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ABSTRACT 

In many applications employing particles, the distribution of particle sizes has 

significant influence on the properties of the resultant material. Membrane 

emulsification (ME) is a method for manufacturing uniformly sized emulsion droplets 

where a dispersed phase is forced through a membrane into the continuous phase. It is 

the shear applied on the membrane surface that detaches the droplets thereby generating 

an emulsion. Formulation of the dispersed and the continuous phase influences the final 

droplet size of the emulsion. Therefore one of the aims of this research is to broaden the 

existing knowledge on particle production by membrane emulsification using nickel 

microengeneered disk membrane with cylindrical pores and the Dispersion Cell.  

 

The Dispersion Cell was successfully used to produce W/O/W emulsions (the oil phase 

was pumpkin seed oil). Also W/O emulsions (the water phase was acidified sodium 

silicate) were produced and additionally solidified in order to manufacture solid silica 

particles with high surface area and internal porosity. The particles were additionally 

functionalized using 3-aminopropyltrimethoxysilane and turned into ion exchange 

material capable to sorb copper. Since the silica particles do not swell such ion 

exchange material might be interesting for applications in nuclear industry. 

 

Having in mind an industrial application of membrane emulsification the Dispersion 

Cell cannot be used due to the problems with the scaling up. Therefore two novel 

systems: Oscillating and Pulsating were developed and reported for continuous 

production of the particles. Both systems were commissioned using sunflower oil for 

production of O/W emulsions. Additionally the Pulsating system was successfully used 

for production of complex coacervates.  

 

In the Oscillating system the nickel membrane was in the shape of a candle and the 

shear on the membrane surface was induced by vertical oscillations of the membrane. 

In the Pulsating system a tubular nickel membrane was used and the shear on the 

membrane surface was applied by oscillations of the continuous phase. The scaling up 

of both Oscillating and Pulsating system can be achieved by providing a larger 

membrane area (elongating the membrane) as well as connecting the membranes in 

parallel. 
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It was successfully shown that a simple force balance can be used to model the size of 

emulsion droplets as a function of the shear stress. The average shear stress worked 

better when modelling the droplet sizes in the Dispersion Cell, but the correction for the 

droplet neck had to be taken into consideration when higher dispersed phase flow rates 

were used. In the Oscillating and Pulsating systems it was the maximal shear stress that 

gave the better prediction, but in both systems it was clear that additional forces were 

present which influenced the final droplet size.  

 

An alternative field of application for the Dispersion Cell, relevant to the tests of 

functionalized silica particles, was investigated. The Dispersion Cell was modified into 

a continuous flow stirred cell with a slotted nickel membrane on the bottom. The 

continuous flow stirred cell is shown to be an effective technique for both mass transfer 

kinetics as well as equilibrium data acquisition – combining both into a single step, and 

simplifying ion exchange analysis. To commission the system the commercial ion 

exchange resin (Dowex 50W-X8) was used. Once determined, the design parameters 

can readily be used to model ion exchange contacting in a well mixed system, column 

operations or any process that requires ion exchange material. Using the continuous 

flow stirred cell it was shown that the silica particles produced using the Dispersion 

Cell and functionalized using 3-aminopropyltrimethoxysilane were capable to sorb 

copper.  

 

As a part of the collaboration within the DIAMOND (Decommissioning, 

Immobilisation And Management Of Nuclear wastes for Disposal) project a novel ion 

exchange material (copper hydroxide acetate suitable for iodide sorption) produced in 

the Department of Chemistry (Loughborough University) was successfully tested using 

the continuous flow stirred cell and equilibrium and mass transfer parameters were 

determined. 

 

The continuous flow stirred cell is particularly relevant to instances when the mass of 

ion exchange material available for the testing is low (less than 1g) and when dealing 

with hazardous or expensive materials. It is a technique employing microfiltration and 

ion exchange (or sorption), of the engineered particles that could be produced by 

membrane emulsification described in this thesis. 
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1. INTRODUCTION 

In the physical sciences, a particle represents a small localized object to which can be 

ascribed several physical properties such as volume or mass. Particles may be solid, but 

they also may be liquid droplets dispersed in another immiscible liquid or air. There is a 

great market demand for uniform particles both organic and inorganic which can have 

potential application in various industries (food, pharmaceutical, chemical etc.). An 

emulsion is a dispersion of one liquid in another where the liquids are not miscible, or 

are slightly soluble, and they play a valuable role in the production of the particle. 

Emulsion droplets are already particles but, even more, the droplets after production 

may be converted into solid particles by applying an additional treatment (reacting, 

setting, solidifying, polymerising, etc.). 

Conventional emulsification processes such as rotor/stator devices or high-pressure 

homogenizers apply more energy than needed to disrupt the droplets (Karbstein, 

Schubert 1995), and the droplet break-up is mainly due to the turbulent eddies. If more 

energy than needed is applied this leads to droplets with a wide size distribution which 

in some applications is not acceptable. 

By contrast, membrane emulsification (Kandori, Kisi & Ishikawa 1992); is a mild 

dispersion process to produce a monosized emulsion of one liquid phase in a second 

immiscible liquid phase using low energy per unit volume (Vladisavljević & Williams 

2005). The dispersed phase is pressed through the membrane into the continuous phase 

and it is widely accepted that shear on the membrane surface needs to be applied in 

order to produce uniform droplets and the growth and detachment of the droplets is a 

complex phenomenon dependent on the process conditions including the formulation of 

the dispersed and the continuous phases.  

Having in mind great potential application of membrane emulsification in various 

industries this thesis reports possible applications of membrane emulsification (using 

microengineered nickel membranes) by investigating different emulsions formulations, 

and also reports two novel systems suitable for industrial application. 

The formulation of the dispersed phase and the continuous phase influences the final 

droplet size in membrane emulsification. The Dispersion Cell (first reported by 

Kosvintsev et al.  2005) in combination with the disk hydrophilic nickel membrane (for 
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the work with O/W and W/O/W emulsions) or hydrophobic membrane (for the work 

with W/O emulsions) was used to study the influence of the emulsion formulation on 

the final droplet size. In the Dispersion Cell the rotation of the paddle placed on top of 

the membrane induces the shear on the membrane surface which enables the droplet 

detachment, and the following applications were investigated here: 

 O/W emulsions  

oil in water emulsions play an important role in the food industry since 

many flavour oils are composed of apolar, volatile molecules and they are 

subjected to considerable losses especially during harsh processes. 

Therefore flavour encapsulation within the oil droplets is nowadays widely 

used.  

Stabilisation of sunflower droplets using Tween 20 and sunflower droplets 

containing 10 wt.% oil using mixture of Gum Arabic and gelatine (complex 

coacervation) was investigated. 

 W/O/W emulsions 

water in oil in water emulsions have a potential for encapsulation and 

release of substances with promising application in food, cosmetic, and 

pharmaceutical industries. W/O/W emulsion are very interesting for 

reduction of the fat content in food and therefore attract great interest 

specially because of the possibility for encapsulation of a water soluble 

substance within the internal water phase and production of functional food. 

Hence W/O/W emulsions were investigated. The oil phase was sunflower 

oil or pumpkin seed oil, PGPR (polyglycerol polyricinoleate) was used to 

stabilise W/O emulsion (first emulsification step) and Tween 20 was used to 

stabilise W/O/W (second emulsification step). 

 W/O emulsions 

water in oil emulsions can be used for encapsulation or dissolving water 

soluble substance within the water droplets. In this thesis W/O emulsion 

route is reported for production of solid silica particles. Span 80 was used as 

an emulsifier for stabilising the water droplets in kerosene.  

The industrial application of the Dispersion Cell is less good due to the problem of 

batch size of the system. Nevertheless it represents a valuable and effective tool for 
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formulation development. For the industrial application two novel systems for 

membrane emulsification are proposed: Oscillating and Pulsating.  

Both systems have been commissioned using sunflower oil for production of O/W 

emulsion. In the Oscillating system the nickel membrane was in a shape of a candle and 

the shear on the membrane surface was induced by moving the membrane up and down 

by adjusting the frequency and amplitude while in the Pulsating system the membrane 

was in a shape of a tube and the continuous phase was pulsed. The productivity 

increase using the Oscillating or Pulsating system can be achieved by providing larger 

membrane area. The model that takes into consideration maximal shear stress was 

successfully applied to predict the droplet size both in Oscillating and Pulsating 

systems, while the model with average shear stress was able to predict the droplet size 

in the Dispersion Cell. 

The thesis was undertaken as a part of a DIAMOND project (Decommissioning, 

Immobilisation And Management Of Nuclear wastes for Disposal) funded by the 

EPSRC and the nuclear industry which shows a great interest in inorganic ion exchange 

resins. Malik et al.  (2009) have reported that it is possible to produce crosslinked 

polystyrene co-divinylbenzene sorbent microspheres with median diameter between 40 

and 300 µm in a Dispersion Cell. Organic resins have a tendency to swell and degrade 

which makes them incompatible for use in the nuclear industry therefore, inorganic ion 

exchange resins, due to easier disposal, are interesting for nuclear industry. Highly 

uniform droplets of acidified sodium silicate were successfully produced using the 

Dispersion Cell and they were solidified forming spherical silica particles. Additionally 

the silica particles were functionalized with 3-aminopropyltrimethoxysilane and were 

capable to sorb copper. 

As a complementary project, relevant to the use of the particles and especially relevant 

to nuclear laboratory testing, the Dispersion Cell was used as a continuous stirred 

system (with slotted microporous filter) for determining the sorption capacity of ion 

exchange material as well as mass transfer properties (Dragosavac, Holdich & 

Vladisavljević 2011) using commercial ion exchange material DOWEX 50W-X8. The 

developed system proved to be very convenient for quick lab tests especially in the 

cases when the amount of material is limited. Once the system was commissioned, it 

was used to test novel ion exchange material (copper hydroxide acetate) for the removal 
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of iodide from water. Copper hydroxide acetate was produced by Andy Butterworth 

and Dr Sandie Dann at the Department of Chemistry at Loughborough University and 

the experiments were undertaken as a part of the collaboration within the DIAMOND 

project. Beside copper hydroxide acetate functionalized silica particles were also tested 

using the continuous stirred cell. 

Hence, this thesis builds on the existing work on membrane emulsification using the 

Dispersion Cell, with particular strengths in showing how it can be used to make 

complex and functional particles, modelling the conditions required to make particles at 

a desired size and structure and use of the same cell for determination of mass transfer 

properties suitable for ion exchange modelling. 

Some of the work reported here was published in peer reviewed papers and presented at 

national and international conferences; see the list in appendix 4D. 
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2. LITERATURE REVIEW 

Most oils are less dense than water, and if mixed together after a while oil will simply 

rise up to the surface of the water. In emulsions, one liquid phase (dispersed phase) is 

dispersed as droplets in another liquid phase (continuous phase). If left without 

surfactant the droplets of the dispersed phase will coalesce, which implies that the 

emulsions are thermodynamically unstable. The thermodynamic instability of the 

emulsions comes from the excess free energy at the interface between two phases. The 

cohesive forces between molecules within the individual phases exceed the adhesive 

forces between two phases. With the increase of the interfacial area, the interface free 

energy increases and the system becomes more thermodynamically unstable (Becher 

2001). The change in interfacial free energy can be expressed by the following equation: 

sdAdG           Eq. 1 

Where G is the interfacial free energy, γ is the interfacial tension, called surface tension 

if one of the phases is a gas, and As is the interfacial area. High interfacial area in 

emulsions leads to thermodynamical instability, the system aims to reduce the interface 

by various destabilizing mechanisms eventually leading to a complete phase separation. 

The main destabilizing mechanisms between dispersed droplets are coalescence or 

bursting (Becher 2001).  

According to the liquid phase forming the dispersed phase, single emulsions are divided 

into oil in water (O/W) and water in oil (W/O). Also emulsions of emulsions also exist 

(multiple emulsions) which are generally prepared in a two step procedure where a 

single emulsion is firstly prepared followed by dispersing into an outer continuous 

phase. Multiple emulsions are divided into W/O/W (water in oil in water) and O/W/O 

(oil in water in oil). All types of emulsions have potential applications in food, cosmetic, 

pharmaceutical and chemical industries, and size and size distribution as well as 

formulation of the droplets play an important role in many applications. Therefore, the 

possibility to control the size and size distribution is of great importance (Becher 2001). 

Depending on the mean droplet diameter, emulsions can be divided into nano- (10–

100 nm), mini- (100–1000 nm) and macro-emulsions (greater than 500 nm) and the 

work reported in this thesis will tackle only macro-emulsions. 
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In most cases the ―stable‖ emulsions are caused by the presence of an emulsifying 

agent residing at the liquid-liquid interface. A surfactant (surface active agent) is an 

amphiphilic molecule, i. e. with hydrophilic head and hydrophobic tail therefore each 

part of the molecule is dissolvable in a different phase. By addition of the surfactant: 

the interfacial tension defined by the interfacial free energy G can be considerably 

reduced, surface elasticity can be increased, electric double layer repulsions can be 

increased (if surfactant is ionic) (Schramm 2005). Surface active agents can be 

classified into two main categories: low-molecular weight surfactants and polymeric 

surfactants. Further criteria for classification are, for example, the subdivision by 

charge of the hydrophilic part: non ionic (no charged headgroups), anionic (negative 

charge in the headgroups), cationic (positive charge in the headgroups) or amphoteric 

(both positive and negative charges in the head groups, pH-triggered). But the very well 

known classification is the hydrophilic-lipophilic balance (HLB) concept firstly 

introduced by Griffin (1949).The method is based on the rule established by Bancroft 

(1913 and 1915), which states that the phase in which the surfactant is soluble to a 

higher extent forms the continuous phase. For non-ionic surfactants which are used in 

this thesis the HLB number can be simply calculated from molecular weight of the 

molecule and its hydrophilic portion according to the equation: 

).(
).(20

moleculeentireM
portionchydrophiliMHLB        Eq. 2 

Only materials with HLB numbers in the range 4–6 are suitable as emulsifiers for W/O 

emulsion, whereas only those with HLB number in range 8–18 are suitable for the 

preparation of O/W emulsions (Becher 2001). 

Figure 1 shows the surfactants used in this thesis for stabilizing W/O, W/O/W and O/W 

emulsions. As mentioned earlier surfactant molecules have both hydrophilic and 

hydrophobic parts therefore either in water phase or oil phase a molecule will be partly 

attracted, and partly rejected, therefore it assembles at the interface between the phases 

with the hydrophilic head turned into the water phase and hydrophobic tail oriented 

toward the oil phase. 
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Figure 1 Surfactants used in this thesis: (a) Tween 20 water soluble, (b) Span 80 

and PGPR (Polyglicerol Polyricinoleate) oil soluble surfactants. 

The greatest effect a surfactant can have (Schramm 2005), whether in interfacial 

tension lowering, suspension stabilizing, as a delivery vehicle, or in promoting foam 

stability, is when it is at or above the CMC (critical micelle concentration). Care has to 

be taken when selecting the surfactant for drop by drop emulsification. As shown by 

van den Graaf et al. (2005) surfactants with fast adsorption kinetics are better used in 

order to stabilize the droplet within the droplet formation time. On the other hand the 

presence of surfactant may adversely affect the membrane properties (e. g. wetability). 

2.1 CONVENTIONAL EMULSIFICATION METHODS 

There are many conventional ways for preparing emulsions. In such devices a premix 

emulsion is necessary, which is produced by gentle mixing, followed by 

homogenization which will lead to further reduction of the droplet size. In general, 

homogenization is an intense process: it introduces a large amount of energy into the 

premix emulsion to break up the droplets into smaller ones. Examples of 

H3C CO O CH2

CHOH

CH CHOH

O
CH2 CH (CH2CH2O)20 H

Tween 20 

Span 80 

wateroil

water oil

(а) (b)

wateroil

water oil

(а) (b)

Polyricinoleic acid Polyglycerol

Polyglycerol Polyricinoleate
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homogenization systems that are used in practice are presented in Figure 2 and are 

(Karbstein, Schubert 1995):  

 

Figure 2 Conventional devices for production of emulsions. 

 High-pressure systems (Figure 2 a). Premix is pushed through a small valve at 

high pressure. Due to the high shear and extension rates in the valve, large 

droplets break up into smaller.  

 Rotor-stator systems (Figure 2 (b), (c) and d):  

o Stirring vessels (Figure 2 (b)). The droplets break up is due to the paddle 

stirring. The average input per unit volume is quite low and they are 

suitable for production of coarse emulsions, and mainly used as batch 

systems. 

o Colloidal mill (Figure 2 (c)). Premix is pushed through the gap between 

a cylindrical or conical stator and rotor. Due to the shear and extension 

exerted by the rotor, large droplets break up into smaller ones. A 

laboratory homogeniser uses a very similar principle to this. 

o Toothed disk dispersing machines (Figure 2 (d)). Premix is pushed 

through the gap between several pairs of concentrically arranged disks 

of various design, one of which rotates due to shear and large droplets 

break up. 

 Ultrasound systems (Figure 2 (e)). Premix is placed in a vessel with an ultra 

sound device. Due to the intense turbulence caused by the ultrasound waves, the 

droplets break up into smaller ones.  

Conventional homogenizers, as illustrated above, are very convenient for production of 

small size droplets. For production of larger droplets low shear needs to be applied, but 
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conventional homogenisation in that case produces droplets with a wide size 

distribution. Such a product is often unstable and has unsatisfactory properties. 

2.2 DROP-BY-DROP EMULSIFICATION 

2.2.1 Membrane emulsification 

Membrane emulsification (ME) is a relatively new method (Kandori, Kishi & Ishikawa 

1992) for producing micron-sized emulsion droplets of a predefined size, based on the 

extrusion of the dispersed phase into the continuous phase liquid through a microporous 

membrane. The membranes for membrane emulsification can be divided into two main 

categories: tortuous pore channel membranes (SPG first membranes used for membrane 

emulsification, α-Al2O3, Zr2O3, silica membranes…) and microengeneered sieves (van 

Rijn et al.  1999; Kosvinstev et al. 2005), stainless steel membranes (Schandler & 

Windhab 2006)). The disadvantage of the tortuous membranes is the low flux 

(Vladisavljević & Schubert 2003) due to the thick membrane and a small number of 

active pores while the microengeneered sieves have high flux (Holdich et al. 2010) they 

are thin and the number of active pores is higer than for tortuous membranes. Two 

methods of operation are used for membrane emulsification: direct ME – the passage of 

pure disperse phase through the membrane (Joscelyne & Trägårdh 2000) and premix 

ME (Suzuki et al. 1996) - the passage of coarse pre-emulsified mixture through the 

membrane, or membrane homogenization.  

Literature reviews about membrane emulsification are available (Joscelyne & Trägårdh 

2000; Vladisavljević & Williams 2005) and they all agree that there are several factors 

influencing the final droplet size: shear on the membrane surface, dispersed phase flux, 

surfactant concentration, membrane wettability, membrane pore size (droplet size is 

directly proportional to the membrane pore radius and the proportionality constant 

equals 320 (Peng & Williams 1998; Vladisavljević & Williams 2005)), as well as 

viscosities of both continuous and dispersed phase. In order to detach droplets from the 

membrane surface and allow better control over the droplet size distribution, the shear 

stress is usually controlled at the surface of the membrane.  

The surface shear can be created by recirculating the continuous phase in cross-flow 

(Figure 3 (a)) (Nakashima et al. 2000; Joscelyne & Trägårdh 2000), by vibrating 

(Kelder et al. 2007) or rotating the membrane (Figure 3 (b) and (e)) (Vladisavljević & 

Williams 2006; Schadler & Windhab 2006; Aryanti et.al 2009), by vibrating an element 
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(e.g. a wire or plate) in the continuous phase at a short distance from the membrane 

(Figure 3 (c)) (Hatate et.al 1997; Clair et al. 2003) or by stirring the continuous phase 

using a stirring bar (Figure 3 (f) and (g)) (Higashi & Setoguchi 2000; Ma et al. 1997) or 

a paddle stirrer (Figure 3 (d)) (Kosvintsev et al. 2005; Stillwell et. al. 2007; Dragosavac 

et. al. 2008), oscillating the membrane (Figure 3 (h)) (Holdich et al. 2010) or 

combining the cross-flow with pulsation of the continuous phase (Figure 3 (i)) (this 

thesis). 

 

Figure 3 Formation of surface shear in membrane emulsification. 

Each system has potential advantages and disadvantages and Table 1 lists potential 

advantages and disadvantages of the various techniques used for generation of surface 

shear in membrane emulsification.  

Table 1 Comparison of different techniques for creation of shear stress at the 

membrane surface in membrane emulsification 

 Potential advantages Potential 
disadvantages References 

Cross-flow, 
tortuous 
membranes 

Easy scale-up, constant 
shear stress at the 
membrane surface, 
modules widely 
available 

Droplets can be 
damaged during 
recirculation in pipes 
and pumps, long 
operation times for 
concentrated 
emulsions 

Nakashima et al. 
2000; Joscelyne & 
Trägårdh 2000 
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 Potential advantages Potential 
disadvantages References 

Cross-flow + 
membrane 
vibration 

Additional control over 
droplet detachment, 
decrease in mean 
droplet size as 
compared with a simple 
cross-flow 

Complicated design, 
no evidence that 
droplet size 
monodispersity is 
improved 

Kelder et al. 2007 

Vibration in 
continuous 
phase 

Simple set-up 

Poor control of shear 
stress, suitable only 
for small scale 
applications 

Hatate et.al 1997; 
Clair et al. 2003 

Rotating 
microengineered 
membrane  

Suitable for creation of 
fragile particles and 
viscous emulsions 

Complicated and 
expensive design, 
high power 
consumption 

Vladisavljević & 
Williams 2006; 
Schadler & 
Windhab 2006; 
Aryanti et.al 2009 

Stirring, tubular 
SPG membrane 

Volume of continuous 
phase liquid can be as 
low as several mililitres 

Maximum 
transmembrane 
pressure restricted to 
several bars, non-
uniform shear stress 
at the membrane 
surface, batch 
operation 

Higashi & Setoguchi 
2000; Ma et al. 1997 

Stirring, flat 
microengineered 
membrane 

High injection rates of 
dispersed phase 
through the membrane 

Mean droplet size in 
product emulsions 
above 20 m, batch 
operation, non-
uniform shear stress 
at the membrane 
surface 

Kosvintsev et al. 
2005; Stillwell et. al. 
2007; Dragosavac 
et. al. 2008 

Oscillating 
candle 
microengineered 
membrane 

High productivity, easy 
scale up 

Need for removal of 
produced droplets if 
high amounts are 
produced 

Holdich et al. 2010 

Cross-flow + 
pulsation of the 
continuous 
phase tubular 
membrane 

High productivity, easy 
scale up 

Too long membrane 
can vibrate and 
therefore reduce the 
uniformity of the 
dropelts 

This thesis 

The main application areas of membrane emulsification are production of particles such 

as: double emulsions (Vladisavljević et al. 2004; Vladisavljević et al. 2006b; van der 
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Graaf et al. 2005; Surh et al. 2007), creation of droplets for biphasic enzymatic 

reactions (Giorno et al. 2003), and production of solid microparticles (Vladisavljević, 

Williams 2005), such as solid lipid microcapsules (Kukizaki, Goto 2007), polymeric 

microspheres (Ma et al. 2003), silica particles (Fuchigami et al. 2000), and gel 

microbeads (Zohou et al. 2009). This thesis will tackle production of O/W, W/O/W, 

W/O emulsions and will also explore the possibility of droplets solidification. 

2.2.2 Microfluidic and Microchannel emulsification 

Microfluidic devices such as T-, Y- shaped microchannel junctions (see Figure 4 (a) 

and (b) respectively), in which a cross-flow is used, and flow-focusing devices (Figure 

4 (c) and (d)) in which co-flow of phases exerts extensional shear have been reported 

for production of highly uniform droplets. In microfluidic devices it is the shear that 

governs the droplet detachment as in the case of membrane emulsification. The great 

advantage of microchannel junctions as well as flow-focusing devices is that they 

provide a controllable generation of core-shell droplets and multiple emulsion droplets 

with a controlled number of inner droplets in the outer drop (Vladisavljević et al. 2010).  

Microchannel emulsification emerged as a relatively new technique for preparation of 

monodisperse emulsions where the droplets are spontaneously created. Kawakatsu et al. 

(1997) reported use of grooved microchannel arrays (Figure 4 (e)) while several years 

later Kobayashi (2002) reported use of straight through microchannel arrays. The 

difference from membrane emulsification is that it is not the shear forces that governs 

the droplet size but the microchannel geometry, and to a lesser extent the to-be-

dispersed-phase flow (Van Dijke et. al, 2008). Interfacial tension is used as a driving 

force for droplet formation; and less energy (a factor of 10–100 less) as compared to the 

conventional techniques is needed (Sugiura et. al, 2001), for the production of various 

products such as O/W emulsions, W/O emulsions, lipid microparticles, polymer 

microparticles or microcapsules (Sugiura et. al, 2004). The disadvantage of the systems 

is a problem with scaling up and industrial application, but on the other hand the 

droplets produced are highly uniform as can be seen in Figure 5. 
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Figure 4 Some examples of microfluidic devices which are capable of producing 

monodisperse droplets. (a) T-Junctions (b) Y-Junctions (c) Flow–focusing 

microcapillary device (Vladisavljević et al.  (2010)) (d) Co-flow system 

(droplet growth (a) and separation (b)) (Umbanhowar et al.  2000) (e) 

Grooved microchannel (Sigura et al. , 2004) (f) Straight-through 

microchannel device with asymmetric arrays. (Vladisavljević & 

Dragosavac 2010, Unpublished material.) 

 

Figure 5 Emulsions produced by straight through microchannels with asymmetric 

arrays (continuous phase 2% Tween 20): (a) O/W – O-sunflower oil, (b) 

W/O/W – O-5% PGPR in pumpkin seed oil. CV<4%. (Vladisavljević & 

Dragosavac 2010, Unpublished material). 

2.2.3 Drop by drop production of W/O/W emulsions 

Multiple emulsions (Seifriz 1925) have attracted significant interest in the past several 

decades. They have potential applications in the pharmaceutical industry, such as 

carriers of active pharmaceutical ingredients, e.g. in drug delivery systems (Nakano 

2000); cosmetics, e.g. deposition of water soluble benefit agents onto skin (Vasudevan 

& Naser 2002); and the food industry, e.g. encapsulation of flavours (Merchant et al.  

Dispersed phase
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1998; Dalgleish 2006), production of food with lower fat content (Okonogi et al.  1994) 

and protection of sensitive and active food components from a local harsh environment 

(Daisuke et al. 2004). Multiple emulsions are very suitable for encapsulation of 

hydrophilic bioactive components, such as: vitamin B (Owusu et al. 2004), 

immunoglobulin (Chen et al. 1999), insulin (Cournarie et al. 2004) and amino acids 

(Owusu et al. 2004; Weiss et al. 2005), and they are also useful for preparation of 

delivery systems that contains lipophilic encapsulants, such as flavour (Cho & Park 

2003) and both lipophilic and hydrophilic bioactive components in the same system 

(Owusu et al. 2004).  

Multiple emulsions are complex systems where both water-in-oil (W/O) and oil-in-

water (O/W) emulsion types exist simultaneously (Muschiolik 2007). Water-in-oil-in-

water (W/O/W) emulsions (Figure 6) contain small primary water droplets within larger 

oil droplets while the oil droplets are dispersed within the secondary continuous water 

phase. They are usually prepared in a two step procedure using conventional 

homogenization technology. The first step is preparation of the primary W/O emulsion 

using an oil soluble surfactant under high-shear conditions to obtain small droplets 

(typically less than 1 μm). It is necessary to expend significant energy in this system to 

provide large interfacial energy associated with the production of small droplets. In the 

second step of the emulsification process, when the W/O/W droplets are produced, 

controlled shear needs to be applied as there is a requirement not to rupture the primary 

emulsion (Garti 1997), which would lead to a lowering of the encapsulation efficiency. 

Also, many ingredients suitable for multiple emulsions are temperature and shear 

sensitive, and application of high shear would lead to deterioration in their properties 

(van der Graaf 2005). 

If low shear needs to be applied in the second stage of emulsification, in order to 

prevent breakage of inner W/O droplets, conventional homogenisation in agitation 

devices, rotor-stator systems or high pressure homogenizers provides large and non-

uniform W/O/W droplets. Such a product is often unstable and has unsatisfactory 

properties. A narrow droplet size distribution can be obtained if the energy density (a 

measure of the energy input per cubic metre) in the space between rotor and stator is 

well controlled (Schubert, Armbruster 1992), which is hard to achieve.  
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Figure 6 Schematic representation of multiple W/O/W emulsions.  

Membrane emulsification process applies low mechanical stress (Schröder et al. 1998) 

or even no shear (Kosvintsev et al. 2008), and has low energy input compared with 

conventional emulsification methods providing a better control of droplet size 

representing a very good solution for production of multiple emulsions (especially if 

used for second emulsification stage). Cross-flow ME, where dispersed phase is pressed 

through the microporous membrane while continuous phase flows along the membrane 

surface, is not convenient for production of larger droplets due to the need to recycle 

the dispersion over the membrane surface leading to damage to the previously formed 

droplets within the pump and fittings of the system (Gijsbertsen-Abrahamse et al. 2004). 

Membranes with interconnected pores, like the Shirasu Porous Glass (SPG) and α-

aluminium oxide (α-Al2O3) membranes are not appropriate for production of droplets 

greater than 60 µm (Vladisavljević et al. 2004) due to their small maximum pore size. 

Also due to large thickness of the membrane and low percentage of active pores 

(Schröder, Schubert 1999), flux through the membrane is very low, usually up to 

0.1 m3 m−2 h−1. The thinner the membrane, the larger the flux through the pores, 

resulting in a higher droplet production rate (Gijsbertsen-Abrahamse et al. 2004; 

Schröder & Schubert 1999). Flux through SPG membrane can be increased to above 

200 m3 m−2 h−1 using premix membrane emulsification with a size distribution span of 
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0.3 (Vladisavljević, Shimizu & Nakashima 2004). New developments in nano- and 

micro-engineering produced microsieves (van Rijn et al.  1999) provide higher droplet 

production in direct ME (Wagdare et al.  2010).  

Another method of producing W/O/W emulsions is by extruding O/W emulsion 

through microfabricated channel arrays (Kawakatsu, Trägårdh & Trägårdh 2001; 

Lambrich et al.  2004; Sugiura et al.  2004). In 1997 the Nakajima group first 

demonstrated the controlled formation of micrometre-sized oil-in-water (O/W) and 

water-in-oil (W/O) emulsions in a silicon microchannel array device (Kawakatsu, 

Kikuchi & Nakajima 1997). A higher degree of control over the structure of resultant 

double emulsions can be achieved using microfluidic devices (for example, ability to 

create core/shell droplets (Utada et al.  2005)), but at very small production scales. The 

two most commonly used microfluidic geometries are T-junction (Thorsen et al. 2001) 

and flow focusing channel (Gañán-Calvo & Gordillo 2001) and both geometries were 

used for production of multiple emulsions. Okushima et al.  (2004) generated 

monodisperse double emulsions with 100% entrapment efficiency and a controlled 

number of inner droplets encapsulated in each larger droplet using two T-junctions in 

series with alternating wetabilities. Chu et al.  (2007) produced triple emulsions using 

capillary microfluidics in hydrodynamic flow focusing system, but again the droplet 

throughput was very small due to the fact that all droplets were produced by one 

channel. The main advantage of membrane systems is the fact that the droplets are 

formed simultaneously from thousands, or even hundreds of thousands, of pores.  

2.2.4 Drop by drop production of silica particles 

Recently the production of porous inorganic materials with high surface area and 

internal porosity has attracted lot of attention. Silica is an inorganic material that does 

not swell in solvents, has very good mechanical and thermal stability as well as good 

dispersion characteristics in various solvents. Colloidal silica with a mean particle size 

ranging from about 5 to 100 nm has a wide range of applications as thickener, 

adsorbent, molecular sieve, abrasive, additive, catalyst support, coating film or glass 

precursor (Iler 1979). In addition to colloidal silica, there is significant commercial 

interest in porous spherical silica particles for use in analytical and preparative columns, 

requiring particle diameters greater than 1 µm. Such particles, if additionally 

functionalized, can have potential application as ion exchange (Jal, Patel & Mishra 
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2004), biochemical sensors (Buranda et al.  2003), packing materials in 

chromatography columns (Ide et al.  2010), drug delivery systems (Barbé et al.  2004), 

and catalysts (Suzuki et al.  2007). Particle size and pore structure of silica particles 

directly influences mass transfer rate to, and from, the silica particle and its control is 

important in processes such as ion exchange, catalysis, chromatography, and drug 

delivery. Silica particles for larger-scale use, as scavengers in pharmaceutical 

processing or column applications, including ion exchange and adsorption, require 

much larger particle size: up to 100 µm in diameter. In these applications uniform 

spherical particles is preferred to angular crushed solids, to minimise pressure drop and 

provide reproducible behaviour. 

Silica particles can be produced from organic silicon compounds, e.g. siliciumalkoxide, 

such as tetraethyl or tetramethyl ortosilicate (TEOS and TMOS) or inorganic materials 

(sodium silicate). Sodium silicate is the cheapest source of silicon for silica particles. 

To produce silica gel sodium silicate solution can be diluted with an acid to form silicic 

acid (Si(OH)4) which then through condensation polymerisation loses water and creates 

–Si–O–Si – bonds. Upon drying the formed hydrogel shrinks to a xerogel. A surfactant 

can be dissolved in the silica source to additionally tailor the internal gel structure 

(surfactant templating method) (Lin, Mou 2002). The characteristics of a produced 

dried gel are determined by the physical and chemical conditions at each step of the 

process of preparation. 

To form spherical silica particles acidified sodium silicate solution can be dispersed 

into the immiscible organic phase liquid, water in oil (W/O) emulsion route (Titulaer, 

Jansen & Geus 1994), or spray dried (Iler 1979). In the W/O emulsion route, the 

droplets of sodium silicate solution are dispersed in an appropriate immiscible organic 

solvent either by bulk emulsification, or by drop-by-drop emulsification. The dispersed 

droplets actually represent microreactors in which condensation polymerisation occurs. 

Anderson et al.  (2007) used the W/O emulsion route in combination with solvent 

evaporation to produce spherical silica particles. They applied stirring to produce the 

emulsion and reported particles of up to 40 µm with a relatively broad size distribution. 

Size and uniformity of the silica particles produced depends largely on size and 

uniformity of the silica precursor droplets and, therefore, the controllable drop-by-drop 

emulsion formation is preferred. Several single channel microfluidic technologies have 

been reported for production of spherical silica particles: Chen et al.  (2008) injected a 

dispersed aqueous phase (a mixture of silica sol, acrylamide and initiator) through a 
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needle into a cross-flowing oil phase to produce porous silica particles by calcination of 

polyacrylamide-silica composite particles. Carroll et al.  (2008) injected silica precursor 

(acidified TEOS solution with triblock copolymer) using a flow focusing oil, while 

Chokkalingam et al.  (2010) fabricated silica particles by self-synchronized pairwise 

production of droplets of different solutions (acidified TEOS solution and ammonia 

solution) using a microfluidic cross junction followed by in situ droplet merging. 

Produced particles were above 10 µm and very uniform, with a coefficient of variation 

of less than 5%, but reported productivity was below 0.02 mL min-1. Microchannel 

emulsification (Kobayashi, Nakajima & Mukataka 2003), where the dispersed phase is 

pressed through uniformly sized microchannel arrays fabricated on a silicon microchip 

into the continuous phase, can be used for fabrication of uniform droplets. The 

disadvantage of this process is low productivity which does not exceed 0.025 mL min-1 

for grooved-type plate and 1 mL min-1 for straight-through microchannel plate. 

Productivity of the process is crucial in industrial applications and, therefore, 

microfluidic devices or microchannel emulsification are not promising due to their 

limited ability to scale for production purposes. 

Production of spherical silica particles using W/O emulsion route and membrane 

emulsification has been reported by several authors (Table 2) but membranes with 

tortuous pores were used. These membranes can be easily fouled by the precursor 

solution and the reported mean particle size did not exceed 5 m. These sizes may be 

appropriate for analytical column use, but for larger scale ‗process‘ column applications 

particle diameters between 10 and 100 m are desirable. Cross-flow membrane 

emulsification, where the shear is induced by the recycled flow of continuous phase, is 

not convenient for the production of droplets larger than 20 µm, due to droplet break up 

in the pump and fittings. 
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Table 2 Silica particles produced using W/O emulsion route and membrane 

emulsification (DP: dispersed phase, CP: continuous phase). 

Membrane 
(µm) 

Particle 
size (µm) Emulsion formulation 

Post-
emulsification 
treatment 

Ref. 

Anodic porous 
alumina 

 0.125 
0.05-0.2 

DP: 1 M Na2SiO3 in water 

CP: 2 wt % Tween 85 in 
mixture of hexane and 
cyclohexane (1:4 by 
volume) 

Emulsion 
mixed with 4 
wt % aqueous  
(NH4)2CO3 
solution 

(Yanagishita 
et al.  2004) 

SPG  /  1.5 

Silica 
monolithic  /  2 

Up to 3 

DP: Colloidal silica (SiO2: 
20%; mean diameter of 
silica beads: 10–20 nm) 

CP: 1 wt  % Span 20 in 
kerosene 

Emulsion 
mixed with 0.5 
M aqueous  
NH4Cl solution 

(Hosoya et 
al.  2005) 

SPG 

0.982.7  
Up to 1 

DP: Na2SiO3 + sulfonic 
acid in water, final pH 2 

CP: 210 wt  % PE64 in 
toluene 

Not given 

(Kandori, 
Kishi & 
Ishikawa 
1992) 

Sol-gel derived 
macroporous 
glass 

SPG 

Pore size not 
given 

Up to 3 
DP: Colloidal silica 

CP: Span 20 in toluene 

Dripping 2M 
NH4OH into 
emulsion 

(Fuchigami, 
Toki & 
Nakanishi 
2000) 
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2.3 ION EXCHANGE AND SEEDED MICROFILTRATION 

2.3.1 Ion exchange 

There are many definitions for ion exchange resins, the most general one is: 

Ion exchange resins are insoluble materials carrying reversibly fixed ions. These ions 

can be stoichiometrically exchanged for other ions of the same sign (Zagorodni 2007).  

Ion exchange polymers, are cross-linked polymers carrying fixed functional groups or 

sites (Zagorodni 2007). 

The most basic classification of ion exchange resins distinguishes cation and anion 

exchangers. If an ion exchanger bears negatively charged functional groups and carry 

exchangeable cations they are called cation exchangers, but if they carry exchangeable 

anions then they are called anion exchangers. 

The largest group of ion exchangers available today is synthetic organic resins and they 

are supplied as beads. Their matrix is a flexible network of hydrocarbon chains and 

within that network at different positions fixed ionic charges exist. They are commonly 

prepared from styrene and different levels of the cross-linking agent divinyl-benzene, 

but there are also phenolic and acrylic resins. The amount of cross-linking agent 

regulates mechanical strength (higher amount of cross-linking agent higher mechanical 

strength), permeability, water retention capacity (swelling) and total capacity of the 

resin. 

Conventionally, the amount of cross-linking agent is expressed as percentage of cross-

linking reagent introduced in a reaction mixture at the synthesis stage. For example 

Dowex 50W-X8 contains 8% of divinyl-benzene molecules. But cross-linking process 

can never be perfect so it can happen that cross-linking molecule gets connected only to 

one end of polymeric chain and that it is not in a good position to be connected to 

another chain. Cross-linking is not perfect but it is sufficient to consider the material 

homogenous.  

The main advantages of synthetic organic ion-exchange resins are (Inglezakis, 

Poulopoulos 2006): 

 high capacity 
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 wide application 

 low cost for production 

The ion exchangers have found a large implementation in many different processes, but 

their main application is the separation of dissolved ions. Zagorodni (2007) gave 

following classification of ion exchange processes: 

 Purification of solvent – performed when the solvent is the desired product, 

and all the dissolved ions are considered as contaminants. The raw material is 

usually a solution of one or more ionic substances. A typical example is the 

water purification for the electronic industry. The requirement is a zero-content 

of dissolved substances, i.e. all ions present in the raw solution must be 

removed and disposed. 

 Purification of solution is performed when the product is a solution of certain 

composition and the raw material is the same or similar solution but containing 

an undesirable solute. A typical example is the decontamination of an industrial 

waste stream by removal of one or more toxic substances. Another example is 

the removal of toxic substances from blood during a haemodialysis treatment. 

 Extraction is performed when a dissolved compound has to be extracted from a 

solution and the exhausted solution has no value. The typical example is the 

extraction of gold from seawater. The product (gold) is highly valuable while 

the treated seawater can be disposed back to the sea without any additional care. 

 Separation is obviously applicable to all the described cases. However, the case 

of two products of interest – an ionic substance or a mixture of target ions and a 

solution or a solvent – can be named only as separation. The term separation 

also includes cases where several ions of interest are obtained as different 

products. A typical example is obtaining different amino acids from a mixture 

prepared by hydrolysis of proteins. Another example is the classical analytical 

ion exchange chromatography in which all compounds should be separated 

prior to a final detection procedure. 

Application of the ion exchanger determines type of ion exchange material and method 

for the practical application. When we are talking about ion exchangers some of the 

most important properties to be considered in use of ion exchange resins are: 
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 Complete insolubility 

 Resistance to oxidation 

 Heat stability 

 Exchange capacity 

 Exchange rates 

 Resin volume changes 

 Physical stability (the most important) 

The revival of interest in inorganic exchangers began in the early 1960s. This was 

associated with the fact that ion exchangers with a fairly high thermal stability and 

resistance to ionising radiation were needed for many branches of industry; furthermore, 

an extremely high partition coefficient was observed in certain inorganic sorbents even 

for alkaline earth metal cations, which are comparatively difficult to separate. After the 

synthesis by Clearfield and Stynes (1964) of the cryptocrystalline acid zirconium 

phosphate, which is now one of the most familiar inorganic ion exchangers, the stream 

of studies devoted to ion exchange on inorganic materials increased significantly.  

Natural inorganic exchangers can be classified into three main categories: zeolites, 

oxides and clay minerals. Synthetic inorganic exchangers can be classified into the 

following categories: zeolites, hydrous oxides, acidic salts of polyvalent metals, salts of 

heteropoly acids, hexacyanoferrates and other ionic compounds (Baacke, Kiss 1990; 

Lieser 1991; Weiss 1991). Inorganic exchangers have interesting properties such as 

resistance to decomposing in the presence of ionizing radiation or at high temperatures, 

which have made them interesting for the treatment of nuclear waste. Some studies of 

natural zeolites and some hydrous oxides have been made for their profitable use in 

waste treatment. Clinoptilolite and chabazite have been investigated for the separation 

of transition metals from mixed metal contaminated effluents (Ouki, Kavannagh 1997), 

also phlogopite mica and mordenite have been studied for Cs and Sr sorption (Liang, 

Hsu 1993; Komarneni, Roy 1988). Clinoptilolite has been extensively used in 

radioactive waste decontamination (Hutson 1996). 

In recent years, there has been pronounced tendency to utilize mechanically stable 

synthetic or natural solid matrices by immobilization of organofunctional groups in 

many applications, such as chemically bonded phase in chromatography, extraction of 

cations from aqueous and non-aqueous solvents, catalytic or ion-exchange reactions, 
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electronics, ceramics and also in bioengineering. The systematic use of immobilization 

of organofunctional groups has increased in the past three decades, mainly on silica, 

because this support offers pronounced advantages over other organic/inorganic 

supports as listed below (Jal, Patel & Mishra 2004): 

 Immobilization on silica results in great variety of silylating agents, allowing 

pendant functional groups in the inorganic framework  

 Attachment is easier on silica surface than on organic polymeric supports, 

which have a high number of cross-linking bonds, requiring hours to reach 

equilibrium for surface activation  

 Silica gel being the most popular substrate for surface studies because it is the 

first commercially available high specific surface area substrate with constant 

composition, enabling easy analysis and interpretation of results  

 Silica gel has high mass exchange characteristics and no swelling 

 Silica support has great resistance to organic solvents 

 Silica has very high thermal resistance 

2.3.2 Sorption and ion exchange 

The term ―sorption‖ includes the uptake of gaseous or liquid components of mixtures 

from external and/or internal surface of porous solids. On the other hand ion 

exchangers take ions from solution and release an equivalent amount of other ions with 

same sign. Ion exchange is a similar process to sorption, because there is a mass 

transfer of the species from the liquid phase to the solid in both cases and they are 

basically diffusion processes. Although ion exchange is similar to sorption since a 

substance is captured by a solid in both processes, there is a characteristic difference 

between them: ion exchange is a stoichiometric process in contrast to sorption. It means 

that in ion exchange process, for every ion that is removed, another ion of the same sign 

is released, while during the sorption no replacement takes place (Helfferich, 1995). 

2.3.3 Mechanism of ion exchange process 

The following steps that take place during the ion exchange (Figure 7) and the 

slowest of these steps will be the limiting step for the ion exchange (Zagorodni 

(2007)): 
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 The first step is diffusion of the first ion form the bulk of the solution towards 

the phase film (process 2 in Figure 7) this step is easily manipulated because 

diffusion transport in the bulk solution can be assisted with agitation. 

 

Figure 7 General mechanism of the ion exchange process. (1) dissociation of the 

dissolved complexes containing first ion; (2) diffusion of the first ion from 

solution towards the inter-phase film; (3) diffusion of the first ion through 

the inter-phase film; (4) diffusion of the first ion inside the material phase; 

(5) association between the first ion and functional group; (6) dissociation 

of the associates between the second ion and functional group; (7) 

diffusion of the second ion inside the material phase towards the surface; 

(8) diffusion of the second ion through the interphase film (9) diffusion 

and random distribution of the second ion in the solution; (10) formation 

of the second ion complex in the solution (Zagorodni 2007). 

 Next step is diffusion of the ion through the Nernst film (Concept of diffusion 

layer – originally developed by Nernst. The convection of the solution by 

turbulent or laminar flow recedes continuously from the bulk solution to the 

solid surface. Film concept replaces this situation by a zone of defined thickness 

―film thickness‖ without any convection and with a sharp boundary separating it 

from the complete agitated solution. Quite commonly Sherwood dimensionless 
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number 
liqD
RkSh 2

  is used for describing the film thickness) – process 3. No 

convection can be established here. The mass transfer is solely defined by 

mobility of the ion. The film thickness can be reduced by increasing the 

agitation speed in the solution, but it can never be completely removed. 

 When the ion has passed the boundary between the film and solid, the ion 

diffuses inside the phase of material (process 4). This is controlled only by 

properties of the ion and material. The only driving force is the concentration 

gradient. 

 And finally there is bonding of the ion on to the resin (process 5) where the 

chemical reaction takes place. 

 Processes from 6-10 are associated with the leaching out of the ions attached on 

the resin. 

2.3.4 Equilibrium 

A common way to represent equilibrium in sorption and ion-exchange systems is the 

equilibrium isotherm. The equilibrium isotherm represents the distribution of the sorbed 

material between the sorbed phase and the solution phase at equilibrium. The isotherm 

is characteristic for a specific system and a particular temperature. 

The main difference between sorption and ion exchange is that while there is only one 

isotherm at a specified temperature for sorption, more than one isotherm can exist at a 

specific temperature for different normalities of the solution in the exchange of the ions 

of different valences due to the concentration – valence effect (Inglezakis & 

Poulopoulos 2006 and Helfferich 1995). Chemical equilibrium in processes of sorption 

and ion exchange is represented with isotherm where sorbates are simultaneously 

sorbed and desorbed from the surface at constant temperature and pH. Time taken to 

equilibrium regarding the ion exchangers depends on the characteristics of the ion 

exchanger and ion that is sorbed on the ion exchanger. 

At constant pH and temperature the single solute sorption can be described by the 

function: 
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)(Cfq           Eq. 3  

where q is the sorbate concentration on the solid phase and C is the sorbate 

concentration on the liquid phase. There are many equations of sorption isotherms 

(Limousin et al.  2007) but the most common and the most used one is the Langmuir 

isotherm. 

2.3.4.1 Langmuir isotherm 

Sorbents that exhibit the Langmuir isotherm behaviour are supposed to contain fixed 

individual sites, each of which equally sorbs only one molecule, forming thus a 

monolayer, namely, a layer with the thickness of a molecule: 

eq

eq

m

e

bC
bC

q
q




1
         Eq. 4 

where qe is the sorbate concentration on the solid phase in equilibrium with the sorbate 

concentration in the liquid phase at the interface Ceq, qm is the maximal amount of 

sorbate that can be sorbed on the sorbent and it corresponds to the concentration of 

sorbate at the interface at monolayer coverage and represents the highest value of q that 

can be achieved as C is increased. b is a Langmuir constant and it is related to the 

energy of sorption which increases as the strength of sorption increases.  

The parameter of Hall, for predicting the exchange efficiency of the process, is 

determined by using the following equation (Hall et al. 1966): 

ox

L bC
R




1
1          Eq. 5  

where Cox is the initial metal ions concentration in the solution. Also when the 

dimensionless sorption capacity (q/qo) is plotted against the dimensionless 

concentration (C/Cox) for different RL values, the shape of isotherm can be developed 

and used to predict if the process of sorption is favourable or unfavourable. The effect 

of RL can be interpreted according to the classification in Table 3. 
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Table 3 Effect of RL on exchange efficiency of ion exchanger 

Value of RL Exchange efficiency 
RL>1 Unfavourable 
RL=1 Linear 
0<RL<1 Favourable 
RL=0 Irreversible 

2.3.5 Column techniques 

The two most common methods of studying ion exchange are batch operation and 

fixed-bed column operation. Batch operation (ion exchanger and solution are simply 

mixed together and agitated) is rarely used in industrial processes, but it is well suited 

for laboratory experiments due to the simplicity of the experimental apparatus (Lehto, 

Harjula 1995). The main disadvantage of batch process is that it cannot separate the 

ions completely and that the process itself is discontinuous and requires phase 

separation at the end of the process. 

On the other hand fixed-bed columns have several advantages: there is a constant 

removal of counter ion that is released during the ion exchange which enhances the 

process (counter ion can be attached back onto the ion exchanger), ions that have to be 

retained on ion exchanger move with the solution through the column and coming in 

contact with fresh portions of the material so the driving force for sorption of ions onto 

ion exchanger increases while the concentration of ions fall through the fixed-bed 

column. Fixed-bed process can be described as a large number of successive batch 

operations in series (Lehto, Harjula 1995). 

2.3.6 Membrane filtration 

Membrane filtration is defined as a pressure- or vacuum-driven separation process in 

which particulate matter larger than a certain size is rejected by an engineered barrier 

primarily through a size exclusion mechanism. Two most important parameters are: 

water flux and rejection. In recent years use of membrane processes for treatment of 

waste waters has been widely investigated.  

Depending on the pore size, membrane processes can be divided into: 

 Microfiltration – MF, 
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 Ultrafiltration – UF, 

 Nanofiltration – NF and 

 Reverse osmosis – RO. 

Separation may be based on exclusion and diffusion or on sieving mechanisms when 

particles bigger than pore diameter of the membrane are retained by the membrane. The 

difference between four membrane processes is presented in Table 4. 

Table 4 Comparing Four Membrane Processes (Wagner 2001). HMWC – high 

molecular weight component, LMWC – low molecular weight component. 

 Microfiltration 
(MF) 

Ultrafiltration 
(UF) 

Nanofiltration 
(NF) 

Reverse 
osmosis 
(RO) 

Pore size (µm) >0.1 0.1 – 0.001 <0.002 <0.002 
Approximately 
molecular 
weight 

>100,000 >10,000 <20,000 <1000 

Rejection 

Suspended 
solids, 
emulsions, 
bacteria, red 
blood cells, 
blue indigo 
dye. 

Macro 
molecules, 
polysaccharides, 
colloidal silica, 
viruses, 
gelatine, milk 
proteins. 

HMWC, mono-, 
di- and 
oligosaccharides, 
multivalent ions. 

HMWC, 
LMWC, 
aqueos salt, 
lactose 
(sugars), 
monovalent 
ions. 

Operating 
pressure (bar) <2 1 – 10 5 – 35 15 – 150 

Flux (L m-2 h-1) >100 <100 <100 <10 

A common problem that is related to membrane filtration is fouling of the membrane. 

During the filtration there is a sharp decline of flux compared to initial clean water flux. 

After this sharp fall of flux, the rate of decline reduces until the steady state is reached. 

This shows that there is high fouling rate at the start of the filtration and that 

equilibrium fouling layer thickness may be reached when no further growth of the 

thickness of the fouling layer occurs later. There are two fouling mechanisms: internal 

and external (Tarleton & Wakeman 1993). During internal fouling fine particles from 

the feed stream are captured into pores which can lead to blocking of the pores. This 

generally happens with filters with significant depth and open pore structure such as 

conventional microfiltration membranes (Figure 8). 
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Figure 8 Photograph and pore size distribution of commercial metal microfiltration 

membrane (Holdich et al. 2003). 

During external fouling cake is formed on the membrane surface. As a result of 

membrane fouling resistance to permeate flow increases and the flux reduces. Darcy‘s 

law represents how the flux is reduced if the resistance is increased: 

)( fmL RR
PJ






        Eq. 6 

where J is transmembrane flux, Rm is membrane resistance, Rf is total fouling resistance 

and ΔP is applied transmembrane pressure and μL is viscosity of the suspending fluid. 

According to Holdich et. al. (1998) a membrane that contains uniform pores, not 

connected to each other and pass directly from one side to another side of the 

membrane can be used to reduce internal clogging/fouling. A ―surface microfilter‖ such 

as this does not require a tortuous flow channel to achieve its pore size rating (Figure 9). 

The reason to use the slots and not the circular pores is more likely clogging of the 

circular pores (Holdich 2002). 
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Figure 9 Photograph and pore size distribution of ―surface microfilter‖ (Holdich et 

al. 2002). 

2.3.7 Seeded microfiltration 

From Table 4 it can be seen that RO and NF are capable of retaining metal ions from 

aqueous streams while UF and MF are not capable of retaining the metal ions due to the 

nature of their membranes where pore size is bigger than the size of the hydrated metal 

ion. In order to use UF and MF for separation of metal ions precipitation or binder 

enhancement are required in order to separate metal ions.  

If UF or MF can be used for separation of metal ions from a solution that would mean 

that a lower pressure can be used instead of a high pressure when RO or NF is used, 

and such change would lead to lowering of operating costs. Several hybrid membrane 

processes based on the use of binders/sorbents (chelating agents, micelles, ion exchange 

resins, powdered activated carbon, etc.) together with UF or MF have been developed 

and reported. This process is called ―seeded filtration‖. Michaels (1968) reported for 

the first time removing metal ions from aqueous streams by binding metal ions to 

dispersed material coupled with ultrafiltration process. The main advantage of this 

separation method is the high efficiency and a lower cost of the process compared with 

classical sorption in a fixed bed system. The sorbents can be used as very fine particles 

that increase the interfacial area and the rate of the process is enhanced (Nadav 1999).  
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3. MODELLING 

3.1 MEMBRANE EMULSIFICATION 

3.1.1 Dispersed droplet size modelling 

There are numerous forces acting on the droplet forming at the pore as a result of the 

membrane emulsification. These forces can be divided in two main groups: (a) forces 

holding the droplet and (b) forces detaching the droplet from the pore (Figure 10).  

 

Figure 10 Forces acting on the droplet during its formation at a pore.  

Capillary force Fca (Eq. 7) is the main force that keeps the droplet on the membrane 

surface. Main detaching force is a viscous drag force Fd, (Eq. 8) induced by the 

continuous phase flow, while other detaching forces acting on the forming droplets are: 

static pressure difference force Fneck cased by the pressure difference between 

continuous and dispersed phase, dynamic lift force FL, caused by the laminar velocity 

profile, inertial force FI, induced by the mass of the dispersed phase flowing out of the 

pore (which during generation of the 100 µm droplets is 3 orders magnitude less than 

the shear drag force, and for 200 µm droplets 2 orders of magnitude). Buoyancy force 

Fb also exist ( )(3
6

1
oilb gxF   which is not necessarily detaching force and can be 

neglected for the droplets smaller than 500 µm (Kosvintsev et al. 2008), which occurs 

due to the density difference between dispersed and continuous phase (Peng & 

Williams 1998, Joscelyne & Trägårdh 2000, Schröder, Behrend & Schubert 1998). 
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 pca rF 2          Eq. 7 

2
2

2
9 pd rxxF 








         Eq. 8 

where rp is the pore radius,  is the shear stress,  is the interfacial tension and x is the 

formed droplet diameter. 

The general equation used in this study was introduced in the previous work 

(Kosvintsev et al.  2005). The initial, and simplest, approach is where the droplet 

diameter is calculated from a force balance of two main forces: the capillary force Fca 

and the drag force Fd acting on a strongly deformed droplet at a single membrane pore 

dca FF           Eq. 9 

At the moment the detaching forces prevail droplet is detached from the membrane 

surface. Rearranging the Eq. 9 substitution and solving for a quadratic gives the 

resulting droplet diameter 





3

481218 2224422
ppp rrr

x


       Eq. 10 

The shear stress at the membrane surface varies, , with the radial distance from the 

centre of the membrane, rc, according to the equations (Nagata 1975):  

For rc < rtrans  



1825.0 r      Eq. 11 

For rc > rtrans  



1825.0

6.0











r
rr trans

trans
    Eq. 12 

For the simple Dispersion Cell (Figure 14), the shear stress  at the base of a paddle 

stirred vessel must be determined in order to predict the droplet size (Eq. 10). It can be 

argued that the appropriate shear stress to use is either the average, or maximum, value. 

The maximum value of the shear stress τmax determined from a stirred system, such as 

the Dispersion Cell, is given from knowledge of the location of the transitional radius 

rtrans along the paddle blade radius 
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


1825.0max transr        Eq. 13 

The transitional radius, rtrans, is the point at which the rotation changes from a forced 

vortex to a free vortex 
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trans n
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where bh is the blade height, T is the tank width, D is the stirrer width and nb is the 

number of blades. The Reynolds Number is defined by Re = ρωD2/(2πμ), where  is 

the continuous phase density,  is the angular velocity and  is the viscosity of 

continuous phase. Figure 11 shows change of local shear stress on membrane surface at 

different rotation speeds. 

 

Figure 11 Local shear stress at different rotation speeds. Dash dot dash line connects 

transitional radiuses. For the calculations boundary condition is assumed 

to be no-slip at the wall of the cell. 

The boundary layer thickness,  is defined by the equation (Landau & Lifshits 1959) 




           Eq. 15 
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where  is angular velocity. The approach based on Eqs. (10)-(15) will be called Model 

A. The alternative approach is to use the average shear in Eq. (10) for the stirred cell, 

where the average shear is given by (Dragosavac et al. 2008) 
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  Eq. 16 

where Dm is the effective diameter of the membrane, i.e. the diameter exposed to the 

continuous phase. For the experimental equipment used, Dm=3.3 cm. Use of Eqs. (10), 

(14) and (15) will be called Model B. 

However, Eq. (10) does not take in to account the ‗neck‘, which exists between the 

forming droplet and the membrane pore. This can be included by introducing another 

force: the so-called Static force, Fneck. As shown previously, there is a static pressure 

difference due to pressure between the inside and outside of the droplet which can be 

expressed as 

2

4
4

pneck d
x

F 
         Eq. 17 

where the neck diameter is approximated to the membrane pore diameter (dp). The 

force due to interfacial tension (capillary force) is 

 pCa dF           Eq. 18 

It is possible to modify the capillary force in order to consider the neck 











x
d

dFF p
pneckCa 1        Eq. 19 

When the droplets are in a region close to the pore diameter, the expression considering 

the neck underestimates the net capillary force, and the correction for this neck static 

pressure is no longer applicable. In such cases it is preferable to use the uncorrected 

expression, Eq. (18).  
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Hence, it is possible to write a force balance using all of the above equations 

DneckCa FFF           Eq. 20 

where the drag force (Eq. (8)) can be calculated using the maximal (Eq. (13)) or 

average shear stress (Eq. (16)) and this modelling approach will be called Model C. 

3.1.2 Oscillating system 

When considering an Oscillating membrane (Figure 21) the equation for the shear rate  

( ) with respect to time is (Jaffrin 2008) 

 )cos()sin(
2

2/1

ttv ff
f

o 



 




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


       Eq. 21 

and the equation for shear stress will be 

 )cos()sin(
2

2/1

ttv ff
f

o 


 







       Eq. 22 

In Eq. (21) and Eq. (22) the term f is the angular frequency, and it is determined 

during oscillation from the following equation 

ff  2          Eq. 23 

where f is the frequency of the oscillation. The peak velocity, vo, is related to both the 

angular frequency and the amplitude a of oscillation by the equation 

av fo            Eq. 24 

The droplet formation time td, useful for comparison of the number of times an 

emerging droplet is subject to maximum shear, is obtained from a material balance 

(Schröder, Behrend & Schubert 1998; Vladisavljević & Schubert 2002). 
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         Eq. 25 

where k is the fraction of pores taking part in the emulsification, d(v,0.5) is the mean 

droplet diameter by volume, Jd is the dispersed phase flux and ε is the porosity of the 

membrane surface. 

3.1.3 Pulsating system 

When modelling the droplet size in the Pulsating system an additional shear that 

originates from the flow of the continuous phase is also present. In the experiment the 

volumetric flow rate of the continuous phase was 3.33×10-7 or 6.66×10-7 m3 s-1 and 

Reynolds number (Ret = 4·Qc·ρ/(dm·µ·π) where Qc is volumetric continuous phase flow 

rate, ρ is continuous phase density, µ is coefficient of dynamic viscosity of the 

continuous phase and dm is membrane diameter) was 28 and 56 respectively meaning 

that the flow of the continuous phase was laminar. For the laminar flow (Ret<2300) 

wall shear stress is given by following equation (Vladisavljević & Schubert, 2003b): 

m

t
w d

V


8
            Eq. 26 

where μ is dynamic viscosity the continuous phase, Vt is the mean velocity of the 

continuous phase (Vt=Qc/A; A is the cross-sectional area of the membrane). For both 

flow rates of the continuous phase wall shear stress induced by the flow of the 

continuous phase were 0.01 and 0.02 Pa respectively. Shear induced by the pulsations 

can be calculated on the same way as in the case of the oscillations (Eq. (22)) and was 

varied in the range between 1 and 8 Pa. Even when the higher cross-flow velocity was 

used in combination with the lowest shear induced by the pulsation the shear induced 

by the flow of the continuous phase did not exceeded 2%. Therefore in all the 

calculations the wall shear stress induced by the flow of the continuous phase in the 

Pulsating system was neglected. 

The intention was to compare the performance of dispersion generation between a 

stirred, but stationary membrane system, one that uses oscillation of the membrane but 

stationary continuous phase and Pulsating system where the membrane is stationary and 

continuous phase pulsates. If the droplet size is dependent only on the shear conditions 

at the membrane surface then it should be possible to calculate the shear stress in the 
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Oscillating system or in Pulsating system using Eq. (22) and obtain comparable results 

with the stirred stationary membrane system, provided that oscillation of the membrane 

or pulsation of the flow can be used to generate droplets of a reasonable degree of 

uniformity. 

3.2 ION EXCHANGE AND SEEDED MICROFILTRATION 

For ion exchange, several studies (Van Nguyen et al.  2009; Weng et al.  2007; Popuri 

et al.  2009) reported kinetic analyses of contact time results based on the application of 

kinetic, or pseudo-kinetic, modelling. However, such models require equilibrium 

constants and activity coefficients for metal ion, or yield pseudo-rate constants, specific 

to a single experiment. Rate parameters obtained from each experiment were different 

and therefore, the application of these kinetic models to generate designs is limited. 

More applicable models are based on a mass balance combined with diffusion 

controlled mass transfer. Film and pore diffusion are the two main mass transfer 

mechanisms (Helfferich 1995). For systems with high feed concentration film diffusion 

is normally neglected and pore diffusion is the limiting mechanism. Often, in the 

literature pore diffusion models are based on a single effective diffusion coefficient in 

the solid phase (Holdich, Cumming & Perni 2006), or different solid phase diffusivities 

such as the diffusion within the pores of the resin and the surface diffusion within the 

resin (Yiacoumi & Tien 1995). However, it is not easy to separate the effects of the 

different solid phase diffusional resistances (pore and surface) and for all practical 

purposes a single effective diffusion coefficient in the solid phase may be sufficient for 

design.  

In order to predict the behaviour of the seeded MF process, a conventional mass 

transfer model was applied based on mass transfer resistance within the aqueous film 

surrounding the particles together with diffusional resistance within the particle. 

However, the analysis was coupled with a material balance to account for the 

continuous nature of the process. 

  



3. Modelling 
 

38 
 

3.2.1 Continuous stirred tank reactor (CSTR) 

When ion exchange is not present in the Dispersion Cell and there is continuous feed 

flow and continuous effluent flow in and from the Dispersion Cell, the whole system 

acts as continuous stirred thank reactor (CSTR) which is described in numerous 

reaction engineering literature (Fogler 2005, Levenspiel 1999) and a mass balance for 

such a system can be described as follows: 

dt
dCVFCCF oo           Eq. 27 

where Fo is a volumetric flow rate of feed and F is a volumetric flow rate of effluent 

(m3 s-1), Co is concentration of copper in feed (kg m-3) and C is concentration of copper 

in effluent (m3 s-1). V is volume of Dispersion Cell (m3). For a constant flow feed and 

effluent flow rate are equal so Eq. 27 can be simplified as follows: 

)( CCF
dt
dCV o           Eq. 28 

Equation can be solved by integration and obtained equation is: 

 tV
F

o

e
C
C 

 1           Eq. 29 

3.2.1.1 Seeded microfiltration 

Mass transfer in seeded microfiltration is much faster compared with that obtained in 

fixed bed ion exchange columns (Holdich, Cumming & Perni 2006), which makes it 

useful in laboratory experiments for estimating the mass transfer coefficient and 

intraparticle diffusivity. The following assumptions are made in modelling: isothermal 

operation, rapid chemical reaction of binding the copper to ion exchange resin, sorption 

equilibrium described by the Langmuir isotherm, ideal mixing in the system with 

continuous flow, mass transfer of copper through external aqueous phase film by film 

diffusion and through pores represented by a single internal diffusion coefficient. 

The mass balance of copper for sorption in a well-mixed continuous flow stirred cell 

can be expressed as follows: 

dt
qdmCCF

dt
dCV o  )(         Eq. 30 
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where V is the liquid volume in the cell, C is the concentration in the solution at time t 

(both in the cell and the exit), Co is the concentration in the feed stream, F is the 

volume feed flow rate, m is the total mass of the resin in the cell, and q  is the average 

mass of sorbed copper per unit mass of the resin. q  can be obtained by integrating the 

local mass throughout the resin from  r=0 to r=R 



R

drrtrq
R

tq
0

2

3
),(3)(         Eq. 31 

where R is the Sauter mean radius of the resin particles and r is the radial distance from 

the centre of particle. Fick's second law for diffusion of copper inside a spherical 

particle is given by: 

)(1 2

2 r
qrD

rrt
q

eff











         Eq. 32 

where Deff is the effective diffusion coefficient of copper inside the particle. The total 

mass of copper entering the solid phase per unit time is 

)( eCCkA
dt
qdm           Eq. 33 

where A is the total surface area of the resin particles, Ce is the equilibrium 

concentration of copper in the liquid phase at the interface and k is the mass transfer 

coefficient in the liquid phase. According to the film theory (Helffrich 1995)  

f

liqD
k


           Eq. 34 

where Dliq is the diffusion coefficient of copper in the liquid phase and δf is the film 

thickness (distance over which liquid phase diffusion takes place). The Frössling 

equation (Frössling 1938) can be used to evaluate k, using Sherwood, Particle Reynolds 

and Schmidt dimensionless numbers: 

33.05.0Re6.02 ScSh slip         Eq. 35 

liqD
RkSh 2

   




liquD
Sc    



 Rslip
slip

2
Re    Eq. 36 
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where μ is the liquid dynamic viscosity, ρ is the liquid density and vslip is the relative 

particle-liquid velocity (slip velocity). Harriott (1962) suggested that at the just 

suspended conditions, e.g. at the minimum agitation conditions at which all particles 

attain complete suspension, the slip velocity is of the order of the terminal velocity 

(Heywood 1948). 

We have assumed in our modelling that vslip was equal to the terminal particle velocity, 

due to relatively low agitation speed in the cell. The concentration of copper in the 

liquid phase at the interface can be found from Eq. (4) by assuming that at the interface 

the liquid phase is in equilibrium with the surface layer of the solid phase: 

 
Rrm

Rr
e qqb

q
C






          Eq. 37 

The total surface area of the resin particles, A can be expressed in the terms of the 

Sauter mean radius: 

R
mA
s

3
           Eq. 38 

Therefore, the mass rate of copper entering the particle is given by: 

Rr

eff

Rr

effs r
qmD

Rr
qDA

dt
qdm












3


      
Eq. 39 

and hence, Eq. (30) can be rewritten as: 

Rr

effo r
qmD

R
CCF

dt
dCV







3)(        Eq. 40 

For solving the differential Eq. (40) the boundary conditions have to be specified. At 

the beginning of the process, there is no copper in the liquid phase inside the cell: 

  00,0  Rrtq      00 tC      Eq. 41 

The concentration gradient is zero in the centre of the bead (r = 0): 

  00

0






rr
tq          Eq. 42 
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and for the full radius of the bead (r = R) boundary condition is 

 
 e

seffRr

CC
D

k
r

tq









0         Eq. 43 

The system of Eqs. (30)-(40) must be solved simultaneously in an equation solver 

capable of solving partial differential equations. For solving of such system PDESOL 

(Numerica, Dallas, USA) was used subject to boundary conditions Eqs. (41)-(43). 

PDSOL file is given in Appendix C. 
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4. EXPERIMENTAL 

4.1 DISPERSION CELL 

4.1.1 Membranes 

The emulsions in the Dispersion Cell were produced using a flat disk membrane, 

(Figure 12) under the paddle blade stirrer, which was supplied by Micropore 

Technologies Ltd. (Loughborough, UK). The membranes used were nickel membranes 

containing uniform cylindrical pores with a diameter of 10, 15, 20, 30 or 40 μm and a 

pore spacing of 200 μm. In some of the experiments a ring membrane (Figure 12(a)) 

was also used. The ring membrane has active pores just in an area of a narrow ring 

around the transitional radius (Eq. (14)) where the shear on the membrane surface 

reaches the maximal value. 

 

Figure 12 Schematic illustration of (a) ringed and (b) whole membrane. 

Photomicrograph of (c) 20 and (d) 40 µm membrane. 

For production of O/W and W/O/W hydrophilic membranes were used while for the 

W/O hydrophobic membranes with PTFE coating were used. If hydrophobic, prior to 

the experiment the membrane was soaked at least 30 min in kerosene (to increase the 

(c) 

100 µm 

(d) 

 

T=43 mm 

Dm=33 mm 

 

T=43 mm 
d2=26 mm 
d1=14 mm 

A B C C B 

(а) (b) 

100 µm 
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hydrophobicity) or in 2 wt.% wetting agent if hydrophilic (to increase hydrophilicity). 

A perfectly ordered hexagonal array of pores with a pore at the centre of each 

hexagonal cell can be seen on the micrograph in Figure 12(c) and (d).  

The porosity of a membrane ε with the hexagonal pore array is given by: 

2

2

2

32
2

33
4

3





















L
d

L

d

p

p





        Eq. 44 

and the calculation of the porosity is explained in Figure 13. 

 

Figure 13 Calculation of the porosity for the membrane with hexagonal pore array. 

where dp is the pore diameter and L is pore spacing. The porosity of the used 

membranes was between 0.2 and 3.6%, respectively.  

4.1.2 Formulation and experimental procedure 

Emulsification using a stationary disk membrane was performed using a Micropore 

Technologies Ltd. Dispersion Cell. No matter the formulation of the emulsion the 

following general experimental procedure may be established when working with the 

Dispersion Cell (Figure 14).  

The Dispersion Cell uses a 24 V DC motor to drive a paddle-blade stirrer, which 

provides the shear at the membrane surface. Stirrer speed settings ranging from 2 to 12 

V were used, which are expressed in the results section as either angular velocities (180 

– 1400 rpm) or their corresponding (maximum) shear stress (1-20 Pa) (Eq. (13)). Prior 

to the experiment the base of the Dispersion Cell was filled with the continuous phase 
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and the feed line was filled with continuous phase too (Table 5) using the pump. 

Depending on the investigation the pump was either a peristaltic pump (Watson-

Marlow-Bredel Pump 101U/R, Cornwall, UK) providing the constant flow rate of 0.5–

50 mL min−1, corresponding to the dispersed phase fluxes of 30–3200 L m−2 h−1 or 

syringe pump (Harvard Apparatus model 11 Plus, US) providing the constant flow rate 

of 0.01–50 mL min−1, corresponding to the dispersed phase fluxes of 0.6–

3200 L m−2 h−1. The use of the syringe pump was crucial when testing the validity of 

the models given in Chapter 3 since very low flow rates had to be used since the models 

do not take into consideration the flow rate of the dispersed phase. Once it was ensured 

that the feed line was free from air bubbles the membrane, with the shiny side up, was 

placed into the base. The PTFE sealing ring (good also for the use with the kerosene 

because it does not swell) was placed on top of the membrane and the glass cell was 

tightened to the base followed by placing the stirrer on top of the glass cell. The 

continuous phase was filled up to the desired volume (Table 5) and then the dispersed 

phase was injected. 

 

Figure 14 Schematic illustration of Dispersion Cell with simple paddle used (b = 12 

mm, D = 30 mm, Dm = 33 mm, T = 40 mm, H1=166 mm , H=130 mm). 

Several types of the emulsions were produced using the Dispersion Cell and the basic 

formulations with membrane characteristics are given in Table 5. 

T

b

D

Dm
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Table 5 Formulations of the emulsions produced using the Dispersion Cell 

together with the used membranes. DP: dispersed phase, CP: continuous 

phase. O – sunflower oil; O1 – sunflower oil with 5 wt.% PGPR; O2 – 

pumpkin seed oil with 5 wt.% PGPR; W1 – pure DI water; W2 – 2 wt.% 

Tween 20; Ws – acidified sodium silicate; Ok – 2 wt.% Span 80 in 

Kerosene 

Emulsion 
type DP 

Final 
content 
of DP 
(vol%) 

CP 

Initial 
volume 
of CP 
(cm3) 

Membrane 
type 

Membrane 
pre 
experimental 
treatment 

Pore sizes 
of the used 
membranes 
(µm) 

O
/W

 

O 6.25 W2 150 Whole / 
hydrophilic 

30 min 
soaked in 
wetting 
agent 

10 

W
1/O

1/W
2 

W1/O1 5 W2 125 Whole / 
hydrophilic 

30 min 
soaked in 
wetting 
agent 

10, 20, 
30, 40 

W
1/O

2/W
2 

W1/O2 5 W2 125 Whole / 
hydrophilic 

30 min 
soaked in 
wetting 
agent 

10, 20, 
30, 40 

W
s/O

k 

Ws 9 / 33 Ok 100 
Whole and 
ring / 
hydrophobic 

30 min 
soaked in 
kerosene 

15 

4.1.2.1 O/W emulsions 

Membranes with a 10 m pore size, and 200 m spacing between the pores, were 

supplied by Micropore Technologies Ltd. for the production of all the emulsions. In the 

majority of the experiments the dispersed phase was injected through the membrane 

pores using a very low flux of 30 litres of dispersed phase injected per square metre of 

membrane area per hour (L m-2 h-1), and employed to minimise any ―push-off‖ effect, 

but it was possible to achieve 3200 L m-2 h-1. The continuous phase volume was 150 

cm3 and 10 cm3 of dispersed phase was injected for each experiment.  

4.1.2.2 W/O/W emulsions 

The oil phase (O) in W1/O/W2 emulsions was 5 wt.% PGPR (polyglycerol 

polyricinoleate from Stepan Limited, UK) dissolved in unrefined pumpkin seed oil 
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(density of 913 kg m−3 at 298 K, GEA Tovarna Olja, Slovenia) or refined sunflower oil 

(food grade from a local supermarket). The inner aqueous phase (W1) was pure 

(demineralised) water. The outer aqueous phase (W2) for stabilising the W1/O 

emulsions contained 2 wt.% Tween® 20 (polyoxyethylene sorbitan monolaurate from 

Fluka, UK). In some experiments PVA, poly(vinyl) alcohol 98% hydrolyzed molecular 

weight 13000-23000 g/mol, Sigma-Aldrich Company Ltd., UK, was added to 

investigate the effect of continuous phase viscosity on droplet break-up behaviour. The 

formulation of the product emulsions and the range of the mean particle sizes obtained 

are listed in Table 6.  

Table 6 The composition of W1/O/W2 emulsions prepared in this work. 

Inner aqueous phase, W1 Pure Milli - Q water 

Oil phase 
5 wt.% PGPR dissolved in unrefined 
pumpkin seed oil or refined unflower 
oil 

Outer aqueous phase, W2 

2 wt.% Tween® 20 dissolved in Milli–
Q water, in some experiment PVA 
was added 

Volume percent of inner aqueous phase in 
W1/O emulsions (vol.%) 0 or 30 

Volume percent of W1/O emulsion droplets 
in W1/O/W2 emulsions (vol.%) 5 

Mean size of outer droplets 102-422 and 134-433 µm for the pore 
size of 20 and 40 μm, respectively 

 

The density of oil and continuous phase was measured using an Anton Paar digital 

density meter (model DMA 46, Graz, Austria). The oil viscosity was measured using 

HAAKE RheoStress® model RS600 rheometer with sensor C60/1° Ti and a gap of 

51 μm (Thermo Electron, Karlsruhe, Germany). The continuous phase viscosities were 

measured with a Cannon-Ubbelohde model 9721-K50 viscometer (CANNON® 

Instrument Company, USA). The equilibrium interfacial tensions at the oil/water 

interface were measured by the Du Nouy ring method using a White Electric 

Instrument tensiometer (model DB2KS). The physical properties of the surfactant 
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solutions and the equilibrium interfacial tensions for the two different oils used are 

listed in Table 7.  

W1/O/W2 emulsions were prepared by a two-step emulsification procedure. The W1/O 

emulsion was prepared by means of a homogeniser (Ultra Turrax®, model T25, IKA 

Works, USA) at 24,000 rpm for 5 min which ensured that the mean droplet size of 

inner oil droplets was about 0.5 µm (Vladisavljević & Schubert 2003). The W1/O 

emulsion was injected through the membrane (pre-soaked in a proprietary wetting agent 

for at least 30 min to increase the hydrophilicity of the surface) using a peristaltic pump 

(Watson-Marlow-Bredel Pump 101U/R, Cornwall, UK) at the constant flow rate of 

0.5–50 mL min−1, corresponding to the dispersed phase fluxes of 30–3200 L m−2 h−1. 

Rotation speed of the stirrer placed on top of the membrane ranged from 230 to 1330 

rpm (equal to shear stresses between 1 to 18 Pa (Eq. (13)). The initial volume of the 

solution in the cell was 125 cm3 and the experiments were typically run until the 

dispersed phase concentration reached 5 vol.%. Once the desired amount of oil had 

passed through the membrane, both the pump and the agitator were switched off and 

the droplets were collected and analyzed. The membrane was cleaned with 8 M NaOH 

in an ultrasonic bath for 5 min followed by treatment in 10 vol.% HCl solution for 

5 min.  

Table 7 Density and viscosity of aqueous surfactant solutions used in this work 

and equilibrium interfacial tension at oil/aqueous phase interface. O1 – 

sunflower oil with 5 wt.% PGPR; O2 – pumpkin seed oil with 5 wt.% 

PGPR; W – pure DI water. 

Aqueous phase Density     
(kg m-3) 

Viscosity 
(mPa s) Oil phase 

Interfacial 
tension 
(mN m-1) 

2 wt. % Tween 1000 1.01 O2 1.5 

2 wt. % Tween 1000 1.01 W/O2 1.0 

2 wt. % PVA in 2% 
Tween 20 1005 1.92 W/O2 0.5 

2 wt. % Pluronic F-
68 1000 1.28 O2 6.0 
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Aqueous phase Density     
(kg m-3) 

Viscosity 
(mPa s) Oil phase 

Interfacial 
tension 
(mN m-1) 

2 wt. % Pluronic F-
68 1000 1.28 W/O2 3.7 

2 wt. % Pluronic F-
68 1000 1.28 O2 + 5% PGPR 3.0 

Demineralised water 997 0.891 O2 11.0 

Demineralised water 997  W/O2 3.0 

2 wt. % Tween 1000 1.01 O1 5.0 

2 wt. % Tween 1000 1.01 W/O1 0.8 

Demineralised water 997 0.891 O1 22.0 

Demineralised water 997 0.891 W/O1 5.3 

 

4.1.2.3 W/O emulsions 

4.1.2.3.1 Preparation of silica particles. 

The silica precursor was prepared by diluting sodium silicate solution (28 wt % SiO2, 

14 wt % Na2O, Fisher Scientific UK) down to 10 or 15 wt % SiO2 using Mili-Q water 

(18.2 MΩ cm). Once diluted the solution was stirred for 30 min. Due to the gelling, the 

sol had to be prepared prior to the experiment by adding the diluted sodium silicate, 

with 10 or 15 wt. % SiO2, dropwise to 1 M H2SO4 (Fisher Scientific UK). 

Approximately 17 mL of diluted sodium silicate was added to 25 mL of H2SO4 under 

vigorous stirring until the desired pH was achieved. Formulation of the water phase is 

given in Figure 15. 
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Figure 15 Formulation of the water phase (silica precursor) in W/O emulsions. 

The gelling time is a function of pH, therefore, the right pH of the silicate solution after 

dilution with acid had to be selected. Condensation polymerization rate has a minimum 

at pH 2, at the isoelectric point (Iler 1979), and increases with increase of the pH. If the 

polymerization is too slow, the rate of particle growth is also slow and particles forming 

the gel will be small resulting in a more compact and microprous gel. To measure the 

gelling time of the solutions, 4 mL of the solutions with the pH of 1.5, 2.5, 3.5 and 4.5 

were placed into plastic tubes and closed. The longest gelling time (longer than 24h) 

had a solution with pH of 1.5 while the solution with pH 4.5 gelled in 30 min. If the 

gelling time is long, droplet coalescence or breakage is more likely during the mixing 

stage. A pH of 3.5 was selected for most of the experiments, since it allowed the 

injection of up to 50 cm3 of dispersed phase using the lowest flow rate used (1 mL min-1) 

without fear of membrane blocking by the gelling solution. At this pH significant 

gelling did not take place until after 1 hour. Both sodium silicate and sulfuric acid were 

used without any purification.  

The continuous phase was prepared by dissolving 5 wt% Span 80 in low odour 

kerosene (both supplied by Sigma Aldrich, UK). Span 80 was the emulsifier used to 

stabilise the aqueous sol droplets formed in the kerosene. The inlet hose was filled with 

the continuous phase prior to each experiment to ensure that the air was not entrapped 

within the oil phase. The cell was filled with 100 cm3 of continuous phase and in most 

experiments 10 cm3 of dispersed phase (silica precursor solution) was injected through 

the membrane pores using a Harvard Apparatus model 11 Plus syringe pump. After 

production, the silica droplets were transferred to a Teflon beaker and kerosene was 

added to dilute the volume concentration in order to minimise droplet coalescence. 

FORMULATION

Sodium silicate (6 or 4 wt. % SiO2)
With desired pH

Sodium silicate (28 wt. % SiO2)

Sodium silicate (10 wt. % SiO2)

diluted with RO water 

1M H2SO4
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Before the transition of the droplets into gel was complete the emulsion had to be 

subjected to continuous stirring to prevent settling and coalescence of the droplets. The 

stirring rate during gelling was found to be of great importance. If too high stirring was 

applied particles suffered attrition during solidification, therefore, 170 rpm was 

determined to be the most appropriate rate for the experiments: sufficient to keep the 

droplets suspended and separated, without causing shear deformation, or crushing, of 

the forming particles. When droplets of dispersed phase were initially injected into the 

kerosene solution it became milky white, and stirring was maintained until the kerosene 

solution became transparent again, and the hydrogel was formed. All the diluted 

solutions injected into the continuous phase were clear and transparent without any 

visible particulates, hence the milky colouration was believed to be due to water 

transport within the Span 80 stabilised continuous phase. 

4.1.2.3.2 Washing of silica particles. 

After the gelling, it was noticed that beside the spherical silica particles, needle shapes 

of silica were also created. So, to separate the spherical particles, a microfiltration cell 

was used (Figure 16). The microfiltration cell is the Dispersion Cell apart from the use 

of a slotted membrane attached at the bottom of the cell (Figure 16). The slotted 

membrane was provided by Micropore Technologies Ltd. Slots were 4 µm wide and 

250 µm long meaning that even the smallest silica particles were maintained above the 

membrane. The advantage of the slotted membrane over a regular membrane is that the 

pores cannot be clogged with the small particles, as is the case with conventional 

membranes (Holdich et al.  2003; Yilmaz Ipek et al.  2007; Dragosavac, Holdich & 

Vladisavljević 2011). The silica particles were retained by the membrane while the 

needle-like material passed through the pores. All filtrate collected during the filtration 

was dried to identify the amount of silica lost as needles. No spherical particles were 

observed in the filtrate and the amount of needle-like silica in the filtrate was less than 

2% of the total particle mass being filtered. In order to remove Span 80 and kerosene, 

from the particles, acetone washing was used. Once the kerosene was filtered off, the 

cell was partially filled with acetone and the spherical silica particles were washed with 

acetone. For filtrate removal a peristaltic pump (Watson-Marlow-Bredel Pump 101U/R, 

UK) was used which was operated at 0.1 mL min-1. Each batch of spherical silica 

particles was continuously washed with at least 250 cm3 of fresh acetone followed by 
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water washing. After washing the particles appeared fully white and looked to be 

surfactant free (if not washed in acetone they appeared yellowish). In order to be fully 

sure whether the particles are surfactant free the batch of particles produced using silica 

precursor solution of pH = 3.5 with the mean particle diameter of 40 µm was separated 

into two samples. One sample was only dried at the room temperature while the other 

sample was dried at the room temperature followed by calcining at 550oC with a ramp 

step of 20oC min-1 for 6 hours.  

 

Figure 16 Schematic illustration of: microfiltration system together with slotted pore 

membrane and photomicrograph of the filtrate. 

After drying both samples were analyzed using the BET surface analysis and EDX 

analysis. The non calcined sample had a specific surface area of 550 m2 g-1, total pore 

volume of 0.293 cm3 g-1 and average pore radius of 1.1 nm (according to the BJH 

method (Barret, Joyner & Halenda 1951). Once the sample was calcined the specific 

surface area increased to 785 m2 g-1, total pore volume increased to 0.453 cm3 g-1 while 

the average pore radius was 1.3 nm. The analysis showed that even the particles 

appeared to be white the surfactant was not fully removed from the pores. BET analysis 

for calcined and non-calcined silica particles are presented in Figure 17 and it can be 

seen that the samples are different. EDX analysis (Figure 18) confirmed the non-
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calcined particles had carbon molecules present on the surface of the samples. 

Therefore it was decided that the particles, after washing in acetone and drying at the 

room temperature, should be calcined in order to complete the removal of the surfactant, 

and kerosene, from the surface of the particles.  

 

Figure 17 BET nitrogen sorption–desorption isotherm of silica particles (calcined 

and not calcined) with an average size of 40 µm. Both samples were 

washed with acetone and water and dried from water at a room 

temperature. Inset graph represents pore size distribution calculated using 

BJH method  (Barret, Joyner & Halenda 1951) according to the desorption 

isotherm both for calcined and non-calcined silica particles. 
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Figure 18 The Energy Dispersive Spectrum (EDS) of both calcined and non-calcined 

silica particles with average size of 40 µm. 

4.1.2.3.3 Fuctionalization of the silica particles 

There are numerous ways that the silica surface can be functionalized by 

immobilization of organofunctional groups for the sorption of the heavy metals from 

the water solutions (Jal, Patel & Mishra 2004). 3-aminopropyltrimethoxysilane has 

been reported in literature as effective silica surface modifier which enables removal of 

heavy metals from water solutions (Ozmen et al. 2009, Walcarius, Etienne & Bessière 

2002, Manu, Mody & Bajaj 2010, Blitz et al. 2007). To functionalize the silica particles 

we followed the procedure given in previous papers. 3-aminopropyltrimethoxysilane 

was used here to utilize produced silica particles. 10 g of silica particles, with a specific 

Not calcinated sample

Calcined sample

EL. WT.
%

AT.
%

C 0.78 1.21

O 57.59 68.42

Si 41.63 30.37

EL. WT.
%

AT.
%

C 7.02 11.27

O 47.95 57.81

Si 45.03 30.92

Peak from 
golden 

palladium

Peak from 
golden 

palladium

Background

Background
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surface area of 360 m2 g−1 was first washed with a mixture of nitric and hydrochloric 

acid in a ratio of 1:3 for 2 h in order to remove possible metal impurities. The particles 

were then filtered, dried in a vacuum at 420 K, and refluxed in a mixture of 80 cm3 of 

toluene and 10 cm3 of 3-aminopropyltrimethoxysilane for 24 h (Figure 19).  

 

 
 

Figure 19 Refluxing of silica particles.  

After refluxing, the particles were collected by filtration, washed with ethanol and then 

transferred to a Soxhlet extractor (Figure 20) and washed with toluene for 24 h, to 

eliminate possible traces of 3-aminopropyltrimethoxysilane and were dried at room 

temperature. After production functionalized silica particles were tested for sorption of 

copper ions from water solution (see Chapter 4.5.1.1.4). 
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Figure 20 Toluene washing for 24h to remove 3-aminopropyltrimethoxysilane. 

4.2 OSCILLATION MEMBRANE SYSTEM 

4.2.1 Module and membranes (with experimental procedure) 

The dispersed phase for the oil in water emulsions was commercially available food 

grade sunflower oil. The continuous phase was purified water (obtained from a reverse 

osmosis system) containing 2 wt.% Tween 20 surfactant (polysorbate 20 or 

polyoxyethylene sorbitan monolaurate) obtained from Sigma Aldrich.  

The Oscillating system used to produce the suflower oil in water emulsions is presented 

in Figure 21 and was supplied by Micropore Technologies Ltd. For the Oscillating 

system a hydrophilic nickel membrane was in the form of the candle (Figure 21), with 

an external diameter of 15 mm and working length of 57 mm. Pore size was 10 µm and 

the pore spacing was 200 µm. At the bottom end of the membrane a stainless steel cap 

sealed off the membrane tube, and the cap had a pointed end to reduce turbulence 

during oscillation. At the top of the membrane candle there was a 1/8 inch BSP fitting 

to enable the candle to be attached to the injection manifold, to which an accelerometer 

was fixed. The injection manifold had internal drillings to allow the passage of the oil 

phase to be injected, which was provided by a syringe pump (Harvard Apparatus 11 

Plus). The accelerometer (PCB Piezotronics model M352C65) was connected to a 

National Instruments Analogue to Digital converter (NI eDAQ-9172) which was 
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interfaced to a LabView executable program running on a PC. The information 

provided by the program from the accelerometer was the frequency and amplitude of 

the oscillation: the frequency being determined by the direction of travel, and the 

amplitude was deduced from the acceleration measurement. The oscillation signal was 

provided by an audio generator (Rapid Electronics), which fed a power amplifier 

driving the electro-mechanical oscillator on which the inlet manifold was mounted. 

Frequencies were in range between 10 and 90 Hz while the amplitude ranged between 

0.1 and 6.5 mm. Before each experiment, it was important to ensure that no air gaps or 

bubbles were entrapped within the oil phase. For that reason the membrane was 

immersed into the continuous phase and the continuous phase was sucked into the 

membrane and injection manifold with syringes. When air was completely removed, 

the injection tube was attached to the pump and the oil phase was introduced very 

slowly to the membrane. Oscillation did not start unless the oil phase emerged on the 

membrane surface in order to prevent premixing within the membrane. In each 

experiment the volume of the continuous phase was 200 cm3 which allowed the 

membrane to be fully covered with continuous phase even when highest amplitude (6.5 

mm) was used.  

 

Figure 21 Schematic illustration of the Oscillating membrane system together with 

the candle membrane (External diameter 15 mm and working length 57 

mm. Pore size 10 µm and the pore spacing 200 µm). 
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4.3 PULSATING SYSTEM 

4.3.1 Module and membranes (with experimental procedure) 

As a dispersed phase for the oil in water emulsions food grade sunflower oil was used. 

The continuous phase was purified water containing 2 wt.% Tween 20 surfactant 

(polysorbate 20 or polyoxyethylene sorbitan monolaurate) obtained from Sigma 

Aldrich. The Pulsating system was also tested for complex coacervation and for those 

experiments the dispersed phase was 10 wt.% peppermint oil dissolved in a 

commercially available food grade sunflower oil, while the continuous phase was 

mixture of gelatin and gum arabic at 40oC with pH = 3.8 which was adjusted by lactic 

acid.  

The membrane used was in the shape of a tube (Figure 22(a)) with the outer diameter of 

20 mm and working length of 70 or 170 mm. For injecting both the dispersed (Figure 

22 (e)) and continuous phase (Figure 22 (f)) peristaltic pumps were used. There was no 

recirculation of the continuous phase and the entire product was collected in the stirred 

tank (Figure 22 (d)) where the emulsion was slowly agitated in order to prevent 

coalescence. It is important to ensure that no air remains entrapped in the system since 

it can cause a production of small air bubbles which can favour the coalescence of oil 

droplets. To prevent the presence of air within the system both outer and inner sides of 

the membrane were filled with the continuous phase prior to the experiment and all the 

air was released through the purging valve (Figure 22 (c)). An accelerometer (PCB 

Piezotronics model M352C65) was connected to a National Instruments Analogue to 

Digital converter (NI eDAQ-9172) which was interfaced to a LabView executable 

program running on a PC. The information provided by the program from the 

accelerometer was the frequency and amplitude of the oscillation: the frequency being 

determined by the direction of travel, and the amplitude was deduced from the 

acceleration measurement.  
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Figure 22 Photograph of the Pulsating membrane system (b-f) together with the 

tubular membrane (a) (External diameter 15 mm and working length 170 

mm. Pore size 20 µm and the pore spacing 200 µm). Setup for the 

complex coacervation. 

The oscillation signal was provided by National Instrument frequency generator, which 

fed a power amplifier driving the electro-mechanical oscillator which was connected to 

a bellows designed for use in a diaphragm pump, which was submerged in the 

(f)
(e)

(b)(c)

(d)

(a)

(b)
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continuous phase – hence its oscillation provided a pulsation. Frequencies were in 

range between 8 and 100 Hz while the amplitude ranged between 0.25 and 5 mm. 

Compared to the Oscillating system where the membrane was moving, in the Pulsating 

system the membrane was fixed still and the continuous phase was pulsed. The drop 

generation within the Pulsating system is presented in Figure 23. 

 

Figure 23 Droplet generation in Pulsating system. 

4.4 MEMBRANE CLEANING 

All the membranes used were nickel membranes but shaped differently (disk, candle or 

tube). The cleaning procedure depended on which type of emulsion was being produced 

W/O or O/W requiring a hydrophilic or hydrophobic membrane, respectively. The 

cleaning procedure is presented in Figure 24. 

 

Figure 24 Membrane cleaning procedure. 
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4.5 ION EXCHANGE 

4.5.1 Development of the technique to determine mass transfer 

and equilibrium data using the stirred cell with continuous 

flow 

4.5.1.1 Materials and methods 

4.5.1.1.1 Liquid phase 

All the chemicals used were of analytical grade, supplied by Sigma Aldrich, UK. The 

solutions of copper ions were prepared by dissolving appropriate amounts of 

Cu(NO3)2.6H2O in deionised water. The copper concentration used in the feed solution 

with the continuous flow experiments was in the range between 19 and 636 g m-3 while 

for the batch experiments it was in the range between 10 and 11300 g m-3. The ionic 

strength in the liquid phase was adjusted by NaNO3 and kept at 0.2M, unless stated 

differently. The pH was kept constant at 4.5 ± 0.1 by adjustment using 0.4M NaOH and 

was measured directly in the cell using a pH meter (PW9420 Philips, UK). The pH 

adjustment was needed only at the very beginning of the experiment, when the resin 

swapped hydrogen form to the sodium form because of the high content of sodium ions 

present in the solution. This is a rapid process (Morig, Gopala Rao 1965), and the time 

taken was neglected from subsequent kinetic modelling. 

4.5.1.1.2 Ion Exchange Resin (Dowex 50W-X8) 

Two different sizes of ion exchange resin beads Dowex 50W-X8 (100-200 and 200-400 

mesh) were obtained from Sigma Aldrich. Dowex 50W-X8 is a strong acid cation 

polystyrene resin containing 8% divinylbenzene. The size distribution of Dowex resin 

particles was determined by a laser diffraction particle size analyser (Malvern 

Mastersizer S, UK). The cumulative size distribution curves for both sizes of Dowex 

50W-X8 particles are presented in Figure 25(a) while microscopic photographs of the 

resin particles are shown in Figure 25(b). The particle size range of Dowex 50W-X8 

particles with 100-200 and 200-400 mesh was 101-679 and 34-517 µm, respectively. 

Probably, the diameters larger than those stated by the manufacturer are a consequence 

of the resin swelling. The Sauter mean radius of Dowex 50W-X8 particles with 100-
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200 and 200-400 mesh was 87 and 42 µm, respectively (3 independent samples were 

analysed and a mean value is calculated). These Sauter mean radii were used in Eqs. 

31, 36, 38 and 40 for the prediction of copper concentration in the effluent.  

 (a)  

 

(b)  

 

Figure 25 (a) Cumulative distribution curves of Dowex 50W-X8 particles. (b) 

Microscopic photographs of dry resins. 

Prior to each use the ion exchange resin was soaked for about 1 h in deionised water to 

swell. Most of the water was then removed from the resin by decanting and the resin 

was washed several times with 1 M HNO3 followed by washing with deionised water. 
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The remaining amount of water was removed by placing the ion exchange resin in a 

vacuum drier at 50oC overnight and kept in a desiccator before use. In all experiments 

1g of resin (dry mass) was used.  

4.5.1.1.3 Batch sorption experiments  

The batch sorption experiments were carried out in a series of flasks containing 

different initial copper (II) concentration in the liquid phase (Figure 26). In Table 8 the 

content of each flask is presented. In all the solutions the pH and ionic strength were 

kept constant. After equilibration (the flasks were sealed and left to shake for one 

month at the room temperature), the liquid phase was separated from the solid phase 

and analysed. This represents the conventional approach to the determination of 

sorption equilibrium isotherm. The equilibrium sorption capacity was calculated using 

the following mass balance equation: 

m
VCC

q eqoi
e

)( 
          Eq. 45 

where qe is the equilibrium sorption capacity, Coi and Ceq are the initial and final 

concentration of copper (II) in the liquid phase, respectively, V is the volume of the 

liquid phase, and m is the mass of dry resin used. A control experiment with copper (II) 

solution in the absence of any resin confirmed that there was no copper sorption onto 

the walls of a flask. 

 

Figure 26 Equipment for batch sorption experiment (shaker). 
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Table 8 Content of each flask for batch experiments (sorption of copper ions on 

Dowex 50W-X8). 

Flask V / m3 m / kg Co / g m-3 Co,Na / g m-3 

1 0.05 0.001 11300 3790 

2 0.08 0.005 870 3760 

3 0.08 0.005 430 3680 

4 0.08 0.005 230 3670 

5 0.08 0.005 120 3780 

6 0.08 0.005 70 3680 

7 0.08 0.005 35 3800 

8 0.08 0.005 20 3650 

9 0.08 0.005 10 3770 

4.5.1.1.4 Continuous flow experiments (combined micro filtration and 

sorption or “seeded microfiltration”) 

All continuous flow experiments were carried out at room temperature in a 

microfiltration cell (Figure 27(a)) provided by Micropore Technologies Ltd, 

Loughborough, UK. Fresh copper solution was continuously delivered to the cell from 

a feed tank by a peristaltic pump (Watson-Marlow Ltd, UK). In all experiments the 

liquid phase flow rate was constant at 7.8 mL min-1 (1.3×10-7 m3 s-1). A two blade 

paddle stirrer attached to the laboratory power supply (Instek Laboratory DC, UK) 

provided agitation in the cell at a constant speed of 270 rpm. In all experiments the 

volume of the liquid phase in the cell was 140 mL. A slotted-pore metal membrane 

(Figure 27(b)) with an effective diameter of 3.2 cm was fitted to the bottom of the cell. 

The pore width and length was 8 and 400 µm, respectively. This pore width was fine 

enough to keep even the smallest resin particles in the cell. As shown in Figure 25(a), 

the smallest particle size for Dowex 50W-X8 200-400 was 34 µm. 



4. Experimental 
 

64 
 

 

Figure 27 (a) Schematic diagram and geometry of seeded microfiltration system; (b) 

Microphotograph of the slotted pore membrane used in this work. 

For the tests, the cell was filled with a pure buffer solution (0.2 M NaNO3) and fresh 

wetted resin was added to the cell. Before immersion in the buffer solution the tube 

from the feed tank was filled with the feed copper solution and clamped. The clamp on 

the tubing was released after starting the pump. At predetermined times 10 mL of 

effluent samples were collected and at the end of the experiment all samples were 

analysed as described in following Chapter 4.5.1.1.5. In all experiments the pH of the 

liquid phase was maintained constant at 4.5 but this was needed only at the very 

beginning of the experiment.  

Figure 28 compares the Cu(II) concentrations in the effluent when the inlet tube was 

only 40 mm above the membrane surface (the tube immersion depth X = 100 mm) and 

when the tube immersion depth was 10 mm in the absence of any resin in the cell. 

When the immersion depth was 100 mm the experimental response curve exceeds the 

model prediction for ideal continuous stirred tank (CST) indicating that bypassing 

occurred in the cell. When the immersion depth was 10 mm corresponding to the 

optimal position of the inlet tube the experimental curve matches very well the model 
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prediction for ideal CST and this immersion depth was kept in all future continuous 

flow experiments. 

 

Figure 28 Influence of positioning the inlet tube in the cell. No ion exchange resin in 

the cell. Inlet copper concentration Co = 78 ppm, Flow rate F=1.3×10-7 m3 

s-1. (×) inlet tube immersed to deep in the cell X = 100 mm; (■) inlet tube 

immersed X = 10 mm from the liquid level in the cell. 

4.5.1.1.5 Analytical procedure 

The copper and sodium concentrations in the samples were determined using an 

Atomic Absorbance Spectrophotometer (AAS) (Spectra AA-200 Varian, UK) operating 

at a wavelength of 244.2 nm for copper and 330.2 nm for sodium. Calibration was 

performed before each experiment. The samples were analysed automatically based on 

the calibration curve and the mean value of 3 independent samples was used. More 

information on the experimental procedure using the Atomic Absorbance 

Spectrophotometer is given at Appendix A. 
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4.5.2 Determining mass transfer kinetics and equilibrium data for 

copper hydroxide acetate using “seeded microfiltration” 

4.5.2.1 Materials and methods 

4.5.2.1.1 Liquid phase 

The solutions of iodide ions were prepared by dissolving appropriate amounts of KI 

(supplied by Sigma Aldrich, UK) in deionised water. The iodide concentration used in 

the feed solution for continuous flow experiments was in the range between 250 and 

2000 g m-3 while for the batch experiments was in the range between 250 and 9000 g 

m-3. The ionic strength was not adjusted and the pH of the solutions was 6.3. 

4.5.2.1.2 Ion Exchange Resin (Copper hydroxide acetate) 

Copper hydroxide acetate Cu2(OH)3(CH3COO)H2O is produced by titration of the 

Cu(CH3COO)2 with NaOH (Butterworth et al. 2010) and represents one of the 

fundamental compounds from the family of the M2(OH)3X Layered Hydroxide Salts 

(LHSs), where X is an exchangeable anion (e.g. NO3-, CH3COO-,Cl-, SO4
2-, RSO2O-) 

and M is a transition metal (II) cation (e.g. Cu, Co, Ni, Mn, Zn).  

If LHS is synthesized using large exchangeable anions such as acetate they are less 

stable and prone to anion exchange with smaller species. In copper hydroxide acetate 

the acetate anion is held electrostatically within the layers and a water molecule is 

bonded directly to the copper cation (Figure 29). This results in a much larger gallery 

spacing of ~9.3Å that in theory is more susceptible to exchange with smaller anions 

(Butterworth et al. 2010). It is the gallery spacing that governs which anions from the 

solution will be exchanged with the acetate anion.  

The copper hydroxide acetate used in this thesis was produced by Andrew Butterworth 

(Chemistry Department, Loughborough University) and was given in order to 

determine the exchange capacity and mass transfer properties of the sample. 

Microscopic photographs of the copper hydroxide acetate particles are shown in Figure 

30 and the cumulative size distribution curve for copper hydroxide acetate particles is 

presented in Figure 31. 
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Figure 29 The structure of copper hydroxide acetate (Butterworth et al. 2010). 

 

 

Figure 30 Four different microphotographs of the copper hydroxide acetate particles 

dispersed in water. 
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Figure 31 Cumulative distribution curve of the copper hydroxide acetate particles 

dispersed in water. 

The Sauter mean diameter of the copper hydroxide acetate particles was 10 µm, (3 

independent samples were analysed and a mean value is calculated). This Sauter mean 

radius was used in Eqs. (31), (36), (38) and (40) to predict the iodide concentration in 

effluent. 

4.5.2.1.3 Batch sorption and continuous flow experiments 

The batch sorption experiments were carried out in series of flasks containing different 

initial iodide concentration (Co) in the liquid phase. In Table 9 content of each flask is 

presented. In all the solutions the pH was 6.3.  

After equilibration (the flasks were sealed and left to shake for one month at the room 

temperature), the liquid phase was separated from the solid phase and analyzed. This 

represents the conventional approach to the determination of sorption equilibrium 

isotherm. The equilibrium sorption capacity was calculated using the following mass 

balance Eq. (45). 
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Table 9 Contents of each flask for batch experiments (sorption of iodide ions on 

copper hydroxide acetate) 

Flask V 103 (m3) m 103 (kg) Co (g m-3) 

1 0.1 5 9000 

2 0.1 5 4500 

3 0.1 5 2000 

4 0.1 5 1500 

5 0.1 5 250 

 

Continuous flow experiments were done as described in Chapter  4.5.1.1.4. The only 

change was that the cellulose nitrate membrane (Whatman, with average pore size 0.45 

µm) was added on top of the metal membrane to prevent the loss of particles smaller 

than the membrane slots. Prior to use the cellulose nitrate membrane was wetted using 

ethanol. Flux was monitored during the experiments and no significant decay was 

observed. At predetermined times 10 mL of effluent samples were collected and at the 

end of the experiment all samples were analysed using an iodide selective electrode. 

For each sample the iodide concentration was measured 3 times and average value is 

reported. 
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5. RESULTS 

5.1 MEMBRANE EMULSIFICATION 

5.1.1 Dispersion cell 

5.1.1.1 O/W emulsion 

Figure 32 compares the results from the Dispersion Cell system, i.e. the stationary 

membrane with rotating paddle stirrer to create the shear (Figure 14), with the three 

models: (A) which uses peak (maximal) shear in the force balance equation; (B) which 

uses average shear in the force balance and (C) which employs peak or average shear, 

but also takes into account the neck formation of the droplet at the pore opening. It is 

clear that the experimental data is very close to the model based on average shear. 

During these experiments the oil flux rate was very low, at 30 L m-2 h-1, so that any 

effect due to droplet ―push-off‖ was minimised and drop growth before detachment was 

also low. The droplet size is influenced by the injection rate of the phase being 

dispersed (Egidi et al. 2008): increasing injection rate giving increasing droplet size. 

Hence, for these tests the injection rate was kept very low to minimise these effects, so 

that the influence of shear on the droplet detachment could be investigated for the 

paddle stirred system.  

It appears that the average shear model works better in the paddle stirred system, where 

the droplets are detached by shear only in one direction and if formation of the neck is 

taken into consideration the experimental data match almost perfectly with the model. 

The span of the droplet size distribution in the Dispersion Cell is given in Figure 33 and 

in most of the cases was around 0.56, but it is obvious that under the conditions of too 

high shear (12 Pa) span increased which can be attributed to the droplet break up due to 

the too high stirring speed. 
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Figure 32 Comparison of experimental droplet diameters produced in Dispersion 

Cell and predicted values calculated using different models: the values of 

d(n,0.5) were obtained at 30 L m−2 h−1 and Model C uses Eqs. (17)-(20) 

and Eq. (8) with either τmax, or τav, Model B is based on Eqs. (10) and (16) 

(τ = τav) and Model A uses Eqs. (10) and (13) (τ = τmax). Dispersed phase: 

sunflower oil. 

 

Figure 33 Span of particle size distribution as a function of a shear stress. 
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5.1.1.2 W/O/W emulsion 

5.1.1.2.1 Influence of pore size and dispersed phase flux 

Figure 34 shows the effect of dispersed phase flux on the droplet size for four different 

rotational speeds using the 20 μm membrane with 200 μm pore spacing. With 

increasing transmembrane flux up to 2000 L m-2 h-1 increasing droplet diameter is 

observed. Further increase over 2000 L m-2 h-1, as can be seen from Figure 34, had an 

insignificant effect on the droplet size which remained almost constant for all rotation 

speeds. Such insignificant influence of the transmembrane flux at higher values of 

transmembrane flux was observed in the previous study of O/W emulsions (Dragosavac 

et al.  2008). Droplets produced at high rotation speed (high shear stress) had smaller 

droplet diameter than the ones produced at low rotation speed (low shear stress) which 

is in agreement with the literature (Nakashima, Shimizu & Kukizaki 1991, Dragosavac 

et al.  2008, Vladisavljević & Schubert 2003, Kosvintsev et al.  2005 and Egidi et.at 

2008). The membrane used had 200 μm pore spacing and therefore it is expected that 

droplet sizes above 200 μm would require significant droplet deforming to take place. 

As can be seen from Figure 34 in the case when rotation speed was 230 rpm droplets 

greater than 300 μm were formed. At low rotation speed, droplet formation time is 

longer and therefore the droplet produced at those conditions will have a bigger 

diameter. At the same time, if droplet detachment time is considered as a constant (Xu 

et al. 2005), an increase in flux will increase the droplet size. Even at high 

transmembrane fluxes it is reported that not all pores of a membrane are active 

(Vladisavljević & Schubert 2002), providing more space for droplets to grow on the 

membrane. From Figure 34 it can be seen that at the lowest rotation speed (230 rpm) 

droplets were in the range between 300 and 422 μm.  
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Figure 34 Variation of volume median diameter and span of particle size distribution 

with dispersed phase flux for the membrane with 20 μm pore size. 

(Disperse phase: water-in-pumpkin seed oil, continuous phase: 2% Tween 

20). 

Figure 34 shows that uniform droplets with span values less than 0.5 were obtained for 

almost all fluxes except the extreme cases of very low, and very high, rotation speed 

and high transmembrane flux. Another combination that also did not give droplets with 

narrow size distribution was high rotation speed with high transmembrane flux. 

Increase of the span from 0.5 to 0.63 with an increase of rotation speed from 960 to 

1330 rpm could be consequence of partial droplet break up into smaller daughter 

droplets under the influence of high shear forces (Vladisavljević &Williams 2005). 

Previous work using a membrane with much smaller inter-pore spacing (Egidi et al. 

2008) suggests that there may be a ―push-off‖ force that has an effect on droplet growth, 

and the span may decrease with increasing transmembrane flux. In this investigation 

using a much larger pore spacing such behaviour was not observed. 

The influence of pore size on droplet diameter was also investigated since it is another 

important parameter that affects the droplet size. The effect of pore size on the mean 
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droplet size is not so pronounced than when the multiple emulsions were produced 

(Dragosavac et al.  2008). Figure 35 shows the results obtained with multiple emulsions 

containing sunflower oil and pumpkin seed oil at high transmembrane flux. As can be 

seen there is no significant difference between 10 and 20 μm membrane, and 30 and 40 

μm membrane therefore 20 and 40 μm membranes were chosen for further 

investigations.  

 

Figure 35 Variation of volume median diameter and span of particle size distribution 

for different membrane pore size and oil type. (Transmembrane flux = 

2550 L m-2h-1, rotation speed = 600 rpm, continuous phase: 2% Tween 20). 

O1-sunflower oil, O2-pumpkin seed oil (both oils had 5 wt.% PGPR). 

The limited variation of droplet size with membrane pore size is surprising and may be 

due to the nature of the membrane: each pore opening is set slightly below the surface 

of the membrane, by about 8 µm. This recess is of little consequence for the 20 µm 

(and larger) sizes, but is strongly significant for the 10 µm pore opening. Hence, if the 

dispersed phase can partially wet the membrane surface the droplets will spread slightly 

wider than the pore opening prior to the detachment. 

Figure 36 compares 20 and 40 µm membrane. When 40 μm membrane was used 
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W/O/W emulsion using sunflower oil compared to pumpkin seed oil can be explained 

by a higher interfacial tension (Table 7).  

 

Figure 36 Variation of volume median diameter and span of particle size distribution 

with dispersed phase flux and pore size. (Disperse phase: water-in-

pumpkin seed oil, rotation speed = 600 rpm, continuous phase: 2% 

Tween 20). 

In this work a maximum transmembrane flux of 3200 L m−2 h−1 was achieved, and the 

lowest span was 0.46 when the stirrer had a rotation speed of 960 rpm. For comparison, 

in repeated premix emulsification using a 10.7 µm tortuous SPG membrane a 

maximum flux of 230 m3 m−2 h−1 was reached with a span of 0.34, but several passes 

through the membrane were employed (Vladisavljević, Shimizu & Nakashima 2006).  

5.1.1.2.2 Influence of dispersed phase 

Figure 37 presents experimental results for production of single emulsions at a 

deliberately low transmembrane flux (30 L m-2 h-1). When low transmembrane flux is 

used ―push-off‖ force (Egidi et al.  2008), which may influence the droplet size, can be 

neglected. As presented in Figure 37, the mean particle size increased with increasing 

mean pore size of the membrane. However, the ratio of mean particle size to the mean 
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pore size decreased with increasing the pore size. The mean pore size varied from 10 to 

40 μm, the ratio d(v,0.5)/dp was in the range from 8.1 to 3.8 for sunflower oil and from 

8.7 to 4.1 for pumpkin seed oil. In direct SPG membrane emulsification, d(v,0.5)/dp is 

normally 3.1–3.7 (Vladisavljević, Shimizu & Nakashima 2006b).  

 

Figure 37 Variation of volume median diameter and span of particle size distribution 

for different membrane pore size and oil type. (Transmembrane flux = 30 

L m-2 h-1, rotation speed = 600 rpm, continuous phase: 2% Tween 20, 

dispersed phase: pure oil). 

When single emulsions were produced at low transmembrane flux (30 L m-2 h-1) and 

600 rpm there was almost no difference between droplets of emulsions from sunflower, 

or pumpkin seed oil. The droplet diameters were in range between 80 and 160 μm and 

the span did not exceeded 0.6. At low transmembrane flux, and constant droplet 

detachment time, the droplets formed are smaller due to the smaller amount of 

dispersed phase that comes out from the pore before the droplet is quickly detached 

from the membrane surface. Such conditions prevail as long as the membrane does not 

become wetted with oil phase.  
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the ratio d(v,0.5)/dp was in the range from 6 to 7.9 for W/O1/W emulsion and from 7.8 

to 25 for W/O2/W emulsion. At the same time, broader distributions were obtained at 

30 L m-2 h-1 both for sunflower oil and pumpkin seed oil. When sunflower oil was used, 

the span was in a range between 0.91 (using a 10 μm membrane) and 0.74 (using 40 

μm). On the other hand, when pumpkin seed oil was used the span was in a range 

between 1.51 (using 10 μm) and 1.47 (using 40 μm). The W/O/W emulsions have much 

lower interfacial tension than O/W emulsions (Table 7) hence the droplets produced 

would be expected to be smaller than for a single emulsion. On the contrary, 

experimental results show that the droplet size increased when multiple emulsions are 

produced. Droplet size for W/O1/W ranged from 59 to 275 μm while for W/O2/W 

droplets these were between 232 and 311 μm at 30 L m-2 h-1. Such behaviour can be 

explained by looking at the composition of the emulsions: a significant additional 

compound in the formulation of W/O/W emulsions is PGPR (5%), an emulsifier added 

to the oil phase in order to stabilize the inner water droplets. If the membrane surface is 

ideally covered by a hydrophilic layer the oil droplet is limited to only the region 

around the pore opening, as reported by Christov et al.  (2002) and the droplet formed 

on the pore would have a small diameter. When the oil phase has internally dissolved 

emulsifier, in this case PGPR which is a lipophilic emulsifier with hydrophilic head and 

hydrophobic tail, the process of droplet growth is different. During growth of the oil 

droplet at the pore surface, molecules of PGPR may orient toward the hydrophilic 

membrane thus expanding the contact line of the droplet/membrane over a larger 

surface. As the droplet grows larger, a larger area is occupied. Since the pore spacing is 

sufficient, the droplet is formed not just from one pore, but from a hydrophobised 

domain created due to interactions of PGPR molecules with the membrane. If droplets 

of single emulsions (W/O1) and multiple emulsion (W/O1/W) using sunflower oil are 

compared (Figure 37 and Figure 38) droplets of multiple emulsion are larger and less 

uniform.  
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Figure 38 Variation of volume median diameter and span of particle size 

distribution for different membrane pore size and oil type. 

(Transmembrane flux = 30 L m-2 h-1, rotation speed = 600 rpm, 

continuous phase: 2% Tween 20, dispersed phase: water-in-oil 

emulsion). 

Unrefined pumpkin seed oil is rich in many compounds that can be sorbed on the 

membrane surface, such as free fatty acids, minerals, phospholipids, chlorophyll, and 

aromatic components (Murkovic et al. 2004). The sorption of these components as well 

as molecules of PGPR on the membrane surface may lead to partial membrane wetting 

by the oil phase. Hence, droplets of multiple emulsions using pumpkin seed oil 

(W/O2/W) are larger than ones obtained from sunflower oil. 

5.1.1.2.3 Influence of emulsifier 

Ideally, the emulsifier molecules should not sorb to the membrane surface 

electrostaticaly. Such interactions could cause alteration of the membrane surface from 

hydrophilic to hydrophobic (Tong et al.  2000). Therefore, Tween 20 and Pluronic F68 

were used as water soluble surfactants, as they are both nonionic surfactants with no 

affinity to sorb to the membrane surface.  
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In order to determine the effect of internal water phase and effect of PGPR molecules 

on the membrane surface and the droplet size four different tests were performed using 

a new membrane with 15 μm pores and 200 μm pore spacing, and the results are 

presented in Figure 39. After each experiment the membrane was ultrasonicated for 5 

min in NaOH, then dried, followed by ultrasonication for 5 min in 10% HCl and dried 

again. After washing in the base and acid the membrane was left in the wetting agent 

for 1h. In all experiments 2% Pluronic F68 was used as the continuous phase.  

 

Figure 39 Effect of PGPR and internal water phase on the droplet size and 

appearance in 4 consecutive sets of experiments with the same membrane. 

Disperse phase: 1: Pure pumpkin seed oil (O2); 2: 5% PGPR dissolved in 

pumpkin seed oil; 3: W/O2 emulsion with 30% water phase and 5% PGPR 

in pumpkin seed oil, and 4: Experiment with pure pumpkin seed oil 

performed after previous experiments. Pore size = 15 μm, pores spacing = 

200 μm, transmembrane flux = 640 L m-2 h-1, rotation speed = 600 rpm, 

continuous phase: 2% Pluronic F68. 

In the first experiment pure pumpkin seed oil was used as the dispersed phase. The 

experiment was repeated three times and the average value for d(v,0.5) is presented (the 

error bars indicate the highest and the lowest values obtained). d(v,0.1) and d(v,0.9) are 

presented for information. The average droplet size produced using the new membrane 

was 124 μm and the repeatability of the experiment was good (Figure 39). The first 
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photomicrograph presented in Figure 39 (top left corner) with almost transparent 

droplets corresponds to the pure pumpkin seed oil injected into the continuous phase. In 

the second experiment 5% of PGPR was dissolved in the oil phase (oil with PGPR was 

heated up to 50oC and left overnight to be mixed), but no internal water phase was 

present. Again experiments were repeated three times, and the average value is 

presented for d(v,0.5), and the error bars indicate the highest and the lowest values 

obtained. The average droplet size when the PGPR was dissolved in oil was 126 μm. 

Comparing the droplet sizes with, and without, PGPR almost no difference was 

observed. Interfacial tension of pure pumpkin seed oil is twice that when PGPR is 

dissolved (Table 7) and smaller droplets would, therefore, be expected when PGPR is 

present in the oil phase. As can be seen from Figure 39 almost the same droplet size 

was obtained with and without PGPR. The same droplet size indicates that the PGPR 

molecules may wet the membrane but not significantly since the uniformity of the 

droplets did not deteriorate. The third experiment involved the use of an inner water 

phase. Again three experiments were conducted, the average value for d(v,0.5) is 

reported and the error bars present the highest and the lowest values obtained. From 

Figure 39 it can be seen that the droplet size increases by approximately 20 μm. Such 

increase clearly shows that the presence of the internal water phase, together with 

PGPR molecules, wet the membrane resulting in the increase of droplet size. A 

question arose as to whether the molecules of PGPR sorb on the membrane surface 

irreversibly. In the final experiment the pure pumpkin seed oil was used again as 

dispersed phase. As it can be seen from Figure 39 the droplet size was no different from 

the first experiment showing that the cleaning of the membrane was efficient and that 

PGPR molecules were successfully removed by it. At the same time, the reproducibility 

of all experiments shows that the period for which the membrane was left in the wetting 

agent (1 h) was sufficient for the molecules of the wetting agent (used to increase the 

hydrophilicity of the membrane) to sorb onto the membrane surface. 

When single emulsions were produced (Dragosavac et al. 2008) different hydrophilic 

surfactants were successfully used to regulate the droplet size. Figure 40 shows the 

influence of surfactant in the continuous phase on droplet size and droplet uniformity 

with increasing transmembrane flux while a rotation speed of the stirrer was 600 rpm. 

As reported earlier, Pluronic F68 was successfully used as an emulsifier for single 

emulsions (Dragosavac et al. 2008, Wulff-Pérez et al. 2009) so it was investigated here 
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as a stabilizer for the droplets of multiple emulsions. As can be seen when 2% Tween 

20 was used with increasing transmembrane flux from 640 to 3200 L m-2 h-1 the droplet 

diameter increased from 150 to 211 μm, and span in all cases did not exceeded 0.5. 

Using 2% Pluronic F68 for the same operating conditions the droplet diameter 

increased and was between 235 and 303 μm while span increased, but was in most 

experiments less than 0.5. Figure 40 shows that droplet size can be regulated using 

different surfactants. The biggest droplets were obtained with Pluronic F68 as 

emulsifier, a consequence of the higher interfacial tension (Table 7).  

 

Figure 40 Variation of volume median diameter and span of particle size 

distribution with dispersed phase flux for 2% surfactant solutions 

(disperse phase: water-in-pumpkin seed oil, pore size = 20 μm, 

rotation speed = 600 rpm). 

As a rule, the faster the emulsifier molecules sorb to the newly formed droplet surface, 

the smaller the mean droplet size of the resultant emulsion will be. The effective 

diffusion coefficient of Pluronic F68 is reported as 1.9×10-11 m2 s-1 (Soong et al.  2010) 

while for Tween 20 Luschtinetz and Dosche (2009) reported a value of 7.7×10-11 m2 s-1. 

Since the loading of the interface with surfactant is directly proportional to the effective 

diffusion coefficient (van der Graaf et al.  2004), it will take longer for Pluronic F68 

molecules to stabilise the forming oil droplet which may also explain the larger 
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diameters presented in Figure 40 and the slightly poorer span values. With increase of 

transmembrane flux from 2550 L m-2 h-1 to 3200 L m-2 h-1, when the continuous phase 

included 2% Pluronic F68, droplet size increased from 279 to 303 μm but the span 

reduced from 0.76 to 0.54. Since the pore spacing of the membrane was 200 μm, then 

the ―push-off‖ force may be beginning to have an effect. However, the peristaltic pump 

capacity did not permit the testing of higher flow rates. 

An increase in the viscosity of the continuous phase often increases the stability and 

shelf life of multiple emulsions. Therefore, 2% PVA was added to the continuous 

phase. The viscosity doubled (Table 7), and the increase of viscosity should lead to a 

decrease in the droplet size. As can be seen from Figure 41, with the addition of PVA 

the droplet size increased from 150 to 210 μm and the span of particle size distribution 

increased from 0.42 to 0.52.  

 

Figure 41 Variation of droplet size distribution with addition of PVA (disperse 

phase: water-in-pumpkin seed oil, pore size = 20 μm, rotation speed = 600 

rpm, transmembrane flux = 640 L m-2 h-1). 

With the increase of the continuous phase viscosity the diffusional mobility of the 

surfactant molecules decreases, longer time is needed for stabilization of the droplet 

and therefore the droplet diameter is bigger. Similar findings were obtained by van 
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Dijke et al.  (2010) by microchannel emulsification: using hexadecane as a dispersed 

phase and increasing the viscosity of the continuous phase from 0.9 to 7.8 mPa s they 

obtained droplets with increasing size (from 35 to 42 μm) while the CV increased with 

the increase of the viscosity of continuous phase from 2.5 to 9.5%. 

5.1.1.2.4 Influence of surface shear stress 

It is widely accepted that shear stress on the membrane surface has to be applied in 

order to produce uniform droplets (Peng, Williams 1998). Using an SPG membrane 

with mean pore size of dp = 5.4 – 10.7 µm Vladisavljević et al. (2006) produced 

W/O/W emulsion by direct membrane emulsification where mean droplet size was dd = 

19.5 – 32 µm and the span of the particle size distribution was 0.28. Kobayashi et al.  

(2005) using microchannel (MC) with oblong section (42.8 × 13.3 µm) produced 

W/O/W emulsion where mean droplet size was 41.8 µm and the CV was 6.8%. In 

cross-flow systems and MC emulsification the shear stress is uniformly distributed on 

the whole membrane surface, therefore, it is expected that the uniformity of the droplets 

would be high. The shear stress in the Dispersion Cell is not constant over the whole 

membrane surface and has the highest value at the transitional radius (Eq. (14)) 

between a free and forced vortex (Kosvintsev et al. 2005).  

Figure 42 demonstrates the influence of the rotation speed on the droplet size for 

multiple emulsions of pumpkin seed oil at oil flux of 640 L m−2 h−1. As found earlier 

for single emulsions (Dragosavac et al. 2008; Kosvintsev et al. 2005), mean droplet 

size decreases with increasing shear stress. The shear stress on the membrane surface 

does depend on the distance from the axis of rotation and reaches its greatest value at 

the transitional radius (Figure 11).  
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Figure 42 Variation of droplet size distribution with rotational speed (dispersed 

phase: water-in-pumpkin seed oil, continuous phase: 2% Tween 20, 

dispersed phase flux = 640 L m−2 h−1, pore size = 40 μm). 

Since the shear stress on the membrane surface is not constant, the average shear stress 

is more representative in the case of the whole membrane which was used here. Since 

the model does not take into consideration the flow rate of the discontinuous phase, it is 

expected that the model will predict the droplets produced using a very low flow rate, 

as shown in Figure 43. Droplets produced using the higher flow rate followed the same 

trend as the ones produced at lower transmembrane flux: increase of rotation speed 

decreased the droplet size, but the sizes of droplets produced at the higher 

transmembrane flux caused deviation from the model. The detachment of the droplet is 

not instantaneous but requires a finite time tneck, the necking time, during which an 

additional amount of dispersed phase flows into the droplet. Therefore, the resultant 

droplet volume, V, is larger than the one estimated by the force balance model and can 

be expressed as (van der Graaf et al. 2004): Vd = Vcrit+(tneck/kp)(Qd/N) where Vcrit is the 

droplet volume predicted by the Model B (Eq. (10) and Eq. (16)), k is the fraction of 

active pores, Qd is the total dispersed phase flow rate and N is the total number of pores 

in the membrane. For example for the data in Figure 43 obtained at 3185 L m-2 h-1, the 

above equation gives values of tneck/k in the range from 0.13 s at 1330 rpm to 2.6 s at 
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230 rpm. The fraction of active pores k usually ranges from 2 to 50%, which means that 

tneck should vary from 0.003-0.07 s at 1330 rpm to 0.05-1.3 s at 230 rpm.  

 

Figure 43 Experimental droplet diameters of water-in-(pumpkin seed oil)-in-water 

multiple emulsions produced. (Pore size = 40 µm, continuous phase: 2% 

Tween 20). Horizontal lines (-) represent d(v,0.1) and d(v,0.9) for the 

transmembrane flux 0.1 L m-2 h-1. Line represents the Model C (τav). 

Figure 44 supports the observation that the droplet size is influenced by shear stress. 

Photomicrographs correspond to the cumulative curves in Figure 42. As can be seen 

from the micrographs, the droplets have a dark colour due to the small water droplets 

entrapped within the oil phase scattering the transmitted light. These photographs were 

taken immediately after the experiment. 
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Figure 44 Photomicrographs of droplets formed with 40 μm membrane, dispersed 

phase: water-in-pumpkin seed oil, continuous phase: 2% Tween 20, 

transmembrane flux = 640 L m−2 h−1: (a) 230 rpm (1 Pa); (b) 600 rpm (5 

Pa); (c) 960 rpm (11 Pa); (d) 1330 rpm (18 Pa). Value in the brackets 

correspond to maximal shear stress. 

5.1.1.3 W/O emulsion – silica particle production 

The aim was to produce uniform spherical silica particles, within the size range of 30 

to 70 m, with controllable internal porosity, starting from sodium silicate and sulfuric 

acid, using stirred cell membrane emulsification. No literature data on production of 

W/O emulsions (acidified sodium silicate/kerosene) using the Dispersion Cell and 

hydrophobic membranes (Figure 12 and Figure 14) was available, and the 

reproducibility of the experiments had to be tested. For the tests, the paddle rotation 

was set to 875 rpm while the flow rate of the dispersed phase was set to 5 mL min-1 

(corresponding to a flux of 350 L m-2 h-1). Four experiments were conducted and the 

mean droplet sizes (d) as well as coefficient of variations (CV) are presented in Figure 

45. In the experiments, marked as 1 and 2 the volume of dispersed phase injected 
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through the membrane was 10 cm3 while in the experiments 3 and 4 it was 50 cm3. Due 

to the nature of the emulsion it was not possible to analyse it using the Malvern 

Mastersizer S since it was equipped only with the water sampling cell therefore the 

microphotographs were analysed using ImageJ software. To be consistent in the 

analysis all the droplets and particles were analysed using ImageJ. Detailed explanation 

of the ImageJ use is given in Appendix B. 

 
Figure 45 Repeatability of the repeated experiments: 10 cm3 of dispersed phase was 

injected into the continuous phase in the exp. 1 and 2 while 50 cm3 was 

injected in the exp. 3 and 4. ω = 875 rpm and Jd = 350 L m-2 h-1. d 

represents mean droplet size and CV represents coefficient of variation. 

For each experiment at least 700 droplets were calculated. 

After each experiment the membrane was sonicated for 30 min in a warm detergent 

solution in order to remove any remaining solution, washed with clean water and dried 

with compressed air. It was soaked for one hour in kerosene prior to an experiment in 

order to increase the hydrophobicity of the membrane. As can be seen from Figure 45, 

the mean droplet size (d) as well as coefficient of variation (CV) remained almost 

unchanged no matter the volume of dispersed phase injected into the continuous phase. 

This provides evidence that the experiments were reproducible and give a mean droplet 

size (d) of just below 90 µm and coefficient of variation (CV) in the range between 22.5 

and 23.5% for the described combination of rotation speed and flow rate. Furthermore, 

these experiments demonstrate that neither the dispersed phase, nor surfactant (Span 

80), sorbed onto the membrane surface within the time allowed for the experiments: 
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such an effect would have caused membrane ‗wetting‘ with a consequential increase in 

droplet size (and probably increasing of CV). 

5.1.1.3.1 Influence of shear stress and flow rate on the droplet size 

As commented earlier when using the Dispersion Cell for production of emulsions 

the two main parameters affecting the droplet size are paddle rotation speed and flow 

rate of the dispersed phase (Kosvintsev et al.  2005; Dragosavac et al. 2008; Stillwell et 

al. 2007). Figure 46 illustrates both influences: shear stress as well as flux of the 

dispersed phase, on droplet size. The error bars in Figure 46 represent one standard 

deviation from the mean value, and the theoretical prediction based on Eq. (10) and Eq. 

(16) is shown by the curve. As can be seen from the figure, the rotation speed 

represents an effective way to control the droplet size. An increase of the rotation speed 

increases the shear stress on the membrane surface and the droplet formation time 

shortens, therefore, the droplets produced at higher rotation speed have a smaller 

diameter. Using a flow rate of 5 mL min-1 and a rotation speed from 200 to 1400 rpm, 

droplet sizes in the range between 240 and 65 µm were produced. 

Eq. (10) and Eq. (16) give good prediction of the droplets produced at a very low 

flow rate (1 mL h-1 equivalent to approximately 1 L m-2 h-1). Several variations of the 

force balance model have been developed for predicting the droplet size in the 

Dispersion Cell (Kosvintsev et al. 2005; Dragosavac et al. 2008; Egidi et al. 2008). 

Kosvintsev et al.  (2005) used maximal shear stress in the force balance model and 

Dragosavac et al.  (2008) used average shear stress. Egidi et al.  (2008) added the 

―push-off‖ force to the force balance model to predict the droplet size at high flow rates 

when the space between the pores is small. The shear stress on the membrane surface 

does depend on the distance from the axis of rotation and reaches its greatest value at 

the transitional radius (Kosvintsev et al. 2005). Since the shear stress on the membrane 

surface is not constant the average shear stress is more representative in the case of the 

whole membrane which was used here. Since the model does not take into 

consideration the flow rate of the discontinuous phase, it is expected that the model will 

predict the droplets produced using a very low flow rate, as shown in Figure 46. In the 

case of the very low flow rate, the volume of sulfuric acid used to initialize the gelling 

was replaced with dionised water, in order to avoid particle gelling during injection 

through the membrane. Such replacement was necessary, since the experiment had to 
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last for several hours in order to produce enough droplets for analysis, and if the 

solution was acidified the sodium silicate would gel within the tubing and membrane. 

These experiments were performed solely to assess the validity of the force balance 

model with this system. Droplets produced using the higher flow rate followed the 

same trend as the ones produced at lower transmembrane flux: increase of rotation 

speed decreased the droplet size, but the sizes of droplets produced at the higher 

transmembrane flux caused deviation from the model as seen in the case of W/O/W 

emulsions. 

 
Figure 46 Experimental droplet diameters of produced water-in-oil emulsions as a 

function of rotation speed. Line represents the model Eq. (10) and Eq. (16)  

for predicting the droplet size. (■) 6 wt % SiO2 (Sodium silicate + 1 M 

H2SO4) injected at 350 L m-2 h-1. (●) 4 wt % SiO2 (Sodium silicate + 1 M 

H2SO4) injected at 350 L m-2 h-1. (▲) 6 wt % SiO2 (Sodium silicate + 

distilled water) injected at 1 L m-2 h-1.  

Again the resultant droplet volume, V, is larger than the one estimated by the force 

balance model and can be expressed as (van der Graaf et al. 2004): V = 

Vcrit+(tneck/kp)(Qd/N) where Vcrit is the droplet volume predicted by the model, kp is the 

fraction of active pores, Qd is the total dispersed phase flow rate and N is the total 
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number of pores in the membrane. For the data in Figure 46 obtained at 350 L m-2 h-1, 

the above equation gives values of tneck/k in the range from 0.08 s at 1400 rpm to 3.4 s 

at 200 rpm. The fraction of active pores k usually ranges from 2 to 50%, which means 

that tneck should vary from 0.0020.08 s at 1400 rpm to 0.071.7 s at 200 rpm. Another 

reason for the deviation between the model predictions and experimental data at 350 L 

m-2 h-1 is insufficient coverage of the droplet surface with Span 80 molecules during 

formation of the droplets. The model calculations are made using the equilibrium 

interfacial tension which is lower than the actual interfacial tension during drop 

formation. Less coverage of the droplet surface by surfactant leads to greater interfacial 

tension force and the resultant droplet is larger. 

It is clear that too low and too high rotation speed is not recommended for production 

of uniform droplets, as shown by the longer error bars in Figure 46. The decrease in 

uniformity probably originates from droplet breakup: at low rotation speed large 

droplets are created which are more susceptible to breakage by the stirrer, and at high 

rotation speed breakage is quite likely. Other dispersed phase injection rates were tested, 

but a dispersed phase flow rate of 5 mL min-1 gave the most uniform droplets regardless 

of paddle rotation speeds. No major difference in droplet uniformity and mean droplet 

diameter was observed for the droplets containing 4 and 6 wt.% SiO2. Both solution 

have similar viscosity and density, therefore, the final droplet size should be the same 

and Figure 46 confirms this prediction. The higher content of silica was used in further 

experiments, since it is likely to give stronger silica particles. Concentrations higher 

than 6 wt.% SiO2 were not used, since it was observed that the solutions were not clear 

after the addition of sulfuric acid.  

In some applications the restriction of active membrane area to a ring encompassing 

the transitional radius may help to improve the uniformity of the formed droplets 

(Stillwell et al. 2007 and Thompson, Armes & York 2011). The argument here is that 

the shear stress on the membrane surface due to the stirring is not uniform under the 

paddle, and the region where the shear reaches its maximum will provide the most 

consistent region of shear. A ringed membrane was tested for production of the droplets, 

but no significant improvement in uniformity was observed in this case (data not 

shown).  
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5.1.1.3.2 Shrinking of the particles during drying 

The produced droplets were transferred into a Teflon beaker, and stirred using a low 

rotation speed in order to allow gelling and formation of a hydrogel. A teflon baker was 

used since it was noticed that if the droplets of silica precursor were stirred in a glass 

beaker they tended to stick to the glass during gelling. Once gelled, the hydrogel 

particles were dried to form a xerogel. Figure 47 illustrates the shrinkage of the 

dispersed phase droplets and their transformation; firstly into the hydrogel and then to 

the xerogel forms. During condensation polymerization the droplets will shrink due to 

water loss as the hydrogel is formed. To remove kerosene and Span 80 a suspension of 

gel particles was transferred into a microfiltration cell and kerosene was filtered, 

followed by washing in acetone and then water. Washed particles were left to 

completely dry for several days at room temperature. During this drying stage liquid 

present in the pores is removed, the structure compresses and the porosity is reduced, at 

least to some degree, by the surface tension forces as the liquid is removed leaving 

spherical silica particles (xerogel). Drying at room temperature was followed by 

calcination, but further shrinkage of the dried silica particles was not observed. 

Shrinkage of the droplets during the drying process can be seen in Figure 47. The 

markers in Figure 47 represent the final particle size of the gel (hydrogel or xerogel) as 

a function of the initial droplet size and the lines fit the experimental data.  
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Figure 47 Relationship between the particle diameter in the resultant gels and the 

droplet diameter. (6 wt % SiO2 (Sodium silicate + 1 M H2SO4) injected at 

350 L m-2 h-1). (●) Hydrogel. (▲) Xerogel. 

Final particle size was found to be an approximately linear function of the initial 

droplet size. Final silica particles (xerogel) were 2.3 times smaller than initial droplet 

size. However, the particles are still very significantly bigger than would be predicted 

by a mass balance of the silica used in their formation. For example, the 120 µm 

droplets would give rise to xerogel particles of 37 µm based solely on a material 

balance on the silica present. Clearly, the larger observed size of 52 µm, is due to a 

significant amount of internal porosity, or voidage. This is discussed further after the 

dried particle characterization results. Figure 48 compares the CV for droplets, hydrogel 

and xerogel particles as a function of rotation speed. 
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Figure 48 The coefficient of variation of silica particles in various stages during 

production as a function of rotation speed. (6 wt % SiO2 (Sodium 

silicate + 1 M H2SO4) injected at 350 L m-2 h-1). (■) Droplets of 

acidified sodium silicate solution in kerosene immediately after 

production. (●) Hydrogel particles. (▲) Xerogel particles. 

It can be seen that the most uniform droplets were produced at an intermediate rotation 

speed of 875 rpm. It is interesting to note that with the loss of water the particles 

became more uniform as illustrated in Figure 48. Improvement in uniformity with the 

loss of water is also visible from Figure 49 where the particles (Figure 49 (c) and (d)) 

produced from the droplets (Figure 49 (a) and (b)) are presented. Using a 15 µm 

membrane, spherical silica particles in the range between 30 and 70 µm with a CV < 20 

% were produced. 
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Figure 49 Optical micrographs of acidic sodium silicate droplets in kerosene 

produced at (a) 500 rpm and (b) 875 rpm. Optical micrographs of calcined 

silica particles produced from these droplets are shown in Figure (c) and 

(d), respectively. 

5.1.1.3.3 Influence of the stirring speed, heating and air exposure during the 

gelling phase on the final silica particles 

The very important phase during the production of silica particles is the transformation 

of silica precursor droplets to the hydrogel – gelling phase. The gelling phase is also 

known as a sticky phase since the particles become sticky and tend to attach to each 

other as well as to the walls of the beaker. Earlier was mentioned that the Teflon beaker 

was selected since the particles tended to stick to the glass walls possibly due to 

forming silanol bonds. In order to try to minimize the possibility of particles sticking to 

each other they had to be stirred during the gelling phase. Figure 50 shows the case 

when the stirring speed during the gelling time was set to be 500 rpm. Formed hydrogel 

particles were crushed and not too many particles actually retained the spherical shape. 

It was found that the rotation speed of 170 rpm retained the particles suspended and it 

was enough to prevent the settling, therefore, it was selected as the stirring speed in all 

experiments. 
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Figure 50 Influence of too high stirring speed during the gelling time on the final 

particle shape. (a) Inintial droplets produced using flow rate of 5 mL min-1 

and 300 rpm. (b) Hydrogel. 

It is interesting to notice that the spherical particles can be produced also without any 

stirring during the gelling phase as shown in Figure 51.  

 

Figure 51 Hydrogel produced without stirring during the gelling phase. 

It was also noticed that too early exposure to air once the droplets of acidified sodium 

silicate were produced can lead to breakage of the spheres. The newly formed surfaces 

appeared to be smooth with sharp edges as it can be seen in Figure 52. The droplets in 

Figure 52 were taken from the beaker immediately after the production and placed on 

the microscope slide. It can be seen that the largest droplet which is most likely to stand 

(a) (b)

NO STIRRING

Silica hydrogel in kerosene Kerosene decanted

Silica hydrogel washed in acetone and place on slide with acetone (no drying applied)

Water droplets (stabilised with Span 80) are white and silica is yellowish due to deposition of Span 80 on the surface

IN THIS STAGE THE PARTICLES ARE TRASPARENT
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out from the kerosene solution on the slide after 10 min standing on the slide cracks and 

splits during solidification (Figure 52 (a)) as the reaction progresses other droplets start 

to crack too (Figure 52 (d)). 

 

Figure 52 Too early exposure to the air (too fast solidification). (a) 10 min, (b) 15 

min, (c) 25 min and (d) 35 min. 

In an attempt to try to speed up the process of solidification of silica particles the 

droplets after the production were heated (Figure 53(a)). The heating was applied 3h 

after the droplets were produced (solidification process already started so the 

droplets/particles are not too fragile) and was continued over 12 h.  

When heating was applied the solid silica particles were obtained much faster than in 

the case when no heating was applied. Solid silica particles were obtained after one day 

compared to the non heated ones where it took 3 days to get the solid particles, if the 

initial sodium silicate had a pH = 3.5. The resultant particles which were heated (Figure 

53 (a)) are crushed and bruised whilst the ones that were not heated (Figure 53 (b)) 

maintained the spherical shape. With an increase of temperature the condensation 

reaction speeds up and water is removed more quickly from the droplets, therefore, it is 

possible that the changes in the shape of the particles are due to the faster removal of 
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water. Due to this, it was decided that all experiments should be run at room 

temperature. 

 

Figure 53 Influence of the heating during the gelling phase on the final shape of the 

particles. (a) During the gelling phase droplets were exposed to the heating 

(60oC over 12 h). (b) Droplets were not exposed to the heating. 

5.1.1.3.4 Surface analysis of produced silica particles 

On the surface the presence of pores is visible on an SEM. To confirm the composition 

of the particles EDX elemental analysis was performed. Ten random silica particles 

were scanned and the averaged result of Energy Dispersive Spectrum is presented in 

Figure 54. As can be seen, the particles consist of silicon and oxygen with signals at 1.8 

and 0.5 ekV respectively. At 0 and 2.2 ekV two signals can be seen: the first one comes 

from the background (i.e. the plate on which the particles were placed), while the other 

one comes from the golden palladium (mixture of gold and palladium) which was used 

to coat the particles prior to SEM analysis in order to reduce the charge interference. 

The surface structure of the silica particles after calcination was imaged by SEM 

(operated at 2.6 kV) and microphotographs are presented in Figure 55. The silica 

particles are almost perfectly round as can be seen from Figure 55(a) and (b), while the 

close-up of the particle surface shows a cloudy and corrugated external and internal 

surface morphology (Figure 55(c) and (d)).  

(b)(a)
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Figure 54 The Energy Dispersive Spectrum (EDS) of silica particles with average 

size of 40 µm. 

 
Figure 55  (a) Scanning electron micrograph (SEM) of the silica particles with an 

average size of 40 µm. (b) SEM of a single silica sphere. (c) Field 

emission gun (FEG) SEM of a silica sphere external surface structure. (d) 

FEG SEM of a broken silica sphere. 

Gel formation is based on establishment of chemical bonds between neighboring 

particles and the particle size is a function of the pH of a silica precursor (Iler 1979). 

According to Iler (1979) after gelation, but before complete drying, the structure and 

chemistry may be altered by varying pH, salt concentration, temperature and/or pore 

Not calcinated sample

Calcined sample

EL. WT.
%

AT.
%

C 0.78 1.21

O 57.59 68.42

Si 41.63 30.37

EL. WT.
%
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C 7.02 11.27

O 47.95 57.81

Si 45.03 30.92

Peak from 
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fluid composition in a process called aging. Muñoz-Aguado et al.  (1995) found that if 

gellation is performed under acid conditions (pH≤7) final xerogel pore size depends 

mainly upon pH. In order to modify the internal porosity the pH of the dispersed phase 

was increased to 4.5 and aged in acetone. The particles were compared with the 

particles formed from the solution at pH 3.5 and hydrogel aged in water. The 

systematization of pores according to Dubinin (1968): where micropores have diameter 

smaller than 3 nm and mesopores have diameters in the region between 3 and 200 nm is 

used in the discussion below. Figure 56 (a) shows a nitrogen sorption–desorption 

isotherm of the silica synthesized under a pH of 3.5 aged for 7 days in water and dried 

and calcined. The sorption isotherm shows a steep rise in the low-pressure region at a 

normalized pressure of about p/p0 < 0.05 and according to IUPAC (Sing et al.  1985) it 

is the type I isotherm which could be interpreted as an indication of the presence of 

micropores in the analyzed silica. The inset in Figure 56(a) shows the pore size 

distribution calculated from the desorption isotherm according to the BJH method 

(Barret, Joyner & Halenda 1951). The sample shows a wide pore size distribution in the 

micropore range with a distribution maximum at a pore radius of 1.5 nm. Figure 56(b) 

represents the silica sample produced from the acidified sodium silicate solution with a 

pH 4.5 aged for 7 days in acetone dried and calcined. 
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Figure 56 (a) BET nitrogen sorption–desorption isotherm of silica particles with an 

average size of 40 µm. Specific surface area was 760 m-2 g-1. Initial 

sodium silicate solution had pH=3.5, and produced hydrogel was aged 7 

days in water followed by vacuum drying on 100oC and calcination for 6h 

at 550oC. Inset graph represents pore size distribution calculated using 

BJH method according to the desorption isotherm.  
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(b) BET nitrogen sorption–desorption isotherm of silica particles with an 

average size of 40 µm. Specific surface area was 360 m-2 g-1. Initial 

sodium silicate solution had pH=4.5, and produced hydrogel was aged 7 

days in water followed by vacuum drying at 100oC and calcination for 6h 

at 550oC. Inset graph represents pore size distribution calculated using 

BJH method according to the desorption isotherm. 

The sorption isotherm has a characteristic hysteresis loop appearing between a relative 

pressure of p/p0 = 0.60 and p/p0 = 1 caused possibly by capillary condensation 

corresponding to a type IV isotherm according to IUPAC (Sing et al. 1985) indicating 

the presence of mesopores. The inset in Figure 56(b) illustrates the pore size 

distribution (according to the BJH method (Barret, Joyner & Halenda 1951)) of the 

sample with a distribution maximum at a pore radius of 6 nm. The results obtained are 

in accordance with the literature, since Muñoz-Aguado & Gregorkiewitz (1997) 

reported that gelling reactions in the acid region is approximately second order with 

respect to silica concentration and a bimolecular condensation reaction is the rate 

determining step. So the mechanism can be described by the following reaction 

sequence: 

OHOSiOHOHSi fast
2        Eq. 46 

  OHSiOSiSiOOHSi slow     Eq. 47 
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and it combines OH- catalysis (Eq. (46)) with bimolecular condensation (Eq. (47). 

When such mechanisms prevail, then according to Muñoz-Aguado and Gregorkiewitz 

(1997), a microporous texture is expected for the silica matrix.  

The specific surface area of the sample aged in water at pH = 3.5 was 760 m2 g−1 (± 21 

m2 g−1) with a cumulative pore volume (Vp) of 0.45 cm3 g−1 (± 0.02 cm3 g−1), 

determined using the BET multipoint method (Brunauer, Emmett & Teller E, 1938). In 

the case of the sample aged in acetone at pH=4.5 the specific surface area decreased to 

360 m2 g−1 (± 16 m2 g−1) while the cumulative pore volume increased to 0.88 cm3 g−1 (± 

0.03 cm3 g−1). Note that the specific surface area of the particles using the Mastersizer 

2000 S (Malvern Instruments, UK) was determined to be just about 0.1 m2 g−1 which is 

negligible with respect to the internal surface area. The absolute density ρt of the 

samples aged in water, or acetone, was measured using a Helium Pycnometer 9200 

(Micromeritics, US) and was not found to differ significantly: 2070 kg m-3               

(±40 kg m-3). According to the cumulative pore volume (Vp) and the absolute silica 

density (ρt), the internal voidage ( )/1/( tpps VV   ) of the samples aged in water and 

acetone is 47 and 63%, respectively.  

The analysis above compares favourably with a material balance based on the 

information contained in Figure 47. The volume of solid silica contained in a droplet is 

s

xm


 3

6
          Eq. 48 

where m is the mass fraction of silica present in the liquid, x is the droplet diameter, ρ 

and ρs are the acidified sodium silicate and solid silica densities, respectively. The 

internal voidage of the particle is 

solidvoids

voids
s VV

V


          Eq. 49 

where Vvoids is the void volume and Vsolid is the solid volume of the silica. The Vvoids is 

the volume of the particle minus the volume of the solid silica: 

)(
6

33 xmxV
s

pvoids



         Eq. 50 

where xp is the particle (xerogel or hydrogel) diameter. Combining Eq. (49) and Eq. (50) 

and rearranging provides the following equation for internal particle voidage: 
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3

1















ps
s x

xm



         Eq. 51 

Figure 47 provides values of the ratio of the particle size and droplet size for both 

hydrogel and xerogel particles. Using the ratios shown in the figure provides internal 

particle voidages of 88% and 64% for the hydrogel and xerogel particles, respectively. 

The latter compares favourably with the value of 63% obtained from the pore volume 

and density determination.  

For comparison, Chen et al.  (2008) used an approach similar to Carroll et al.  (2008) 

(acidified TEOS as silica source, surfactant templating method in a microfluidic device) 

and determined the internal surface area of the produced silica particles to be 550–675 

m2 g−1 with the reported cumulative pore volume to be 1.1–2.6 cm3 g−1, depending on 

experimental parameters. Chokkalingam et al. (2010) (acidified TMOS with ammonia 

as silica source, sol-gel method, microfluidic co-flow device) produced silica particles 

with internal surface area of 820 m2 g−1 and the total reported pore volume of 0.93 cm3 

g−1. The highest pore volume created in this work measured by BET was 0.88 cm3 g−1 

(± 0.03 cm3 g−1) and calculated from Eq. (50) and a material balance was found to be 

0.86 cm3 g−1. However, to date, no membrane emulsification synthesis route has been 

reported for production of porous silica particles larger than 5 µm. The increase in pore 

size in the case of the sample aged in acetone and produced from solution with higher 

pH (4.5) may be interpreted in two ways. According to Iler (1979), the increase of the 

pH increases the size of the primary silica particles too. Through condensation 

polymerization, particles bind together to form a gel structure, so that when bigger 

particles come together they form a less dense gel structure with larger pores. The 

xerogel structure is a collapsed and distorted version of the structure that originally 

existed at the gel point. During the drying the gel shrinks and the capillary force, which 

is directly proportional to the capillary pressure pc, exerted on the network depends on 

the surface tension of the liquid φ, contact angle θ, and the pore size rp: 

  pc rp /cos2          Eq. 52 

Since the pore size can be very small the capillary pressure, which collapses the 

initial gel structure can be enormous (Iler 1979). By using the acetone which has a 3 

times lower surface tension than water during the drying step the capillary pressure is 

lower, hence the gel shrinks less and larger pores are created.  
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In Figure 56 (a) and (b) BJH approach (based on the Kelvin equation) was used to 

calculate pore size distribution  

sgpo TRr
V

P
P 2ln 

        Eq. 53 

where Rg is universal gas constant, V is molar volume of condensed liquid, P is 

pressure and Po is saturation pressure while Ts is saturation temperature. 

Lowel et al. 2004 in their book about surface characterization gave a review of 

available methods (classic thermodynamic and modern microscopic) for determining 

the pore size distribution. The accuracy of the pore size distribution when classic BJH 

approach is applied depends on applicability and the deficiencies of the Kelvin equation. 

On the other hand modern macroscopic DFT (density function theory (Seaton & 

Walton 1989)) provides a microscopic treatment of sorption phenomena in micro-and 

mesopores on a molecular level, i.e. based on statistical mechanics. Complex 

mathematical modelling of gas-solid interactions plus geometrical considerations (pore 

geometry) leads to realistic density profiles for the confined fluid as a function of 

temperature and pressure. From these density profiles the amount adsorbed can be 

derived. Gas-solid interactions are ―calibrated‖ against real isotherm data of non-porous 

material. In Figure 57 the pore size distribution applying DTF theory is applied. Again, 

as in Figure 56, two different pore size distributions are obtained and the smaller pores 

are present in the sample aged in water. From Figure 57 it is obvious that the BJH 

method was underestimating the pore sizes and for both samples the pore size 

distribution shifts toward larger pores.  
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Figure 57 DFT (Density function theory) pore size distribution curve obtained from 

the sorption isotherm. 

Silica particles produced using acidified sodium silicate aged in acetone were 

additionally functionalized according to the procedure described in Chapter 4.1.2.3.3 

and tested for copper sorption (Chapter 5.2.3). 

5.1.1.3.5 Attempt to influence the internal porosity using surfactant 

templating method 

An attempt to regulate internal structure of the silica particles by the surfactant 

templating method was also tested. Figure 58 compares an experiment when no water 

soluble surfactant was used with two experiments when water soluble surfactants were 

used.  

As it can be seen from Figure 58 the surfactant templating method was not successful 

since both when Tween 20 and Triton X were used final particles did not maintain a 

spherical shape. What is interesting is that when surfactant is dissolved a delay in 

solidification of the particles is observed (sticky phase starts after 3 days), and 

polymerization condensation reaction can also be followed by observing the turbidity of 

the solution. 

10 20 30 40
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

 

D
iff

er
en

tia
l p

or
e 

vo
lu

m
e 

  /
   

cm
3  g

-1
 n

m
-1

Pore diameter   /   nm

Aged in: 
 Water 
 Acetone



5. Results 
 

106 
 

 
Figure 58 Use of 2% Triton X and 2% Tween 20 to tailor the internal structure of 

silica particles. pH of acidified sodium silicate was in all experiments 3.5. 

Droplets were produced using a rotation speed of 875 rpm and flow rate of 

5 mL min-1. Produced droplets were transferred into a beaker and stirred at 

170 rpm until solidified. 

In Figure 58 the glass beaker was used in order to be able to see the difference in the 

solution turbidity as the reaction condensation polymerization progresses. Photographs 

of the glass beaker (Figure 58) were taken for the case when the distilled water was 

used but similar trends in the change of turbidity was observed when the surfactants 

(both Tween and Triton X) were dissolved within the water phase. Once the acidified 

sodium silicate was injected into the kerosene the solution became milky white (day 0). 

With time as the condensation polymerization progressed kerosene solution became 

more and more transparent and by day 3 (in the case when acidified solution of sodium 

silicate had the pH of 3.5) the solution became almost completely transparent. All the 

photographs were taken with stirrer in operation. It is believed that the initial kerosene 

solution became milky due to the water released during the condensation reaction. 
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5.1.2 Oscillating system 

The Dispersion Cell proved to be a valuable tool for laboratory investigations and 

formulation testing, but due to its limited size it is inadequate for industrial application. 

In order to bring nickel metal membranes and membrane emulsification closer to the 

industrial application an Oscillating system is proposed. In the Oscillating system it is 

the vertical oscillations of the membrane that governs the shear induced on the 

membrane surface. It is believed that the shear mainly governs the droplet size 

therefore no matter how the shear is induced it would produce droplets of a same size. 

To commission the system sunflower oil was used to produce O/W emulsions. 

5.1.2.1 Influence of the shear stress (amplitude and frequency) 

As an indication of the reproducibility of the results, and the drop size span, Figure 59 

illustrates the data obtained from triplicate experiments for an oscillator frequency of 

15 Hz and over the range where the drop size is a significant function of peak shear 

stress. At each shear condition the results from three experiments are reported as a 

circular marker. Where only a single marker is visible, it is because the markers all fall 

onto the same place. The results show that the experiments were reproducible and that 

there is a set of operating conditions that provide the narrowest drop size distribution. 

For this frequency, and injection rate, the most narrow drop size distribution was 

obtained at a peak shear stress of 3.6 Pa, giving a median drop size on a number 

distribution of just below 50 µm and a drop size span in the range of 0.37 – 0.45.  

The transmembrane flux was kept at a value of only 30 L m-2 h-1 in the Oscillating 

membrane tests, so that the effects of ―push-off‖ and drop growth are again avoided. 

On increasing peak shear the droplet size decreases sharply and for most frequencies 

reaches a constant value after the peak shear is 4 Pa.  
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Figure 59 For each peak shear stress three experiments were performed to estimate 

the reproducibility of results, the frequency was kept constant 15 Hz and 

transmembrane flux was 30 L m-2 h-1. 

The influence of the shear condition on the degree of uniformity of the produced 

droplets is also illustrated in Figure 60, and Figure 61 which also supports the 

information contained in Figure 59. Optical microscope images are shown in Figure 60 

at four values of peak shear stress: 1.3, 2.5, 3.6 and 5.5 Pa. It can be seen that the most 

uniform droplets are provided at a shear stress of 3.6 Pa, and in Figure 61 it is 

noticeable that the cumulative distribution curve at this peak shear (a=3.5 mm and f=15 

Hz) is also the steepest – indicating the narrowest drop size distribution. Hence, it 

appears that the narrowest drop size distribution, i.e. lowest span value, is not simply 

determined by conditions of the highest shear, or lowest shear giving the smallest or 

largest droplets. It is likely that the most uniform drop distribution is provided by a 

complex function of all the parameters influencing the process, including: disperse 

phase injection rate, peak shear, membrane properties and the physical properties of the 

two immiscible liquids. 
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Figure 60 Photographs of emulsions produced by applying different peak shear 

stresses on the membrane surface is: a) 1.3 Pa; b) 2.5 Pa; c) 3.6 Pa 

and d) 5.5 Pa, while frequency was kept constant at 15 Hz and 

transmembrane flux was 30 L m-2 h-1. 
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Figure 61 Cumulative distribution curves of produced emulsions presented in 

Figure 60, with constant frequency of 15 Hz and transmembrane flux 

of 30 L m-2 h-1. 

A similar comparison is illustrated in Figure 62, for the Oscillating membrane system. 

In this figure the curves for Models A and C (τmax) are retained, so that a comparison 

between the results obtained in the Dispersion Cell (Figure 32) and Oscillating systems 

is possible – based on conditions of peak shear within either system. When stirring with 

a paddle stirrer the control of the shear is from the rotation speed of the stirrer, but for 

the Oscillating system varying shear can be obtained by varying the frequency, or the 

amplitude of oscillation. The data in Figure 62 records the frequency used to achieve 

the given peak shear stress and the corresponding amplitude can be estimated from Eqs. 

22-24. Under identical conditions of shear stress, a higher frequency is compensated by 

using a lower amplitude of oscillation, where amplitude is half of the peak-to-peak 

displacement of the membrane motion. Apart from the very low frequency of 10 Hz, 

there does not appear to be any significance in the combination of the frequency and 

amplitude used: the resulting drop size is observed to be a function of the peak shear 

stress only and not the frequency used to achieve it. Also, there is a significant 
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difference between the most applicable model for the paddle stirred system, the average 

shear model, and the results from the Oscillating system. The droplets are significantly 

smaller than those obtained with the Dispersion Cell. Almost all the results from the 

Oscillating membrane system are placed between the peak shear model without any 

correction for neck formation (Model A) and peak shear model with correction for neck 

formation (Model C (τmax)). However, Model C fits the data better – but still does not 

represent the data well at intermediate values – where the drop sizes are smaller than 

the predicted ones.  

 

Figure 62 Comparison of experimental drop diameters produced in Oscillating 

system and predicted values using Model A (Eqs. 10 and 13), in which τ = 

τmax and Model C (Eqs. (17)-(20) and (13)), in which τ = τmax with 

correction for the neck: the values of d(n,0.5) were obtained at 30 L m−2 

h−1. 10 µm membrane, 200 µm pore spacing. 

From Figure 62, it is evident that another droplet detachment force or factor 

supplements the peak shear detachment. As previously discussed, the inertial force is 

low: two orders of magnitude below the shear force for a 200 µm droplet, and this is 

consistent with a numerical study provided for high frequency membrane oscillation 
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(Kelder, Janssen & Boom 2007). However, the study presented here used much lower 

frequencies: 10 to 90 Hz, and the influence of frequency of oscillation was investigated. 

Figure 63 shows the median drop diameter as a function of frequency for a constant 

peak shear stress at the membrane surface. Shear stress is a function of frequency and 

amplitude, so an increasing frequency will be compensated by decreasing amplitude, in 

accordance with Eqs. (22) – (24), to maintain the same overall shear stress. It can be 

seen that the drop size is substantially independent of the frequency of oscillation used, 

at least for frequencies greater than 20 Hz, but depends on the peak shear stress at the 

membrane surface, max, as anticipated by Models A and C described earlier. 

 

Figure 63 Influence of frequency on median droplet diameter under conditions of 

constant shear stress: varying amplitude. 

In the Oscillating system where the droplets are displaced in two directions: upwards 

and downwards maximal shear stress model and model which applies maximal shear 

stress with neck formation are give better predictions. 

Figure 64 illustrates how the shear rate varies at the membrane surface at two 

frequencies: 10 and 50 Hz. The amplitude is 2.61 and 0.2335 mm respectively, 

providing the same peak shear stress of 1.3 Pa. Also marked on Figure 64 is the average 

shear rate, as a dotted line, and this can be seen to be the same for the two different 
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conditions of frequency and amplitude. From Eqs. (22) – (24), the peak shear stress is 

given by: 

    2/32/12/12/32/12/3

max )2()2( afaf         Eq. 54 

Therefore, in order to keep a constant peak shear for the two different conditions of 

amplitude and frequency 1 and 2, it is necessary to satisfy the following condition: 

    2/3

12

2/3

1221 /// ffaa ff   . This equation is satisfied for the sets of experimental 

conditions shown in Figure 64. A peak-shear-event will take place twice for every cycle: 

once during upward movement and again during downward movement. Hence, for the 

slowest frequency used, 10 Hz, the number of peak-shear-events is 20 per second; or a 

peak shears every 50 milliseconds. It is possible to compare this with the drop 

formation time; it is desirable to have a drop formation time in excess of a peak shear 

event time.  

 

Figure 64 Shear rate with time where the maximal shear stress for both frequencies 

was 1.3 Pa, the dashed/dot line represents the average shear rate of 828 s-1. 

The drop formation time (Eq. (25)) depends on the number of active pores, which is 

known to be significantly lower than 100% (Vladisavljević & Schubert 2002). However, 

the number of active pores was not measured. Hence, the drop formation time has been 

estimated for a range of amounts of active pores, varying from 1% to 50%, and is 
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reported in Table 10. Eq. 25, based on continuity, was used to estimate the drop 

formation time for the range of drop sizes illustrated in Figure 62. Table 10 reports both 

the median by number and the mean by volume of the droplets. The latter spherical 

diameter is important in the calculation of the drop formation time based on a 

continuity balance. Drop formation times lower than 50 ms are highlighted in Table 10 

in bold italic values. In these cases the formation time is less than the peak-shear time 

(based on 10 Hz oscillation frequency). Hence, this is not an appropriate frequency to 

use for the generation of the smallest droplets: median size of 32 µm. This low 

frequency was not used to generate droplets with this median size. However, it was 

used to generate droplets with a size slightly greater than 50 µm. At this size, the drop 

formation time is between 4.9 and 48 milliseconds, depending on the fraction of active 

pores used by the membrane (from 1 to 10% respectively). Hence, it is likely that the 

drop formation time is shorter than the peak-shear time under these conditions. This 

may explain why the median droplet diameter at 10 Hz and a peak shear stress of 3.6 Pa, 

illustrated in Figure 63, was slightly higher when compared to the other frequencies: i.e. 

the peak-shear-event time is too long and droplets can form and detach at shear 

conditions other than the peak value, which gives rise to larger droplets being formed. 

Table 10 Droplet formation time from continuity and its dependence on amount of 

active pores. 

 
Percentage of active pores 

1% 5% 10% 15% 50% 

d(n,0.5) (µm) d(v,0.5) (µm) Droplet formation time, td (ms) 

32 34 0.9 4.4 8.8 13 44 

56 60 4.9 24 48 73 240 

99 112 31 160 310 470 1600 

149 194 160 820 1600 2500 8200 

198 265 420 2100 4200 6200 21000 

5.1.2.2 Influence of the flow rate 

Previous work of Egidi et al. (2008) showed that very monosized distributions can be 

obtained when the ―push-off‖ force is applicable. This occurs when the drop production 
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rate is large and droplets from adjoining pores may touch each other, leading to a 

distortion of the drop shape from spherical and an additional force to assist in droplet 

detachment. This touching between the droplets may also help the droplets grow to the 

same volume. In the previous work it was noticeable that under constant conditions, 

apart from dispersed phase injection rate, the drop size increased with injection rate 

until a certain value was achieved at which the drop size reduced again and the 

uniformity of the distribution became excellent. That work was performed with a 

membrane having spacing between the pores of 80 µm. In the work reported here the 

pore spacing was 200 µm, to ensure that the investigation was limited to that of surface 

shear and not ―push-off‖. Nevertheless, an investigation of increasing injection rate was 

performed, to investigate if ―push off‖ could be induced with the Oscillating system. It 

is worth noting that in the Oscillating system the droplets will be distorting from one 

direction to the other, rather than simply distorting within a consistent shear field such 

as that obtained in a stirred system. Clearly, ―push-off‖ will be more likely when 

generating larger droplets; hence the test was performed for conditions of the lowest 

shear: frequency of 10 Hz and peak to peak displacement of 1.2 mm. The results are 

presented in Figure 65. 

The dispersed phase flux was varied from 30 to 13900 L m-2 h-1 and median droplet 

diameter increased from 180 to 340 µm, falling back to just over 300 µm at the fastest 

injection rate. The span value (measure of uniformity of the distribution) dropped from 

0.75 at the lowest injection rate to 0.5 at an intermediate rate and then up to 0.8 

corresponding to the largest drop size, before rising to 0.9 at the fastest injection rate. It 

is likely that the lower median drop size and poorer span value at the highest injection 

rate is due to either some degree of jetting, and/or the break up of the larger droplets in 

the local shear field within the Oscillating membrane system. Given that the pore 

spacing was 200 µm, then it should be possible that the droplets, which were all greater 

than this size, could experience some form of ―push off‖. However, the evidence for 

this is not strong: the span does reach a minimum at an injection rate of between 1000 

and 2000 L m-2 h-1, but the drop size continues to increase with injection rate until the 

fastest injection rate is achieved.  
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Figure 65 Variation of number based median diameter and span of a droplet size 

distribution with dispersed phase flux at 10 Hz frequency and peak to peak 

displacement of 1.2 mm: maximum peak shear stress in all experiments 

was 0.3 Pa. 
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5.1.3 Pulsating system 

When compared with the Dispersion Cell, using the same conditions of the shear stress 

more uniform droplets were produced using the Oscillating system. Using the 

Oscillating system the productivity increased up to 13900 L m-2 h-1 but the emulsion 

was produced in a beaker meaning that the process was not continuous. It was possible 

to predict the droplet size in the Oscillating system using the force balance model based 

on the maximal shear stress. In the attempt to make a continuous system the horizontal 

tubular membrane was used in a cross-flow system where, beside the shear of the 

continuous phase shear, additional shear on the membrane surface was induced by 

pulsating the continuous phase. Again the system was commissioned using sunflower 

oil for production of O/W emulsions. Two different lengths of the membranes were 

used. A membrane with the glassed surface (that does not require wetting agent to 

increase the hydophilicity) was investigated too.  

Having in mind potential industrial application of the system a feasibility test to 

produce complex coacervates was done. 

5.1.3.1 O/W emulsion 

5.1.3.1.1 Long membrane 

5.1.3.1.1.1 Influence of the flow rate and shear stress 

For each condition of peak shear stress two experiments were performed to estimate the 

reproducibility of results. Figure 66 illustrates the data obtained from duplicate 

experiments for amplitude of 0.5 mm over the range where the droplet size is a 

significant function of peak shear stress (Eq. (22)). At each shear condition the results 

from two experiments are reported as a square and a cross marker. Where only a single 

marker is visible, it is because the markers all fall onto the same place. The results 

show that the experiments were reproducible and that there is a set of operating 

conditions that provide the narrowest droplet size distribution. The most narrow droplet 

size distribution was obtained at a peak shear stress of 0.1 Pa (amplitude 0.5 mm and 

frequency 8 Hz), giving a median droplet size on a volume distribution of just above 

260 µm.  
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Figure 66 For each condition of peak shear stress two experiments were performed 

to estimate the reproducibility of results, the amplitude was kept constant 

0.5 mm and transmembrane flux was 160 L m-2 h-1. Pore size 20 µm and 

pore spacing 200 µm. Continuous phase flow rate 40 mL min-1. 170 mm 

long non glassed membrane. 

The flux of the dispersed phase and the shear stress are the most effective tools in 

regulating the droplet size in membrane emulsification. The influence of both of them 

was also investigated in the Pulsating system. As shown previously in the Dispersion 

Cell as well as in the Oscillating system, too low or too high flux of the dispersed phase 

is not suitable for production of the most uniform particles. Figure 67 shows the 

influence of the dispersed phase flux on the droplet size. With the increase of the 

dispersed phase flux from 40 to 1000 L m-2 h-1 the droplet size increased more than 6 

times. Values of the span decreased with the increase of the flux but the most uniform 

droplets were produced using 40 L m-2 h-1. Compared to the other systems the flux 

which gave the most uniform droplets in the Pulsating system was 10 times smaller 

than the one used in the Dispersion Cell and 20 times smaller compared to the one in 

Oscillating system. On the other hand the working area of the Pulsating membrane was 
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3 times greater than the candle membrane in Oscillating system and 10 times greater 

than the disk membrane used in the Dispersion Cell.  

 

Figure 67 Variation of median diameter and span of a droplet size distribution with 

dispersed phase flux at 10 Hz frequency and 1 mm amplitude: maximum 

peak shear stress in all experiments was 0.5 Pa. Pore size 20 µm and pore 

spacing 200 µm. Continuous phase flow rate 40 mL min-1. 170 mm long 

non glassed membrane. 

The experimental data obtained using two different fluxes of the dispersed phase (40 

and 160 L m-2 h-1) have been compared with the models for predicting the droplet size 

and presented in Figure 68. In the experiments amplitude was kept constant (0.5 mm) 

while the frequency was varied between 8 and 100 Hz, and corresponding values of the 

shear on the membrane surface were calculated using Equ. (22). From Figure 68 it can 

be seen that the model that takes into maximal shear stress (Model A) describes well 

the results obtained using the 160 L m-2 h-1 while the droplets produced using 40 L m-2 

h-1 drift off from the model implying that there must be an additional force acting on 

the droplets while formed. It also appears that when the low dispersed phase flux is 

used, shear did not influence greatly the droplet size. Uniformity of the droplets (span) 

produced using low dispersed phase flux at any shear was quite consistent and it was 
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just below 0.7. According to the results it is obvious that in the Pulsating system there 

could be an additional forces or factors influencing the droplets during the detachment. 

It is also possible that the membrane itself vibrates, due to its length when the 

pulsations are applied and therefore bounces the droplet off from the surface. 

 

Figure 68 Comparison of the experimental droplet diameters produced in Pulsating 

system and predicted values using Model A and Model C (τmax) with 

correction for the neck. a=0.5 mm; Continuous phase flow rate                

40 mL min-1. Pore size 20 µm and pore spacing 200 µm. 170 mm long non 

glassed membrane. 

5.1.3.1.1.2 Influence of the membrane surface 

The use of the wetting agent (for increasing the hydrophilicity of the membrane) in 

industrial applications is not very practical since it brings additional preparation step. In 

order to try to eliminate the need for the wetting agent, as well as to try to bring the 

values of the span of a droplet size distribution down, a membrane with the glassed 

surface (that does not acquire the soaking in the wetting agent prior to the experiment) 

was used and the results obtained from those experiments are presented in Figure 69.  
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Figure 69 Comparison of the experimental droplet diameters and span of particle size 

distribution in Pulsating system using 170 mm long glassed and non 

glassed membrane. a=0.5 mm, continuous phase flow rate 40 mL min-1. 20 

µm membrane and 200 µm pore spacing. 

An improvement of the span was visible for both fluxes when glassed membrane was 

used. The membrane with the glassed surface is therefore recommended for the 

industrial application.  

5.1.3.1.2 Short membrane 

5.1.3.1.2.1 Influence of the flow rate and shear stress 

The span of particle size distribution when long glassed membrane (170 mm) was used 

in the Pulsating system (Figure 69) was higher than the span values obtained with the 

Oscillating system (Figure 59) and the Dispersion Cell (Figure 33). In order to 

investigate the membrane length effect on the uniformity of the droplets the additional 

experiments were done using the shorter tubular membrane (70 mm long). In Figure 70 

results for the shorter membrane are presented. A slight improvement can be noticed 

compared to the long membrane (Figure 69) but still the Oscillating system appears to 

be superior providing the most uniform droplets in combination with high productivity 
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(up to 13900 L m-2 h-1). The Dispersed phase flow rate that was used in the Pulsating 

system in combination with the short membrane, was 5 and 20 mL min-1 

(corresponding to fluxes of 90 and 360 L m-2 h-1 respectively) while the continuous 

phase flow rate was 20 mL min-1 a final content of the dispersed phase gave 20 and 

50%. 

 

Figure 70 Experimental droplet diameters and span of particle size distribution as a 

function of shear stress on the membrane surface in the Pulsating system. 

70 mm long tubular glassed membrane. Amplitude was kept constant at 

0.5 mm while the frequency was varied in the range between 8 and 100 Hz. 

Continuous phase flow rate 20 mL min-1. 20 µm membrane; 200 µm pore 

spacing. 
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5.1.3.2 Complex coacervation 

Over the last decade, microencapsulation of functional food ingredients has attracted a 

great interest, and the coacervation is one of the methods how the microcapsules can be 

formed. Coacervation consists of the separation from solution of colloidal particles 

which then agglomerate into separate liquid phase called coacervates (Korus, 2001). 

Generally, the core material used in coacervation must be compatible with the recipient 

polymer and be insoluble (or slightly soluble) in coacervation medium. Coacervation 

can be simple or complex. Simple coacervation involves only one type of polymer with 

the addition of strongly hydrophilic agents to the colloidal solution. For complex 

coacervation at least two oppositely charged polymers are used (e.g. gelatine and Gum 

Arabic). The process is quite interesting especially for the food industry since it does 

not require surfactant for the stabilisation of the oil droplets. Preliminary test were done 

to investigate whether the Pulsating system would be suitable for production of 

complex coacervates and therefore interesting for the food industry. Prior to the test 

with the Pulsating system batch test was conducted in order to investigate the process 

of complex coacervation.  

The fundamental principle of capsule formation by coacervation relies on electrostatic 

interactions between oppositely charged hydrocolloids. These interactions will, 

therefore, depend on the charges themselves, i.e. the net charge carried by both colloids. 

This in turn, will be modified depending on the pH, the type and amount of the colloids, 

the ratio of the two colloids (positive vs. negative charges), and the accessibility of the 

charges for interactions (Leclercq, Harlander & Reineccius 2008). In Figure 71 a 

general recipe for complex coacervation is given based on the recipes available in the 

literature (Leclercq, Harlander & Reineccius 2008). 
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Figure 71 Formulation of the complex coacervates. 

5.1.3.2.1 Batch test 

According to Leclercq, Harlander & Reineccius (2008), the pH and the cooling 

temperature after the coacervate production are one of the most critical parameters for 

the formation of coacervate microcapsules. Due to that, both parameters have been 

investigated in the preliminary batch experiments. Gelatine type B with an isoelectric 

point between 4.7 and 5.2 was used in the experiments (Fisher Scientific, UK). The best 

coacervate yield is noted below the gelatine isoelectric point (Leclercq, Harlander & 
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Reineccius 2008). The fact that the optimum pH is below the isoelectric point, they 

explained by hydrocolloids carrying multiple ionizable functional side groups. 

Therefore, the isoelectric point of the protein alone is a poor indicator of the charge 

density of the polymer (Leclercq, Harlander & Reineccius 2008). In addition, pH below 

the isoelectric point maximizes the surface tension of the gelatine which is critical 

during the coacervation stage (Leclercq, Harlander & Reineccius 2008). Complex 

coacervates were prepared when pH of the gelatine and Gum Arabic mixture was 

adjusted to 3.8 as it can be seen from Figure 72 (b) and (d). When the pH was 4.5 thin 

shells around the droplets was formed Figure 72 (a) and (c).  

 

Figure 72 Oil droplets stabilized with the acidified mixture of Gum Arabic and 

gelatine: (a) pH = 4.5; 5 min after production. (c) pH = 4.5; 80 min after 

production. (b) pH = 3.8; 5 min after production. (d) pH = 3.8; 80 min 

after production. Batch experiment: stirring during the oil adding 800 rpm 

(final coacervate droplet size d(v,0.5) = 350 µm); stirring during the 

cooling stage 300 rpm. 

Formation temperature is very important when it comes to the encapsulation of the 

flavours (losses due to the volatization) but may be of little importance in drug 
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encapsulation and pharmaceutical applications. Temperature of 40 oC was selected as 

formation temperature since it allowed maintenance of the gelatine in the solution 

limiting the volatilization of the volatile compound if dissolved in the oil phase. As 

mentioned earlier, coacervation occurs when the entangled wall material aggregates 

around the oil droplets. Therefore the system needs to be cooled down while stirred to 

25 oC, at which temperature the colloid material is gelled (Leclercq, Harlander & 

Reineccius 2008). Fast and slow cooling was checked and temperature profile is given 

in Figure 73. And it was found that the cooling stage after the production of the 

coacervates had a significant effect on the thickness of the shell (Figure 74). 

 

Figure 73 (■) Slow cooling rate. (●) Fast cooling rate. Stirring speed during the 

cooling was set to 300 rpm. 
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Figure 74 Thickness of the shell when cooling rate was: (a) fast or (b) slow. 

From Figure 74 it is clear that the slow cooling rate produces thicker wall around the oil 

droplet (in some places up to 20 µm). The thicker wall in the case of the slow cooling 

rate can be explained with the fact that there is more time for the wall material to 

aggregate properly around the oil droplet. In the case of the fast cooling the wall 

thickness was less than 5 µm. Even if the oil droplets were left in the solution no 

increase in the wall thickness was observed. Similar observation was confirmed by 

Leclercq, Harlander & Reineccius (2008). As it can be seen in Figure 75 when slow 

cooling was applied and the pH of the solution was 3.8 the wall was successfully 

formed around the pumpkin seed oil droplets. Similar results were obtained in the case 

when peppermint oil was dissolved within the sunflower oil. 

 

Figure 75 Complex coacervates with: (a) pumpkin seed oil, (b) sunflower oil and (c) 

10  wt.% peppermint oil dissolved in sunflower oil. 

The firmness of the wall can be increased by adding glutaraldehyde which acts as a 

crosslinking agent (Leclercq, Harlander & Reineccius 2008). Both complex coacervates 

produced using pumpkin seed oil, sunflower oil and 10 wt.% peppermint oil were 

crosslinked using glutaraldehyde (Figure 76).  
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Figure 76 Complex coacervates with added glutaraldehyde: (a) pumpkin seed oil, (b) 

sunflower oil and (c) 10 wt.% peppermint oil dissolved in sunflower oil. 

It can be noticed that the surface of the complex coacervates becomes ruff (corrugated); 

no matter the oil used (Figure 76). Once crosslinked the complex coacervates were 

washed with warm water (50 oC), and it was noticeable that the crosslinked complex 

coacervates did not burst while the ones that were not crosslinked bursted even when a 

wall was present.  

5.1.3.2.2 Pulsating system 

The Pulsating system was tested for production of the complex coacervates that 

contained 10 wt.% peppermint oil. According to Figure 68 droplets of sunflower oil of 

about 120 µm diameter can be produced if the shear stress of 0.5 Pa (f = 10 Hz, a = 0.5 

mm) is applied in combination with the dispersed phase flux of 160 L m-2 h-1 

corresponding to the flow rate of 20 mL min-1 and the continuous flow rate of 40 mL 

min-1.  

The setup of the Pulsating system for complex coacervation is presented in Figure 22. 

The pH value of the continuous phase was adjusted prior to the experiment to the value 

of 3.8 and the solution was kept warm at 50 oC (Figure 71). The reason for the higher 

temperature in the case of the Pulsating system compared to the batch experiments was 

just to make sure that when the continuous phase gets into contact with the dispersed 

phase (within the membrane) it has the temperature of 40 oC. A lipophilic dye - Nile 

Red (Sigma Aldrich, UK) was dissolved in the oil phase (10 wt.% peppermint oil 

dissolved in sunflower oil) purely to enhance the visual detection. Figure 77 (a) shows 

droplets of dispersed phase (10 wt.% peppermint oil in sunflower oil) produced using 

the Pulsating system immediately after the production; Figure 77 (b) is a different 

magnification of the same droplets. After fast cooling and stirring overnight the thin 
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wall was produced around the droplets (Figure 77 (c)). Produced complex coacervates 

(after solidification) were analyzed using Malvern Mastersizer S and mean droplet 

diameter was found to be 125 µm while the span was 0.67. The thickness of the shell 

was estimated to be 2 µm (as can be seen also from the Figure 77(c)). 

 

Figure 77 Flux of the dispersed phase 300 L m-2 h-1 corresponding to the flow rate of 

20 mL min-1 while the continuous phase (Gum Arabic and gelatin, pH = 

3.8) flow rate was 40 mL min-1 giving the final content of the dispersed 

phase to be 20 vol. %. Droplet were produced using the shear stress of 

0.25 Pa (f = 10 Hz, a = 0.5 mm). (a) 10 min after the production; (b) 10 

min after the production higher magnification; (c) 1 day after the 

production. 

This experiment confirmed that Pulsating system would be applicable for the industrial 

application and that the model based on the maximal shear stress could be used for the 

prediction of the droplet size. If a thicker shell around the oil droplet is wanted then the 

higher control over the cooling step should be applied. 
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5.2 ION EXCHANGE 

As a complementary project, relevant to the use of the functionalized silica particles 

and especially relevant to nuclear laboratory testing, the Dispersion Cell was used as a 

continuous stirred system (with slotted microporous filter) for determining the sorption 

capacity of ion exchange material. It is a technique employing microfiltration and ion 

exchange (or adsorption), of the engineered particles that could be produced by 

membrane emulsification. The system was commissioned using commercial ion 

exchange material DOWEX 50W-X8. Once commissioned, the system was used to test 

novel ion exchange material (copper hydroxide acetate) for the removal of iodide from 

water. Functionalized silica particles were also tested using the continuous stirred cell 

for removal of copper. 

5.2.1 Dowex 50W-X8 

5.2.1.1 Determination of the equilibrium parameters – batch experiments 

Conventional batch sorption experiments require several days to determine the isotherm. 

Figure 78 shows the experimental results of the batch sorption of copper onto fresh 

resin at different concentrations of copper. The concentration of NaNO3 in all flasks 

was 0.2 M which ensured that the resin was converted into Na+ form and at the same 

time provided the ionic strength of ~0.2M during the experiment. The Langmuir 

isotherm (Eq. (4)) was used to fit the experimental data. The equilibrium parameters 

obtained by fitting are qm = 0.116 g g-1 and b = 0.003 m3 g-1. The maximal sorption 

capacity qm obtained in this work compares with the qm value stated by the 

manufacturer (0.154 g g-1) and reported by Awang (2001) (0.116 g g-1) and Sing and 

Yu (1998) (0.104 g g-1). The Langmuir constant b is very low as compared to 0.13 m3 

g-1 reported by Awang (2001) and 0.245 m3 g-1 reported by Sing and Yu (1998), but 

they used resin in the H+ form at very low ionic strength (~0 M) and this strongly 

influences the isotherm, as discussed later. A lower value indicates a lower affinity of 

copper for sorption. 
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Figure 78  Langmuir isotherm for copper sorption on Dowex 50W-X8 determined by 

batch experiments. The inset represents the Langmuir isotherm at copper 

concentrations in the liquid phase below 100 g m-3.  

The maximal sorption capacity at high concentrations represented by a plateau on the 

Langmuir isotherm corresponds to monolayer coverage of the surface by the copper 

ions and this value can be used to estimate the specific surface area, S of the sorbent 

(Ho et al. 2002). Following equation can be used for estimating the specific surface 

area: 

Cu

Cum

M
NrqS 

2

           Eq. 55 

where S is the specific surface area of sorbent, N is Avogadro‘s number (6.02×1023   

mol-1), rCu is the empirical radius of copper ion (135×10-10 m) (Slater, 1964), and MCu is 

the molecular weight of copper ion (63.5 g mol-1). 

The specific surface of the Dowex 50W-X8 towards copper binding is 62.39 m2 g-1. 

The parameter of Hall RL, for predicting the exchange efficiency of the process, was 

also calculated in order to confirm favourability of the sorption process (Hall et. al. 

1966): 
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o

L bC
R




1
1

         Eq. 56 

The RL values ranged from 0.95 to 0.36 (for copper concentrations 19 to 625 g m3). The 

parameter was lower than 1, which confirmed that sorption process is favourable 

(Helfferich, 1995). Experiments were done at room temperature. 

5.2.1.2 Determination of equilibrium constants - continuous flow stirred 

cell 

The sorption equilibrium parameters can be also estimated from the experiments in the 

stirred cell with continuous flow of the liquid phase. Comparing two experiments, one 

with and one without ion exchange resin, in the stirred cell it is possible to determine 

the amount of copper sorbed providing that the experimental time is long enough to 

ensure that the equilibrium is reached. In the absence of the ion exchange resin the 

concentration of copper in the effluent will be equal to that predicted by a continuous 

flow stirred tank model, validated in Figure 79. However, with ion exchange, or 

sorption, present in the cell the outlet concentration will be below that of the continuous 

flow stirred tank model. A mass balance for the continuous flow stirred cell if resin is 

not present can be expressed as follows: 

VdCCFdtFdtCo          Eq. 57 

where FdtCo  represents the mass of copper that enters the cell, CFdt  is the mass of 

copper that leaves the cell and VdC  is the mass of copper accumulated in the cell (Co is 

inlet concentration, F is flow rate and dt is time interval). If the resin is present in the 

cell (CST + resin) mass balance for the continuous flow stirred cell is: 

IXIXo AccVdCFdtCFdtC         Eq. 58 

FdtCIX  is the mass of copper that leaves the cell and IXAcc  (=
dt
qdm see Eq. (39)) is the 

mass of copper that enters the resin. Combining Eqs. (57) and (58) the mass of copper 

that enters the resin is 

FdtCCFdtAcc IXIX          Eq. 59 
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Figure 79 Graphical explanation for calculating the amount of sorbed copper qe on 

the resin. 

In Figure 79 CFdt  is the surface under the square marker curve and  FdtCIX  is the 

surface under the triangle marker curve. The difference in mass of copper that leaves 

the cell with and without the resin represents the amount of copper that is sorbed on the 

resin (qe) at the equilibrium concentration Ce (i.e. the inlet concentration Co). In Figure 

80 the amount of copper sorbed on the ion exchange resin deduced by this method is 

compared with the conventional batch experiments for isotherm determination. The 

equilibrium values obtained in the continuous experiments give the same isotherm as 

the batch experiments, for both sizes of beads used. The only data point off the single 

isotherm curve is one obtained when the resin was in H+ form (NaNO3 was not used 

therefore the resin maintained the H+ form) and when background ionic strength was 

much lower (~0 M), which is consistent with the earlier discussion on literature values 

of the isotherm at H+ form at low ionic strength, and the effect of this on mass transfer 

modelling will be investigated further later. 
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Figure 80 Comparison of the Langmuir isotherm obtained from the batch and 

the continuous experiments. 

5.2.1.3 Effect of initial copper concentration 

To study the effect of the initial copper concentration on sorption properties of Dowex 

50W-X8 solutions were prepared in the range from 19 to 636 g m-3. Concentration of 

NaNO3 in all experiments was 0.2 M. The pH of the solutions was adjusted by adding a 

0.4 M solution of NaOH, providing a constant pH of 4.5. The liquid flow rate was 7.8 

mL min-1. Copper concentration in all feed solutions was high, hence particle diffusion 

was the limiting step in the mass transfer. Resistance in the fluid phase (1/k) for both 

sizes of the used resins is not more than 5% of total resistance (1/k+R/Deff) (for the 

smaller beads k = 3.6×10-5 m s-1 and for the larger beads k = 3.74×10-5
 m s-1). As the 

resistance in the particle R/Deff is more than 95% the simplification used in the 

calculation of k (the slip velocity is equal to the terminal velocity) did not adversely 

influence the model accuracy. Figure 81 and Figure 82 represent the experimental 

results for Dowex 50W-X8 together with model curves (Eqs. 30 – 43). 
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Figure 81 Small beads (R = 42 µm). Flow rate F = 1.3×10-7 m3 s-1
. (a) Influence of 

the inlet copper concentration (22 – 98 g m-3) on the copper concentration 

in effluent and mass transfer model Eqs. (30) – (43) (solid curves on 

figure). (b) Influence of the inlet copper concentration (180 – 625 g m-3) 

on the copper concentration in effluent and mass transfer model Eqs. (30) 

– (43) (solid curves on figure).  
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Figure 82 Big beads (R = 87 µm). Flow rate F = 1.3×10-7 m3 s-1

. (a) Influence of the 

inlet copper concentration (20 – 89 g m-3) on the copper concentration in 

effluent and mass transfer model Eqs. (30) – (43) (solid curves on figure). 

(b) Influence of the inlet copper concentration (180 – 636 g m-3) on the 

copper concentration in effluent and mass transfer model Eqs. (30) – (43) 

(solid curves on figure).  
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Comparing the model and experimental data, the initial part of the experimental curves 

of the system showed a better mass transfer than the model predicted meaning that 

copper removal was more efficient. This type of behaviour of ion exchange beads can 

be referred to the nature of the ion exchange system: where the resin is converting 

between the hydrogen and sodium forms. The model assumes a uniform distribution of 

ion exchange sites within the bead; whereas it is most likely that the outer part of the 

bead has a higher number of sites than the inner part of the bead, a likely consequence 

of bead production, and contributing to the initial more efficient copper removal. The 

effective diffusion coefficient of copper inside the particle, Deff that gave the best fit of 

the experimental results was 7×10-11 m2 s-1, used for both small and big beads and at all 

the copper concentrations used in this work.  

When tried to minimise the number of experiments to determine the mass transfer 

parameters (effective diffusivity in the particle), care has to be exercised over the 

experimental conditions selected. For example, Figure 83 illustrates the mass transfer 

from 100 g m-3 copper solution into Dowex modelled by four different diffusion 

coefficients. Using the experimental data, a diffusivity of 10-13 is clearly incorrect, but 

under the experimental conditions selected there is a little difference in the model result 

for diffusivities from 10-12 upwards. The reported effective diffusivity of 7×10-11 m2 s-1 

has been deduced by modelling the wide range of experimental conditions tested.  

 



5. Results 
 

138 
 

 

Figure 83 Influence of effective diffusivity on the shape of the mass transfer 

model curves (Eqs. 30 – 43, curves on the figure). Inlet copper 

concentration (100 g m-3) – Small beads (R =42 µm). Flow rate F = 

7.7×10-7 m3 s-1
. 

Using this technique for general IX studies it may be that tests at high concentration are 

required for isotherm determination and other tests are more appropriate for mass 

transfer analysis. However, model testing and verification should be achieved with all 

the tests. 

The model is also quite valuable when predicting the performance of the beads with 

different sizes. At the beginning of the process, small beads have a better performance 

since the interfacial area and diffusion gradient is higher. However, after 3000s the 

diffusion gradient for both beads is the same since (crossing of model curves on Figure 

84) the small beads have more uniform copper distribution hence the driving force for 

mass transfer (concentration difference) will decrease; in the big beads due to the 

greater distance to the bead centre, the concentration gradient will be higher leading a 

to a better performance at a longer period of time. At saturation, the same amount of 

copper is sorbed for both beads types. 
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Figure 84 Influence of bead size on copper concentration in effluent (model). 

Constants used in modelling are: qm = 0.116 g g-1; b = 3 m3 kg-1; m = 1g; F 

= 1.3×10-7 m3 s-1; V = 0.14×10-3 m3; R = 800×10-6 m or 42×10-6 m; µ = 

0.001 Pa S ρs = 1443 kg m-3, ρ = 1000 kg m-3, Dliq = 1.2×10-9 m2 s-1. 

Equilibrium parameters (qm and b) as well as effective diffusivity (Deff) obtained with 

the continuous stirred cell were used to model the sorption of copper in the fixed bed 10 

cm high column (Sigma Aldrich, UK). The breakthrough curve for copper/Dowex 

system in a fixed bed column together with several model predictions is presented in 

Figure 85. Prediction of the concentration in the effluent used the fixed bed shock and 

saturation model, Glueckauf‘s model (Helfferich 1995) and a model that treated the 

fixed bed as a series of stirred tanks. As seen in Figure 85, the shock and saturation 

models did not predict the breakthrough curve, but did the starting and the end points of 

the curve. Such prediction is expected since the models do not take into consideration 

film or particle diffusion, only equilibrium data obtained from the isotherm. 

Glueckauf‘s model is based on the concept of ―effective plates‖. The plate height is 

calculated from the fundamental data and the model takes into consideration film and 

particle diffusion. The model gave quite good prediction of the lower part of the 

breakthrough curve but failed to predict closer to saturation.  
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Another model used was based on a series of identical continuous stirred cells. For the 

purposes of the modelling the bed was split into sections and each section was 

modelled as a stirred cell using Eqs. (31) and (43) had to be modified: 

dt
qd

N
mCCF

dt
dC

N
V i

ii
ibedb   )( 1

       Eq. 60 

εb is bed porosity (εb  = 0.5 (Helfferich 1995)), Vb is bed volume, N is number of column 

sections (identical stirred cells) used in the model (N = 11) and i is bed section (i = 

1,N). As it can be seen from Figure 85, the model gave a good prediction of the start 

and the end of the breakthrough curve using the mass transfer and equilibrium 

parameters obtained from the experiments in the stirred cell. 

 

Figure 85 Breakthrough curve together with the different models predictions. Inlet 

copper concentration (380 g m-3) – 3g of big beads (R = 87 µm). Flow rate 

F = 1.2×10-7 m3 s-1; pH = 4.5; ionic strength 0.2 M. Column Internal 

diameter×Length=1×10cm.  

5.2.1.4 Effect of NaNO3 
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cell. In all experiments the buffer ionic strength of 0.2 M was maintained, so that 

during all experiments the variation in ionic strength due to ion exchange was less than 

5%. Such a small change of ionic strength I during all experiments allows the 

assumption that activity coefficients are constant, hence concentration is used instead of 

activities in all modelling. 


n

i
ii zCI 25.0

        Eq.61 

where Ci is the molar concentration of the ion i, zi is the charge of the ion i and n is 

number of i ions present in the solution. A set of experiments in the stirred cell were 

performed in order to monitor the influence of sodium on the sorption of copper ions on 

the ion exchange (Figure 86). Inlet solutions contained different amounts of NaNO3. A 

significant reduction in the sorption of copper was observed with an increase of NaNO3 

content in the inlet solution. The influence of NaNO3 on copper sorption on the resin 

can also be seen on Figure 80, where one experiment in the continuous stirred cell was 

done without NaNO3 in solution. When NaNO3 was not present in the solution a much 

higher amount of copper was sorbed onto the resin. 

 

Figure 86 Influence of NaNO3 on copper sorption on to Dowex 50W-X8. Inlet 

copper concentration in all experiments was 20 g m-3. 
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To determine if there is a competitive sorption of sodium ions on the surface of the ion 

exchange resin the sorption of sodium ions was monitored. For this purpose the same 

samples from batch experiments used for determining the Langmuir isotherm were 

investigated. The samples were analysed before and after the sorption and a few results 

are presented in Table 11. In all cases reported in Table 11 the sodium concentration is 

higher after the batch isotherm experiment compared to before, due to the addition of 

sodium hydroxide for pH control (to maintain pH = 4.5). The amount of extra sodium 

matches that added. Hence, it can be concluded that sodium did not exchange onto the 

resin under the experimental conditions, and any influence of the sodium nitrate 

concentration on the copper extraction is probably due to decreasing copper ion activity 

with increasing ionic strength. 

Table 11 Copper and sodium concentrations in the flasks during the batch 

experiments. 

Equilibrium copper 
concentration 

 qe / g m-3 

Sodium concentration / g m-3 

before sorption after sorption 

10 3770 3980 

230 3670 3990 

430 3680 3870 

870 3760 3990 

5.2.2 Copper hydroxide acetate 

Once the stirred cell was commissioned for determining the ion exchange capacity as 

well as mass transfer properties it was possible to use it to determine the properties of 

any ion exchange material. a A novel material, copper hydroxide acetate (Cu-Ac) 

produced by the Department of Chemistry (Loughborough University) was selected; no 

sorption capacity data nor mass transfer properties were available. The amount of the 

material was just a few grams therefore the experiments had to be carefully planned. 

Figure 87 shows the results from the batch experiments to determine the equilibrium 

parameters of the Cu-Ac.  
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Figure 87 Langmuir isotherm for iodide sorption on Cu-Ac determined by batch 

experiments. 

The Langmuir isotherm Eq. (4) was used to fit the experimental data, and the 

equilibrium parameters obtained by fitting are: qm = 0.530 g g-1 and b = 0.003 m3 g-1. 

The qm value obtained with the batch experiments compares well with the 

stoichiometric value (S) for iodide in reaction with Cu-Ac according to Eq. 62 

(S=M(I)/M(Cu2(OH)3CH3COO=127/237 = 0.536 g g-1) 

COOKCHIOHCuKICOOCHOHCu 332332 )()(     Eq. 62 

The equilibrium parameters were also determined using the stirred cell with continuous 

flow as described in Chapter 5.2.1.2. Figure 88 represents the case when initial iodide 

concentration was 2000 g m-3.  
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Figure 88 Graphical explanation for calculating the amount of sorbed iodide qe on 

the resin and colour change of Cu-Ac with the progressing of the reaction. 

It is interesting to notice that as the reaction progresses the Cu-Ac changes to Cu-I and 

the colour changes from blue to green. In Figure 89 the amount of iodide sorbed on the 

Cu-Ac, deduced by the method using the stirred cell, is compared with the conventional 

batch experiments for isotherm determination. Two points (one stirred cell and one 

batch experiment) are greater than stoichiometric value and a possible explanation for 

such behaviour might be that beside chemisorption physorption could take place. 
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Figure 89 Comparison of the Langmuir isotherm obtained from the batch and the 

continuous experiments. 

To study the effect of the initial iodide concentration on iodide sorption on Cu-Ac 

iodide solutions were prepared in the range from 250 to 2000 g m-3. The pH was not 

regulated and in all experiments it was 6.3. The liquid flow rate was 7.8 mL min-1. 

Iodide concentration in all feed solutions was high and the particle diffusion was the 

limiting step in the mass transfer. Figure 90 represents the experimental results for Cu-

Ac together with model curves (Eqs. 30 – 43). The effective diffusion coefficient for 

iodide that gave the best fit of all experimental results was Deff = 7×10-17 m2 s-1. 

As it can be seen in Figure 31 Cu-Ac particles are not as uniform as Dowex 50W-X8 

(Figure 25), Sauter mean diameter for Cu-Ac was 10 µm (obtained using Malvern) and 

Figure 91 shows the sensitivity of the model on the particle size. 
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Figure 90 Influence of the inlet iodide concentration (250–2000 g m-3) on the iodide 

concentration in effluent (markers are the experimental data) and mass 

transfer model Eqs. (30) – (43) (solid curves in figure). Flow rate F = 

1.3×10-7 m3 s-1. 

 

Figure 91 Influence of the Sauter mean diameter on the model. Red dots represent 

the experimental data. 

5000 10000 15000 20000 25000 30000 35000
0

500

1000

1500

2000

 

 

Co   /   g m-3

 250   500
 766   2000

 Model 

Io
di

de
 c

on
ce

nt
ra

tio
n 

in
 e

ff
lu

en
t  

 / 
  g

 m
-3

Time   /   s

5000 10000 15000 20000
0

100

200

300

400

500

 

 

Io
di

de
 c

on
ce

nt
ra

tio
n 

in
 e

ff
lu

en
t  

 / 
  g

 m
-3

Time   /   s

Sauter mean diameter   /   µm
 10  5  2  1



5. Results 
 

147 
 

It is clear from the results, based on the copper sorption in Dower 50W-X8 as well as 

copper hydroxide acetate, that the continuous flow stirred cell in combination with the 

modelling (based on diffusion within the particle) is valuable tool in designing the 

system for industrial application. The equilibrium and mass transfer parameters once 

obtained from the continuous stirred cell can be applied to any ion exchange process to 

predict its performance. But at the same time the model itself can be valuable tool in 

predicting for example the right size of the ion exchange material that should be used in 

order to achieve certain performance. 

The continuous flow stirred cell is particularly relevant to instances when the mass of 

ion exchange material available for the testing is low (less than 1g) and when dealing 

with hazardous or expensive materials. It is a technique employing microfiltration and 

ion exchange (or sorption), of the engineered particles that could be produced by 

membrane emulsification.  

5.2.3 Functionalized silica particles 

Silica particles produced by membrane emulsification using acidified sodium silicate 

(aged in acetone with average internal pore size 6 nm and specific surface area of 320 

m-2 g-1 Figure 56 (b)) were additionally functionalized according to the procedure 

described in Chapter 4.1.2.3.3 and tested for copper sorption. 

The ability of functionalized particles to sorb Cu(II) was demonstrated in a continuous 

flow stirred cell. The aim of these experiments was solely to show that functional silica 

particles were capable to sorb copper. If equilibrium and mass transfer properties 

should be determined a set of experiments with different inlet concentrations should be 

performed. The volume of the liquid phase in the cell was 140 cm3 and the stirrer speed 

was 270 rpm. The pH of the inlet solution was adjusted to 4.5 using 10% HCl (Fisher 

Scientific, UK). As can be seen from response curves in Figure 92, the functionalized 

silica particles had a higher binding affinity toward Cu(II) compared to the non-

functionalized particles. After about 80 min, both non-treated and functionalized 

particles were fully saturated with Cu(II) and from that time the Cu(II) concentration in 

the effluent matched the Cu(II) content in the feed stream.  
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Figure 92 Sorption of CuSO4 on silica gel in a continuous flow stirred cell with 

slotted pore membrane. The copper concentration in feed stream was 10 g 

m-3, the flow rate of feed stream was 8 mL min-1, and the particle loading 

in the cell was 3.5 g. () Non-functionalized silica particles. () Silica 

particles functionalized with 3-aminopropyltrimethoxysilane.  

Experiments with non-functionalized and functionalized particles were repeated 2 times 

and in Figure 92 the markers represent the average value while the error bars represent 

the standard deviation of the experiments showing that the experiments were 

reproducible. 
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5.3 Results summary 

Membrane emulsification using microengineered nickel membranes with cylindrical 

pores was successfully applied for production of larger droplets (greater than 10 µm) as 

well as solid particles. It was demonstrated that the Dispersion Cell represents a 

valuable laboratory technique for manufacturing the droplets of various emulsions. The 

droplets of acidified sodium silicate in kerosene stabilized with Span 80 (W/O), 

sunflower oil droplets stabilized with Tween 20 as well as mixture of Gum Arabic and 

Gelatine (O/W) and W/O droplets stabilized with Tween 20 (W/O/W) were 

successfully formed. Using the appropriate process parameters it was possible to 

control the droplet size.  

If an additional step (drying, temperature adjustments, etc.) is applied with the right 

formulation it is possible to convert the liquid droplets into the solid particles. Highly 

spherical solid silica particles, with high surface area and internal structure, were 

successfully produced using a W/O emulsion route. The droplets of acidified sodium 

silicate, produced using the Dispersion Cell, were solidified due to the condensation 

polymerisation reaction taking place within the droplets. Additionally it was possible to 

tailor the internal structure of silica particles by aging the particles, when in the state of 

the xerogel, in different solvents. It was possible to functionalize the surface of 

produced silica particles with 3-aminopropyltrimethoxysilane. Once functionalized it 

was demonstrated that the silica particles were suitable for copper sorption.  

 

An alternative field of application for the Dispersion Cell, relevant to the tests of 

functionalized silica particles, was investigated. The Dispersion Cell was modified into 

a continuous flow stirred cell with slotted nickel membrane on the bottom. The 

continuous flow stirred cell is shown to be an effective technique for both mass transfer 

kinetics as well as equilibrium data acquisition – combining both into a single step, and 

simplifying ion exchange analysis. The commercial ion exchange resin (Dowex 50W-

X8) was used to commission the system. Once determined, the design parameters can 

readily be used to model any ion exchange processes. Performance of the fixed bed 

column filled with Dowex 50W-X8 was successfully modelled using the equilibrium 

and mass transfer properties obtained from the continuous stirred cell in the 
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combination with the appropriate equation for the mass balance taking into 

consideration the nature of the system.  

 

Using the continuous flow stirred cell it was confirmed that the silica particles produced 

using the Dispersion Cell and functionalized using 3-aminopropyltrimethoxysilane 

were capable to sorb copper. Equilibrium and mass transfer parameters for the novel 

ion exchange material (copper hydroxide acetate suitable for iodide sorption) produced 

in Chemistry Department (Loughborough University) were successfully obtained too. 

The continuous flow stirred cell is particularly relevant to instances when the mass of 

ion exchange material available for the testing is low (less than 1g) and when dealing 

with hazardous or expensive materials (nuclear laboratory test). 

Slotted nickel membrane proved to be valuable when it came to the filtration of the 

produced silica particles from kerosene. It was possible to quickly separate the 

spherical silica particles from the needle shaped silica particles which were also created 

during solidification of the acidified sodium silicate droplets. The slotted membrane 

retained the Dowex 50W-X8 particles within the continuous flow stirred cell, providing 

the operation without the pressure drop and membrane blocking. Also it was a good 

support for the cellulose nitrate membrane during the testing of copper hydroxide 

acetate. 

 

Industrial application of membrane emulsification is very important but the Dispersion 

Cell cannot be scaled up. Two novel systems: Oscillating and Pulsating relevant for 

industrial application were developed and reported. Just by providing the larger 

membrane area both systems can be easily scaled up. 

 

An attempt was also made to produce the particles using membrane emulsification but 

without surfactant, and edible oil droplets (pure and containing peppermint oil) were 

stabilized using gelatine and Gum Arabic (complex coacervates). Cooling of the 

complex coacervates had a great effect on the shell thickness that coated the oil droplets. 

Glutaraldehyde was successfully employed to harden the complex coacervates shell.  

 

The Pulsating system was successfully used to produce the complex coacervates but 

better temperature control during the cooling should be applied if a thicker shell around 

the oil droplets is wanted. Therefore, the Pulsating system can have potential 
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application in the food industry or in any other industry where the surfactants are less 

wanted. 

 

The model based on the simple force balance was used to predict the droplet sizes 

produced using all three systems. In the Dispersion Cell it was the average shear that 

gave better predictions while in the Oscillating and Pulsating system the maximal shear 

stress worked better but it was observed that an additional force or factor influences the 

droplet detachment. If higher flow rates of the dispersed phase were used the formation 

of the droplet neck had to be taken into consideration when predicting the final droplet 

size.  
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6. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

Dispersion cell 

W/O/W emulsions 

The Dispersion Cell and flat disc nickel membranes were used to produce narrow size 

distribution droplets of multiple emulsions containing unrefined pumpkin seed oil with 

controllable volume median diameters from 100 to 430 μm. For most of the work, 

membranes with 20 and 40 µm pores with 200 µm pore spacing were used, and it was 

possible to obtain fluxes up to 3200 L m-2 h-1 while the span in most cases did not 

exceed 0.5. Extreme cases (low rotation speed and high flux as well as high rotation 

speed and low flux) were not optimal conditions for production of multiple emulsions 

and in these few cases the span exceeded 1.4. 

Bigger droplets were produced when PGPR with internal water phase were present 

suggesting that partial wetting of the membrane occurred, but the chemical cleaning of 

the membrane between tests showed that it was effective. The reproducibility of the 

experiments was good, showing no irreversible adsorption of the PGPR molecules and 

that after each experiment the membrane surface regained its hydrophilicity. With the 

addition of PVA as a thickening agent the droplet size increased, again due to the 

decrease of the diffusivity of surfactant molecules in the more viscous environment. 

Shear stress was the most effective way to regulate the droplet size so with an increase 

of the rotation speed by 5.7 times the droplet size decreased 2.6 times.  

W/O emulsions 

Spherical silica particles with mean particle sizes controllable within a range between 

30 and 70 m have been produced from inexpensive sodium silicate solution. It was 

found that the solid silica particle size was a linear function of the initial droplet size of 

acidified sodium silicate. It was possible to control the internal structure, i.e. pore 

diameters and voidage, by an aging process of the particles in different solvents from 

which the final, xerogel, particles were produced. The starting point for the different 
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techniques was membrane emulsification: injecting the aqueous phase into an oil phase, 

kerosene, containing a surfactant to stabilize the droplets. Careful control of the stirring, 

after droplet formation, was required in order to maintain the spherical shape and to 

avoid droplet damage by the stirrer. Likewise, careful control of the pH of the aqueous 

phase being injected was required, as it controlled the rate of polymerization: at too 

high pH, the reaction was too fast risking blockage within the membrane emulsification 

equipment, and too low pH led to long polymerization times. Therefore, with long 

stirring times damage to the gelling particles is more likely to occur. Hence, the 

optimum pH for the process was determined to be 3.5. A coefficient of variation of the 

particle sizes formed of less than 20% was possible.  

 

The BET pore size analysis indicated that the internal porosity, or voidage, of the 

particles produced was between 47% and 64%, depending on the solvent used for 

aging. A material balance based on the known starting mass of silica present and an 

analysis of the droplet and final (xerogel) particle size provided a very similar result for 

internal porosity, for all the different sizes of particles produced. The internal porosity 

of the hydrogel particles was close to 90%, and the shrinkage of the droplets as they 

changed from liquid to hydrogel, and then xerogel, was monitored by microscope 

analysis and confirmed the progression of the polymerization from liquid droplets, to 

hydrogel and then xerogel, where the xerogel size mass balance provided an internal 

voidage equal to the BET value. There was no further shrinkage between the air dried 

xerogel and the calcined particles that were used for the BET analysis. The particles 

produced in this work are suitable for use as supports of functional groups for selective 

separations of components within liquids. As a demonstration they were functionalized 

using 3-aminopropyltrimethoxysilane and were capable to sorb copper. 

 

Overall the Dispersion Cell is valuable tool for investigation of the new formulations. 

The Dispersion Cell cannot be scaled up and therefore is not recommended for 

industrial application. Nevertheless it is a valuable laboratory technique, and other 

methods of applying shear at a membrane surface may be applicable for industrial use. 
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The continuous flow stirred cell 

An alternative field of application for the Dispersion Cell, relevant to the tests of 

functionalized silica particles, was investigated. The Dispersion Cell was modified into 

the continuous flow stirred cell with slotted nickel membrane on the bottom. The 

technique was commissioned using Dowex 50W-X8 resins and equilibrium parameters 

(qm =0.116 g g-1 and b = 0.003 m3 g-1) for a Langmuir isotherm were obtained from 

conventional batch experiments for the isotherm, and by tests in a continuous flow 

stirred cell. Good agreement using the two different methods was achieved.  

 

Conventional batch experiments for determining the sorption equilibrium require 

several days while the length of the experiments in the continuous flow stirred cell can 

be controlled by selecting the mass of the resin to use and inlet concentrations of the 

solution. Hence, the experimental time in the continuous flow stirred cell can be much 

shorter and it is possible to use the continuous flow stirred cell experiments to replace 

the conventional batch equilibrium tests. Comparing the experimental results from the 

continuous flow stirred cell with the mass transfer model it is possible to find constant 

effective particle diffusion (for Dowex 50W-X8 Deff = 7×10-11 m-2 s-1). Mass transfer 

and equilibrium data from the continuous flow stirred cell were successfully used to 

model fixed bed operation. 

Equilibrium and mass transfer properties for copper hydroxide acetate capable to sorb 

iodide were also determined using the continuous stirred cell (qm = 0.536 g g-1, b = 

0.003 m3 g-1, Deff = 7×10-17 m-2 s-1. 

Using the same cell it was confirmed that the silica particles produced using the 

Dispersion Cell and functionalized using 3-aminopropyltrimethoxysilane were capable 

to sorb copper. 

 

Overall, it is shown that the continuous stirred cell represents an effective laboratory 

technique for determining both equilibrium and mass transfer parameters. After having 

achieved the mass transfer and equilibrium data, it is possible to use the same 

mathematical model to predict the performance of a seeded microfiltration process 

using larger volumes of liquid, filter area, etc. to enable the design of a combined ion 

exchange and microfiltration process, or other types of contactors, such as columns. It 

will be particularly relevant to instances when the mass of ion exchange particles 
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available for testing is low, less than 1 gram, and when dealing with hazardous or 

expensive materials. 

Oscillating system 

The median drop sizes obtained in the Oscillating membrane emulsification systems 

have been compared with the predicted values calculated using different force balance 

models. The drop sizes produced in  the oscillating system were placed between the 

simple peak-shear model (Model A) and peak-shear model that takes into account the 

neck formation (Model C with τmax)  but  both models overestimated the drop sizes at 

intermediate shear values suggesting the existence of another drop detachment force to 

supplement the shear-induced drag force. Under constant peak shear stress at the 

membrane surface, the drop size was essentially independent of the frequency of 

oscillation, because the effect of an increasing frequency was compensated by 

decreasing amplitude. On increasing peak shear the droplet size decreased sharply and 

for most frequencies reached a constant value at the peak shear stress of about 4 Pa. 

The most narrow drop size distribution with a span of 0.37 to 0.45 and a median drop 

size of just below 50 m was obtained at a peak shear stress of 3.6 Pa. For the 

generation of droplets with a size lower than 56 m the slowest frequency of 10 Hz was 

not appropriate, because the drop formation time for the amount of active pores of 10%, 

or less, was shorter than the peak-shear-event time. On increasing the dispersed phase 

flux from 30 to 13900 L m−2 h−1 no significant improvement of the uniformity of 

distribution due to droplet ―push off‖ effect was observed. The technique is applicable 

to the generation of larger droplets than can be reliably achieved by a cross-flow 

membrane emulsification process, where drop breakage after formation occurs. The 

oscillating membrane technique can be scaled up by providing a larger membrane area 

in the oscillating membrane assembly. 

Pulsating system 

Pulsating system was successfully used to generate the droplets of sunflower oil 

stabilized with Tween 20 but also complex coacervates with a thin shell were produced 

using only poor temperature control. The lowest value of the span was 0.68 and 

droplets between 40 and 260 µm were produced. The model taking into consideration 

the maximal shear stress overestimated the droplet size implying that an additional 
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force or factor must have influenced the droplets during the formation. The shear on the 

membrane surface comes from both pulsation and the continuous phase flow. But the 

values of the shear induced by the continuous phase flow are negligible compared to 

the shear of the pulsations. Therefore the smaller droplet size cannot be explained by 

the existence of the continuous flow. 

When comparing Dispersion Cell, Oscillating and Pulsating system the most uniform 

droplets were produced using the Oscillating system. The highest productivity of 

reasonably uniform droplets was recorded for the Oscillating system. Nevertheless, the 

Pulsating system due to its continuous operation should be investigated more to find the 

optimal working conditions. 
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6.1 RECOMMENDATIONS AND FUTURE WORK 

Dispersion Cell 

The Dispersion Cell is easy to set up and handle as well as to dismantle and clean and it 

allows even less experienced operators to successfully generate the emulsions. Hence it 

is recommended that the Dispersion Cell be used every time when the new formulation 

for membrane emulsification is tried.  

Stirred cell with continuous flow 

Further tests with appropriately functionalized silica particles are required in order to 

determine the mass transfer and equilibrium parameters. The loading of the silica 

surface with amino groups can also be determined. Functionalising the silica surface 

using crown ethers (Jal, Patel, & Mishra 2004) suitable for removal of heavy metals 

(organic compounds with molecules containing large rings of carbon and oxygen atoms) 

should also be tried since they could have a potential application in nuclear industry. 

Also some inorganic materials used in nuclear industry i.e. clinoptilolite could be tested 

in order to determine equilibrium and mass transfer properties. Also ion exchange 

systems with clinoptilolite could be modelled.  

Oscillating system 

The Oscillating system produced the most uniform droplets but the production was in 

batches. Therefore it is highly recommended that a system with the continuous flow of 

the continuous phase is designed. 

Pulsating system 

Further experiments are needed to find the right combination of the dispersed phase 

flow rate and the shear applied on the membrane surface in order to achieve more 

uniform size distribution (both the Dispersion Cell as well as the Oscillating system had 

lower values for the span of the size distribution when compared to the Pulsating 

system). The effort to do so should be made since the productivity of the Pulsating 

system can be great industrial application due to its single pass and continues nature. 

Since the membrane with 200 µm pore spacing was used, smaller pore spacing should 

be tested which might lead to production of more uniform droplets. 
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Regarding the complex coacervation using the Pulsating system better temperature 

control during the production of oil droplets, as well as regulation of the cooling 

temperature after the production of the droplets, should be applied if a thicker shell of 

the particles is wanted. 

Modelling 

The model should be reconsidered when trying to predict the droplet size in the 

Pulsating system since it was clear that the additional force or factor was acting on the 

droplets. That would lead to better understanding of the system and more accurate 

predictions of droplet sizes in the Pulsating system. An effort should be made in order 

to include the dispersed phase flux in the existing model. 
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APPENDIX  

A. Atomic absorbance Spectrophotometer 

In order to determine the concentration of copper or sodium ions in water solutions an 

Atomic Absorbance Spectrophotometer (SpectrAA 2000, Varian) was used. Relative 

standard deviation also referred as a precision (i.e. the standard deviation divided by the 

mean based as a percentage) was set to 1% (PROMT mode of operation was selected). 

When the precision of the instrument is selected as an operating parameter the 

instrument records many absorbance values for the single sample being analysed until 

the desired precision is achieved. The absorbance data given as a result of the 

measurement represents a mean reading. Prior to the measurement of the samples, the 

calibration had to be performed in order to relate the measured absorbance with the 

concentration of the metal ions in water solution. The maximal concentration of the 

standard solution was chosen to be the maximal concentration that should be measured 

(the inlet concentration). For each calibration ten standards were used. Thermal drift is 

a common occurrence during analysis by atomic absorption; hence a single calibration 

performed at the start of the analysis may not be valid for the samples taken towards the 

end of the analysis. The calibration was repeated after 10 measurements and also at the 

end of the analysis. In general the calibration curves were not that different (both for 

copper and sodium). Figure 93 shows three calibration curves taken for copper ions at 

the start, after 10 samples and then at the end (after another 15 samples). According to 

the ion analysed as well as the concentration working range the wave length of the 

instrument had to be selected according to the manufacturer recommendations. When 

sodium nitrate was used to adjust the ionic strength standards were also prepared with 

the same ionic strength in order to get the same background. 

Each sample was then measured three times and in Chapter 5.2 the average values are 

reported. Here Figure 94 and Figure 95 report the same values as Figure 81 (a) and 

Figure 82 (b), but this time the error bars are included in order to demonstrate the level 

of uncertainty when measuring the concentrations. The error bars represent the highest 

and the lowest value measured. Almost identical results are obtained when higher 

concentrations were used. 
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Figure 93 Calibration for SpectrAA, for copper concentration between 0 and 100 g 

m-3. 
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Figure 94 Small beads (R =4 2 µm). Flow rate F = 1.3×10-7 m3 s-1
. (a) Influence of 

the inlet copper concentration (21 – 98 g m-3) on the copper concentration 

in effluent and mass transfer model Eqs. (30) – (43) (solid curves in 

figure). Error bars represent the lowest and the highest value of 

concentration obtained during the measurements. 
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Figure 95 Big beads (R = 87 µm). Flow rate F = 1.3×10-7 m3 s-1
. (a) Influence of the 

inlet copper concentration (20 – 89 g m-3) on the copper concentration in 

effluent and mass transfer model Eqs. (30) – (43) (solid curves in figure). 

Error bars represent the lowest and the highest value of concentration 

obtained during the measurements.  

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000 16000

C
op

pe
r c

on
ce

nt
ra

tio
n 

in
 ef

flu
en

t  
 / 

  g
 m

-3

Time   /   s

89 62 40 20 Model

Co   /   g m-3



Appendix 
 

180 
 

B. Image J 

When analyzing the W/O emulsions for production of the silica particles Malvern 

Mastersizes S could not be used since it had only a water sampling cell. Therefore a 

different method of analysis to determine the particle size as well as their uniformity 

had to be applied. A Leitz Ergolux optical microscope with attached Pulnix TM-6CN 

monochrome camera was available therefore the most convenient method was to use 

ImageJ (a public Java-based image processing program http://rsb.info.nih.gov/ij/) for 

size analysis.  

The final silica particles (after drying and calcining) could be analyzed with the 

Malvern Mastersizer S but in order to be consistent the sizes of freshly prepared 

droplets of dispersed phase in kerosene (W/O emulsion), hydrogel as well as xerogel 

(fully dried hydrogel) particles were determined using ImageJ. The number of particles 

to count is regulated by the British standard but it changes considerably from 

publication to publication. In this thesis for each experiment (which needed to be 

analyzed by ImageJ), numerous random photos were taken and at least 700 droplets or 

particles were measured for representative measurements of size.  

The droplets tended to burst when placed on a microscopic slide due to surface tension 

effects, so microphotographs had to be taken very quickly. A similar problem occurred 

with the hydrogel where due to the acetone evaporation the hydrogel was solidifying 

and shrinking forming the xerogel. It was important that the microphotographs of the 

droplets and xerogel are taken very quickly. Figure 96 (a-c) shows the image 

transformation suitable for ImageJ analysis as well as the result of the analysis Figure 

96 (d). 

http://rsb.info.nih.gov/ij/
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Figure 96 (a) Microphotograph of W/O emulsions. (b) Conversion to the binary 

image and filling of the droplets. (c) Outlined droplets ready for analysis. 

(d) Summary of the droplets calculated by the software. Average droplet 

size of W/O emulsions 90 µm. CV = 23 %. 

Initially the microphotograph had to be imported into ImageJ (Figure 96 (a)) and scale 

had be set based on the microphotograph of the graticule. Contrast of the image was 

adjusted followed by the conversion into the binary image and threshold adjustments. 

Once the image was black and white all circles have to be filled with black (Figure 96 

(b)). Droplets usually touched each other therefore it was necessary to use watershed 

function within ImageJ to separate the borders of the droplets and Figure 96 (c) 

represents the image ready for the analysis. The conversion into the binary image as 

well as the separation of the droplets was performed automatically. Manual corrections 

are also possible, and were done if mistakes were noticed. Before the analysis those 

droplets, touching the edges of the microphotograph, were excluded from the analysis. 

Figure 96 (d) represents the outlines of the droplets which are actually considered by 

ImageJ. Each droplet is numbered in order to be able to link it with the calculated size 

in the calculation worksheet. ImageJ reports Feret‘s Diameter, which is indeed the 

droplet diameter as the droplets are spherical. 
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Once obtained the results were exported to an Excel spreadsheet; the mean droplet 

diameter is calculated and as an indication of the droplet size distribution, the 

coefficient of variation ( 100
d

CV  ) is calculated from the standard deviation 

(
1

)(
,1

2









n

dd
n

ni
i

 ) and mean droplet diameter (d). Figure 97 represents ImageJ 

analysis of the SEM image of the silica particles. 

 

Figure 97 SEM image and outlined particles for ImageJ analysis of silica particles 

with average particle size of 30 µm.  

 

  



Appendix 
 

183 
 

C.  PDSOL file 
PDSOL file is given here together with the resulting graph for initial copper 

concentration of 100 g m-3. Ion exchange material used was DOWEX 50W-X8 (100-

200 mesh). 

'CONSTANTS 

qm=116e-3 'Langmuir maximum q value g/g 

b=0.003' Langmiur parameter b m3/g of boron 

m=1 'mass resin used g 

V=.14e-3   'volume of cell in m3 

radius=87e-6 'm 

mu=0.001 'viscosity of liquid 

rhos=1.443' specific gravity of solid 

rhol=1 'specific gravity of liquid 

diff=1.2e-9 'm2/s Diffusivity of transferring species in water 

Deff=7e-11 'm2/s Internal diffusivity of transferring species in bead 

cfeed=100 'g/m3 Incoming concentration of species in feed (also ppm) 

Flow=1.3e-7 'm3/s Incoming flow rate 

 

'CALCULATED CONSTANTS 

rho=rhos*1e+6  'g/m3 

deltarho=(rhos-rhol)*1000 'density difference in kg/m3 

'vel_ter=9.8*(2*radius)^2*deltarho/(18*mu) 'Terminal settling velocity - Stokes 

vel_ter=  0.00286 

Re= 2*radius*rhol*1000*vel_ter/mu 'Particle Reynolds number 
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Sc=1e-3/1000/diff 'Scmidt number 

Sh=2+.6*Re^.5*Sc^.33 'Sherwood number 

K=2*Sh*diff/(2*radius) 'Mass transfer coefficient 

'INITIAL CONDITIONS 

q@t0=0 

C@t0=0 

 

'EQUATIONS 

Cequ=q@xU/(b*(qm-q@xU)) 

q_x=dx(q) 

q_x@xL = 0 

q_x@xU = (K*(C - Cequ))/(rho*Deff) 

C_t = Flow*(cfeed-C)/V-m*3*Deff*q_x@xU/(radius*V) 

q_t = 1/(x>1e-6)^2*dx(Deff*x^2*q_x) 

 

Figure 98 Model curve generated by the PDSOL. 
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 Dragosavac, M.M., Sovilj, M.N., Kosvintsev, S.R., Holdich, R.G. & 

Vladisavljević, G.T. 2008, "Controlled production of oil-in-water emulsions 
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emulsification", Journal of Membrane Science, vol. 322, no. 1, pp. 178-188.  
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"Stirred cell membrane emulsification for multiple emulsions containing 

unrefined pumpkin seed oil with uniform droplet size"  

Submitted to Journal of Membrane Science (26 August 2011) 
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Production of porous silica microparticles by membrane emulsification"  

Submitted to Langmuir  (29 Jul 2011) 
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ORAL PRESENTATIONS: 

 “Oscillating membrane emulsification”, 10th UK particle Technology Forum, 

held at Birmingham University on 1st and 2nd July 2009.  

 Shortlisted as finalist for “Young Researcher Award 2009”. 

 

 “Combined ion exchange and microfiltration”, Diamond conference, 

Decommissioning, Immobilisation and Management of Nuclear Waste for 

Disposal, 9-10 September 2009, York, UK 

 

 “Stirred cell and oscillating membrane emulsification for particle 

production”, PARTICLES (of all shapes and sizes) INTO LIQUIDS, 23 

September 2009, GSK Stevenage, UK 

 

 “Novel oscillating membrane emulsification for production of food 

emulsions and microcapsules”, 4th EFCE workshop, May 27-28, 201, 

Belgrade, Serbia. 

 Chosen as a selected speaker to be a UK representative – Travel award  

 

 “Stirred cell and oscillating membrane emulsification for particle 

production” World Conference on Particle Technology 2010, WCPT6 Student 

Conference, April 22-25, 2010, Delft, Holland. 

 

 “Combined ion exchange and microfiltration”, Diamond conference, 

Decommissioning, Immobilisation and Management of Nuclear Waste for 

Disposal, 15-16 December 2010, Manchester, UK 

Also the poster was presented at the conference – First prize for the poster 

 

 ―Novel method of producing highly uniform silica particles using 

inexpensive silica sources‖, UK Colloids 2011, 4-7 July 2011, London 
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 ―Production of silica particles using membrane emulsification‖, PSA 2011, 

4-7 September 2011, Edinburgh 

The best student presentation (The Brian Scarlett Memorial and Beckman 
Coulter Prize) 




