just one dimension 

(1D). This allows an efficient 1D line search to be carried out in the direction S 

until either a constraint becomes active or until the gradient becomes zero. At this 

point the aim is to find another usable direction. There are many algorithms 

available for solving the 1D search problem. The search method does not need to 

be particularly precise because minor constraint violations do not adversely affect 

the design algorithm. Therefore a simple method can be used. It is not necessary to 
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include details on this 1D search method here, but further detail can be found in the 

MSC.Nastran 2005 r3 Design Sensitivity and Optimization User’s Guide (2006) 

from p662 onwards. 

 

Convergence 

In a numerical search algorithm, a formal definition of what constitutes an optimum 

is needed so that it is known when it is found. The Karush-Kuhn-Tucker (KKT) 

conditions (Karush 1939, Kuhn and Tucker 1951) provide this. In the case of an 

unconstrained optimisation problem the condition of optimality is simply that the 

gradient equals zero. In the case of a constrained problem the conditions are more 

complex. If x* defines the optimum design then the following three conditions 

must be met: 

1) x* is feasible, i.e. all constraints are satisfied 

2) ÉÊ¶Ê&¦∗' � 0 

3) d¯&¦∗' ( ∑ ÉÊd¶Ê&¦∗' � 0ÌÊQX  

where j=1, 2, …, m and ÉÊ Í 0 where ÉÊ is a constant multiplier which is required 

because the magnitudes of the two gradients may be different. 

In other words, the KKT conditions can be expressed as the sum of the gradients of 

the objective and the scalars ÉÊ multiplied by the associated gradients of all active 

constraints, must vectorially sum to zero. This is similar to the condition of 

equilibrium where the sum of all internal and external forces at any given point 

must vectorially sum to zero. 

Often the optimisation result does not precisely satisfy the KKT conditions. 

Convergence to a solution is actually more likely to occur because either the 

specified maximum number of design cycles has been reached, or that the change 

in the objective function, design variables or properties is below a specified 

convergence tolerance.  
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6.5 Types of structural optimisation 

Moving on to this specific application of optimisation, there are four classifications 

of structural optimisation (Sigmund 2000) as shown in Figure 6-7: 

 

Figure 6-7 – a) Sizing, b) Material, c) Shape, and d) Topology Optimisation (Sigmund 2000). 

The starting point is shown on the left and the optimised result shown on the right. 

 

These types of optimisation differ in their scope of design freedom, i.e. how 

constrained they are by their initial starting point. For example, for sizing 

optimisation, the topology is predetermined and so cannot be included in the 

optimisation. For a predetermined array of cross members, as shown in Figure 6-7a, 

only the dimensions of the members can be optimised, not their position or 

connectivity. For material optimisation, the material properties are subject to 

optimisation for example, bulk material properties such as the Young’s modulus, or 

composites characteristics such as ply layup orientation, as shown in Figure 6-7b. 

Shape optimisation allows predetermined boundaries of the design domain to be 

modified as shown in Figure 6-7c, but the topology is not allowed to change. 

Finally, topology optimisation by definition is able to establish the optimum 

topology or distribution of material within a specified design domain. This is not as 

constrained by the initial design as size or shape optimisation and is commonly 

used as a starting point when designing a new component, with shape and size 

optimisation used to refine a design at subsequent stages. 

Sizing 

Material 

Shape 

Topology 



Optimisation Methods 6 

 

 96 

 

Figure 6-8 shows two variables for sizing optimisation, the first being the thickness 

of a shell element (a) and the second being the radius of a beam element (b). The 

topology and shape of the elements is fixed, it is just the property values that are 

allowed to vary.  

 

Figure 6-8 – a) Thickness variable, t defined for a shell element with a linked offset to always 

be half of the thickness, and b) radius variable, r defined for a beam element.  

 

6.6 Linkage of finite element model to optimisation algorithm 

Often, practical structural analysis necessitates the use of finite element analysis 

methods such as those outlined in chapter 5. There are two main approaches to 

linking the analysis model to an optimisation algorithm. The first is the direct 

coupling approach (shown in Figure 6-9a) where a finite element analysis is called 

whenever an objective function evaluation is required. The approach is very 

computationally expensive and is only really suitable for relatively small 

optimisation problems. The second approach is the indirect coupling approach 

(shown in Figure 6-9b) where a locally valid approximate model is created which is 

used for many of the objective function evaluations. The reliability of this second 

approach clearly depends on the suitability of the approximation. 

  
Figure 6-9 – a) Direct coupling approach between analysis and optimisation, and b) indirect 

coupling using a locally valid approximate model (MSC.Nastran 2005 r3 Design Sensitivity 

and Optimization User’s Guide (2006)). 
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The two key approximations that are used in the approximate model are firstly to 

define an explicit representation of the implicit finite element model, and secondly 

to only consider a subset of the imposed design constraints. Forming the explicit 

model is carried out using Taylor series expansions of response quantities in terms 

of the design variables. Sensitivity analysis is used to calculate the rates of change 

of structural response quantities with respect to change in design variables 

providing the gradient information for the optimisation algorithm. The results of 

this sensitivity analysis are used as a basis for the model approximation which is 

only locally valid. This explicit representation can then be used by the optimisation 

algorithm whenever an objective function evaluation or its derivatives are required. 

This is accurate enough assuming only a small move is made before carrying out an 

analysis using the implicit model. Move limits are imposed to control this. A full 

finite element analysis is carried out after each design cycle to check that the results 

from the approximate model are valid. If there is a substantial difference in the 

results, the move step limit is adjusted to improve the validity. Subsequent 

approximations are generated at the subsequent full FE analysis points. 

Constraint screening is a method used to reduce the number of constraints that are 

considered at any particular design iteration. Constraints that are far from being 

critical can be temporarily ignored until they become critical. This is analogous to 

what a designer or engineer would do in redesigning an item and is an efficient 

approach. Figure 6-10 presents a more detailed flowchart of the optimisation and 

analysis process using MSC Nastran, showing the constraint screening, sensitivity 

analysis, and approximate model steps. 
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Figure 6-10 – Flowchart of optimisation and analysis procedure in MSC Nastran 

(MSC.Nastran 2005 r3 Design Sensitivity and Optimization User’s Guide (2006)). 

 

6.7 Algorithms 

This section will detail the specific optimisation algorithms used throughout this 

work. For details regarding the actual use of these algorithms for this work refer to 

chapters 8 and 9.  

There are various gradient-based methods that have been developed to handle 

constrained optimisation problems and the more popular of these are presented in 

Table 6-1 from Park (2007). The indirect approach is numerically inefficient and is 

rarely used except when tackling topology optimisation problems which have a 

large number of variables. Regarding direct approaches, the use of transformation 

methods has seen a decline since the 1970s and it is the primal methods that are 

generally used in engineering optimisation tasks these days. 

The methods detailed in this section in most detail are the method of feasible 

directions (MFD) and sequential quadratic programming (SQP). Also briefly 

covered are sequential linear programming (SLP), and the sequential unconstrained 

minimisation technique (SUMT). A global optimisation algorithm, i.e. one that can 

escape local optimal, in this case Simulated annealing (SA) is also covered. 
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Direct approaches  

Primal methods  

• Sequential linear programming (SLP) 

• Gradient projection method (GPM) 

• Method of feasible directions (MFD) 

• Sequential quadratic programming (SQP) 

A solution of an approximated 

subproblem is obtained and the 

optimum solution is found in an 

iterative process. 

Transformation methods  

• Sequential unconstrained minimisation technique 

(SUMT) 

• Penalty function method 

• Barrier function method 

• Augmented Lagrangian method (multiplier method) 

A constrained problem is 

transformed to an unconstrained 

problem and the solution is found 

in an iterative manner. 

Indirect approaches  

• Optimality criteria The KKT conditions of the 

formulated problem are used to 

drive an iterative solution strategy. 

Table 6-1 – Classification of gradient-based optimisation methods for constrained optimisation 

(Park 2007). 

 

6.7.1 Method of Feasible Directions 

Introduction 

The concept of this method was devised by Zoutendijk (1960) but various modified 

forms have been subsequently used. The algorithm constrains progressions to only 

the feasible design region (i.e. where all constraints are satisfied). This is useful for 

difficult problems or ones that can take a long time to converge as a feasible 

solution is available if the problem is stopped prematurely. This is also useful if, for 

some reason, the final optimised design is found to be unacceptable, perhaps 

because some relevant constraint such as a manufacturing constraint was not 

included. All of the design iterations are feasible so the optimisation history can be 

explored as several other good solutions may be available. The MFD is 

fundamentally an inequality constrained optimisation algorithm, but equality 

constraints can be included by converting them to inequality constraints and adding 

a penalty term to the objective function. 
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Finding a search direction 

The task within the first step of the MFD is to find a search direction S that will 

reduce the objective function F(x) while satisfying the active constraints for a 

particular finite move distance. Any S vector that reduces the objective function 

value is called a usable direction. With the gradient vector pointing uphill, as 

shown in Figure 6-11, a usable direction would have to be one that would make an 

angle of at least 90° with the gradient vector.  

 

Figure 6-11 – Objective function F(x) with two constraint boundaries g2(x) and g1(x) showing 

usable, feasible, and usable-feasible sectors (Vanderplaats (1984)). 

 

The dot product can be used to define a usability criterion because this represents 

an angular relationship between two vectors. Consider the vectors shown in Figure 

6-12. If A and B are perpendicular, �³KÎ � 0 ∴ N ∙ [ � 0. If Î ² 90°, N ∙ [ will 

be ≥0 as �³KÎ will be positive and the vector lengths |A| and |B| are always 

positive. If Î Í 90°, N ∙ [ will be ≤0 as �³KÎ will be negative and the vector 

lengths |A| and |B| are always positive. 
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N ∙ [ ³� NÑ[ �  |N| ¸ |[| ¸ �³KÎ 

Figure 6-12 – Dot product of two vectors A and B separated by an angle φ. 

 

The usability requirement can then be defined as: 

d¯&¦/' ∙ ¼ ² 0 ( 6-13) 

 

Any S vector that satisfies the design constraints is a feasible direction. The 

feasibility requirement can similarly be defined as: 

d¶X&¦/' ∙ ¼ ² 0 ( 6-14) 

 

The preferable search direction is clearly one that satisfies both the usability and 

feasibility requirements. The greatest reduction in F(x) can be achieved when the 

usability requirement value is minimised and when the feasibility requirement 

equals zero. When the feasibility requirement equals zero, the search direction is 

precisely tangent to the constraint boundary. However, if the constraint is nonlinear 

and convex as it is in Figure 6-11, then a small move in this direction would violate 

the constraint. To avoid this, a method is used to ‘push’ away from the constraint 

boundary by adding a positive ‘push off’ factor θ to (6-14), giving:   

d¶X&¦/' ∙ ¼ ( _ ² 0 (6-15 )

where θ is a non-negative constant. A positive value of θ ensures that the dot 

product of the two vectors is negative so that the angle between them will exceed 

90°.  

It is useful if the ‘push off’ factor is affected by the direction of the objective 

function gradient d¯&¦', so because the usability requirement is negative (6-15) 

becomes: 
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d¶X&¦/' ∙ ¼ = d¯&¦/' ∙ ¼�_ ² 0 ( 6-16) 

As mentioned above, the greatest reduction in F(x) can be achieved when the 

usability requirement (6-13) value is minimised. This is equivalent to maximising β 

in (6-17) below: 

d¯&¦/' ∙ ¼ ( Æ ² 0 ( 6-17) 

The maximum possible value for β is then =È¯&¦/' ∙ ¼ which can be substituted 

into (6-16) to form the modified feasibility requirement: 

d¶X&¦/' ∙ ¼ ( _Æ ² 0 ( 6-18 ) 

The search direction optimisation problem is therefore: 

Maximise: β   

Subject to: d¯&¦' ∙ ¼ ( Æ ² 0  (6-19)

 d¶Ê&¦' ∙ ¼ ( _ÊÆ ² 0 k ∈ Ò, where J is the currently active 

constraints set 

(6-20)

 S bounded   

 

From this summarised problem there are a few issues. Firstly, when is a constraint 

gj classed as active? Secondly, what are reasonable ‘push off’ factor values θj? 

Thirdly, what approach should be taken to impose bounds on S?  

Regarding the first of these issues, constraint tolerances can be used to determine 

whether constraints are inactive or active. These are used for three reasons: firstly, 

obtaining a precise zero on a computer is not possible; secondly, material 

properties, loads and boundary conditions etc. are usually not known precisely; and 

thirdly, the finite element analysis (FEA) method is only approximate anyway, so 

such precision is unnecessary. The two tolerances are CTMIN and CT, as shown in 

Figure 6-13. CTMIN is a small positive number and CT is a small negative number. 

A constraint is classed as active if it has a value between these two tolerance 

bounds.  
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Figure 6-13 – Constraint tolerances CT and CTMIN used to determine an active constraint. 

(MSC.Nastran 2005 r3 Design Sensitivity and Optimization User’s Guide 2006). 

 

The second issue is to decide on appropriate values for the ‘push off’ factor θ in 

(6-18). The effect of different values on the search direction is shown in Figure 

6-14. A value of zero results in the S vector being tangent to the constraint 

boundary. A large value (→∞) results in a direction tangent to the line of constant 

objective function as the usability requirement does not allow F(x) to increase. 

Assuming normalisation of the constraints and objective function (which is handled 

automatically in most software implementations of this method), a ‘push off’ factor 

of 1.0 will approximately bisect the two extremes. It is often recommended that 

θj=1.0 for nonlinear constraints and zero for linear constraints but Vanderplaats 

(1984) states that that (6-21) below gives a better result: 

_Ê � �1.0 = ¶Ê&¦'ÓÔ �> _R ( 6-21 )

This equation means that as a constraint becomes just active, the ‘push off’ factor 

will be zero. As the constraint approaches zero from the other side, the factor 

increases quadratically until θj=θ0 at gj(x)=0. This has the effect of pushing away 

more strongly as the constraint becomes more critical. A bound is imposed on θj so 

that it is ≤50. This is somewhat arbitrary, but is based on experience (MSC.Nastran 

2005 r3 Design Sensitivity and Optimization User’s Guide 2006) and allows the 
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‘push off’ factor to be large enough to be effective without numerical ill-

conditioning which can occur with large values. 

 

Figure 6-14 – Effect of the 'push off' factor θ on the search direction (Vanderplaats1984). 

 

The third issue is to use a method to impose bounds on S. If an S vector is found 

where β is maximised and the first term in (6-18) is negative, then the usability and 

feasibility requirements have both been met. However, if S is multiplied by any 

positive number then these conditions are still satisfied. Maximising β will cause 

the magnitude of S to increase unbounded. In the case of there being no violated 

constraints a circular (2D), spherical (3D), or hyperspherical (nD) bound is used 

and so: 

¼ ∙ ¼ ² 1 (6-22)

Further detail on how this bounding is carried out can be found in Vanderplaats 

(1984) or MSC.Nastran 2005 r3 Design Sensitivity and Optimization User’s Guide 

(2006). The flowchart shown in Figure 6-15 provides an overview of the MFD 

approach as outlined in this section. 
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Starting positions 

There are three possible starting positions to the optimisation depending on the 

starting values of the design variables: 

1) There are no active or violated constraints 

2) There are active constraints but no violated constraints 

3) There are one or more violated constraints 

Start:  
Choose x0, CT, θ0 

q ← 0 

x ← x0 

q ← q+1 

F ← F(x) 

gj ← gj(x) j=1, m 

Determine the set J  
for which gj ≥ CT 

d�← d�&¦' 

d±Ê← d±Ê&¦' j ϵ J 

J > 0? 

¼ ← d� 

Solve 1D search 
problem 

xq+1 ← ¦¹ ( º∗¼¹ 

Converged? 

Exit 

¼ ← Usable-feasible 
direction 

Evaluate F(x) and gj(x) 

Identify the set of critical and near 

critical constraints J 

Calculate d¯&¦' and d±Ê&¦' for all j ϵ J 

Determine a usable feasible search direction 

S
q
  

Carry out 1D search to find α* and set xq+1 

Yes 

No 

Yes 

No 

Figure 6-15 – Flowchart showing method of feasible directions (adapted from Vanderplaats 

1984). 
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For the first situation, the task is just to find a usable direction, i.e. one that points 

downhill, as feasibility is already satisfied. In this case, the direction of steepest 

descent is used for the first search direction iteration (q=1). A 1D line search is 

carried out in that direction until either a constraint becomes active or until the 

gradient becomes zero. At this point another usable direction is found if one exists.  

For the second starting situation where the design is feasible but there is at least one 

active constraint. In this case, a usable search direction is needed that moves 

parallel to or away from the constraint boundary, i.e. still remains feasible. The 

approach to take in this case has been outlined previously.  

For the third situation, a search direction is needed that points straight towards the 

feasible region even if the objective function needs to be increased. The usability 

requirement is therefore discarded and the ‘push off’ factor is increased to move 

away from the constraint boundary towards the feasible region. The modified 

direction finding problem is then summarised as: 

Minimise: d¯&¦' ∙ ¼ = ØÆ  (6-23) 

Subject to: d¶Ê&¦' ∙ ¼ ( _ÊÆ ² 0 k ∈ Ò, where J is the set of all active 

and violated constraints 

(6-24) 

 ¼ ∙ ¼ ( Æ ² 1  (6-25) 

where ψ is a scalar weighting factor that determines the relative importance of the 

objective and the constraints.  

The weighting factor ψ is initially set as a small value e.g. 5. The objective function 

and constraints are normalised so that the first terms in the objective function and 

constraint inequality above are near unity. This means that the second term 

dominates but not too strongly allowing potential for some reduction of the true 

objective function while searching for the feasible region. The second term 

dominates the minimisation so any increase in β will push the objective more 

negative. However, for β to increase, the first term must become more negative. 

Because S is bounded, the dot product of d¶Ê&¦' and S must move closer to -1 and 

for this to happen, S must point in a direction opposite to d¶Ê&¦'. This means that S 
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will point directly back to the feasible region. If the first iteration does not 

overcome the constraint violation, ψ is increased by a factor of 10. This usually 

brings the design into the feasible region within a few iterations. ψ is limited to 

having a value ≤1000 to avoid numerical ill-conditioning and if 20 iterations pass 

without overcoming the constraint violations, the optimisation process terminates 

as it assumes that no feasible region actually exists. 

6.7.2 Sequential Linear Programming 

The basic concept of sequential linear programming (SLP) is quite simple: linear 

Taylor series approximations are created for the objective and constraint function 

and used for the optimisation instead of the original non-linear functions. This 

linear approximation makes calculating the values of the objective and constraint 

function and their derivatives straightforward. The Taylor series expansion method 

can be written as: 

�&¦' � Ù �$W¦/Z$!
Û

$Q/ W¦ = ¦/Z$
 (6-26) 

 

The true objectives and constraints are of the form: 

Minimise: �&¦'   

Subject to: d¶Ê&¦' ² 0 j=1, 2, …, m (6-27) 

 d·V&¦' � 0 k=1, 2, …, l (6-28) 

 f�Ü ² f� ² f�O i=1, 2, …, n (6-29) 

 

Through a first order Taylor series expansion this becomes: 

Minimise: �&¦' Ý �W¦/Z ( Þ�W¦/Z ∙ ß¦  (6-30) 

Subject to: d¶Ê&¦' Ý ¶Ê&¦R' ( d¶Ê&¦R' ∙ ß¦ ² 0 j=1, 2, …, m (6-31) 

 d·V&¦' Ý ·V&¦R' ( d·V&¦R' ∙ ß¦ � 0 k=1, 2, …, l (6-32) 

 f�Ü ² f� ( àf� ² f�O i=1, 2, …, n (6-33) 

 where ß¦ � ¦ = ¦/  (6-34) 

 

Repeated application of this method to linearise the functions forms the sequential 

nature of this approach. x0 is replaced by x at each step and a new linearisation is 
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constructed. The linear approximation is only valid locally and so the finite 

difference step is very important; too large and the error from the approximation 

will be significant, too small and unnecessary computational time is used. The way 

to handle the sensitivity to the step size is to start with a larger move limit and then 

gradually reduce it as the optimisation progresses towards convergence. The 

process of sequential linearisation is shown in Figure 6-16 for a simple 1D 

example. 

 

Figure 6-16 – Procedure of SLP for a simple 1D example. A linear approximation of the true 

function is created and move limits are imposed to ensure the linear approximation is 

sufficiently accurate. 

 

Unlike the method of feasible directions (MFD), constraint violations are allowed 

during the optimisation, although if the constraint violation increases then certain 

parameters are adjusted to reduce this. SLP is considered the least effective of the 

algorithms available within MSC Nastran as it is very simplistic, but it is efficient 

and can be useful for some applications. 

6.7.3 Sequential Quadratic Programming 

The approach used by the method of feasible directions (MFD) as explained in 

Section 6.7.1 was to find a usable feasible direction then carry out a 1D search in 

that direction as far as possible before finding a subsequent search direction. With 

this approach, and with the SLP method, only first order derivative (gradient) 

information is used to find an appropriate search direction. With sequential 
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quadratic programming (SQP), the search direction is found by solving a quadratic 

programming subproblem with a quadratic objective function and linear 

constraints. SQP is an advancement of SLP and approximation is this time carried 

out using a second order quadratic Taylor series expansion. The problem of finding 

the search direction is then: 

Minimise: á&¼' � �&¦' ( Þ�&¦' ∙ ¼ ( M! ¼¨3¼ 
 

(6-35) 

Subject to: d¶Ê&¦' ∙ � ( àÊ¶Ê&¦' ² 0 j=1, 2, …, m (6-36) 

 d·V&¦' ∙ � ( à̅·V&¦' � 0 k=1, 2, …, l (6-37) 

where the design variables are the components of S and B is initially the identity 

matrix but is updated on subsequent iterations. The scalar parameters àÊ  and à̅ are 

used to prevent inconsistencies between the linearised constraints that could 

completely cut off the feasible region and are defined as: 

ßã � M  if  ±ã&¦' C0  ßã � ßä  if  ±ã&¦' Í0  / ² ßä ² M  

where a value for à̅ of 0.9 to 0.95 has been found to usually work well 

(Vanderplaats 1984). 

Solution of this subproblem can be tackled with various optimisation algorithms. 

SQP does not require feasible points at any stage of the process (Boggs and Tolle 

1995) which can be considered an advantage when feasible regions are separated 

by infeasible regions. It could also be considered a disadvantage from a practical 

point of view if the optimisation does not fully converge for the reasons explained 

for MFD in Section 6.7.1. 

Once the search direction S has been found, the 1D search problem is tackled. This 

task is to find α in order to: 

Minimise: å � �&¦' (Ù�ãæ%"¦ç/,±ã&¦'èé%
ãQM   (6-38) 

Where ¦ � ¦¹8X ( º¼    
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 -Ê � êÉÊê j=1, 2, …, m First iteration (6-39) 

 -Ê � �`f �êÉÊê, 12 W-Êë ( êÉÊêZ� j=1, 2, …, m 
Subsequent 

iterations 
(6-40) 

 where -Êë � -Ê    

  

Once the 1D search has been carried out, the B matrix is updated using the 

Broydon-Fletcher-Shanno-Goldfarb (BFGS) formula (see Vanderplaats 1984): 

3∗ � 3 = 3++¨3+¨3+ (  ìì¨+¨ì (6-41) 

where + � ¦¹ = ¦¹8X  (6-42) 

 í � _g ( &1 = _'3+  (6-43) 

 g � d¦Î&¦¹ , É¹' = dîÎ&¦¹8X, É¹8X'  (6-44) 

 Î � ¯&¦' (ÙÉÊ¶Ê&¦'Ì
ÊQX  

 
(6-45) 

 _ � 1.0 if +Ñ� Í 0.2+Ñ3+  (6-46) 

 _ � 0.8+Ñ3++Ñ3+= +Ñg if +Ñ� C 0.2+Ñ3+ (6-47) 

 [∗ replaces B and the next iteration starts. The flowchart in Figure 6-17 

summarises the SQP algorithm. 
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Figure 6-17 – Flowchart showing optimisation algorithm for sequential quadratic 

programming (SQP). 

 

6.7.4 Sequential Unconstrained Minimisation Technique 

As was shown in Table 6-1, MFD, SLP and SQP are all direct primal methods 

where a solution of an approximated subproblem is obtained and the optimum 

solution found in an iterative process. In constrast, the sequential unconstrained 

minimisation technique (SUMT) developed by Fiacco and McCormick (1964a, 

1964b) is a direct transformation method where a constrained problem is 

transformed to an unconstrained problem and the solution then found iteratively. 

The constraint functions are replaced with a penalty function which is added to the 

objective function. In general, transformation methods can become unstable and 

inefficient for large problems when high accuracy is required due to rounding 

errors which cause unreliable descent directions to be used (Snyman 2005). SUMT 

overcomes the stability issue by applying the penalty function to a sequence of sub-
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problems, starting with a moderate penalty parameter value and gradually 

increasing it over the sequence. 

SUMT consists of two penalty function types: the penalty function method and the 

barrier function method. With the penalty function method, the idea is to define the 

objective function such that if there is a constraint violation, the objective function 

is penalised by the addition of a positive value. The penalty function methods are 

also known as exterior methods because they iterate through the infeasible region. 

Arora (2004) summarises the characteristics of the penalty function method as:  

• Applicable to general constrained problems with equality and inequality 

constraints. 

• The starting point can be arbitrary. 

• Able to iterate through the infeasible region. 

• The final design may not be feasible if the optimisation ends prematurely. 

With the barrier function methods, a large barrier is constructed around the feasible 

region. If any of the inequality constraints becomes active, the objective function 

value becomes infinite. In this way the resulting solution can never be infeasible as 

the infinitely high barrier cannot be crossed. This approach is therefore known as 

the interior penalty function method and its characteristics are summarised by 

Arora (2004) as: 

• Applicable only to inequality constrained problems. 

• The starting point must be feasible. 

• Only able to iterate through the feasible region, so if the process ends 

prematurely, the final design should be usable. 
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6.7.5 Simulated Annealing 

A basic local gradient-based search algorithm can only accept moves that improve 

the value of the objective function. If no further improvement can be found then the 

optimisation procedure terminates. It is for this reason that they get stuck in the first 

local optimum they encounter which may be far away from the global optimum. 

Simulated annealing (SA) is a stochastic method, first devised by Kirkpatrick et al 

(1983), that allows moves that do not improve the objective function to be accepted 

on a gradually decreasing probability basis. This enables local optima to be escaped 

and increases the chances of finding the global optimum. SA can be thought of as a 

generalisation of the local search algorithm. 

SA is analogous to physical annealing in metallurgy where, after heating and 

during slow cooling, all atomic particles arrange themselves in a lattice formation 

minimising the total energy of the material. When the cooling is slow enough, 

thermal equilibrium is achieved at each temperature. This aim of achieving a 

minimum energy state is analogous to finding the minimum of an optimisation 

problem. SA could be considered an inherently hybrid optimisation algorithm 

because it combines both local iterative improvements with pseudo-random 

‘jumping’ to escape local minima. The flowchart in Figure 6-18 outlines the 

algorithm procedure. 
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Figure 6-18 – Flowchart describing the simulated annealing procedure (Singiresu 1996). 

 

The temperature is slowly decreased, as is the procedure in physical annealing, 

until it approaches zero. The temperature controls the probability of the algorithm 

accepting a worse move, so more worse moves are accepted at a higher temperature 

with fewer accepted as the temperature approaches zero. The solution at this 

temperature is then taken to be the converged optimum. If the initial temperature is 

too low then the search space is limited and the search can be trapped in a local 

region but if it is too high then computation time can be wasted (Diwekar 2003). 

The slower the rate of cooling, the better the chances of finding an optimal solution, 
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but the longer the run time. A temperature function is used to control how the 

temperature decreases during the optimisation, examples of which are given below: 

Schedule Temperature 

Exponential ÔX ¸ 0.95V 
Fast ÔX 5⁄  

Boltz ÔX ln&5'⁄  

where T1 is the initial temperature and k is the iteration number. 

The temperature needs to be linked to the actual design space to generate new 

points for the subsequent iterations; this is done using an annealing schedule. The 

extent of the search, i.e. the distance between the new point and the current point, is 

based on a probability distribution with a scale proportional to the current 

temperature. Two examples are the ‘Boltz’ schedule which uses a step length of the 

square root of the temperature, and the ‘Fast’ schedule which uses a step length 

equal to the current temperature. 

A particular move within the design space that improves the objective function is 

always accepted. A move that worsens the objective function is accepted based on a 

decreasing probability acceptance function. There are various different functions 

that have been used, but the specific acceptance probability used in the MATLAB 

SA implementation is defined by: 

11 ( exp � ∆max &Ô'� 
(6-48)

where ∆ is the current objective function value minus the previous objective 

function value. 

The MATLAB version is based on the adaptive SA algorithm by Ingber (1995). 

Ingber introduced the concept of re-annealing where the temperature is raised after 

a number of moves have been accepted before gradually decreasing again. This 

effectively rescales the model and extends the range over which the relatively 
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insensitive parameters are searched in relation to the ranges of the more sensitive 

parameters.  

As the temperature is cooled, the probability of escaping local minima reduces. 

This enables convergence to a solution, hopefully the global optimum. For 

problems where there are many deep minimas, as the temperature cools it may be 

impossible to escape them and convergence may be to a local optimum. While 

there are some problems that are more difficult for SA to handle, Bertsimas and 

Tsitskilis (1993) conclude that SA can produce good solutions to general problems 

even if the problem’s structure is not well known beforehand.  

 

6.8 Summary 

This chapter has introduced the topic of optimisation and in the context of this 

thesis, optimisation is referred to as the solving of a mathematically formulated 

problem. There are two broad categories of optimisation algorithm: stochastic and 

gradient-based, both of which have advantages and disadvantages. Stochastic 

methods are able to escape local minima and so in theory should converge to a 

better solution than gradient-based methods, which cannot usually escape them. 

However, gradient-based methods are much more efficient and are able to be used 

with complex real industrial problems, which stochastic methods tend to struggle 

with currently. Hybrid methods have also been developed that aim to utilise the 

advantages of both of these approaches. 

The four types of structural optimisation were introduced: sizing, shape, material 

and topology. This thesis primarily focuses on sizing optimisation. Details were 

also provided of how finite element analysis (FEA) is coupled to an optimisation 

algorithm, as implemented in the MSC Nastran finite element software. The most 

common way of coupling is to construct an approximation to the true objectives 

and constraints and use that where possible for function evaluations instead of 

carrying out a full finite element analysis. This is much more efficient than a direct 
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coupling approach and is sufficiently accurate providing move limits are 

appropriately specified.  

The main algorithms that were used in the work for this thesis are then described. 

Most detail is provided for the method of feasible directions (MFD) as this was the 

algorithm with primary use. Sequential linear programming (SLP), sequential 

quadratic programming (SQP) and the sequential unconstrained minimisation 

technique (SUMT) were also covered. Feasible direction methods, such as MFD, 

are useful because progression is constrained to the feasible region and so if 

convergence is not achieved, the result is still usable. Being constrained to the 

feasible region can be a disadvantage also though if, for instance, there is more than 

one feasible region separated by an infeasible region. 

Chapters 7 and 8 provide specific details on how the optimisation methods 

described in this chapter were utilised in the context of this thesis. 
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7 Air Column Optimisation Method 
 

7.1 Introduction 

This chapter provides detail about the air column optimisation method 

implemented. The bore profile optimisation is the first stage in a two stage process; 

the structural optimisation of the wall thickness and support brace dimensions is the 

second stage which is subsequently described in chapter 8.  

As discussed in earlier chapters, the bore profile is the primary influencer of the 

sound of the instrument as it defines the shape of the air-column contained within 

it. The wall vibrations also have an effect although it is more subtle. The wall 

vibrations can affect the timbre of the sound which can be described as the sound 

quality or sound characteristic. More specifically, an increase in the degree of wall 

vibration increases the magnitude of the upper frequencies of the sound in relation 

to the lower frequencies. A decrease in the degree of wall vibration increases the 

relative magnitude of the lower frequencies, in particular the fundamental 

harmonic. A sound profile with greater strength in the higher harmonics results in a 

‘brighter’ sound, and one with greater strength in the lower harmonics results in a 

‘darker’ sound. The wall vibration effect is exacerbated when the resonant 

frequencies of the air-column and the structure of the instrument align.  

This chapter explains how the optimisation method was implemented, with 

demonstration examples. Finally, it explains how this first stage of the optimisation 

was connected to the second stage detailed in chapter 8. 

 

7.2 Calculating Input Impedance for Given Geometry 

This section demonstrates the transmission line method (TLM) detailed in section 

5.3 of chapter 5. A soprano trombone and its mouthpiece were reverse engineered 

using a coordinate measuring machine (CMM) as shown in Figure 7-1 and Figure 

7-2. This instrument was chosen for reverse engineering due to its simple shape in 

comparison with other brass instruments, particularly valved ones. The trombone 
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geometry was reconstructed in its shortest variation (i.e. with the slide fully closed) 

which is in effect the same as not having any valves pressed down on a trumpet (i.e. 

in its open position). The bends were ignored, as in other optimisation work in the 

literature, as explained in chapter 3.  

 

Figure 7-1 – Instrument profile captured 

using a CMM. 

Figure 7-2 – Mouthpiece profile measured 

using a CMM. 

 

Figure 7-3a presents the input impedance profile calculated for the whole 

instrument, including the mouthpiece, which includes multiple peaks. The red stars 

marked on the horizontal axis of Figure 7-3b show the positions that the resonant 

frequencies should occur at based upon the equal temperament scale in Figure 7-4. 

As was explained in chapter 2, the magnitudes of these peaks represent the ease 

with which that particular frequency can be sounded using the instrument. High 

frequency notes are more difficult to play due to less reflection of the sound wave 

at the end of the instrument, with more energy being immediately transferred to the 

outside environment. This effect is captured in the input impedance profile with the 

high frequency peaks being of a lower magnitude. 
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Figure 7-3 – Input impedance profile for reverse engineered soprano trombone up to 1500Hz. 

A segment length of 1mm and frequency increment of 1Hz was used over the whole frequency 

range. a) reversed engineered bore profile and b) associated calculated input impedance 

profile. 

 

The resonances form a harmonic series except for the fundamental (not shown in 

Figure 7-4). This fundamental F2=87.3Hz. Note 1 shown in Figure 7-4 is actually a 

pedal note (C3=130.8Hz), which is not a resonant frequency, but the combined 

sound of upper harmonics. These help the lips vibrate non-linearly at the frequency 

of the missing fundamental (note 1 in Figure 7-4). It should be realised that the 

fundamental note is always out of tune with respect to the harmonic series. 
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Figure 7-4 – Playable Bb pitch notes for trumpet when open (notes 7 and 11 are demisharp 

(1/2 semitone)). Note 1 shown is the pedal note (C

 

The note frequencies of the equal tempered scale can be calculated as:
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Figure 7-5 – High level flowchart describing the bore optimisation method. 

 

7.3.1 Variable definition 

The transmission line analysis model was constructed from many segments of the 

overall bore geometry. The number of segments used for the analysis determined 

the resolution of the resulting geometry. The radii of each of these segments could 

have been defined as individual design variables but this would have resulted in a 
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very high number of variables, depending on the resolution required. The resulting 

geometry would also not have been constrained to a smooth profile, which is 

important to eliminate sound wave reflections caused by sharp bore step changes. 

To overcome these difficulties, interpolating spline curves were used as global 

functions to control the local segment radii. General details regarding splines can 

be found in section 8.4.2. The spline control point coordinates formed the design 

variables and the radii of the transmission line analysis segments were extracted 

from this defining spline as shown in Figure 7-6. This allowed a high degree of 

resolution for the actual analysis without the optimisation burden of a high number 

of variables whilst constraining the output to a smooth profile, albeit at the expense 

of local geometric control. The width of the segments is inherently dependent on 

the degree of curvature of the spline, as shown in the bell region in Figure 7-6. 

 
Figure 7-6 – Defining spline and associated transmission line segments. The width of the 

segments is dependent on the extent of the curvature of the spline. 

 

Bounding values were imposed on the design variables (side constraints) to limit 

the design space to reasonable geometries, although these constraints were set quite 

loose to avoid overly restricting the optimiser. The lower bounds were set 

consistently across the variables, while the upper bounds were set so that a bore 

profile with a flaring bell at the correct end would be encouraged. Bounds were 

only applied to the spline control points, as shown in Figure 7-7, not to the 

individual segment radii. Depending on the relative position of the spline points, 

this sometimes had the undesired effect of the segment radii becoming negative, 
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which is clearly undesirable. This effect is demonstrated in Figure 7-7 and in cases 

where this occurred, that particular iteration was ignored.  

 

 

Figure 7-7 – Example of where the bore radius becomes negative because of a particular 

combination of spline control point positions. The variable bounds shown in green are only 

imposed on the spline control points, not the associated segment radii. Lower and upper 

bounds are shown with green horizontal bands. 

 

The horizontal positions of the spline control points were also defined as variables. 

In this case, the horizontal positions of the first and last variable were fixed to 

ensure a constant overall instrument length. The inner variables were constrained so 

that they could only vary by ±0.1m from their initial positions. Depending on the 

defined start points, the spline control points could overlap each other. For the 

example shown in Figure 7-8, variable 5 could horizontally pass variable 6, but 

would cause a breakdown in the geometry. Handling of this issue could be 

incorporated into the optimisation variable handling code relatively simply but the 

objective of this work was not to encode a completely robust program. With this in 

mind, in cases where the variables horizontally did pass each other, that particular 

iteration was ignored.  

The mouthpiece was included in the analysis, but its geometry was fixed 

throughout the optimisation and so is not shown in the figures. 
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Figure 7-8 – Horizontal positional bounds on the inner spline control points. Uniform bounds 

of ±0.1m from the starting position were applied. 

 

7.3.2 Input impedance calculation 

Conical and cylindrical transmission line segments were used to represent the bore 

geometry. The input impedance of the bore was calculated over a defined frequency 

range up to 1500Hz, the limit of TLM validity. The input impedance profile is 

characterised by a series of peaks and troughs.  It is the input impedance peaks that 

are of particular interest, specifically their frequency and magnitude, which 

correspond to the resonant frequencies of the air-column. A small frequency 

increment is required to accurately represent the peaks. Using a small frequency 

increment over the whole frequency range would be unnecessary as a similar level 

of detail is not required between the peaks. With this in mind, a two stage 

calculation procedure was implemented. Firstly, using a large frequency increment 

to calculate an approximate input impedance profile and secondly using a small 

frequency increment within the region of each detected peak. This is shown 

graphically in Figure 7-9. It is important to not use too large a frequency increment 

for the first pass to avoid completely missing the peaks.  

The peak was detected by comparing a point to its neighbouring points. If a 

particular point was in between two lower magnitude points, then that particular 

point was considered a peak. For curves that are not noisy, such as the calculated 

input impedance curves, this is a robust method. A frequency band was defined 

centred on the detected approximate peak frequency over which to use the smaller 
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frequency increment. The width of this band needed to be large enough to ensure 

that the peak frequency was captured, as the initial peak may be skewed to one side 

from the exact peak. This two stage process was efficient at calculating the input 

impedance over a large frequency range with very high resolution at the regions of 

interest, the peaks. 

 

Figure 7-9 – Coarse frequency increment used to generate an approximate impedance profile 

(in blue). The peaks of this profile are detected and a portion of the impedance profile ± a set 

increment (in red) from the approximate peak frequency is refined using a finer frequency 

increment (in green). The exact peak frequency and magnitude can then be found efficiently. 

 

7.3.3 Target definition 

A predefined input impedance profile was used as the optimisation target. This 

could be defined either using an existing bore profile from which an impedance 

profile is calculated or by manually defining the peak frequencies and magnitudes. 

The difference between this target impedance profile and the actual iteration 

impedance profile formed the objective function for minimisation. The target input 

impedance profiles were calculated using the small frequency increment used to 

increase the frequency resolution at the peaks over the whole frequency range. 

±5Hz 



Air Column Optimisation Method 7 

 

 127 

 

7.3.4 Objective function 

The objective of the optimisation was to minimise the difference between the 

calculated input impedance profile and the defined target impedance profile. As 

was shown in Figure 7-5, this difference was quantified with a scalar value using 

the weighted sum of three measures: 

1. Absolute difference in the number of peaks, 

2. Mean absolute difference in the peak frequencies, 

3. Mean absolute difference in the peak magnitudes. 

Due to the values from the third measure being significantly larger in scale than the 

other two measures, this measure was multiplied by a scaling factor of 1E-6 to 

bring all three to approximately the same scale. The mean of these was then 

calculated to obtain a scalar value, effectively giving each measure an equal 

weighting. By adjusting the scaling value on the third measure, the weighting can 

be varied to give a preference to either frequency matching or magnitude matching, 

if desired. 

If the number of peaks between the actual and target impedance profiles was not 

equal, then this is an unacceptable difference as there are additional resonant 

frequencies. Therefore this iteration was ignored; only iterations where the number 

of impedance peaks matches the target were allowed.  

The problem formulation can be summarised as follows: 

Minimise Ù&" ¸ ôM, ) ¸ ô!, � ¸ ôõ' 

Where ` � Ù|JX = J>| 
 Where p1 = number of impedance peaks in current iteration profile 

  p2 = number of impedance peaks in target profile 

 , � ∑ |�îX = �î>|X>îQX JX  

 Where fx1 = peak frequencies in current iteration impedance profile 

  fx2 = peak frequencies in target impedance profile 
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 � � ∑ |�îX = �î>|X>îQX JX  

 Where mx1 = peak magnitudes in current iteration impedance profile 

  mx2 = peak magnitudes in target iteration impedance profile 

Subject to Side constraints on the variables which were different for each variable as 

shown in Figure 7-7 and Figure 7-8. 

 

7.3.5 Optimisation algorithm 

The optimisation algorithm used for this work was simulated annealing (SA) which 

is analogous to physical annealing in metallurgy. As was explained in chapter 6, 

this is a stochastic method which combines random moves and local searching. The 

SA algorithm implemented in MATLAB is based on the adaptive SA method by 

Ingbar (1995).  

As with most optimisation algorithms, there are various parameters that can be 

adjusted to affect the performance of the progression. The SA parameters were 

explained in chapter 6. From initial experimentation, it was found that better results 

could be obtained if a high initial temperature of 500+ was used with reannealing 

occurring after every 100 accepted moves. The ‘Boltz’ annealing function was also 

preferable to the ‘fast’ alternative. The ‘exponential’ temperature function was used 

which also seemed to give better results than the ‘Boltz’ and ‘fast’ alternatives. The 

stopping criteria were set very tight with the intention of the actual termination 

being initiated by the user based on graphical feedback of the optimisation 

progress. 

SA was used for this work for two reasons. Firstly, it is a stochastic method which 

is better able to find the global optimum because it can escape local optima. It is 

also a significantly more efficient stochastic method than genetic algorithms (GAs) 

as it does not require a population of solutions at each iteration. Secondly, 

Bertsimas and Tsitskilis (1993) conclude that SA can produce good solutions to 

general problems even if the problem’s structure is not well known beforehand.  
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7.4 Demonstration of optimisation method 

This section will demonstrate the optimisation method on a series of test cases of 

increasing complexity. Initially, this was to allow variation of just the bore radius at 

the spline control points over an increasing frequency range. Secondly, it will allow 

variation of both bore radius and the spline control point horizontal position, again 

over an increasing frequency range. 

7.4.1 Target definition 

For these demonstrations the target input impedance profile was generated using a 

defined arbitrary bore profile with spline control points as defined in Table 7-1. The 

mouthpiece was also included. 

Control point ID 1 2 3 4 5 6 

Control point position along bore (m) 0 0.26 0.52 1 1.25 1.3 

Bore radius @ control point (mm) 4.2 5 5 6 10.5 50 

Table 7-1 – Bore profile used to define target input impedance profile. 

 

The optimisation objective was not particularly to replicate the bore geometry used 

to generate the target input impedance profile, but to match the calculated 

impedance peak frequencies and magnitudes. It would be expected however, that as 

the frequency range is increased, there would be fewer unique geometries that 

result in a good match. Only the peak frequencies and magnitudes are of interest, 

with the only concern for the impedance profile between the peaks being to ensure 

there are no additional peaks. This means that there could still be some uncaptured 

deviation in the impedance curves between the peaks. 

7.4.2 Control point vertical position as variable 

This section will demonstrate optimisation performance where just the vertical 

positions of the spline control point were defined as variables. The starting points 

were generated randomly between the defined radii variable bounds whilst the 

horizontal positions of the control points were fixed.  

The first test case was a very simple case where the objective was to match just one 

input impedance peak. The results of this match are shown in Figure 7-10 and it can 
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be seen that the peak position and magnitude are matched to a very close precision. 

There is some deviation between the input impedance either side of the peak, 

though this is expected as these portions of the impedance profile are not captured 

by the objective function. With a greater number of peaks, this deviation should 

reduce without directly controlling it, due to fewer available matching geometries. 

The resulting variable values used to generate the final input impedance profile are 

shown in Figure 7-11. 

 

Figure 7-10 – Single input impedance peak matching between actual (in blue) and target (in 

red). Coarse frequency increments were 1Hz with a finer increment of 0.03125Hz ±2Hz 

around the peak. Expected deviation in the curves away from the peaks is shown. 

 

 

Figure 7-11 – Converged variable results. Bore radius at var1: 4.2mm, var2: 7.6mm, var3: 

5.2mm, var4: 6.3mm, var5: 16mm, var6: 30.9mm. Horizontal positions of the spline control 

points were fixed in this case. 
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The second test case was to include two peaks in the matching process. Figure 7-12 

shows these results and a very good match was achieved for both peaks. The 

resulting variable values used to generate the actual input impedance profile are 

shown in Figure 7-13. 

 

Figure 7-12 – Target (in red) and actual (in blue) input impedance profiles up to 250Hz 

containing two peaks. Coarse frequency increments were 1Hz with a finer increment of 

0.03125Hz ±2Hz around each peak. Objective function value at termination 0.0031871. 

 

 

Figure 7-13 – Converged variable results. Bore radius at var1: 4.2mm, var2:5mm, var3: 

5.1mm, var4: 6.4mm, var5: 6.5mm, var6: 17.2mm. Horizontal positions of the spline control 

points were fixed in this case. 

 

The final test case was to include all 12 peaks (up to 1500Hz) in the optimisation 

which made the minimisation process significantly more complex. Figure 7-14 

shows the input impedance matching results and Table 7-2 contains the actual 

deviation in more detail. Overall, the match was successful but on closer 
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inspection, the frequencies of the peaks were not as well matched as the previous 

examples, with a mean absolute deviation of 0.6875Hz. The magnitudes were more 

closely matched with an absolute deviation of 2.07E-3%, but it was the frequencies 

that were of primary interest for the subsequent optimisation stages and so a better 

match was desired. 

 

Figure 7-14 – Input impedance profile matching for all 12 peaks up to 1500Hz.The objective 

function value at termination was 1.0193. 

 

Target (red) Actual (blue) Absolute Difference 

Peak Frequency 

(Hz) 

Magnitude Frequency 

(Hz) 

Magnitude Frequency 

(Hz) 

Magnitude 

(%) 

1 63.5 9.15E+7 62.375 8.99E+7 1.125 1.79E-2 
2 165.875 1.04E+8 165.875 1.04E+8 0 0 
3 337.875 1.34E+8 337 1.33E+8 0.875 1.35E-3 
4 455.5 1.56E+8 454.875 1.56E+8 0.625 6.40E-8 
5 585.375 1.45E+8 584.375 1.45E+8 1 3.01E-4 
6 704.125 1.02E+8 703.125 1.02E+8 1 1.45E-4 
7 828.5 5.34E+7 827.375 5.35E+7 1.125 1.40E-3 
8 954.375 2.72E+7 953.125 2.72E+7 1.25 2.09E-3 
9 1077.375 1.56E+7 1076.375 1.56E+7 1 1.43E-3 
10 1195.375 9.97E+6 1195.375 9.97E+6 0 0 
11 1311.5 7.15E+6 1311.375 7.15E+6 0.125 5.48E-5 
12 1426.375 5.45E+6 1426.5 5.45E+6 0.125 9.00E-5 

Mean 0.6875Hz 2.07E-3% 

Table 7-2 – Comparison of peak characteristics (frequency and magnitude) between target 

and actual. Absolute deviation values gives a measure of the success of the optimisation 

process. The objective function value at termination was 1.0193. 
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Figure 7-15 – Converged variable results. Bore radius at var1: 4.2mm, var2:5.03mm, var3: 

5.03mm, var4: 5.95mm, var5: 14mm, var6: 46.3mm. Horizontal positions of the spline control 

points were fixed in this case. 

 

Due to the less than exact match for the peak frequencies of the previous example, 

the objective function weightings of the three match measures (number of peaks, 

peak frequencies, and peak magnitudes), were varied so that the relative weighting 

of the peak magnitudes was reduced. These results are shown in Figure 7-16 and it 

shows that this time the frequencies were better matched. Table 7-3 tabulates the 

deviations in more detail. The mean absolute frequency deviation was reduced from 

0.6875Hz to 0.125Hz while the mean absolute magnitude deviation increased from 

2.07E-3% to 7.93E-3%. Further improvement could be made by either allowing for 

a greater number of optimisation iterations or by modifying the weighting factors 

further. 
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Figure 7-16 – Input impedance profile matching for all peaks up to 1500Hz using lower 

relative magnitude weighting in the calculation of the objective function. The objective 

function value at termination was 0.18472. 

 

 Target (red) Actual (blue) Absolute Difference 

Peak Frequency 

(Hz) 

Magnitude Frequency 

(Hz) 

Magnitude Frequency 

(Hz) 

Magnitude 

(%) 

1 63.5 9.15E+7 165.875 9.09E+7 0.375 6.49E-3 

2 165.875 1.04E+8 338.25 1.05E+8 0 5.85E-3 

3 337.875 1.34E+8 455.5 1.35E+8 0.375 9.54E-3 

4 455.5 1.56E+8 585.375 1.57E+8 0 1.18E-2 

5 585.375 1.45E+8 704.125 1.47E+8 0 7.76E-3 

6 704.125 1.02E+8 828.75 1.03E+8 0 5.76E-3 

7 828.5 5.34E+7 954.5 5.37E+7 0.25 5.34E-3 

8 954.375 2.72E+7 1077.5 2.74E+7 0.125 6.51E-3 

9 1077.375 1.56E+7 1195.375 1.57E+7 0.125 7.63E-3 

10 1195.375 9.97E+6 1311.375 1.01E+7 0 8.55E-3 

11 1311.5 7.15E+6 1426.25 7.22E+6 0.125 9.59E-3 

12 1426.375 5.45E+6 165.875 5.51E+6 0.125 1.04E-2 

    
Mean 0.125Hz 7.93E-3% 

Table 7-3 – Comparison of peak characteristics (frequency and magnitude) between target 

and actual for the lower relative magnitude weighting of the objective function. Absolute 

deviation values gives a measure of the success of the optimisation process. The objective 

function value at termination was 0.18472. 
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Figure 7-17 - Converged variable results. Bore radius at var1: 4.2mm, var2:5.03mm, var3: 

5.04mm, var4: 6.1mm, var5: 15.24mm, var6: 51mm. Horizontal positions of the spline control 

points were fixed in this case. 

 

7.4.3 Control point vertical and horizontal position as variable 

The examples in the previous section only allowed the spline control points to 

move vertically, their horizontal position being fixed. In the next series of test cases 

the horizontal positions were also allowed to vary. This allowed greater design 

freedom. To explore the performance of the method when also allowing the 

horizontal position to vary, the starting horizontal points were changed to the 

values shown in Table 7-4.  

Control point ID 1 2 3 4 5 6 

Control point position along bore (m) 0 0.2 0.45 0.95 1.2 1.3 

Table 7-4 – Horizontal starting points for the control points. 

 

Uniform horizontal lower and upper bounds of ±0.1m were set for each spline 

control point. The target input impedance profile was kept the same as the previous 

set of examples. Again, the first example was a single peak problem up to 120Hz, 

the results of which are shown in Figure 7-18 and Figure 7-19. 
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Figure 7-18 – Comparison of actual and target input impedance peak with horizontally and 

vertically varying spline control point position variables. Objective function value 1.9937E-7. 

 

 

Figure 7-19 – Bore geometry for single peak matching with horizontally and vertically 

variable spline control point positions. Var1: x=0m, y=4.2mm, var2: x=0.1375m, y=4.99mm, 

var3: x=0.4559m, y=5.49mm, var4: x=0.991m, y=5.02mm, var5: x=1.264m, y=21.1mm, var6: 

x=1.3m, y=57.1mm. 

 

The second demonstration was to match two peaks and again this was very 

successful as can be seen from Figure 7-20. 
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Figure 7-20 – Comparison of actual and target input impedance peak with horizontally and 

vertically varying spline control point position variables. Objective function value at 

termination 0.00029222. 

 

 

Figure 7-21 – Bore geometry for single peak matching with horizontally and vertically 

variable spline control point positions. Var1: x=0m, y=4.2mm, var2: x=0.1791m, y=5.17mm, 

var3: x=0.4629m, y=4.8mm, var4: x=0.9308m, y=6.67mm, var5: x=1.267m, y=13.6mm, var6: 

x=1.3m, y=33.1mm. 

 

The final demonstration was using all 12 peaks over the whole frequency range (up 

to 1500Hz). The lower magnitude weighting that was used for the demonstrations 

in the previous section was also used in this case as it gave better results. The 

results of the matching can be seen in Figure 7-22 and Table 7-5. The results show 

a close match, although peak 1 has a larger than average deviation in frequency 

which skewed the results somewhat. The performance including the horizontal 

positions as variables was worse than that with fixed horizontal positions. 
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Figure 7-22 – Input impedance profile matching for all peaks up to 1500Hz using lower 

relative magnitude weighting in the calculation of the objective function. The objective 

function value at termination was 0.44367. 

 

 
Target (red) Actual (blue) Absolute Difference 

Peak Frequency 

(Hz) 

Magnitude Frequency 

(Hz) 

Magnitude Frequency 

(Hz) 

Magnitude 

(%) 

1 63.5 9.15E+7 61.375 8.81E+7 2.125 3.87E-2 

2 165.875 1.04E+8 165.625 1.04E+8 0.25 6.75E-4 

3 337.875 1.34E+8 338 1.35E+8 0.125 9.58E-3 

4 455.5 1.56E+8 455.5 1.58E+8 0 1.54E-2 

5 585.375 1.45E+8 585.5 1.46E+8 0.125 1.28E-3 

6 704.125 1.02E+8 704.125 1.01E+8 0 4.90E-3 

7 828.5 5.34E+7 828.5 5.28E+7 0 1.10E-2 

8 954.375 2.72E+7 953.875 2.70E+7 0.5 6.42E-3 

9 1077.375 1.56E+7 1077 1.55E+7 0.375 4.60E-3 

10 1195.375 9.97E+6 1195.375 9.92E+6 0 4.73E-3 

11 1311.5 7.15E+6 1311.125 7.07E+6 0.375 1.16E-2 

12 1426.375 5.45E+6 1426 5.43E+6 0.375 3.76E-3 

    
Mean 0.354Hz 9.38E-3% 

Table 7-5 – Comparison of peak characteristics (frequency and magnitude) between target 

and actual for the lower relative magnitude weighting of the objective function. Absolute 

deviation values gives a measure of the success of the optimisation process. 
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Figure 7-23 – Bore geometry for single peak matching with horizontally and vertically 

variable spline control point positions. Var1: x=0m, y=4.2mm, var2: x=0.2591m, y=5.07mm, 

var3: x=0.5161m, y=5.03mm, var4: x=0.9888m, y=6.12mm, var5: x=1.237m, y=10.6mm, var6: 

x=1.3m, y=37.9mm. 

 

7.4.4 Analysis 

The results presented in this chapter have demonstrated the effectiveness of the 

bore profile optimisation method. The matching of the input impedance peaks was 

successful, although there were some small deviations in the peak frequencies and 

magnitudes. The three objective function measures, number of peaks, frequency 

deviation, and magnitude deviation, were able to produce a good match, even when 

ignoring the input impedance profile between the peaks. The weighted objective 

function required some adjustment to achieve a good balance between the three 

measures, in particular the relative weighting of the magnitude deviation to 

frequency deviation. 

The likelihood of the resulting geometry being atypical for this type of instrument 

was higher for the demonstration examples where only one or two peaks were 

considered. It was expected that the results of the cases where all peaks were 

considered would be typical due to the specific harmonic frequencies of the 

resonances. 

In the cases where the whole frequency range was used, the peak that resulted in 

the worst match was the first peak. This was particularly the case for the example 

where the horizontal position of the spline control points was allowed to vary. The 

mean frequency deviation across all 12 peaks was 0.125Hz for the fixed horizontal 

position and 0.354Hz. 
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The SA optimisation algorithm performed reasonably well although the global 

optimum (deviation of zero) was not found in all cases. Stochastic methods do not 

guarantee that they will find the global optimum, but the chances of finding it are 

greatly increased compared with gradient-based methods. Further adjustment of the 

optimisation parameters could be used to improve the performance such as 

reducing the cooling rate or starting off at a higher temperature. The optimisation 

could also be allowed to run for longer. Currently, the optimisation was allowed to 

run for approximately 10 hours for the full-range examples. The time taken to 

minimise the deviation adequately was found to be heavily dependent on the 

starting point, which was generated randomly. Sometimes a good solution was 

relatively quickly converged upon, whereas other times it took significantly longer. 

So while the convergence time was dependent on the starting point, the end result 

was less so. 

Adjusting the variable bounds would also help the optimisation performance, 

although it can be difficult to know in advance what bounds are appropriate. In the 

examples shown in this chapter, the bounds were intentionally left quite loose, as 

can be seen from Figure 7-7 and Figure 7-8. This was intentional, to assess the 

optimisation performance, but they could easily be tightened to assist convergence 

on the global optimum.  

 

7.5 Summary  

This chapter has detailed the implemented bore profile optimisation methodology, 

which was the first stage of the overall optimisation process. The optimisation 

methodology of using spline curves to define the segment radii was explained, 

along with the definition of the vertical and horizontal variable bounds. The 

calculation of the objective function using just the peak characteristics was outlined 

and a series of problems was used to demonstrate the effectiveness of the method. 

The results from this first stage of the optimisation process were used as an input 

into the second stage, where wall vibration effects were included. The coupling 
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information between the two stages was the optimised bore profile geometry and 

the associated resonant frequencies, which correspond to the input impedance 

peaks. As detailed in the following chapters, the objective of the second stage was 

to either maximise or minimise the effect of the wall vibrations by optimising the 

extent of the wall vibrations. The effect is maximised when the structural and air-

column resonances align and is minimised when they do not.  

This approach was not dependent on a particular coupling such as modelling 

directly the vibrations caused by the specific couplings outlined in chapter 2. These 

were the couplings between the players lips and the walls, between the internal air 

column and the walls, and between the walls and the external surrounding air. 

Instead, it aimed to control the degree to which the walls vibrate irrespective of the 

cause of the wall vibrations themselves. 
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8 Structural Optimisation Method 
 

8.1 Introduction 

This chapter will explain the approaches devised to optimise the structural 

performance of the instrument with respect to its resonance and excitation response 

characteristics. This forms the second stage in the optimisation process and uses the 

output from the first optimisation stage, which involves determination of the bore 

profile, as discussed in chapter 7. 

The key points in implementing this stage are presented and two main optimisation 

approaches are discussed. The first is the matching or mismatching of resonant 

frequencies and the second is minimising or maximising the structural response to 

excitation frequencies. Two different methods of defining the design variables are 

also detailed. The optimisation results and their analysis are presented in chapter 9. 

 

8.2 Geometry and FE model setup 

The bore profile optimisation, described in chapter 7, implemented a straight 

uncoiled bore geometry. This was because bends were not taken into account in the 

transmission line model. This is a reasonable simplification as they are known not 

to have a significant effect on the acoustics unless very tight. In reality, straight 

bugle-type instruments are usually coiled into a more practical form and braced for 

increased rigidity. This section outlines the steps taken to transform the uncoiled 

geometry into a coiled equivalent. The bore profile geometry was imported into 

CAD software and coiled into an appropriate form by flexing the straight geometry, 

as shown in Figure 8-2. This method enabled the length and geometry of the bore to 

remain constant throughout the process, mimicking a real life bending process.  

The segments used to define the transmission line model were retained to create 

1mm wide segments in the coiled geometry, as shown in Figure 8-3. This was to 

enable banding of the finite elements into variable groups for the structural 
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optimisation and to ensure that the internal bore profile did not change from the 

first optimisation stage. 

 

Figure 8-1 – Stages of coiling the straight bore to a desired practical form. The total length of 

the bore does not change during this coiling process and mimics the bending process that 

would be carried out on a physical object. The severity of the bends was kept to a reasonable 

minimum to reduce any effect of the bends on the input impedance profile of the bore. 

 

 

Figure 8-3 – Close up of a portion of the bore showing the 1mm wide segments used for the 

transmission line model. These were cascaded through to the structural optimisation to define 

the shell element width. 

 

Step 1 

Step 2 

Step 3 
Step 4 

Uncoiled bore geometry from 

bore profile optimisation 
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The coiled surface geometry was meshed with second order quadrilateral (quad8) 

shell elements of ~1mm square using the MSC Patran FE pre-processor, as 

illustrated in Figure 8-4. A mesh convergence study showed that this was an 

adequate size of element. Second order elements were used for two reaons: firstly 

to allow a quadratic displacement field over each element and secondly to allow 

better representation of the curved geometry. 1D beam elements of circular cross 

section were placed at the positions shown in Figure 8-4 to form five braces, which 

are given identification numbers one to five. 

 

 

Figure 8-4 – a) Top view of the meshed geometry showing the support brace elements, which 

have defined identification numbers. b) Side view showing the boundary conditions for the 

handgrip (fixed in y-direction) and for the mouthpiece (fixed in all directions), and a close up 

of part of the mesh. c) End view showing the position of the support braces.  

 

In reality, the player supports the instrument by the hand with enough force to 

counteract the weight of the instrument. Also, some level of localised damping is 

applied to the instrument around this grip.  Boundary conditions were applied to the 

model to approximate the instrument being held to the players’ lips. Several 

y 

x 
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approaches to modelling the boundary conditions were considered. One approach 

considered was to use variable stiffness springs to adjust the stiffness of the ‘hand 

grip’ rather than to assume it was fixed. The main problem with this approach was 

that the spring stiffness would require modification at each design iteration as the 

weight of the instrument changed. The distribution of the mass along the 

instrument’s length would also affect the stiffness modification required making 

defining the relationship between the stiffness modification and the variable values 

difficult. For this reason, this approach was not used.  

A second approach considered was to use a fixed physical support to ‘rest’ the 

instrument on. This would restrict any vertically downwards motion as would be 

the case in reality, but would not restrict upward motion. In this was the damping 

would be less severe than fixing the nodes. However, this would have required 

contact conditions between the instrument and the support which would add to the 

analysis complexity and computation time required. Also, it would not have 

provided any damping of the vibrations.  

Due to the aforementioned difficulties with both of these approaches, it was 

decided that the nodes at the mouthpiece end of the instrument would be 

completely fixed in all degrees of freedom, and the nodes at the top of each coil 

were fixed in the vertical ‘y’ direction to approximate a handgrip. While these 

boundary conditions are simplifications of reality, they are a reasonable 

approximation of the standard method of holding this type of brass instrument. 

The meshing and setting up of the model for analysis and optimisation was 

automated by writing Patran Command Language (PCL) scripts. This provided 

flexibility with the set up process and allowed repetitive steps to be carried out 

efficiently. One such step was the renumbering of all of the 1mm wide surface 

segments imported from the CAD model shown in Figure 8-3. On importing these 

surfaces into Patran, the surface ID numbers did not follow a regular or predictable 

pattern. When meshing surfaces, the elements are created in the order that the 

surface IDs imply. For example, surface 1 would be meshed first with say element 



Structural Optimisation Method 8 

 

 146 

 

1:10, then surface 2 would be meshed with element 11:20 and so on. While for FE 

analysis this does not cause a problem, for optimisation it makes the definition of 

design variables awkward. It was required that the numbering be completely 

redefined which required writing of an algorithm in PCL. 

The first step was to define the world coordinate system (WCS) at the far left of the 

model which in this case was at the narrow end. It was also aligned with the central 

axis of the tubing. The second step was to find the surfaces whose vertices were 

closest to the WCS. The third step was to find the surface that shared all vertices 

with the first surface. The fourth step was to find the next two surfaces that shared 

these vertices, which would be adjacent. A regular order of the surfaces could then 

be understood and the surfaces renumbered accordingly as shown in Figure 8-5. 

This allowed for the definition of the design variables. The PCL code for this 

function can be found in appendix 12.4.  

Subsequent stages of the model setup process were also carried out using PCL, in 

particular the defining of the design variables. Once the surfaces had been 

renumbered, the elements associated with each surface could be extracted to form 

the property design variables. 

 

 
Figure 8-5 – Renumbering of surfaces based on location. WCS shown in red and surface ID 

numbers labelled. 

 

As explained in chapter 5, the shell element thickness reference plane is by default 

at the midsurface of the element. The element thickness is applied in both positive 

and negative directions normal to this surface. To ensure that the internal bore 
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profile was not altered during the thickening process, the reference plane was offset 

by half of the element thickness. This meant that the element was only effectively 

thickened in the outwards direction from the bore profile. 

 

8.3 Optimisation model setup 

The overall objective of the optimisation was to maximise or minimise the 

magnitude of wall vibration at the playable frequencies of the instrument. There are 

12 frequencies up to 1500Hz that correspond to playable notes for the instrument in 

question. It was explained in chapter 2 how the effect of wall vibration is increased 

when the air-column and structural resonances approach each other. The air-

column resonances form the target to match the structural resonances to. Two 

approaches to the optimisation were implemented to achieve this and their 

suitability was investigated. The first used free vibration analysis to match or 

mismatch specific structural resonances with the air-column resonances and the 

second used forced vibration analysis to maximise or minimise the structural 

response at the air-column resonances. The fundamentals of both of these analysis 

techniques were explained in chapter 5. This section will outline how the 

optimisation model was formulated and implemented using the MSC Nastran FE 

solver. 

8.3.1 Free vibration optimisation 

Two scenarios were defined; the first was to match the playable resonant 

frequencies of the air-column to those of the structure, and the second was to match 

the structural resonant frequencies to the midpoint between each playable 

frequency and the next. The objective with the first scenario was to have maximal 

coupling at the playable resonances which would give the maximum effect as 

explaining in section 2.5.3 of chapter 2. The objective with the second scenario was 

to have minimal coupling at the playable resonances by ensuring the resonances 

were not aligned. If the objective for the second scenario had been specified in 

terms of maximising the difference between the air-column and structural 
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resonances, then the result would have likely been pushed either to very high or 

very low resonances which is less preferable.  

Figure 8-6 shows the input impedance profile from the bore profile optimisation 

stage with the resonance targets overlaid. The matching targets were implemented 

in the optimisation model as constraints which allowed the specification of a 

tolerance on the resonance matching through the use of lower and upper constraint 

bounds.  The tolerance used was ±1Hz but this could be tighter if required, 

although very tight constraints could impinge on the success of the optimiser in 

satisfying them.  

 

Figure 8-6 – Target resonances for two scenarios, 1) to match the playable resonances (in blue) 

and 2) to match the midpoints between the playable resonances (in red). 

 

The objective of matching the resonances was transformed so that they became 

constraints, with the objective of the optimisation problem being to minimise the 

mass of the instrument. This was because an important consideration in the design 

of brass instruments is its weight, particularly for players who will be using the 

instrument for extended periods of time or for instruments that require extension of 

the arms, such as a trombone. This weight consideration was outlined in the 

research objectives in chapter 4.  

The variables were subject to lower and upper side constraints; minimum and 

maximum wall thicknesses of 0.3mm and 5mm respectively were chosen for 

manufacturing reasons. The minimum and maximum radii for the braces were 

specified as 1mm and 5mm respectively for practicality reasons, namely structural 

rigidity for the lower bound and weight for the upper bound.  

 

Input impedance  

 

Scenario 1 resonances  

 

Scenario 2 resonances  

 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 
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While the objective of the optimisation problem as implemented was to minimise 

the mass, the main aim of the optimisation was to satisfy the modal constraints, 

with mass minimisation as a secondary consideration. With this in mind, a measure 

of the match deviation was devised, to assess the performance of the optimised 

results. This is defined by equation 8-1, where a deviation of zero corresponds to a 

perfect match. The first portion of this measure calculates the difference between a 

structural resonant frequency and its closest target air-column resonant frequency. 

The second portion calculates the difference between each unmatched air-column 

resonant frequency and the closest actual structural resonant frequency to it. This 

function penalises instances where some resonances are not matched at all. This 

avoids the fitness value being good in instances where many of the resonances are 

perfectly matched but where others are far from matched. The penalty function in 

equation 8-1 was found to be too severe for cases where the modes were unmatched 

due to the large frequency difference from the target. Dividing the frequency 

difference by the number of unmatched modes, m, reduced this severity but ensured 

that it was still unfavourable and gave a useful representation of fitness. Details of 

the MSC Nastran input deck for this approach are included in appendix 12.2 and 

the results of this approach and their analysis are detailed in chapter 9. 

 

 

 

%"��° ����"���$ � ∑ |ö1� = ö"�| ( ∑ êö1ã = ö"ãê%ãQM$�QM $ (%  

 

(8-1) 

 

For the actual optimisation model, equation 8-1 was not used. Instead, the 

frequency matching was imposed using constraints with the secondary 

consideration of mass being used as the objective. It would have been difficult to 

include the mass as a constraint and so this arrangement was selected. A summary 

of the implemented optimisation problems for Scenario 1 and 2 is: 

Frequency difference between 

each structural mode and its 

closest target mode 

Frequency difference between 

each unmatched mode and the 

closest resulting structural mode 

Number of target modes Number of unmatched modes 
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Minimise f(x,y)  Mass 

 Scenario 1 Scenario 2  

Subject to 82 ≤ g(x,y)1 ≤ 84 154 ≤ g(x,y)1 ≤ 156 Mode 1 

 82 ≤ g(x,y)2 ≤ 84 154 ≤ g(x,y)2 ≤ 156 Mode 2 

 226 ≤ g(x,y)3 ≤ 228 277 ≤ g(x,y)3 ≤ 279 Mode 3 

 434 ≤ g(x,y)4 ≤ 560 381 ≤ g(x,y)4 ≤ 383 Mode 4 

 558 ≤ g(x,y)5 ≤ 560 496 ≤ g(x,y)5 ≤ 498 Mode 5  

 677 ≤ g(x,y)6 ≤ 679 617.5 ≤ g(x,y)6 ≤ 619.5 Mode 6 

 792 ≤ g(x,y)7 ≤ 794 734.5 ≤ g(x,y)7 ≤ 736.5 Mode 7  

 847 ≤ g(x,y)8 ≤ 849 847 ≤ g(x,y)8 ≤ 849 Mode 8 

 902 ≤ g(x,y)9 ≤ 904 964.5 ≤ g(x,y)9 ≤ 966.5 Mode 9 

 1027 ≤ g(x,y)10 ≤ 1029 1090 ≤ g(x,y)10 ≤ 1092 Mode 10 

 1153 ≤ g(x,y)11 ≤ 1155 1211.5 ≤ g(x,y)11 ≤ 1213.5 Mode 11 

 1153 ≤ g(x,y)12 ≤ 1155 1211.5 ≤ g(x,y)12 ≤ 1213.5 Mode 12 

 1270 ≤ g(x,y)13 ≤ 1272 1334 ≤ g(x,y)13 ≤ 1336 Mode 13 

 1398 ≤ g(x,y)14 ≤ 1400 1448.5 ≤ g(x,y)14 ≤ 1450.5 Mode 14 

    

 0.3mm ≤ x ≤ 5mm Wall thickness bounds  

 1mm ≤ y ≤ 5mm Brace radii bounds  

    

Where x={x1, x2, x3, …, x60} Wall thickness variables  

 y={x61, x62, x63, x64, x65} Brace radii variables  

 

The parameters set to control convergence in the MSC Nastran solver were: 

CONV1 Relative criterion to detect convergence of objective function. 

CONV2 Absolute criterion to detect convergence of objective function. 

CONVDV Relative convergence criterion on design variables. 

CONVPR Relative convergence criterion on properties. 

GMAX Maximum constraint violation allowed at the converged optimum. 

DESMAX Maximum number of design iterations. 
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8.3.2 Forced vibration optimisation 

Free vibration is a method that can be used to calculate modal characteristics of a 

structure such as natural resonant frequencies and mode shapes. Inherently, it does 

not require loadings to be imposed and so no magnitude of the extent of the wall 

vibration is included. Forced vibration, on the other hand, as explained in chapter 5, 

can be used to calculate the response of a structure to an imposed load. The load is 

frequency dependent which allows the response at specific frequencies or over a 

frequency range to be analysed. 

The frequency response of the structure was calculated in 1Hz increments over a 

range of 1-1500Hz, within which all the playable notes fall. There are two possible 

methods for calculating the frequency response; the direct and the modal method. 

The direct method solves the equations of motion in terms of the forcing frequency 

while the modal method makes use of the mode shapes of the structure to reduce 

and uncouple the equations of motion. The direct method was used even though the 

modal method can make the process more efficient because unless all modes are 

included in the calculation, the result is less accurate. 

The structure was excited using a 0.1N point load moving in a sinusoidal manner 

with constant amplitude over the frequency range. This was located at the position 

shown in Figure 8-7 to avoid it being near the extraction nodes and to avoid it being 

placed exactly at a modal node. A structural damping coefficient of 0.01 was used 

to represent light damping, as also used by Pico and Gautier (2007). Following the 

initial studies using this coefficient value, a further study was carried out to 

examine the effect of the coefficient on the results. For this subsequent work, 

additional values of 0.005, 0.02, 0.03, 0.04 and 0.05 were used.  

The material used was brass with the following material properties: Young’s 

Modulus (E) of 112GPa, Poisson ratio (µ) of 0.35 and density (ρ) of 8500kg/m3 

(Watkinson and Bowsher 1982). 
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Figure 8-7 – Extraction nodes and excitation force locations. 

 

A set of nodes were used as the extraction nodes, as shown in Figure 8-7, and the 

displacement at each node was calculated at each frequency. From these, the 

maximum resultant displacement magnitude of the 3 translational components was 

used as feedback to the optimisation algorithm. As mentioned earlier, the 

frequencies of interest were those extracted from the input impedance calculation, 

i.e. the air column resonances.  

In reality, there were 12 objectives to this optimisation, to maximise or minimise 

the response at the 12 frequencies of interest. As was explained in chapter 6, there 

are several ways to handle multiple objectives. Using Pareto methods to 

simultaneously use all objectives would be complicated to implement and take 

much longer to solve. The results would also be in the form of a multidimensional 

Pareto set which would require the designer to subsequently define a subjective 

weighting preference in order to decide which results to use. With this in mind, a 

weighted sum approach was chosen as a more direct alternative to obtain a scalar 

value for the objective function.  The objective function was, hence, the weighted 

sum of the maximum resultant displacements at the extraction nodes at the 12 

frequencies. The calculation of the objective function is summarised in Figure 8-8. 

 

y 

x 



 

 

 

A summary of the implemented optimisation problems for Scenario 1 and 2 is to:

Minimise or maximise

Subject to: 

 

Where: 

 

 

 

Figure 8-8 – Flowchart

maximum frequency resultants

Structural Optimisation Method

A summary of the implemented optimisation problems for Scenario 1 and 2 is to:

Minimise or maximise: f(x,y) Sum of frequency response at 12 

specific frequencies

0.3mm ≤ x ≤ 5mm Wall thickness bounds

1mm ≤ y ≤ 5mm Brace radii bounds

x={x1, x2, x3, …, x60} Wall thickness variables

y={x61, x62, x63, x64, x65} Brace radii variables

 
Flowchart showing the calculation of the objective function as the sum of the 

maximum frequency resultants 
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A summary of the implemented optimisation problems for Scenario 1 and 2 is to: 

Sum of frequency response at 12 

specific frequencies 

Wall thickness bounds 

Brace radii bounds 

Wall thickness variables 

Brace radii variables 

showing the calculation of the objective function as the sum of the 
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While the ultimate objectives of both the free and forced vibration approaches were 

the same, different implementation approaches were taken for the optimisation 

models. There were several reasons for this. In the free vibration case, a significant 

disadvantage was the requirement to know in advance specific modes to match with 

specific target frequencies. By removing the requirement to identify individual 

modes and just maximising or minimising the response at particular frequencies, 

this issue was avoided. More details on this are contained in Section 9.3 of Chapter 

9. Details of the MSC Nastran input deck for this approach are included in 

appendix 12.2 and the results of this approach and their analysis are detailed in 

chapter 9. 

 

8.4 Variable definition 

The portions of the model that were allowed to vary to meet the optimisation 

objective were the bore wall thickness and the brace radii. The braces were formed 

from beam finite elements as outlined in chapter 5 and were given a circular cross 

section, thereby forming cylinders. The radius of each of these 5 braces was 

defined as an independent variable. The positions of the braces were kept fixed and 

not treated as variables. 

Two approaches to defining the wall thickness design variables were used in these 

experiments. The first method discretised the length of the bore into discrete 

independent blocks. The thicknesses of the finite elements that were within these 

blocks were classed as one design variable. The second method used interpolation 

between control nodes to result in a smoother geometry profile. These two 

approaches are detailed in the following sections. 

8.4.1 Discrete independent variables 

For this approach, the bore was split up into a number of blocks, as shown in Figure 

8-9. This was defined as two sections with a smaller block size for elements within 

the bell region. It is clear that the more variables that are defined, the greater the 

scope for design modification by the optimisation method. A greater number of 
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variables should give greater potential for achieving a higher overall level of 

optimality, but at the cost of model complexity and computation time.  

 

 

Figure 8-9 – Discrete independent thickness variables. The finite elements were grouped into 

blocks and the thickness of each element within a block treated as one variable. 

 

Initially 60 wall thickness variables were defined, which was considered an 

appropriate balance between design freedom and time required for optimisation 

convergence. No linkage was defined between a variable and its neighbours, 

leaving each variable independent. There are advantages and disadvantages to 

using independent variables: an advantage is that a greater degree of local control 

over the geometry is possible, but a disadvantage is that the transitions between 

variables may be non-smooth and significantly stepped which is not aesthetically 

pleasing.   

 

8.4.2 Spline linked variables 
The second approach to defining the wall thickness design variables was to use an 

interpolating function between the independent design variables. This would enable 

the wall thickness profile to always be smooth, even with a modest number of 

design variables. There are many different types of interpolating function that could 

be used, but a spline based function was chosen to obtain a smooth profile over the 

whole bore. 

 

 

Variable 3 Variable 2 Variable 1 

Shell elements Inner bore profile 
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Introduction to splines 

A spline is a smooth curve made up of polynomial pieces, usually cubic, defined by 

control points. There are two main types of spline: interpolating and approximating. 

Interpolating splines join up the control points while approximating splines do not, 

as shown in Figure 8-10. For this application it was appropriate to use an 

interpolating spline that was smooth and allowed a reasonable amount of local 

control over the shape of the spline. One such spline type is the Hermite 

formulation which is constrained by two control points and two tangents as shown 

in Figure 8-11. At each control point a gradient must be specified. 

 

  

 

 

 

 

 

Figure 8-10 – a) interpolating spline and b) 

approximating spline. 

Figure 8-11 – Hermite spline. 

 

The form of a cubic polynomial is: +&�' � "�õ ( )�! ( �� ( � (8-2) 

The spline expressed in matrix form is: 

+&�' � �õ �! � M� ÷ ! =! M M=õ õ =! =M/ / M /M / / / ø ÷+/+M�/�M
ø (8-3) 

The columns in the centre matrix above form the spline basis or blend functions. 

Each function is multiplied by its corresponding coefficient to create the spline: +&�' � )/&�'+/ ( )M&�'+M ( )!&�'�/ ( )õ&�'�M (8-4) 

 

 

a) 

b) 

V0 

V1 
P1 

P0 



Structural Optimisation Method 8 

 

 157 

 

The individual blend functions, b0 to b3 are listed below and shown in Figure 8-12. )/&�' � !�õ = õ�! ( M )M&�' � =!�õ ( õ�! )!&�' � �õ = !�! ( � )õ&�' � �õ = �! 

(8-5) 

 

If specifying the gradient at the start and end points to be zero and with arbitrary 

control point positions, the resulting spline is shown in Figure 8-13. 

 

 
 

Figure 8-12 – Blend functions for Hermite 

spline. 

Figure 8-13 – Spline (in black) with its 

associated blend functions. 

 

To interpolate more than two points, the splines can be joined together in a 

piecewise fashion. To ensure that the spline pieces join together smoothly there are 

up to three conditions that can be applied to each control point. The first condition 

(C0) is that the end point is coincident with the start point of the subsequent curve 

piece. The second condition (C1) is that the end point is tangent to the following 

start point. The third condition (C2) is that the curvature of the two connected 

pieces matches. These conditions are represented pictorially in Figure 8-14. 

  

 

Figure 8-14 – Spline continuity conditions at control points: C0 coincident, C1 tangent, C2 

curvature.  

 

 C0 C1 C2 
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Unlike general cubic splines, C2 continuity cannot be applied to Hermite splines. 

This results in a slightly less smooth spline. However, advantages are that Hermite 

splines are less globally sensitive to the control points control over the shape and 

also can be made to be monotonic if required. A complication with using Hermite 

splines is that the tangents have to be specified for each control point. This is not 

intuitive and so it is usual for the tangents to be calculated from the previous and 

following control points. This reduces some of the flexibility of using Hermite 

splines but it makes them easier to use. If the tangents are calculated automatically, 

the spline becomes known as a Cardinal spline, which is a subset of Hermite 

splines. The tangents can be calculated as follows where a is a constant, usually 

between 0 and 1, which controls the tightness of the curve. 

�� � "&ù�ïM = ù�8M' (8-6) 

 

A subset of the Cardinal spline is the Catmull-Rom spline. In this spline, the 

tightness of the curve is fixed at 0.5. It is this type of spline that was implemented 

in this case. Figure 8-15 shows a spline of this type calculated using unequally 

spaced control points, along with the corresponding blend functions. The tangents 

at the start point of the first piece and the end point of the last piece are zero in this 

case. 

 
Figure 8-15 – Catmull-Rom spline (in black) using unequally spaced control points. 

Corresponding blend functions are also shown beneath. 
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Linking of wall thicknesses based on spline interpolation 

The main goal in using spline interpolation for defining the wall thickness of the 

instrument bore is that it ensures a smoother thickness profile. This will be the case 

regardless of the number of design variables, although the fewer the variables, the 

smoother overall the resulting design will be. However, there is a balance to be 

drawn between the degree of geometric control the optimiser has and the 

smoothness of the design. Figure 8-16 demonstrates how the spline linking was 

specified for the shell element thickness. 

 

 

Figure 8-16 – Spline linking of variables to wall thickness. Spline control points indicated with 

red markers and interpolating function shown as thick black curve. Thickness of shell 

elements linked to this function. 

 

Each shell element obtained its thickness value from the interpolating function. 

This was implemented by defining independent variables (the spline control points) 

and dependent variables (the element thicknesses that were not control points). 

There was still a small degree of stepping but it was much less significant than with 

the previous approach. The spline continuity conditions also ensured that 

transitions between independent variables were smooth. While the resulting 

thickness profile was smooth, the local geometry control was reduced somewhat. 

Due to the nature of the spline interpolation it was not sufficient to rely on the 

independent design variable bounds to ensure the wall thickness remains feasible, 

i.e. between 0.3mm and 5mm. Property constraints were therefore also required. 

Variable control thicknesses 

Shell elements 

Spline interpolating function 

Inner bore profile 
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8.4.3 Starting points 

As mentioned earlier, gradient-based optimisation algorithms are more sensitive to 

their starting point than global optimisation algorithms. It is often the case that the 

most appropriate starting point is not known in advance, as was the case for the 

results presented here. Initially a starting point of 1mm constant was chosen for 

wall thickness, along with a 2.5mm constant brace radii. This was to allow the 

optimiser to be able to adjust the variables in both positive and negative directions 

from the first iteration. The midpoint was not chosen because the mass of the 

design was a secondary consideration and so it was started towards, but not at, the 

lower variable bound. To investigate the sensitivity of this model to the starting 

point, several different points were used for the forced vibration spline-linked 

variable approach. The allowable range of both sets of design variables (wall 

thickness and brace radii) were split up into 5 increments as shown in Table 8-1. 

The response was maximised and minimised using these values. 

 

 Wall thickness (mm) Brace radius (mm) 

1 0.3 1 

2 1.48 2 

3 2.65 3 

4 3.83 4 

5 5 5 

Table 8-1 – Starting points for sensitivity investigation. 

 

 

8.5 Optimisation algorithm 

8.5.1 Gradient-Based algorithms 

An overview of different optimisation algorithms was presented in chapter 6 which 

serves as an introduction to this section. The MSC Nastran FE solver was used for 

implementation of the structural optimisation and this has several built in 

optimisation algorithms, some of which are listed here: 

• Sequential linear programming (SLP) 

• Sequential quadratic programming (SQP) 
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• Sequential unconstrained minimisation technique (SUMT) 

• Modified method of feasible directions (MMFD) 

The methods used by these different algorithms were explained in chapter 6. 

Gradient-based algorithms were used for this portion of the work primarily for two 

practical reasons. Firstly, these algorithms were built in to the Nastran software and 

enabled direct coupling of the optimisation and analysis. This was useful when 

building up the optimisation model. Secondly, gradient-based techniques tend to be 

more efficient than global techniques, although the results are usually only locally 

optimal.  

A preliminary study was carried out using the free vibration model with discrete 

independent variables to investigate the effectiveness of the different available 

algorithms. This was done using both scenarios described in section 8.3, firstly to 

match the air-column resonances, and secondly to match the mid-points between 

the air-column resonances. The model was set up initially with 60 wall thickness 

variables and 5 brace radii variables and the results are presented in chapter 9.  

8.5.2 Global algorithms 

The structural optimisation results were initially obtained using gradient-based 

optimisation algorithms embedded within MSC Nastran FEA software which made 

use of sensitivity analysis. These algorithms are well established and commonly 

used for tackling industrial problems due to their efficiency as they use an 

analytical representation of the design space which is an approximation to the 

actual design space. They can only converge to a local optimum which is unlikely 

to also be the global optimum which means that a more optimal design could be 

found using other algorithms that allow the escaping of local optima. These global 

search optimisation algorithms tend to be more computationally expensive than 

gradient-based algorithms, but this can be justified if the global optimum is 

significantly more optimal than the local optimum.  

To establish whether this was the case for this work, the structural optimisation was 

carried out subsequently using a global optimisation implementation. To achieve 
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this, the FEA software was used purely for analysis purposes with external 

software, in this case MATLAB, handling the optimisation. This is the 

implementation that was shown in Figure 6-9a of chapter 6 and the MATLAB 

script written to do this is contained in appendix 12.3. 

Simulated annealing (SA) was chosen as the global optimisation algorithm for this 

investigation, which was explained in section 6.7.5 of chapter 6. This algorithm 

was used because preliminary work showed that it converged more quickly than 

genetic algorithms (GAs). It had also been successful for the bore profile 

optimisation work detailed in chapter 7. Swarm based methods were considered but 

these were not available as functions within MATLAB at that time and so for 

practical reasons were not pursued. 

The discrete independent variables were used for the global optimisation studies to 

give the optimiser greater design freedom than the spline-linked alternative. This, 

coupled with the ability to escape local optima, was a test to investigate whether a 

significantly better result could be obtained using this global implementation rather 

than the gradient-based approach. 

 

8.6 Optimisation parameters 

There are many parameters that can be adjusted to control optimisation 

performance. It would be difficult and probably premature to evaluate the effect of 

altering all of the parameters as the focus of this work was primarily on developing 

the overall optimisation approach and evaluating its performance. All of the 

parameters within MSC Nastran have default values which have been heuristically 

determined. Initially, these defaults were used with the exception of the following: 

the maximum number of iterations was set at 30, the convergence criteria was 

tightened to avoid premature convergence; additionally the constraint tolerances 

were also tightened. The move limits were kept as default because MSC Nastran 

uses an automatic method to adaptively adjust the move limit parameter value. For 

a list of the actual parameter values used that differed from defaults refer to the 
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DOPTPRM (Design OPTimisation PaRaMeters) card on the input deck contained 

in appendix 12.2. 

To reduce the time required for the optimisation, certain aspects of the run were 

parallelised. Primarily this was the sensitivity calculations and the frequency 

response analysis, both of which are inherently parallelisable. A single workstation 

PC was used with the job spread across 8 processors. The following chapter 

contains the results that were generated using these optimisation algorithms.  

 

8.7 Summary 

This chapter has detailed the approach taken for the structural optimisation method 

which formed the second part of the overall optimisation procedure. The resonant 

frequencies outputted from the previous bore profile optimisation stage were used 

to define constraints and objectives for the structural optimisation stage. It has 

explained the model setup including applied boundary conditions, mesh definition, 

and design variable specification.  

Two primary analysis methods were investigated: free vibration and forced 

vibration. The free vibration approach allowed the analysis of the resonant 

frequencies while the forced vibration approach also included the magnitude of the 

vibration in the analysis. Two ways of defining the design variables were also 

covered. The first approach defined each design variable as independent of its 

neighbour, grouping the shell elements in blocks. The second approach was 

intended to produce a greater level of smoothness in the resulting wall thickness 

distributions by using a spline based function to interpolate between the design 

variables.  

The results obtained using these methods and their analyses are detailed in chapter 

9. 
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9 Structural Optimisation Results 
 

9.1 Introduction 
The previous chapter outlined the methods used to implement the optimisation. 

This chapter will present the results for the two analysis approaches described in 

chapter 8. The approaches will be compared and their performance discussed. 

 

9.2 Free vibration results 
The results of the preliminary investigation into the effectiveness of the available 

optimisation algorithms are presented in Figure 9-1. The results of the optimisation 

runs were quantified using the devised match deviation equation, equation 8-1 in 

chapter 8, which is repeated for convenience in Figure 9-1. The deviation of the 

match between the initial start points and the target are also included for reference. 

 

Figure 9-1 – Optimisation results for algorithm comparison for the two scenarios investigated.  

Scenario 1 (in blue): match air-column resonances, Scenario 2 (in red): match mid-points 

between air-column resonances. The initial starting point performances are also shown as a 

reference. 
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It can be seen from these results that there was a marked difference in the 

performance of the different algorithms. The average result for scenario 1 was 

worse than that for scenario 2, indicating that the constraints of the second problem 

were easier to satisfy. The best performing algorithms for scenarios 1 and 2 

individually were MMFD and SQP respectively. It can be seen that while MMFD 

did not perform as well as SQP for scenario 2, it was only marginally worse. The 

MMFD algorithm performed best overall and so for this reason was chosen for use 

for subsequent optimisation runs.  

An investigation was also carried out into the appropriate number of variables to 

use. The number of brace radii variables was kept constant at 5, but the number of 

wall thickness variables was varied between 20 and 100. The match deviation was 

calculated using equation 8-1 for each result and the implemented optimisation 

objective of minimum mass was also compared. The results are shown in Figure 

9-2. For scenario 1, the MMFD algorithm was used as this was found to give the 

best results and for scenario 2, the SQP algorithm was used, as this was found to 

give the best results for scenario 2. For both scenarios, the model using 60 wall 

thickness variables resulted in the lowest match deviation. It can be seen that the 

match deviation values for scenario 2 runs were substantially lower than the 

corresponding values for scenario 1. This indicates that a better local optimum is 

nearer the scenario 2 starting point. It may be the case that a global optimisation 

algorithm would result in more consistent match deviation values across both 

scenarios.  

While the mass of the designs was not of primary concern, it can be seen that there 

is no particular relationship between the number of variables and mass, and also 

none between the match deviation and the mass.  

 

 



 

 

 

Figure 9-2 – Comparison of effect of number of variables on match deviation and mass, a) for 

scenario 1 (in blue) 

constant at 5 and the number of wall thickness variables varied from 20 to 100. The total 

number of variables for each run is shown.

 

Graphical depictions

and 2 are shown in 

modes 6, 11 and 12. Modes 4 and 13 were also relatively high. For scenario 2,

overall the match deviation was much lower, with just mode 12 being relatively 

much high than the others. 

with the step by step calculation of the overall mat

 

Figure 9-3 – Graphical representation of match deviation for scenario 1 (in blue), and scenario 

2 (in red). The grey lines mark the target frequencies.
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Comparison of effect of number of variables on match deviation and mass, a) for 

. The number of brace variables was kept 

constant at 5 and the number of wall thickness variables varied from 20 to 100. The total 

for the 60 wall variable results for scenarios 1 

For scenario 1, the match deviation was highest for 

modes 6, 11 and 12. Modes 4 and 13 were also relatively high. For scenario 2, 

overall the match deviation was much lower, with just mode 12 being relatively 

The precise deviations are detailed in Table 9-1 along 

ch deviation.  
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Mode 
No. 

Scenario 1 (Hz) Scenario 2 (Hz) 

Target 
Freq. 

Pre-optimised Optimised Target 
Freq. 

Pre-optimised Optimised 

Freq. Diff. Freq. Diff. Freq. Diff. Freq. Diff. 

1 83 127.1 44.1 84 1 155 127.1 27.9 155.5 0.5 

2 83 128 45 84.7 1.7 155 128 27 156.6 1.6 

3 227 169.2 57.8 227.3 0.3 278 169.2 14.2 277 1 

4 329 266.4 39.4 332.4 3.4 382 266.4 11.6 383 1 

5 435 333.6 4.6 435.1 0.1 497 333.6 48.4 496.2 0.8 

6 559 392.5 42.5 550.1 9 618.5 392.5 10.5 617.7 0.8 

7 678 445.4 10.4 675.3 2.7 735.5 445.4 51.6 734.6 0.9 

8 793 676 2 790 3 848 676 57.5 847.3 0.7 

9 903 733.5 55.5 902.1 0.9 965.5 733.5 2 966.3 0.8 

10 1028 870.6 32.4 1031.7 3.7 1091 870.6 22.6 1090 1 

11 1154 1004.3 23.7 1136.5 17.5 1212.5 1004.3 38.8 1211.1 1.4 

12 1154 1012.3 15.7 1145.1 8.9 1212.5 1012.3 46.8 1216.4 3.9 

13 1271 1107 47 1275.7 4.7 1335 1107 16 1334.6 0.4 

14 1399 1108.6 45.4 1400.1 1.1 1449.5 1108.6 17.6 1450.3 0.8 Ù |�¥� = �n�|;
�QX  465.6  58   392.4  15.6 

No. modes unmatched, m 4  0   3  0 Ù ê�¥Ê = �nÊêÌ
ÊQX  625.9  0   498.2  0 

Final match deviation 
value (lower = better) 

60.6  4.1   52.4  1.1 

Table 9-1 – Summary of the optimisation results for the two scenario problems 1) to match the 

structural resonant frequencies to the air-column resonant frequencies, 2) to match the 

structural resonant frequencies to the mid-point between the air-column resonant frequencies. 

The calculation of the match deviation is also shown which corresponds to equation 8.1. 

 

The variables of the optimisation were the wall thickness and the brace radii. The 

optimised variable values are shown in graphical form in Figure 9-4, and Figure 9-5 

presents the geometric results in a coiled 3D form. Analysis of these results is 

contained in Section 9.3. 

 

 

 

 



 

 

 

Figure 9-4 – Geometry from optimisation for the two scenarios, match played resonances (in 

blue) and match mid

length of the bore, and b) brace radius variation for braces 1 to 5.

 

Figure 9-5 – 3D representations of the optimised geometric result for a) scenario 1

played resonances and b) scenario 2, match mid

 

 

9.3 Free vibration results analysis

It can be seen from 

quite successful at matching the resonances specified, 

playable frequencies and for

achieved for scenario 2 where the midpoints between the playable frequencies were 

a) 

a) 

Structural Optimisation Results

 
Geometry from optimisation for the two scenarios, match played resonances (in 

blue) and match mid-points between resonances (in red). a) wall thickness variation along 

length of the bore, and b) brace radius variation for braces 1 to 5. 

3D representations of the optimised geometric result for a) scenario 1

played resonances and b) scenario 2, match mid-points between resonances.

Free vibration results analysis 

It can be seen from the results presented in section 9.2 that the optimisation was 

quite successful at matching the resonances specified, both in the cases of

playable frequencies and for the midpoint frequencies. A closer match was 

achieved for scenario 2 where the midpoints between the playable frequencies were 

b) 
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Geometry from optimisation for the two scenarios, match played resonances (in 

ances (in red). a) wall thickness variation along 

 
3D representations of the optimised geometric result for a) scenario 1, match 

points between resonances. 

that the optimisation was 

th in the cases of the actual 

the midpoint frequencies. A closer match was 

achieved for scenario 2 where the midpoints between the playable frequencies were 

b) 
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the target. The initial resonant frequencies of the pre-optimised structures are 

shown by the black markers in Figure 9-3.  

Figure 9-4 shows the geometric results from the two optimisation runs. It can be 

seen from these initial results that there are some similarities in the geometry 

between the two scenarios. Both have peaks in wall thickness that roughly 

correspond with each other at the same positions along the length of the bore, 

although they have different magnitudes. It can be seen that the wall thickness 

geometry variation is quite stepped. This is because of the relatively low number of 

variables used and that there were no smoothness constraints imposed on 

neighbouring variables along the bore, i.e. they were discrete independent 

variables.  

There is, however, a potential problem with this approach of simply matching 

resonant frequencies; the magnitude of the structural response is not taken into 

account. To demonstrate this, a simple problem was constructed and a frequency 

response analysis carried out on the optimisation result using the free vibration 

approach. An arbitrary objective of matching the 3rd structural resonant frequency 

to the 1st air-column resonant frequency was defined. Constraint bounds of 82 and 

84Hz were applied to achieve a maximum difference of +/-1Hz from 83Hz. The 

resulting ‘optimised’ geometry found from this optimisation model was then used 

for a frequency response analysis between 1Hz and 100Hz to gain some insight into 

the actual response of the structure. This response is plotted in Figure 9-6 which 

provides a demonstration of the problem of simply matching frequencies; the third 

resonance is actually quite small and while it has been matched successfully, there 

is no control over the actual magnitude of the response. The other difficulty with 

this approach is that the modes to match have to be specified in advance. If the 

fourth structural resonance had been matched with 83Hz then the response would 

likely have been greater.  



 

 

 

Figure 9-6 – Frequency response of the optimised geometry from free vibration optimisation. 

The grey lines are the responses from each extraction node and the thick black line is the 

maximum of these. A structural damping coefficient of 0.05 was used.

 

Figure 9-7 compares the frequency response of the above optimisation with the 

frequency response of a model using simply the lowest variable values (i.e. 

wall thickness and 1mm brace radii). 

be expected that an increase in the magnitude of wall vibration could be achieved 

by simply using a lower stiffness structure. 

greater response was achieved at 83Hz than that from the optimisation. This 

is, of course, dependent on the structural damping value used which affects the 

magnitude of the response at resonance. Comparisons with the variable extremes 

was carried out bec

vibration simply a thinner or thicker constant wall thickness could be used

Constant thicker 

expense of a very heavy weight ins

specific frequencies of the resonances.

Structural Optimisation Results

Frequency response of the optimised geometry from free vibration optimisation. 

The grey lines are the responses from each extraction node and the thick black line is the 

these. A structural damping coefficient of 0.05 was used.

compares the frequency response of the above optimisation with the 

frequency response of a model using simply the lowest variable values (i.e. 

wall thickness and 1mm brace radii). This comparison was made because it would 

be expected that an increase in the magnitude of wall vibration could be achieved 

by simply using a lower stiffness structure. It can be seen from 

er response was achieved at 83Hz than that from the optimisation. This 

dependent on the structural damping value used which affects the 

magnitude of the response at resonance. Comparisons with the variable extremes 

was carried out because it would be thought that to minimise the extent of wall 

vibration simply a thinner or thicker constant wall thickness could be used

 walls should reduce the magnitude of the wall vibration but at the 

expense of a very heavy weight instrument. It also would not allow control over the 

specific frequencies of the resonances.  
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Frequency response of the optimised geometry from free vibration optimisation. 

The grey lines are the responses from each extraction node and the thick black line is the 

these. A structural damping coefficient of 0.05 was used. 

compares the frequency response of the above optimisation with the 

frequency response of a model using simply the lowest variable values (i.e. 0.3mm 

This comparison was made because it would 
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Figure 9-7 – Corresponding frequency response for optimised geometry from free vibration 

optimisation compared to non-optimised lowest bound analysis using a constant wall thickness 

of 0.3mm and a brace radius of 1mm. A structural damping coefficient of 0.05 was used. 

 

Based on these results, it can be seen that the free vibration approach is less than 

ideal due to no magnitude information being included in the optimisation. It would 

be expected that a better approach would be to replace the simplified free vibration 

analysis with a more complex forced vibration analysis. This was the second 

approach implemented, as explained in section 8.3.2 of chapter 8. This allowed the 

magnitude to be included and also eliminated the requirement to specify in advance 

which air-column and structural modes to match. It aims to maximise or minimise 

the structural response at chosen key frequencies.  

 

9.4 Forced vibration results 

Presented in this section are the optimisation results using two different approaches 

to defining design variables; discrete independent variables and spline linked 

variables, for the forced vibration analysis approach.  
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9.4.1 Discrete independent variables results 

The results using discrete independent variables are considered first and the 

structural response results for the two optimisation objectives are presented in 

Figure 9-8. To give a context to the results, the two response curves shown are the 

results for the non-optimised extremes. These curves are the maximum of the 

response curves for each extraction node as was shown in Figure 9-6. These 

extremes were the wall thicknesses and brace radii at the lowest and highest 

possible values respectively within the specified bounds. This corresponds to 

0.3mm wall thickness and 1mm brace radius for the lowest variable values, and 

5mm wall thickness and 5mm brace radius for the highest variable values. The 

optimisation results, which are the structural responses at the 12 frequencies of 

interest, are shown by the blue and red markers for the response maximisation and 

minimisation respectively. The actual displacements values at these frequencies are 

contained in Table 9-2.  

 

 
Figure 9-8 – Frequency responses for lowest variable values (0.3mm constant wall thickness, 

1mm brace radius) and highest variable values (5mm constant wall thickness, 5mm brace 

radius) compared with optimisation results to maximise and minimise sum of the responses at 

the frequencies of interest shown with blue and red markers respectively. 

 

 

 

, 
m

 



 

 

 

Freq. 

(Hz) Maximised 

response

83 1.01E

227 3.65E

329 8.39E

435 2.61E

559 3.03E

678 2.65E

793 5.20E

903 6.47E

1028 9.32E

1154 5.51E

1271 3.68E

1399 1.82E

Mean 1.57E

Table 9-2 – Summary of responses at frequencies of interest

 

Figure 9-9 shows the objective function history for both optimisation runs. The 

response minimisation run converged after the 17

response maximisation run did not quite converge after reaching the specified 

maximum 30th iteration. 

Figure 9-9 – Objective function history for a) maximisation, and b) minimisation of response

 

a) 

Structural Optimisation Results

Frequency displacement response (m)

Maximised 

response 

Minimised 

response 

Minimum geometry 

(0.3mm wall thickness,  

1mm brace radii) 

1.01E-7 7.97E-10 1.48E-7 

.65E-8 6.15E-10 1.75E-7 

8.39E-7 2.43E-10 6.15E-8 

2.61E-8 1.40E-10 3.49E-8 

3.03E-8 4.31E-10 1.90E-8 

2.65E-8 1.10E-9 2.52E-8 

5.20E-8 2.02E-10 3.83E-8 

6.47E-7 2.27E-10 1.92E-7 

9.32E-8 3.39E-10 1.90E-7 

5.51E-9 2.16E-10 4.19E-8 

3.68E-9 2.48E-10 1.26E-8 

1.82E-8 3.31E-10 2.88E-9 

1.57E-7 4.07E-10 7.84E-8 

Summary of responses at frequencies of interest. 

shows the objective function history for both optimisation runs. The 

response minimisation run converged after the 17th design iteration, whilst

response maximisation run did not quite converge after reaching the specified 

iteration.  

 

Objective function history for a) maximisation, and b) minimisation of response

b) 

Structural Optimisation Results 9 

173 

Frequency displacement response (m) 

 

Maximum geometry  

(5mm wall thickness,  

5mm brace radii) 

1.00E-7 

4.25E-9 

6.07E-9 

1.56E-9 

4.18E-10 

5.55E-10 

1.262E-8 

1.46E-9 

1.10E-9 

7.69E-10 

  6.85E-10 

3.56E-9 

1.11E-8 

shows the objective function history for both optimisation runs. The 

design iteration, whilst the 

response maximisation run did not quite converge after reaching the specified 

 
Objective function history for a) maximisation, and b) minimisation of response. 



 

 

 

Figure 9-10 shows the wall thickness variable results for each scenario over all 

optimisation iterations and 

Figure 9-10 the bold lines show the starting and ending designs, while the shaded 

regions give insight into the variable history for each iteration.

 

Figure 9-10 – Wall thickness variable history for a) maximisation, and b) minimisation of 

response. 

 

a) 

b) 

Structural Optimisation Results

shows the wall thickness variable results for each scenario over all 

optimisation iterations and Figure 9-11 shows the brace radii variable results. In 

the bold lines show the starting and ending designs, while the shaded 

regions give insight into the variable history for each iteration.

Wall thickness variable history for a) maximisation, and b) minimisation of 
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shows the wall thickness variable results for each scenario over all 

shows the brace radii variable results. In 

the bold lines show the starting and ending designs, while the shaded 

regions give insight into the variable history for each iteration. 

 

 
Wall thickness variable history for a) maximisation, and b) minimisation of 
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Figure 9-11 – Brace radii variable history. The height of each block represents the diameter of 

the brace at each iteration. The dashed lines show the design iteration that ended each 

optimisation run and the values shown are the radii at that iteration in mm. 

 

9.4.2 Discrete independent variables analysis 

The results for the maximisation of response shown in Figure 9-10a show that the 

geometry was settled upon relatively quickly, with not much change after 

approximately iteration 15. However, for the minimisation of response shown in 

Figure 9-10b, the geometry was still changing right up to convergence. 

The resulting wall thickness distributions for the free and forced vibration 

optimisations run so far are compared in Figure 9-12 and Figure 9-13. There is little 

similarity between the two sets of results. This is not particularly surprising as the 

models are fundamentally different with different objectives and different methods 

of implementation. Regarding the brace radii variables, which are compared in 

Figure 9-14, the forced vibration braces were on the whole much larger in radius 

than those of the free vibration model. The exceptions to this were brace number 1 

and 2 for scenario 1.  
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Comparing both scenarios for the forced vibration approach, again, the wall 

thickness distributions are dissimilar although braces 3 to 5 are approximately the 

same radii. They differ more significantly for brace 1 and 2, with a much lower 

value for the response maximisation. These thinner braces and the lower mean wall 

thickness gives a lighter weight geometry for the response maximisation than the 

response minimisation. This is particularly the case in the bell end between 1200 

and 1300mm along the bore. The nodes for response measurement are located 

within this region so it would be expected that these variables would have a greater 

effect on the objective function. It was for this reason that a smaller variable width 

was assigned to this region, thereby allowing greater control. The topology of the 

wall thickness distribution for the maximisation case could be described as heavily 

discontinuous, that is, there are large steps from variable to variable. The topology 

for the minimisation case could be described as being less discontinuous, with a 

more gradual rising and falling. The exception to this is the sharp discontinuity at 

about 100mm along the bore. 

 

 
Figure 9-12 – Comparison of wall thickness results for a) free vibration and b) forced 

vibration approaches to maximise the extent of wall vibration, both using independent 

variables.  
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Figure 9-13 – Comparison of wall thickness results for a) free vibration and b) forced 

vibration approaches to minimise the extent of wall vibration, both using independent 

variables.  

 

 

Figure 9-14 – Comparison of brace radii variable results for each optimisation run, a) to 

maximise the degree of wall vibration and b) to minimise the degree of wall vibration. 

 

It was found that better results could indeed be obtained through optimisation than 

by simply minimising or maximising the geometric dimensions. Clearly, the actual 

displacement values are dependent on the excitation force and the degree of 

structural damping imposed, however it is the relative displacements between the 

 5 4 3 

2  4 

Free vibration (independent variables) 

Forced vibration (independent variables) 

1 

a) Maximise wall vibration 

b) Minimise wall vibration 

5 3 1 
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two scenarios that are of interest here. It is interesting to compare the optimisation 

results with the analysis results for the two variables extremes (i.e. lowest and 

highest variable values). There was a substantial difference in response between the 

results from the highest variable values analysis and those from the response 

minimisation. However, there was a less substantial difference in response between 

the results from the lowest variable values analysis and those from the response 

maximisation. Overall though, the mean response was still higher for the optimised 

result. For most of the frequencies of interest the response minimisation achieved 

displacements substantially lower than that from the highest variable values 

analysis. 

It was seen that the approach of using frequency response analysis was more 

successful than the initial free vibration analysis discussed in section 9.3. It 

incorporates the magnitude as well as the frequency and does not require 

specification of which modes to match. In both of these approaches discussed so far 

in this chapter, the variables were defined by splitting the geometry into 

independent discrete sections. The thicknesses of the elements within each section 

were then all treated as one variable. As no smoothness constraints were imposed 

between variables, large discontinuities could occur between variables, giving a 

stepped geometry. 

An alternative approach was implemented to try and address this potential problem. 

This was to use a form of interpolation between the variables and to link each 

element thickness to the interpolated value. This approach was explained in section 

8.4.2 of chapter 8. 

9.4.3 Spline linked variables results 

Figure 9-15 shows the frequency response results for the maximisation and 

minimisation of response for the spline linked variables approach. Again, the 

highest and lowest variable value frequency response analysis curves are also 

plotted for reference. The response values are tabulated in Table 9-3. 
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Figure 9-15 – Frequency responses for lowest variable values (0.3mm constant wall thickness, 

1mm brace radius) and highest variable values (5mm constant wall thickness, 5mm brace 

radius) compared with optimisation results to maximise and minimise sum of the responses at 

the frequencies of interest.  

  

Freq. 

(Hz) 

Frequency displacement response (m) 

Maximised 

response 

Minimised 

response 

Minimum geometry 

(0.3mm wall thickness,  

1mm brace radii) 

Maximum geometry  

(5mm wall thickness,  

5mm brace radii) 

83 2.47E-07 1.49E-08 1.48E-7 1.00E-7 

227 6.54E-07 1.04E-08 1.75E-7 4.25E-9 

329 7.45E-07 3.72E-09 6.15E-8 6.07E-9 

435 7.42E-06 4.15E-09 3.49E-8 1.56E-9 

559 2.35E-07 9.70E-09 1.90E-8 4.18E-10 

678 1.03E-05 1.52E-08 2.52E-8 5.55E-10 

793 4.90E-07 8.08E-09 3.83E-8 1.262E-8 

903 3.76E-06 1.61E-09 1.92E-7 1.46E-9 

1028 5.54E-06 4.00E-09 1.90E-7 1.10E-9 

1154 6.92E-07 3.30E-09 4.19E-8 7.69E-10 

1271 7.72E-06 4.51E-09 1.26E-8   6.85E-10 

1399 1.19E-05 2.92E-09 2.88E-9 3.56E-9 

Mean 4.14E-06 6.87E-09 7.84E-8 1.11E-8 

Table 9-3 – Summary of responses at frequencies of interest. 

 

 



 

 

 

Figure 9-16 shows the objective function history for both optimisation runs. Again, 

similar to the result

converged by the 30

iteration. 

 

Figure 9-16 – Objective function history for a

 

Figure 9-17 shows the geometric wall thickness results for both scenarios. The bold 

lines show the starting and ending designs while the shaded regions give insigh

into the variable history at each iteration. 

radii results. 

 

a) 

Structural Optimisation Results

shows the objective function history for both optimisation runs. Again, 

results with the independent variables, the maximisation had not quite 

converged by the 30th iteration whilst the minimisation converged by the 18

 

Objective function history for a) maximisation, and b) minimisation of response

shows the geometric wall thickness results for both scenarios. The bold 

lines show the starting and ending designs while the shaded regions give insigh

into the variable history at each iteration. Figure 9-18 shows the geometric brace 
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shows the objective function history for both optimisation runs. Again, 

variables, the maximisation had not quite 

iteration whilst the minimisation converged by the 18th 

 

) maximisation, and b) minimisation of response. 

shows the geometric wall thickness results for both scenarios. The bold 

lines show the starting and ending designs while the shaded regions give insight 

shows the geometric brace 



 

 

 

Figure 9-17 – Spline linked wall thickness variable histor

b) minimisation of response

 
 

b) 

a) 

Structural Optimisation Results

Spline linked wall thickness variable history for a) maximisation

b) minimisation of response (in red). 
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y for a) maximisation (in blue), and 
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Figure 9-18 – Brace radii history. The height of each block represents the diameter of the 

brace at each iteration. The dashed lines show the design iteration that ended each 

optimisation run and the values shown are the radii at that iteration in mm. 

 
 

9.4.4 Spline linked variables results analysis 

The spline linked frequency response results shown in Figure 9-15 contrast with 

those from the independent variables results in Figure 9-8. For the independent 

variable run, the maximisation of response was less successful than the 

minimisation whilst for the spline run, the reverse was the case.  

 

Figure 9-19 – Comparison of optimised frequency responses for the maximisation and 

minimisation cases for both independent and spline linked variables. 
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The reason for this is not clear, but it could be because the capability for local 

geometry control was more limited with the spline interpolation. This would be 

increased by increasing the number of design variables. It may also be the case that 

due to the optimisation starting point, the local minimum that the optimisation 

converges to is worse than that for the non-spline linked version. Gradient-based 

optimisation algorithms are inherently sensitive to their starting point, so a better 

result may be achievable with a different starting point.  

The wall thickness geometry results shown in Figure 9-17 show smoother designs 

due to the spline constraints imposed. For the maximisation, again there is a portion 

of low wall thickness at the start and end of the bore, and fluctuating peaks in 

between. There is little similarity between this result and the independent variable 

result. There is more similarity however between the minimisation results, 

particularly at the start and end of the bore. The difference between the brace 

variables for the minimisation cases is less than that for the maximisation cases. 

Similarly to the independent variables case, the radii for the maximisation are 

substantially lower than for the minimisation of response.  

 

 
Figure 9-20 – Comparison of wall thickness results for the forced vibration approach to 

maximise the extent of wall vibration, for a) independent variables and b) spline-linked 

variables.  
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Figure 9-21 – Comparison of wall thickness results for the forced vibration approach to 

minimise the extent of wall vibration, for a) independent variables and b) spline-linked 

variables.  

 

 

Figure 9-22 – Comparison of brace radii variable results for each optimisation run, a) to 

maximise the degree of wall vibration and b) to minimise the degree of wall vibration. 

 

The objective function progressions shown in Figure 9-16 are very similar to those 

of the independent variable runs. The unsmooth progression for the maximisation 

case is due to two reasons; firstly the error in the approximate optimisation model, 

and secondly the unsmooth nature of the objective function itself. The concept of 

move limits was introduced in chapter 6. These are used to control the validity of 

 5 4 3 

2 4 

Forced vibration (spline linked variables) 

Forced vibration (independent variables) 

1 

a) Maximise wall vibration 

b) Minimise wall vibration 

2 

5 3 1 
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the approximate optimisation model used to reduce the number of full finite 

element analyses. The approximation is only valid locally, the extent of which 

depends on the complexity of the objective function and the approximation 

techniques used. If the move step is too large then the error between the full finite 

element analysis (exact) and the approximate result at that design point will be 

large. If the move step is too small then the optimisation may take unnecessarily 

long to converge. The move step is therefore quite important for successful 

convergence and is automatically managed by MSC Nastran, as was explained in 

section 6.6 of chapter 6. The automatic adjustment of the move steps is 

demonstrated in Figure 9-23b where the fractional error of approximation is 

reduced over time until convergence as calculated using equation 9-1. 

�##�# � "++#�¦ �"���� = �¦"�� �"����ïM�¦"�� �"����ïM  (9-1 )

 

Figure 9-23 – a) Objective function progression for maximisation of response for discrete 

independent variables, and b) corresponding fractional error of approximation resulting from 

automatic move limit adjustment. 

 

The complexity of the objective function is greater for the response maximisation 

case. This is because to maximise the response, ideally the responses at each 

frequency of interest would correspond to a resonance. The resonance peaks are 

quite sharp and narrow, as can be seen from Figure 9-8 and Figure 9-15. As the 

variable values are adjusted by the optimiser such that the response at a frequency 
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of interest approaches the resonance peak, the response value will suddenly 

increase. This will also correspond to a sudden increase in the objective function. 

For minimisation of response, the ideal situation would be for the responses to be 

located at the troughs between the resonance peaks. These portions of the response 

curves are much less steep than the resonance peaks themselves. Therefore, this is 

more simply approximated accurately to form the approximate optimisation model.  

9.4.5 Sensitivity to starting point 

This section contains the results of varying the starting point for the optimisation 

using the gradient-based algorithm. The mean of the response values at the 

frequencies of interest are plotted in Figure 9-24 along with the range of the 

responses. This figure shows that the optimisation results are sensitive to the 

starting point. Referring to Table 9-4, the worst starting points from the point of 

view of the mean response were the highest and lowest values within the variable 

bounds, i.e. 0.3mm wall thickness, 1mm brace radii and 5mm wall thickness, 5mm 

brace radii. These starting points resulted in the least difference between the 

maximisation and minimisation of response. The 4th starting point also resulted in a 

less significant difference between the two scenarios. Starting points 2 and 3 

resulted in the greatest difference between the response maximisation and 

minimisation although these were still worse than the results from the previous runs 

using a wall thickness start point of 1mm and brace radii of 2.5mm.  

 Wall thickness (mm) Brace radius (mm) 

1 0.3 1 

2 1.48 2 

3 2.65 3 

4 3.83 4 

5 5 5 

Table 9-4 – Starting points for sensitivity investigation. 
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Figure 9-24 – Summary of response results for the different starting points for maximisation 

and minimisation of response. The mean response of the frequencies of interest is shown by 

the markers. The range of the responses across the frequencies of interest is shown by the 

vertical bars. The previous spline-linked results are also shown for reference. 

 

These results demonstrate the point that for gradient-based optimisation algorithms, 

such as the one used for this problem, the starting point significantly influences the 

success of the optimisation. A substantially improved design was found by using 

the starting point of 1mm wall thickness and 2.5mm brace radii, but this was 

probably still not the global optimum. Use of global optimisation algorithms could 

be used, but these are a lot less efficient than the gradient-based techniques, so 

while potentially a better result could be found, the additional computation burden 

may not be practical. It would also involve coupling the currently implemented 

frequency response analysis model to an external optimiser which would also 

increase convergence time due to additional read/write actions between the pieces 

of code. 

To investigate the design space further, the model was reduced to just two design 

variables, wall thickness and brace radii. This allowed a three dimensional 

representation of the sensitivity of the objective function to the values of the 

variables. It was intended that this would give some insight into the form of the 

objective function based on the supposition that this would have similar 

characteristics to the model with a higher quantity of variables. The model was 

analysed with different variable dimensions and the design responses calculated. A 
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finer resolution was used around sharp peaks to improve their representation.

objective function was then calculated from these and a surface fitted to the data 

is shown in Figure 9-25. The white markers show the values from the 

individual actual analyses. 

Surface showing objective function variation with respect to wall thickness and 

brace radii. Actual values from the individual analyses are shown with white markers. 

It was found from this investigation that the objective function is nonlinear and has 

some sharp peaks, particularly in the range from 0.8-1mm 

2mm and 4-5mm for the brace radii. The objective function did not change 

>2mm wall thickness for all brace radii values. 

on the graph are likely the instances where the response peak (resonance) was 

large improvement in the objective function is then achieved.

The sharp peaks would cause problems for gradient-based optimisation algorithms, 

and the global optimum would only likely be achieved if a starting point was 

chosen which by chance happened to be near to this peak. It is anticipated that 

objective function for higher numbers of variables would be similarly or more 
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nonlinear with many sharp peaks. The finer control enabled by the increased 

number of variables would likely result in sharper peaks. 

The results shown in Figure 9-24 also highlight another clear point for discussion. 

This is the spread of the responses at each excitation frequency within each result, 

as shown by the range bars. More detail on the spread of responses is shown in 

Figure 9-26 and Figure 9-27. This is discussed in section 10.4 of chapter 10. 

 

 

Figure 9-26 – Responses at the frequencies of interest for maximisation of response for the 

different start points. Markers connected with lines for clarity.  

 

 

Figure 9-27 – Responses at the frequencies of interest for minimisation of response for the 

different start points. Markers connected with lines for clarity. 
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9.4.6 Sensitivity to damping coefficient 

An investigation was carried out into the effect of the structural damping 

coefficient on the optimisation results which was explained in chapter 5. The values 

of 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05 were used for the coefficient for both 

response maximisation and minimisation runs with the spline linked variables. The 

effect on the frequency response is shown in Figure 9-28 and Figure 9-29. Figure 

9-30 and Figure 9-31 show the wall thickness distributions for different damping 

coefficients for the two cases. The effect on the brace radii variables are also 

presented in Figure 9-32.  

 

 
 

 

 

Figure 9-28 – Effect of damping coefficient on response magnitude at the frequencies on 

interest for response maximisation. 

 

 
 

 
Figure 9-29 – Effect of damping coefficient on response magnitude at the frequencies on 

interest for response minimisation. 
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Looking at the results for the response maximisation shown in Figure 9-28 the 

results initially do not correlate with what would be expected. It was expected that 

the response magnitude at each frequency of interest would be lower with 

increasing damping coefficient. This is clearly not the case with these results and 

this can be especially noticed when comparing coefficients 0.01 and 0.005, where 

there is a significantly lower response for the lower damping coefficient. The 

reason for this is because the resonance peaks of the structure were not necessarily 

matched to the frequencies of interest, only the responses at those frequencies were 

maximised. The portions of the frequency response curve around the peaks are not 

as sensitive to damping as the peaks themselves. Comparing the results between the 

maximisation and minimisation cases, it is thought that the reason that the effect of 

the damping coefficient was more pronounced for the maximisation case compared 

was because more of the maximised responses are likely to have been located at, or 

near to, the resonance peaks. In contrast, the minimised responses are likely to have 

been located in, or near to, the troughs between resonances peaks. Because the 

resonance peaks are more sensitive to damping, it would be expected that the 

maximisation case would be more sensitive. The sharpness of the resonance peaks 

as represented in a frequency response plot significantly increases with decreasing 

damping coefficient and so there is scope for a large difference in response. The 

troughs are already relatively gradual already and so the difference is less dramatic. 

Again, when looking at Figure 9-29, there is a significantly different response for 

the damping coefficient of 0.005. It is also shown by the significantly different wall 

thickness distributions shown in Figure 9-31. This is thought to be due to a 

particularly bad local optima being found quite early on the in the optimisation 

process, after only a few iterations, that can’t be escaped from. The rest of the 

results for the other damping coefficients for the minimisation of response showed 

significantly less difference which is also clearly shown by the wall thickness 

distributions in Figure 9-31. 

As well as the wall thickness distributions varying significantly for the response 

maximisation cases, the brace radii also were significantly different. In general, the 
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radii were towards the lower variable bound, particularly in the case of the damping 

coefficient of 0.03. The brace variables results for the minimisation of response, as 

shown in Figure 9-32, did not vary much with changing damping coefficient. There 

were largely towards the higher variable bound indicating that the braces have a 

significant effect on the objective function. 

 

 
Figure 9-30 – Effect of structural damping coefficient on the wall thickness distributions for 

response maximisation. 

 

 
Figure 9-31 – Effect of structural damping coefficient on the wall thickness distributions for 

response minimisation. 
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Figure 9-32 – Comparison of brace variable radii results for a) maximisation and b) 

minimisation of response using different structural damping coefficients. Brace radius scale 

1:1.25mm. 

 

9.4.7 Global optimisation algorithm 

To investigate whether a global optimisation algorithm could obtain a greater 

degree of optimality, the structural optimisation was carried out again for both the 

response maximisation and minimisation cases using discrete independent 

variables. The FEA software was used purely for analysis purposes with external 

software, in this case MATLAB, handling the optimisation using the simulated 

annealing (SA) algorithm.  

Considering the maximisation case first, Figure 9-33 shows the objective function 

history over the whole optimisation run. The function value is negative in this case 

as the maximisation was achieved by minimising the negative of the function value. 

There are three plots shown within this figure. The first plot shows the actual 

function evaluations that took place, the second plot shows the evaluations that the 
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SA algorithm accepted, and the third plot shows the stored best function value. The 

optimisation was terminated manually prior to full convergence due to time 

constraints. The rate of improvement had slowed to a point where it was considered 

probable that little further improvement would be found by allowing the run to 

continue.  

In total, 1100 full FE function evaluations were required, each taking 

approximately 25 minutes each, and out of these only 969 were accepted by the SA 

algorithm. With the gradient-based algorithms as implemented with sensitivity 

analysis, two analyses were required per design iteration. The improved design 

space point is found using an analytical linear approximate model which is valid 

within small move bounds. A full FE analysis is then only required once an 

improved point has been found to confirm whether the approximation to the 

optimisation model was sufficiently accurate. With the global algorithms that do 

not make use of sensitivity analysis, a full FE anlaysis is required each time in the 

place of each analytical analysis to identify an improved design space point. 

Therefore this requires many more full function evaluations.  

The effect of the temperature decrease over each interval can be observed from 

Figure 9-33a) and b). As the temperature decreases, the probability of accepting a 

worse move also decreases and as such there is convergence. When a predefined 

number of function evaluations have been carried out without any improvement in 

the objective function, reannealing takes place. It can be seen that reannealing took 

place twice prior to termination at regular intervals. This mechanism was explained 

in section 6.7.5 of chapter 6 and is a feature of the MATLAB SA algorithm which 

is based on the work by Ingbar (1995) who found that rescaling the model 

improved performance. However, many additional function evaluations at the 

higher temperatures are again required until the current objective function value 

approaches that before reannealing and so is very computationally expensive.  
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Figure 9-33 – For response maximisation: a) All FEA function evaluations carried out, b) 

function evaluations accepted by SA, and c) running log of the best objective function value so 

far. 

 

Function evaluation number 756 resulted in the best objective function of -1.967. 

As can be seen from the figure, all subsequent iterations prior to termination were 

worse than this. The frequency response at the frequencies of interest at iteration 

756 is shown in Figure 9-34 along with the gradient-based equivalent for 

comparison purposes. The SA result is more optimal according to the objective 

function value but it can be seen that this value is highly skewed by the high 

responses at 83Hz while the gradient-based result is more uniform across the whole 

frequency range. This emphasises the point made in section 9.4.5 of this chapter 

that the objective function calculation, which just uses the sum of the responses, 

does not encourage a consistent response at each frequency as it does not include a 

a) 

b) 

c) 
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measure of variance. As such, it is susceptible to skewing by a very high or low 

response at any particular frequency. 

 

 

Freq. 

(Hz) 
SA 

Gradient-

based 

83 1.64E-6 1.01E-7 

227 2.05E-7 3.65E-8 

329 5.98E-9 8.39E-7 

435 2.80E-9 2.61E-8 

559 6.39E-9 3.03E-8 

678 1.18E-8 2.65E-8 

793 3.62E-8 5.20E-8 

903 3.10E-8 6.47E-7 

1028 3.85E-9 9.32E-8 

1154 1.32E-9 5.51E-9 

1271 1.58E-9 3.68E-9 

1399 2.42E-8 1.82E-8 

Sum 1.97E-6 1.88E-6 
 

Figure 9-34 – Comparison of response maximisation result at frequencies of interest between SA 

algorithm and the gradient-based algorithm result from section 9.4.1 of this chapter. The scaled 

sum of the tabulated responses forms the objective function. 

 

Moving on to the response minimisation case, the objective function history plots 

are presented in Figure 9-35. Due to time constraints and the apparant lack of 

improvement from design iteration 150 onwards, this optimisation run was 

terminated sooner than the maximisation case. Iteration 145 was found to be the 

best with an objective function value of 1.9043E-2. The responses at the 

frequencies of interest for this result are plotted in Figure 9-36 along with the 

gradient-based equivalent for comparison purposes. The specific magnitudes are 

contained in the adjacent table. It can be seen that the result using the SA algorithm 

was worse than that using the gradient-based algorithm with the response 

magnitudes being higher at every frequency of interest. The responses are more 

uniform than those for the maximisation case which is likely due to the relative 

uniformity of the responses at the troughs between resonance peaks, compared with 

the peaks themselves.  
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Figure 9-35 – For response minimisation: a) All FEA function evaluations carried out, 

b) function evaluations accepted by SA, and c) running log of the best objective 

function value so far. 

 

Overall, the results of this comparison between a global and gradient-based 

algorithm suggest that the use of a global algorithm is not worth the significant 

additional computational expense. Technically, a more ‘optimal’ result was found 

using SA for the maximisation case, but only after many more full function 

evaluations. The algorithm was terminated prematurely and so a better result may 

still have been found if time allowed. The only way to know whether the global 

optimum has been found is to explore the whole design space exhaustively. The 

prohibitivity of this is the reason for the use of particular algorithms which aim to 

find the optimum more efficiently.  

 

a) 

b) 

c) 
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Freq. 

(Hz) 
SA 

Gradient-

based 

83 3.88E-9 7.97E-10 

227 2.71E-9 6.15E-10 

329 3.26E-10 2.43E-10 

435 5.05E-10 1.40E-10 

559 3.40E-9 4.31E-10 

678 1.33E-9 1.10E-9 

793 4.04E-10 2.02E-10 

903 9.03E-10 2.27E-10 

1028 3.12E-9 3.39E-10 

1154 5.85E-10 2.16E-10 

1271 1.35E-9 2.48E-10 

1399 5.32E-10 3.31E-10 

Sum 1.90E-8 4.89E-9 
 

Figure 9-36 – Comparison of response minimisation result at frequencies of interest between SA 

algorithm and the gradient-based algorithm result from section 9.4.1 of this chapter. The scaled 

sum of the tabulated responses forms the objective function. 

 

The performance of the SA algorithm could potentially be improved by varying its 

parameters but it is not really known a priori what parameters would be most 

suitable. SA could be hybridised with a gradient-based algorithm which would be 

more efficient at finding the minimum of a valley once the SA algorithm had found 

the valley. A different global algorithm could be used which may or may not find a 

better result, however, these are also likely to require a large number of function 

evaluations. It would seem more appropriate to use the gradient-based algorithm 

but to run the optimisation several times each time using a different start point. As 

was seen in section 9.4.5 of this chapter, the results of a gradient-based algorithm 

with a non-convex objective function are very sensitive to the start point. A multi-

start strategy would allow greater exploration of the design space and would 

probably be more efficient than using a global algorithm.  

 

9.5 Summary 

This chapter has demonstrated the performance of the structural optimisation 

methodology described in chapter 8. It has compared the results from the free and 
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forced vibration approaches, and also for discrete independent and spline-linked 

variables. It also investigated the effect of the structural damping coefficient on the 

results, the effect of the starting point for the gradient-based optimisation 

algorithm, and the performance of a global optimisation algorithm. 
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10 Discussion  
 

10.1 Introduction 

This chapter will explain the experimental setup and the planned method for 

validation. It was actually not possible to carry out validation of the method and the 

reasons for this are discussed. A reflection on the general achievements and 

insights gained from this work is also presented. 

 

10.2 Physical Validation Attempt 

This section gives an overview of the test procedure devised with the intention of 

using it for the validation of the optimised designs. It takes the form of a 

compressed air supply, an artificial mouth to play the instruments and sound 

recording equipment and analysis methods. 

10.2.1 Instrument Excitation 

The advantages and disadvantages of different instrument excitation methods were 

discussed in Section 2.5.2 of Chapter 2. An artificial mouth was chosen for the test 

rig due to its better repeatability when compared with a human player. 

The design for the artificial mouth was based upon that by Whitehouse (2003), 

which was based on Gilbert et al (1998) and Petiot et al (2003). Cullen (2000) also 

based their design on that of Gilbert et al (1998) and Petiot et al (2003). The design 

by Vergez and Rodet (1997a, 1997b) is also similar, although they have a different 

method for adjusting the lip position with respect to the mouthpiece. These designs 

all have the lips enclosed within the mouth, which reduces the problem of air 

leakage from the lips but makes adjustment to them, especially during playing, 

more difficult. Bromage (2007) used a design by Richards (2003) which has the 

lips mounted externally allowing better compatibility with different mouthpieces 

and easier adjustment of the embouchure, but is susceptible to air leakage. For 

simplicity, Gilbert et al (1998) only used one latex lip, with the other being 
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replaced with a fixed plate, and still found that it produced a realistic sound. Wolfe 

et al (2003) looked at the effect of the players’ vocal tract and tongue on the sound 

and produced two types of artificial mouth: one being a somewhat unrealistic 

model using a cantilever spring as the lips, and the second using fluid-filled latex 

lips.  

Initially, because aspects of the lip motion or the effect of varying lip shape were 

not being investigated for this work, it was decided that enclosed lips would be 

most appropriate, but with some control over the pressure and tension. Focus was 

on generating a constant pitch over a reasonably long period of time rather than a 

large range capability. However, after initial testing the design was modified to 

externalise the lips to give easier access. This second iteration is shown in Figure 

10-1. 

 

Figure 10-1 – Artificial mouth design. 

 

The mouth consisted of a clear hollow box constructed from 20mm thick cast 

acrylic for the sides and top/bottom, and 9mm thick polycarbonate for the front and 

back faces. These materials were used to provide a good sealing contact area 

between the faces in order to make the box airtight and to ensure it could withstand 

high internal pressures. The internal dimensions were 140x100x90mm, which were 

the same as those used by Whitehouse (2003).  

Compressed air inlet 

‘Teeth’ pressure adjuster ‘Teeth’ Water inlets Lip pressure syringes 

Latex lips Lip tension adjuster 
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The lips consisted of two thin-walled cylindrical latex rubber tubes filled with 

water. These were positioned parallel to each other and held in place with support 

rods and ‘UNEX’ hose clips. The lips were aligned with the mouthpiece so that it 

approximately covered each lip equally. There was also a screw adjustment for 

altering the lip tension, and on the other side, two inlets for the water supply which 

controlled the pressure inside the lips using syringes. In total, four syringes were 

used with the valve arrangement; two of the syringes were used to evacuate the air 

from each lip independently and the other two to subsequently input the water into 

each lip. The internal pressure of each lip could be controlled individually. Two 

screws, one for each lip were also used to remove remaining trapped air from the 

system once the lips had been filled. 

With regards to material choice, most of the artificial lips in the literature are made 

from latex rubber. An exception to this are the solid rubber lips used by Moore et al 

(2005) which were cast from moulds of human lips. Vergez and Rodet (1997) 

received advice from plastic surgeons familiar with human face reconstruction and 

after testing several different materials settled on latex filled with water. This 

provided the closest match to the visco-elastic properties of real lips. The earlier 

mouth versions by Gilbert and Petiot used lips with a diameter of 20mm and were 

intended mainly for use with trombones. Petiot et al’s version 3 model used 

polyurethane tubes with a diameter of 12mm and they state that these are intended 

for use with many brass instruments, including the trumpet. Whitehouse (2003) 

used lips with an internal diameter of 15mm. It was decided that the lips for the 

design for this work would be 12mm in diameter, based upon the Petiot et al 

version 3 model, and of wall thickness approximately 0.2mm, filled with water. 

The axial tension of the lips could only be fine-adjusted using the screw mechanism 

and so to obtain higher frequencies, the initial length of the latex tubes was 

determined through experimentation. A length of 40mm was found to be suitable 

and this was subsequently stretched to fit the support rods. The pressure of the lips 

on the mouthpiece could be controlled using a screw mechanism which moved the 

position of the ‘teeth’ block. A rubber annular ring allowed this movement without 
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compromising the air tight seal while the location of the mouthpiece remained 

fixed.  

The players’ lungs were represented by a compressed air supply which entered the 

box through the inlet shown in Figure 10-1. The compressed air exited the mouth 

through a 20mm diameter hole in the ‘teeth’ block past the lips and into the 

mouthpiece. A constant air pressure was required to maintain a stable note and so a 

regulation5 system was included in the system to ensure fluctuations were kept to a 

minimum. 

Moore et al (2005) used a cavity pressure of approximately 20kPa which is similar 

to the pressure of a human player blowing loudly, based on Fletcher and 

Tarnopolsky (1999)’s work. Moore et al (2005) also specified that a sound intensity 

level of 100-104dB was used to represent fortissimo volume level. Copley and 

Strong (1995) specified forte as 90dB and mezzo piano as 80dB, whereas Poirson 

et al (2005) used a forte level of 115dB, mezzo forte level of 100dB and a piano 

level of 80dB. From this it appears that these definitions of sound intensity have a 

range and seem to overlap, and are often used relatively in music. It was decided 

that an overpressure of 0.2bar (20kPa) would be used based upon that used by 

Moore et al (2005) and this was monitored using a digital manometer connected to 

one of the artificial mouth side walls.  

10.2.2 Sound Recording 

To measure the sound of the instrument played by the artificial mouth, a 

microphone and anechoic chamber were used. 

It is desirable for the frequency response of the microphone to be as consistent as 

possible across the whole frequency range as this allows closer reproduction of the 

original sound. The condenser microphone6 shown in Figure 10-2, was chosen as 

its frequency response is very flat, particularly when using a ‘figure 8’ pickup 

pattern. The response characteristics and the directional pickup patterns are shown 

                                                 
5 Norgren precision ported regulator 11-818-999, 0.02-0.5bar 
6 Samson C03U multi-pattern studio condenser  
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in Figure 10-3. A shock mount was used to decouple the microphone from the 

microphone stand to reduce the effects of any unwanted vibrations.  

 

 

Figure 10-2 – Samson C03U multi-pattern studio condenser microphone with shock mount. 

 

Figure 10-3 – a) Frequency response of the microphone, b) polar pickup pattern for C03U 

USB multi-pattern condenser microphone
7
. 

 

To reduce the effect of any unwanted sound or sound reflections from the 

environment surrounding the test rig, an anechoic chamber was built. This was 

based on that used by Moore (2005), and consisted of a 1.22m3 box constructed 

from 15mm thick medium density fibreboard (MDF). The box was covered 

internally with sound absorbing foam. Sound absorbing foam varies in its 

performance and so it was important that an appropriate type was selected to give 

the intended characteristics. In the same way as a flat frequency response was an 

                                                 
7 Samson C03U Product Specification Sheet, http://s3.amazonaws.com/samsontech/related_docs/C03U.pdf 
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important consideration when choosing a microphone, a good indicator of whether 

a particular type of foam is suitable is its frequency response, or more specifically, 

how much sound is absorbed at each frequency. Ideally this would be constant over 

the frequency range of interest, but this is difficult to achieve in practice. Thicker 

foam will absorb lower frequencies more effectively than thinner foam, which will 

absorb more effectively the higher frequencies. Acoustic foam is often profiled 

into, for example, pyramids or wedges to create portions of thick and thin foam in 

an attempt to absorb effectively over a range of frequencies. This is difficult to 

achieve with a single profile style and so it is common, for instance in a recording 

studio environment, to combine different thicknesses and profiles to give a flat 

frequency response.  

For these experiments, 75mm thick profiled wedge tiles8 were used as a reasonable 

compromise between cost and performance. Profiled wedged tiles, as shown in 

Figure 10-4 were chosen over profiled pyramid tiles due to their slightly increased 

absorption characteristics. Absorption data was unavailable for the 75mm thick 

tiles but Figure 10-5 shows the performance data for 45mm and 100mm thick tiles. 

The performance of the 75mm tile would lie approximately midway between these 

two curves. 

A hole was made in one side of the chamber approximately the diameter of the 

instrument bell. The microphone was mounted on an extendable rod inside the 

chamber at 1m opposite the bell so that the pickup was at the same height as the 

axis of the bell. The excitation equipment and the instrument were situated outside 

of the chamber. 

 

                                                 
8 Comfortex Acoustic Solutions AFW75 profiled wedge tiles. 



 

 

 

Figure 10-4 – Inside of the anechoic chamber showing the acoustic foam tiles, microphone, and 

hole for the instrument bell 

 

Figure 10-5 – Comparison of performance of 45mm and 100mm thick profiled wedge foam 

tiles. Data for the 75mm version was not available but would be approximately midway 

between the two sh

 

10.2.3 Sound Analysis

The intended approach to analyse the sound was to record in the time domain using 

the aforementioned microphone and convert to the frequency domain using a 

Fourier transform. 

waves. The Fourier transform
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Owing to the finite measurement time, windowing is necessary when there are 

discontinuities at the start and end of the signal. This step change results in spectral 

leakage where the energy of a particular frequency is spread into all the other 

frequencies. A window weights the sample so that the amplitude at the start and 

end is near to, or exactly, zero, thereby reducing the step change and the leakage. 

Different windows have different characteristics and are better suited to different 

uses. For this work, both frequency accuracy and amplitude accuracy were 

important, but no single window possesses these attributes. A Hann type window 

has good frequency resolution but only fair amplitude accuracy9. A flat-top type 

window is poor for frequency resolution but the best choice for amplitude 

accuracy5. Both of these window functions are shown in Figure 10-6. 

The windows introduce distortion to the signal which changes the overall amplitude 

of the signal and so this should be compensated for. This can be achieved by 

dividing the sample by the coherent gain of the window, which for the Hann 

window is 0.5 and for the flat-top is 0.22. The worst case amplitude errors are then 

1.42dB and <0.01dB for the Hann and flat-top windows respectively10.  

 
Figure 10-6 – a) Hann window weighting curve, and b) Flat top window weighting curve. 

 

                                                 
9 Understanding FFT Windows, LDS Dactron, Application Note, AN014, 
www.lds-group.com/docs/site_documents/AN014 Understanding FFT Windows.pdf. 
10 The fundamentals of FFT-based signal analysis and measurement in LabVIEW and LabWindows, 
Application Note 041, National Instruments, 1993 
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Once the frequency spectrum had been generated, the timbre of the sound could be 

analysed. The timbre of the sound, specifically in this case the brightness, depends 

on its power spectrum which is the distribution of power as a function of frequency. 

The brightness is commonly measured using the frequency spectrum centroid 

(Lichte 1941, Von Bismarck 1974, Grey and Gordon 1978, Beauchamp 1982, 

Kendal and Carterette 1996, Poirson et al 2005, Schubert and Wolfe 2006), where a 

higher centroid value indicates a brighter sound. This can be calculated using the 

frequency and magnitude information from a Fourier transform as: 

 

 
(10-1) 

 
where An represents the amplitude of harmonic Fn of the spectrum and n the 

number of harmonics considered (Poirson et al 2005). This gives a centroid value in 

Hz. If comparing differences in brightness between tones of different frequency, 

then a weighting function of the fundamental frequency, F1 can be used, as 

suggested by Kendall and Carterette (1996), to make the centroid unitless: 

 

 
(10-2) 

 

However Schubert and Wolfe (2006), who compared both of these versions of the 

equation, concluded that brightness was better correlated to the frequency spectrum 

centroid (equation 10-1). 

10.2.4 Consistency of air supply to instrument 

It was expected that a primary factor that could influence the consistency of the 

played note was the consistency of the air supply used as an input to the instrument. 

To measure the air consistency, the air overpressure in the artificial mouth was 

monitored. Also, the consistency of the played note was measured. A digital 

manometer11 was used to measure the pressure and the aforementioned recording 

setup was used to record the sound. As no digital output was available for the 

                                                 
11 FCO16 Manometer by Furness Controls Limited, England 
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manometer, a camera was used to record the readings using a character recognition 

method, coded in MATLAB. This worked well, and the setup is shown in Figure 

10-7, although it was restricted to the resolution of the meter display.  

 

Figure 10-7 – Manometer used to measure the overpressure in the mouth cavity with camera 

logging. 

 

The air overpressure was monitored for 30 minutes at three different target 

pressures: 10, 15 and 20kPa. The results of this are shown in Figure 10-8 and it was 

observed that while the pressure had a standard deviation of approximately 

0.005kPa, there was gradual positive or negative drift and a range over the 30 

minutes of between 0.03 and 0.04kPa. It appeared that the range increased with 

increased air pressure.  

 

Figure 10-8 – Air ovepressure readings in the artificial mouth over 30 minutes for a) ~10kPa, 

b) ~15kPa, and c) ~20kPa. Markers show mean pressure and error bars show ±1 standard 

deviation. 
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Ultimately it was the sound consistency that was of importance, but it was expected 

that the air pressure would be the primary influencer of this. To investigate the 

sound consistency, the sound was recorded while the air pressure was also 

monitored. For this, a brass post horn instrument was used. A short time segment 

was recorded of 10 seconds with the aim that the gradual air pressure variation 

observed would have a negligible effect on the results. Each time segment was 

processed using Fourier analysis twice, once with the Hann window and the second 

time with the flat-top window. This was to ensure more reliable frequency and 

amplitude data. The results were then combined to allow the spectral centroid to be 

calculated as per equation 10-1.  

The spectral centroid values for each segment and the associated air overpressure 

data are shown in Figure 10-9. It can be seen that the spectral centroid value varies 

by 15% over the 10 second time period. From these results, there does not appear to 

be any correlation between the spectral centroid and the air overpressure. This 

meant that the long term drift of the air overpressure could be considered 

negligible. However, it also meant that some other phenomenon was affecting the 

results. The spectral centroid value varied significantly and because it was planned 

to use this as a measure to compare the optimised designs, it was important that this 

measure was sensitive enough to do this. 

 

 

Figure 10-9 – Calculated spectral centroid values and air ovepressure readings over an 

approximately 10 second time period. 8 time segments of the recording sound, each of 0.63 

seconds duration, were taken from which to calculate the spectral centroid. The horizontal 

‘error’ bars on the plotted data show the length of these time segments. 
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The cause of this consistency issue was not determined. All reasonable efforts were 

made to provide accurate sound recordings through the use of a suitable 

microphone, anechoic chamber and Fourier analysis techniques. It is possible that 

the result could have been affected by the consistency of the vibration of the 

artificial lips. This would not particularly affect the overpressure results but would 

have a larger effect on the resulting sound output. Parameters that could affect the 

lip behaviour were the internal pressure, the axial tension, and the position of the 

lips with respect to the instrument mouthpiece. All of these were kept constant 

throughout the experiments, but it is perceivable that some subtle changes could be 

magnified and so affect the resulting sound measurements. A more extensive set of 

measurements could have been taken to investigate this if time allowed. 

The difficulties with obtaining reliable measurements from the test rig were 

coupled with difficulties in obtaining manufactured prototypes of the optimised 

designs. The next section will outline this issue. 

 

10.3 Potential issues with manufacturing 

The aforementioned experiments using the test rig were carried out using existing 

instruments. It was intended that the test rig would ultimately be used to validate 

the optimised instrument design model. To enable this, a reliable test rig was 

required. As was explained in the previous section of this chapter, this proved to be 

difficult to achieve. The second requirement was to manufacture the optimised 

designs so that they could be played and tested by the test rig. This requirement 

raised several issues. 

Ensuring the manufacturing process produced a sufficiently accurate geometric 

copy of the optimised design would require substantial effort. While polymer AM 

processes are well established, metal processes are less so. Using a polymer would 

not provide the resonance characteristics that this work makes use of and so 

metallic materials are more suitable. It is typical to spend time qualifying the 

components manufactured using these processes and identifying the optimal 
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processing parameters to achieve more repeatable dimensions and material 

properties. 

There are three main sources of error that would require tackling to ensure that 

physical validation was suitable: the error between the analysis results and the 

equivalent physical results, the error between the optimised geometry and the 

manufactured geometry, and the error in the precision of the testing equipment. 

With this in mind, it was considered that this would be outside of the scope of this 

thesis and would form the basis of further work. Hence, the optimisation method 

contained in this thesis was based on physical testing results from the literature as 

was explained in section 2.5 of chapter 2. 

 

10.4 Achievements and Insights 

This work has detailed a new method to include wall vibration effects into an 

optimisation model for brass musical instruments. This is a tool that can be used by 

instrument designers to increase their control over the sound output from the 

instrument, specifically the more subtle timbral effects.  

It is a two stage process, coded in MATLAB and MSC Nastran, that firstly 

modifies the internal bore profile to match a particular target response and then 

secondly modifies the structure of the walls and braces to maximise or minimise 

the degree of vibration at particular frequencies. This was based on the effect of 

wall vibrations on the sound, as described in the literature, where a higher degree of 

vibration results in a ‘brighter’ sound and a lower degree of vibration results in a 

‘darker’ sound. These timbral characteristics can be measured by observing the 

relative strength of the harmonics in the sound spectrum, where a ‘brighter’ sound 

has higher relative strength in the higher harmonics and a ‘darker’ sound has higher 

relative strength in the lower harmonics. 

The bore profile optimisation was based on an established transmission line 

analysis model. Specific implementation differences were the use of spline linked 
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variables, the optimisation algorithms used, and a different objective function 

formulation based on feature recognition of the input impedance profile. This was 

an efficient analysis method which was valid within the frequency range studied, 

although the optimisation method did struggle somewhat with a large number of 

design variables. The next step in the method was the optimisation of the wall 

thickness along the length of the bore and the brace radii. The effectiveness of this 

is now discussed. 

The variability in the responses at each frequency of interest is of relevance for the 

forced vibration analysis case. The variability was greater for the response 

maximisation case compared with the minimisation case. Ideally the response at 

each frequency of interest would be more regular, i.e. the variance of the responses 

at each frequency would be low. This variation in the degree of vibration would 

have an effect on the relative extent of the effect of the vibration on the sound at 

each frequency of interest. Quantification of the variance of the responses was not 

included in the objective function and so it is no surprise that the results exhibit 

variance. The objective function used was an equally weighted sum of the 

responses at each frequency of interest. To control the variability, these weights 

could be adjusted iteratively to investigate which combination gave the most 

uniform results. By altering the weights, a Pareto optimal set of results would be 

generated showing the optima for each combination, as was explained in chapter 6. 

From that Pareto set the appropriate result could be chosen based on the mean 

response and the variation in responses.  

An alternative would be to include a measure of variability into the objective 

function such as the standard deviation. For example, the objective function could 

be to maximise or minimise the sum of the responses but with a penalty of the 

standard deviation of the responses. For maximisation, the standard deviation could 

be subtracted from the sum and for minimisation it could be added to the sum. This 

penalty factor could also be weighted so that there is control over the importance of 

the two terms (sum and standard deviation). 
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An important issue highlighted by the results of the forced vibration analysis 

approach, particularly for the response maximisation case, was that the optimised 

responses at the frequencies of interest did not necessarily correspond to the 

resonances, shown by peaks in the response curve. This suggested that the result 

was a local optimum. For frequencies where this occurred, the degree of vibration 

would be expected to be significantly lower than if the resonance was matched.  

This also had an effect on the sensitivity of the result to certain analysis parameters 

such as the structural damping coefficient. If the optimised responses were matched 

to the resonances then it would be expected that the effect of the damping 

coefficient would have little effect on the optimisation results. However, for the 

maximisation case, this parameter had a large effect. This was due to the sharpness 

of the peaks, where a relatively small change in frequency would significantly 

change the response magnitude as it approached the resonance. Conversely, the 

troughs between the resonance peaks changed more gradually with frequency and 

so the response was less sensitive to changes in frequency. This, combined with the 

fact that the damping coefficient only really affects the peaks of the resonances, 

meant that the minimisation cases were much less sensitive to the damping 

coefficient. 

It would be preferable for each resonance to be matched when using the forced 

vibration analysis approach. Because the implementation in this case was to either 

maximise or minimise the response, the matching of the resonances was not 

explicitly required. The global optimum might be impossible to achieve depending 

on the degree of design freedom afforded to the optimisation through the definition 

of design variables. However, if the resolution of design control meant that it was 

achievable, gradient-based optimisation algorithms will likely never reach it due to 

inescapable local optima. It was found that the simulated annealing algorithm was 

not able to efficiently find a better solution compared to the gradient-based 

algorithms used. Based upon studies into different starting points it would be more 

efficient to use several instances of a gradient-based algorithm each with a different 

starting point.  
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It was found that the free vibration analysis approach was very effective at 

matching the resonances as these were imposed explicitly as optimisation 

constraints. It is proposed that a combined free and forced vibration optimisation 

model would encourage the structural resonances to be matched more closely to the 

air-column resonances. The free vibration analysis documented in sections 9.2 and 

9.3 of chapter 9 was successful at closely matching resonances while the forced 

vibration analysis documented in section 9.4 of the same chapter allowed 

incorporation of vibration magnitude. Figure 10-10 decribes this combination 

where the analyses are carried out in parallel and the results are combined into one 

objective function. Alternatively, a feature recognition approach, similar to that 

used in the bore profile optimisation in chapter 7 for detecting the peaks of the 

frequency response, could be used.  

 

Figure 10-10 – Proposed combination of free and forced vibration analysis into one 

optimisation model. 

 

10.5 Summary 

This chapter explained the experimental setup and the planned method for 

validation. It was not possible to carry out validation of the method within this 

study and the reasons for this were discussed. A reflection on the general 

achievements and insights gained from this work was also presented. The next 

chapter will detail specific conclusions from this work. 
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11 Conclusions and Further Work 
 

11.1 Introduction 

This chapter will conclude the thesis and present the main findings of this research. 

It will then move on to suggestions for further work. The work contained in this 

thesis has been carried out with the intention of addressing the research objectives 

specified in chapter 4. To reiterate, these were: 

Objective: Conclusions: 

1) Review the literature in the field of 

research into the effect of wall 

vibrations and of existing brass 

musical instrument optimisation 

methods. 

A comprehensive review was conducted of 

the literature in this field as contained in 

chapters 2 and 3. 

2) Devise a framework for brass 

instrument optimisation to include 

the wall vibration effect. 

Based on the research from the literature 

where the wall vibration effect was 

accentuated when the resonances of the 

instrument walls and the air-column 

contained within approach each other. A 

two stage method was devised to enable the 

inclusion of this into the design process. 

This was coded using MATLAB and MSC 

Nastran. 

3) Implement a bore profile 

optimisation method based on the 

transmission line modelling approach 

and evaluate with a number of test 

cases. 

This was implemented in a similar vein to 

existing optimisation methods from the 

literature but with some differences in the 

optimisation implementation such as 

formation of the objective function. A 

number of test cases were carried out as 

contained in chapter 7. 

4) Devise a suitable approach for 

incorporating the wall vibration 

This formed the main novelty of this thesis 

and the details are contained in chapters 8 
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effect into the optimisation method 

allowing for non-traditional 

geometries. Preferably, this would 

also result in lightweight designs. 

and 9. Free and forced vibration approaches 

were evaluated. Discrete independent and 

spline-linked variables were also used. The 

effect of different optimisation algorithms 

and parameters were also investigated.  

5) Investigate the optimum designs for 

two scenarios: maximum wall 

vibration and minimum wall 

vibration. Are there design 

characteristics for each scenario?  

These two scenario extremes were used as 

test cases for each method explored in 

chapters 8 and 9. It was found that there 

were many different designs that could offer 

a similar level of performance as quantified 

by the objective function.  

 

11.2 Conclusions 

To the authors knowledge, this has been the first attempt at including the wall 

vibrations into an optimisation model for brass musical instruments. The literature 

review showed that the degree of wall vibration is increased when the resonant 

frequencies align and this implementation therefore avoids the need to specifically 

model particular air-structure couplings. The basis of the method was to control the 

degree of alignment between the resonant frequencies of the air column and the 

resonant frequencies or response of the structural walls. It aimed to control the 

degree to which the walls vibrate irrespective of the cause of the wall vibrations 

themselves. This was carried out through resonance and structural response control. 

Specific conclusions of this work are: 

1) The bore profile optimisation transmission line method implemented was 

successful at matching a defined target input impedance profile. Simulated 

annealing (SA) was very effective at finding a satisfactory deviation between 

the target and actual impedance profiles. By implementing a variable 

frequency increment and only matching the peaks of the impedance profile, 

the efficiency of the process was significantly increased. 
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2) The free vibration approach was found to be inadequate for this application 

due to the inherent omission of valuable magnitude information. The more 

complete forced vibration approach was found to be more successful although 

it was not possible to align a resonance with each frequency of interest. 

 

3) Regarding the approaches taken to define the design variables, there was no 

clear best method based upon the results generated. The independent discrete 

approach resulted in better performance for the minimisation of response than 

the maximisation while the reverse was the case for the spline-linked 

approach.  

 

4) The smooth geometric results obtained using the spline-linked approach were 

preferable from an aesthetic point of view. Increasing the number of variables 

may result in further optimality but this will increase computation time 

significantly. 

 

5) It was found that the results were quite sensitive to the optimisation starting 

point due to the complexity of the objective function and the nature of the 

gradient-based optimisation algorithm used.  

 

6) Overall, the results of this comparison suggest that the use of a global 

algorithm is not worth the significant additional computational expense. 

Technically, a more ‘optimal’ result was found using SA for the 

maximisation case, but this difference was small and required many more full 

function evaluations.  

 

7) It would be more appropriate to use the gradient-based algorithm but to run 

the optimisation several times each time using a different start point. A multi-

start strategy would allow greater exploration of the design space and would 

be more efficient than using a stochastic global algorithm.  
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8) Including a penalty term into the objective function that quantifies the 

variance of the responses would be useful to reduce the response variability. 

There may be some circumstances where a greater effect at particular 

frequencies is desired, for example, for most common notes within a style of 

music or excluding very high or very low notes which are not played as often. 

These requirements could be included in the objective function with different 

weighting factors.  

 

9) Due to the allowable variable bounds, the resulting wall thickness 

distributions were atypical for brass instruments which are usually 

manufactured to have a uniform wall thickness distribution. It would be very 

difficult to manufacture accurately the non-uniform wall thicknesses using 

traditional manufacturing techniques but complexity is significantly less of an 

issue for additive manufacturing (AM) processes and the geometries created 

in this work could be easily manufactured. A study would need to be 

conducted into the accuracy and repeatability issues of the geometric 

translation from the optimisation result to the physical part. 

 

10) The optimisation method detailed in this thesis gives the designer greater 

control over the sound output of the instrument. It allows the designer to 

specify at the outset the intended timbre out of a choice of maximum or 

minimum ‘brightness’ (inverse of ‘darkness’). This allows the design of 

customised instruments where a particular timbre is preferred by different 

players or for different types of music. This was not possible with existing 

brass instrument analysis and optimisation methods and represents a 

significant step towards greater fidelity of design methods for brass 

instruments. 

 

11) It was found that better results could be obtained by using the optimisation 

method than by simply using the thickest or thinnest uniform wall thickness 

which has traditionally been done when manufacturing these instruments. 
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Also, the uniform design was significantly heavier than the optimised design 

so the objective of creating a lightweight instrument that also provided the 

intended timbre was achieved. 

 

12) It is proposed that a combined free and forced vibration optimisation model 

would encourage the structural resonances to be matched more closely to the 

air-column resonances. Alternatively, a feature recognition approach such as 

that used for the bore profile optimisation could be used. 

 

11.3 Further work 

The results of designs presented in this thesis use a modest number of design 

variables. Good results were obtained using this number of variables but it would 

be interesting to see what further improvement could be made by opening up the 

design space further. Additive manufacturing can allow much greater complexity 

than the defined design variables allow in the optimisation results in this thesis. The 

maximum number of wall thickness design variables would be equal to the number 

of shell elements, which in this model would be approximately 30,000. It would be 

interesting to explore element-by-element sizing optimisation, commonly known as 

topometry optimisation, which would give significant greater design freedom and 

potential for greater optimality. Different optimisation algorithms would be 

required for this, similar to those used for topology optimisation where there are 

also a large number of variables. The location and quantity of the support braces 

could also be defined as variables which would give further control over the 

rigidity of the structure.  

The instrument designs from this research were optimised using traditional brass 

material properties from the literature. This was so that comparisons could be made 

with existing geometries. Brass has traditionally been used for manufacturing brass 

instruments primarily because of its ductility allowing it to be easily formed, not 

necessarily because of its acoustical properties. It would be interesting to use 
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different material properties to see what effect this would have on the wall 

thickness distributions. Using data from testing carried out using metal powders for 

metal additive manufacturing processes would allow prototypes to be manufactured 

and correlated against the optimisation results. It would also be useful to investigate 

the additive manufacture of brass powders specifically for this application. 

Ultimately, these optimised designs need to be manufactured and tested. The 

further development of the test rig is therefore required to improve the reliability of 

the measurements.  

Finally, this work lends itself to other applications that involve pipes where 

vibration considerations are required. One example is exhaust systems where the 

objective is to minimise vibration at key frequencies and to produce a tuned sound 

from the exhaust pipe at different speeds. This sort of problem correlates very well 

to the brass instrument method detailed in this thesis. 
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13.1 MATLAB code for bore profile optimisation 

This appendix contains the function files for the bore profile optimisation portion of 

the work written in MATLAB. Where these functions make use of built-in 

MATLAB functions, these have not been included in this appendix.  

13.1.1 main_vectorised.m function 

 

1 function main_vectorised(run_type, full_filename, algorithm, maxf,…  

2 increment, finer_freq_inc, plus_minus_each_peak, target_method,… 

3 target_Zin, orig_target_maxtab, bore_length, no_variables, 

lower_bound, upper_bound, hor_pos_LB, hor_pos_UB, hor_L,…  

4 cylindrical_element_choice, conical_element_choice, 

current_GA_options, current_options, current_PS_options,…  

5 current_fmincon_options, geometry_section_marks, 

include_hor_pos_vars) 

6  

7 % REQUIRED FUNCTION AND GUI FILES: 
8 % calc_Zin.m, new_for_gatool.m, calc_Zin_finer.m, plot_results_2.m, 

calc_final_Zin.m, target_vectorised.m,  

9 % mouthpiece.m, mouthpiece_finer.m, ndfun.c (compiled as a MEX 

file), peakdet_vectorised.m,  

10 % peakdet_vectorised_combined.m, calc_fitness.m, fifth_time_lucky.m, 

fifth_time_lucky.fig, GA_options.m, 

11 % GA_options.fig, SA_options.m, SA_options.fig, PS_options.m, 

PS_options.fig, fmincon_options.m, 

12 % fmincon_options.fig 

13  

14 % DESCRIPTION OF FUNCTIONALITY 
15 % This code is used to find a trumpet bore profile that has the same 

inputimpedance profile as a specified optimal % target. It is based 

on transmission line calculations from Dan Mapes-Riordan (1993) and 
Causse et al (1982),  

16 % and used cylindrical and conical segments. 
17  
18 % Functionality points to note are: 
19 % 1) The target input impedance profile can be specified either 

indirectly from a target bore profile for testing  
20 % purposes, or more usefully, directly from a target input impedance 

profile. The latter of these is created by  

21 % specifying the desired resonant frequencies and magnitudes and 

then an exponential function is applied to  

22 % these points to obtain a full frequency target input impedance 

profile. 

23 % 2) The ability to specify sections of the instrument in which 

different numbers of variables can be assigned. E.g. % bell, lead 

pipe and cylindrical section. This enables appropriate geometric 
resolution with more variables where % the geometry changes rapidly 
without requiring the same degree of resolution over the whole 
instrument. 

24 % 3) The mouthpiece is included in the calculation of the input 

impedance and is not altered during the  
25 % optimisation. Its geometry is read in from a file. The first 

'variable' of the bore profile is fixed to ensure a  

26 % smooth connection between the mouthpiece and the rest of the 
instrument. 

27 % 4) That each variable has its own upper and lower bound which can 

be set to be different from the other  
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28 % variables, i.e. the user can decide how much freedom to allow the 
creation of non-standard designs. 

29 % 5) That the optimisation initially runs with a coarse frequency 

increment which is subsequently refined locally % at the peaks only, 
providing a more accurate resonant frequency result without having 
to calculate the whole 

30 % input impedance profile at that finer frequency increment. 
31 % 6) The difference between the target and the actual input 

impedance profile is found from a weighted sum of 

32 % the difference in number of peaks, the mean difference between the 

peak frequencies, and the mean  

33 % difference between the peak magnitudes. 
34 % 7) Four different optimisation algorithms can currently be used. 

These are 1) Genetic Algorithm (GA), 2)  
35 % Simulated Annealing (SA), 3) Threshold Acceptance (TA), and 4) 

Pattern Search (PS). 
36 % 8) The results of each optimisation run are automatically saved to 

disk in a folder of today's date. Each file has % the date and time 
it was created included in its filename to allow straightforward 
retrieval of results. 

37   
38 clock_start=clock;  % Record start time 
39   
40 % SET FREQUENCY RANGE 
41 % This is the frequency range over which the input impedance profile 

will be calculated. At higher frequencies,  
42 % this method introduces modelling errors, especially in this bell 

section. The upper frequency limit for a trumpet 
43 % is close to 1500Hz, which is beyond the range of all played notes 

anyway (Kausel 2003), so is an appropriate  

44 % maximum frequency. 
45   
46 minf=increment;    % otherwise you get trouble 

with total number of frequencies 
47 f=minf:increment:maxf;   % evaluation frequencies 
48 coarse_f=f; 
49   
50 %CALCULATION OF PHYSICAL CONSTANTS  
51 dT=0;     % temperature deviation from 

ambient (degC) 
52 speed_c=(3.4723*10^2)*(1+(0.00166*dT)); % speed of sound (m/s) 
53 rho=1.1769*(1-(0.00355*dT));  % density of air (kg/m^3) 
54 n=1.846*(10^-5)*(1+(0.0025*dT));  % shear viscosity of air 
55 w=2*pi*f;    % angular frequency (omega rad) 
56 k=w/speed_c;    % wavenumber 
57   
58 f_finer_all=finer_freq_inc:finer_freq_inc:maxf; 
59 w_finer=2*pi*f_finer_all; 
60 k_finer=w_finer/speed_c; 
61   
62 % SET SECTION AND SEGMENT DETAILS 
63 % This is where the different sections of the instrument can be 

specified to have different numbers of variables,  
64 % e.g. bell, lead pipe and cylindrical section. This enables 

appropriate geometric resolution with more variables  

65 % where the geometry changes rapidly without requiring the same 
degree of resolution over the whole  

66 % instrument. Additional sections can be included if required by 

altering no_variables and hor_L. 
67   
68 include_mouthpiece=dlmread('include_mouthpiece.txt'); 
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69   
70 if include_mouthpiece==1 
71  % SECTION 1: MOUTHPIECE 

72  % Calculate prodH for the mouthpiece (COARSE FREQUENCY) 
73  [mp_prodH,hor_L_for_mp,mp_radius]=mouthpiece(f,w,k,speed_c,rh

 o,n);  

74  % Calculate prodH for the mouthpiece (FINER FREQUENCY) 
75  [mp_prodH_finer]=mouthpiece_finer(f_finer_all,w_finer,k_finer

 ,speed_c,rho,n);  
76  

77  else if include_mouthpiece==0 
78   mp_prodH=[]; 
79   mp_prodH_finer=[]; 
80   hor_L_for_mp=[]; 
81   mp_radius=[]; 
82  end 
83 end 
84  
85 if strcmp(run_type,'optimise') 
86  % DEFINE BOUNDS FOR VARIABLES 

87  % This is where the upper and lower radii bounds for the 

 variables are set. The bounds are different  

88  % over the length of the instrument to ensure a sensibly 

 shaped bore which is reasonably smooth. The % 1st 'variable' 

 is fixed to ensure a smooth fit to the mouthpiece. The 

 variables in the main length  

89  % section (lead pipe and cylindrical section) have constant 

 lower and upper bounds. The variables in the % bell section 

 have bounds based upon a Bessel function which is known to 

 roughly approximate a  

90  % trumpet bell. The lower bound in this section is then taken 

 as 3/2 of the upper bound. The space  

91  % between the lower and upper bounds can be controlled to 

 either open up or close down the design  

92  % freedom of the optimiser. 

93   
94  variable_range=[lower_bound;upper_bound]; % Combine bounds 

 into one matrix 
95   
96  % DEFINE TARGET INPUT IMPEDANCE CURVE 
97  % The target input impedance profile can be specified either 

 indirectly from a target bore profile for  
98  % testing purposes, or more usefully, directly from a target 

 input impedance profile. The latter of these % is created by 
 specifying the desired resonant frequencies and magnitudes 

 and then an exponential  
99  % function is applied to these points to obtain a full 

 frequency target input impedance profile. 

100   
101  % target input impedance profile calculated from an specified 

 target bore profile 
102  if strcmp(target_method,'from_bore') 
103   % target for actual optimisation 
104       target_radius=[0.0042,0.005,0.005,0.006,0.015,0.05]; 
105   target_knot_positions=[0,0.26,0.52,1,1.25,1.3]; 
106   
107   [target_Zin]=target_vectorised(target_radius,   

  f_finer_all, w_finer, k_finer, no_variables,… 

108   mp_prodH_finer, speed_c, rho, n,     

  target_knot_positions); 

109      
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110   % find peaks of target 

111   % The first argument is the vector to examine, and the 

  second is the peak threshold. The  

112   % returned vector "maxtab" contains the peak points: 

113   [orig_target_maxtab]=peakdet_vectorised(target_Zin,750, 

  finer_freq_inc);     

114  end 
115  
116  % SAVE INPUTS TO FILE FOR LATER USE 
117  save('saved_inputs', 'f', 'maxf', 'increment', 'w', 'k', 

 'hor_L', 'no_variables',… 

118  'cylindrical_element_choice', 'conical_element_choice', 

 'mp_prodH', 'mp_prodH_finer', 'f_finer_all', 

 'finer_freq_inc', 'speed_c', 'rho', 'n', 

 'include_mouthpiece', 'geometry_section_marks', 

 'include_hor_pos_vars') 

119   
120  % RUN CHOSEN OPTIMISATION ALGORITHM %% 
121  fval_list=[];mean_fval_list=[];min_fval_list=[];max_fval_list

 =[];time_taken_list=[]; 

122  mean_time_taken=[]; 
123   
124  % This is now recalculated each time because it can change: 
125  figure(1); figure(2) 
126   
127  fitness_fcn=@(radius_input)new_for_gatool(radius_input, f, 

 maxf, increment, w, k, hor_L,… 

128  cylindrical_element_choice, conical_element_choice, 

 no_variables, mp_prodH,… mp_prodH_finer, f_finer_all, 

 finer_freq_inc, plus_minus_each_peak, target_Zin,… 

129  orig_target_maxtab, speed_c, rho, n, include_mouthpiece, 

 geometry_section_marks,… include_hor_pos_vars); 

130   
131  % split random starting values into 2 then concatenate 
132  if include_hor_pos_vars==1 
133       initial_guess_vert_positions=lower_bound+(upper_bound-

  lower_bound)*rand() ; 
134      
135   hor_positions_LB_expanded=repmat(hor_pos_LB,1, 

  length(geometry_section_marks)-2); 
136       hor_positions_UB_expanded=repmat(hor_pos_UB,1, 

  length(geometry_section_marks)-2); 
137    
138   % initial horizontal offset set to 0 

139   initial_guess_hor_positions=zeros(1,length( 

  geometry_section_marks)-2); 
140   initial_guess=horzcat(initial_guess_vert_positions, 

  initial_guess_hor_positions); 
141   lower_bound=horzcat(lower_bound, 

  hor_positions_LB_expanded); 
142   upper_bound=horzcat(upper_bound, 

  hor_positions_UB_expanded); 
143  else 
144  % initial randomly generated guess of optimal argument to the 

 objective function 
145  initial_guess=lower_bound+(upper_bound-lower_bound)*rand(); 

146 end 
147   
148 if strcmp(algorithm,'Simulated Annealing (SA)') 
149  % PlotFcns 
150      if  include_hor_pos_vars==1 
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151   plot_fcn_list={@saplotbestf, @saplotbestx, @saplotf,  

  @saplotstopping,… 

152    @saplottemperature, @plotfun_bestx,    

  @plotfun_best_Zin_match}; 
153  else  

154   plot_fcn_list={@saplotbestf, @saplotbestx, @saplotf,  

  @saplotstopping, … 

155   @saplottemperature, @plotfun_radii_only_bestx,… 

156    @plotfun_best_Zin_match}; 

157      end 
158      
159      selected=[current_options.bestf, current_options.bestx, 

 current_options.plotf,... 
160  current_options.stopping, current_options.temperature]; 
161   
162      plot_fcn=cell(1,6); 
163     for plot_fcn_inc=1:5 
164   if selected(plot_fcn_inc)==1 
165    plot_fcn(plot_fcn_inc)=plot_fcn_list 

   (plot_fcn_inc); 
166         end 
167      end 

168  
169      plot_fcn(6)=plot_fcn_list(6); 
170     plot_fcn=plot_fcn(~cellfun('isempty',plot_fcn)); 
171              
172        output_fcn=@(x,optimvalues,state)fminuncOut(x, 

 optimvalues,state,plot_fcn,no_variables); 
173  hybrid_options=optimset('OutputFcn', output_fcn, 'Display', 

 'final', … 

174  'MaxFunEvals', current_options.hybrid_max_fun_evals, … 

175  'MaxIter', current_options.hybrid_max_iter, … 

176  'TolFun', current_options.hybrid_TolFun, 'TolX', 

 current_options.hybrid_TolX,… 

177   'FunValCheck',fun_val_check); 

178   
179  options=saoptimset('HybridFcn',  

 {str2func(char(current_options.hybrid_function)), … 

180  hybrid_options}, 'TolFun', current_options.TolFun,… 

181   'StallIterLimit', current_options.stall_iter_limit,... 
182  'MaxFunEvals', current_options.max_fun_evals,… 

183   'TimeLimit', current_options.time_limit,... 
184  'ObjectiveLimit', current_options.objective_limit,… 

185   'MaxIter', current_options.max_iter,'PlotFcns', plot_fcn,… 

186   'PlotInterval', current_options.plot_interval,… 

187   'InitialTemperature', current_options.initial_temperature,… 

188   'ReannealInterval', current_options.reanneal_interval,... 
189  'AnnealingFcn', 

 str2func(char(current_options.annealing_function)),… 

190   'TemperatureFcn', 
 str2func(char(current_options.temperature_function)),… 

191   'AcceptanceFcn', 

 str2func(char(current_options.acceptance_function))); 
192   
193       if strcmp(current_options.acceptance_function, 

 'acceptancethresh') 
194   fprintf('Threshold Acceptance used for acceptance  

  function') 
195   [x,fval,exitflag,output]=threshacceptbnd(fitness_fcn, 

  initial_guess,lower_bound,upper_bound, options); 

196  end 
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197  if strcmp(current_options.acceptance_function,'acceptancesa') 
198   fprintf('Simulated Annealing used for acceptance  

  function') 
199   [x,fval,exitflag,output]=simulannealbnd(fitness_fcn,  

  initial_guess,lower_bound,upper_bound, options); 

200  end 
201   
202 end 
203  
204 % DISPLAY RESULTS TO COMMAND WINDOW 
205 x % display the final spline knot vertical and horizontal positions 
206 fprintf('The best function value found was: %g\n',fval); 
207 fprintf('Stopping reason: "%s" (exitflag: 

%2.0f)\n',output.message,exitflag) 
208 if strcmp(algorithm,'Fmincon') 
209  fprintf('The number of function evaluations was: 

 %d\n',output.funcCount); 
210 else 
211  fprintf('The number of function evaluations was: %

 d\n',output.funccount); 
212 end 
213   
214  
215   
216 % CALCULATE FINAL INDIVIDUAL INPUT IMPEDANCE FOR OPTIMAL BORE 

PROFILE X 
217 % The final bore profile radii x is used to calculate the final 

input impedance profile using calc_final_Zin.m. 
218   
219 if strcmp(run_type,'optimise') 
220  [final_Zin,final_actual_maxtab]=calc_final_Zin(run_type, x, 

 f, maxf, increment, w, k, hor_L,… 

221  no_variables, cylindrical_element_choice, 

 conical_element_choice, mp_prodH,... 
222  mp_prodH_finer, f_finer_all, finer_freq_inc, speed_c, rho, n, 

 include_mouthpiece,... 
223  geometry_section_marks, include_hor_pos_vars); 
224   
225  % SAVE GA HISTORY PLOT TO FILE 
226    mkdir(date) % create relative folder to save files into 
227  filename_string_ga_plot=strcat(date,'\',datestr(now),' GA 

 history'); 
228  filename_string_ga_plot=strrep(filename_string_ga_plot,':','_

 '); 
229      saveas(1,filename_string_ga_plot,'fig') 
230   
231  clock_end=clock; 
232      time_taken=etime(clock_end,clock_start)/60; 
233  fprintf('time taken: %2.2f mins\n',time_taken); 
234   
235      % PLOT OPTIMISED BORE PROFILE AND INPUT IMPEDANCE RESULTS 
236  [actual_radius_plot]=plot_results_2(x, fval, time_taken, 

 f_finer_all, maxf, hor_L, hor_L_for_mp,… 

237  no_variables, mp_radius, target_Zin, orig_target_maxtab, 

 final_Zin, final_actual_maxtab,… 

238   algorithm, include_mouthpiece, geometry_section_marks, 

 include_hor_pos_vars); 
239   
240  % close matlabpool 
241      if strcmp(algorithm,'Genetic Algorithm (GA)') || 
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 strcmp(algorithm,'Pattern Search (PS)') 
242   try matlabpool close 
243          catch 
244          end 
245  end 
246   
247 else if strcmp(run_type,'calculate') 
248  x_both_cols=dlmread(full_filename); 
249  x=x_both_cols(:,2)'; 
250  no_variables=length(x); 
251  Li=zeros(1,no_variables-1); 
252           
253  [final_Zin,final_actual_maxtab]=calc_final_Zin(run_type,  

 x, f, maxf, increment, w, k, hor_L,... 
254  no_variables, Li, cylindrical_element_choice, 

 conical_element_choice, mp_prodH,... 
255  mp_prodH_finer, f_finer_all, finer_freq_inc, speed_c, rho, n, 

 include_mouthpiece); 
256          
257  % Plot input impedance against geometry 
258  [actual_radius_plot]=plot_calculated_results(x,  

 f_finer_all, maxf, hor_L, hor_L_for_mp,… 

259  no_variables, mp_radius, target_Zin, orig_target_maxtab, 

 final_Zin, final_actual_maxtab, algorithm, 

 include_mouthpiece) 
260  end 

261 end 

 

13.1.2 mouthpiece.m function 

 

1 function [mp_prodH, hor_L_for_mp, mp_radius]=mouthpiece(f, w, k, 

speed_c, rho, n) 

2   

3 mp_L_and_radius=dlmread('mp_L_and_radius2.txt'); 

4 hor_L_for_mp=mp_L_and_radius(:,1); 

5 hor_L_for_mp=hor_L_for_mp(length(hor_L_for_mp))-

hor_L_for_mp(length(hor_L_for_mp)-1); 

6 mp_radius=mp_L_and_radius(:,2)'; 

7    

8 % Preallocation 

9 Li=zeros(1,length(mp_radius)-1); 

10 x0i=zeros(1,length(mp_radius)-1); 

11 x1i=zeros(1,length(mp_radius)-1); 

12   

13 % Calculation of transmission matrices 

14 % CHECK WHETHER CONICAL OR CYLINDRICAL SEGMENT 

15 h=1:1:length(mp_radius)-1; 

16 r0i=mp_radius(h); 

17 r1i=mp_radius(h+1); 

18   

19 r_diffi=r1i-r0i;                     

20 find_non_zeros=find(r_diffi); % conical segment 

21 Li(find_non_zeros)=sqrt((hor_L_for_mp^2)+(r_diffi(find_non_zeros).^2

)); 

22 mp_radius(find_non_zeros)=(r0i(find_non_zeros)+r1i(find_non_zeros))/

2; 

23 x0i(find_non_zeros)=(r0i(find_non_zeros).*Li(find_non_zeros))./r_dif

fi(find_non_zeros); 

24 x1i(find_non_zeros)=x0i(find_non_zeros)+Li(find_non_zeros); 

25 find_zeros=find(r_diffi==0); % cylindrical segment 
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26 Li(find_zeros)=hor_L_for_mp; % segment length 

27 mp_radius(find_zeros)=(r0i(find_zeros)+r1i(find_zeros))/2;  

% cylindrical tube radius 

28      

29 Si=pi*mp_radius.^2; 

30 Z0i=(rho*speed_c)./Si; 

31 rvi=sqrt((rho*w'*Si)/(n*pi)); 

32   

33 k_expanded=repmat(k',1,length(mp_radius)); 

34 Qi=k_expanded.*(((1.045./rvi)+(1.080./(rvi.^2))+(0.750./(rvi.^3)))+(

j*(1+(1.045./rvi)))); 

35   

36 Z0i_expanded=repmat(Z0i,length(f),1); 

37 Zci=Z0i_expanded'.*(((1+(0.369./rvi'))+(-

j*((0.369./rvi')+(1.149./(rvi.^2)')+((0.303./(rvi.^3)')))))); 

38   

39 % Splits up the cylindrical and conical segments: 

40 x_diffi=x1i-x0i; 

41 non_0_values=find(x_diffi); 

42 the_zeros=find(x_diffi==0); 

43 Li_expanded=repmat(Li,length(f),1); 

44      

45 sinh_statement=sinh(Qi(:,non_0_values).*Li_expanded(:, 

non_0_values)); 

46 cosh_statement=cosh(Qi(:,non_0_values).*Li_expanded(:, 

non_0_values)); 

47 sinh_statement_zeros=sinh(Qi(:,the_zeros).*Li_expanded(:, 

the_zeros)); 

48 cosh_statement_zeros=cosh(Qi(:,the_zeros).*Li_expanded(:, 

the_zeros)); 

49      

50 % Dissipative Cylindrical 

51 ai(:,the_zeros)=cosh_statement_zeros; 

52 bi(:,the_zeros)=Zci(the_zeros,:)'.*sinh_statement_zeros; 

53 ci(:,the_zeros)=(1./Zci(the_zeros,:))'.*sinh_statement_zeros; 

54 di(:,the_zeros)=cosh_statement_zeros; 

55     

56 x1i_expanded=repmat(x1i,length(f),1); 

57 x0i_expanded=repmat(x0i,length(f),1); 

58      

59 % Dissipative Conical 

60 ai(:,non_0_values)=((x1i_expanded(:,non_0_values)./x0i_expanded(:,no

n_0_values)).*cosh_statement… 

61 -((1./(Qi(:,non_0_values).*x1i_expanded(:,non_0_values))). 

*sinh_statement)); 

62 bi(:,non_0_values)=((x0i_expanded(:,non_0_values)./x1i_expanded(:,no

n_0_values)).*… 

63 Zci(non_0_values,:)'.*sinh_statement); 

64 ci(:,non_0_values)=((1./Zci(non_0_values,:))'.*(((x1i_expanded(:,non

_0_values)./x0i_expanded(:,… 

65 non_0_values))-

((1./(Qi(:,non_0_values).*x0i_expanded(:,non_0_values))).^2)).*… 

66 sinh_statement+((Qi(:,non_0_values).*Li_expanded(:,non_0_values))./(

(Qi(:,non_0_values).*… 

67 x0i_expanded(:,non_0_values)).^2)).*cosh_statement)); 

di(:,non_0_values)=(x0i_expanded(:,non_0_values)./x1i_expanded(:,non

_0_values)).*((cosh_statement… 

68 +((1./(Qi(:,non_0_values).*x0i_expanded(:,non_0_values))).*sinh_stat

ement))); 

69   

70 ai_col=ai.'; bi_col=bi.'; ci_col=ci.'; di_col=di.'; 

71      

72 M=reshape([ai_col(:),ci_col(:),bi_col(:),di_col(:)],length(mp_radius
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)-1,length(f),2,2); 

73 mp_prodH=ndfun('mprod',permute(M,[3 4 1 2])); 

 

13.1.3 mouthpiece_finer.m function 

 

1 function [mp_prodH_finer]=mouthpiece_finer(f_finer_all, w_finer, 

k_finer, speed_c, rho, n) 

2   

3 mp_L_and_radius=dlmread('mp_L_and_radius2.txt'); 

4 hor_L_for_mp=mp_L_and_radius(:,1); 

5 hor_L_for_mp=hor_L_for_mp(length(hor_L_for_mp))-

hor_L_for_mp(length(hor_L_for_mp)-1); 

6 mp_radius=mp_L_and_radius(:,2)'; 

7    

8 % Preallocation 

9 Li=zeros(1,length(mp_radius)-1); 

10 x0i=zeros(1,length(mp_radius)-1); 

11 x1i=zeros(1,length(mp_radius)-1); 

12   

13 % Calculation of transmission matrices 

14 % CHECK WHETHER CONICAL OR CYLINDRICAL SEGMENT 

15 h=1:1:length(mp_radius)-1; 

16 r0i=mp_radius(h); 

17 r1i=mp_radius(h+1); 

18   

19 r_diffi=r1i-r0i;                     

20 find_non_zeros=find(r_diffi); % conical segment 

21 Li(find_non_zeros)=sqrt((hor_L_for_mp^2)+(r_diffi(find_non_zeros).^2

)); 

22 mp_radius(find_non_zeros)=(r0i(find_non_zeros)+r1i(find_non_zeros))/

2; 

23 x0i(find_non_zeros)=(r0i(find_non_zeros).*Li(find_non_zeros))./r_dif

fi(find_non_zeros); 

24 x1i(find_non_zeros)=x0i(find_non_zeros)+Li(find_non_zeros); 

25 find_zeros=find(r_diffi==0); % cylindrical segment 

26 Li(find_zeros)=hor_L_for_mp; % segment length 

27 mp_radius(find_zeros)=(r0i(find_zeros)+r1i(find_zeros))/2;     

% cylindrical tube radius 

28      

29 Si=pi*mp_radius.^2; 

30 Z0i=(rho*speed_c)./Si; 

31 rvi=sqrt((rho*w_finer'*Si)/(n*pi)); 

32   

33 k_expanded=repmat(k_finer',1,length(mp_radius)); 

34 Qi=k_expanded.*(((1.045./rvi)+(1.080./(rvi.^2))+(0.750./(rvi.^3)))+(

j*(1+(1.045./rvi)))); 

35   

36 Z0i_expanded=repmat(Z0i,length(f_finer_all),1); 

37 Zci=Z0i_expanded'.*(((1+(0.369./rvi'))+(-

j*((0.369./rvi')+(1.149./(rvi.^2)')+((0.303./(rvi.^3)')))))); 

38   

39 % Splits up the cylindrical and conical segments: 

40 x_diffi=x1i-x0i; 

41 non_0_values=find(x_diffi); 

42 the_zeros=find(x_diffi==0); 

43 Li_expanded=repmat(Li,length(f_finer_all),1); 

44      

45 sinh_statement=sinh(Qi(:,non_0_values).*Li_expanded(:, 

non_0_values)); 

46 cosh_statement=cosh(Qi(:,non_0_values).*Li_expanded(:, 
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non_0_values)); 

47 sinh_statement_zeros=sinh(Qi(:,the_zeros).*Li_expanded(:, 

the_zeros)); 

48 cosh_statement_zeros=cosh(Qi(:,the_zeros).*Li_expanded(:, 

the_zeros)); 

49      

50 % Dissipative Cylindrical 

51 ai(:,the_zeros)=cosh_statement_zeros; 

52 bi(:,the_zeros)=Zci(the_zeros,:)'.*sinh_statement_zeros; 

53 ci(:,the_zeros)=(1./Zci(the_zeros,:))'.*sinh_statement_zeros; 

54 di(:,the_zeros)=cosh_statement_zeros; 

55     

56 x1i_expanded=repmat(x1i,length(f_finer_all),1); 

57 x0i_expanded=repmat(x0i,length(f_finer_all),1); 

58      

59 % Dissipative Conical 

60 ai(:,non_0_values)=((x1i_expanded(:,non_0_values)./x0i_expanded(:,no

n_0_values)).*cosh_statement… 

61 -((1./(Qi(:,non_0_values).*x1i_expanded(:,non_0_values))). 

*sinh_statement)); 

62 bi(:,non_0_values)=((x0i_expanded(:,non_0_values)./x1i_expanded(:,no

n_0_values)).*… 

63 Zci(non_0_values,:)'.*sinh_statement); 

64 ci(:,non_0_values)=((1./Zci(non_0_values,:))'.*(((x1i_expanded(:,non

_0_values)./x0i_expanded(:,non_0_values))… 

65 -((1./(Qi(:,non_0_values).*x0i_expanded(:,non_0_values))).^2)). 

*sinh_statement… 

66 +((Qi(:,non_0_values).*Li_expanded(:,non_0_values))./((Qi(:,non_0_va

lues).*… 

67 x0i_expanded(:,non_0_values)).^2)).*cosh_statement));   

di(:,non_0_values)=(x0i_expanded(:,non_0_values)./x1i_expanded(:,non

_0_values)).*((cosh_statement… 

68 +((1./(Qi(:,non_0_values).*x0i_expanded(:,non_0_values))).*sinh_stat

ement))); 

69   

70 ai_col=ai.'; bi_col=bi.'; ci_col=ci.'; di_col=di.'; 

71      

72 M=reshape([ai_col(:),ci_col(:),bi_col(:),di_col(:)],length(mp_radius

)-1,length(f_finer_all),2,2); 

73 mp_prodH_finer=ndfun('mprod',permute(M,[3 4 1 2])); 

 

13.1.4 target_vectorised.m function 

 

1 function [target_Zin]=target_vectorised(target_radius, f_finer_all, 

w_finer, k_finer, no_variables,... 

2 mp_prodH_finer, speed_c, rho, n, target_knot_positions) 

3   

4 % Calculate spline based on target input knot points 

5 % define the spline knots 

6 target_radius_points=[target_knot_positions;target_radius]; 

7 % calculate the splines 

8 [target_radius_spline_points,target_radius_spline_T]=fnplt(cscvn(tar

get_radius_points),'b',1); 

9 % remove duplicate points that occur at knot joints 

10 target_radius_spline_points_unique=consolidator(target_radius_spline

_points',[],[],1e-9)'; 

11   

12 target_radius_segments=target_radius_spline_points_unique(2,:); 

13   

14 hor_L=target_radius_spline_points_unique(1,2:end)-
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target_radius_spline_points_unique(1,1:end-1) 

15   

16 j=sqrt(-1); 

17 radiusi=zeros(1,length(target_radius_segments)-1);  % Preallocation 

18 Li=zeros(1,length(target_radius_segments)-1); 

19 x0i=zeros(1,length(target_radius_segments)-1); 

20 x1i=zeros(1,length(target_radius_segments)-1); 

21   

22 % CHECK WHETHER CONICAL OR CYLINDRICAL SEGMENT 

23 h=1:1:length(target_radius_segments)-1; 

24 r0i=target_radius_segments(h); 

25 r1i=target_radius_segments(h+1); 

26 r_diffi=r1i-r0i; 

27 find_non_zeros=find(r_diffi); % conical segment 

28 find_zeros=find(r_diffi==0); % cylindrical segment 

29   

30 no_non_zero=find(find_non_zeros>=0); % indices of main part (number 

of variables) 

31 no_zero=find(find_zeros>=0); 

32   

33 Li(find_non_zeros(no_non_zero))=sqrt((hor_L(no_non_zero).^2)+(r_diff

i(find_non_zeros(no_non_zero)).^2)); 

34 Li(find_zeros(no_zero))=hor_L(no_zero); 

35   

36 radiusi(find_non_zeros)=(r0i(find_non_zeros)+r1i(find_non_zeros))/2; 

37 radiusi(find_zeros)=(r0i(find_zeros)+r1i(find_zeros))/2; 

38   

39 x0i(find_non_zeros)=(r0i(find_non_zeros).*Li(find_non_zeros))./r_dif

fi(find_non_zeros); 

40 x1i(find_non_zeros)=x0i(find_non_zeros)+Li(find_non_zeros); 

41   

42 % CALCULATE TRANSMISSION MATRICES 

43 Si=pi*radiusi.^2; 

44 Z0i=(rho*speed_c)./Si; 

45 rvi=sqrt((rho*w_finer'*Si)/(n*pi)); 

46 k_expanded=repmat(k_finer',1,length(target_radius_segments)-1); 

47 Qi=k_expanded.*(((1.045./rvi)+(1.080./(rvi.^2))+(0.750./(rvi.^3)))+(

j*(1+(1.045./rvi)))); 

48 Z0i_expanded=repmat(Z0i,length(f_finer_all),1); 

49 Zci=Z0i_expanded'.*(((1+(0.369./rvi'))+(-

j*((0.369./rvi')+(1.149./(rvi.^2)')+((0.303./(rvi.^3)')))))); 

50   

51 % Split up the cylindrical and conical segments: 

52 x_diffi=x1i-x0i; 

53 non_0_values=find(x_diffi); 

54 the_zeros=find(x_diffi==0); 

55 Li_expanded=repmat(Li,length(f_finer_all),1); 

56   

57 sinh_statement=sinh(Qi(:,non_0_values).*Li_expanded(:,non_0_values))

; 

58 cosh_statement=cosh(Qi(:,non_0_values).*Li_expanded(:,non_0_values))

; 

59 sinh_statement_zeros=sinh(Qi(:,the_zeros).*Li_expanded(:,the_zeros))

; 

60 cosh_statement_zeros=cosh(Qi(:,the_zeros).*Li_expanded(:,the_zeros))

; 

61   

62 % Dissipative Cylindrical 

63 ai(:,the_zeros)=cosh_statement_zeros; 

64 bi(:,the_zeros)=Zci(the_zeros,:)'.*sinh_statement_zeros; 

65 ci(:,the_zeros)=(1./Zci(the_zeros,:))'.*sinh_statement_zeros; 

66 di(:,the_zeros)=cosh_statement_zeros; 

67   
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68 x1i_expanded=repmat(x1i,length(f_finer_all),1); 

69 x0i_expanded=repmat(x0i,length(f_finer_all),1); 

70 save('check.mat') 

71  

72 % Dissipative Conical 

73 ai(:,non_0_values)=((x1i_expanded(:,non_0_values)./x0i_expanded(:,no

n_0_values)).*cosh_statement… 

74 -((1./(Qi(:,non_0_values).*x1i_expanded(:,non_0_values))).* 

sinh_statement)); 

75 bi(:,non_0_values)=((x0i_expanded(:,non_0_values)./x1i_expanded(:,no

n_0_values)).*Zci(non_0_values,:)'.*… 

76 sinh_statement); 

77 ci(:,non_0_values)=((1./Zci(non_0_values,:))'.*(((x1i_expanded(:,non

_0_values)./x0i_expanded(:,non_0_values))… 

78 -((1./(Qi(:,non_0_values).*x0i_expanded(:,non_0_values))).^2)).* 

sinh_statement… 

79 +((Qi(:,non_0_values).*Li_expanded(:,non_0_values))./((Qi(:,non_0_va

lues).*… 

80 x0i_expanded(:,non_0_values)).^2)).*cosh_statement)); 

81 di(:,non_0_values)=(x0i_expanded(:,non_0_values)./x1i_expanded(:,non

_0_values)).*((cosh_statement… 

82 +((1./(Qi(:,non_0_values).*x0i_expanded(:,non_0_values))).*sinh_stat

ement))); 

83   

84 ai_col=ai.'; bi_col=bi.'; ci_col=ci.'; di_col=di.'; 

85      

86 M=reshape([ai_col(:),ci_col(:),bi_col(:),di_col(:)],length(target_ra

dius_segments)-1,length(f_finer_all),2,2); 

87 prodH_no_mp=ndfun('mprod',permute(M,[3 4 1 2])); 

88   

89 prodH_cum=[mp_prodH_finer,prodH_no_mp]; 

90 prodH_cum2=reshape(prodH_cum,2,2,2,length(f_finer_all)); 

91 prodH=ndfun('mprod',prodH_cum2); 

92   

93   

94 % CALCULATE RADIATION IMPEDANCE 

95 radius_last=target_radius_segments(length(target_radius_segments));         

% radius of end 

96 z=k_finer*radius_last; 

97 % CAUSSE ET AL METHOD: 

98 dl=0.634-(0.1102*z)+(0.0018*(z.^2))-(0.00005*(z.^4.9)); % end 

correction 

99 R=((exp(-2)*(sqrt(pi*z))).*(1+(3/32)*(1./z.^2))); % reflection 

coefficient 

100 if z<1.5 

101  Zr_over_pc_plane=(((z.^2)/4)+(0.0127*z.^4)+(0.082*z.^4.*log(z)

 )-(0.023*z.^6)+(j.*((0.6133*z)… 

102  -(0.036*z.^3)+(0.034*z.^3.*log(z))-(0.0187*z.^5)))); 

103 elseif 1.5<z<3.5 

104  Zr_over_pc_plane=(j*tan((k_finer.*dl)+(0.5*j*log(R)))); 

105 end 

106   

107 Ap_last=pi*radius_last^2; % plane area 

108 As_last=(4*pi*radius_last^2)/2; % spherical area 

109 ZL_spherical=Zr_over_pc_plane*(Ap_last/As_last); % spherical 

radiation impedance 

110 ZL=ZL_spherical; 

111   

112 squeezed_prodH_11=squeeze(prodH(1,1,:)); 

113 squeezed_prodH_12=squeeze(prodH(1,2,:)); 

114 squeezed_prodH_21=squeeze(prodH(2,1,:)); 

115 squeezed_prodH_22=squeeze(prodH(2,2,:)); 

116   
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117 target_Zin=((squeezed_prodH_12'+squeezed_prodH_11'.*ZL)./… 

118 (squeezed_prodH_22'+squeezed_prodH_21'.*ZL))'; 

 

13.1.5 peakdet_vectorised.m function 

 

1 function [maxtab]=peakdet_vectorised(v,delta,increment) 
2 % PEAKDET_VECTORISED Detects peaks in a vector using a vectorised 

technique. maxtab is a matrix containing 

3 % the peak frequencies and magnitudes. A point is considered a max 

peak if it has the maximum value, and  

4 % follows a value lower by DELTA.  

5   
6 i=2:length(v)-1; 
7 freq_index=find(v(i-1)+delta<v(i) & v(i+1)+delta<v(i))+1; % finds 

frequency index 
8   
9 actual_freq=freq_index*increment; % finds actual freq at that index 

(accommodates freq increment) 
10 actual_magnitude=real(v(freq_index)); % finds magnitude at each peak 

frequency 
11 maxtab=[actual_freq,actual_magnitude]; % compiles freq and magnitude 

into maxtab 

 

13.1.6 new_for_gatool.m function 

 

1 function [weighted_sum_objective]=new_for_gatool(radius_input, f, 

maxf, increment, w, k, hor_L,… 

2 cylindrical_element_choice, conical_element_choice, no_variables, 

mp_prodH, mp_prodH_finer,... 

3 f_finer_all, finer_freq_inc, plus_minus_each_peak, target_Zin, 

orig_target_maxtab, speed_c,... 

4 rho, n, include_mouthpiece, geometry_section_marks, 

include_hor_pos_vars) 

5   

6 % This is the main fitness function file which the optimisation 

algorithm calls. The variables of the optimisation  

7 % are the spline knot vertical and horizontal position contained in 

radius_input.  

8   

9 % CHECK WHETHER CONICAL OR CYLINDRICAL SEGMENT 

10 % Different equations are used for cylindrical and conical segments 

and so the first step is to work out which of 

11 % the segments from the randomly generated individuals are which. 

12   

13 % Segments generated from spline: 

14 % Fit an interpolating parametric 'natural' cubic spline curve based 

on knot points defined above for lower and 

15 % upper bounds 

16   

17 % check for inclusion of horizontal position variables 

18 if include_hor_pos_vars==1 

19  no_spline_knots=length(geometry_section_marks); 

20     % then the horizontal positions of the spline knots are also 

 variables 

21      vert_knot_positions=radius_input(1:no_spline_knots); 

22  hor_knot_relative_positions=radius_input(no_spline_knots+1:end

 ); 
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23      geometry_section_marks(2:end-1)=geometry_section_marks(2:end-

 1)+hor_knot_relative_positions; 

24      spline_knot_positions=geometry_section_marks; 

25      % define the spline knots 

26  radius_input_points=[spline_knot_positions;radius_input(1: 

 no_spline_knots)]; 

27     % calculate the splines 

28  [radius_input_spline_points,radius_input_spline_T]=fnplt(cscvn

 (radius_input_points),'b',1); 

29 else 

30      spline_knot_positions=geometry_section_marks; 

31      % define the spline knots 

32      radius_input_points=[spline_knot_positions;radius_input]; 

33      % calculate the splines 

34  [radius_input_spline_points,radius_input_spline_T]=fnplt(cscvn

 (radius_input_points),'b',1); 

35 end 

36   

37 % remove duplicate points that occur at knot joints 

38 radius_input_spline_points_unique=consolidator(radius_input_spline_p

oints',[],[],1e-9)'; 

39   

40 % PLOT SPLINES TO FIGURE  

41 clf(1); 

42 set(0,'CurrentFigure',1); 

43 line(radius_input_spline_points_unique(1,:),radius_input_spline_poin

ts_unique(2,:)); 

44 line(radius_input_spline_points_unique(1,:),-

radius_input_spline_points_unique(2,:)); 

45 line(radius_input_points(1,:),radius_input_points(2,:),'LineStyle','

none','Marker','o','MarkerEdgeColor','r'); 

46 line(radius_input_points(1,:),-

radius_input_points(2,:),'LineStyle','none','Marker','o','MarkerEdge

Color','r'); 

47   

48 ylim([-0.06 0.06]); 

49 radius_input_segments=radius_input_spline_points_unique(2,:); 

50 no_segments=length(radius_input_segments); 

51   

52 radiusi=zeros(1,no_segments-1); 

53 Li=zeros(1,no_segments-1); 

54 x0i=zeros(1,no_segments-1); 

55 x1i=zeros(1,no_segments-1); 

56   

57 h=1:1:length(radius_input_segments)-1; 

58 r0i=radius_input_segments(h); 

59 r1i=radius_input_segments(h+1); 

60 r_diffi=r1i-r0i; 

61 find_non_zeros=find(r_diffi); % conical segment 

62 find_zeros=find(r_diffi==0); % cylindrical segment 

63   

64 % calculate hor_L which may change depending on position of knots 

65 hor_L=radius_input_spline_points_unique(1,2:end)-

radius_input_spline_points_unique(1,1:end-1); 

66   

67 no_non_zero=find(find_non_zeros>=0); % indices of main part (number 

of variables) 

68 no_zero=find(find_zeros>=0); 

69   

70 Li(find_non_zeros(no_non_zero))=sqrt((hor_L(no_non_zero).^2)+(r_diff

i(find_non_zeros(no_non_zero)).^2)); 

71 Li(find_zeros(no_zero))=hor_L(no_zero); 

72   
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73 radiusi(find_non_zeros)=(r0i(find_non_zeros)+r1i(find_non_zeros))/2; 

74 radiusi(find_zeros)=(r0i(find_zeros)+r1i(find_zeros))/2; 

75   

76 x0i(find_non_zeros)=(r0i(find_non_zeros).*Li(find_non_zeros))./r_dif

fi(find_non_zeros); 

77 x1i(find_non_zeros)=x0i(find_non_zeros)+Li(find_non_zeros); 

78   

79 Si=pi*radiusi.^2; 

80  

81 % CALCULATE INPUT IMPEDANCE FOR COARSE FREQUENCY INCREMENT 

82 % The input impedance is calculated using calc_Zin.m for the 

initially specified coarse frequency increment to get % an initial 

rough approximation of the impedance profile. This function returns 

the input impedance and also the % frequency and magnitude of the 

impedance peaks. 

83   

84 [Zin, orig_actual_maxtab]=calc_Zin(radius_input_segments, Si, 

increment, f, w, k, Li,… 

85 cylindrical_element_choice, conical_element_choice, x0i, x1i, 

mp_prodH, speed_c, rho, n,... 

86 include_mouthpiece); 

87   

88 %  INCLUDE FINER FREQUENCY RESOLUTION AROUND PEAKS 

89 % Once the rough approximation of the impedance profile has been 

found, the frequency resolution can be  

90 % refined to improve the accuracy. As we are primarily interested in 

the resonant frequencies of the air column, % this refinement if 

focussed around the located impedance peaks. A limit +/- the 

frequencies of the peaks is set % and a finer frequency increment 

used between these limits. Only doubling division factors work for 

this, e.g. 1Hz, 0.5Hz, 0.25Hz, 0.125Hz etc. 

91   

92 finer_freq_bounds=[orig_actual_maxtab(:,1)-

plus_minus_each_peak,orig_actual_maxtab(:,1)… 

93 +plus_minus_each_peak];  % frequencies corresponding to -/+ 

finer_freq_limit either side of the peak 

94   

95 for ii=1:length(orig_actual_maxtab(:,1)) % for each peak 

96  % for each peak list the finer frequencies to calculate for 

97  finer_freq(ii,:)=finer_freq_bounds(ii,1):finer_freq_inc:finer_

 freq_bounds(ii,2);  

98 end 

99   

100 finer_freq_size=size(finer_freq); 

101 finer_freq_reshaped=reshape(finer_freq,1,(finer_freq_size(1,1)*finer

_freq_size(1,2))); 

102   

103 f_finer=sort(finer_freq_reshaped); 

104 f_finer_within_logical=and(f_finer>0,f_finer<=maxf); 

105 f_finer=f_finer(f_finer_within_logical); 

106 f_finer=unique(f_finer); 

107   

108 % increment=finer_freq_inc; 

109 w_finer=2*pi*f_finer; 

110 k_finer=w_finer/speed_c; 

111   

112 % CALCULATE INPUT IMPEDANCE FOR FINER FREQUENCY INCREMENT 

113 % The input impedance is calculated again using calc_Zin_finer.m but 

only for the peaks +/- the specified  

114 % finer_freq_limit. This function returns just the input impedance 

magnitudes for the sections calculated. 

115   

116 Zin_finer=calc_Zin_finer(radius_input_segments, Si, f_finer, 
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f_finer_all, k_finer, w_finer, Li,... 

117 cylindrical_element_choice, conical_element_choice, x0i, x1i, 

mp_prodH_finer, speed_c, rho, n,... include_mouthpiece); 

118   

119 % COMBINE Zin AND Zin_finer 

120 % The coarse and finer impedance profiles are then combined and the 

final peak frequencies and magnitudes are % found using 

peakdet_vectorised.m. 

121   

122 Zin_incl_f=[f',Zin]; 

123 Zin_finer_incl_f=[f_finer',Zin_finer]; 

124 Zin_combined=cat(1,Zin_incl_f,Zin_finer_incl_f); 

125 Zin_combined_sorted=sortrows(Zin_combined); 

126 Zin_combined_sorted_unique=unique(Zin_combined_sorted,'rows'); 

127   

128 % LOCATE INPUT IMPEDANCE PEAK FREQUENCIES AND MAGNITUDES 

129 % The first argument is the vector to examine, and the second is the 

peak threshold.  

130 % The returned vector "maxtab" contains the peak points 

131 [actual_maxtab]=peakdet_vectorised_combined(Zin_combined_sorted_uniq

ue,750);      

132  

133 if isempty(actual_maxtab) 

134  actual_maxtab=[0,0]; 

135 end 

136 orig_actual_maxtab=actual_maxtab; 

137   

138 % CALCULATE DIFFERENCE BETWEEN TARGET AND ACTUAL INPUT IMPEDANCE 

CURVES 

139 % The fitness of this impedance profile is determined using 

calc_fitness.m by comparing it to the target profile.  

140 % This difference is found from a weighted sum of the difference in 

number of peaks, the mean difference  

141 % between the peak frequencies, and the mean difference between the 

peak magnitudes. 

142   

143 [weighted_sum_objective, individual_freq_difference, 

avg_freq_difference, individual_mag_difference,… 

144 avg_mag_difference]=calc_fitness(orig_target_maxtab, 

orig_actual_maxtab, target_Zin,... 

145 Zin_combined_sorted_unique);  

146  

147 % PLOT INPUT IMPEDANCE TO FIGURE 

148 clf(2); 

149 set(0,'CurrentFigure',2); 

150 line(f_finer_all,real(target_Zin),'Color','r'); 

151 line(Zin_combined_sorted_unique(:,1),real(Zin_combined_sorted_unique

(:,2)),'Color','b'); 

152 axis([0 max(f_finer_all) 0 max(real(target_Zin))]); 

 

13.1.7 calc_Zin.m function 

 

1 function [Zin, orig_actual_maxtab]=calc_Zin(radius_input, Si, 

increment, f, w, k, Li, … 

2 cylindrical_element_choice, conical_element_choice, x0i, x1i, 

mp_prodH, speed_c, rho, n, include_mouthpiece) 

3    

4 % CALCULATE TRANSMISSION MATRICES 

5 Z0i=(rho*speed_c)./Si; 

6 rvi=sqrt((rho*w'*Si)./(n*pi)); 
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7 k_expanded=repmat(k',1,length(radius_input)-1); 

8 Qi=k_expanded.*(((1.045./rvi)+(1.080./(rvi.^2))+(0.750./(rvi.^3)))+(

j*(1+(1.045./rvi)))); 

9 Z0i_expanded=repmat(Z0i',1,length(f)); 

10 Zci=Z0i_expanded.*(((1+(0.369./rvi'))+(-

j*((0.369./rvi')+(1.149./(rvi.^2)')+((0.303./(rvi.^3)')))))); 

11   

12 % Split up the cylindrical and conical segments: 

13 x_diffi=x1i-x0i; 

14 non_0_values=find(x_diffi); 

15 the_zeros=find(x_diffi==0); 

16 Li_expanded=repmat(Li,length(f),1); 

17   

18 x1i_expanded=repmat(x1i,length(f),1); 

19 x0i_expanded=repmat(x0i,length(f),1); 

20   

21 if (strcmp(cylindrical_element_choice,'Loss-free') || 

strcmp(conical_element_choice,'Loss-free')) 

22  % For loss-free element versions: 

23  sin_statement=(sin(k_expanded(:,non_0_values).*Li_expanded(:, 

 non_0_values))); 

24  cos_statement=(cos(k_expanded(:,non_0_values).*Li_expanded(:, 

 non_0_values))); 

25  sin_statement_zeros=(sin(k_expanded(:,the_zeros).* 

 Li_expanded(:,the_zeros))); 

26  cos_statement_zeros=(cos(k_expanded(:,the_zeros).* 

 Li_expanded(:,the_zeros))); 

27         

28      if strcmp(cylindrical_element_choice,'Loss-free') 

29   % Loss-free Cylindrical 

30          if isempty(the_zeros) 

31               ai(:,the_zeros)=[]; 

32               bi(:,the_zeros)=[]; 

33               ci(:,the_zeros)=[]; 

34               di(:,the_zeros)=[]; 

35          else 

36    ai(:,the_zeros)=cos_statement_zeros;           

   bi(:,the_zeros)=j.*Z0i_expanded(:,the_zeros).* 

   sin_statement_zeros; 

37    ci(:,the_zeros)=(j./Z0i_expanded(:,the_zeros)).* 

   sin_statement_zeros; 

38               di(:,the_zeros)=cos_statement_zeros; 

39          end 

40      end 

41      

42      if strcmp(conical_element_choice,'Loss-free') 

43   % Loss-free Conical 

44   ai(:,non_0_values)=((x1i_expanded(:,non_0_values). 

  /x0i_expanded(:,non_0_values)).*... 

45   cos_statement-((1./(k_expanded(:,non_0_values).*… 

46   x0i_expanded(:,non_0_values))).*sin_statement)); 

47   bi(:,non_0_values)=(x0i_expanded(:,non_0_values). 

  /x1i_expanded(:,non_0_values)).*j.*… 

48   Z0i_expanded(:,non_0_values).*sin_statement; 

49   ci(:,non_0_values)=(j./Z0i_expanded(:,non_0_values)).* 

  (((x1i_expanded(:,non_0_values)./… 

50   x0i_expanded(:,non_0_values))+((1./(k_expanded(:, 

  non_0_values).*… 

51   x0i_expanded(:,non_0_values))).^2)).*sin_statement... 

52   -(Li_expanded(:,non_0_values)./x0i_expanded(:, 

  non_0_values)).*… 

53   (1./(k_expanded(:,non_0_values).*x0i_expanded(:, 

  non_0_values))).*… 
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54   cos_statement); 

55   di(:,non_0_values)=(x0i_expanded(:,non_0_values). 

  /x1i_expanded(:,non_0_values)).*… 

56   (cos_statement+((1./(k_expanded(:,non_0_values).*… 

57   x0i_expanded(:,non_0_values))).*sin_statement)); 

58  end 

59 end 

60      

61 if (strcmp(cylindrical_element_choice,'Dissipative') || 

strcmp(conical_element_choice,'Dissipative')) 

62  % For dissipative element versions: 

63  sinh_statement=sinh(Qi(:,non_0_values).*Li_expanded(:, 

 non_0_values)); 

64  cosh_statement=cosh(Qi(:,non_0_values).*Li_expanded(:, 

 non_0_values)); 

65  sinh_statement_zeros=sinh(Qi(:,the_zeros).*Li_expanded(:, 

 the_zeros)); 

66  cosh_statement_zeros=cosh(Qi(:,the_zeros).*Li_expanded(:, 

 the_zeros)); 

67          

68  if strcmp(cylindrical_element_choice,'Dissipative') 

69   % Dissipative Cylindrical 

70   if isempty(the_zeros) 

71    ai(:,the_zeros)=[]; 

72    bi(:,the_zeros)=[]; 

73    ci(:,the_zeros)=[]; 

74    di(:,the_zeros)=[]; 

75             else 

76    ai(:,the_zeros)=cosh_statement_zeros; 

77    bi(:,the_zeros)=Zci(the_zeros,:)'.* 

   sinh_statement_zeros; 

78               ci(:,the_zeros)=(1./Zci(the_zeros,:))'.* 

   sinh_statement_zeros; 

79                  di(:,the_zeros)=cosh_statement_zeros; 

80              end 

81         end 

82  

83  if strcmp(conical_element_choice,'Dissipative') 

84   % Dissipative Conical 

85   ai(:,non_0_values)=((x1i_expanded(:,non_0_values)./ 

  x0i_expanded(:,non_0_values)).*… 

86   cosh_statement-((1./(Qi(:,non_0_values).* 

  x1i_expanded(:,non_0_values))).* sinh_statement)); 

87   bi(:,non_0_values)=((x0i_expanded(:,non_0_values)./ 

  x1i_expanded(:,non_0_values)).*… 

88   Zci(non_0_values,:)'.*sinh_statement); 

89   ci(:,non_0_values)=((1./Zci(non_0_values,:))'.* 

  (((x1i_expanded(:,non_0_values)./… 

90   x0i_expanded(:,non_0_values))-((1./(Qi(:, 

  non_0_values).*… 

91   x0i_expanded(:,non_0_values))).^2)).*sinh_statement… 

92   +((Qi(:,non_0_values).*Li_expanded(:,non_0_values))./ 

  ((Qi(:,non_0_values).*… 

93   x0i_expanded(:,non_0_values)).^2)).*cosh_statement));            

  di(:,non_0_values)=(x0i_expanded(:,non_0_values)./ 

  x1i_expanded(:,non_0_values)).*… 

94   ((cosh_statement+((1./(Qi(:,non_0_values).* 

  x0i_expanded(:,non_0_values))).*sinh_statement))); 

95  end 

96 end 

97   

98 ai_col=ai.'; bi_col=bi.'; ci_col=ci.'; di_col=di.'; 

99   
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100 M=reshape([ai_col(:),ci_col(:),bi_col(:),di_col(:)],length(radius_in

put)-1,length(f),2,2); 

101 prodH_no_mp=ndfun('mprod',permute(M,[3 4 1 2])); 

102   

103 include_mouthpiece=dlmread('include_mouthpiece.txt'); 

104   

105 % include_mouthpiece 

106 if include_mouthpiece==1 

107  prodH_cum=[mp_prodH,prodH_no_mp]; 

108  prodH_cum2=reshape(prodH_cum,2,2,2,length(f)); 

109  else if include_mouthpiece==0 

110   prodH_cum=[prodH_no_mp]; 

111          prodH_cum2=reshape(prodH_cum,2,2,1,length(f)); 

112    end 

113 end 

114   

115 prodH=ndfun('mprod',prodH_cum2); 

116   

117 % CALCULATE RADIATION IMPEDANCE 

118 radius_last=radius_input(end); % radius of end 

119 z=k*radius_last; 

120 % CAUSSE ET AL METHOD: 

121 dl=0.634-(0.1102*z)+(0.0018*(z.^2))-(0.00005*(z.^4.9)); % end 

correction 

122 R=((exp(-2)*(sqrt(pi*z))).*(1+(3/32)*(1./z.^2))); % reflection 

coefficient 

123 if z<1.5 

124  Zr_over_pc_plane=(((z.^2)/4)+(0.0127*z.^4)+ 

 (0.082*z.^4.*log(z))-(0.023*z.^6)+… 

125  (j.*((0.6133*z)-(0.036*z.^3)+(0.034*z.^3.*log(z))- 

 (0.0187*z.^5)))); 

126 elseif 1.5<z<3.5 

127  Zr_over_pc_plane=(j*tan((k.*dl)+(0.5*j*log(R)))); 

128 end 

129  

130 Ap_last=pi*radius_last^2; % plane area 

131 As_last=(4*pi*radius_last^2)/2; % spherical area 

132 ZL_spherical=Zr_over_pc_plane*(Ap_last/As_last); % spherical 

radiation impedance 

133 ZL=ZL_spherical; 

134   

135 squeezed_prodH_11=squeeze(prodH(1,1,:)); 

136 squeezed_prodH_12=squeeze(prodH(1,2,:)); 

137 squeezed_prodH_21=squeeze(prodH(2,1,:)); 

138 squeezed_prodH_22=squeeze(prodH(2,2,:)); 

139   

140 Zin=(((squeezed_prodH_12'+squeezed_prodH_11'.*ZL)./(squeezed_prodH_2

2'+squeezed_prodH_21'.*ZL)))'; 

141   

142 % LOCATE INPUT IMPEDANCE PEAK FREQUENCIES AND MAGNITUDES 

143 % The first argument is the vector to examine, and the second is the 

peak threshold.  

144 % The returned vector "maxtab" contains the peak points 

145 [actual_maxtab]=peakdet_vectorised(Zin,100,increment);      

146 if isempty(actual_maxtab) 

147  actual_maxtab=[0,0]; 

148 end 

149 orig_actual_maxtab=actual_maxtab; 
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13.1.8 calc_Zin_finer.m function 

 

1 function [Zin_finer]=calc_Zin_finer(radius_input, Si, f_finer, 

f_finer_all, k_finer, w_finer, Li,... 

2 cylindrical_element_choice, conical_element_choice, x0i, x1i, 

mp_prodH_finer, speed_c, rho, n,... 

3 include_mouthpiece) 

4   

5 % CALCULATE TRANSMISSION MATRICES 

6 Z0i=(rho*speed_c)./Si; 

7 rvi=sqrt((rho*w_finer'*Si)./(n*pi)); 

8 k_expanded=repmat(k_finer',1,length(radius_input)-1); 

9 Qi=k_expanded.*(((1.045./rvi)+(1.080./(rvi.^2))+(0.750./(rvi.^3)))+(

j*(1+(1.045./rvi)))); 

10 Z0i_expanded=repmat(Z0i',1,length(f_finer)); 

11 Zci=Z0i_expanded.*(((1+(0.369./rvi'))+(-

j*((0.369./rvi')+(1.149./(rvi.^2)')+((0.303./(rvi.^3)')))))); 

12   

13 % SPLIT UP CYLINDRICAL AND CONICAL SEGMENTS 

14 x_diffi=x1i-x0i; 

15 non_0_values=find(x_diffi); 

16 the_zeros=find(x_diffi==0); 

17 Li_expanded=repmat(Li,length(f_finer),1); 

18   

19 x1i_expanded=repmat(x1i,length(f_finer),1); 

20 x0i_expanded=repmat(x0i,length(f_finer),1); 

21   

22 if (strcmp(cylindrical_element_choice,'Loss-free') || 

strcmp(conical_element_choice,'Loss-free')) 

23  % For loss-free element versions: 

24      sin_statement=(sin(k_expanded(:,non_0_values).* 

 Li_expanded(:,non_0_values))); 

25   cos_statement=(cos(k_expanded(:,non_0_values).* 

 Li_expanded(:,non_0_values))); 

26      sin_statement_zeros=(sin(k_expanded(:,the_zeros).* 

 Li_expanded(:,the_zeros))); 

27      cos_statement_zeros=(cos(k_expanded(:,the_zeros).* 

 Li_expanded(:,the_zeros))); 

28   

29  if strcmp(cylindrical_element_choice,'Loss-free') 

30   % Loss-free Cylindrical 

31         if isempty(the_zeros) 

32    ai(:,the_zeros)=[]; 

33               bi(:,the_zeros)=[]; 

34               ci(:,the_zeros)=[]; 

35               di(:,the_zeros)=[]; 

36          else 

37              ai(:,the_zeros)=cos_statement_zeros; 

38               bi(:,the_zeros)=j.*Z0i_expanded(:,the_zeros).* 

   sin_statement_zeros; 

39               ci(:,the_zeros)=(j./Z0i_expanded(:,the_zeros)).* 

   sin_statement_zeros; 

40               di(:,the_zeros)=cos_statement_zeros; 

41          end 

42      end 

43      

44     if strcmp(conical_element_choice,'Loss-free') 

45   % Loss-free Conical 

46   ai(:,non_0_values)=((x1i_expanded(:,non_0_values)./ 

  x0i_expanded(:,non_0_values)).*… 

47   cos_statement-((1./(k_expanded(:,non_0_values).*… 

48   x0i_expanded(:,non_0_values))).*sin_statement));   
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49   bi(:,non_0_values)=(x0i_expanded(:,non_0_values)./ 

  x1i_expanded(:,non_0_values)).*j.*… 

50   Z0i_expanded(:,non_0_values).*sin_statement; 

51   ci(:,non_0_values)=(j./Z0i_expanded(:,non_0_values)).* 

  (((x1i_expanded(:,non_0_values)./… 

52   x0i_expanded(:,non_0_values))+((1./(k_expanded(:, 

  non_0_values).*… 

53   x0i_expanded(:,non_0_values))).^2)).*sin_statement… 

54   -(Li_expanded(:,non_0_values)./x0i_expanded(:, 

  non_0_values)).*… 

55   (1./(k_expanded(:,non_0_values).*x0i_expanded(:, 

  non_0_values))).*cos_statement); 

56   di(:,non_0_values)=(x0i_expanded(:,non_0_values)./ 

  x1i_expanded(:,non_0_values)).*… 

57   (cos_statement+((1./(k_expanded(:,non_0_values).*… 

58   x0i_expanded(:,non_0_values))).*sin_statement)); 

59      end 

60 end 

61   

62 if (strcmp(cylindrical_element_choice,'Dissipative') || 

strcmp(conical_element_choice,'Dissipative')) 

63  % For dissipative element versions: 

64  sinh_statement=sinh(Qi(:,non_0_values).*Li_expanded(:, 

 non_0_values)); 

65  cosh_statement=cosh(Qi(:,non_0_values).*Li_expanded(:, 

 non_0_values)); 

66  sinh_statement_zeros=sinh(Qi(:,the_zeros).*Li_expanded(:, 

 the_zeros)); 

67  cosh_statement_zeros=cosh(Qi(:,the_zeros).*Li_expanded(:, 

 the_zeros)); 

68          

69  if strcmp(cylindrical_element_choice,'Dissipative') 

70   % Dissipative Cylindrical 

71              if isempty(the_zeros) 

72    ai(:,the_zeros)=[]; 

73                  bi(:,the_zeros)=[]; 

74                  ci(:,the_zeros)=[]; 

75                  di(:,the_zeros)=[]; 

76              else 

77                  ai(:,the_zeros)=cosh_statement_zeros; 

78                  bi(:,the_zeros)=Zci(the_zeros,:)'.* 

   sinh_statement_zeros; 

79                  ci(:,the_zeros)=(1./Zci(the_zeros,:))'.* 

   sinh_statement_zeros; 

80                  di(:,the_zeros)=cosh_statement_zeros; 

81              end 

82         end 

83          

84         if strcmp(conical_element_choice,'Dissipative')            

85   % Dissipative Conical 

86   ai(:,non_0_values)=((x1i_expanded(:,non_0_values)./ 

  x0i_expanded(:,non_0_values)).*… 

87   cosh_statement-((1./(Qi(:,non_0_values).*… 

88   x1i_expanded(:,non_0_values))).*sinh_statement)); 

89   bi(:,non_0_values)=((x0i_expanded(:,non_0_values)./ 

  x1i_expanded(:,non_0_values)).*… 

90   Zci(non_0_values,:)'.*sinh_statement); 

91   ci(:,non_0_values)=((1./Zci(non_0_values,:))'.* 

  (((x1i_expanded(:,non_0_values)./… 

92   x0i_expanded(:,non_0_values))-((1./(Qi(:, 

  non_0_values).*… 

93   x0i_expanded(:,non_0_values))).^2)).* 

  sinh_statement+((Qi(:,non_0_values).*… 
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94   Li_expanded(:,non_0_values))./((Qi(:,non_0_values).*… 

95   x0i_expanded(:,non_0_values)).^2)).*cosh_statement)); 

96   di(:,non_0_values)=(x0i_expanded(:,non_0_values)./ 

  x1i_expanded(:,non_0_values)).*… 

97   ((cosh_statement+((1./(Qi(:,non_0_values).* 

  x0i_expanded(:,non_0_values))).*sinh_statement))); 

98  end 

99 end 

100   

101 ai_col=ai.'; bi_col=bi.'; ci_col=ci.'; di_col=di.'; 

102   

103 M=reshape([ai_col(:),ci_col(:),bi_col(:),di_col(:)],length(radius_in

put)-1,length(f_finer),2,2); 

104 prodH_no_mp=ndfun('mprod',permute(M,[3 4 1 2])); 

105  

106 if include_mouthpiece==1 

107  [found,index]=ismember(f_finer,f_finer_all); 

108  % pulls out the relevant frequencies from mp_prodH_finer which 

 are they used to create prodH to include the bore 

109      prodH_cum=[mp_prodH_finer(:,:,index),prodH_no_mp];    

110  prodH_cum2=reshape(prodH_cum,2,2,2,length(f_finer)); 

111  else if include_mouthpiece==0 

112   prodH_cum2=reshape(prodH_no_mp,2,2,1,length(f_finer)); 

113      end 

114 end 

115   

116 prodH=ndfun('mprod',prodH_cum2); 

117    

118 % CALCULATE RADIATION IMPEDANCE 

119 radius_last=radius_input(end); % radius of end 

120 z=k_finer*radius_last; 

121 % CAUSSE ET AL METHOD: 

122 dl=0.634-(0.1102*z)+(0.0018*(z.^2))-(0.00005*(z.^4.9)); % end 

correction 

123 R=((exp(-2)*(sqrt(pi*z))).*(1+(3/32)*(1./z.^2))); % reflection 

coefficient 

124 if z<1.5 

125  Zr_over_pc_plane=(((z.^2)/4)+(0.0127*z.^4)+ 

 (0.082*z.^4.*log(z))-(0.023*z.^6)+… 

126  (j.*((0.6133*z)-(0.036*z.^3)+(0.034*z.^3.*log(z))- 

 (0.0187*z.^5)))); 

127 elseif 1.5<z<3.5 

128      Zr_over_pc_plane=(j*tan((k_finer.*dl)+(0.5*j*log(R)))); 

129 end 

130   

131 Ap_last=pi*radius_last^2; % plane area 

132 As_last=(4*pi*radius_last^2)/2; % spherical area 

133 ZL_spherical=Zr_over_pc_plane*(Ap_last/As_last); % spherical 

radiation impedance 

134 ZL=ZL_spherical; 

135   

136 squeezed_prodH_11=squeeze(prodH(1,1,:)); 

137 squeezed_prodH_12=squeeze(prodH(1,2,:)); 

138 squeezed_prodH_21=squeeze(prodH(2,1,:)); 

139 squeezed_prodH_22=squeeze(prodH(2,2,:)); 

140   

141 Zin_finer=(((squeezed_prodH_12'+squeezed_prodH_11'.*ZL)./… 

142 (squeezed_prodH_22'+squeezed_prodH_21'.*ZL)))'; 
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13.1.9 peakdet_vectorised_combined.m function 

 

1 function [maxtab]=peakdet_vectorised_combined( 

Zin_combined_sorted_unique,delta) 

2 % PEAKDET_VECTORISED Detects peaks in a vector using a vectorised 

technique. maxtab is a matrix containing 

3 % the peak frequencies and magnitudes. A point is considered a max 

peak if it has the maximum value, and  

4 % follows a value lower by DELTA.  

5   

6 i=2:length(v)-1; 

7 freq_index=find(v(i-1)+delta<v(i) & v(i+1)+delta<v(i))+1; % finds 

frequency index 

8 combined_f=Zin_combined_sorted_unique(:,1); 

9 actual_freq=combined_f(freq_index); 

10 actual_magnitude=real(v(freq_index)); % finds magnitude at each peak 

frequency 

11 maxtab=[actual_freq,actual_magnitude]; % compiles freq and magnitude 

into maxtab 

 
 

13.1.10 calc_fitness.m function 

 

1 function [weighted_sum_objective, individual_freq_difference, 

avg_freq_difference, individual_mag_difference,… 

2 avg_mag_difference]=calc_fitness(orig_target_maxtab, 

orig_actual_maxtab, target_Zin, Zin_combined_sorted_unique) 

3  

4 % CALCULATE DIFFERENCE BETWEEN TARGET AND ACTUAL INPUT IMPEDANCE 

CURVES 

5 target_maxtab=orig_target_maxtab; 

6 size_target_maxtab=size(target_maxtab); % Get size of target data 

7 no_target_peaks=size_target_maxtab(1,1); % Counts the number of 

peaks 

8   

9 % PART 1: find difference between number of peaks 

10 actual_maxtab=orig_actual_maxtab; 

11 size_actual_maxtab=size(actual_maxtab); 

12 no_actual_peaks=size_actual_maxtab(1,1); 

13   

14 no_peaks_difference=abs(no_target_peaks-no_actual_peaks);  % 

difference between actual and target 

15   

16 % PART 2: find difference between peak frequencies (i.e. their 

position) 

17 while no_actual_peaks<no_target_peaks 

18  no_peaks_difference=abs(no_target_peaks-no_actual_peaks); % 

 difference between actual and target 

19      actual_maxtab((no_target_peaks-no_peaks_difference)+1,1)=0; 

20      size_actual_maxtab=size(actual_maxtab); 

21      no_actual_peaks=size_actual_maxtab(1,1); 

22 end 

23   

24 while no_actual_peaks>no_target_peaks 

25      no_peaks_difference=abs(no_target_peaks-no_actual_peaks); 

26      target_maxtab((no_actual_peaks-no_peaks_difference)+1,1)=0; 

27     size_target_maxtab=size(target_maxtab);    

28      no_target_peaks=size_target_maxtab(1,1); 

29 end 
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30   

31 individual_freq_difference=abs(abs(target_maxtab(:,1))-

abs(actual_maxtab(:,1))); 

32 avg_freq_difference=mean(individual_freq_difference); 

33   

34 % PART 3: find difference between peak magnitudes 

35 individual_mag_difference=abs(abs(target_maxtab(:,2))-

abs(actual_maxtab(:,2))); 

36 avg_mag_difference=mean(individual_mag_difference)/10000000; % 

/1000000 brings values into similar  

37 % magnitude as frequency 

38   

39 % WEIGHTED SUM OF ABOVE PARTS 

40 weighted_sum_objective=mean(no_peaks_difference+avg_freq_difference+

avg_mag_difference); 

 

13.1.11 calc_final_Zin.m function 

 

1 function [final_Zin, final_actual_maxtab]=calc_final_Zin(run_type, 

x, f, maxf, increment, w, k, hor_L, ... 

2  no_variables, cylindrical_element_choice, conical_element_choice, 

mp_prodH, mp_prodH_finer,... 

3 f_finer_all, finer_freq_inc, speed_c, rho, n, include_mouthpiece, 

geometry_section_marks, include_hor_pos_vars) 

4  

5 % CALCULATE FINAL INDIVIDUAL INPUT IMPEDANCE 

6 radius_input=x; 

7   

8 if strcmp(run_type,'Optimise') 

9  % check for inclusion of horizontal position variables 

10  if include_hor_pos_vars==1 

11   no_spline_knots=length(geometry_section_marks); 

12       % then the horizontal positions of the spline knots are 

  also variables 

13    vert_knot_positions=radius_input(1:no_spline_knots); 

14       hor_knot_relative_positions=radius_input( 

  no_spline_knots+1:end); 

15       geometry_section_marks(2:end-1)= 

  geometry_section_marks(2:end-1)+ 

  hor_knot_relative_positions; 

16       spline_knot_positions=geometry_section_marks; 

17      % define the spline knots 

18       radius_input_points=[spline_knot_positions; 

  radius_input(1:no_spline_knots)]; 

19       % calculate the splines 

20       [radius_input_spline_points,radius_input_spline_T]= 

  fnplt(cscvn(radius_input_points),'b',1); 

21  else 

22       spline_knot_positions=geometry_section_marks; 

23       % define the spline knots 

24       radius_input_points=[spline_knot_positions; 

  radius_input]; 

25       % calculate the splines 

26       [radius_input_spline_points,radius_input_spline_T]= 

  fnplt(cscvn(radius_input_points),'b',1); 

27  end 

28   

29  % remove duplicate points that occur at knot joints 

30  radius_input_spline_points_unique=consolidator( 

 radius_input_spline_points',[],[],1e-9)'; 
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31  radius_input_segments=radius_input_spline_points_unique(2,:); 

32   

33  % calculate hor_L which may change depending on position of 

 knots 

34  hor_L=radius_input_spline_points_unique(1,2:end)-

 radius_input_spline_points_unique(1,1:end-1); 

35 else 

36  radius_input_segments=x; 

37 end 

38   

39 % CHECK WHETHER CONICAL OR CYLINDRICAL SEGMENT 

40 h=1:1:length(radius_input_segments)-1; 

41 r0i=radius_input_segments(h); 

42 r1i=radius_input_segments(h+1); 

43 r_diffi=r1i-r0i; 

44 find_non_zeros=find(r_diffi);  % conical segment 

45 find_zeros=find(r_diffi==0);   % cylindrical segment 

46   

47 no_segments=length(radius_input_segments); 

48 Li=zeros(1,no_segments-1); 

49   

50 no_non_zero=find(find_non_zeros>=0); % indices of main part (number 

of variables) 

51 no_zero=find(find_zeros>=0); 

52   

53 Li(find_non_zeros(no_non_zero))=sqrt((hor_L(no_non_zero).^2)+(r_diff

i(find_non_zeros(no_non_zero)).^2)); 

54 Li(find_zeros(no_zero))=hor_L(no_zero); 

55   

56 radiusi(find_non_zeros)=(r0i(find_non_zeros)+r1i(find_non_zeros))/2; 

57 radiusi(find_zeros)=(r0i(find_zeros)+r1i(find_zeros))/2; 

58   

59 x0i(find_non_zeros)=(r0i(find_non_zeros).*Li(find_non_zeros))./r_dif

fi(find_non_zeros);  

60 x1i(find_non_zeros)=x0i(find_non_zeros)+Li(find_non_zeros); 

61   

62 Si=pi*radiusi.^2; 

63   

64 if strcmp(run_type,'optimise') 

65  [Zin, orig_actual_maxtab]=calc_Zin(radius_input_segments, Si, 

 increment, f, w, k, Li,... 

66  cylindrical_element_choice, conical_element_choice, x0i, x1i, 

 mp_prodH, speed_c, rho, n,... 

67   include_mouthpiece); % Calculate input impedance for coarse 

 frequency 

68   

69      % INCLUDE FINER FREQUENCY RESOLUTION AROUND PEAKS 

70      finer_freq_limit=5; % This should be made to be the same as 

 that chosen from the GUI 

71      finer_freq_bounds=[orig_actual_maxtab(:,1)-    

72  finer_freq_limit,orig_actual_maxtab(:,1)+finer_freq_limit]; 

73      for ii=1:length(orig_actual_maxtab(:,1)) 

74       finer_freq(ii,:)=finer_freq_bounds(ii,1): 

  finer_freq_inc:finer_freq_bounds(ii,2); 

75      end 

76   

77      finer_freq_size=size(finer_freq); 

78      finer_freq_reshaped=reshape(finer_freq,1,( 

 finer_freq_size(1,1)*finer_freq_size(1,2))); 

79      f_finer=sort(finer_freq_reshaped); 

80      f_finer_within_logical=and(f_finer>0,f_finer<=maxf); 

81      f_finer=f_finer(f_finer_within_logical); 

82     f_finer=unique(f_finer); 
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83      

84      w_finer=2*pi*f_finer; 

85      k_finer=w_finer/speed_c; 

86   

87      Zin_finer=calc_Zin_finer(radius_input_segments, Si, f_finer, 

 f_finer_all, k_finer, w_finer, Li,... 

88  cylindrical_element_choice, conical_element_choice, x0i, x1i, 

 mp_prodH_finer, speed_c, rho, n,  include_mouthpiece); 

89      

90  else if strcmp(run_type,'calculate') 

91   increment=1; 

92   

93   f_finer=increment:increment:maxf; 

94   w_finer=2*pi*f_finer; 

95   k_finer=w_finer/speed_c; 

96   

97   [final_Zin, final_actual_maxtab]=calc_Zin(radius_input, 

  Si,increment, f_finer, w_finer, k_finer, Li,... 

98   cylindrical_element_choice, conical_element_choice,  

  x0i, x1i, mp_prodH_finer, speed_c, rho, n,   

  include_mouthpiece); 

99                

100         final_Zin=[f_finer',final_Zin]; 

101  end 

102 end 

103     

104 if strcmp(run_type,'optimise') 

105  % COMBINE Zin AND Zin_finer 

106      Zin_incl_f=[f',Zin]; 

107      Zin_finer_incl_f=[f_finer', Zin_finer]; 

108     Zin_combined=cat(1,Zin_incl_f, Zin_finer_incl_f); 

109      Zin_combined_sorted=sortrows(Zin_combined); 

110      Zin_combined_sorted_unique=unique(Zin_combined_sorted,'rows'); 

111      final_Zin=Zin_combined_sorted_unique; 

112   

113      % LOCATE INPUT IMPEDANCE PEAK FREQUENCIES AND MAGNITUDES 

114  % The first argument is the vector to examine, and the second 

 is the peak threshold.  

115  % The returned vector "maxtab" contains the peak points 

116      [actual_maxtab]=peakdet_vectorised_combined(final_Zin,200);     

117  if isempty(actual_maxtab) 

118   actual_maxtab=[0,0]; 

119      end 

120      

121  final_actual_maxtab=actual_maxtab; 

122 end 

     
  

13.1.12 plot_results_2.m 

 

1 function [actual_radius_plot]=plot_results_2(x, fval, time_taken, 

f_finer_all, maxf, hor_L, hor_L_for_mp,... 

2 no_variables, mp_radius, target_Zin, orig_target_maxtab, final_Zin, 

final_actual_maxtab, algorithm,... 

3 include_mouthpiece, geometry_section_marks, include_hor_pos_vars) 

4   

5 % PLOT RESULTS 

6 figure(10) % Create figure window 

7 clf(10) 

8 % Create target and actual input impedance profile plot 
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9 subplot(3,1,1) 

10 box('on'); grid('on'); hold('all'); 

11   

12 plot(f_finer_all,real(target_Zin),'r-'); 

13 plot(final_Zin(:,1),real(final_Zin(:,2)),'g-'); 

14      

15 plot(orig_target_maxtab(find(orig_target_maxtab(:,1)<=maxf),1),… 

16 orig_target_maxtab(find(orig_target_maxtab(:,1)<=maxf),2),'r*'); 

17 plot(final_actual_maxtab(:,1),final_actual_maxtab(:,2),'g*'); 

18 xlabel('Frequency, f (Hz)'); ylabel('MAGNITUDE');  

19 legend('target','actual'); 

20      

21 % check for inclusion of horizontal position variables 

22 if include_hor_pos_vars==1 

23  no_spline_knots=length(geometry_section_marks) 

24  % then the horizontal positions of the spline knots are also 

 variables 

25      vert_knot_positions=x(1:no_spline_knots) 

26      hor_knot_relative_positions=x(no_spline_knots+1:end) 

27      geometry_section_marks(2:end-1)=geometry_section_marks(2: 

 end-1)+hor_knot_relative_positions 

28      spline_knot_positions=geometry_section_marks 

29      % define the spline knots 

30      radius_input_points=[spline_knot_positions;x(1: 

 no_spline_knots)] 

31      % calculate the splines 

32      [radius_input_spline_points,radius_input_spline_T]= 

 fnplt(cscvn(radius_input_points),'b',1); 

33 else 

34      spline_knot_positions=geometry_section_marks 

35      % define the spline knots 

36      radius_input_points=[spline_knot_positions;x] 

37      % calculate the splines 

38      [radius_input_spline_points,radius_input_spline_T]= 

 fnplt(cscvn(radius_input_points),'b',1); 

39 end 

40   

41 % remove duplicate points that occur at knot joints 

42 radius_input_spline_points_unique=consolidator(radius_input_spline_p

oints',[],[],1e-9)'; 

43   

44 % calculate hor_L which may change depending on position of knots 

45 hor_L=radius_input_spline_points_unique(1,2:end)-

radius_input_spline_points_unique(1,1:end-1) 

46  

47 L_plot(1)=0; 

48 L_plot(2:length(hor_L)+1)=cumsum(hor_L); 

49   

50 if include_mouthpiece==1 

51  L_plot_just_mp=hor_L_for_mp*(0:1:length(mp_radius)-1); 

52      last_of_hor_L_for_mp=L_plot_just_mp(length(L_plot_just_mp)); 

53      L_plot_for_actual=[L_plot_just_mp,last_of_hor_L_for_mp+ 

 L_plot]; 

54  

55   actual_radius_plot=radius_input_spline_points_unique(2,:); 

56      actual_radius_plot_incl_mp=[mp_radius, 

 radius_input_spline_points_unique(2,:)]; 

57  else if include_mouthpiece==0 

58   L_plot_for_actual=L_plot; 

59          actual_radius_plot= 

  radius_input_spline_points_unique(2,:); 

60   actual_radius_plot_incl_mp= 

  radius_input_spline_points_unique(2,:);  
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61   % doesn't actually include mouthpiece here, just kept 

  same variable name for compatibility  

62   % with rest of the code 

63      end 

64 end 

65   

66 % Create actual geometry plot 

67 subplot(3,1,2) 

68 box('on'); grid('on'); hold('all'); 

69 plot(L_plot_for_actual,actual_radius_plot_incl_mp,'b-'); 

70 plot(L_plot_for_actual,-actual_radius_plot_incl_mp,'b-'); 

71 axis([0 L_plot_for_actual(end) -0.1 0.1]) 

72 ylabel('Radius (m)'); % Create ylabel 

73 xlabel('Distance from mouthpiece end (m)'); % Create xlabel 

74 title('Actual Geometry') 

75      

76 x_coords=L_plot;         

77 % doesn't include mouthpiece as this would not have its wall 

thickness optimised - the mp coords if needed can be exported 

separately 

78 y_coords=actual_radius_plot; 

79 no_coords=length(x); 

80      

81 % Save data to file (1st to C:\ folder then 2nd to relative folder) 

82 mkdir(date) % create relative folder to save files into 

83      

84 file_id1=fopen('C:\x.txt','w'); 

85 fprintf(file_id1,'%1.3f ',x_coords); fclose(file_id1); 

86      

87 filename_string_x=strcat(date,'\',datestr(now),' x.txt'); 

88 filename_string_x=strrep(filename_string_x,':','_'); 

89 file_id1b=fopen(filename_string_x,'w'); 

90 fprintf(file_id1b,'%1.3f ',x_coords); fclose(file_id1b); 

91      

92 file_id2=fopen('C:\y.txt','w'); 

93 fprintf(file_id2,'%10.10f ',y_coords); fclose(file_id2); 

94      

95 filename_string_y=strcat(date,'\',datestr(now),' y.txt'); 

96 filename_string_y=strrep(filename_string_y,':','_'); 

97 file_id2b=fopen(filename_string_y,'w'); 

98 fprintf(file_id2b,'%10.10f ',y_coords); 

99 fclose(file_id2b); 

100      

101 file_id3 = fopen('C:\modal_limits_all.txt','w'); 

102      

103 % Save all peak frequencies to file 

104 for q=1:length(final_actual_maxtab) 

105  fprintf(file_id3,'Mode %1.0f = %3.1f, ',q, 

 final_actual_maxtab(q)); 

106 end 

107 fclose(file_id3); 

108      

109 filename_string_modal=strcat(date,'\',datestr(now),' 

modal_limits.txt'); 

110 filename_string_modal=strrep(filename_string_modal,':','_'); 

111 file_id3b = fopen(filename_string_modal,'w'); 

112 % currently uses only first input impedance peak 

113 fprintf(file_id3b,'lower_bound = %3.0f, ',(final_actual_maxtab(1)-

1)); 

114 fprintf(file_id3b,'upper_bound = %3.0f',(final_actual_maxtab(1)+1)); 

115 fclose(file_id3b); 

116      

117 file_id4=fopen('C:\no_coords.txt','w'); 
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118 fprintf(file_id4,'%10.0f ',no_coords); fclose(file_id4); 

119      

120 filename_string_coords=strcat(date,'\',datestr(now),'no_coords.txt')

; 

121 filename_string_coords=strrep(filename_string_coords,':','_'); 

122 file_id4b=fopen(filename_string_coords,'w'); 

123 fprintf(file_id4b,'%10.0f ',no_coords); fclose(file_id4b); 

124      

125 subplot(3,1,3);  

126 axis([0 10 0 10]) 

127 text(1,5,sprintf('RUN DETAILS:\noptimisation method: %s\nfitness 

value: %2.3f\ntime taken: %2.0f… 

128 mins',char(algorithm),fval,time_taken)); 

129   

130 % SAVE PLOTS TO FILE 

131 filename_string_results_plot=strcat(date,'\',datestr(now),' 

Optimisation results'); 

132 filename_string_results_plot=strrep(filename_string_results_plot,':'

,'_'); 

133 saveas(10,filename_string_results_plot,'fig') 
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13.2 MSC Nastran input deck for structural optimisation 

This appendix contains the FEA input files used for the structural optimisation 

investigation, specifically that for the free vibration analysis, the forced vibration 

analysis with independent variables, and the forced vibration analysis with spline 

linked variables. 

 The bulk data has not been included in its entirety due to the number of lines, but a 

representative segment for each important section has been included. Brief 

descriptions of the function of each line are written in green but further details can 

be found in the quick reference guide for the MSC Nastran software. 

13.2.1 Free vibration independent variables input deck file 

 
SOL 200 $ Specifies Design Sensitivity and Optimization Analysis solution sequence 
$ Direct Text Input for Executive Control 
CEND $ Designates the end of the Executive Control section 
ECHO = NONE $ Neither sorted nor unsorted Bulk Data will be printed 
MAXLINES = 999999999 $ Sets the maximum number of output lines 
DESOBJ(MIN) = 1 $ Selects the DRESP entry to be used as the design objective (minimise). 
ANALYSIS = MODES $ Specifies the type of analysis being performed 
SUBCASE 1 
$ Subcase name : modal_subcase 
   METHOD = 1 $ Selects eigenvalue extraction method 
   SPC = 2 $ Selects a single point constraint set (DOF BCs) to be applied. 
   BC = 2 $ Identifies multiple boundary conditions for normal modes 
   VECTOR(SORT1,REAL)=ALL $ Displacement output request 
   SPCFORCES(SORT1,REAL)=ALL $ Reaction forces output request 
   DESSUB = 2 $ Selects the design constraint set 
$ Direct Text Input for Bulk Data 
BEGIN BULK $ Designates the end of the Case Control Section and/or the beginning of a Bulk Data Section. 
PARAM    POST     -1 $ Specifies that the output should be in .op2 database form. 
PARAM   COUPMASS  1 $ Specifies the generation of coupled rather than lumped mass 
PARAM   PRTMAXIM  YES $ Specifies the output of maximums of applied loads, single-point forces of constraint, 

multi-point forces of constraint, and displacements. 
$ Defines data required to perform real eigenvalue analysis with the Lanczos method. There are 14 eigenvalues required here 
which correspond to the modes in the DRESP and DCONSTR entries. 
EIGRL 1   14 0   MASS  

$ Shell Elements and Element Properties 

$ Defines the membrane, bending, transverse shear, and coupling properties of thin shell elements. The real value in the entry is 
the shell thickness. 
PSHELL 1 1 .001 1 1     

$ Defines a curved quadrilateral shell or plane strain element with 8 grid points. 
CQUAD8 1 1 4 16 1 2 33 32  

 17 18        

CQUAD8 2 1 5 15 16 4 34 31  
 33 19        

$ ...etc. for all other similar elements. 
$ Beam Elements and Element Properties 

PBARL 61 1  ROD      

 .0025         

CBAR 39319 61 47135 20361 1. 0. 0.   
$ ...etc. for all other braces 
$ Defines the material properties for linear isotropic materials, in this case for brass. The 1st integer is the material ID number. 
MAT1 1 .12+11           .35      8500.     
$ Defines the location of a geometric grid point (node), the directions of its displacement, and its permanent single-point 
constraints of the entire model. 
GRID 1 .937999 -.008005 -.046186      
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GRID 2 .937     -.007998 -.046184      

GRID 3 .937     -.001403 -.051345      
$ ...etc. for all other nodes 
$ Loads 

SPCADD          2 1 
$ Defines a single-point constraint set as a union of single-point constraint sets defined 
on SPC or SPC1 entries. 

$ Defines a set of single-point constraints (DOF BCs) 
SPC1 1 123456   1 THRU 532     
SPC1 1 123456   4565 THRU 4573     

SPC1 1 123456   4575 THRU 4600     

$ ...etc. for all other DOF BCs. 
$ ...DESIGN VARIABLE DEFINITION 
$ Defines a design variable for design optimisation. The 4th to 6th entry in this line are the initial value, the lower bound, and 
the upper bound respectively. 
DESVAR 1 var1:1 1.0 0.3 5. .5    

DESVAR 2 var2:2 1.0 0.3 5. .5    

DESVAR 3 var3:3 1.0 0.3 5. .5    
$ etc. for all other variables 
$ Defines the relation between analysis model property and design variable 
DVPREL1 1 PSHELL 1 T      
 1 1.E-3        

DVPREL1 2 PSHELL 2 T      

 2 1.E-3        
DVPREL1 61 PBARL 61 DIM1      

 61 1.E-3        

DVPREL1 62 PBARL 62 DIM1      
 62 1.E-3        

$ etc. for all other properties 
$ LINK ELEMENT PLATE OFFSETS TO VARIABLE 
DVCREL1 1 CQUAD8 1 ZOFFS      

 1 5.00E-04        

DVCREL1 2 CQUAD8 2 ZOFFS      
 1 5.00E-04        

$ etc. for all other shell elements 
$ ...STRUCTURAL RESPONSE IDENTIFICATION 
$ Defines the structural responses to be used as a design objective and as constraints. 
$ Weight response 
$DRESP1 ID LABEL RTYPE PTYPE REGION ATTA ATTB ATTi  
DRESP1 1 Total_We WEIGHT       

$ Mode responses 
DRESP1 2 FREQ16 FREQ    1    

DRESP1 3 FREQ17 FREQ    2    

DRESP1 4 FREQ18 FREQ    3    
DRESP1 5 FREQ19 FREQ    4    

DRESP1 6 FREQ20 FREQ    5    

DRESP1 7 FREQ21 FREQ    6    
DRESP1 8 FREQ22 FREQ    7    

DRESP1 9 FREQ23 FREQ    8    

DRESP1 10 FREQ24 FREQ    9    
DRESP1 11 FREQ25 FREQ    10    

DRESP1 12 FREQ26 FREQ    11    

DRESP1 13 FREQ27 FREQ    12    
DRESP1 14 FREQ28 FREQ    13    

DRESP1 15 FREQ29 FREQ    14    

$ Define mode constraints (in this case to match the resonant frequencies of the air column. Different frequency constraints 
were applied for the matching of the midpoints between these frequencies). 
DCONSTR 1 2 82.0     84.0      

DCONSTR 2 3 82.0     84.0      
DCONSTR 3 4 226.0 228.0      

DCONSTR 4 5 328.0 330.0      

DCONSTR 5 6 434.0 436.0      
DCONSTR 6 7 558.0 560.0      

DCONSTR 7 8 677.0 679.0      

DCONSTR 8 9 792.0 794.0      
DCONSTR 9 10 902.0 904.0      

DCONSTR 10 11 1027.0  1029.0      

DCONSTR 11 12 1153.0 1155.0      
DCONSTR 12 13 1153.0 1155.0      

DCONSTR 13 14 1270.0 1272.0      
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DCONSTR 14 15 1398.0 1400.0      

$ Create constraint set to be referenced by DESSUB in Subcase 1 

DCONADD 2 1 2 3 4 5 6 7  

 8 9 10 11 12 13 14   

$ ...OPTIMIZATION CONTROL 
$ Overrides default values of parameters using in design optimisation 
DOPTPRM DESMAX 30 FSDMAX 0 P1 1 P2 15  

 METHOD 1 OPTCOD MSCADS CONV1 .00001 CONV2 1.-20  
 CONVDV .00001 CONVPR .00001 DELP .2 DELX .5  

 DPMIN .01 DXMIN .05 CT -.0003 GMAX .005  

 CTMIN .00003        

ENDDATA d8674cc9 $ Designates the end of the Bulk Data Section 

 

13.2.2 Forced vibration independent variables input deck file 

 
SOL 200 $ Specifies Design Sensitivity and Optimization Analysis solution sequence 
$ Direct Text Input for Executive Control 
CEND $ Designates the end of the Executive Control section 
ECHO = NONE $ Neither sorted nor unsorted Bulk Data will be printed 
MAXLINES = 999999999 $ Sets the maximum number of output lines 
ANALYSIS = DFREQ $ Specifies the type of analysis being performed 
LOADSET = 1 $ Selects a sequence of static load sets to be applied to the structural model. 
$ Direct Text Input for Global Case Control Data 
SUBCASE 1         
FREQUENCY = 1 $ Selects the set of forcing frequencies to be solved in the frequency response problem. 
DESOBJ[(MAX)] = 28 $ Selects the DRESP entry to be used as the design objective (maximise). MAX replacable with MIN. 
SPC = 2 $ Selects a single point constraint set (DOF BCs) to be applied. 
DLOAD = 2 $ Selects a dynamic load to be applied in the frequency response problem. 
DISPLACEMENT(SORT2,PHASE) = ALL $ Specifies the form and type of displacement vector output. 
BEGIN BULK $ Designates the end of the Case Control Section and/or the beginning of a Bulk Data Section. 
PARAM POST 0 $ Specifies that the output should be in .xdb database form. 
PARAM COUPMASS 1 $ Specifies the generation of coupled rather than lumped mass 
PARAM G .01 $ Specifies an overall structural damping coefficient 

PARAM PRTMAXIM YES 
$ Specifies the output of maximums of applied loads, single-point forces of constraint, 
multi-point forces of constraint, and displacements. 

PARAM DESPCH 1 $ Specifies output of punch file at each design iteration 
$ Defines discrete excitation frequencies. 
FREQ 1  83. 227. 329. 435. 559. 678. 793.  
  903. 1028. 1154. 1271. 1399.    
$ Direct Text Input for Bulk Data 
$ Elements and Element Properties for region : shell_props 
$ Defines the membrane, bending, transverse shear, and coupling properties of thin shell elements. The real value in the entry is 
the shell thickness. 
PSHELL 1 1 1.e-3 1 1     
$ Defines a curved quadrilateral shell or plane strain element with 8 grid points. 
CQUAD8 1 1 1 2 67 66 1787 1788  
 1789 1790        
$ ...etc. for all other similar elements. 
PBARL 61 1  ROD      
 .0025         
$ ...etc. for all other braces 
CBAR 81755 61 56821 96948 1. 0. 0.   
$ Defines the material properties for linear isotropic materials, in this case for brass. The 1st integer is the material ID number. 
MAT1 1 1.12+11  .35 8500.     
$ Defines the location of a geometric grid point (node), the directions of its displacement, and its permanent single-point 
constraints of the entire model. 
GRID 1  1. .0084745 0.     
$ ...etc. for all other nodes 
$ Loads for Load Case : frf_load_case 

SPCADD 2 1 3 
$ Defines a single-point constraint set as a union of single-point constraint 
sets defined on SPC or SPC1 entries. 

$ Defines a frequency-dependent dynamic load in terms of the real and imaginary parts of the complex load. 
RLOAD1 4 5   1     

LSEQ 1 5 3 
$ Generates the spatial distribution of dynamic loads from static load 
entries. 
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$ Defines a dynamic loading condition for frequency response as a linear combination of load sets defined via RLOAD1. The 
last integer is the ID of the RLOAD1 entry. 
DLOAD 2 1. 1. 4      
$ Displacement Constraints of Load Set : fixed handgrip 
$ Defines a set of single-point constraints (DOF BCs) 
SPC1 1 2 48414 48417 48418 48429 48436 48437  
$ ...etc. for all other DOF BCs. 
$ Displacement Constraints of Load Set : fixed 
SPC1 3 123456 48488 THRU 48495     
$ ...etc. for all other DOF BCs. 
$ Nodal Forces of Load Set : load 
$ Defines a static concentrated force at a grid point by specifying a vector. 
FORCE 3 51808 0 .1 0. -1. 0.   
$ Referenced Dynamic Load Tables 
$ Defines a tabular function for use in generating frequency-dependent dynamic loads. 'ENDT' is a flag to indicate the end of 
the table. 
TABLED1 1         
 83. 1. 1399. 1. ENDT     
$ ...DESIGN VARIABLE DEFINITION 
$ Defines a design variable for design optimisation. The 4th to 6th entry in this line are the initial value, the lower bound, and 
the upper bound respectively. 
DESVAR 1 var1:1 1.0 .3 5.     
$ etc. for all other shell variables 
$ PBARL elements also variables 
DESVAR 61 var61:61 2.5 1. 5.     
$ etc. for all other bar variables 
$ Defines the relation between analysis model property and design variable 
DVPREL1 1 PSHELL 1 T      
 1 1.e-3        
$ etc. for all other shell properties 
DVPREL1 61 PBARL 61 DIM1      
 61 1.e-3        
$ etc. for all other bar properties 
$ LINK ELEMENT PLATE OFFSETS TO VARIABLE 
DVCREL1 1 CQUAD8 1 ZOFFS      
 1 5.00E-04        
$ etc. for all other shell elements 
$ ...STRUCTURAL RESPONSE IDENTIFICATION 
$ Defines a set of structural responses that is used in the design as an objective. 
$ FREQUENCY 1 
$ x component response 
$DRESP1 ID LABEL RTYPE PTYPE REGION ATTA ATTB ATTi  

DRESP1 1 SUBOBJ FRDISP   1 83. 36  
DRESP1 2 SUBOBJ FRDISP   1 83. 37  
DRESP1 3 SUBOBJ FRDISP   1 83. 38  
$ etc. for all nodes 
$ y component 
DRESP1 4 SUBOBJ FRDISP   2 83. 36  
DRESP1 5 SUBOBJ FRDISP   2 83. 37  
DRESP1 6 SUBOBJ FRDISP   2 83. 38  
$ etc. for all nodes 
$ z component 
DRESP1 7 SUBOBJ FRDISP   3 83. 36  
DRESP1 8 SUBOBJ FRDISP   3 83. 37  
DRESP1 9 SUBOBJ FRDISP   3 83. 38  
$ etc. for all nodes 
$ resultant magnitude 
DRESP2 10 RESMAG 1       
 DRESP1 1 4 7      
DRESP2 11 RESMAG 1       
 DRESP1 2 5 8      
DRESP2 12 RESMAG 1       
 DRESP1 3 6 9      
$ etc. for all component responses 
$ FREQUENCY 2 
$ x component response 
DRESP1 13 SUBOBJ FRDISP   1 227. 36  
DRESP1 14 SUBOBJ FRDISP   1 227. 37  
DRESP1 15 SUBOBJ FRDISP   1 227. 38  
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$ etc. for all nodes 
$ y component response 
DRESP1 16 SUBOBJ FRDISP   2 227. 36  
DRESP1 17 SUBOBJ FRDISP   2 227. 37  
DRESP1 18 SUBOBJ FRDISP   2 227. 38  
$ etc. for all nodes 
$ z component response 
DRESP1 19 SUBOBJ FRDISP   3 227. 36  
DRESP1 20 SUBOBJ FRDISP   3 227. 37  
DRESP1 21 SUBOBJ FRDISP   3 227. 38  
$ etc. for all nodes 
$ resultant magnitude 
DRESP2 22 RESMAG 1       
 DRESP1 13 16 19      
DRESP2 23 RESMAG 1       
 DRESP1 14 17 20      
DRESP2 24 RESMAG 1       
 DRESP1 15 18 21      
$ etc. for all component responses 
$ EQUATION FOR FINDING THE RESULTANT MAGNITUDE 
DEQATN 1 F(x,y,z)=SQRT(SSQ(x,y,z))  
$ Find maximum of all the resultant magnitudes 
DRESP2 25 MAXNODE MAX       
 DRESP2 10 11 12      
DRESP2 26 MAXNODE MAX       
 DRESP2 22 23 24      
$ etc. for all resultant magnitude responses 
$ CALCULATE THE SUMMATION OF THE MAX NODES ACROSS MULTIPLE FREQUENCIES 
DRESP2 27 SUMMAX SUM       
 DRESP2 25 26       
$ SCALE THE SUMMATION SO THAT IT IS A LARGER VALUE (FOR BETTER NUMERICAL HANDLING) 
DRESP2 28 SCALED 2       
 DRESP2 27        
DEQATN 2 F(a)=a*10.**6  
$ ...OPTIMIZATION CONTROL 
$ Overrides default values of parameters using in design optimisation 
DOPTPRM DESMAX 30 FSDMAX 0 P1 1 P2 15  
 METHOD 1 OPTCOD MSCADS CONV1 .00001 CONV2 1.-20  
 CONVDV .00001 CONVPR .00001 DELP .2 DELX .5  
 DPMIN .01 DXMIN .05 CT -.0003 GMAX .005  
 CTMIN .00003        
ENDDATA $ Designates the end of the Bulk Data Section 

 

13.2.3 Forced vibration spline linked variables input deck file 

 
SOL 200 $ Specifies Design Sensitivity and Optimization Analysis solution sequence 
$ Direct Text Input for Executive Control 
CEND $ Designates the end of the Executive Control section 
ECHO = NONE $ Neither sorted nor unsorted Bulk Data will be printed 
MAXLINES = 999999999 $ Sets the maximum number of output lines 
ANALYSIS = DFREQ $ Specifies the type of analysis being performed 
LOADSET = 1 $ Selects a sequence of static load sets to be applied to the structural model. 
$ Direct Text Input for Global Case Control Data 
SUBCASE 1         
FREQUENCY = 1 $ Selects the set of forcing frequencies to be solved in the frequency response problem. 
DESOBJ[(MAX)] = 28 $ Selects the DRESP entry to be used as the design objective (maximise). MAX replacable with MIN. 
SPC = 2 $ Selects a single point constraint set (DOF BCs) to be applied. 
DLOAD = 2 $ Selects a dynamic load to be applied in the frequency response problem. 
DISPLACEMENT(SORT2,PHASE) = ALL $ Specifies the form and type of displacement vector output. 
BEGIN BULK $ Designates the end of the Case Control Section and/or the beginning of a Bulk Data Section. 
PARAM POST 0 $ Specifies that the output should be in .xdb database form. 
PARAM COUPMASS 1 $ Specifies the generation of coupled rather than lumped mass 
PARAM G .01 $ Specifies an overall structural damping coefficient 

PARAM PRTMAXIM YES 
$ Specifies the output of maximums of applied loads, single-point forces of constraint, 
multi-point forces of constraint, and displacements. 

PARAM DESPCH 1 $ Specifies output of punch file at each design iteration 



 13 

 

 267 

 

$ Defines discrete excitation frequencies. 
FREQ 1  83. 227. 329. 435. 559. 678. 793.  
  903. 1028. 1154. 1271. 1399.    
$ Direct Text Input for Bulk Data 
$ Elements and Element Properties for region : shell_props 
$ Defines the membrane, bending, transverse shear, and coupling properties of thin shell elements. The real value in the entry is 
the shell thickness. 
PSHELL 1 1 1.e-3 1 1     
$ Defines a curved quadrilateral shell or plane strain element with 8 grid points. 
CQUAD8 1 1 1 2 67 66 1787 1788  
 1789 1790        
$ ...etc. for all other similar elements. 
PBARL 61 1  ROD      
 .0025         
$ ...etc. for all other braces 
CBAR 81755 61 56821 96948 1. 0. 0.   
$ Defines the material properties for linear isotropic materials, in this case for brass. The 1st integer is the material ID number. 
MAT1 1 1.12+11  .35 8500.     
$ Defines the location of a geometric grid point (node), the directions of its displacement, and its permanent single-point 
constraints of the entire model. 
GRID 1  1. .0084745 0.     
$ ...etc. for all other nodes 
$ Loads for Load Case : frf_load_case 

SPCADD 2 1 3 
$ Defines a single-point constraint set as a union of single-point constraint 
sets defined on SPC or SPC1 entries. 

$ Defines a frequency-dependent dynamic load in terms of the real and imaginary parts of the complex load. 
RLOAD1 4 5   1     

LSEQ 1 5 3 
$ Generates the spatial distribution of dynamic loads from static load 
entries. 

$ Defines a dynamic loading condition for frequency response as a linear combination of load sets defined via RLOAD1. The 
last integer is the ID of the RLOAD1 entry. 
DLOAD 2 1. 1. 4      
$ Displacement Constraints of Load Set : fixed handgrip 
$ Defines a set of single-point constraints (DOF BCs) 
SPC1 1 2 48414 48417 48418 48429 48436 48437  
$ ...etc. for all other DOF BCs. 
$ Displacement Constraints of Load Set : fixed 
SPC1 3 123456 48488 THRU 48495     
$ ...etc. for all other DOF BCs. 
$ Nodal Forces of Load Set : load 
$ Defines a static concentrated force at a grid point by specifying a vector. 
FORCE 3 51808 0 .1 0. -1. 0.   
$ Referenced Dynamic Load Tables 
$ Defines a tabular function for use in generating frequency-dependent dynamic loads. 'ENDT' is a flag to indicate the end of 
the table. 
TABLED1 1         
 83. 1. 1399. 1. ENDT     
$ ...DESIGN VARIABLE DEFINITION 
$ Defines a design variable for design optimisation. The 4th to 6th entry in this line are the initial value, the lower bound, and 
the upper bound respectively. 
$ Define independent and dependent variables 
DESVAR 1 ivar1 .1-3 .3-3 5.-3 .5    
DESVAR 2 ivar2 .1-3 .3-3 5.-3 .5    
$ start and end point gradients 
$ DLINK relates one design variable to one or more other design variables 
$ DLINK ID DDVID C0 CMULT IDV1 C1 IDV2 C2  
$ start point gradients 
DLINK 1 1001 0. 0. 1 0.    
DLINK 2 1002 0. 0.5 3 1. 1 -1.  
DLINK 3 1003 0. 0.5 4 1. 2 -1.  
$ Etc.          
$ end point gradients 
DLINK 61 2001 0. 0.5 3 1. 1 -1.  
DLINK 62 2002 0. 0.5 4 1. 2 -1.  
DLINK 63 2003 0. 0.5 5 1. 3 -1.  
$ Etc.          
$ Define spline blend function vector links to design variables 
$ spline segment1 
DVPREL1 1 PSHELL 1 T 0.0003 0.005    
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 1 1.        
DVPREL1 2 PSHELL 2 T 0.0003 0.005    
 1 9.934E-1 2 6.587E-3 1001 4.319E-2 2001 -2.16E-3  
DVPREL1 3 PSHELL 3 T 0.0003 0.005    
 1 9.745E-1 2 2.548E-2 1001 7.796E-2 2001 -8.21E-3  
DVPREL1 4 PSHELL 4 T 0.0003 0.005    
 1 9.446E-1 2 5.539E-2 1001 1.050E-1 2001 -1.75E-2  
$ Etc.          
$ Link ZOFF to be half of the element thickness 
$ Spline1 ZOFF linking 
DVCREL1 1 CQUAD8 1 ZOFFS      
 1 5.000E-1 2 0. 1001 0. 2001 0.  
DVCREL1 2 CQUAD8 2 ZOFFS      
 1 5.000E-1 2 0. 1001 0. 2001 0.  
DVCREL1 3 CQUAD8 3 3 ZOFFS     
 1 5.000E-1 2 0. 1001 0. 2001 0.  
$ Etc.          
$ Defines the relation between analysis model property and design variable 
DVPREL1 61 PBARL 61 DIM1      
 61 1.e-3        
$ etc. for all other bar properties 
$ ...STRUCTURAL RESPONSE IDENTIFICATION 
$ Defines a set of structural responses that is used in the design as an objective. 
$ FREQUENCY 1 
$ x component response 
$DRESP1 ID LABEL RTYPE PTYPE REGION ATTA ATTB ATTi  
DRESP1 1 SUBOBJ FRDISP   1 83. 36  
DRESP1 2 SUBOBJ FRDISP   1 83. 37  
DRESP1 3 SUBOBJ FRDISP   1 83. 38  
$ etc. for all nodes 
$ y component 
DRESP1 4 SUBOBJ FRDISP   2 83. 36  
DRESP1 5 SUBOBJ FRDISP   2 83. 37  
DRESP1 6 SUBOBJ FRDISP   2 83. 38  
$ etc. for all nodes 
$ z component 
DRESP1 7 SUBOBJ FRDISP   3 83. 36  
DRESP1 8 SUBOBJ FRDISP   3 83. 37  
DRESP1 9 SUBOBJ FRDISP   3 83. 38  
$ etc. for all nodes 
$ resultant magnitude 
DRESP2 10 RESMAG 1       
 DRESP1 1 4 7      
DRESP2 11 RESMAG 1       
 DRESP1 2 5 8      
DRESP2 12 RESMAG 1       
 DRESP1 3 6 9      
$ etc. for all component responses 
$ FREQUENCY 2 
$ x component response 
DRESP1 13 SUBOBJ FRDISP   1 227. 36  
DRESP1 14 SUBOBJ FRDISP   1 227. 37  
DRESP1 15 SUBOBJ FRDISP   1 227. 38  
$ etc. for all nodes 
$ y component response 
DRESP1 16 SUBOBJ FRDISP   2 227. 36  
DRESP1 17 SUBOBJ FRDISP   2 227. 37  
DRESP1 18 SUBOBJ FRDISP   2 227. 38  
$ etc. for all nodes 
$ z component response 
DRESP1 19 SUBOBJ FRDISP   3 227. 36  
DRESP1 20 SUBOBJ FRDISP   3 227. 37  
DRESP1 21 SUBOBJ FRDISP   3 227. 38  
$ etc. for all nodes 
$ resultant magnitude 
DRESP2 22 RESMAG 1       
 DRESP1 13 16 19      
DRESP2 23 RESMAG 1       
 DRESP1 14 17 20      
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DRESP2 24 RESMAG 1       
 DRESP1 15 18 21      
$ etc. for all component responses 
$ EQUATION FOR FINDING THE RESULTANT MAGNITUDE 
DEQATN 1 F(x,y,z)=SQRT(SSQ(x,y,z))  
$ Find maximum of all the resultant magnitudes 
DRESP2 25 MAXNODE MAX       
 DRESP2 10 11 12      
DRESP2 26 MAXNODE MAX       
 DRESP2 22 23 24      
$ etc. for all resultant magnitude responses 
$ CALCULATE THE SUMMATION OF THE MAX NODES ACROSS MULTIPLE FREQUENCIES 
DRESP2 27 SUMMAX SUM       
 DRESP2 25 26       
$ SCALE THE SUMMATION SO THAT IT IS A LARGER VALUE (FOR BETTER NUMERICAL HANDLING) 
DRESP2 28 SCALED 2       
 DRESP2 27        
DEQATN 2 F(a)=a*10.**6  
$ ...OPTIMIZATION CONTROL 
$ Overrides default values of parameters using in design optimisation 
DOPTPRM DESMAX 30 FSDMAX 0 P1 1 P2 15  
 METHOD 1 OPTCOD MSCADS CONV1 .00001 CONV2 1.-20  
 CONVDV .00001 CONVPR .00001 DELP .2 DELX .5  
 DPMIN .01 DXMIN .05 CT -.0003 GMAX .005  
 CTMIN .00003        
ENDDATA $ Designates the end of the Bulk Data Section 
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13.3 MATLAB code for linking global optimisation algorithm to FEA 

This appendix contains the function files written in MATLAB for the global 

optimisation implementation using simulated annealing (SA) coupled with analysis 

using the FE solver, MSC Nastran. Where these functions make use of built-in 

MATLAB functions, these have not been included in this appendix.  

13.3.1 control.m 

 

1 % Define variables to be used by objective function 

2 global no_wall_vars 

3 global no_brace_vars 

4 global min_or_max 

5  

6 % Choose objective 

7 min_or_max='maximise'; % or minimise 

8  

9 % Define starting variable values 

10 no_wall_vars=60; 

11 no_brace_vars=5; 

12 x0=[repmat(0.001,1,no_wall_vars),repmat(0.0025,1,no_brace_vars)]; 

13  

14 % Define variable bounds 

15 wall_bounds=[0.3E-3, 5E-3]; 

16 brace_bounds=[1E-3, 5E-3]; 

17 LB=[repmat(wall_bounds(1),1,no_wall_vars),repmat(brace_bounds(1),1, 

no_brace_vars)]; 

18 UB=[repmat(wall_bounds(2),1,no_wall_vars),repmat(brace_bounds(2),1, 

no_brace_vars)]; 

19  

20 % Define optimization options 

21 options = saoptimset('PlotFcn',{@saplotbestf,@saplotbestx,@saplotf, 

@saplottemperature}); 

22  

23 % Initiate simulated annealing optimization algorithm supplying the 

objective function 

24 [x fval] = simulannealbnd(@global_opt,x0,LB,UB,options); 

  

 

13.3.2 global_opt.m 

 

1 function obj_resp = global_opt(vars) 

2 % global optimisation of frequency response analysis using Nastran 

3  

4 global no_wall_vars 

5 global no_brace_vars 

6 global min_or_max 

7  

8 % pshell thicknesses and brace radii are the design variables 

9 % replace props.bdf each iteration with new values 

10   

11 % write property and variable entries 

12 % props.bdf contains the property entries for the wall thicknesses 

and the brace radii 

13 fid=fopen('props.bdf','w+'); 

14 for i=1:no_wall_vars 
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15 var_str=num2str(vars(i)); 

16 var_str_rep=strrep(var_str,'e-003','-3'); 

17 fprintf(fid,strcat('PSHELL,',num2str(i),',1,',var_str_rep,',1,,1\n')

); 

18 end 

19   

20 for i=1:no_brace_vars 

21  var_str=num2str(vars(no_wall_vars+i)); 

22  var_str_rep=strrep(var_str,'e-003','-3'); 

23  fprintf(fid,strcat('PBARL,',num2str(no_wall_vars+i),',1,,ROD\

 n,',var_str_rep,'\n')); 

24 end 

25 fclose(fid); 

26   

27 % write desvar entries 

28 % desvar.bdf contains the design variable entries for the wall 

thicknesses and the brace radii 

29 fid=fopen('desvar.bdf','w+'); 

30 for i=1:no_wall_vars 

31  var_str=num2str(vars(i)*1E3); 

32  if isempty(strfind(var_str,'.'))==1 

33   var_str=strcat(var_str,'.'); 

34      end 

35  fprintf(fid,strcat('DESVAR,',num2str(i),',v',num2str(i),',',v

 ar_str,',.3,5.\n')); 

36 end 

37   

38 for i=1:no_brace_vars 

39  var_str=num2str(vars(no_wall_vars+i)*1E3); 

40     if isempty(strfind(var_str,'.'))==1 

41   var_str=strcat(var_str,'.'); 

42      end 

43  fprintf(fid,strcat('DESVAR,',num2str(no_wall_vars+i),',v',num

 2str(i),',',var_str,',1.,5.\n')); 

44 end 

45 fclose(fid); 

46   

47 % trigger analysis using Nastran 

48 % opt.bat contains the reference to the Nastran executable, the file 

to analyse and some run parameters. 

49 file='opt.bat'; 

50 result=[]; 

51 [status result]=dos(file); % spawn Nastran 

52  

53 % wait until analysis finished 

54 test=1-isempty(result); 

55   

56 while test==0 

57      % just wait 

58     test=1-isempty(result); 

59 end 

60  

61 while test==1 

62      % read in response values 

63      fid=fopen('global_test_max_frf_damppt01.f06','r'); 

64      

65  % Identify the relevant portion of the output file from which 

 to extract the frequency response data 

66     % find 'S U M M A R Y   O F   D E S I G N    C Y C L E    H I 

 S T O R Y' line 

67      % read from 18 lines before this line 

68     tline = fgets(fid); 

69      count_line=0; 
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70       

71  while ischar(tline) 

72   count_line=count_line+1; 

73   tline = fgets(fid); 

74   if strfind(tline,'S U M M A R Y   O F   D E S I G N    

  C Y C  L E    H I S T O R Y') 

75              % use to identify lines to extract 

76          fclose(fid); 

77        break % exits innermost loop 

78   end 

79  end 

80       

81  fid=fopen('global_test_max_frf_damppt01.f06','r'); % open 

 Nastran output file for reading 

82  resps=textscan(fid,'%*n%n%s%s%*s%f%*s',14,'headerlines',count

 _line-17); 

83  fclose(fid); 

84      

85  % scaled response to use for maximisation/minimisation 

86  obj_resp=resps{1,4}(end); % keeps only the necessary 

 information 

87  

88  if strcmp(min_or_max,'minimise') 

89   obj_resp=obj_resp; 

90  elseif strcmp(min_or_max,'maximise') 

91   obj_resp=-obj_resp;  

92   % minimising the negative of the response is the same 

  as maximising the response 

93  end 

94      

95  disp(obj_resp); % display objective function value to the 

 command window 

96      

97  % save results to file 

98  save('result.mat','result'); 

99  save('resps.mat','result'); 

100  save('obj_resp.mat','obj_resp'); 

101  

102  test=2; % to exit loop 

103 end 
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13.4 Patran Command Language (PCL) surface renumbering 

algorithm 

This appendix contains the function written in PCL for the surface renumbering 

required for the definition of the wall thickness variables for structural 

optimisation. Other PCL functions were written for other model setup tasks but it is 

not thought necessary to include these here. 

13.4.1 renumber_surfaces.pcl 

1   FUNCTION renumber_surfaces() 

2 

3   $ Renumber surfaces 

4 

5   INTEGER num_surfaces 

6   INTEGER count_error 

7   INTEGER surface_ID(VIRTUAL) 

8 

9   count_error=db_count_surface(num_surfaces) 

10  IF (num_surfaces>0) THEN 

11   sys_allocate_array(surface_ID,1,num_surfaces) 

12  END IF 

13 

14  STRING uil_list_create_current_list[VIRTUAL] 

15  STRING asm_line_2point_created_ids1[VIRTUAL] 

16  STRING asm_line_2point_created_ids2[VIRTUAL] 

17  STRING asm_line_2point_created_ids3[VIRTUAL] 

18  STRING asm_line_2point_created_ids4[VIRTUAL] 

19  STRING asm_line_2point_created_ids5[VIRTUAL] 

20  STRING asm_line_2point_created_ids6[VIRTUAL] 

21 

22  STRING surface_name[100] 

23  STRING point_string[100] 

24 

25  INTEGER i 

26 

27  STRING curve_list[100] 

28  STRING uil_surface_list[VIRTUAL] 

29 

30  STRING surface_points_array[100](VIRTUAL) 

31  sys_allocate_array(surface_points_array,1,num_surfaces,1,2) 

32 

33  FOR (i=1 TO num_surfaces) 

34   $ find the points associated with each surface (create list) 

35   surface_name=("Surface "//str_from_integer(i)) 

36   list_create_point_ass_geo( surface_name, "lista", 

  uil_list_create_current_list ) 

37 

38   surface_points_array(i,1)=surface_name 

39   surface_points_array(i,2)=uil_list_create_current_list 

40 

41   uil_list_a.clear( ) 

42  END FOR 

43 

44  GLOBAL INTEGER position_array(VIRTUAL) 

45  sys_allocate_array(position_array,1,num_surfaces,1,2) 

46 
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47  INTEGER position 

48  INTEGER j 

49 

50  FOR (i=1 TO num_surfaces) 

51   FOR (j=1 TO num_surfaces) 

52   $ Search within this array to match strings 

53 

54  $ find a matching string to each one in the array in turn 

55  position=str_equal(surface_points_array(i,2), 

surface_points_array(j,2)) 

56 

57   IF (position==1) THEN 

58    $ put the two surfaces in the array 

59    IF (surface_points_array(i,1)== 

surface_points_array(j,1)) THEN 

60     $ skip it 

61    ELSE 

62     position_array(i,1)=str_to_integer( 

str_token(surface_points_array(i,1),"e",2,TRUE)) 

63     position_array(i,2)=str_to_integer( 

str_token(surface_points_array(j,1),"e",2,TRUE)) 

64    END IF 

65   END IF 

66  END FOR 

67  END FOR 

68 

69  $ remove reversed entries 

70 

71  STRING concatenated_array[100](VIRTUAL) 

72  sys_allocate_array(concatenated_array,1,num_surfaces) 

73 

74  STRING final_concatenated_array[100](VIRTUAL) 

75  sys_allocate_array(final_concatenated_array,1,num_surfaces) 

76 

77  STRING string1[100] 

78  STRING string2[100] 

79  STRING string1and2[100] 

80  STRING string2and1[100] 

81 

82  INTEGER h 

83  INTEGER k 

84  INTEGER position_elsewhere 

85  INTEGER integer_1 

86 

87  FOR (i=1 TO num_surfaces) 

88   FOR (j=1 TO num_surfaces) 

89  $ find the reverse of this string in the rest of the array 

90   integer_1=position_array(i,1) 

91 

92   $ search for string1 elsewhere in the array 

93   $ if it is found elsewhere, then replace the elsewhere 

string with a blank string " " 

94 

95   position_elsewhere=str_equal(str_from_integer( 

integer_1),str_from_integer(position_array(j,2))) 

96   IF (position_elsewhere==1) THEN 

97    $ replace that integer with a zero 

98    position_array(j,2)=0 

99    position_array(j,1)=0 

100 

101   END IF 

102  END FOR 

103 END FOR 
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104 

105 $ extract non-zero entries from position_array 

106 INTEGER integer1 

107 INTEGER integer2 

108 

109 FOR (i=1 TO num_surfaces) 

110  integer1=position_array(i,1) 

111  integer2=position_array(i,2) 

112 

113  $ create new array 

114 

115  IF (integer1==0) THEN 

116   $ skip it 

117  ELSE 

118   position_array(i,1)=integer1 

119   position_array(i,2)=integer2 

120  END IF 

121 END FOR 

122 

123 $ Sort array 

124 mth_sort_column(position_array,1,TRUE) 

125 

126 $ delete first half of entries 

127 GLOBAL INTEGER position_array_new(VIRTUAL) 

128 sys_allocate_array(position_array_new,1,num_surfaces/2,1,2) 

129 

130 FOR (i=((num_surfaces/2)+1) TO num_surfaces) 

131  position_array_new(i-(num_surfaces/2),1)=position_array(i,1) 

132  position_array_new(i-(num_surfaces/2),2)=position_array(i,2) 

133 END FOR 

134 

135 $ Manipulate surface data 

136 $ find all points associated with all surfaces 

137 

138 STRING uil_list_all_points[VIRTUAL] 

139 

140 list_create_point_ass_geo( "Surface "//str_from_integer(1) 

    //":"// str_from_integer(num_surfaces), "lista", 

    uil_list_all_points ) 

141 $ NEED TO CLEAR THIS LIST PRIOR TO ADDING SURFACES LATER 

142 

143 $ count num points 

144 INTEGER num_points 

145 

146 count_error=db_count_point(num_points) 

147 

148 $ find coordinates of each point 

149 

150 REAL xyz(VIRTUAL) 

151 sys_allocate_array(xyz,1,3) 

152 

153 REAL xyz_all(VIRTUAL) 

154 sys_allocate_array(xyz_all,1,4,1,num_points) 

155 

156 INTEGER status 

157 INTEGER point_integer 

158 

159 FOR (i=1 TO num_points) 

160  sgm_db_get_point(i,xyz,status) 

161  xyz_all(1,i)=str_to_real(str_from_integer(i)) 

162  xyz_all(2,i)=xyz(1) 

163  xyz_all(3,i)=xyz(2) 

164  xyz_all(4,i)=xyz(3) 



 13 

 

 276 

 

165 END FOR 

166 

167 $ Sort xyz_all array in order of ascending x coordinate (this 

    must be appropriate for the coordinate system of the model) 

168 mth_sort_row(xyz_all,2,TRUE) 

169 

170 $ Find the lowest x coord in the array 

171 INTEGER lowest_x_point 

172 lowest_x_point=xyz_all(1,1) 

173 

174 $ Find the surfaces associated with that point 

175 STRING uil_list_surfaces_ass_to_point[VIRTUAL] 

176 

177 uil_list_a.clear( ) 

178 list_create_surface_ass_geo( "Point 

         "//str_from_integer(lowest_x_point), "lista", 

         uil_list_surfaces_ass_to_point ) 

179 

180 $ Choose the lowest ID of the surfaces to use as a starting    

    surface 

181 list_save_group( "lista", "lowest_surfaces", FALSE ) 

182 

183 $ count number of surfaces in lowest_surfaces group 

184 INTEGER num_surfaces_in_group 

185 INTEGER lowest_x_surface 

186 INTEGER space_position 

187 INTEGER colon_position 

188 INTEGER length_rest_of_string 

189 INTEGER check_4_spaces 

190 INTEGER check_4_colons 

191 INTEGER check_4_spaces_rest_of_str 

192 INTEGER check_4_spaces_rest_of_str2 

193 INTEGER first_point_of_string_integer 

194 INTEGER second_point_of_string_integer 

195 INTEGER third_point_of_string_integer 

196 INTEGER fourth_point_of_string_integer 

197 

198 STRING first_point_of_string[100] 

199 STRING second_point_of_string[100] 

200 STRING third_point_of_string[100] 

201 STRING fourth_point_of_string[100] 

202 STRING rest_of_string[100] 

203 STRING rest_of_string_2[100] 

204 

205 INTEGER final_list_of_points(VIRTUAL) 

206 sys_allocate_array(final_list_of_points,1,2) 

207 

208 db_count_entities_in_group("lowest_surfaces",3, 

         num_surfaces_in_group) 

209 

210 point_string = str_token(uil_list_surfaces_ass_to_point, 

    "e",2,TRUE) 

211 

212 $ there should be 2 surfaces for this point 

213 IF (num_surfaces_in_group==2) THEN 

214 

215  $ WILL RETURN A 2 IF SPACES ARE PRESENT. THE 2 REPRESENTS     THE 

FIRST POSITION THAT THE SPACE WAS FOUND 

216  $ check if there is either a space or a colon between the two 

surface IDs 

217 

218  check_4_spaces=str_find_match(point_string," ") 

219  check_4_colons=str_find_match(rest_of_string,":") 
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220 

221  IF (check_4_spaces>=2) THEN 

222   $ there is a space between the IDs 

223 

224  $ use the first space as a delimiter and create 2 strings, 

one with 1 integer and the other with the rest of the string 

225   $ e.g. first_point_of_string="2", rest_of_string="4" 

226 

227   first_point_of_string=str_substr(point_string,1, 

check_4_spaces-1) 

228   second_point_of_string=str_strip_lead(str_substr( 

point_string,check_4_spaces+1,10)) 

229 

230  ELSE IF (check_4_colons>=2) THEN 

231   $ there is a colon between the IDs 

232 

233   first_point_of_string=str_substr(point_string,1, 

check_4_colons-1) 

234   second_point_of_string=str_strip_lead(str_substr( 

point_string,check_4_colons+1,10)) 

235  END IF 

236 

237  first_point_of_string_integer=str_to_integer( first_point_of_string) 

238  second_point_of_string_integer=str_to_integer( 

second_point_of_string) 

239 

240  $ fill array with the points 

241  final_list_of_points(1)=first_point_of_string_integer 

242  final_list_of_points(2)=second_point_of_string_integer 

243 

244  mth_sort_row(final_list_of_points,1,TRUE) 

245 END IF 

246 

247 lowest_x_surface=final_list_of_points(2) 

248 

249 INTEGER opposite_surface 

250 STRING sgm_renum_surface_new_ids[VIRTUAL] 

251 

252 INTEGER current_surface 

253 current_surface=lowest_x_surface 

254 

255 $ Find opposite of current_surface (only need to do this for    

    the left most surfaces): 

256 FOR (i=1 TO num_surfaces/2) 

257  IF (current_surface==position_array_new(i,1)) THEN 

258   opposite_surface=position_array_new(i,2) 

259  ELSE IF (current_surface==position_array_new(i,2)) THEN 

260   opposite_surface=position_array_new(i,1) 

261  END IF 

262 END FOR 

263 

264 INTEGER surface1_starting_ID=10000 

265 INTEGER starting_ID_array(VIRTUAL) 

266 sys_allocate_array(starting_ID_array,1,num_surfaces) 

267 

268 FOR (i=1 TO num_surfaces) 

269  IF (mth_mod(i,2)==0) THEN 

270   $ do nothing 

271  ELSE 

272   starting_ID_array(i)=i 

273  END IF 

274 END FOR 

275 
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276 $ sort the ID array 

277 INTEGER num_surfaces_halved 

278 

279 num_surfaces_halved=num_surfaces/2 

280 mth_sort(starting_ID_array,FALSE,num_surfaces_halved) 

281 

282 $ delete first half of entries 

283 INTEGER starting_array_new(VIRTUAL) 

284 

285 sys_allocate_array(starting_array_new,1,num_surfaces/2) 

286 

287 FOR (i=((num_surfaces/2)+1) TO num_surfaces) 

288  starting_array_new(i-(num_surfaces/2))=starting_ID_array(i) 

289 END FOR 

290 

291 $ Renumber the starting surface by an offset 

292 sgm_renumber( 1, "surface",str_from_integer( 

    surface1_starting_ID+starting_array_new(1)), 

    "Surface"//str_from_integer(current_surface), 

         sgm_renum_surface_new_ids ) 

293 

294 $ Renumber the opposite surface to be starting surface +1 

295 sgm_renumber( 1, "surface",str_from_integer 

    (surface1_starting_ID+starting_array_new(1)+1), 

    "Surface "//str_from_integer(opposite_surface), 

    sgm_renum_surface_new_ids ) 

296 

297 STRING uil_lista[VIRTUAL] 

298 STRING uil_listb[VIRTUAL] 

299 STRING lista_group_members[VIRTUAL] 

300 STRING listb_group_members[VIRTUAL] 

301 STRING boolean_list_members[VIRTUAL] 

302 STRING current_surface_string[100] 

303 

304 FOR (i=1 TO (num_surfaces/2)-1) 

305 

306  current_surface_string="Surface "//str_from_integer( 

surface1_starting_ID+starting_array_new(i)) 

307  $ Find the surfaces that share points with the current surface 

308  $ find points associated with the two surfaces 

309  list_create_point_ass_geo( current_surface_string, "lista", 

uil_lista ) 

310 

311  $ Put the newly renumbered surfaces into a group 

312  ga_group_create( "lista_group" ) 

313  ga_group_entity_add( "lista_group", "Surface "// 

str_from_integer(surface1_starting_ID+ 

starting_array_new(i))//" "//str_from_integer( 

surface1_starting_ID+starting_array_new(i)+1) ) 

314  uil_group_members_get("lista_group",lista_group_members) 

315 

316  $ find surfaces associated with these points 

317  list_create_surface_ass_geo( uil_lista, "listb",uil_listb ) 

318 

319  $ add the associated surfaces to group 

320  list_save_group( "listb", "listb_group", FALSE ) 

321  uil_group_members_get("listb_group",listb_group_members) 

322 

323  $ remove previous surfaces from list 

324  au_boolean_groups.main2( 1, ["lista_group"], 1, 

["listb_group"], "booleanb-a", "b-a", TRUE, FALSE, FALSE ) 

325 

326  uil_group_members_get("booleanb-a",boolean_list_members) 
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327 

328  $ Renumber members 

329  sgm_renumber( 1, "surface",str_from_integer( 

surface1_starting_ID+starting_array_new(i)+2), 

boolean_list_members, sgm_renum_surface_new_ids ) 

330 

331  $ swap numbering of last set of 2 surfaces round 

332  IF (i==((num_surfaces/2)-1)) THEN 

333 

334   STRING surface1_to_renumber[100] 

335   STRING surface2_to_renumber[100] 

336 

337   surface1_to_renumber="Surface "//str_from_integer( 

surface1_starting_ID+starting_array_new(i)+2) 

338   sgm_renumber( 1, "surface",str_from_integer( 

surface1_starting_ID+starting_array_new(i)+4), 

surface1_to_renumber, sgm_renum_surface_new_ids ) 

339 

340   surface2_to_renumber="Surface "//str_from_integer( 

surface1_starting_ID+starting_array_new(i)+3) 

341   sgm_renumber( 1, "surface",str_from_integer( 

surface1_starting_ID+starting_array_new(i)+3), 

surface2_to_renumber, sgm_renum_surface_new_ids ) 

342 

343   sgm_renumber( 1, "surface",str_from_integer( 

surface1_starting_ID+starting_array_new(i)+2), 

"Surface "//@ 

344   str_from_integer(surface1_starting_ID+ 

starting_array_new(i)+3)//" "//str_from_integer( 

surface1_starting_ID+starting_array_new(i)+4), 

sgm_renum_surface_new_ids ) 

345  END IF 

346 

347  $ clear list b 

348  uil_list_b.clear( ) 

349 

350 END FOR 

351 

352 $ Renumber all surfaces from starting ID of 1 

353 STRING surfaces_to_renumber[100] 

354 

355 surfaces_to_renumber="Surface"//str_from_integer 

     (surface1_starting_ID+1)//":"//str_from_integer 

     (surface1_starting_ID+num_surfaces) 

356 

357 sgm_renumber( 1, "surface","1", surfaces_to_renumber, 

    sgm_renum_surface_new_ids ) 

358 

359 $ delete the 2 remaining surfaces in boolean group 

360 uil_viewport_post_groups.posted_groups( "default_viewport", 1,    

    ["default_group"] ) 

361 uil_group_delete_group.delete_groups( FALSE, 1,  

    ["booleanb-a"] ) 

362 

363 RETURN 

364 

365 END FUNCTION 

 

 


