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SYNOPSIS 

This thesis reports on research undertaken to investigate the end-of-life management of solid 

oxide fuel cells (SOFC), through the definition of a framework and the development of a multi-

criteria evaluation methodology which together support comparison of alternative end-of-life 

scenarios.  The primary objective of this research is to develop an understanding of the 

challenges and opportunities arising during the end-of-life phase of the technology, such that 

any conflicts with end-of-life requirements might be addressed and opportunities for 

optimising the end-of-life phase fully exploited. 

The research contributions can be considered in four principal parts.  The first part comprises a 

review of SOFC technology and its place in future sustainable energy scenarios, alongside a 

review of a growing body of legislation which embodies concepts such as Extended Producer 

Responsibility and Integrated Product Policy.  When considered in the context of the life cycle 

assessment literature, which clearly points to a lack of knowledge regarding the end-of-life 

phase of the SOFC life cycle, this review concludes that the requirement for effective end-of-

life management of SOFC products is an essential consideration prior to the widespread 

adoption of commercial products.   

The second part of the research defines a framework for end-of-life management of SOFCs, 

which supports clarification of the challenges presented by the SOFC stack waste stream, as 

well as identifying a systematic approach for addressing these challenges through the 

development of alternative end-of-life management scenarios.  The framework identifies a 

need to evaluate the effectiveness of these end-of-life scenarios according to three 

performance criteria: legislative compliance; environmental impact; and economic impact. 

The third part of the research is concerned with the development of a multi-criteria evaluation 

methodology, which combines conventional evaluation methods such as life cycle assessment 

and cost-benefit analysis, with a novel risk assessment tool for evaluating compliance with 

current and future legislation.  A decision support tool builds on existing multi-criteria decision 

making methods to provide a comparative performance indicator for identification of an end-

of-life scenario demonstrating low risk of non-compliance with future legislation; low 

environmental impact; and a low cost-benefit ratio. 
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Finally, the validity of the framework for end-of-life management is tested through the 

completion of two case studies.  These case studies demonstrate the flexibility of the 

framework in supporting a reactive end-of-life management approach, whereby end-of-life 

management is constrained by characteristics of the product design, and a proactive approach, 

whereby the impact of design modification on the end-of-life phase is explored. 

In summary, the research clearly highlights the significance of the end-of-life stage of the SOFC 

life cycle.  On the one hand, failure to manage end-of-life products effectively risks 

undermining the environmental credentials of the technology and is likely to lead to the loss of 

a high-value, resource-rich material stream.  On the other hand, the early consideration of 

aspects identified in the research, especially while opportunities remain to influence final 

product design, represents a real opportunity for optimising the end-of-life management of 

SOFC products in such a way as to fully realise their potential as a clean and efficient power 

generation solution for the future. 
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CHAPTER 1 INTRODUCTION 

The generation and supply of electrical power has become a fundamental requirement for 

human society.  Recent history has demonstrated that insecurities related to the provision of 

this requirement can lead to significant economic and political turbulence.  With increasing 

demands on the earth’s resources arising from growing human consumption, and a developing 

understanding of the detrimental impacts of fossil fuel combustion on the environment, it is 

clear that existing power generation technologies and behaviours must change towards more 

sustainable solutions. 

Fuel cells are power generation devices which demonstrate high efficiency with regard to the 

conversion of chemical energy to electrical energy.  The principle of their operation has been 

understood since the early 19th century (Grove, 1839); however their use has historically been 

limited to specialist applications, such as space travel, where high costs have not been 

prohibitive to their adoption.  In more recent decades, the drive to make the technology viable 

in a wider market has been the primary focus of development activities, with efforts from both 

academia and industry.  Much of the motivation for this drive towards commercialisation has 

arisen from the environmental benefits anticipated from the widespread utilisation of fuel 

cells in power generation applications.  

Fuel cells are suited to a broad range of stationary and mobile applications, and several types 

of the technology have been developed, as summarised in Table 1.1.  The distinction between 

different fuel cell types lies primarily in the electrolyte material.  This in turn has a direct 

impact on the temperature at which efficient operation is achieved and, as such, is influential 

in determining the most suitable application for the technology.  The research reported in this 

thesis is concerned specifically with solid oxide fuel cell (SOFC) technology which is primarily 

suited to stationary power generation applications.  Figure 1.1 shows the 1 MW SOFC system 

under development at Rolls-Royce Fuel Cell Systems Limited (Rolls-Royce Plc, 2007) and 

illustrates how fuel cells can be combined with conventional technologies to provide electricity 

to the consumer.   
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Typically, a stationary SOFC system is made up of various sub-assemblies.   Individual fuel cell 

components are combined in a sub-assembly known as the SOFC stack, and it is in this sub-

assembly that the fuel cell technology converts inputs of fuel and air into electrical power.   An 

example of a module of the fuel cell stack used within the Rolls-Royce Fuel Cell Systems design 

is illustrated in Figure 1.2. The integrated-planar SOFC stack is modular in design, to allow 

flexibility in the overall power-generating capacity of the system.   Additional sub-assemblies 

required for the delivery of electrical power include fuel processing equipment and electrical 

systems for controlling the supply of power to the customer. In addition, hybrid systems such 

Table 1.1:  Summary of different fuel cell types and their defining characteristics (adapted from Haile, 2003) 

Type of fuel cell  Electrolyte 
material 

Operating 
temperature 

(oC) 

Fuel Principal applications 

PEMFC:  
Proton exchange 
membrane 

Fluorinated 
polymers (solid) 

70 – 110 Hydrogen, 
methanol 

Automotive industry, space 
travel, other portable 
applications 

AFC:  
Alkaline  

Potassium 
hydroxide  

(liquid) 

100 – 250 Hydrogen Automotive industry, space 
travel 

PAFC:  
Phosphoric acid 

Phosphoric acid 
(liquid) 

150 – 250 Hydrogen Stationary power generation 

MCFC: 
Molten carbonate 

Lithium/sodium/ 
potassium 

carbonate (liquid) 

500 – 700 Hydrogen, 
hydrocarbons, 

carbon monoxide 

Stationary power generation 

SOFC:  
Solid oxide 

Stabilised zirconia 
(solid) 

700 – 1000 Hydrogen, 
hydrocarbons, 

carbon monoxide 

Stationary power generation, 
auxiliary power units 

Figure 1.1:  Schematic view of a stationary SOFC system, illustrating the integration of  

conventional technologies and fuel, air and power flows. 

 

© 2009 Rolls-Royce Fuel Cell Systems Limited, used by permission. All rights reserved. 



 CHAPTER 1 

3 

as that illustrated in Figure 1.1 can incorporate small gas turbines which utilise waste heat 

from the SOFC stack thus increasing overall efficiencies. 

SOFC technology has not yet reached commercial maturity, and systems such as that 

illustrated in Figure 1.1 are still in the early stages of product development.  Design targets 

indicate that a large stationary system would be expected to have a lifetime of approximately 

20 – 25 years, whereas the SOFC stack would be expected to have an operating lifetime of 

40,000 hours (approximately 5 years) (Karakoussis et al., 2001; Hawkes et al., 2006; Thijssen et 

al., 2010).  Therefore it should be anticipated that the complete SOFC stack assembly will 

require replacement three or four times throughout the lifetime of the SOFC system.  The 

SOFC stack will therefore contribute substantially to the total waste generated by a large 

stationary SOFC plant throughout its operational lifetime. 

The concept of Extended Producer Responsibility (EPR) has developed in response to 

increasing levels of consumerism in society.  The concept identifies that product designers and 

manufacturers have a responsibility to consider the impacts of their products across the 

complete product life cycle, including impacts arising from the management of products in the 

end-of-life stage.  End-of-life vehicles and waste electrical and electronic equipment are 

currently targeted by legislation encompassing the EPR principal.  The legislation establishes 

requirements for aspects such as collection of end-of-life products from consumers (product 

recovery), removal of components containing hazardous substances (de-pollution) and 

Figure 1.2:  Illustration of a module from a SOFC stack assembly.  The module consists of an 

assembly of flat ceramic tubes, each of approximately 30 cm in length. A module of this size could 

be expected to have a power-generating capacity of 2.5 – 3 kW.   

 

© 2009 Rolls-Royce Fuel Cell Systems Limited, used by 
permission. All rights reserved. 
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treatment of wastes.  Recycling targets have been established, with the responsibility falling on 

the product manufacturer to ensure that these targets can be achieved. 

Against this legislative background, it is essential that the end-of-life management of all new 

products, including SOFC technology, is considered prior to commercialisation.  It appears 

likely that the scope of EPR-based legislation will increase to encompass a much broader range 

of product-types.  Failure to be able to comply with such requirements may be detrimental to 

the acceptance and adoption of this new power-generation technology.  In addition to EPR-

based legislation, more traditional waste management and landfill legislation encompasses 

requirements concerning the transportation, processing and safe disposal of wastes, especially 

where hazardous substances are present. 

Consideration of end-of-life management requirements prior to commercialisation of SOFC 

technology not only supports legislative compliance, but also offers opportunities to ensure 

that the environmental impacts of the technology are minimised.  In addition, effective end-of-

life management of a product can also positively affect its life cycle costs.  In severe cases, 

specific additional costs may be introduced in the form of fines arising from non-compliance, 

or in the form of financial liability for environmental damage.  More commonly, unnecessary 

costs may be introduced through poor organisation of end-of-life logistics, or through the 

selection of costly and/or inappropriate end-of-life processing routes.  In the case of products 

containing valuable materials, the implementation of effective recycling processes may also 

result in the recovery of a proportion of the original material costs. 

The end-of-life waste arising from the SOFC stack assembly requires attention, since this 

represents a novel technology for which no specific waste management infrastructure exists.  

In addition, the comparatively short life-span of the SOFC stack means that the generation of 

end-of-life waste from this assembly will occur throughout the lifetime of the SOFC system.  

The research assertion presented by this thesis is that prior to commercialisation of SOFC 

technology, the challenges and opportunities arising at the end-of-life phase must be identified 

and addressed.   

The research reported in this thesis therefore aims to develop a framework to support decision 

making with respect to end-of-life management of the SOFC stack assembly.  The framework 

will provide a structured approach to support identification of alternative end-of-life 

management scenarios and evaluation of their performance, in terms of legislative 

compliance, environmental impact and economic performance.  This is to be achieved 

through:  
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1) Characterisation of existing SOFC stack concepts in terms of their design and material 

characteristics. 

2) Identification of alternative end-of-life management scenarios for SOFC stack 

assemblies based on viable processes and technologies. 

3) Construction of an evaluation methodology which supports the identification of 

compliant, environmentally responsible and economically viable solutions for end-of-

life management of SOFC stacks. 

An outline of the thesis structure is shown in Figure 1.3.  The thesis can be considered in three 

sections, namely the research background and overview; theoretical research, model 

development and case studies; and the research conclusions. 

The research background and overview consists of five chapters.  Following this introduction, 

the research context and scope are defined in Chapter 2.  This definition of the research is 

supported by a literature review, which focuses on SOFC technology in Chapter 3, and various 

aspects relating to requirements and evaluation methods for end-of-life management in 

Chapter 4.  Chapter 5 provides a brief review of common research methodologies and explains 

the methodological approach adopted within the thesis. 

The middle section of the thesis documents the theoretical research, model development and 

case studies performed in order to address the research aims and objectives.  In Chapter 6 a 

framework for end-of-life management of SOFC stacks is presented.  This framework has three 

principal parts within it.  The first requires the characterisation of SOFC products, in terms of 

their design and materials selection, and the findings from this research are reported in 

Chapter 7.  In Chapter 8 alternative end-of-life management scenarios for the SOFC stack are 

developed, supporting the second part of the framework.  Chapter 9 presents the evaluation 

methodology used in the third stage of the framework, and in Chapter 10 the application of 

the framework is demonstrated through case studies. 

The final section of the thesis presents the conclusions from the research.  Chapter 11 provides 

a discussion of the research findings and assesses the outcomes of the research against the 

stated objectives.  This discussion is summarised in a number of final conclusions presented in 

Chapter 12, in which opportunities for further development of the research are also identified. 

Additional calculations and data to support the case studies are included in the appendices, 

along with two conference papers and one journal paper which have been published, based on 

different aspects of the research reported in the thesis. 
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CHAPTER 2 RESEARCH CONTEXT AND SCOPE 

2.1 Introduction 

This chapter identifies the context of the research reported in the thesis.  The underlying 

research assertion is stated, and from this a general research aim is derived.  Several objectives 

are developed in support of the research aim, and for each of the objectives the scope of the 

research is described. 

2.2 Research context 

The predicted environmental benefits of SOFCs in comparison with conventional power 

generation technologies have provided a substantial driving force for continued investment in 

their development.  As such, their environmental performance has been the subject of 

academic interest, and various studies have endeavoured to investigate the likely 

environmental impacts arising across some or all of the life cycle.  However, from an initial 

reading of publications reporting these studies, a prevailing theme indicates an absence of 

knowledge regarding the end-of-life phase.  Several specific quotes have been identified, 

which span almost fifteen years of research into SOFC technology, and which demonstrate the 

lack of progress in this area.   

One of the first publications reporting on the environmental performance of SOFCs was 

published in 1996 by Zapp, who wrote: 

“Even after successful operation, dismantling of the unit remains an important part of the 

entire cycle life. Prevention and reduction and reuse of waste products are key elements 

in the material management that has to be planned before introducing a new 

technology. For SOFC technology, little is known about handling waste products; some 

problems however, are already known…The increasing interest in waste management 

will yield a higher demand for research in the field of dismantling SOFC.” (Zapp, 1996) 

Five years later, researchers at Imperial College, London, commented on a weakness in their 

life cycle assessment study of the technology: 

“This study assumed that there is no recycling of process waste.   Thus, a worst case 

scenario has been produced.  End-of-life material recovery and reuse or recycling will be 

important in reducing the burdens associated with materials supply.  However, the 

current state of development of the industry means that end-of-life options have so far 
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been given little consideration, and little data is available.  It was therefore 

inappropriate to define explicit recycling scenarios for this study, and further 

examination of the opportunities are warranted. It is clear however, that recycling of key 

materials can be expected to significantly reduce the environmental burden associated 

with materials supply.” (Karakoussis et al., 2001) 

Similarly, in 2005, Barrato reported a similar challenge in conducting a complete life cycle 

assessment study of SOFCs: 

“There are no data available regarding future end-of-life management scenarios and so for 

the purpose of this study the potential for reuse and recycling of individual cells has not 

been studied.” (Baratto et al., 2005)   

The most recent life cycle assessment studies of SOFC products available in the literature have 

not included any detail regarding the end-of-life phase within their scope (Strazza et al., 2010; 

Pehnt, 2008). 

This demonstrated absence of prior knowledge regarding the end-of-life management of SOFC 

technology provides the context and supports a case for the research reported in this thesis, 

which has been conducted against a backdrop of a legislative framework increasingly 

concerned with the management of wastes from end-of-life products. 

2.3 Research assertion 

In a world where the supply of energy is of fundamental importance, SOFC technology 

provides environmental benefits including increased fuel efficiencies and reduced emissions 

(Hart and Hormandinger, 1998; Bauen and Hart, 2000; Stambouli and Traversa, 2002).  These 

benefits support compliance with global legislative targets regarding global warming, air 

pollution and the implementation of alternative power generation technologies in preference 

to combustion-based processes.  However, despite these positive aspects, other global 

legislative trends should not be overlooked, especially those encompassing requirements for 

management of waste from end-of-life products.  These various different measures may direct 

or constrain end-of-life solutions. 

The environmental benefits of SOFC technology are apparent, but for SOFC products to be 

regarded as truly environmental products there is a requirement to ensure that environmental 

impacts are minimised across the complete product life cycle.  In particular, the management 

of end-of-life SOFC stacks, a high volume and potentially hazardous waste stream, must be 

conducted in a responsible manner to ensure minimisation of environmental impacts arising 
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from the treatment of toxic substances.  Given the immature nature of the technology and the 

many technical challenges facing designers, a balance of proactive and reactive approaches to 

minimising these impacts must be adopted.   

Effective end-of-life management may provide design flexibility by reducing life cycle costs.  If 

revenue can be recovered through recycling activities, then additional cost margins may be 

available in the initial design and materials selection stages.  This may be particularly effective 

in a product service systems model, where ownership of the product remains with the original 

manufacturer, and the customer pays for the power generated by the SOFC system.  

The assertion underlying the research reported in this thesis is that an in depth understanding 

of the end-of-life management of SOFC technology must be developed, prior to widespread 

commercialisation.  Failure to adequately address potential future legislative requirements 

may provide substantial setbacks to market penetration, while environmentally irresponsible 

actions would threaten the integrity of the technology.  At the same time, opportunities for 

recovering value through effective end-of-life management may play an important role in 

helping the technology achieve cost targets required for entry into a competitive market. 

2.4 Research aims and objectives 

In line with the assertion presented above, the aim of the research is to explore the 

opportunities and challenges arising during end-of-life management of solid oxide fuel cells in 

order to support the development of end-of-life management solutions which demonstrate 

legislative compliance, reduced environmental impact and where possible provide economic 

benefit. 

In order to achieve this aim, the following objectives have been identified: 

1. To review the current status of SOFC technology and to identify relevant end-of-life 

management requirements including those arising from legislation, and methods for 

evaluating end-of-life performance, from published literature. 

2. To develop a framework for end-of-life management of SOFC stacks, that supports 

evaluation of alternative scenarios against a number of performance criteria.  

3. To propose alternative end-of-life scenarios for SOFC stacks, based on their design and 

material characteristics. 

4. To develop a methodology for evaluating the risk of non-compliance with current and 

future legislation. 
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5. To apply life cycle assessment and cost-benefit analysis methodologies to the 

evaluation of alternative end-of-life management scenarios for SOFC stacks. 

6. To develop a method for integrating the outputs from compliance, environmental and 

economic assessments into a single performance parameter, in order to support 

decision making. 

7. To test the framework for end-of-life management of SOFC stacks using a case study 

approach. 

2.5 Research scope 

The scope of the research is in line with the objectives presented in Section 2.4, and is 

described in the following sections. 

2.5.1 Review of the current status of SOFC technology and relevant end-of-life 

management requirements and evaluation methods 

A review of SOFC technology will be conducted to identify alternative design concepts and the 

current status of the technology with regard to commercialisation.  Opportunities for the 

application of SOFC technology in future energy scenarios will be reviewed in order to develop 

an understanding of the potential scale of the end-of-life SOFC stack waste stream. 

In order to ensure that the research considers all relevant aspects of end-of-life management, 

a comprehensive review of the literature will be conducted.  Particular attention will be given 

to legislation identified as being of relevance to end-of-life management, in order that 

legislative requirements can be clearly identified.  Studies relating to the end-of-life 

management of other products will be reviewed in order to ensure that the research is 

established in an appropriate academic context and that existing knowledge can be exploited.  

The benefits and limitations of existing evaluation tools will be explored in order to identify 

and select suitable evaluation methods for application in the current research.  

2.5.2 Development of a framework for end-of-life management of SOFC stacks 

A framework for end-of-life management of SOFC stacks will be developed to provide a 

structured approach by which opportunities and challenges arising at this stage of the product 

life cycle can be explored.  The framework will allow alternative end-of-life scenarios to be 

evaluated in terms of their legislative compliance, environmental impact and economic 

performance.  While it is recognised that these three performance metrics provide useful 

indicators of the viability of alternative end-of-life scenarios, the framework should also 

support the combination of all three evaluation outcomes into a single performance metric.   
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2.5.3 Definition of existing SOFC concepts in terms of design and material characteristics 

and proposal of suitable alternative end-of-life scenarios 

The opportunities and challenges arising during end-of-life management are primarily defined 

by the design and material characteristics of the product.  Three different SOFC concepts will 

be analysed and evaluated in order to explore the general relationships between design, 

materials selection and end-of-life management.  A detailed analysis of the design and 

material characteristics of the integrated-planar SOFC concept under development at Rolls-

Royce Fuel Cell Systems will be conducted to support development of alternative end-of-life 

scenarios. Alternative end-of-life scenarios will be proposed, based primarily on known waste 

management technologies and infrastructures.   

2.5.4 Development of a methodology for evaluating legislative compliance 

SOFC technology has not yet reached commercial maturity, and within the timescales between 

market penetration and the generation of significant volumes of end-of-life SOFC stacks it is 

likely that observed trends in the development of end-of-life legislation will continue.  A risk-

based method is proposed as an appropriate approach to evaluate legislative compliance.  A 

methodology will be developed which can be used to evaluate the risk of end-of-life 

management scenarios failing to comply with future legislative requirements.   

2.5.5 Application of life cycle assessment and cost-benefit analysis within the framework 

Existing tools for the evaluation of environmental impact and economic performance will be 

adopted for application in the framework for end-of-life management of SOFC stacks.  A 

streamlined life cycle assessment methodology will be used to evaluate the environmental 

impact of alternative end-of-life scenarios; a model will be constructed to represent the 

relevant end-of-life processes, and data requirements will be identified.  Similarly a parametric 

cost model will be generated to allow evaluation of the cost-benefit ratio for alternative end-

of-life scenarios.  Economic data required as input to the model will be defined. 

2.5.6 Development of a methodology to support multi-criteria decision making 

Although the results from the individual compliance, environmental and economic evaluation 

methods will be useful in identifying the viability of alternative end-of-life scenarios, it is 

anticipated that a further evaluation methodology will be needed to allow the three individual 

performance scores to be combined into a single factor, to support an effective and simple 

decision support tool. 
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2.5.7 Demonstration of the framework through case studies 

In order to assess the validity of the framework for end-of-life management of SOFC stacks, 

and the evaluation methods adopted, the framework will be applied in two case studies.  

These case studies will use a combination of data from industrial trials and the literature to 

evaluate alternative end-of-life scenarios for the integrated-planar SOFC concept.  Legislative 

compliance, environmental impact and economic performance will be evaluated 

independently and then combined into a single performance parameter.  The results from the 

case studies, together with any general observations regarding the application of the 

framework, will be used to identify the benefits and limitations of the methods employed.  

Opportunities for improving the framework may be identified based on the implementation 

experience generated during the case studies, as well as the results obtained. 

2.6 Summary 

In this chapter the context of the research has been identified, and the research assertion 

stated.  Objectives have been defined, in support of the research aim, and these objectives 

have been used to generate the scope of the research.  The following two chapters address the 

first research objective.  Chapter 3 presents a review of SOFC technology, and Chapter 4 

reviews relevant legislative requirements and evaluation methods for end-of-life management.  
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CHAPTER 3 A REVIEW OF SOLID OXIDE FUEL CELL TECHNOLOGY 

3.1 Introduction 

This chapter presents a review of SOFC technology, to provide background to the research and 

to identify current knowledge regarding aspects of the technology most relevant to the 

research.  The chapter begins with a review of electricity generation, in relation to global 

energy requirements, and considers the place of fuel cell technology within potential future 

energy scenarios.  SOFC technology is then reviewed in terms of technical aspects relating to 

design and function, and the current commercial status is explored.  Finally, previous studies 

evaluating the environmental performance of the technology life cycle are reviewed. 

3.2 Energy supply: challenges and opportunities 

Power generation and energy supply can be viewed as one of the greatest issues of the 

twenty-first century.  As economic development extends across the world, greater demands 

for energy arise.  At the same time, human impact on the environment is coming under 

increasing scrutiny, with fossil fuel consumption and concerns regarding the emission of 

greenhouse gases informing the global political and economic climate.  It is clear that this 

conflict will only be resolved through the development of new technologies for electricity 

generation, along with the adoption of new approaches for effective distribution and reduced 

consumption of this resource (Ghoniem, 2011). 

3.2.1 Energy supply and demand 

Figure 3.1 illustrates the historic growth in electricity generation, between 1971 and 2008 

(International Energy Agency, 2010).  These figures indicate an increase in electricity 

generation of over 300% over a thirty-year period.  The regional breakdown of electricity 

generation has also changed during this time period, and these geographic changes provide 

some explanation for the growth in global demand.  In 1973, member countries of the 

Organisation for Economic Co-operation and Development (OECD) were responsible for 

approximately 73% of global electricity generation:  by 2008 this value had decreased to 53%.  

During the same period, the industrialisation of the developing world is clearly demonstrated 

by the relative increase in power generation in China, India and Latin America.  Between 1973 

and 2008 China’s electricity generation increased from 2.9% of the global total to 17.3%.  For 

the rest of Asia, growth was more moderate, but still substantial, with an increase from 2.6% 
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of global production in 1973 to 9.1% in 2008. The proportion of global electricity production 

attributed to Latin America during the same period doubled, increasing from 2.6% to 5.3% 

(International Energy Agency, 2010). 

As well as documenting growth, Figure 3.1 also shows the breakdown in electricity generation 

technologies employed between 1971 and 2008.  It is clear that thermal power generation 

remains the dominant source, with fossil fuels providing two thirds of global electricity in 2008.  

However, this represents a relative decrease from 1973, when three quarters of global 

electricity production was dependent on fossil fuels.  This decrease in fossil fuel dependence 

coincides with the growth of the nuclear power industry since the 1970s. Although the 

generation of electricity using renewable technologies has increased by almost five times 

during the last four decades, this source of electricity remains marginal, providing only 2.8% of 

the world’s electricity generated in 2008 (International Energy Agency, 2010). 

These observed trends in electricity generation are set to continue, with the Department of 

Energy forecasting an increase in global electricity generation of 87% between 2007 and 2035, 

with countries outside of the OECD becoming responsible for around 61% of total production.  

Growth in electricity generation is forecast to continue to outstrip growth in total energy 

consumption, as has been the case since 1990 (Energy Information Administration, 2010). 

These statistics demonstrate the fact that electrical power is a commodity on which economic 

growth is founded, and that the security of future supply is fundamental to the stability of 

society.  The challenges of maintaining adequate supply, especially in the light of forecasted 

demand, are many: finite resources of fossil fuels and their geographical distribution in the 

earth’s surface limit long-term dependence on conventional thermal power generation 

Figure 3.1: Evolution from 1971 to 2008 of world electricity generation* by fuel (TWh) 

Figure extracted from Key World Energy Statistics 2010 © OECD/IEA, 2010 

 



 CHAPTER 3 

15 

technologies, and introduce economic and geo-political insecurities; the correlation between 

the combustion of fossil fuels and the release of carbon dioxide into the atmosphere presents 

a requirement to favour carbon-free electricity generation; concerns surrounding nuclear 

proliferation and the capital costs associated with the installation of new nuclear power plants 

potentially restrict access to this alternative technology; existing electricity grid systems in the 

developed world are increasingly under strain to provide uninterrupted supply, and are likely, 

eventually, to fail under increased load, while much of the developing world has no access to 

centralised electricity networks. 

These challenges indicate that novel approaches are required if human behaviour is to 

maintain its dependence on electricity.  Novel approaches to electricity supply, as well as the 

implementation of alternative electricity generation technologies, are required.  The concept 

of distributed power generation is reviewed in the following section, as an approach to 

electricity supply which moves away from conventional centralised power plants.  In section 

3.3 the use of SOFC technology as an alternative means of stationary power generation in 

future energy scenarios is reviewed and discussed. 

3.2.2 Distributed power generation 

Distributed power generation is a term used to cover a broad range of definitions, and can be 

interchanged with terms such as “embedded generation”, “dispersed generation”, and 

“decentralised generation” (Ackermann et al., 2001).  Ackermann et al. (2001) discuss various 

inconsistencies in what is meant by the term, however, in general, it can be assumed that 

distributed power generation means generation of electricity with the focus on meeting local 

demand (Kaundinya et al., 2009).  In contrast to conventional electricity networks in which 

large centralised plants, usually based on fossil fuel or nuclear conversion technologies, are 

employed, distributed power generation readily encompasses a broader range of power 

generation technologies, often operating at lower capacities of several mega watts or less.  In 

particular, renewable technologies are well suited to distributed generation, as are stationary 

fuel cell systems (Ackermann et al., 2001; Verda and Quaglia, 2008).   

As well as offering the opportunity to incorporate novel, low carbon power generation 

technologies, distributed power generation is perceived to offer several additional benefits, 

especially with regard to sustainability issues.  By its very nature, the positioning of a power 

plant in the immediate vicinity of the customer brings with it clear advantages.  In the year 

2000, it was estimated that losses associated with electricity transmission and distribution 

were in the order of 9.3% in the UK, with the average for the European Union being 7.3% and 
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similar losses in the USA totalling 7.1% (Ofgem, 2003).  From these statistics it is clear that a 

significant proportion of fuel used to generate electrical power is wasted, with the associated 

release of pollutants.  Distributed power generation offers the opportunity for substantial 

reduction in these losses, simply by reducing the transmission distances required.   

Given these facts, it is apparent that even small scale fossil fuel-based electricity generation 

technologies such as gas turbines and diesel engines, may offer benefits in distributed 

generation scenarios. The existing demand for such products offers some indication of the 

potential market for stationary SOFC systems of comparable electricity generating capacity.  

Figure 3.2 illustrates the historic market for reciprocating engines and gas turbines used for 

distributed stationary power generation.  The statistics are based on orders placed each year 

for units with a generating capacity in the range of 1 MW to over 30 MW, from 1978 until 

2005.  From 2005, units with a generating capacity of 0.5 – 1 MW are also included.  The 

general trend shown in Figure 3.2 is for an increase in demand for such energy generating 

products, and the breakdown shown for the years 2005 – 2009 indicates that the majority of 

demand is for the lower end of the market, in terms of generating capacity.  At the peak of the 

market, prior to the recent economic downturn, over 35000 units with individual capacity 

between 0.5 MW and 2 MW were ordered globally.  This size of generator is similar to that of 

the SOFC System products being developed for stationary power generation. 

The generation of electrical power in close proximity to the customer allows additional 

Figure 3.2: Annual worldwide orders for diesel, dual-fuel and gas engines for distributed generation 

between 1978 and 2009.  Units with generating capacity of less than 1 MW were only included within the 

statistics since 2005.  For these years a breakdown of the total 1.01 – 30+ MW range is also shown.     

(data collated from Diesel & Gas Turbine Worldwide, 2008, 2009 and 2010) 
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opportunities for effective use of waste heat generated from the process.  Stationary fuel cells, 

especially those based on SOFC technology, are ideally suited for combined heat and power 

(CHP) applications, because of their high operating temperature (e.g. Pehnt, 2000; Lisbona et 

al., 2007; Staffell et al., 2008, Zhang, 2010). 

Aside from these environmental benefits, distributed generation also increases the ease with 

which additional capacity can be introduced into a local electricity supply network.  This may 

be relevant to regions of the developed world where the existing grid system can no longer 

cope with increased demand:  distributed power generation may allow additional supply to be 

provided with much lower investment, compared with upgrading existing distribution 

networks or building new centralised power plants (Hoff et al., 1995; Pepermans et al., 2005).  

Distributed power generation also offers opportunities for the developing world, where the 

capital costs of introducing a centralised electricity network are prohibitive.  Indeed, the 

literature indicates a growing interest in applying distributed power generation to isolated 

regions, often in developing countries (e.g.  Lhendup, 2008; Ketlogetswe and Mothudi, 2009; 

Hallett, 2009; Contreras et al., 2010).  

These benefits of distributed power generation support forecasts indicating a growth in 

distributed generation capacity in the short to medium term.  This growth offers important 

opportunities for the commercialisation of SOFC technology. 

3.3 Solid oxide fuel cell technology 

As demonstrated in the previous sections, SOFC technology offers the potential to contribute 

to meeting future electricity requirements, especially in a decentralised power generation 

scenario.  The technical and commercial aspects of the technology are reviewed in the 

following sections. 

3.3.1 Solid oxide fuel cell systems for stationary power generation 

Various efforts are being made globally to develop SOFC technology suitable for stationary 

power generation applications.  Development is being carried out often in collaboration 

between academia and industry, with the emergence of several leading product concepts in 

the past decade.  The system under development by Rolls-Royce Fuel Cell Systems is illustrated 

in Figure 1.1.  Alternative concepts are being developed by Siemens Power Generation and 

Mitsubishi Heavy Industries, as illustrated in Figures 3.3 and 3.4 respectively. 
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It is clear from these illustrations that a stationary power generation system based on SOFC 

technology is a complex product incorporating several different sub-assemblies.  The fuel cells 

themselves are connected in a stack, in which the electrochemical conversion of fuel and air 

occurs.  This process is discussed further in Section 3.3.3.  However, in order for the stack to 

operate effectively, it must be incorporated into a larger system, commonly referred to as the 

balance of plant.  The principal sub-assemblies within the balance of plant include a fuel 

processor, power conditioning equipment and a system for heat recovery or further power 

generation in a hybrid assembly (Hawkes et al., 2006).   

Figure 3.4: An artist’s impression of the 200 kW SOFC system under development at Mitsubishi Heavy 

Industries, and a schematic showing the principal component within the system (Gengo et al., 2007).  Any 

fuel which remains unconverted after passing through the SOFC stack is combusted to power a micro gas 

turbine (pink flow).  Excess heat is used to preheat the air inlet to the SOFC stack (blue flows).  An inverter is 

required to transform DC electricity generated in the fuel cell into AC electricity. 

 

Images third party copyright 

Figure 3.3: Schematic showing the 220 kW SOFC/gas turbine hybrid under development at Siemens 

Power Generation, and a schematic of the first demonstrator unit (Siemens AG, 2010a).  The 

schematic illustrates the flow of fuel gas (yellow) and air (blue) through the system, with waste heat 

(red) recovered prior to exhaust.  The principal sub-assemblies shown are the SOFC stack, a gas 

turbine, heat management system, fuel processor and power conditioning systems. 

Images third party copyright 
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The target life expectancy for large stationary systems is 20 – 25 years.  However, the design 

target for the SOFC stack system is only in the order of five years, or 40,000 hours operation 

(Karakoussis et al., 2001; Hawkes et al., 2006; Thijssen et al., 2010).  Therefore, it is clear that 

the SOFC stack represents a consumable component, with replacement required four or five 

times throughout the lifetime of the stationary system. 

3.3.2 Commercial status of solid oxide fuel cell technology 

The current commercial status of SOFC technology is hard to ascertain.  Publicly available 

information released by SOFC developers tends to present a rather optimistic view as to the 

timelines within which commercial products will be available.    Industry reviews up to 2005 

have been published by the Houston Advanced Research Centre (2006).  In addition, surveys 

conducted by the organisation Fuel Cell Today are useful in identifying the principal players in 

SOFC commercialisation (Adamson, 2008; Crawley, 2007).  Table 3.1 lists some important 

industrial SOFC developers, and identifies the most recent information available regarding the 

status of commercially available products. 

Various collaborative programmes support the development of SOFC technology, 

incorporating industrial and academic partners from across the supply chain.  In the United 

States, the Solid State Energy Conversion Alliance (SECA), under the auspices of the National 

Energy Technology Laboratory, is focused on cost reduction, fuel flexibility and scale-up, with 

the overall goal being the availability of SOFC technology for centralised power generation (> 

100 MW plants) fuelled by coal (National Energy Technology Laboratory, 2011a).  In working 

towards this goal, the development of materials, manufacturing methods and SOFC stack 

design will support commercialisation of SOFC technology across a range of applications.  

Partners in the SECA programme include Delphi Automotive Systems, involved in the 

development of auxiliary power units (APUs) based on SOFC technology. Other partners, 

including Rolls-Royce Fuel Cell Systems and UTC Power are more directly focused on the 

development of market entry products in the 500 kW to 1 MW scale (National Energy 

Technology Laboratory, 2011b). In Europe, recent collaborative projects have included LARGE-

SOFC - Towards a Large SOFC Power Plant (European Commission, 2011a) and Real-SOFC 

(Realising Reliable, Durable Energy Efficient and Cost Effective SOFC Systems) (European 

Commission, 2011b). 

While Table 3.1 does not provide a comprehensive list of SOFC developers, the data presented 

within it illustrates some trends with regard to commercialisation of the technology.  In 

general, it is clear that the challenges associated with the development of large SOFC systems, 
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often operating under pressurised conditions and in combination with gas turbine technology 

as hybrid power generation plants, have been greater than those associated with smaller-scale 

products operating at atmospheric pressure.   

Smaller domestic-sized SOFC units appear to have achieved a degree of breakthrough in terms 

of market penetration.  In the UK, Ceres Power has signed an agreement with British Gas 

regarding the development and installation of their residential combined heat and power 

products (Ceres Power, 2008).  Field trials were commenced in February 2011, and British Gas 

Table 3.1: Overview of some of the principal industrial developers of SOFC products 

Company Location Product Status  Reference 

Acumentrics 
Corporation 

Massachusetts, 
USA 

250 W – 2 kW SOFC for 
CHP in military and 
residential applications. 

Products commercially 
available and 
development ongoing 

Acumentrics, 2011  

Bloom Energy California, USA Atmospheric 100 kW units. Commercially 
available. 

Bloom Energy, 2010a 

Ceramic Fuel Cells 
Limited 

Australia Atmospheric “BlueGEN” 
modular units, up to 2 kW 
for power generation or 
CHP.  

Products available to 
commercial clients 
only for 
demonstration 
projects. 

Ceramic Fuel Cells Limited, 
2011  

Ceres Power UK Atmospheric residential 
CHP units 

Field trials underway, 
contract with British 
Gas in place. 

Ceres Power, 2011 

Cummins Power 
Generation 

USA General SOFC 
development, including 
auxiliary power unit for  

Not commercially 
available. 

Cummins Power Generation, 
2011  

General Electric 
Company 

California, USA Atmospheric 3 – 10 kW 
modular system for broad 
range of applications 

Not commercially 
available. 

General Electric Company, 
2011  

Kyocera Japan Atmospheric residential 
CHP units 

Field trials underway 
in collaboration with 
Osaka Gas Co. Ltd. 

Kyocera, 2011  

Mitsubishi Heavy 
Industries 

Japan Pressurised hybrid 200 kW 
unit, tubular cells, 
demonstrated operation 
time of 3000 hours 

Not commercially 
available. 

Mitsubishi Heavy  Industries 
Ltd, 2011 

Atmospheric 30 kW unit, 
planar cells. 

Not commercially 
available. 

Rolls-Royce Group 
Plc. 

UK and USA Pressurised hybrid 1 MW 
unit, integrated planar 
cells 

Not commercially 
available. 

Rolls-Royce plc, 2011a  

Siemens 
Westinghouse Power 
Corp. 

USA Variety of product 
concepts based on tubular 
cells, pressurised hybrid 
and atmospheric. 

Not commercially 
available, various 
demonstration 
products installed. 

Siemens AG, 2010a  

Versa Power Systems USA and Canada 2 – 10 kW units Not commercially 
available 

Versa Power Systems, 2011  
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has committed to purchase a minimum of 37500 of the units for installation in UK homes.  In 

the USA, Bloom Energy (formerly Ion America) is offering SOFC power generators of 100 kW 

capacity for distributed generation.  Commercial customers include Walmart, the Coca-Cola 

Company and Bank of America (Bloom Energy, 2010b). 

Development of larger scale systems continues, and the continuation of programmes such as 

the SECA programme in the USA indicate an ongoing commitment to the technology based on 

a firm belief in the market potential for SOFC products.  However, during the course of the 

research activity reported in this thesis a marked change has been observed in the claims 

made by industrial SOFC developers with regard to predicted product launches.  The Fuel Cell 

Industry Review of 2005 identified the tendency of fuel cell developers to “...overstate their 

readiness for product launch...”  (Houston Advanced Research Centre, 2006).  Five years later, 

SOFC developers appear much more cautious about making such claims via websites or other 

media.  While at a superficial level this might appear to mark a reduction in effort with regard 

to market penetration, the continued commitment of many major companies and government 

funding sources to pursue SOFC development indicates that the technology very much remains 

a contender for future power generation scenarios. 

3.3.3 Operating principle of solid oxide fuel cells 

SOFCs derive their name from the solid oxide, or ceramic, material used in the electrolyte 

layer.   Although the general perception might be that fuel cells are a novel concept, ceramic 

fuel cells were first demonstrated in 1937 (Baur and Preis, 1937, cited in Minh, 2003).  Baur 

and Priest used yttria-stablized zirconia (YSZ) in their early cell, and over seventy years later 

this remains the most common material for SOFC electrolytes. 

The electrolyte material is conductive to the oxide ions (O2-) formed from the reduction of 

oxygen gas at the cathode.  At the anode the hydrogen-rich fuel gas (H2) is oxidised, releasing 

electrons (e-) and producing water (H2O) as the by-product of the overall reaction.     This is 

shown pictorially in Figure 3.5.  An external electrical connection between the anode and the 

cathode provides a pathway for electron flow, resulting in the generation of electrical power. 

These electrochemical processes occur quickly enough for efficient operation at temperatures 

around 800 – 1000 oC.   Alternative oxide materials have been developed for use in the 

electrolyte layer which has allowed the introduction of low and intermediate temperature 

SOFCs (Huijsmans et al., 1998; Steele, 2000; Fuentes and Baker, 2007; Bozza et al., 2009). 
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3.3.4 The solid oxide fuel cell – design, materials and manufacture 

Since the early days of SOFC development by the likes of Baur and Preis, several well 

developed SOFC cell and stack designs have emerged.  Figure 3.5 illustrates the required 

arrangement of electrodes (anode and cathode) in relation to the ceramic electrolyte.  In 

addition to these cell components, electrical interconnects are required to connect individual 

cells within the fuel cell stack, and inert sealing materials are also necessary, dependent on cell 

design, to prevent fuel and air gases from mixing directly and undergoing a combustion 

reaction.  The high operating temperature of SOFCs and the exposure of components to 

reducing (anode side) and oxidising (cathode side) environments presents a substantial 

challenge to material scientists.  Materials are required which will provide the correct 

electrochemical properties necessary for effective and efficient cell performance, and which 

will also remain chemically and physically stable throughout the target 5-year operating 

lifetime of the cell.  Detailed reviews of material selection for SOFC components are provided 

in Singhal and Kendall (2003), Haile (2003) and Wincewicz and Cooper (2005).  The material 

and design characteristics of three different cell and stack concepts are analysed in some detail 

in Chapter 7 of the thesis. 

The two principal barriers to commercialisation, and hence the areas on which design, 

materials and manufacturing research and development activities are focused, are cell 

reliability/durability and cost (Williams et al., 2006; Minh et al., 2008).  Minh et al. (2008) 

identify that these barriers require addressing at every level of the technology, from materials 

to cell and stack design and manufacture and, finally, systems integration.  Technical 

improvements in each of these areas are required to achieve a product which is commercially 

viable. 

Figure 3.5:  Schematic showing mechanism for electricity generation in SOFCs 
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3.3.5 Environmental performance during SOFC operation 

There is no doubt that the security of future energy supply is a significant concern for 

politicians, businesses, engineers, scientists and the general public alike.  The concern is largely 

based on society’s dependence on fossil fuels of which reserves are finite and subject to the 

fragilities of international trade relations.  In addition, global warming and its association with 

the combustion of fossil fuels has been the major environmental issue of the past decade.  

Fuel cell technology has been presented as a means of electricity generation which is clean and 

efficient and which would be an attractive alternative to conventional technologies.  This 

image arises primarily from the concept that fuel cells will be fuelled by hydrogen gas.  In this 

scenario the overall chemistry occurring in the cell would result in the generation of electricity 

with only water as a by-product (Equation 3.1):  

     𝐻2(𝑔) + 1
2
𝑂2(𝑔) →  𝐻2𝑂(𝑔)      Equation 3.1 

The widespread use of hydrogen as a fuel is at present uneconomical, unsustainable and 

impractical, with major breakthroughs required in terms of its production, storage and cost 

(Steele, 1999; Lattin and Utgikar, 2007).  The advantage of high temperature fuel cells, such as 

SOFC, over other fuel cell types is that the technology is equally well suited to operate on 

natural gas, or other hydrocarbons.  In the presence of a suitable catalyst and water, steam 

reforming takes place (Equation 3.2) leading to the generation of a carbon monoxide and 

hydrogen gas mixture.  Where excess steam is present the carbon monoxide is further oxidised 

in the shift reaction (Equation 3.3) releasing carbon dioxide and more hydrogen: 

     𝐶𝐻4(𝑔) +  𝐻2𝑂(𝑔) →  𝐶𝑂(𝑔) + 3𝐻2(𝑔)  Equation 3.2 

     𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔) →  𝐶𝑂2(𝑔) + 𝐻2(𝑔)   Equation 3.3 

This process occurs readily at the SOFC anode under operating conditions.  The carbon 

monoxide generated in the steam reforming process can also act as a fuel for the cell.  

Therefore the overall reaction in a SOFC supplied with natural gas (where the methane 

component acts as fuel) is shown in (Equation 3.4):    

     𝐶𝐻4(𝑔) +  2𝑂2(𝑔) →  𝐶𝑂2(𝑔) + 2𝐻2𝑂(𝑔)  Equation 3.4 

Equation 3.4 is identical to a combustion reaction typical of any conventional fossil-fuel based 

technology.  The difference between conventional combustion and the electrochemical 

processes occurring in the fuel cell is the efficiency with which fuel is used.   Unlike in a 

combustion engine, or gas turbine, where the chemical energy of the fuel is converted to heat 
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energy to kinetic energy to electrical energy, the electrochemical conversion in a fuel cell 

occurs in a single step. 

 As a result of the direct electrochemical conversion of fuel to electrical energy the losses 

associated with conventional technologies are reduced.  Carbon dioxide emissions are directly 

related to the efficiency of fuel consumption; therefore, according to the efficiencies quoted in 

Table 3.2, a SOFC plant operating on natural gas has the potential to reduce greenhouse gas 

emissions by up to 50% when compared to an equivalent reciprocating engine operating on 

the same fuel (EG&G Technical Services Inc., 2004). 

In addition to the environmental benefits associated with improved fuel efficiencies, SOFCs in 

operation as stationary power generators have additional benefits.  In their assessment of the 

benefits of fuel cells in the use phase, Bauen and Hart identify seven significant species present 

in emissions from conventional technologies (Bauen and Hart, 2000).  These are listed as 

oxides of nitrogen and sulphur, carbon monoxide, non-methane hydrocarbons, particulate 

matter, carbon dioxide and methane.  Using a quantitative model, a comparison was made of a 

CHP SOFC-gas turbine hybrid system with an equivalent conventional heat/power gas engine.  

The results from the model showed complete elimination of particulate matter emissions, and 

improvements of 98% and 95% for nitrogen oxides and carbon monoxide respectively.  

Emissions of sulphur oxides and non-methane hydrocarbons were reduced by around 37% and 

emissions of methane by 31%.  Overall carbon dioxide emissions were improved by 28%.  

Other studies, including those by Pehnt and Ramesohl (2003), Baratto and Diwekar (2005) and 

Pehnt (2008) confirm the environmental benefits of power generation by SOFC technology 

across a range of applications. 

Table 3.2:  Comparison of alternative power generation technologies  

(EG&G Technical Services Inc., 2004) 

Technology type Generating capacity Estimated efficiency 
(%) 

Reciprocating engine 50 kW – 6 MW 33 – 37 

Micro turbine 10 kW – 300 kW 20 – 30 

Phosphoric acid fuel cell 50 kW – 1 MW 40 

Solid oxide fuel cell 5 kW – 3 MW 45 – 65 

PEM fuel cell < 1 kW – 1 MW 34 – 36 

Photovoltaic 1 kW – 1 MW NA 

Wind turbine 150 kW – 500 kW NA 

Hybrid renewable < 1 kW – 1 MW 40 – 50 
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Fuel cells therefore do not present a complete solution to the future of energy supply since 

they are still constrained by the requirement for fuel.  They do, however, present a means of 

utilising fossil fuels more efficiently and cleanly than current technologies and could contribute 

to a renewable energy network based on alternative hydrogen-rich fuels. 

3.3.6 Environmental performance across the SOFC product life cycle 

A thorough investigation of the ecological aspects of fuel cells must extend beyond fuel 

utilisation efficiencies and emissions during the use (electricity generation) phase of the 

technology (Pehnt, 2001).  For a technology in the very early stages of transition from 

laboratory to marketplace, the disillusionment of shareholders, funding bodies and potential 

customers poses a major risk to successful commercialisation. Figure 3.6 shows the life cycle of 

a SOFC system, broken down into seven individual phases, each of which has an associated 

environmental impact.  Investigations into the wider environmental impacts of fuel cell 

technology have been previously conducted and are reviewed in the following section. 

3.3.6.1 Life cycle studies of SOFC technology 

Life cycle studies of SOFC technology, with a specific focus on the environmental impacts 

across the product life cycle, are wide ranging in their goal and scope. Some studies have 

focussed on particular aspects such as manufacturing processes (Hart et al., 1999), while 

others have attempted to conduct complete life cycle assessments with the aim of comparing 

different fuel cell designs (Karakoussis et al., 2001), or comparing fuel cells with conventional 

1. Extraction & production 
of materials 

Materials 

Figure 3.6:  Life-cycle phases for a SOFC system (adapted from Karakoussis et al., 2001) 
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power generation technologies (Seip et al., 1991;  Raugei et al., 2005).   Another area of 

interest has been concerned with the life cycle impacts associated with various alternative fuel 

supplies (Pehnt, 2000; Riva et al., 2006).  Table 3.3 provides an overview of this area of the 

literature. 

Table 3.3: Summary of previous studies investigating the life cycle environmental impacts of SOFC technology 

Reference Goal Scope 

Siep et al., 1991 Comparison of SOFC power plant with 
conventional coal and gas power 
plants. 

Operation phase, including 
replacement of SOFC stacks. 

Zapp, 1996 Comparison of SOFC power plant with 
10 MW gas turbine. 

Preliminary study. 

Hart et al., 1999 Comparison of alternative 
manufacturing processes for SOFC 
production. 

Manufacturing of SOFC components. 

Karakoussis et al., 2000 Baseline study of SOFC manufacture, 
and associated emissions and 
environmental impacts. 

Manufacture and end-of-life phases of 
the SOFC system. 

Pehnt, 2000 Comparison of various stationary 
power generation technologies. 

Manufacture and operation of SOFC 
system. 

Karakoussis et al., 2001 Comparison of tubular and planar SOFC 
stack designs. 

Manufacturing of SOFC system. 

Pehnt, 2003a and 2003b Comparison of fuel cells with 
alternative power generation 
technology for transport and stationary 
applications. 

Complete product life cycle, including 
manufacturing, operation and end-of-
life. 

Pehnt and Ramesohl, 2003 Extensive report on various barriers and opportunities regarding fuel cell 
utilisation, including LCA. 

Barrato and Diwekar, 2005 Comparison of SOFC-based APU with 
diesel engine in automotive 
application. 

Manufacturing and operation SOFC-
based APU. 

Barrato et al., 2005 Baseline LCA of SOFC-based AUP in 
automotive application. 

Manufacturing and operation SOFC-
based APU. 

Wincewicz and Cooper, 2005 Taxonomy of material and 
manufacturing alternative for SOFC 
stack, for future LCA studies. 

Materials and manufacturing of SOFC 
stack. 

Osman and Reis, 2007 Comparison of SOFC with other CHP 
systems for commercial buildings. 

Operation of SOFC CHP system. 

Pehnt, 2008 Comparison of various micro-
generation technologies, including 
SOFC. 

Manufacture and operation of SOFC 
system. 

Strazza et al., 2010 Comparison of SOFC-based APU with 
diesel engine on board a ship. 

Manufacture and operation of SOFC-
based APU, including production of 
various fuel types. 
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By examining the studies presented in Table 3.3, it is clear that the majority of research in this 

area has been directed towards the manufacture and operation of various SOFC products.  This 

would be expected, given the stage of the technology’s development: the conclusions from 

these studies provide justification for the adoption of SOFC power generation products, in 

place of more conventional technologies.   

Hart et al. (1999) assessed six fabrication routes with applications on SOFC manufacture.  The 

routes were assessed by comparing the inputs of materials and energy required to fabricate a 

specified area of SOFC electrolyte.  The work included four wet routes used in traditional 

ceramics processing and most commonly applied to planar SOFC stacks.  Gas-phase processes 

are required for the fabrication of tubular stacks, where the substrate is a curved surface.  

These gas-phase routes were found to have the potential for higher environmental burden and 

one of them, electrochemical vapour deposition, was reported as having poor materials 

utilisation.  However, the environmental impacts of manufacture were shown to be cancelled 

out within only three days of operation by the benefits in use when compared with 

conventional technologies. 

In a more extensive study, Karakoussis et al. (2001) carried out life cycle inventory analysis to 

compare the environmental differences between the manufacture of tubular and planar SOFC 

stacks.  This work took into account the energy inputs for materials production, as well as 

those required for the manufacturing processes themselves.  The balance of plant was 

included in the assessment.  Karakoussis et al. (2001) showed that the manufacturing phase 

gives rise to a significant proportion of particulate and carbon monoxide emissions when 

compared to the fuel cells in use.  Emissions of sulphur oxides from the manufacture phase 

were also significant.  A breakdown of the inventory analysis showed that the contribution 

from the production of materials was very large when compared with the energy and 

emissions required for the actual manufacturing process routes.  This finding prompted the 

authors to comment that the recycling of materials, both in-house and post-consumer, would 

potentially play an important role in reducing these impacts.  

Wincewicz and Cooper (2005) have published a detailed review of manufacturing processes 

and materials used in SOFC technology, as the initial part of a longer term project to carry out 

full environmental life -cycle assessment. 
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3.3.6.2 End-of-life considerations in previous life cycle studies of SOFC technology 

As indicated in Chapter 2, previous researchers have reported a lack of data regarding the end-

of-life management of SOFC products, and as such have in general excluded this phase of the 

product life cycle from the scope of the study.   

In their research, Seip et al. (1991) include calculations for the replacement of the SOFC stack 

every three years.  The use of this conservative estimate for the lifetime of the SOFC stack in 

commercial products predicts the generation of 16.6 tonnes of end-of-life SOFC stack per year, 

based on a total of 200 MW of generating capacity.  However, the authors dismiss the 

significance of this waste stream with the assumption that, “The cell material in the SOFC case 

is mostly ceramics, which is inert and should give no environmental problem”.  This assessment 

of the material composition of the SOFC stack would appear to be over-simplified, ignoring the 

presence of materials with hazard ratings under EU waste legislation, such as nickel.  In 

addition, the development of environmental legislation since the latter part of the twentieth 

century places increasing pressure on manufacturers to give more consideration to the end-of-

life management of products. 

Although Zapp’s study (1996) provides only some preliminary thoughts on the environmental 

impacts of SOFCs across their life cycle, the attention given to the end-of-life phase is more 

insightful than in many more detailed life cycle studies.  Zapp identifies particular challenges 

associated with the dismantling of end-of-life stack, with respect to waste prevention and 

reuse of components.  These issues include the connection of individual cells in series, 

whereby the failure of one component results in the failure of the complete stack assembly.  

This, combined with the tendency of ceramic components to crack under stress, is identified as 

being detrimental with regard to opportunities for disassembly and repair of prematurely 

failed components.  In addition, the highly integrated nature of the fuel cell components is 

identified as being problematic for the separation and recovery of individual materials. 

Karakoussis et al. (2001) include a qualitative discussion on the environmental impacts of the 

end-of-life phase in their life cycle comparison of tubular and planar SOFC stack designs.  The 

primary focus of their work is on the manufacturing processes required for the production of 

these different design concepts and in their study they assume that none of the production 

waste is recycled.  While in the conclusions to the research the authors acknowledge that the 

recycling of production waste could reduce the materials burden of the manufacturing phase, 

they also identify the importance of managing the end-of-life SOFC stack in a responsible 

manner.  Specifically, they envisage a scenario where design for disassembly is applied to SOFC 
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stack development, in order to facilitate the recovery of some reusable components, with 

other materials being recycled using chemical or other metallurgical treatments.  Interestingly, 

the authors identify the development of the Extended Producer Responsibility concept, and 

associated legislation (reviewed in Chapter 4 of the thesis) as an incentive for SOFC 

manufacturers to consider end-of-life options for the stack assemblies.  A more extensive 

discussion on the end-of-life management of planar and tubular SOFC concepts is reported in 

Karakoussis et al. (2000) with this phase of the life cycle being identified as providing an 

opportunity for the reduction of environmental burdens associated with the SOFC material 

production.  This publication emphasises the need for further research in this area. 

Pehnt has published several articles concerned with the life cycle assessment of fuel cells, with 

his interest focused on PEMFCs and SOFCs for both stationary and transportation applications.  

In his studies on PEMFCs, which rely on the use of platinum group metals, Pehnt (2001) 

considers various recycling scenarios, based on closed-loop recovery of precious metals in a 

model similar to that proven in the autocatalyst industry. In this study recycling is shown to 

reduce the environmental impacts associated with these materials by a factor of up to 100 (in 

the case of SO2 emissions).  Although Pehnt cites the existence of adequate recycling 

processes, following development by major developers of PEMFC technology, there are many 

known problems associated with the reprocessing of end-of-life PEMFCs, arising from the 

other materials present in the fuel cell assemblies (Handley et al., 2002; Grot et al., 2005a; 

Grot et al., 2005b).  These issues are not considered in Pehnt’s LCA work (Pehnt, 2001). 

In his LCA studies concerning SOFC technology, Pehnt generally avoids any quantitative 

inclusion of the end-of-life phase (Pehnt, 2000, 2003a, 2003b, 2008; Pehnt and Rahmesol, 

2003). In a more detailed account of his work in this area (Pehnt, 2003c) a simple recycling 

scenario is mentioned.  This scenario is envisaged for a planar SOFC stack design where the cell 

components are supported on a chromium-rich steel bipolar plate. Pehnt assumes a 90% 

recycling rate for this heavy metallic component, which would most likely be recycled through 

the existing value chain for scrap metal.  However, this simplistic assumption does not address 

the wider issues surrounding the end-of-life management of the SOFC stack, nor the recycling 

of the other stack components.  In addition, many SOFC stack concepts do not contain these 

heavy (and easily recyclable) metallic components, and as such the recycling scenario 

presented by Pehnt (2003c) has limited validity. 
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Baratto and Diwekar (2005) do not consider the end-of-life phase of the SOFC life cycle, based 

on the absence of available data.  Similarly Osman and Ries (2007) and Strazza et al. (2010) 

exclude the end-of-life phase from the scope of their research. 

3.4 Summary 

The review of SOFC technology presented in this chapter provides important background to 

the research.  The potential significance of SOFCs in a future energy scenario has been 

identified, providing a view of the volume of market uptake and consequential volumes of 

end-of-life units.  By examining some of the products being developed for commercial 

application, some of the challenges of successful implementation of the technology have been 

identified.  Finally, by reviewing the literature reporting on life cycle assessment studies of the 

technology it is apparent that the methodology has been applied in various studies, but that in 

each case data relevant to the end-of-life management of the technology is missing and 

therefore warrants further investigation. 
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CHAPTER 4 A REVIEW OF END-OF-LIFE MANAGEMENT 

4.1 Introduction 

This chapter presents a review of the literature related to end-of-life management.  It begins 

by identifying the legislative context in which end-of-life management must be approached 

with a specific focus on the development of concepts such as Extended Producer Responsibility 

and Integrated Product Policy.  The review then extends to the academic literature, exploring 

theoretical and practical approaches to end-of-life management, including environmental and 

economic considerations.  Finally, methods for evaluating end-of-life management scenarios 

are reviewed, and their benefits and shortcomings discussed. 

4.2 End-of-life management 

End-of-life management is concerned with the management of products, after they have 

fulfilled their designated task or function.  Products may be classified as having reached the 

end-of-life phase when they are worn out or broken; no longer useful; obsolete; no longer 

cost-effective to use; no longer compliant with legislative requirements and standards; or 

simply no longer wanted (Ashby, 2009).  The need for end-of-life management of products has 

become increasingly significant with the rise in consumerism observed throughout the 

twentieth century, as illustrated in Figure 4.1 (Sheehan and Spiegelman, 2005).   

Although end-of-life management is closely related to waste management, and is subject to 

traditional legislation controlling the handling, processing and disposal of waste, it has, in 

Figure 4.1: Comparison of the composition of US municipal waste in 1906 and 2001  

(Sheehan and Spiegelman, 2005) 
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fullness, emerged from the development of concepts such as Industrial Ecology (Graedel and 

Allenby, 1995) and  Sustainable Product Design (Maxwell and van der Vorst, 2003).  As such, 

the concept of end-of-life management is strategically important within the context of the 

complete product life cycle: the material and energy resources consumed during the 

extraction of raw materials and manufacture of a product can eventually be recovered or lost, 

depending on end-of-life management decisions.  However, the opportunities available for 

resource recovery at end-of-life are often limited by product design (Ishii et al., 1999; Harper 

and Graedel, 2004; Wright et al., 2005; Pigosso et al., 2010).  The benefits of incorporating 

end-of-life management considerations in the very early stages of the design process are 

captured in the following quote from Harper and Graedel (2004): 

“If the designer does not consider what will happen at the end of life of his or her 

product, the product can be so complicated, labor-intensive, or dangerous to 

disassemble and reuse that it will automatically be discarded. Conversely, if it is 

designed for recycling and reuse, the linear approach to materials use in products 

will likely be circumvented.”  

As awareness has grown regarding the potential of effective end-of-life management to 

contribute to goals such as resource efficiency and reduction in waste going to landfill, various 

policy principles and instruments have been developed to support end-of-life management 

considerations.  These are reviewed in Section 4.3 below, with particular attention given to 

policies developed in Europe and the UK, North America and Japan.  In order to support the 

implementation of end-of-life management practices, it is necessary to be able to justify them, 

based on environmental benefits and economic viability.   The later sections of the chapter 

examine various evaluation methodologies, and review their application to the development 

of effective end-of-life management solutions. 

4.3 Policy principles and instruments supporting end-of-life management 

Current environmental policies, in which the concept of end-of-life management finds its 

place, are the result of several decades of progress in the understanding of human impact on 

the environment.  The origins of modern environmental policy are generally considered to lie 

in the  First International Conference on the Human Environment, held in Stockholm in 1972 

(United Nations Environment Programme, 1972).  This landmark event catalysed global efforts 

to address, in a unified manner, the increasingly apparent detrimental impact of human 

activities on the environment.  Included in these efforts was the World Commission on 

Environment and Development which, in 1987, led to the introduction of the phrase 
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“sustainable development”.  Although the interpretation of this phrase is diverse, and often 

strays from the original definition (Hicks, 2006), the concept of “…development that meets the 

needs of the present without compromising the ability of future generations to meet their 

own…” (Brundtland, 1987), has become a dominant term in current environmental policy. 

Tukker (2006) describes a shift in the focus of environmental policy over recent decades  

(Table 4.1).   Early policies in the 1960s and 1970s were reactionary, developed in an ad-hoc 

manner in response to high-profile environmental crises.  The 1980s saw a focusing of policy 

aims to support a reduction in the frequency of the occurrence of such events by targeting 

point-sources in order to minimise emissions and waste generation from obvious polluters.  

The concept of “cleaner production” was introduced.  The focus of environmental policy in the 

1990s shifted again, introducing a product-centred approach as a means of achieving 

environmental sustainability in a consumer-based society.   

Tukker identifies more recent movement towards a more radical approach to environmental 

sustainability, embodied in the re-thinking of conventional production-consumption scenarios 

and behaviours.  However, for the time-being, the attention of policy makers and legislators 

appears to be directed towards the challenge of fully implementing a product-based approach 

to environmental sustainability.   

Various policy principles have been adopted which support the reduction of the environmental 

impact of products by promoting specific consideration of end-of-life management.  At the 

most basic level, the desire to redirect waste from disposal in landfill sites promotes 

consideration of alternative waste management solutions, including reuse and recycling of 

products.  More strategically, transferring the responsibility for the end-of-life management of 

goods from the consumer or local government to the manufacturer has the aim of promoting 

proactive behaviours, such as “design for disassembly” (e.g. Jovane et al., 1992; Harjula et al., 

1996; Ryan et al., 2011), “design for remanufacture” (e.g. Mabee et al., 1999; Kerr and Ryan, 

2000; Ijomah et al., 2007) and/or “design for recycling” (e.g. Krewit et al., 1995; Knight and 

Table 4.1: Historical trend in environmental policy, leading to the development of a proactive 

product-focused policy approach (Tukker, 2006) 

 
Decade Focus of environmental policy Approach 

1960s and 1970s Responding to environmental crises Reactive 
 

 
Proactive 

1980s Processes – cleaner production, minimisation of waste and 
emissions from point sources 

1990s Products – environmental product policy 
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Sodhi, 2000; Masanet and Horvath, 2006).  Finally, the most holistic policy principles identify 

the benefits of life cycle thinking with regard to product design, such that materials selection, 

manufacturing, use and disposal are all considered at the very earliest stages of the design 

process.  

4.3.1 Waste Reduction  

The reduction of waste generation and disposal underlies all policy principles promoting end-

of-life management of products, and is an important feature of many environmental strategies 

in the developed world.  

In Europe, the Thematic Strategy on Waste, which forms part of the Sixth Environmental 

Action Programme, states that:   

“The long-term goal is for the EU to become a recycling society that seeks to avoid 

waste and uses waste as a resource.” (European Commission, 2005) 

In order to achieve this goal, the approach to waste management adopted by the European 

Union encompasses the following principles (European Commission, 2011c): 

• Waste prevention, incorporating reduction in volume of waste produced and the level 

of hazard associated with that waste. 

• Recycling and reuse, in order to recover material and energy resources and divert 

waste from disposal in landfill. 

• Improving final disposal and monitoring, by designating landfill as a “last resort” in 

waste management, and by placing tight controls on both landfill and incineration in 

order to minimise pollution. 

In 2008 a revised Waste Framework Directive was implemented (European Parliament and 

Council, 2008) which requires the adoption of the hierarchy for waste management (Figure 

4.2) by Member States in their national waste management policies.  The hierarchy identifies 

waste prevention, or reduction, as the priority action, with disposal being identified as the 

least favourable option, to be adopted only as a last resort.  

Specifically, all Member States are required by the end of the year 2013 to have established 

national waste prevention programmes.  Examples of non-legislative waste prevention 

initiatives suggested by the European Union for application in national programmes extend 

from the promotion of eco-design activities, to the promotion of environmental management 

systems and eco-labelling schemes (European Council and Parliament, 2008).     
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In Europe, the legislative framework supports the implementation of the waste management 

hierarchy through a number of additional Directives.  Various Directives have been developed 

reflecting the policy principle of Extended Producer Responsibility (EPR), which are discussed 

further in Section 4.3.2.  These promote reuse, recycling and recovery activities, with reference 

to specific product streams.  Overall, the Waste Framework Directive sets targets for recycling 

of household and similar waste at 50% and recycling of construction waste at 70% for the year 

2020 (European Commission, 2008). 

As well as policy instruments supporting the adoption of reuse, recycling and recovery, other 

legislative and non-legislative measures act directly to divert waste from landfill.  The Landfill 

Directive, while primarily concerned with the operation of landfill sites and the minimisation of 

pollution arising from them, also bans specific waste streams from being accepted for disposal.  

More generally, the Directive dictates that all wastes accepted by landfill sites must have been 

pre-treated in order to reduce their hazardous properties and/or volume.  Separate licensing 

requirements are established for landfill sites accepting wastes categorised as inert, non-

hazardous and hazardous (European Council, 1999).  

Waste reduction appears to form a part of waste policy in most of the developed world, with 

concepts similar to the European waste management hierarchy used to support waste 

reduction efforts. In Europe, the role of legislation in the implementation of waste reduction 

policies is significant: a similar situation is observed in Japan, in contrast to a reliance on 

voluntary and market-based instruments employed in the United States of America. 

Japan’s approach to environmental issues is significant, especially given the influence that it 

has over developing economies in Asia (Ito, 2011).  In Japan, the waste management policy is 

WWaassttee  pprreevveennttiioonn  

RReeuussee  

RReeccyycclliinngg  oorr  ccoommppoossttiinngg  

EEnneerrggyy  rreeccoovveerryy  

DDiissppoossaall  

Figure 4.2: Waste management hierarchy 
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based on the “3R” policy, where the three Rs stand for “Reduce, Reuse and Recycle”.  This 

order of preference, for the development of sustainable approaches to waste management, 

echoes the European hierarchy for waste management.  In part, the drive to divert waste from 

landfill in Japan is prompted by a lack of land availability.  In 2010 it was predicted that landfill 

capacity for general waste would be exhausted in less than 16 years, and for industrial waste in 

less than 8 years (Ministry of Economy Trade and Industry, 2010).  However, the waste 

reduction policy in Japan is also closely linked with an awareness of material consumption and 

use patterns, illustrated by legislation such as the Basic Law for Establishing a Sound Material-

Cycle Society, established in 2001.  Together with the Basic Environment Law, which came into 

force in 1994, this legislative framework provides quantitative targets for improving resource 

productivity (a measure of material consumption); cyclical use rate (a measure of recycling); 

and final disposal (Terazono, 2009). This framework legislation is supported by a range of more 

focused laws, summarised by the Ministry of Economy, Trade and Industry (2010).  Synergies 

between Japanese and European policies, supporting waste minimisation are identified in 

Figure 4.3.   

The situation in the USA is somewhat different to that in Europe and Japan, in that the 

approach to waste management policy varies considerably between individual states.  At a 

federal level, waste policy is established in the Resource Conservation and Recovery Act, which 

has as its principal goals (United States Environmental Protection Agency, 2008): 

“ To protect human health and the environment from the potential hazards of 

waste disposal; To conserve energy and natural resources; To reduce the amount 

of waste generated; To ensure that wastes are managed in an environmentally 

sound manner.” 

While these aims follow similar principles to the waste policies identified in Europe and Japan, 

the USA appears to have focused more on the development of voluntary instruments (such as 

industrial partnerships, and voluntary schemes) to support these aims, rather than on the 

development of a targeted legislative framework (United States Environmental Protection 

Agency, 2010).   Improvements in recycling rates for municipal waste were observed in the 

1990s, but since then further improvements have been counterbalanced by increasing 

consumption and associated waste generation (Sheehan and Spiegelman, 2005). 

In addition to reducing the volume of waste, policy in much of the developed world is also 

concerned with reduction of the hazards arising as a result of waste treatment operations.  In 

Europe, the Hazardous Waste Directive (European Council, 1991), established rules for the 
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identification and classification of hazardous waste streams, thereby supporting segregation 

and separate treatment of such wastes.  In addition, and to prevent geographical displacement 

of environmental hazards associated with wastes, regulations regarding the international 

shipment of wastes (European Council, 1993) are in place.  These regulations implement the 

conditions of the Basel Convention, which arose in response to developed countries seeking to 

avoid increasing domestic costs associated with the treatment of hazardous wastes by 

exporting wastes to developing countries and Eastern Europe (Secretariat of the Basel 

Convention, 2011).  The Convention has the aims of: 

• Establishing a framework for controlling the transboundary shipment of waste 

• Developing the criteria for environmentally sound management of hazardous 

waste, thus promoting waste minimization  

Framework legislation 

Waste Framework 
Directive 

Fundamental Law for 
Establishing a Sound 

Material-Cycle Society 

Waste 
Shipment 

Regulations 

Landfill 
Directive 

Waste 
Incineration 

Directive 

Waste 
management 

Law 

Law for Promotion of 
Effective Utilisation 

of Resources 

Containers and Packaging Recycling Law 

Food Recycling Law 

Construction Material Recycling Law 

End-of-life Vehicles Recycling Law 

Batteries and Accumulators Directive 

Directive on Packaging and Packaging Waste 

End-of-life Vehicles Directive 

Waste Electrical and Electronic Equipment Directive 

Restriction of Hazardous Substances Directive 

Directive on Mining Waste Directive 

Waste management legislation 

Product-specific waste legislation 

Home Appliances Recycling Law 

Figure 4.3: Illustration of synergies between the structure of EU and Japanese waste legislation 

(adapted from Ministry of Economy, Trade and Industry, 2010 and European Commission, 2003a). 
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The basic principle established by the Convention is that hazardous waste should not be 

exported from developed countries (including members of the OECD, the European Union and 

Lichtenstein) to developing countries.  Some concessions are in place for wastes destined for 

recycling and recovery operations, but only where justification of the shipment can be made 

based on processing availability in the countries of export and import (Secretariat of the Basel 

Convention, 2011).  Under European regulations (European Council, 1993), all shipments of 

hazardous waste to non-OECD countries, are prohibited. 

4.3.2 Extended Producer Responsibility 

In Figure 4.1, the contribution of products to the overall composition of municipal waste in the 

USA is shown to have become dominant in the last century (Sheehan and Spiegelman, 2005).   

This increase in product-based waste is symptomatic of the increase in consumerism observed 

across the developed world.   In Europe, it has been recognised that as well as seeking to 

achieve the aim of becoming a “recycling society” by discouraging disposal of waste in landfill 

sites (European Commission, 2005) it is also necessary to adopt a more proactive approach to 

reduce the generation and environmental impact of discarded products.  One such approach is 

the implementation of policy measures and legislation incorporating the concept of Extended 

Producer Responsibility (EPR), defined by Lindqhvist (2000): 

“Extended Producer Responsibility...is a policy principle to promote total life 

cycle environmental improvements of product systems by extending the 

responsibilities of the manufacturer of the product to various parts of the entire 

life cycle of the product, and especially to the take-back, recycling and final 

disposal of the product.”  

In contrast, Thierry et al. (1995) sum up the conventional attitude of manufacturers towards 

end-of-life products:   

“The traditional approach of many manufacturers towards used products has 

been to ignore them.  Manufacturers typically did not feel responsible for what 

happened with their products after customer use.  Most products were 

designed in such a way that while materials, assembly and distribution costs 

were minimized, the repair, reuse and disposal requirements were not taken 

into account.  Manufacturers generally believed that the costs of incorporating 

these requirements would outweigh the benefits.  Most of their customers were 

not prepared to pay an additional fee for a “green” product.” 



 CHAPTER 4 

39 

EPR therefore has been developed within environmental policy with the aim of incentivising 

product manufacturers to take proactive measures during the design process which will 

facilitate the end-of-life management of their products in such a way as to facilitate resource 

efficient practices, such as recycling and recovery.  The concept has been embodied in a 

number of legislative and other instruments, in the EU and in other geographical regions. 

The first legislation incorporating an EPR approach was adopted with respect to packaging 

waste (European Parliament and Council, 1994), and more recently is illustrated by the End of 

Life Vehicles (ELV) Directive (European Parliament and Council, 2000) and the Waste Electrical 

and Electronic Equipment Directive (European Parliament and Council, 2003a).  An overview of 

the requirements of these Directives is provided in Table 4.2.   

On its implementation in 2000, the ELV Directive established an initial reuse/recovery target of 

85% by weight for all new vehicles manufactured from 1st January 2006, set to rise to 95% by 

weight by 2015.  These recovery rates include the reuse of components, the recycling of 

materials, and the recovery of energy by incineration or similar waste treatment processes.  

Separate recycling rates are specified, to ensure that energy recovery can only account for a 

small proportion of the total recovery rate.    In addition to these targets, the ELV Directive also 

incorporates requirements to reduce the use of hazardous materials in vehicle manufacture; to 

increase the use of recycled materials; and to improve documentation to facilitate 

identification of recyclable materials and components at end-of-life (European Parliament and 

Council, 2000).  Given that the responsibility for compliance falls with vehicle manufacturers, it 

is assumed that the legislation will prompt innovative approaches to re-design and will 

encourage a reduction in the hazardous materials used, an increase in recyclable materials and 

more emphasis on design for disassembly (Crotty and Smith, 2006).   

Similarly the implementation of the WEEE Directive has set challenging recycling and recovery 

targets for manufacturers of electrical and electronic equipment, and the anticipated results of 

the legislation are based on two underlying assumptions.  The first assumption is that 

producers are provided with an economic incentive to revise designs in order to eliminate 

aspects which would prohibit reuse, recycling and recovery at the end-of-life phase.  The 

second assumption is that an increase in reuse, recovery and recycling of materials from this 

waste stream will have a positive environmental effect (Mayer et al., 2005).   

The case study conducted by Mayer et al. tests these assumptions, taking the recycling of 

printers in the UK as an example.  The conclusions from the study, which uses life cycle 

assessment and life cycle costing methodologies to compare four different recycling scenarios, 
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suggest that the outcomes of implementing the WEEE Directive may not be as positive as 

anticipated.  The primary conclusion from the study is that the WEEE Directive does not 

necessarily provide an economic incentive to producers to redesign products to minimise 

environmental impact, since the recycling costs will not necessarily decrease as a result.  This 

finding is in agreement with the conclusions of Gottberg et al. (2006) who report on an initial 

exploration of the link between eco-design activities and EPR legislation in the lighting 

industry.   

The findings by Mayer et al. (2005) in conjunction with further criticism of the WEEE Directive 

as an effective means of implementing EPR concepts (Castell et al., 2004; Clift and France, 

2006) suggest that the although this new style of legislation might divert waste from landfill 

Table 4.2:  Summary of recovery and recycling rate targets for different end-of-life  
products in the European Union. 

Waste types Recovery rate Recycling rate Legislative measure 

Large household appliances 
Automatic dispensers 

80% 75% 

Directive 2002/96/EC on  
waste electrical and electronic 
equipment (WEEE) 

IT and telecommunications 
equipment 

Consumer equipment 

75% 65% 

Small household appliances 

Lighting equipment 

Electrical and electronic tools  

Toys, leisure and sports equipment 

Monitoring and control instruments 

70% 50% 

Gas discharge lamps - 80% 

Vehicles 95% 85% 
Directive 2000/53/EC  
on end-of life vehicles  
(2015 targets) 

Glass, paper and board packaging 

60% 

60% 

Directive 94/62/EC on 
packaging and packaging 
waste (2008 targets) 

Metal packaging 50% 

Plastic packaging 22.5% 

Wood packaging 15% 

*including component, material and substance reuse and recycling and energy recovery 
** including component, material and substance reuse and recycling  
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sites, it will not in itself guarantee reduced environmental impact from end-of-life waste 

streams.  Similarly, Gerrard and Kandlikar (2007) report mixed evidence regarding the 

effectiveness of the ELV Directive.  While some positive trends among vehicle manufacturers 

have been observed, such as a reduction in the use of toxic materials and an increase in the 

use of recyclable materials, their study concludes that end-of-life issues have not become a 

priority in design. 

Outside of Europe, the ELV Directive has been mirrored by similar legislation in Japan, Taiwan 

and South Korea (Gerrard and Kandlikar, 2007).  Similarly EPR legislation regarding electrical 

appliances has been established in the form of the Home Appliances Recycling Law in Japan 

(Ministry of Economy, Trade and Industry, 2010), with Taiwan, South Korea and, most recently, 

China following suit (Chong et al., 2009).   

The USA has been slow to follow the trend of EPR-based legislation, with the term EPR itself 

being changed to stand for Extended Product Responsibility (Davis et al., 1997) and then 

superseded with the term Product Stewardship (Sheehan and Spiegelman, 2005).  These terms 

move emphasis from the producer towards a shared responsibility across all stakeholders 

involved in the product life cycle (Davis et al., 1997; Chong et al., 2009).  Implementation of 

these policy concepts in the USA has not, in general, been by legislative means.  Rather, 

voluntary efforts involving a list of stakeholders (including federal and State environment 

agencies, producers, recyclers, retailers, research institutes and non-governmental 

organisations) have been the predominant approach to implementing EPR principles 

(Renckens, 2008).  An exception to this is in the State of California, where legislation governing 

the treatment of electrical and electronic waste was introduced in 2003.  Renckens (2008) 

suggests that while voluntary efforts have had some positive effects in terms of raising 

awareness and prompting some increase in product take-back schemes and recycling efforts, 

participation by leading manufacturers of electrical and electronic products has been very 

varied.  As a result, the environmental benefits of such efforts are questionable, and Renckens 

(2008) is of the opinion that in time federal legislation will be passed to harmonise practice. 

4.3.3 Integrated Product Policy 

Whereas the concept of EPR has become synonymous in Europe and Asia with the end-of-life 

management of products, Integrated Product Policy (IPP) promotes a more holistic approach 

to managing the environmental impacts of products.  A Green Paper on IPP was first adopted 

by the European Commission in 2001 (European Commission, 2001), and further developed in 

a Communication in 2003 (European Commission, 2003b).  This Communication summarises 
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the intention of the policy, to “…ensure that environmental impacts throughout the life-cycle 

are addressed in an integrated way – and so are not just shifted from one part of the life-cycle 

to another…”.  Thus, IPP has at its heart the concept of “life-cycle thinking”. 

Since the introduction of IPP in Europe in 2001, various implementing measures have been put 

in place.  EPR legislation could be considered to fall under the wider IPP policy principle.  

Complementary to the Directives described in Section 4.3.2 are legislative measures concerned 

with the selection of materials, and the restriction of the use of hazardous materials.  Of 

particular significance is the Restriction of Hazardous Substances (RoHS) Directive (European 

Parliament and Council, 2003b) which entered into force alongside the WEEE Directive 

(European Parliament and Council, 2003a).  This Directive has specifically restricted the use of 

lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls and 

polybrominated biphenyl ethers in products placed on the market since 2006.  Similar 

requirements have been adopted in other legislatures, most notably China (Design Chain 

Associates, 2010). Whereas the RoHS Directive in Europe targets hazardous material 

commonly used in electrical and electronic equipment, the ELV Directive incorporates similar 

restrictions on the use of certain hazardous materials in vehicles (European Parliament and 

Council, 2000).  The removal of hazardous materials from products not only reduces exposure 

to substances during the manufacturing process, but also results in a decrease in hazardous 

waste arising from end-of-life products.  In their review of the effectiveness of legislation in 

prompting eco-design activities, Yu et al. (2007) note that the RoHS Directive appears to have 

had a much greater influence on product design than the WEEE Directive.  Whereas the 

adoption of eco-design activities to support compliance with recycling targets established by 

the WEEE and ELV Directives requires the correct economic climate to be in place, the 

requirements of the RoHS Directive fall directly and inescapably on product designers (Yu et 

al., 2007). 

The first European Directive to fully encompass the fundamental principles of IPP is the 

Directive establishing a framework for setting requirements for the Ecodesign of Energy using 

Products (European Parliament and Council, 2005).  This really is simply a framework Directive 

which targets high volume consumer goods; however, a life cycle approach to reducing the 

environmental impact is captured.  Within the Directive the end-of-life management of 

products plays a significant role in the overall life cycle management.  Annex I lists a number of 

measures by which the environmental impact of products might be assessed.  Many of these 

are of particular relevance to the end-of-life phase, including: 

• Consumption of energy and other resources across the product life cycle 
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• Use of hazardous materials 

• Ease of reuse/recycling, including the feasibility of separating hazardous substances 

and/or materials of high recyclable value 

• Product life expectancy, including the ease of maintenance and repair 

• Levels of waste and hazardous waste generated 

• Emissions to air, water and soil 

The Directive has been updated (European Parliament and Council, 2009) since its initial 

adoption and regulations targeting specific product groups have been developed (European 

Commission, 2011d). 

The intention of IPP was that it would be implemented by a broad range of voluntary and 

compulsory measures.  Therefore in addition to the legislative measures described above, the 

adoption of eco-labelling schemes; environmental purchasing policies for public bodies; taxes 

and subsidies and environmental management systems, all support the implementation of IPP 

(European Commission, 2010a).  

The real impact of IPP on the improvement of the environmental impact of products is yet to 

be seen, and the effectiveness of the policy is a matter of some debate (Rubik, 2001; Nuij, 

2001).  It is apparent that policy and legislation are not in themselves the solution to reducing 

the environmental impact of products, and therefore it is reassuring that other stimuli prompt 

eco-design activities.  Table 4.3 presents an overview of the results obtained by van Hemel and 

Cramer (2002) from a survey of 77 SMEs in the Netherlands.   

The survey showed that although government regulation played an important role in 

prompting eco-design activities, other factors – both external and internal – were found to be 

equally influential. 

Table 4.3:  Stimuli to eco-design practices – overview of results from a survey of 77 SMEs in the 

Netherlands (van Hemel and Cramer, 2002) 

 External stimuli Internal stimuli Barriers 

Most frequently 
mentioned 

1 Customer 
demands 

Environmental 
benefit 

Conflict with functional 
requirements 

2 Government 
regulation Cost reduction  No clear environmental 

benefit 

3 Supplier 
developments 

Image 
improvement Commercial disadvantage 
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4.3.4 Legislative requirements for the end-of-life management of SOFC stacks 

Regardless of the effectiveness of environmental legislation on reducing the impact of 

products across their life cycle, compliance with legislation is a fundamental requirement for 

any reputable business.  From the review of policy and legislation reported in Sections 4.3.1 – 

4.3.3 the legislative aspects identified as being directly relevant to the end-of-life management 

of SOFC stacks are:  

• Classification of waste streams as hazardous or non-hazardous 

• Restrictions on trans-boundary shipments of waste 

• Disincentives to dispose of waste to landfill 

• The recent legislative trend promoting EPR through mandatory recycling targets 

• The IPP approach, and associated implementing measures 

Environmental legislation can be viewed as a constraint on an end-of-life scenario, with the 

legislative requirements providing boundaries within which the scenario must operate.  At the 

same time, legislation can be viewed as a motivating force for the development of new and 

improved end-of-life solutions.  

One substance of particular interest with respect to end-of-life management of the SOFC stack 

is nickel oxide, which is commonly used to fabricate the anode component and is classified by 

European legislation as a category 1 carcinogen.  Waste containing nickel oxide in quantities 

equal to or greater than 0.1 wt% is categorised as hazardous (Environment Agency, 2008).  This 

has the potential to influence the end-of-life model by, for example, determining that early 

separation of nickel oxide from the bulk material might result in simplified transport and 

treatment scenarios in subsequent process steps.  It is also interesting that nickel metal has a 

lower hazard classification than nickel oxide, and can be present in waste up to 1 wt% before 

the waste stream is classified as hazardous (Environment Agency, 2008).  During the start-up 

cycle of the SOFC stack, nickel oxide undergoes a reduction reaction to form nickel metal.  This 

reaction is only reversible if the SOFC stack is shut down under oxidising conditions: therefore 

the service history of the SOFC stack may have a significant impact on the legislative 

requirements at end-of-life (Wright et al., 2009). 

Another constraint introduced by waste legislation pertains to the geographical aspect of the 

end-of-life management of SOFC stacks. It is likely that for a company selling to a global market 

the generation of end-of-life wastes will be widely distributed.  If specialised treatment is 

required the waste may need to be shipped to a dedicated plant.  These movements of waste 
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may be restricted under the Basel Convention (Secretariat of the Basel Convention, 2011) or 

other implementing regulations (European Council, 1993). 

Although existing EPR Directives do not apply explicitly to SOFC stacks within stationary 

systems it is necessary to understand this area of legislation for two principle reasons.  Firstly, 

it is highly plausible that this type of legislation will evolve and that at some point the 

stationary SOFC systems will have to meet specified end-of-life targets.  Secondly, it is likely 

that SOFC technology will evolve and become incorporated in a wider range of applications 

which themselves fall within the scope of existing or future legislation.  Already SOFC stacks 

are being considered for applications in auxiliary power units in automobiles (e.g. Baratto et 

al., 2005).  In their study of the impact of the ELV Directive on the end-of-life management of 

PEMFC technology, Handley et al. (2002) state that the Directive “...re-enforces the need to 

recycle and re-use components of the fuel cell stack”.  Failure to anticipate indirect legislative 

requirements could preclude or hamper the utilisation of fuel cell technology as a power 

generation source in other product types. 

4.4 Environmental considerations in end-of-life management 

As with all industrial processes, end-of-life management of products has an associated impact 

on the environment.  The end-of-life process is likely to incorporate an element of collection 

and transportation of products; some type of processing, which may require energy and/or 

material inputs; and potentially disposal of some residual materials.  All of these stages will 

consume resources and release emissions.  Some environmental benefits may also be obtained 

at end-of-life, through the production of recycled materials and the consequent avoidance of 

impacts arising from virgin material production.   

While compliance with environmental legislation should achieve an acceptable level of 

environmental performance, it is likely that two compliant end-of-life management processes 

will differ in their overall environmental impact.  Therefore, in order to select the most 

appropriate end-of-life management solution, it is useful to be able to quantitatively evaluate 

the total environmental impact associated with the end-of-life phase of the product life cycle.  

Life cycle assessment (LCA) is an appropriate tool for conducting such an evaluation. 

4.4.1 Life cycle assessment as a tool for the evaluation of the environmental impacts of 

products and processes 

LCA is an established methodology for evaluating the environmental impacts of products and 

processes across the complete life cycle (Baumann and Tillman, 2004).  One of the earliest 
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examples of an LCA study was commissioned by Coca-Cola to investigate the environmental 

impacts associated with alternative beverage containers (Darney and Nuss, 1971). Early studies 

were concerned primarily with solid waste production and were most commonly applied to 

packaging.  Following the energy crisis of the 1970s, more focus was given to life cycle energy 

consumption.  Finally, by the 1990s a broader range of environmental impacts were being 

considered routinely (Hunt et al., 1996). Since the earliest LCA-types studies,  the methodology 

has been developed and standardised, culminating with the publication of the first series of 

International Standards between 1997 and 2000 (Marsmann, 2000).  In 2006 a revised set of 

International Standards was released, including ISO14040:2006 on the general principles and 

framework behind LCA (ISO, 2006a) and ISO14044:2006 on more specific requirements and 

guidelines for LCA completion (ISO, 2006b). 

LCA methodology is highly dependent on data being available to allow quantification of input 

and output flows for each life cycle stage.  This requirement is one of the principal problems 

facing LCA practitioners.  As such, the framework methodology defined by the International 

Standards Organisation (ISO) provides a degree of flexibility, allowing for individual studies to 

be tailored in order to accommodate shortcomings in data availability and/or to support 

specific research goals (Kluppel, 1998).  Definition of the goal of the LCA is the initial stage in 

the ISO methodology (Figure 4.4), and must be defined in combination with the scope of the 

study and the identification of a functional unit (Guinée et al., 1992).  

 The goal of an LCA study might be to compare alternative products (e.g. Nicoletti et al., 2003; 

Kozac, 2003; Nilsson et al., 2010), design concepts (e.g. Franklin Associates, 2008) or processes 

(e.g. Azapagic, 1999; Ruhland et al., 2000; Burgess and Brennan, 2001), or to develop a 

baseline understanding of the environmental impacts of a product or process.  More recently, 

Inventory analysis Interpretation 

Impact assessment 

Goal and scope 
definition 

Direct applications 
• Product development 

and improvement 
• Strategic planning 
• Public policy making 
• Marketing  
• Other 

Figure 4.4:  LCA methodology, as defined by ISO14040:2006  

(ISO, 2006a) 
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LCA has been used to support declarations regarding the environmental impacts associated 

with products on the market (Doublet and Jungbluth, 2010; Volkswagen AG, 2010; ABB, 2011).  

In terms of the scope of a study, a full LCA examines all life cycle stages from “cradle” 

(extraction of raw materials) to “grave” (final disposal of materials), however, many LCA 

studies are “cradle to gate”, examining the environmental impacts of a product up to the point 

of sale.  Other LCA studies may focus on a specific stage in the life cycle, such as raw material 

production; energy production; manufacture; use; or end-of-life.  

Based on the defined goal and scope, the next stage in the LCA methodology is the completion 

of the inventory analysis (Rebitzer et al., 2004).  This, in simple terms, requires the 

quantification and collation of all input and output flows which cross the system boundary.  

Flows of materials, energy, emissions and wastes are all considered.  The development of a 

comprehensive inventory may be supported by the collection of site-specific data, based on 

measured processes or design parameters.  Alternatively more generic data may be taken 

from a database or other literature source.  Several commercial and open access databases 

have been developed which provide inventories for individual processes such as 

transportation, material production, energy generation, waste disposal), with the specific 

purpose of supporting the completion of LCA studies.  The Ecoinvent database (Ecoinvent 

Centre, 2007) is perhaps one of the most comprehensive commercially available.  Regional 

development of open access databases has been conducted in Europe, resulting in the ELCD 

database (European Commission, 2010), and in individual European countries, as well as in the 

USA (National Renewable Energy Laboratory, 2010) and Japan (Narita et al., 2005).  Various 

sector-specific life cycle inventories have also been developed by industry associations and 

other private and public bodies (e.g. LCA Food, 2007; Mortimer et al., 2010 (National Non-food 

Crops Centre); World Steel Association, 2010; PlasticsEurope, 2011).  A comprehensive 

summary of global life cycle inventory data sources has been compiled by Curran and Notten 

(2006). 

The third step in the LCA methodology requires the input and output flows defined in the 

inventory to be related to specific environmental impacts.  This is achieved through the 

following steps: 

• Classification of inventory data, in terms of identifying the impact categories to which 

they contribute. Some species may contribute to more than one environmental 

impact, whereas others may be essentially environmentally benign. 
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• Application of characterisation coefficients, in order to calculate individual impact 

category indicators.  Characterisation coefficients relate to the extent to which an 

individual substance contributes to a specific impact category. 

These are the two compulsory steps in life cycle impact assessment, as defined by the ISO 

methodology.  Examples of impact categories commonly considered in LCA studies are shown 

in Table 4.3.  Additional optional steps include the normalisation of impact category indicators, 

to allow the application of weighting factors and grouping to obtain a single figure result 

(Pennington et al., 2004).  The process of life cycle impact assessment is shown in Figure 4.5. 

Table 4.3: Examples of environmental impact categories included in the impact assessment stage of LCA  

(developed primarily from information in Ecobalance, 2000) 

Impact category Units Cause  Effect Examples of 
relevant 
inventory species 

ADP Abiotic  
Depletion 
Potential 

kg Sb-
Equiv. 

Consumption of non-
renewable resources 

Depletion of non-
renewable resources. 

All non-
renewable 
resources 

AP Acidification 
Potential 

kg SO2-
Equiv. 

Release of species which 
form acidic solutions. 

Detrimental impacts on 
eco-systems and materials, 
including destruction of 
fresh-water fish 
populations and forests, 
and corrosion of buildings. 

SO2, NOx 

EP Eutrophication 
Potential 

kg 
Phosphate-
Equiv. 

Release of excess quantities 
of nutrient species 
(containing nitrogen and/or 
phosphorous) into the 
environment. 

Detrimental changes in 
flora and fauna 
populations. 

PO4, NOx, NH3 

GWP Global 
Warming 
Potential  
(100 years) 

kg CO2-
Equiv. 

Release of species which 
absorb thermal radiation 
from the sun. 

Increase in the earth’s 
temperature, which has 
been linked to changes in 
weather patterns and eco-
systems.  Melting of the 
polar ice caps is a specific 
result of this impact. 

CO2, CH4, CFCs, 
SF6 

ODP Ozone Layer 
Depletion 
Potential 
(Steady state) 

kg R11-
Equiv. 

Release of gaseous species 
which may rise into the 
stratosphere and acts as 
catalysts for the depletion of 
ozone. 
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 Different methodologies for conducting environmental impact assessment as part of LCA have 

emerged.  The differences in these methodologies lie principally in the scientific assumptions 

underlying the development of characterisation coefficients, as well as in the approach taken 

to the optional additional steps.  Some impact assessment methods are concerned with a 

single issue, such as global warming potential (Intergovernmental Panel on Climate Change, 

2007), or cumulative energy demand (Hischier et al., 2010), while others cover a broad range 

of impact categories.   

Examples of impact assessment methods include the CML (Centre of Environmental Science, 

Leiden University) method (Guinée et al., 2002), EDIP (Environmental Design of Industrial 

Products) (Hauschild and Wenzel, 1998; Hauschild and Potting, 2004) and TRACI (Tool for the 

Reduction and Assessment of Chemical and other environmental Impacts) (Bare et al., 2003).  

Other methods, such as Eco-indicator 99 (Goedkoop and Spriensma, 2000) and ReCiPe 

(Goedkoop et al., 2009) have been specifically developed to produce a single figure result.   

More detailed discussion of selected impact assessment methods in LCA, and the benefits and 

drawbacks of different approaches can be found in Dreyer et al. (2003). 

The final step in the LCA methodology is the interpretation of results.  This step is important 

for ensuring that justifiable conclusions are drawn from an LCA study: the results generated by 

the application of an impact assessment methodology must be considered in line with 
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assumptions and/or simplifications made during the life cycle inventory analysis. 

Various software tools have been developed to support the completion of LCA studies, 

facilitating the collation of inventory data, the application of impact assessment methods and 

the analysis of results.  The most advanced software packages currently in use globally are 

GaBi4 (PE International GmbH, 2007) and SimaPro7 (Pré Consultants, 2006). 

4.4.2 Life cycle assessment as a tool to support end-of-life decision making 

Section 3.3.7 in the previous chapter reviewed published studies reporting the application of 

LCA as a tool to evaluate the environmental impacts of SOFC technology.  It was shown that 

the end-of-life phase of the SOFC product was in most cases excluded from the scope of the 

study (Baratto and Diwekar, 2005; Osman and Reis, 2007; Strazza et al., 2010); considered 

qualitatively (Zapp, 1996; Karakoussis et al., 2000 and 2001); or at best modelled based on 

very simplistic assumptions (Pehnt, 2003c).  As such, the literature does not offer much 

specific guidance regarding the application of LCA as a tool to evaluate the end-of-life 

management of SOFC stacks. 

The absence of data regarding the end-of-life management of SOFC stacks is not unique to this 

product.  Many LCA studies investigating the environmental impacts of products identify this 

phase of the life cycle as being poorly understood.  Of particular interest are several LCA 

studies of photovoltaic cells in which an absence of reliable end-of-life data is reported (Battisti 

and Corrado, 2005; Raugei et al., 2007; Kannan et al., 2006; Azzopardi and Mutale, 2010).  

Statements such as: 

“So far, no proven technology has been developed for large-scale disposal of solar PV 

(photovoltaic) modules.” (Kannan et al., 2006) 

and: 

“... the need for the development of specific recycling strategies for the 

decommissioning of CdTe and CIS PV modules is recognised...” (Raugei et al., 2007) 

 
are reminiscent of the language used by authors of LCA studies of SOFC technology, quoted in 

Chapter 1.  As well as reporting a lack of data, the authors of such LCA studies often emphasise 

the importance of obtaining such data, in order to fully understand the life cycle impacts of the 

technologies and products under review (e.g. Kannan et al., 2006; Zhong et al., 2011).  The 

recognition that the end-of-life phase has potential significance in terms of the life cycle 
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impacts of products which fulfil the same function as SOFC stacks (i.e. the generation of 

electrical power) further supports the research aims and objectives addressed in the thesis.   

It is encouraging to note that knowledge regarding end-of-life management of photovoltaic 

cells has grown in recent years and has been included with some detail in some more recent 

LCA studies of the technology (García-Valverde et al., 2009; Berger et al., 2010; Nishimura et 

al., 2010; Zhong et al., 2011).   

With regard to more mature product types, LCA has been applied more directly to support the 

comparison of alternative end-of-life management routes.  Examples from the literature are 

diverse and include: comparison of nine alternative recovery methods for end-of-life tyres 

(Clauzade et al., 2010); comparison of recycling, incineration and landfill following pre-

treatment, as alternative end-of-life solutions for a car bumper skin (Le Borgne and Feillard, 

2001); identification of the lowest environmental impact recycling process for mobile phone 

networks (Scharnhorst et al., 2005); development of a modified LCA approach to evaluate 

alternative reuse, recycling and remanufacturing options for a domestic fridge (Gehin et al., 

2009).   

4.5 Economic considerations in end-of-life management 

Although the identification and implementation of an end-of-life management solution with 

low environmental impact is important, a truly sustainable end-of-life solution will also be 

economically viable.  Macauley et al. (2003) provide a breakdown of costs associated with the 

end-of-life management of electronic waste.  Costs of collection, transportation, recycling 

processes, storage, incineration and disposal all contribute to the overall cost of the end-of-life 

phase of the product life cycle.  In addition to these inherent costs, the use of financial 

measures to implement environmental policy can also contribute to the overall costs of waste 

management. 

This is exemplified most clearly by Landfill Tax.  Further to the legislation governing landfill of 

wastes, various countries, including the UK, have established landfill tax as an additional 

measure to divert waste to alternative treatments.  The Landfill Tax system was introduced in 

the UK in 1996.  Two years after its introduction a study was carried out to assess its 

contribution to sustainable waste management (Morris et al., 1998).  The tax was described as 

being purposefully designed to achieve the joint aims of increasing the cost of landfill as a 

waste disposal option, to ensure the price would “reflect its environmental cost” and to 

encourage a reduction in waste generation and an increase in reuse and recycling.  Morris et 
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al. summarise the results from a review of the legislation by the Customs and Excise 

Department, which include reports that the tax had prompted one third of companies to 

review their waste management strategies, and survey results indicating two thirds of 

businesses, councils and contractors had implemented waste reduction measures.  The survey 

also reveals that a substantial proportion of respondents had observed an increase of around 

10% in waste disposal costs. Little impact was observed on domestic waste generation (Morris 

et al., 1998). 

In the years since the study by Morris et al. (1998), landfill tax has been incrementally 

increased and currently stands at £56 per tonne for general waste.  A lower rate is charged for 

inert waste.  In the 2004 Budget, the standard rate was forecast to increase by £3 per year up 

to a limit of £35 per tonne.  In the pre-budget report of November 2008, this annual increase 

was confirmed as rising to £8 per tonne, as illustrated in Figure 4.6 (H.M. Revenue and 

Customs, 2010).  When compared with other waste treatment options, the addition of landfill 

tax to the standard gate fee results in landfill being generally more expensive, as shown in 

Figure 4.7. (WRAP, 2010). 

A similar situation is reported in the Netherlands, where costs of disposal to landfill have 

increased significantly since the 1980s.  The legislation controlling landfill sites introduces 

permit requirements and operational standards which have associated costs and add to the 

basic charge per unit of waste.  It is reported that the differentiation of rate for the disposal of 

hazardous and recyclable wastes to landfill has made separation for recycling economically 
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viable in some cases.  Batteries are cited as an example, where the costs of disposal to landfill 

increased eightfold since the 1980s, to around €2,200 per tonne in the 1990s (Krozer and 

Doelman, 2003).   

As well as the costs associated with end-of-life management, it is possible that revenue can be 

generated through the recovery of valuable materials.  Indeed, for valuable metals such as 

platinum and palladium, recycling rates are high (Materials KTN, 2011).  While high market 

values for recycled materials can provide an attractive incentive for good end-of-life 

management of products, fluctuations in the market are a risk for those investing in the 

development of recycling infrastructure and product take-back schemes (Rahimifard et al., 

2009).  

4.6 Multi-criteria decision making in end-of-life management 

Zeleny (1982) captures the tautological nature of the phrase “multi-criteria decision making” in 

his introduction to the decision making process: 

“...whenever we face a single attribute...there is no decision making involved.  The 

decision is implicit in the measurement...It is only when facing multiple attributes, 

objectives, criteria, functions, etc., that we can talk about decision making and its 

Figure 4.7:  Costs of alternative waste treatment processes in the UK (data from WRAP, 2010).  
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theory.  As alternatives of choice become more complex and are characterised by 

multiple attributes as well as multiple objectives, the problem of combining these 

various aspects into a single measure of utility becomes more difficult and less 

practical.” 

However, by formalising the decision making process, it is possible to collate, organise and 

evaluate all available information using a structured approach, such that decision makers can 

feel that all factors have been considered properly and can therefore have confidence in the 

outcome from the decision making process (Belton and Stewart, 2002).  Belton and Stewart 

(2002) dispel some common myths regarding multi-criteria decision making, indicating that the 

approach will not guarantee a “correct” answer, nor will it ensure an objective analysis of the 

situation.  Rather, they argue, a formal multi-criteria decision process allows subjectivity to be 

dealt with in a fully transparent manner.  They emphasise the importance of understanding 

multi-criteria decision making as being as much about developing an understanding of the 

controversies surrounding the decision process, as being about the decision outcome.  As such, 

multi-criteria decision methods should be considered to support decision making rather than 

provide definitive answers to problems. 

Seppala et al. (2002) define the distinction between multi-attribute decisions, where a finite 

number of choices are available to the decision maker, and multi-objective decisions, where an 

infinite number of options are available.  The selection of a preferred end-of-life solution from 

a defined number of alternatives would therefore require a multi-attribute decision making 

process to be adopted.  Defined methods for multi-attribute decision making range from very 

simple approaches, classified by Seppala et al. (2002) as “Elementary”, to more complex 

methods such as the Analytical Hierarchy Process.  Wang et al. (2009) provide a more detailed 

review of alternative methodologies, including comments on the merits and drawbacks of 

each.  Belton and Stewart (2002) indicate that even the most simple of multi-criteria decision 

making methods can be effective. 

The life cycle impact assessment step of the LCA methodology described in Section 4.4 itself 

incorporates a multi-criteria decision approach (Seppala et al., 2002) in the optional 

normalisation, weighting and grouping steps.  Common features are normalisation (a process 

which allows dissimilar metrics to be considered together) and weighting (whereby different 

performance criteria are assigned relative importance) which allows the development of 

single-figure impact scores.   
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4.7 Summary 

The review documented in this chapter has explored the principal challenges associated with 

end-of-life management.  It is clear that end-of-life management has close links with broader 

concepts such as Sustainable Design and Industrial Ecology. Increasingly, environmental policy 

and legislation place emphasis on the end-of-life management of products, such that 

manufacturers are under pressure to meet stipulated recycling and recovery targets.  

However, as well as working towards legislative compliance, it is also important to quantify the 

environmental and economic impacts of the end-of-life phase of the product life cycle in order 

that end-of-life management is not only compliant, but also sustainable.  The complexity of the 

issues identified with relation to end-of-life management justifies the requirement for a 

framework to support further exploration of alternative end-of-life scenarios for SOFC 

products.  This framework is developed in Chapter 6, following an overview in Chapter 5 of the 

methodology adopted in carrying out the research reported in the thesis. 
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CHAPTER 5 RESEARCH METHODOLOGY 

5.1 Introduction 

This chapter describes the methodology adopted in carrying out the research reported in the 

thesis.  The chapter begins with an overview of common research methodologies, identifying 

the principal characteristics of each.  This provides the context against which the methodology 

used in the current research is developed and rationalised. 

5.2 Overview of research types 

Many different types of research exist and are useful for addressing a broad range of questions 

and problems.  Kumar (2005) suggests that any specific research activity may be defined in 

terms of three principal attributes, namely its application, its objectives and its inquiry mode.  

These attributes are represented in Figure 5.1. 

With regard to application, two possibilities are identified – research may either be pure or 

applied.  In the case of pure research, the focus of the research may be an intellectual concept 

or hypothesis which may or may not have practical application at the time at which the 

research is conducted, or in the future.  Pure research may also be concerned with the 

development and refinement of research techniques, procedures and tools, where the 
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Figure 5.1: Overview of different research types (adapted from Kumar, 2005). 
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knowledge gained from the research adds to the existing body of knowledge of research 

methods.  In applied research, research methods are applied in order to collate information 

about a specific situation, problem or issue, such that some further purpose may be achieved.  

Following the definition of the research aim and objectives in Chapter 2, it has been identified 

that the thesis will incorporate primarily applied research, since it is concerned with the 

investigation of a specific problem (namely the end-of-life management of the SOFC stack), 

with an element of pure research, since it is concerned also with the development and 

validation of an evaluation methodology which incorporates both existing and novel 

evaluation tools. 

Kumar further classifies research types based on the objectives of the research.  Where the 

objective is to systematically collate information in order to “describe what is prevalent”, the 

research is classified as descriptive (Kumar, 2005).  Correlational research aims to prove or 

disprove the existence of an association between two or more aspects of the situation being 

studied, while explanatory research aims to provide an explanation of how or why such an 

association exists. Finally, exploratory research describes the early stages of research into a 

field about which little is known, in which case a small scale study may be carried out prior to 

the development of more detailed objectives. In addition, exploratory research describes that 

which has the principal objective of testing and refining evaluation procedures and tools. 

Within the thesis, it is necessary to employ a research methodology encompassing a range of 

approaches, in order to address the objectives defined in Chapter 2.  Descriptive research is 

required in order to develop a thorough understanding of the nature of end-of-life waste 

arising from SOFC stacks, relevant legislative requirements and possible scenarios for end-of-

life management.  The evaluation of alternative end-of-life scenarios and analysis of the 

findings from case studies is considered to incorporate both correlational and explanatory 

research.  The use of exploratory research is required in defining the initial research aims and 

scope, following the completion of a literature review, and is also required in assessing the 

suitability of various evaluation tools employed in the later stages of the thesis. 

Finally, Kumar (2005) suggests that research type may also be defined in terms of the inquiry 

mode employed, with research being classified as either quantitative or qualitative.  Within the 

thesis, the emphasis is primarily on quantitative methods, such as life cycle assessment and 

cost-benefit analysis, which are data driven.  Qualitative methods will be employed to evaluate 

legislative compliance, and are useful in supporting the development of the research in areas 

where data are unavailable and/or unreliable. 
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Effective integration of these different types of research into a coherent methodology will 

provide a systematic approach to addressing the research aim and objectives defined in 

Chapter 2.  This research methodology is described in Section 5.3. 

5.3 Research methodology 

The research methodology adopted in the research is based on a conventional four-stage 

approach (Greenfield, 1996), which begins with the definition of the research hypothesis and 

the refinement of this hypothesis into specific aims and objectives.  The following stages are: 

theoretical research in which frameworks and models are developed; the testing and 

validation of the theoretical research using case studies; and finally the analysis of research 

results.  These stages of the research methodology as applied in the thesis are illustrated in 

Figure 5.2. 

The research assertion and hypothesis are originally defined based on the author’s prior 

knowledge and experience of SOFC technology and end-of-life management requirements.  

This knowledge is then further developed by conducting an extensive review of the literature, 

regarding both the technology and various aspects of end-of-life management.  Legislative 

requirements are explored, to determine current and future requirements of relevance to the 

end-of-life management of the technology.  Evaluation methods previously used to support 

decision making in end-of-life management of other technologies and products are also 

reviewed, to provide knowledge on which a new evaluation methodology can be based.   

During the period in which the early part of the research was conducted, the author was 

closely involved with the industrial partner, Rolls-Royce Fuel Cell Systems Limited in 

Loughborough and Derby, gaining practical experience of the challenges of end-of-life 

management of the SOFC stack.  This involvement included the co-ordination of a 

complementary research project between the industrial partner and the Singapore Institute of 

Manufacturing Technology, in which novel processes for recovering materials from end-of-life 

SOFC components were explored at a laboratory level.  In addition to this, a programme of 

visits was conducted, with representatives from the industrial partner, to potential commercial 

partners in a future end-of-life supply chain.   

The additional knowledge gained from continuing literature review activities and practical 

experience informs the development of the research assertion and hypothesis, and the 

refinement of a specific research aim, supported by clear objectives and scope.   
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The theoretical research and model development is focused on the development of framework 

by which alternative end-of-life scenarios for the SOFC stack can be defined, assessed and 

compared. Based on the research objectives, the evaluation methodology adopted in the 
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Figure 5.2: Research methodology applied within the thesis. 
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framework is required to evaluate legislative compliance, environmental performance and 

economic performance. With respect to environmental and economic performance, existing 

evaluation methods are available, namely life cycle assessment and cost-benefit analysis 

respectively.  This phase of the research requires the development of an integrated multi-

criteria decision support tool which employs these existing evaluation methods, in 

combination with a novel method for evaluating legislative compliance. 

The third phase of the research involves the validation of the research concepts, namely the 

framework for end-of-life management of SOFC stacks, through two case studies.  The case 

studies will be selected to test two different applications of the framework; the first dealing 

with straightforward scenario comparison (i.e. reactive application) and the second exploring 

the impact of design on end-of-life management (i.e. proactive application).  A systematic 

approach will be developed to conduct both of the case studies, with data collated from a 

variety of primary and secondary sources. 

The final phase of the research methodology is to analyse the findings from the case studies, 

and, in the context of all research results documented in the thesis to draw some overall 

conclusions.  These conclusions, and a discussion of their value and limitations, are provided in 

Chapters 11 and 12 of the thesis. 

Although the methodology presented in Figure 5.2 suggests a linear progression through the 

four stages defined in this section, it is acknowledged that research has an iterative nature, 

such that specific aspects may require revisiting and refinement in light of new findings, as the 

research progresses.  

5.4 Summary 

This chapter has identified the different types of research utilised in the thesis, based on the 

requirement to address the research aim and objectives identified in Chapter 2. Following this 

general overview, the research methodology adopted in the thesis has been presented. The 

four phases of the research methodology have been illustrated schematically, showing the 

chronological development of the thesis.  The research supported by the first phase of the 

methodology is reported in the earlier part of the thesis, in Chapters 1 – 4.  The rest of the 

thesis documents the research findings supported by phases two, three and four of the 

research methodology.  
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CHAPTER 6 A FRAMEWORK FOR END-OF-LIFE MANAGEMENT OF  

SOLID OXIDE FUEL CELLS 

6.1 Introduction 

In this chapter a framework for end-of-life management of SOFC stacks is developed.  The 

philosophy behind the framework and its relationship to the waste management hierarchy is 

presented in the initial section.  The framework is constructed in four stages as outlined in the 

later sections of the chapter.  Finally, the opportunities for applying the framework, and its 

limitations, are discussed. 

6.2 End-of-life management of solid oxide fuel cells 

The fundamental principles of the waste management hierarchy provide the most obvious 

foundation for the development of an end-of-life management solution for SOFC stacks.  These 

principles have been adopted at an international level and identify the reduction of waste at 

source as the preferred approach to waste management, followed by reuse, recycling and, 

only as a last resort, disposal to landfill.   

Figure 6.1 shows a schematic of the waste management hierarchy, developed within the 

research, which outlines the means by which compliance with the principle can be approached 

within end-of-life management.  Reduction of waste volume and toxicity by addressing the 

primary source (namely the product design) can be considered to be a proactive approach to 

end-of-life management.  This requires early consideration of how design and materials 

selection define the waste streams arising from end-of-life products.  Similarly, the 

opportunities for reuse of components will be significantly improved if disassembly 

considerations are incorporated at the design stage.  

Reducing waste by recycling the materials contained within end-of-life products requires 

segregation and purification of different material-types in order to produce useful inputs to 

downstream processes, whether in a closed-loop scenario (where the recycled material is re-

supplied for use in the original application) or in an open-loop scenario (where the recycled 

material is supplied for use in a new application).  While incorporating recyclability into design 

by careful materials selection is a proactive approach to end-of-life management, recycling can 

also be applied in a reactive approach as most end-of-life products offer some opportunity for 

 



 CHAPTER 6 

62 

the recovery of useful materials.  As a last resort, disposal may be considered for any non-

recyclable fraction. The separation of hazardous materials from a non-hazardous bulk waste 

stream prior to disposal may have benefits from both environmental and economic 

perspectives. 

A proactive approach to end-of-life management clearly supports the preferred routes of 

reducing waste at source and reusing components; however, there may be barriers to applying 

this approach to novel products, such as SOFC stacks, which are based on immature 

technologies.  During early product or technology development, the focus of the design 

process is likely to be heavily dominated by technical, reliability and cost requirements.  

Therefore, it is proposed that an initial solution to end-of-life management must be developed 

in reaction to an initial product (or prototype) design.  During the development of this solution, 

a body-of-knowledge will be generated.  This body-of-knowledge should determine the 

limitations of existing waste management capability in coping with the requirements posed by 

the novel product. Where limitations exist these may be eliminated either by modification of 

the design in future product development, or, if this is not possible, by the development of 

new waste management processes.  It is anticipated that most product manufacturers will be 

more inclined to invest in design improvement than in the development of a bespoke waste 

treatment capability.  This evolution from a reactive to proactive approach to end-of-life 

management is illustrated in Figure 6.2. 
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Figure 6.1:  A representation of the waste management hierarchy applied to end-of-life management.   
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The end-of-life framework presented in the remainder of this chapter therefore supports a 

reactive approach to end-of-life management, based on the challenges posed by existing SOFC 

stack concepts.  The framework supports the selection of a practically feasible solution for 

end-of-life management of this novel product, based on defined performance criteria.   During 

the selection process supported by the framework, a body of knowledge is generated which 

can support the future implementation of a more proactive approach to end-of-life 

management of SOFC technology. 

6.3 The SOFC-EOL framework 

Figure 6.3 provides an overview of the framework developed to support end-of-life 

management of SOFC stacks, referred to hereafter as the SOFC-EOL framework.  The SOFC-EOL 

framework has been developed with a modular structure and comprises four distinct stages. 

The initial stage in the framework is concerned with the development of a detailed definition 

of the end-of-life management problem.  This requires characterisation of the end-of-life 

product stream and analysis of the legislative constraints within which any end-of-life solution 

must operate.  

In the second phase of the framework, alternative end-of-life scenarios are defined based on 

initial studies of existing waste management capability and laboratory studies of alternative 

processes.  Within the research, three different end-of-life process routes are identified as 

being practically feasible for application to existing SOFC stack concepts, incorporating a range 

of different material separation and recycling processes. 

Evaluation of the defined end-of-life scenarios is performed in the third and fourth stages of 

the framework.  In the third stage, three individual aspects of the end-of-life management 
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Define problem based on 
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Embed knowledge in 
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Figure 6.2:  Illustration of how a reactive approach to end-of-life 

management can evolve into a proactive approach. 
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scenario are assessed separately.  The three performance criteria identified as being critical to 

the feasibility of any end-of-life solution are legislative compliance, environmental impact and 

economic performance.  In the final stage of the framework, a multi-criteria decision support 

tool is applied to combine the output from stage three into a single factor, which may be used 

to direct the selection of a preferred end-of-life solution.   

With reference to the approach discussed in Section 6.2, the output from stage four 

determines a short to medium-term solution for end-of-life management of SOFC stacks, while 

the additional knowledge generated in stage three provides a foundation which may be used 

to direct the development of a proactive, long-term solution, by influencing future product 

design iterations.  The individual stages of the framework are described in more detail in the 

following sections. 

6.3.1 Stage 1 - Problem definition 

The first stage of the SOFC-EOL framework involves the definition and collation of all 

parameters which may constrain or dictate the nature of the end-of-life solution, as illustrated 

in Figure 6.4.   

 

SOFC-EOL FRAMEWORK 

1. PROBLEM DEFINITION 

Characterisation of the end-of-life product and analysis of legislative constraints 
within which a solution must be developed. 

2. DEFINITION OF END-OF-LIFE SCENARIOS 

Identification of feasible alternatives for end-of-life management, based on 
existing waste management processes and technology. 

3.  EVALUATION OF END-OF-LIFE SCENARIOS 

Application of evaluation methods to assess legislative compliance, environmental 
impact and economic performance of alternative solutions. 

4. IDENTIFICATION OF PREFERRED END-OF-LIFE SOLUTION 

Application of multi-criteria decision analysis to generate a single performance 
parameter.  

Figure 6.3:  The four stages in the SOFC-EOL framework 
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Within the Problem Definition stage these constraining factors are identified as arising from: 

i) the characteristics of the end-of-life product stream 

ii) end-of-life and waste management legislation 

6.3.1.1 Characterisation of the end-of-life product stream 

The end-of-life stream can be defined in terms of its internal and external characteristics.  

Internal characteristics are those defined principally by the product design, while external 

characteristics are defined by external influences, such as market performance.  Table 6.1 

summarises the characteristics of the end-of-life stream which are considered relevant to the 

development and evaluation of an end-of-life solution and as such are considered within Stage 

1 of the SOFC-EOL framework. 

The internal characteristics of the end-of-life stream can be identified by analysis of existing 

SOFC stack concepts in order to establish principal design features and the materials selected 

for fabrication.   

 

 

SOFC-EOL FRAMEWORK 

1. PROBLEM DEFINITION 

2. DEFINITION OF END-OF-LIFE SCENARIOS 

3.  EVALUATION OF END-OF-LIFE SCENARIOS 

4. IDENTIFICATION OF PREFERRED END-OF-LIFE SOLUTION 

Figure 6.4:  Stage 1 of the SOFC-EOL framework showing definition of the problem by characterisation of the end-

of-life stream and identification of legislative constraints. 
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Within the first stage of the SOFC-EOL framework, the following specific aspects are 

considered: 

i) Material composition 

• Identification and quantification of materials present in the SOFC stack product 

• Identification of hazardous and valuable materials which may be of particular 

interest at the end-of-life stage. 

ii) Manufacturing processes 

• Identification of principal processes utilised in the fabrication of the SOFC stack 

• Characterisation of material/component interfaces 

iii) Effects of service 

• Identification of any likely changes in the SOFC stack after use, arising from 

exposure to contaminants, loss of material and degradation processes. 

Table 6.1:  Defining characteristics of the end-of-life stream and their classification as internal or external 

Characteristic  Relevance to EOL management solution Defining influence Classification 

Physical 

properties 

• Weight, strength, toughness of materials 

influence suitability of mechanical separation 

techniques 

• Weight influences transport requirements 

Product design Internal 

Chemical 

properties 

• Presence of hazardous/toxic substances 

influence handling/transport/disposal 

requirements 

• Chemical composition Influences suitability of 

chemical recycling processes 

Product design Internal 

Value  • Influences economic feasibility of material 

recovery and recycling processes 

Product design Internal 

Volume of end-

of-life waste 

• Influences economics of end-of-life processing 

and decision for localised or centralised end-of-

life treatment 

Product lifetime/ 

Market behaviour 

Internal/ External 

Geographical 

distribution 

• Influences whether central treatment plant or 

localised end-of-life management is required 

• Determines transport requirements and local 

legislative constraints 

Market behaviour External 
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For the SOFC stack, which has not yet been adopted into a commercial market, the external 

characteristics of the end-of-life stream are harder to define.  Volumes of end-of-life waste 

may be predicted based on commercial targets and business scenarios; however, these are 

subject to change, depending on the success of the new technology in breaking into the energy 

market-place.  Similarly, some idea of the likely geographical distribution of end-of-life 

products may be generated from business plans and knowledge of the geographical 

distribution of energy demand; however there is likely to be much uncertainty in predicting 

real future scenarios.  Therefore, within the current research, these external attributes are 

considered primarily in a qualitative manner. 

6.3.1.2 Specification of legislative constraints and requirements  

After the product system has been fully characterised, the legislative constraints and 

requirements for the end-of-life management solution are defined.  Whereas general 

requirements can be defined from knowledge of environmental legislation in isolation, the 

specific requirements are determined in relation to the characterised end-of-life stream.  

Factors such as the content of hazardous materials and transportation requirements impact 

the relevance of some individual pieces of legislation.  Any specific requirements arising from 

the geographical location of end-of-life SOFC stack assemblies and/or waste treatment 

facilities are also determined in this stage of the framework.  In some cases, legislation may 

prohibit certain actions to be included in the end-of-life management process (constraints); in 

other cases legislation may introduce administrative requirements with associated economic 

burden (requirements).  Both constraints and requirements are defined in this initial stage of 

the SOFC-EOL framework.   

6.3.2 Stage 2 - Definition of end-of-life scenarios 

Whereas the initial stage of the framework defines the problem posed by end-of-life SOFC 

stack assemblies, the second stage defines potential solutions to the problem, as shown in 

Figure 6.5.  The end-of-life management of the SOFC stack is a largely unknown field, and 

therefore the second stage of the framework incorporates a significant portion of the research 

novelty of the thesis.  

The first step in this stage of the SOFC-EOL framework is the identification of feasible end-of-

life scenarios.  These scenarios are developed based on existing end-of-life processes and 

technologies, evaluated for their applicability to the SOFC stack end-of-life stream.  In addition 

some laboratory scale trials are required to evaluate the feasibility of customising processes to 

meet the specific requirements of the SOFC stack. 
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Based on the data available in the current research, three feasible alternative end-of-life 

solutions were developed, although the framework supports comparison of any number of 

alternative process routes.  In the first scenario a mechanical process was used to separate 

materials within the end-of-life SOFC stack assemblies, allowing selective recycling to be 

implemented.  The second scenario followed a similar process, using a chemical process in the 

first material separation step.  Finally, the third scenario employed a non-specific recycling 

route.  The development of these three scenarios is described in Chapter 8.   

Following the identification of feasible end-of-life scenarios, the framework requires these 

processes to be defined in sufficient detail for evaluation using the methods applied in stage 

SOFC-EOL FRAMEWORK 

2. DEFINITION OF END-OF-LIFE SCENARIOS 

3.  EVALUATION OF END-OF-LIFE SCENARIOS 

4. IDENTIFICATION OF PREFERRED END-OF-LIFE SOLUTION 

Figure 6.5:  Stage 2 of the SOFC-EOL framework showing identification and 

definition of alternative end-of-life scenarios. 

i) Identification of feasible end-of-life scenarios 
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management processes 
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1. PROBLEM DEFINITION 

SCENARIO 1 SCENARIO 2 SCENARIO 3 

ii) Definition of identified end-of-life scenarios 

Recovery 
efficiencies 

Energy 
requirements 

Resource 
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Process 
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three.  Important parameters requiring definition are those which are most likely to affect the 

legislative compliance, environmental impact and economic performance of the end-of-life 

phase.  Examples of these are shown in Figure 6.5.  The definition of alternative end-of-life 

scenarios are based on a range of documented assumptions which can be updated as 

knowledge of end-of-life management of SOFC stack assemblies develops prior to 

commercialisation.  As described in Section 6.2 the approaches defined in the current work are 

reactive, based on recovery and recycling of materials from end-of-life assemblies.    Although 

three end-of-life scenarios are defined within the current research, the SOFC-EOL framework 

has sufficient flexibility to allow for the definition and comparison of any number of alternative 

end-of-life options. 

6.3.3 Stage 3 - Evaluation of end-of-life options 

The requirements of the end-of-life management solution are based on environmental and 

economic performance, as well as compliance with relevant legislation.  In the third stage of 

the framework these three aspects are evaluated individually before being integrated in the 

final stage of the framework (Figure 6.6). 

6.3.3.1 Evaluating legislative compliance 

In the SOFC-EOL framework, compliance is evaluated based on the specific legislative 

requirements and constraints determined in stage one.  It is essential that any end-of-life 

management solution is compliant with the relevant legislative requirements: non-compliant 

operations can be immediately discarded.  However, the compliance evaluation provides a 

more detailed assessment of the proposed end-of-life solution within the defined legislative 

climate.  Risk of future non-compliance and the introduction of tighter controls are assessed 

and contribute to the decision support tool.  This aspect of the SOFC-EOL framework reflects 

the fact that legislation is constantly changing and it is good business practice to anticipate 

rather than react to change.  In addition, legislative requirements change with growth of 

business; for example a research and development facility with minimal throughput is exempt 

from many of the requirements which apply to large-volume production facilities. This is an 

important aspect for the SOFC industry, which is currently at the very beginning of commercial 

activity. 

6.3.3.2 Evaluating environmental impact 

The environmental performance of the end-of-life management solution is the aspect of 

greatest interest to the current research.  As described in Chapter 1, SOFC technology is 
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believed to offer power generation with a lower environmental burden when compared with 

traditional power generation technologies.  Environmentally responsible management of end-

of-life waste is a high-profile issue across all industry sectors, and failure to demonstrate 

responsibility is detrimental to the image of businesses and products.  The assumption 

underlying the current research is that the environmental nature of SOFC technology only acts 

to increase the sensitivity of stakeholders to this issue. 

Environmental evaluation within the SOFC-EOL framework is based on the use of life cycle 

assessment (LCA).  LCA is a well established methodological approach used to obtain a 

quantitative evaluation of selected environmental impacts, and its application has been 

reviewed in some detail in Chapter 4.  LCA requires as an input a complete inventory (including 

all energy and resource consumption and outputs in the form of wastes, emissions and 

recovered materials) for the end-of-life scenario.  The outputs from LCA are presented as 

numerical values relating to selected environmental impacts.  Methodologies for evaluating a 

wide range of environmental impact factors are reported in the literature and are available for 

use; however, within the SOFC-EOL framework only the impact factors identified as being of 

SOFC-EOL FRAMEWORK 

3.  EVALUATION OF END-OF-LIFE SCENARIOS 

 

1. PROBLEM DEFINITION 

2. DEFINITION OF END-OF-LIFE SCENARIOS 

4. IDENTIFICATION OF PREFERRED END-OF-LIFE SOLUTION 

Figure 6.6:  Stage 3 of the SOFC-EOL framework showing the generation of three 

performance parameters for each end-of-life scenario. 

i) Compliance evaluation 

Compliance risk 
assessment 

 

RISK SCORE 
 

ii) Environmental evaluation 

Life cycle 
assessment 

 

ENVIRONMENTAL 
IMPACT SCORE 

iii) Economic evaluation 

Cost-benefit 
analysis 

 

COST-BENEFIT RATIO 
 



 CHAPTER 6 

71 

significant interest to SOFC developers are included.  Detailed information on LCA 

methodology and its application in the SOFC-EOL framework are discussed in Chapter 9. 

6.3.3.3 Evaluating economic performance 

In order for the end-of-life solution to be adopted by businesses, the economic implications 

need to be understood and must not be prohibitive to the profitability of the SOFC product.  A 

cost-benefit model is developed to quantify the costs of implementing a proposed end-of-life 

process and the revenues generated from recovery of valuable materials from the recycling 

steps.  The overall economic performance is presented as the benefit-cost ratio arising from 

each end-of-life management scenario.  The methodology for performing economic evaluation 

of alternative end-of-life management scenarios is described in more detail in Chapter 9.  

Within the current research, environmental performance is considered to be the dominant 

factor, and therefore its assessment is carried out in detail using LCA.  Economic performance 

is considered to be a less critical factor in the selection of an end-of-life solution; however, this 

parameter is still important in supporting or disregarding a proposed end-of-life solution.  This 

weighting is determined in the final stage of the SOFC-EOL framework, and reflects the 

purpose of the framework in delivering an environmentally responsible end-of-life solution 

while acknowledging the practical requirement for that solution to be economically viable. 

6.3.4 Stage 4 - Identification of preferred end-of-life solution 

In the final stage of the SOFC-EOL framework, a multi-criteria decision support tool is 

developed to combine the output from the legislative compliance risk assessment, 

environmental, economic and evaluations.  Multi-criteria decision making is a recognised 

approach to dealing with decisions involving several non-comparable requirements and its 

general application, benefits and limitations are discussed in Chapter 4.  The SOFC-EOL 

framework utilises a bespoke multi-criteria decision support tool, the development of which is 

reported in Chapter 9 of the thesis. Using this tool, priorities are defined for each of the three 

individual evaluation criteria and an overall performance score is generated for each proposed 

end-of-life scenario.  This EOL performance score is calculated to support the selection of an 

end-of-life solution which most effectively meets the legislative, environmental and economic 

requirements, as illustrated in Figure 6.7. 

6.3.5 Application of the SOFC-EOL framework 

Considering the immaturity of SOFC technology, the SOFC-EOL framework described in this 

chapter is intended to be applied primarily in a reactive approach to end-of-life management.  
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As a reactive tool, the framework supports the evaluation of alternative end-of-life 

management scenarios, and identification of the preferred solution, based on the three 

evaluation criteria: legislative compliance, environmental impact and economic impact.  While 

beneficial in terms of helping to understand and, where possible, reduce the impacts 

associated with the end-of-life stage of the product life cycle, the impacts arising at end-of-life 

are likely to be determined to a significant degree by the design of the SOFC stacks.   

The second case study explores the application of the framework as a proactive tool.  In this 

mode of application the framework is used to evaluate the effects of changes to the SOFC 

stack design on the impacts arising during the end-of-life phase.  In this mode of application 

the alternative end-of-life scenarios are differentiated not by process route, but by the 

material and design characteristics of alternative SOFC stack concepts.  The flexibility of the 

framework in supporting either a reactive or proactive approach to end-of-life management is 

anticipated to be of particular benefit as SOFC technology matures and product developers 

become better placed to optimise the design of SOFC stacks based on a product life cycle 

approach.   

SOFC-EOL FRAMEWORK 

4. IDENTIFICATION OF PREFERRED END-OF-LIFE SOLUTION 

 

1. PROBLEM DEFINITION 

2. DEFINITION OF END-OF-LIFE SCENARIOS 

 

3.  EVALUATION OF END-OF-LIFE SCENARIOS 

Figure 6.7:  Stage 4 of the SOFC-EOL framework in which a multi-criteria decision support tool is used to 

combine the output from the evaluation stage into a single score. 
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6.4 Summary 

In this chapter the SOFC-EOL framework has been presented, and each of the four stages in 

the framework described in detail.   The first stage of the framework, in which the end-of-life 

stream is characterised in terms of design and materials, is explored in detail in the following 

chapter.  Chapter 8 continues by reporting the research supporting the second stage of the 

framework, namely the definition of alternative end-of-life scenarios.  In Chapter 9 the final 

evaluation stages of the framework are developed.  Finally, the application of the complete 

SOFC-EOL framework is demonstrated through case studies documented in Chapter 10. 
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CHAPTER 7 DESIGN AND MATERIAL CHARACTERISTICS OF SOLID OXIDE 

FUEL CELLS 

7.1 Introduction 

Before beginning to develop and evaluate alternative end-of-life management solutions for the 

SOFC stack, it is necessary to understand the design and material characteristics of existing 

SOFC stack concepts.  In this chapter some common design and material characteristics are 

identified that will influence the selection of end-of-life options. This general understanding is 

developed further by more detailed analysis of three existing SOFC stack concepts.  The 

identified design and material characteristics are then evaluated in order to understand their 

potential influence on legislative compliance, environmental impact and economic 

performance at the end-of-life phase. 

7.2 Design and material characteristics of solid oxide fuel cells 

The design of a product has direct influence over the opportunities and challenges faced 

during end-of-life management.  One particularly significant aspect of design is the selection of 

materials.  Material selection may be based on a number of factors, including functionality, 

aesthetics and cost.  However, when the product reaches end-of-life, the presence of 

hazardous, valuable and/or recyclable materials will have an impact on the legislative 

compliance, environmental impact and economic feasibility of alternative end-of-life 

processing routes.   

Material selection is not the only aspect of design which affects end-of-life management.  At a 

fundamental level the design dictates the size and mass of the product and its individual 

components, thus defining the quantity of waste arising from each end-of-life unit.  The 

accessibility of hazardous substances within the design may allow de-pollution to be carried 

out easily, or may result in the entire material stream being classified as hazardous, with the 

introduction of risk to handlers and/or the environment throughout the entire re-processing 

cycle.  The ease with which components containing valuable materials can be removed may 

allow a high value material fraction to be separated and recycled, or alternatively 

opportunities for separation may be limited, resulting in loss of value.  Joining methods for 

dissimilar recyclable materials may facilitate disassembly prior to recycling, or may lead to a 
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non-selective re-processing route.  In each case, compliance with legislation, environmental 

performance and economic aspects of end-of-life management are likely to be influenced. 

It is therefore essential that the development of an end-of-life management strategy for any 

product is founded upon a clear understanding of relevant design and material characteristics.  

In a reactive approach to end-of-life management this allows a feasible re-processing route to 

be developed within the constraints dictated by the existing product design.  Opportunities for 

minimising environmental impact and maximising economic benefits in a compliant manner 

can be explored.  In a proactive approach to end-of-life management, these considerations are 

taken into account during the very earliest phases of product design.   

In the framework presented in Chapter 6, a reactive approach to end-of-life management is 

presented and justified.  The first stage in the framework requires the characterisation of the 

waste stream arising from end-of-life SOFC stacks.  In the following sections, three existing 

SOFC stack concepts are analysed in order to determine their principal design and material 

characteristics.  The results from this analysis are then used to identify the key parameters 

required as input to Stage 1 of the framework to support development of an effective end-of-

life management solution. 

7.2.1 General design and material characteristics of existing SOFC stack concepts 

The SOFC stack is an assembly of individual fuel cells.  Each cell contains four fundamental 

components:  the electrodes (anode and cathode) to which fuel and oxidant are provided 

respectively; the electrolyte, a solid ceramic layer which separates the electrodes and  must be 

impermeable to gases while demonstrating good ionic conductivity; and the interconnect, 

which allows electrical connectivity between individual cells.  For optimised performance, 

these individual layers within the cell typically have thicknesses in the range of 10 – 100 µm, 

depending on individual design concepts. Structural support can be provided by increasing the 

thickness of any one of these functional components, or by introducing an additional inactive 

substrate. Figure 7.1 summarises the principal cell and stack configurations which determine 

the design characteristics of different SOFC stack concepts (Minh, 2004).   

The requirements for SOFC stack materials are complex.  In general, the functional 

requirements of the materials dominate material selection since the material selected for each 

component must facilitate the electrochemical processes by which the fuel cell functions and 

must demonstrate chemical and mechanical durability under the extreme conditions 

experienced during operation.  A common set of materials has emerged for application in high 

temperature SOFCs, as summarised in Table 7.1. 
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In order to understand how these general design and material characteristics are applied in 

specific SOFC stack concepts, three existing concepts have been analysed in more detail.  

Findings from the analysis of an existing tubular, planar and integrated-planar concept are 

reported in Sections 7.2.2 – 7.2.4 respectively. 

 

Table 7.1:  Summary of typical SOFC materials 

SOFC stack 
component 

Typical materials Typical chemical 
composition 

Abbreviation 

Electrolyte Yttria-stabilised zirconia (YSZ) (ZrO2)0.92(Y2O3)0.08 YSZ 

Anode Nickel oxide (NiO)  NiO NiO 

Cathode Strontium-doped lanthanum 
manganese oxide (LSM) 

La0.85Sr0.15MnO3 LSM 

Interconnect 
 
 
 
 
 

Doped lanthanum chromate La0.85Sr0.15CrO3 LSC 

Metallic nickel Ni Nickel 

Chromium steel Cr-Steel Cr-Steel 

Precious metal* Au, Pt, Pd or similar PM 

*Precious metal interconnects are often used for development purposes but are not considered to be 
economically viable in a commercial product 

 Electrolyte-supported  
  

Stack configuration Cell configuration 

 Anode-supported  
  

 Cathode-supported  
  

 Interconnect-supported  
  

 Porous substrate-supported  
  Segmented cell-in-series 

 
 

  

Tubular 

 

 
 

Monolithic 

 
 

 

Planar 

 
 

 
 

SOFC stack design characteristics 

Figure 7.1:   SOFC stack design characteristics are determined by the combination of 

cell and stack configuration selected. 
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7.2.2 Analysis of design and material characteristics of tubular SOFCs 

The tubular SOFC stack concept has been developed principally by Westinghouse, and later by 

Siemens-Westinghouse.  A schematic of the concept is shown in Figure 7.2, illustrating the 

cross-section of the individual fuel cell, and the geometry of the stack assembly.  Based on the 

classifications presented in Figure 7.1, the concept can be described as having a cathode-

supported cell configuration.   

The cell design is based on an extruded tubular component, fabricated from cathode material.  

This tube is then coated with a thin-layer electrolyte, and a further later of anode material.  

During operation, air is channelled through the centre of the tube, where it has access to 

permeate the porous cathode material.  Fuel gas is passed over the surface of the tube and 

permeates the anode material.  The interconnect runs the complete length of the tubular cell, 

and allows a pathway for electron-flow.  Electrons released during the oxidation of the fuel gas 

at the anode are conducted to the cathode of the adjacent cell, where they are used in the 

reduction of the oxygen gas.  Thus the voltage produced in the stack assembly can be 

harnessed externally to provide electrical power. 

The round geometry of the tubular substrate reduces manufacturing options for the 

electrolyte and anode layers.  Electrochemical vapour deposition (EVD) is used to achieve a 

dense, gas-tight electrolyte.  The anode layer can also be applied by EVD, although slurry 

dipping may have lower cost.  It is clear from the schematic of the cell cross-section that the 

majority of weight in the tubular stack assembly arises from the cathode substrate.   

Anode

Electrolyte

Cathode

Interconnect

Air flow

Fuel flow

a) Cell configuration (cross-section) b) Stack configuration 

Figure 7.2: Design characteristics of a tubular SOFC concept 

 (adapted from Siemens AG, 2010b) 
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An estimated breakdown of the material content of the tubular stack concept is provided in 

Figure 7.3.  This is based on the life cycle assessment work reported by Karakoussis et al. 

(2001), which reports total quantities of materials used in the production of a quantity of 

tubular stack capable of producing 1 kW of electrical power under design-point operating 

conditions.  The material breakdown presented in Figure 7.3 accounts for documented 

assumptions regarding material losses during the manufacturing process.  It can be seen that 

the material composition is heavily dominated by the cathode material (LSM). 

7.2.3 Analysis of design and material characteristics of planar SOFCs  

The planar SOFC stack concept has been developed in a number of variations.  Figure 7.4 

shows one variation of the planar SOFC stack concept.  Here the planar cells have a square 

geometry and the concept adopts an interconnect-supported cell configuration.  Alternative 

variations include circular cell geometry. 

The cell is built upon an electrical interconnecting plate, fabricated from chromium-rich steel.  

The high chromium content is required to prevent degradation at high temperature operating 

conditions.  The flat geometry of the cell allows the anode, electrolyte and cathode layers to 

be fabricated by a number of alternative routes, including screen printing, tape casting or 

other conventional thick-film fabrication processes. 

The interconnect substrate is engineered with two sets of channels running perpendicular to 

each other.  This allows fuel gas to be passed through the channels adjoining the anode layer 

of the cell, and air to be passed through the channels adjoining the cathode layer of the 

adjacent cell.  The fuel undergoes oxidation at the anode with the release of electrons.  These 

Figure 7.3:  Illustrative material composition (by weight) of the tubular SOFC stack  

(values estimated from Karakoussis et al., 2001)  

 

YSZ, 4%

LSM, 93%

NiO, 2%

Ni, trace LSC, 1%
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electrons can pass through the interconnect, and are used in the reduction of oxygen at the 

cathode.  As a result of this electron flow through the fuel cell stack, electrical power can be 

harnessed in an external circuit. 

Based on the results reported by Karakoussis et al. (2001), an estimated material breakdown 

has been developed for one variation of the planar SOFC stack concept, as shown in Figure 7.5.  

The stack assembly is principally made up from the steel interconnect plates, with the 

additional SOFC materials contributing less than a quarter of the total material mass. 

Figure 7.5:  Illustrative material composition (by weight) of the planar SOFC stack  

(values estimated from Karakoussis et al., 2001)  
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Figure 7.4: Design characteristics of a planar SOFC concept 

 (adapted from Singhal, 2002) 
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7.2.4 Analysis of design and material characteristics of integrated-planar SOFCs  

The Integrated Planar SOFC stack design (IP-SOFC) under development by Rolls-Royce Fuel Cell 

Systems Limited combines a porous substrate supported cell configuration with a segmented-

cell-in-series stack configuration, and is described in Gardner et al. (2000), Agnew et al. (2003) 

and Agnew et al. (2007).  The design is such that fuel gas is supplied through channels in a 

porous substrate “tube” and the porosity allows diffusion of fuel gas to the anode.  Air is 

passed over the surface of the tube where it permeates the cathode.  Individual active tubes 

represent small stacks, since they comprise a number of cell assemblies, connected in 

electrical series. These active tubes are assembled into larger units, with manifolds providing a 

pathway for fuel.  The principle of operation is illustrated in Figure 7.6.  One of the perceived 

benefits of this design is the lack of requirement for one of the active layers to provide 

structural support to the cell and stack.  This allows the anode, cathode, electrolyte and 

interconnect components to be designed for optimum performance, with no secondary 

functional requirements.  It also results in the majority of the mass of the stack assembly 

residing in the substrate.  This allows the selection of a substrate material which is not a 

specialised fuel cell material, providing opportunities for cost reduction.   

Figure 7.7 shows an estimated material composition for the integrated-planar SOFC stack 

concept.  The majority of the composition is made up from the inert ceramic substrate 

material.  Alternative materials are available for application in the cell-to-cell interconnects.  

Low-cost ceramic interconnects show some suitability for this application, although 

historically, during the technology development phase, precious metals have been shown to 

provide the required stability and performance.  

Figure 7.6: Design characteristics of an integrated-planar SOFC concept. 

Cells are configured on both sides of a porous substrate.  
Fuel is supplied through channels in the substrate and 
permeates to the anode.  Air is supplied over the surface of 
the substrate to reach the cathode.  Individual cells on the 
substrate surface are connected in series (adapted from 
Gardner et al., 2000). 
 
 

(a) Cell configuration 

Cathode 
Electrolyte 

Anode 

Porous substrate 

Interconnect 

Fuel flow 

Air flow 

(b) Stack configuration 

© 2009 Rolls-Royce Fuel Cell Systems 
Limited, used by permission. All rights 
reserved. 
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7.3 Influence of design and material characteristics at end-of-life 

From the analysis of general and specific design and material characteristics of SOFC stacks, 

some conclusions can be drawn regarding the impact of these characteristics on the end-of-life 

phase of the life cycle.  In the framework for end-of-life management of SOFC stacks 

developed in Chapter 6, three performance metrics were identified as contributing to the 

overall feasibility of an end-of-life solution, namely compliance with legislation, environmental 

impact and economic impact.  The influence of the design and material characteristics on each 

of these performance criteria is explored in the following sections. 

7.3.1 Influence of design and material characteristics on legislative compliance 

Following the review of end-of-life legislation in Chapter 4, three broad categories of relevant 

legislation were identified, each with the following aims: 

• To designate the waste streams arising from end-of-life products as hazardous or non-

hazardous 

• To impose appropriate controls on the collection, storage, processing, transportation 

and disposal of end-of-life products, based on the hazards associated with a specific 

waste stream 

• To divert end-of-life products from landfill 

The designation of waste as hazardous or non-hazardous is based on the hazard classification 

of component materials, and the contribution of those materials to the overall composition of 

the waste stream.  Hazard classification for each of the common SOFC stack materials were  

Figure 7.7:  Illustrative material composition (by weight) of the integrated-planar SOFC stack  

(values estimated from Rolls-Royce Fuel Cell Systems, 2008)  
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identified from manufacturer’s material safety data sheets, and are summarised in Table 7.2.  

Based on the hazard classification the threshold composition was identified for each 

substance, above which the waste stream would be considered to be hazardous (Environment 

Agency, 2008).  The data presented in Table 7.2 is based on legislative requirements within the 

European Union.  

It is clear from the information presented in Table 7.2 that the classification of waste arising 

from end-of-life SOFC stack assemblies has the possibility to be classified as hazardous.  This 

classification is most likely to arise from the presence of nickel oxide, since this is the common 

SOFC material with the highest hazard classification.  However, the cathode and interconnect 

materials also contain hazardous substances.  The classification as hazardous is dependent on 

design, since this dictates the respective quantities of each material present in the SOFC stack.   

This relationship between SOFC stack design and the classification of waste streams arising 

from end-of-life products is clearly illustrated by examining the estimated material 

compositions of the three different design concepts presented in Figures 7.3, 7.5 and 7.7.  In 

each case, the content of nickel oxide is above the threshold concentration of 0.1 wt% and 

thus would result in the end-of-life stack being classified as hazardous.  However, it is known 

Table 7.2:  Threshold concentrations for SOFC materials and substances, above which  

European hazardous waste legislation applies 

SOFC material Constituent substance EU hazard classification Threshold 
concentration 
(Environment 
Agency, 2008) 

YSZ ZrO2 Non-hazardous N/A 

Y2O3 Non-hazardous N/A 

NiO NiO Category 1 carcinogen (R43, 
R49) 

0.1 wt% 

LSM, LSC La2O3  (in LSM and LSC) Irritant (Xi, R36/37/38) 20 wt%   

SrO (in LSM) and LSC) Corrosive (C, R14, R34) 5 wt% 

LSM Mn3O4 Irritant (Xi, R36/37/38) 20 wt% 

LSC Cr2O3 Harmful (Xn, R20, R22, 
R36/37/38) 

20 wt% 

Cr-Steel Cr-Steel Non-hazardous N/A 

Nickel Nickel Category 3 carcinogen 1 wt% 

Precious metals Au Non-hazardous N/A 

Pt Non-hazardous N/A 

Pd Non-hazardous N/A 
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that during operation of the stack, the nickel oxide undergoes reduction to nickel metal.  In the 

case of the fuel cell stack being shut down under reducing conditions, in which re-oxidation of 

the nickel does not occur, the presence of nickel oxide in the end-of-life waste stream may be 

eliminated.  Nickel metal has a lower hazard classification compared to the oxide, and may be 

present in concentrations up to 1 wt% before a waste stream is classified as hazardous.  

Therefore, from the values presented in Figures 7.5 and 7.7 it is possible that waste from the 

planar or integrated-planar stacks may avoid classification as hazardous based on the nickel 

content.  The tubular stack design dictates that lanthanum oxide compounds contribute 

substantially to the overall material composition, and as such would result in waste from end-

of-life stacks being classified as hazardous, based on the 20% threshold concentration shown 

in Table 7.2. 

As identified in the review of legislation in Chapter 4, classification of waste streams as 

hazardous has implications for the following aspects of the end-of-life management process: 

• Transportation of wastes, including domestic and international transport 

• Storage of wastes 

• Disposal of wastes 

• Health and safety issues for waste processing operations 

The design and material characteristics of the SOFC stack may therefore define restrictions and 

impose additional administrative requirements, based on the legislation relevant to each of 

these issues. 

7.3.2 Influence of design and material characteristics on environmental issues 

Environmental concerns at the end-of-life stage are likely to arise primarily from the 

incorporation of hazardous materials in the SOFC stack design.  These materials have been 

identified in Table 7.2 and require effective management at end-of-life to reduce the risk of 

their release into the environment.  While reactive measures to manage these materials in an 

appropriate way at end-of-life may prove effective in reducing the environmental impacts of 

end-of-life processing, a proactive approach would explore opportunities for minimising the 

content of hazardous substances in future design iterations, or eliminating them completely by 

substitution with more benign alternatives. 

Regardless of the hazardous nature of materials based on legislative definitions such as those 

presented in Table 7.2, all materials have a detrimental environmental impact associated with 
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their production.  Disposal of material at end-of-life means that the resources invested in their 

production are essentially lost.  If materials can be recycled from end-of-life waste streams by 

a process which has a lower impact than that of the original material production route then it 

is beneficial to pursue recycling as part of the end-of-life management solution.  In general, 

materials which have a particularly high environmental impact associated with their virgin 

production are most likely to offer benefits from recycling. 

The environmental impacts of the production processes for the principal SOFC stack materials 

were therefore explored as part of the research.  Life cycle assessment methodology was 

applied to evaluate the impacts of material production from initial extraction of resources to 

delivery of a useable material (cradle-to-gate).  Data from the Ecoinvent database (Ecoinvent 

Centre, 2007) were used for each of the materials investigated, except in the case of nickel 

oxide for which data were obtained from the Nickel Institute (Ecobalance Inc, 2000).  The CML 

(Centre of Environmental Science, Leiden University) impact assessment method (Guinée et 

al., 2002) was applied in order to evaluate Global Warming Potential, Acidification Potential, 

Abiotic Depletion Potential and Energy, in terms of Net Calorific Value.  Application of life cycle 

assessment and the CML impact assessment method are discussed in more detail in Chapter 9 

of the thesis.  Specialist life cycle assessment software, GaBi4 (PE International GmbH, 2007) 

was used to support manipulation of the data. 

Results from the impact assessment analysis are shown in Figures 7.8, 7.9 and 7.10, for the 

tubular, planar and integrated-planar stack concepts respectively.  For each of the stack 

designs the materials considered as contributing to the total material composition are all 

shown on the results charts.  It is recognised that additional materials (for example joining and 

sealing materials) are likely to be present in each case, and that these additional materials will 

have additional environmental impacts associated with them. However, it was assumed that 

these materials would comprise a small proportion of the total material weight, and that their 

contribution to the total environmental impact would be minimal.  It was therefore decided in 

the interests of simplicity and based on data availability to restrict the analysis to include only 

the principal SOFC materials as shown, similar to the approach adopted by Karakoussis et al., 

2001. 

For each impact category, results are presented in order to demonstrate the relative 

contribution of each material to the total value for that impact.  Results are based on the 

estimated material compositions shown in Figures 7.3, 7.5 and 7.7.  Since the intention of the 

analysis reported in this chapter is to support the identification of priorities for end-of-life 
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management, in this case based on the environmental impacts associated with different SOFC 

materials, it was identified that the presentation of results as relative, rather than absolute, 

values would satisfy this objective.  This decision also eliminates the risk of disclosing 

commercially sensitive data regarding detailed breakdowns of the material composition of 

alternative SOFC stack concepts.  The same approach has been adopted in the presentation of 

the results of the economic evaluation (Figure 7.12).   

For the tubular stack concept (see Figure 7.8), it can be seen that the lanthanum oxide 

materials are the most significant contributors to Global Warming Potential, Abiotic Depletion 

Potential and Energy impacts.  Nickel oxide is the most significant contributor to the total 

Acidification Potential, being responsible for approximately half of the total impact in this 

category.  Manganese, present in the cathode material, represents a contribution in the order 

of 10% in each impact category, while the zirconium dioxide present in the tubular stack has 

only a minor impact for each of the categories evaluated.  These results are perhaps 

unsurprising, since the design characteristics of the tubular SOFC stack require the cathode 

material to be used as the structural support for each cell, reflected in high concentration of 

LSM in the overall material mix. 

Figure 7.9 shows the results for the planar SOFC stack.  In this case the chromium steel used to 

fabricate the interconnecting plates contributes most significantly to each of the impact 

categories evaluated.  Nickel oxide contributes around 35% of the total acidification potential, 

while zirconium dioxide provides between 10 and 20% of the total impact for each of Global 

Warming Potential, Acidification Potential, Abiotic Depletion Potential and Energy.  The 

lanthanum oxide and manganese constituents contribute a negligible proportion of each of the 

impacts. 

The impact assessment results for the integrated planar SOFC stack are shown in Figure 7.10.  

Here the inert ceramic material contributes most significantly to Global Warming Potential, 

Abiotic Depletion Potential and Energy impacts, although it does not dominate as much as the 

material composition for this stack concept (see Figure 7.7) might have suggested.  

Interestingly, the very small fraction of the SOFC stack composed of nickel oxide provides a 

relatively large contribution to each impact category, and dominates the total Acidification 

Potential.  These results reflect the inherent high impact associated with nickel oxide in 

comparison to the inert ceramic material used as the substrate for the integrated-planar SOFC 

stack. 
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Figure 7.8: Relative contribution of different materials to selected environmental impacts arising 

from material production for a tubular SOFC concept. 
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Figure 7.9: Relative contribution of different materials to selected environmental impacts arising 

from material production for a planar SOFC concept. 
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Figure 7.10: Relative contribution of different materials to selected environmental impacts arising 

from material production for an integrated-planar SOFC concept with an LSC interconnect. 
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As identified in Section 7.2.4, while the final integrated-planar SOFC stack concept, adopted in 

commercial products, is likely to use a low-cost interconnect material, such as doped 

lanthanum chromate, alternative materials have been used throughout the concept 

development.  In particular, platinum group metals offering good conductivity and stability 

under operating conditions, although their high cost prohibit extensive use in an economically 

viable product.  The environmental impacts associated with platinum group metal production 

are also considerable, when compared to the other materials used in the integrated-planar 

SOFC stack.  In order to evaluate an alternative scenario, the impact assessment analysis for 

the integrated-planar SOFC stack was repeated, this time substituting palladium for doped 

lanthanum chromate in the interconnect component.  These repeat results are shown in Figure 

7.11.  As can be seen, the impacts arising from the other SOFC materials become insignificant 

in comparison to the impacts associated with the production of palladium. 

These results presented in Figures 7.8 – 7.11 illustrate how the design and material 

characteristics of the SOFC stack influence priorities at end-of-life, in particular where 

environmental impact is concerned.  Depending on process availability and technical 

feasibility, it is likely to prove most beneficial to target material separation and recycling at 

those component materials which have the greatest impact in their virgin production.  

Differences in the design characteristics of the tubular, planar and integrated planar SOFC 

stacks result in different priorities being observed.  In the case of the tubular concept, the 

impacts arising from the high content of lanthanum-based cathode material suggest that 

efforts in material recovery and recycling might best be directed towards this material.  In the 

Figure 7.11: Relative contribution of different materials to selected environmental impacts arising 

from material production for an integrated-planar SOFC concept with a palladium interconnect. 
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case of the planar concept, the chromium-steel represents the priority for recycling while 

similarly for the integrated-planar SOFC stack it is again the substrate material, this time the 

inert ceramic, which may provide greatest opportunities for reducing impact through recycling.  

In all cases the production of nickel oxide contributes substantially to the total Acidification 

Potential, despite the use of relatively low quantities of the material in production and thus it 

is also a good candidate for recycling.  The contrast between Figures 7.10 and 7.11 indicates 

how priorities at end-of-life may be substantially altered by substituting a low impact material 

with a higher impact material.  In this case the introduction of platinum to the interconnect in 

the integrated-planar SOFC design results in a scenario where all attention should be directed 

to the recovery and recycling of this very high impact material. 

Of course, these observations based on the impact assessment results for materials production 

only hold true if processes exist or can be developed which allow recovery and recycling of 

these materials with lower impact than that associated with their initial production.  

Identification of recycling priorities in this way can help in the development of an end-of-life 

solution which aims to reduce the total life cycle impacts of the product. 

7.3.3 Influence of design and material characteristics on economic issues 

As demonstrated in Section 7.3.2, the design and material characteristics of the SOFC stack 

may determine priorities at end-of-life, based on environmental aspect of the materials 

present.  In a similar, and perhaps more obvious way, economic considerations are also 

significant in defining end-of-life priorities.  Recovery and recycling of valuable materials in 

general makes good economic sense since where the cost of virgin material is high, the 

opportunities for recycling through a lower-cost process are greater.  Low value materials may 

not be attractive for recycling from an economic perspective, even if recycling would provide 

clear environmental benefits.  

In order to explore the influence of the design and material characteristics of the three SOFC 

stack concepts defined in Sections 7.2.2 – 7.2.4 on the economic priorities at end-of-life, a 

simple cost analysis of the tubular, planar and integrated-planar designs was conducted.  The 

purpose of this analysis was to identify the economic priorities for material recycling, based on 

the intrinsic value of materials present within end-of-life SOFC stacks, and the approach taken 

is described below. 

Initially, indicative market prices were obtained for the principal SOFC materials identified in 

Section 7.2.  Table 7.3 provides an overview of the data collated, showing current commercial 
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prices (April 2011) for bulk materials.  The production of SOFC stacks requires the use of high 

purity ceramic powders, often with a very fine particle size.  The processing requirements to 

obtain a suitable grade of material can result in prices up to seven times the price of bulk 

materials (Thijssen, 2010).  However, it is unlikely that a recycling process would directly yield 

a material of such specialist quality.  It is therefore envisaged that priorities in recycling are 

more likely to be driven by the value of materials of bulk commodity quality, rather than by 

the value of materials of a quality suitable for SOFC manufacture.  Closed loop recycling would 

require an additional material refinement stage, between the recovery of materials from 

recycling of end-of-life SOFC stacks, and the manufacture of new SOFC stacks.  While 

presenting the data in Table 7.3, the sensitivity of pricing to global markets and the rapid 

fluctuation of prices over time are acknowledged.  These indicative prices are intended to 

provide an estimate of the relative value of materials present in end-of-life SOFC stacks, and 

are subject to change. 

The prices shown in Table 7.3 were multiplied by the material compositions shown in Figures 

7.3, 7.5 and 7.7 to identify an estimated breakdown in value for each of the different design 

concepts.  In addition, the calculation was also applied to the integrated-planar stack with 

palladium replacing the lanthanum-based interconnect material.    The results from this 

analysis are shown in Figure 7.12.  Similar to the environmental results presented in Section 

7.3.2, it is clear that for each of the different stack concepts different priorities must exist for 

material recovery and recycling activities at end-of-life.   

Table 7.3:  Indicative market prices for common SOFC materials in April 2011 

Material  Price per kg ($) Price per kg* (£) Source 

NiO 15-22 12 alibaba.com, 2011a 

YSZ 35-45 25 alibaba.com, 2011b 

LSM  25 Assumed to be similar to YSZ, based on individual prices for 
La2O3, SrO and MnO2, and allowing for process costs. 

La2O3 18-25 14 alibaba.com, 2011c 

SrO 2-3 1.6 alibaba.com, 2011d 

MnO2 0.4-0.8 0.4 alibaba.com, 2011e 

Inert ceramic <1 <1 alibaba.com, 2011f 

Cr-steel - 15 Estimated 

Pd 24000 15000 Johnson Matthey, 2011  

 *Assumes conversion £1 = $1.6  
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For the tubular SOFC stack, where the cathode material is used to create the substrate for the 

fuel cell, the majority of the inherent material value within the end-of-life stack is contained 

within the strontium-doped lanthanum manganese oxide material (LSM).   

For the planar concept, the massive chromium steel interconnecting plates contain around 

60% of the total materials value.  Pursuing recovery and recycling of this material portion is 

likely to provide benefits, especially given that recycling processes for steel are mature and 

widely practiced.  Although the content by weight of YSZ in the planar stack is considerably 

lower than steel (below 20% of the total weight, compared to around 80% for steel), the 

relatively high value of YSZ means that this fraction of the total material composition 

potentially holds interesting economic prospects for recovery and recycling, depending on the 

availability of a suitable process.   

For the integrated-planar SOFC stack, the breakdown in material value is much more evenly 

distributed between the five principal materials present, although the dominance of the inert 

ceramic substrate material to the overall material composition results in 40% of the value 

being contained in this fraction, despite the low cost.  When it is considered that the 

lanthanum-based cathode (LSM) and interconnect (LSC) materials have very similar chemical 

and physical properties, it is envisaged that recovery of these two fractions together could be 

economically beneficial.  The final set of results presented in Figure 7.12 are for the integrated-

planar SOFC stack, with palladium used in the interconnect in place of the lanthanum-based 

material.  In this scenario it can be seen that the high value of palladium dominates the total 

Figure 7.12: Estimated breakdown of material value for tubular, planar and integrated-planar SOFC stacks. 
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value of the stack.  In this case, economic priorities determine that efforts for material 

recovery and recycling should be focused on this high revenue material fraction, despite it 

representing less than 1% of the total material weight.  

7.4 Summary 

Design and material characteristics of three different SOFC stack concepts have been analysed.  

Despite commonalities in material selection for individual SOFC components, difference in 

design characteristics result in wide variations in overall material composition for tubular, 

planar and integrated-planar stacks.  These variations in material composition for future end-

of-life streams have an impact on the classification of waste under existing legislation, and 

hence may influence the actions necessary to ensure compliant processing at end-of-life.  

When life cycle impact assessment is applied to evaluate the inherent environmental impacts 

of the SOFC stacks, arising directly from the raw material production processes, these 

variations in material composition identify different priorities for recycling for tubular, planar 

and integrated-planar stacks.  Similarly, economic priorities for recycling differ between the 

three different concepts, based on the breakdown in inherent value for each stack design.  

These findings demonstrate the relationship between product design and priorities for end-of-

life management.  The integrated-planar SOFC stack is used as the focus of the research in 

Chapters 8, 9 and 10 of the thesis, where alternative end-of-life scenarios are defined and 

evaluated. 
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CHAPTER 8 END-OF-LIFE MANAGEMENT SCENARIOS FOR SOLID OXIDE 

FUEL CELLS 

8.1 Introduction 

This chapter describes the development of alternative end-of-life scenarios for SOFC stacks.  

After an introduction to the principal issues involved in end-of-life management, the three 

main steps of the end-of-life process are described in detail.  These include collection and 

sorting, reprocessing and redistribution.  Specific examples are provided to support 

development of feasible end-of-life scenarios.  Three scenarios are described, which form the 

basis of the case studies documented in Chapter 10.  Data collection methods used to define 

each scenario in order to perform environmental and economic evaluation and comparison are 

described. 

8.2 End-of-life management of the SOFC stack 

The life cycle of the SOFC stack, as illustrated in Figure 8.1, is integrated with the life cycle of 

the complete SOFC product.  For the purposes of this research the components of the SOFC 

Product, excluding the SOFC stack, are categorised together as the “SOFC system”.  This SOFC 

System incorporates systems for the processing and supply of fuel and air; exhaust and heat 
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Figure 8.1:  Product life cycle for the SOFC stack in the context of the complete SOFC 

product, illustrating the three principal steps within the end-of-life phase. 
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exchange systems; casing and insulation for the SOFC stack; all infrastructure associated with 

power conditioning and electrical connection to the customer; all external packaging and site 

infrastructure. The SOFC system element of the SOFC product is not considered in the 

development of end-of-life scenarios within the thesis.  It is assumed that for the majority of 

components within the SOFC system, existing end-of-life management routes exist, since many 

of the components are common to other commercially mature technologies and utilise 

materials, such as steel, for which mature recycling infrastructure is readily accessible.  This is 

in contrast to the SOFC stack, which comprises the fuel cells themselves and as such 

incorporates novel components and some uncommon, valuable and/or potentially hazardous 

materials for which end-of-life management processes have not been developed. In addition, 

the SOFC system is predicted to have a lifetime of around 20 years, during which period the 

complete SOFC stack will require replacement 3 or 4 times.  The generation of end-of-life SOFC 

stack will therefore occur frequently within the SOFC product life cycle, and the first end-of-life 

SOFC stack components will need to be dealt with within 4 or 5 years of the product’s 

installation.   Thus the development of an environmentally and economically viable end-of-life 

management solution for the SOFC stack, in compliance with the relevant legislative 

requirements, has been identified as a priority, based on the gap in existing knowledge, 

opportunities for value recovery, possible toxicity issues and the sheer quantity of end-of-life 

waste generated during the SOFC product life cycle. 

The disassembly of the SOFC stack from the SOFC product is a prerequisite for the subsequent 

end-of-life management steps.  This ease with which this operation can be completed is highly 

dependent on the design of the SOFC system, and the nature of the interface between the 

SOFC system and the SOFC stack.  As such, this process falls outside of the scope of the 

research.  For the purposes of the end-of-life scenarios developed in this chapter, it is assumed 

that the removal of end-of-life SOFC stack during maintenance and/or when the SOFC product 

reaches the end-of-life phase is readily achieved.   

Following disassembly of the SOFC stack from the SOFC product, three principal steps are 

defined within the end-of-life management phase.  These are illustrated within the life cycle 

diagram shown in Figure 8.1.  End-of-life management begins with the collection of the end-of-

life SOFC stacks from the customer, and finishes with the redistribution of all outputs from 

end-of-life processing operations within appropriate supply chains.  In the definition of 

alternative end-of-life scenarios for the SOFC stack, these three steps are considered.   
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8.2.1 Collection and sorting 

The overall efficiency of the end-of-life scenario will be significantly influenced by this first step 

in the end-of-life management process.  Failure to transfer end-of-life SOFC stack components 

from the customer into the appropriate reprocessing route has the potential to result in 

uncontrolled disposal, which in turn is likely to result in non-compliance, high environmental 

impact and/or high economic impact.  Following collection of end-of-life SOFC stack, some 

level of inspection is required to assess the suitability of the components as input to 

alternative reprocessing steps.  The factors influencing the collection and sorting of the end-of-

life SOFC stack are explored in detail in Section 8.3.  Transportation of end-of-life components 

between their site of origin and the reprocessing site is likely to be the most significant factor 

in determining the environmental and economic impacts of this step.  Compliance with 

legislation governing the domestic and international transportation of waste is a requirement 

of this step. 

8.2.2 Reprocessing 

Following collection and sorting, the end-of-life SOFC stacks will progress through the 

appropriate reprocessing route.  Sorting of components will define whether they are suitable 

for reuse, recycling or disposal.  Recycled components and materials may be reprocessed into 

useful inputs for the manufacture of further SOFC stacks, or as inputs for the manufacture of 

other products.  Reprocessing may result directly in the production of useable materials and 

components, or may produce crude materials requiring further processing. The options for 

reprocessing end-of-life SOFC stacks are discussed in greater depth in Section 8.4.   In this step 

of end-of-life management the environmental and economic impacts are likely to be complex, 

and will depend on the material and energy inputs and outputs associated with the selected 

reprocessing route.  Definition of these inputs and outputs is the primary objective in the 

second stage of the end-of-life management framework, and the approach developed in the 

research is described in Section 8.4.  Various compliance requirements, associated with 

legislation controlling waste processing activities, are relevant to this step in the end-of-life 

management process. 

8.2.3 Redistribution 

The reprocessing of end-of-life SOFC stack results in the production of new material or 

component flows, which require distribution to a new user.  In a closed-loop scenario, 

redistribution may be back to the fuel cell manufacturing facility, or to the original material 

supplier.  In an open-loop scenario, recycled materials may be sold for the manufacture of 
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other products.  In order to conserve resources it is intended that the majority of the material 

arising from the reprocessing of end-of-life SOFC stacks can be redistributed, with only minimal 

quantities of material requiring disposal.  The economic benefit achieved during the 

redistribution step is likely to play a significant role in influencing the overall economic viability 

of the end-of-life management process. 

8.3 Collection and sorting of end-of-life SOFC stack 

Generation of end-of-life SOFC stack will primarily arise during planned maintenance of the 

SOFC product, when the complete SOFC stack is replaced at regular intervals defined by the 

manufacturer.  According to current estimates the service life of a SOFC stack assembly will be 

in the region of five years.  Additional end-of-life SOFC stack assemblies will be generated at 

final decommissioning of SOFC products as well as during unplanned maintenance, in the case 

of premature failure of components.   

The commercial model adopted by the manufacturer of the SOFC product has the potential to 

significantly impact upon the efficiency of this first stage of the end-of-life management 

process.  Figure 8.2 illustrates alternative options for initial sales agreements and aftermarket 

care.  Where the manufacturer retains ownership of the SOFC product through a leasing 

agreement, the end-of-life SOFC stack will remain the property of the manufacturer.  In this 

situation the maximum level of control is maintained by the manufacturer, regarding the 

collection of end-of-life SOFC stack for reprocessing. Alternatively, the manufacturer may 

maintain a close relationship with the customer and product through provision of after-market 

services, such as a “TotalCare”-type agreement (Rolls-Royce plc, 2011b).  At the other extreme, 

ownership will transfer to the customer at point-of-sale, and, unless a contract for aftermarket 
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Figure 8.2:  Impact of the commercial model for SOFC products on the level of 

control retained by the manufacturer over end-of-life SOFC stack components. 
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care is arranged and maintained between manufacturer and customer, the manufacturer 

potentially loses all direct control over the fate of end-of-life SOFC stack.  

Despite these various commercial options, and the consequent variability in control over end-

of-life SOFC stack, in all situations the nature of the SOFC product is such that a high 

proportion of SOFC stack assemblies released into operation should be available for 

reprocessing when they reach end-of-life.  Evidence from the literature suggests that the larger 

and less portable the product, the higher the recovery rate for recycling. In addition, the fact 

that end-of-life SOFC stack will always require replacement with a new SOFC stack assembly 

(other than at final decommissioning of the SOFC product) a relationship with the 

manufacturer will need to be maintained in all cases.   

This research therefore assumes that the environmental and economic impacts arising during 

the end-of-life phase of the SOFC stack life cycle can be predicted based on the development 

and implementation of an appropriate end-of-life management process. In contrast to highly 

dispersed products with uncertain end-of-life fates, these environmental and economic 

impacts may be considered with confidence to contribute to the total life cycle impacts of the 

SOFC product.   Environmental and economic impacts arising during this initial step of the end-

of-life management process are most likely to arise from transportation requirements 

between the SOFC product operating site, where the end-of-life SOFC stacks are generated, 

and the site at which initial reprocessing steps will be carried out.  Given the potential for 

global marketing of SOFC products, these transportation requirements could be significant, 

and will depend substantially upon the location and number of reprocessing sites available.  

Compliance with legislation governing domestic and international transportation of waste, as 

well as waste storage, is relevant to this initial step in the end-of-life management process. 

8.4 Reprocessing of end-of-life SOFC stack 

Within the waste management hierarchy, the reuse of end-of-life products is preferential to 

the recycling of the materials contained within them.  It is envisaged that, as the SOFC product 

gains maturity, exploration of opportunities for the repair/remanufacture and reuse of SOFC 

stack components will be required.  This will be especially important for SOFC stack assemblies 

which fail prematurely, and where considerable life is left in the majority of the components.  

However, various characteristics of the SOFC stack and its function determine that any 

repair/remanufacturing operations will be technically challenging.  The electrochemical 

mechanisms by which the fuel cell operates require high material purity, and even low levels of 

contamination could severely impact reliability, durability and performance.  Based on the 
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premise that the majority of end-of-life SOFC stack components will be removed from the 

SOFC product after completion of the planned service period, the reprocessing step in the end-

of-life process, for the purposes of this thesis, concentrates on material recycling, rather than 

the repair of components for reuse. 

Figure 8.3 illustrates the range of options for end-of-life processing which can be applied to the 

end-of-life SOFC stack.  Following the collection of the end-of-life assemblies an initial sorting 

process is applied in order to segregate components for which reuse opportunities exist, from 

those which have lost their value as components and can be considered to represent mixed 

materials.  Further disassembly operations may be applied to SOFC Stack components, as 

preparation for subsequent material separation and recycling steps.  Following the segregation 

of useful components, the remaining material is available for reprocessing.  Depending on the 

process technologies available it may be feasible to separate the mixed material into a number 

Figure 8.3:  Overview of alternative processing routes for end-of-life solid oxide fuel cells 
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of different material-flows, prior to recycling.  In particular, the isolation of valuable materials 

from the bulk material portion may support the obtainment of high recovery yields.  Similarly, 

segregation of hazardous materials may reduce the risks associated with reprocessing the non-

hazardous bulk material stream, ensuring that the tightest controls are applied to the 

management of the hazardous portion.  In a less sophisticated recycling route, the mixed 

material arising from the end-of-life SOFC stacks may directly form the input to the recycling 

process.   

Following recycling, materials may be produced with application in the manufacture of new 

SOFC stacks (reuse).  Alternatively, recycled materials may be suited to other high value 

applications (up-cycling) or may only be suitable for low value applications (down-cycling).  

Residual materials from the recycling process are those which have no direct application or 

value, and thus are suitable only for disposal.  Figure 8.3 also shows the possibility that 

components and/or mixed materials from the end-of-life SOFC stacks may be directly disposed 

of, with no material recycling.  Options for each of the process stages highlighted in Figure 8.3 

are discussed in the following sections. 

8.4.1 Disassembly options for end-of-life SOFC stack components 

Disassembly options for end-of-life SOFC stacks are considered in the context of subsequent 

material separation and recycling processes.  Figure 8.4 illustrates some disassembly options 

a. Cutting/breaking to 

remove metallic 

components 

b. Cutting/breaking to 

segregate dense 

ceramic components 
c. Cutting/breaking to 

segregate individual 

ceramic plates 

Image of SOFC stack © 2009 Rolls-Royce Fuel Cell 
Systems Limited, used by permission. All rights reserved. 

 
Figure 8.4:  Disassembly options for end-of-life SOFC stack assemblies, 

prior to material separation and recycling operations. 
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considered in the research.  The strip assembly shown in Figure 8.4 is the lowest level 

assembly which can be removed from the SOFC stack without the need for any mechanical 

intervention.  This strip assembly is constructed from porous ceramic plates, each with a layer 

of cells printed on both flat faces.  Dense ceramic components form manifolds on one end of 

the assembly, through which fuel is distributed during operation.  Metallic components allow 

the connection of fuel pipes for the delivery of the fuel gas.  Ceramic and glass-based materials 

are used to join components and ensure gas-tight seals. 

Disassembly options a and b (Figure 8.4) allow for the segregation of different material types.  

The metallic components are likely to act as contaminants for any recycling steps developed 

for the ceramic fuel cells.  These can simply be removed from the strip assembly by means of 

cutting or, more crudely, breaking the joint with the dense ceramic manifolds.  In a more 

complex operation, the dense ceramic components can be segregated from the porous 

ceramic plates by cutting or breaking the joints between these two material types.  This level 

of segregation allows the separation of a heavy, uniform material fraction from a relatively 

light fraction which incorporates a mix of hazardous and potentially valuable materials. 

Within the stack assembly, access to the surfaces of the flat ceramic plates on which the active 

layers of the fuel cell are printed is restricted by adjacent plates. Therefore disassembly of the 

stack into individual plates, illustrated as disassembly option c in Figure 8.4, introduces 

additional opportunities for material separation.  Surface treatment of individual plates, by 

either mechanical or chemical processing, has the potential to segregate the materials present 

in the fuel cell anode, electrolyte, cathode and current collectors, from the bulk ceramic 

substrate. 

8.4.2 Material separation options for end-of-life SOFC stacks 

Various material separation methods were explored within the research, with the specific aim 

of separating the inert ceramic material, used in the substrate, from the materials present in 

the active fuel cell layers.  These materials, characterised in Chapter 7, include hazardous 

materials and, potentially, valuable materials. Efficient processes require good separation to 

be achieved, in combination with high recovery rates.  The processes were classified into 

mechanical separation methods, chemical separation methods and combined separation 

methods.  Experimental work investigating novel material separation methods was conducted 

by researchers at the Singapore Institute of Manufacturing Technology (SIMTech), in 

collaboration with Rolls-Royce Fuel Cell Systems Limited. 
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8.4.2.1 Mechanical separation methods 

Mechanical material separation of the active fuel cell layers from the substrate requires access 

to the surface of each ceramic plate component.  Therefore, it is necessary to carry out 

disassembly option c (Figure 8.4), prior to any further processing.  Various mechanical 

processes are potentially suitable for the removal of the printed fuel cell materials from the 

ceramic substrate.  Figure 8.5 illustrates the use of mechanical grinding, which is effective in 

removing the fuel cell surface layer, resulting in a clean ceramic plate.  Alternative methods, 

including the use of water jet, have been trialled with limited success.   

The biggest challenge in using mechanical methods for material separation lies in the recovery 

of the removed fuel cell layers for further reprocessing and material recycling.  Given the 

breakdown in value associated with the IP-SOFC stack design (Chapter 7), it is essential that 

the surface layers are recovered efficiently.  In addition, the experimental work conducted on 

this process dealt only with small sections of fuel cell components.  For a feasible industrial 

process a high degree of automation would be necessary.   It is envisaged that, with 

appropriate investment, an automated system for surface grinding individual components 

could be developed, with the active fuel cell layers recovered from used grinding slurry.  This 

material separation method was investigated in more detail in the case studies conducted in 

the research, and reported in Chapter 10 of the thesis.  

Other mechanical processes were investigated as methods for the pre-treatment of end-of-life 

SOFC stacks, prior to recycling operations.  Destructive processes, in particular milling, were 

found to be effective in treating whole SOFC components, such as the strip assembly shown in 

Figure 8.4.  Removal of the metallic components (disassembly option a) is desirable, prior to 

the commencement of milling.  The process was sufficient to pulverise even the dense ceramic 

components, and high recovery yields were obtained from a high volume trial (approximately 

500 kg SOFC Stack).  Process time, and associated energy requirements, could be reduced by 

(a) End-of-life SOFC 
stack component 

(b) Ceramic substrate 
after surface grinding 

Figure 8.5:  Illustration of a mechanical separation method. Surface grinding of the SOFC stack component 

(a) results in the removal of active layers from the ceramic substrate (b). (Tay et al., 2008). 

Images third party copyright 
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first removing the dense ceramic components.  This destructive pre-treatment process has the 

benefit of destroying all intellectual property associated with the physical design of the  

IP-SOFC concept.  This may be an attractive option for the SOFC manufacturer if there are 

significant concerns about the protection of the intellectual property contained within the 

materials sent to a third party for recycling.   

8.4.2.2   Chemical separation methods 

The different chemical properties of the ceramic substrate material, in comparison to the 

printed fuel cell layers, allow selective chemical attack to be engineered to facilitate the 

separation of these two material fractions.  Chemical separation methods are potentially 

suitable for application to complete SOFC stack assemblies, such as the strip assembly shown 

in Figure 8.4; individual SOFC components, achieved by carrying out disassembly option c 

(Figure 8.4); or pulverised material achieved by milling, as described in Section 8.4.2.1 above.  

Figure 8.6 illustrates the result of experimental work carried out into alternative chemical 

separation methods.  In this case, the active fuel cell layers were removed from the ceramic 

substrate following treatment with an acid solution, and the fragments could be readily 

recovered.   

It is envisaged that more advanced chemical processes could be developed to allow the 

selective dissolution and subsequent precipitation of materials contained within the IP-SOFC 

stack.  These processes were not investigated fully within the experimental work contributing 

to the research presented within the thesis.  Chemical separation methods are not considered 

in the case studies presented in Chapter 10. 

(a) End-of-life SOFC 
stack component 

(b) Ceramic substrate 
following chemical 
treatment 

(c) Recovered fragments 
of active layer 
materials 

Figure 8.6:  Illustration of a chemical separation method. Chemical treatment of the SOFC 

Stack component (a) results in the removal of fragmented active layers (c) from the surface 

of the ceramic substrate (b). (Tay et al., 2008) 

Images third party copyright 
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8.4.2.3 Combined separation methods 

Materials separation can also be achieved using a combination of methods.  Within the 

experimental work which contributed to the research presented in the thesis, a materials 

separation method was developed, the results of which are illustrated in Figure 8.7.  Initially, 

end-of-life SOFC Stack components were exposed to a pressurised steam environment.  This 

resulted in chemical attack of the ceramic substrate.  The ceramic substrate disintegrated in 

this environment into a fine powder, causing the active layers of the fuel cell to fragment.  

Differential particle size between the fine ceramic powder and the fragmented active layers 

allowed efficient recovery of the two material types by sieving of the dried material.  The 

dense ceramic components were attacked in a similar manner to the ceramic substrate, 

causing them to break down into large fragments.  This materials separation method was 

investigated in a case study, the results of which are presented in Chapter 10. 

8.4.3 Recycling options for end-of-life SOFC stacks 

For some of the materials within the end-of-life SOFC stacks, well-established recycling 

processes are commercially available.  The recycling of these materials is therefore considered 

to be viable, with the adoption of existing methods and processes.  Other materials, such as 

the low-value ceramic substrate, are suitable candidates for down-cycling, to be redistributed 

in low grade applications such as road-fill and as a structural filler.  Recycling processes within 

the end-of-life scenarios investigated in the case studies are described in detail in Chapter 10.  

These are primarily concerned with the recovery of valuable materials from end-of-life SOFC 

stack components. 

Figure 8.7:  Illustration of a combined separation method. Following exposure to a pressurised 

steam environment, active layer fragments (a) and dense component fragments (c) can be 

separated from the bulk ceramic powder (b). (Tay et al., 2008) 

(a) Fragmented active 
layer materials 

(b) Disintegrated ceramic 
substrate material 

(c) Fragmented dense 
components 

Images third party copyright 
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8.5 Redistribution of recovered materials 

Redistribution is the final step in the end-of-life management process, as shown in Figures 8.1 

and 8.3.  Redistribution requires there to be a market for the material outputs from the 

reprocessing of end-of-life SOFC stacks.  In the absence of such a market, disposal is the only 

remaining option. 

8.5.1 Redistribution of recycled materials 

As shown in Figure 8.3 various options are available for redistribution of recycled materials.  In 

a closed-loop scenario, recycled materials are supplied directly back to the manufacturer of 

the SOFC stack, for reuse in the production of new SOFC stack assemblies.  In a true closed-

loop system the same material is reused continuously by the manufacturer.  This could be 

achieved in a situation where a bespoke recycling plant is established to process waste from 

end-of-life SOFC stacks.  In reality, most industrial recycling processes will combine input 

material from various sources, thus losing the identity of specific material flows.  The viability 

of closed-loop recycling is heavily dependent on the geographic location of the recycler, in 

relation to the manufacturing plant.  If the two locations are close together, it may be viable 

for the manufacturer to purchase material directly from the recycler.  If the two sites are 

remote, it may be preferable for the SOFC manufacturer to source recycled material from a 

local supplier, and the recycler to supply recycled material from SOFC stacks to a local 

customer.  This may eliminate economic and environmental impacts associated with 

transportation of materials. 

Where the recycled material is redistributed for use in a higher value application, the term up-

cycling is applicable.  Up-cycling may potentially be realised for high value materials, such as 

precious metals, where material recovered from end-of-life SOFC stacks could be reused in the 

manufacture of jewellery or other value-added products.  Down-cycling is likely to be realised 

for materials which are inherently low in value, or which are not re-processed to a high enough 

purity to render them suited to their original or equivalent application.  In terms of the IP-SOFC 

Stack, the ceramic substrate material must be free from trace contaminants, in order to 

prevent chemical disruption to the electrochemical processes required for efficient operation 

of the fuel cells.  Therefore, it is unlikely that a commercially available recycling process would 

deliver recycled ceramic suitable for reuse or even up-cycling.  This low value material is likely 

to be down-cycled.   

The economic gains achieved from the redistribution step of the end-of-life management of 

SOFC stacks will provide the majority of the “benefits” included in the cost-benefit analysis, 
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described in Chapter 9.   This step is therefore critical in defining the viability of alternative 

end-of-life scenarios.  

8.5.2 Disposal options for end-of-life SOFC stacks 

Without development of a suitable alternative end-of-life process, or the existence of suitable 

markets for the redistribution of recycled materials, disposal of end-of-life SOFC stacks 

constitutes the only available option open to SOFC manufacturers.  As discussed in the review 

of legislation in Chapter 4, disposal to landfill is increasingly unacceptable, both from a 

regulatory perspective and based upon public perception.  This is especially relevant to SOFC 

technology which will be marketed on its environmental credentials.  In addition to the 

legislative climate, the nature of the materials contained within the SOFC stack act as a further 

barrier to disposing of the end-of-life product in landfill.  In particular, the valuable material 

content provides a real incentive for at least some level of recycling to be carried out, and the 

hazardous materials present in the SOFC stacks only serve to increase the administrative 

burden associated with disposal.  One of the primary aims of the research presented in the 

thesis is to support the development of an end-of-life process route for SOFC stacks which 

minimises the amount of material disposed of to landfill. 

8.6 Scenario development for end-of-life management of solid oxide fuel cells 

Three alternative scenarios for end-of-life processing of SOFCs have been developed (Figure 

8.8) for investigation in the case studies presented in Chapter 10.  These scenarios are based 

on the reprocessing options described in this chapter.  Scenarios 1 and 2 incorporate 

disassembly and material separation process steps, in which the ceramic substrate material is 

separated from the fuel cell active layers.  All three reprocessing scenarios use a commercially 

available recycling process for the recovery of valuable materials for subsequent 

redistribution. These scenarios have been developed based on laboratory-scale feasibility 
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studies conducted by the Singapore Institute of Manufacturing Technology, in collaboration 

with Rolls-Royce Fuel Cell Systems Limited.  Scenario 3 has been developed based on industrial 

trials conducted during the course of the research.   

While it would have been possible within the research to combine the various disassembly, 

material separation and recycling process steps in different ways, thus creating a greater 

number of end-of-life scenarios, it was decided that a comparison of three distinct processes 

would be sufficient for the purposes of demonstrating the application of the framework for 

end-of-life management.  However, the flexible nature of the framework is such that any 

number of alternative end-of-life process routes could be defined, evaluated and compared.  

In an industrial environment, it is likely that process comparison would be limited to a short-

list of alternatives, based on initial feasibility studies including considerations such as the 

availability of suppliers to deliver the required processes.  Thus it was decided that the 

development of only three end-of-life scenarios for evaluation in the case studies would 

demonstrate the application of the framework in a manner representative of its industrial 

application.  This is consistent with the overall aim of the research which is not to define an 

optimised end-of-life solution for SOFC stacks, but rather to explore the issues involved in end-

of-life management of this novel technology, and to present an approach by which these 

issues may be addressed. 

8.6.1 Scenario 1: Mechanical separation with selective recycling 

This scenario is illustrated in Figure 8.9.  At the collection and sorting stage, the end-of-life 

stack is sorted into SOFC assemblies, where individual ceramic plates are joined together, and 

SOFC components consisting of individual ceramic plates.  This scenario is not suited to 

treating SOFC components which are badly damaged at end-of-life.   

The initial step in the reprocessing route is the disassembly of the large SOFC assemblies.  

Alternative processes may be suitable for application at this stage, and include cutting, either 

with blade, laser or water jet.  Alternatively, force may be applied at the manifold-manifold 

bond to break the seal between individual plates.  Cutting with a blade is considered to be the 

simplest and quickest method of disassembly at this stage, resulting in individual ceramic 

plates and a separate material stream comprising the dense ceramic manifold assemblies. 

The individual SOFC components require further reprocessing steps to be applied.  The initial 

process step is the removal of the printed active materials from the ceramic plates.  In this 

scenario, a mechanical process is applied.  Grinding has been selected as the most appropriate 
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method available.  The valuable material is collected in the slurry used in the grinding process, 

and as such the viability of this scenario is dependent on the development of a suitable 

material recovery process.  This mechanical separation step results in the generation of two 

material streams; the high volume stream being the remaining ceramic plates, which now 

represents a clean and homogenous material composition, with the waste being in component 

form, and the low volume stream being the active materials from the anode, cathode, 

electrolyte and current collector components of the fuel cell.  These active materials then 

require further processing in a precious metal recovery plant.  A proportion of the ceramic 

substrate will be abraded with the active layers and will form part of the total material 

composition of this stream. 

In this scenario four material streams are produced for redistribution.  These comprise the 
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Figure 8.9:  Scenario 1 reprocessing route. 
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dense ceramic components, the ceramic plates, the recovered precious metal, and the residual 

material from the precious metal recovery process. 

8.6.2 Scenario 2: Chemical-mechanical separation with selective recycling 

In the second scenario (Figure 8.10), the input to the reprocessing route can be complete end-

of-life assemblies, individual SOFC components or fragmented SOFC components.  The end-of-

life SOFC stack is placed in a steam environment, under pressure and at an elevated 

temperature.  The steam reacts with the ceramic substrate material and causes the physical 

structure of the ceramic to be broken down.  The active layer materials are not affected by the 

steam, and become segregated from the ceramic bulk as flakes.  The differential particle size 

resulting, following the steam treatment, allows the individual material streams to be 

segregated by sieving. 
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Figure 8.10:  Scenario 2 reprocessing route. 
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The steam treatment has been demonstrated at laboratory scale, but may be facilitated at 

larger volume by the use of a large steam autoclave.  Commercially available equipment would 

require adaptation to be suitable for industrial scale application of this reprocessing route. 

8.6.3 Scenario 3: Non-selective recycling 

The final scenario developed in the research is non-selective recycling of the end-of-life SOFC 

stacks.  In this scenario (Figure 8.11), the end-of-life components are mechanically crushed 

into a fine powder, and then subjected to a conventional precious metal recovery process.  

This is a similar process to that utilised for the recovery of platinum group metals from 

ceramic-based catalytic converters.  The process has been well developed to produce high 

yields of precious metal, and the resulting slag finds application in various down-graded 

material applications, such as in road-fill or in construction materials. 

Figure 8.11:  Scenario 3 reprocessing route. 
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8.6.4 Critical overview of alternative end-of-life scenarios for SOFCs 

The three scenarios identified in Section 8.4 have different characteristics, and the results 

regarding their compliance with legislation, environmental and economic performance are 

presented and discussed in the case studies reported in Chapter 10.  However, based on the 

descriptions presented in the current chapter, some initial observations can be made based on 

a comparison of the three process routes.  These general observations are summarised in 

Table 8.1. 

All three scenarios utilise a commercially available process for precious metal recovery as the 

final process step.  The differences between the three scenarios therefore lie in the preceding 

treatment steps.  With regard to the practical feasibility of the three scenarios, four aspects 

are identified as being significant.   

The second aspect considered is process availability, which relates to the availability of suitable 

processing technology for application to the end-of-life management of SOFC stacks.  In the 

process routes proposed for scenarios 1 and 2, equipment suitable for carrying out the 

individual process steps is commercially available, but would require adaptation before being 

suited to application at an industrial scale.  In particular, the development of automated 

systems is envisaged to be necessary to allow these process routes to become practically 

viable.   

Thirdly, process flexibility is considered, in particular with relation to the form of the input 

material.  It is envisaged that the physical condition of end-of-life SOFC Stacks may vary, 

depending on the conditions to which they have been exposed during operation.  Especially in 

the case of premature failure it is feasible that components may be broken.  Disassembly of 

the SOFC Stack from the SOFC product may also result in breakages to components.  Scenarios 

2 and 3 are completely flexible with regard to the physical condition of the input material, 

since in both cases the initial step is destructive.   

Finally the output from the process is considered, in terms of the number of different material 

streams arising from the processed end-of-life assemblies, as well as opportunities for 

redistribution of these material streams to profitable applications.  In all cases, the precious 

metal fraction of the SOFC Stack is recovered for redistribution in high value applications.  

Scenarios 1 and 2 also yield a clean ceramic fraction, which may find application in mid value 

markets.  In scenario 3 all materials, other than the precious metal, are combined in the slag 

from the recycling process and are unlikely to be suited to anything other than very low value 

applications. 
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8.7 Scenario definition for evaluation and comparison 

In order to quantitatively evaluate and compare alternative end-of-life scenarios, it is 

necessary to define each scenario specifically, in terms of input and output flows of materials, 

energy, waste and emissions.  Each of these input and output flows will have an associated 

environmental and/or economic impact.  Data to support the definition of parameters will be 

collated from a variety of sources, as illustrated in Figure 8.12.  It is envisaged that theoretical 

or estimated data from the literature could be used initially to scope out new end-of-life 

scenarios.  As the processes incorporated in these end-of-life scenarios become better 

understood, through practical trials at laboratory and then industrial scale, more robust data 

can be generated and utilised to provide a higher level of confidence in the output generated 

Table 8.1:  Comparison of end-of-life scenarios 1, 2 and 3 with respect to practical implementation. 

 Scenario 1 
Mechanical separation with 

selective recycling 

Scenario 2 
Chemical-mechanical separation 

with selective recycling 

Scenario 3 
Non-selective recycling 

Process 
complexity 

• Three process steps 
required, prior to precious 
metal recovery.  

• Some specialist handling 
of components and 
assemblies required. 

• Two process steps required, 
prior to precious metal 
recovery.   

• Non-specialist handling of 
components and assemblies 
required 

• One pre-treatment step, 
prior to precious metal 
recovery. 

• Non-specialist handling 
of components and 
assemblies required 

Process 
availability  

• Technology is 
commercially available. 

• Development required to 
provide bespoke set-up, 
including automation. 

• Technology is not currently 
commercially available. 

• Existing technology may be 
readily adapted for this 
application, with some 
development effort required. 

• Technology is 
commercially available 
and currently in use. 

• No technology 
development required. 

Process 
flexibility 

• Input material can be in 
component or assembly 
form, but an initial 
disassembly step is 
required. 

• Process is dependent on 
components being whole, 
and retaining physical 
structure during 
processing. 

• Input material can be in 
component or assembly form.   

• Physical condition of end-of-
life components is not an 
influencing factor.   

• Input material can be 
in component or 
assembly form.   

• Physical condition of 
end-of-life components 
is not an influencing 
factor. 

Process 
output 

Process produces  

• clean ceramic fraction 
(component form) 

• precious metal fraction 

• residual materials 
(amalgamated in slag 
from the precious metal 
recovery operation) 

Process produces  

• clean ceramic fraction 
(powder/fragment form) 

• precious metal fraction 

• residual materials 
(amalgamated in slag from the 
precious metal recovery 
operation) 

Process produces  

• precious metal fraction 

• all other SOFC Stack 
materials 
(amalgamated in slag 
from the precious 
metal recovery 
operation) 
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by the individual criteria evaluations and the decision support tool.  The ability to apply the 

framework for end-of-life management of SOFCs to scenarios for which data availability is poor 

is essential in facilitating early consideration of alternative and novel end-of-life scenarios. 

Data collation and manipulation is performed in Excel, and all assumptions documented to 

maintain transparency.   The quantitative definition of alternative end-of-life scenarios is 

exemplified through the completion of case studies, documented in Chapter 10. 

8.8 Summary 

This chapter has broken down the end-of-life management process into three principal steps, 

namely collection and sorting of end-of-life components; reprocessing of end-of-life 

components using a variety of disassembly, material separation and recycling processes; and 

redistribution of materials produced from the reprocessing operations.  Specific examples have 

been provided of methods and approaches which may be applied to the development of 

practically feasible solutions for the management of end-of-life SOFC stacks.  Three scenarios 

have been described, by which end-of-life SOFC stacks can be reprocessed into useful 

materials for redistribution.  A method for defining each scenario, in terms of input and output 

flows, has been presented.  The application of this method is demonstrated in Chapter 10, 

where case studies evaluate and compare the three scenarios described in this chapter, using 

the evaluation methodology described in Chapter 9.  

Figure 8.12:  Data sources for definition of end-of-life scenarios, showing progression from initial 

concept to established process. 
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CHAPTER 9 EVALUATION OF END-OF-LIFE MANAGEMENT SCENARIOS 

FOR SOLID OXIDE FUEL CELLS 

9.1 Introduction 

In this chapter the methods used to evaluate alternative end-of-life management options for 

the SOFC stack are developed.  An evaluation methodology is defined, which includes a risk 

assessment method for the evaluation of legislative compliance; the use of life cycle 

assessment to evaluate environmental impact; and the use of cost-benefit analysis to evaluate 

economic impact.  These individual evaluation methods and their application within the 

framework for end-of-life management of SOFC stacks are described.  Finally, a multi-criteria 

decision support tool is presented, which has been developed within the research to support 

comparison of alternative end-of-life solutions within the framework.   

9.2 Evaluation requirements for alternative end-of-life scenarios 

The review of legislative requirements for end-of-life and waste management in Chapter 4 

identified various aspects of relevance to the management of wastes arising from the end-of-

life SOFC stack waste stream.  Some requirements are applicable today, based on existing 

legislation.  In addition to these existing requirements, the identification of trends in legislative 

development highlights a need to anticipate future requirements, likely to be introduced 

within the timescales required for full scale commercialisation of SOFC technology to be 

achieved.  Any end-of-life option identified as failing to meet existing legislative requirements 

must be immediately discarded as unsuitable.  Compliance with future legislative requirements 

cannot be evaluated with such clarity, since although future requirements can be predicted, 

their exact nature cannot be determined.  Therefore an end-of-life option identified as running 

a low risk of future non-compliance would be favoured over an alternative option identified as 

high risk. 

In addition to meeting legislative requirements, it is important that end-of-life waste from 

SOFC stacks is managed in a way which strives to minimise detrimental impacts on the local 

and global environment.  This is necessary both to demonstrate good business practice on the 

part of the manufacturer, and to ensure that the attractive environmental benefits of the fuel 

cell product are not marred by a failure to deal with this waste stream in a responsible 
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manner.  Bad publicity regarding any aspect of the fuel cell product’s life cycle may 

substantially damage market penetration. 

To ensure that an end-of-life management option is realistic in a business environment it is 

also necessary that the cost of dealing with the end-of-life SOFC stack does not compromise 

the commercial feasibility of the product.  One of the primary barriers to achieving full scale 

commercialisation of SOFC technology is cost.  A good management solution for the end-of-life 

SOFC stack would therefore demonstrate a low cost-benefit ratio. 

The requirement to consider all of the above when evaluating end-of-life options for the end-

of-life SOFC stack is demanding: issues of compliance, environmental impact and cost are 

individually complex, and may conflict.  A two-stage evaluation methodology has been 

developed, which assesses each criterion (compliance, environmental impact and cost) 

individually, and then combines the individual outcomes to provide a single performance 

score.  The evaluation methodology is depicted in Figure 9.1. 

In Stage 1 of the evaluation methodology shown in Figure 9.1, the three performance criteria 

(compliance, environmental impact and cost) are considered in parallel.  Within the 

compliance evaluation, existing and future legislative requirements are considered separately.  

Since non-compliance with existing legislation cannot be accepted in an end-of-life 

management scenario, any options identified as being non-compliant must be discarded or 

revised, regardless of their environmental or economic performance.  A risk assessment 

Compliance 
evaluation 

Environmental 
evaluation 

Economic 
evaluation 

Risk score Impact factor Cost-benefit ratio 

RA LCA CBA 

Multi-criteria evaluation tool 

Final score 

E2LM 

 

Figure 9.1:  High level view of evaluation methodology for SOFC stack end-of-life management 
 

Stage 1 

Stage 2 

End-of-life scenario 
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method (RA) is used to identify the risk of non-compliance with future legislation.  The 

development of this compliance evaluation tool is presented in Section 9.3.  To evaluate 

environmental impact, the application of life cycle assessment (LCA) has been developed for 

use in this evaluation methodology, and is described in Section 9.4.  In Section 9.5 a cost-

benefit analysis (CBA) tool is presented as a means of conducting an economic evaluation of 

alternative end-of-life options.   

The individual outputs from the RA, LCA and CBA tools provide three performance measures 

for an end-of-life scenario.  When two or more end-of-life scenarios are compared, these 

performance measures may not readily identify a single preferred solution, since conflicts are 

likely to arise between the criteria.  A multi-criteria evaluation method is therefore required to 

define priorities and combine the individual scores into a single performance parameter.  The 

E2LM tool (Environmental, Economic and Legislative Management at end-of-life) has been 

developed for this purpose and is presented in Section 9.6.  This forms Stage 2 of the 

evaluation methodology shown in Figure 9.1.  Application of the E2LM tool, in combination 

with the Stage 1 evaluation tools, is demonstrated through case studies in Chapter 10. 

Throughout this chapter, the formats in which results are presented from the various 

evaluation tools are illustrated using example data.  It should be noted that the numerical 

values of these data have been generated for illustrative purposes only, and therefore do not 

relate to the evaluation of real end-of-life scenarios. 

9.3 Evaluation of compliance using a risk-based model 

Compliance with environmental legislation is the first of the three criteria evaluated within the 

methodology illustrated in Figure 9.1.  A two-stage process is required for the evaluation of 

this performance metric.  This two-stage process addresses the following two questions: 

• Does the end-of-life scenario comply with existing legislation? 

• What is the risk of the end-of-life scenario failing to comply with future legislation? 

In the first instance, failure to comply with the requirements established by existing legislation 

identifies the end-of-life scenario as being unsuitable for further consideration.  Some 

modification may be applied to the end-of-life scenario at this stage to address the non-

compliance identified in the evaluation, or the scenario may simply be discarded.  In the 

second instance, the evaluation considers compliance with future legislation: a risk-assessment 

evaluation tool has been developed to provide a systematic means of evaluating and 

quantifying the risk of non-compliance.  A risk-based method was identified as being an 
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appropriate approach to this part of the evaluation, since a substantial level of uncertainty 

remains as to the exact nature of future legislative requirements.  Alternative quantitative 

methods, such as the monetisation of legislative risk, require the generation of numerical data, 

based on a range of assumptions.  Therefore the outcomes maintain a high degree of 

uncertainty, which may be masked by the presentation of results in absolute monetary terms.  

For this reason, and based on the fact that risk assessment is a well-established process which 

is simple to perform and is a familiar tool in industries such as Rolls-Royce Fuel Cell Systems, 

the evaluation method described in Sections 9.3.1 and 9.3.2 were developed. An overview of 

the evaluation method for legislative compliance is shown in Figure 9.2. 

9.3.1 Evaluation of compliance with existing legislation 

The evaluation of compliance with existing legislation adopts a high level approach, with the 

intention of highlighting any significant non-compliance issues.  This high level approach 

assumes that local health, safety and environment (HSE) regulations are adhered to.  It is 

envisaged that SOFC manufacturers would have robust health, safety and environmental 

management systems in place for everyday operational activities, and that collaboration with 

industrial partners for implementation of end-of-life processes would be subject to the normal 

auditing process applied to the supply chain.   

These assumptions are reflected in the questionnaire developed to evaluate compliance with 

existing legislative requirements, shown in Figure 9.3.  The questionnaire is in two sections.  

The purpose of the first section of the questionnaire is to highlight any aspects of the end-of-

(1) Evaluate compliance 
with existing legislation 

(2) Evaluate compliance 
with future legislation 

COMPLIANT 

Environmental 
evaluation 

Economic 
evaluation 

Modify end-of-life 
scenario 

Risk 
score 

Multi-criteria evaluation tool 

Figure 9.2:  Detail of the evaluation method for legislative compliance. 

Discard end-of-life 
scenario 

End-of-life scenario 

NON-COMPLIANT 
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life product or end-of-life process which are likely to require specific consideration when 

ensuring that local HSE procedures are adhered to.  These primarily relate to the presence of 

hazardous materials and the management of hazardous waste.  The use of hazardous 

materials in the SOFC stack, or in the end-of-life process, does not in itself represent non-

compliance with existing legislative requirements, but does lead to a risk of non-compliance if 

local management procedures are not robust.  In this section of the questionnaire, the 

questions are designed such that a negative response highlights a need for close management 

controls to be applied at the local level.  These negative responses appear in amber, designed 

to represent a risk of non-compliance, as well as indicating an opportunity for improvement. 

The second section of the questionnaire is concerned with specific compliance issues.  In this 

section a negative response appears in red, indicating non-compliance.  The overall result from 

this first step in the evaluation of legislative compliance designates the end-of-life scenario as 

being “COMPLIANT” or “NON-COMPLIANT”.  “COMPLIANT” scenarios may contain a number of 

amber responses, highlighting the importance of local governance.  Any scenario containing a 

red response is evaluated as being “NON-COMPLIANT”.  According to the methodology shown 

in Figure 9.2, a “NON-COMPLIANT” result directs the user to discard or modify the end-of-life 

scenario under evaluation.  A “COMPLIANT” result directs the user to the next step of the 

legislative risk assessment. 



 

Figure 9.3:  Standard questionnaire for the evaluation of compliance with existing legislative requirements. 

  

No

Yes

Yes

No

No

Yes

Yes

No

Proceed to the next step

EXAMPLE SCENARIO: Compliance with existing legislative requirements

EXAMPLE 
SCENARIO is

If this assessment finds the scenario to be NON-
COMPLIANT  no further evaluation steps are 
completed.  NON-COMPLIANT scenarios may be 
modified by the user and the evaluation process                
re-started, based on the modified scenario.

NEXT 
STEP

The first step in the legislative compliance risk 
assessment requires the user to complete a 
questionnaire which identifies any non-compliance 
with  existing legislative requirements .  Drop down 
menus are used to provide a yes  or no  answer to 
each question.                                                          

If this assessment finds the scenario to be   
COMPLIANT the evaluation proceeds to the next step.  

For some existing legislative requirements, compliance 
can be achieved by implementing management plans 
for identified risks.  These requirements are evaluated 
in the first section of the questionnaire.  In this section, 
answering a question no highlights a management 
requirement which must be addressed at a local level.

Some existing legislative requirements require 
compliance, based directly on the proposed end-of-life 
scenario.  These requirements are evaluated in the 
second section of the questionnaire.  In this section, 
answering a question no identifies the scenario as 
being NON-COMPLIANT .

NON-COMPLIANT

COMPLIANT

and must be discarded or 
modified.

assuming local observation of health, 
safety and environment regulations.

The international shipment of hazardous waste requires a permit from the 
relevant authorities in the countries of export and import.

Does all  waste disposed of in landfil l  undergo pre-treatment to 
reduce the hazard associated with it and/or its volume?

Is the international shipment of wastes to non-OECD countries 
restricted to materials which are classified as "non-hazardous"?

Is the international shipment of wastes to OECD countries 
restricted to materials which are classified as "non-hazardous"?

Existing legislative requirements which require compliance

Local regulation must be complied with when handling, storing and transporting 
hazardous materials.

Local regulations must be complied with when handling, storing and transporting 
hazardous waste.

Local regulations must be complied with when using hazardous materials in any 
end-of-life processes.

GUIDANCE NOTES

Local health, safety and environment regulations must be complied with.

For all  individual material flows generated within the end-of-l ife 
scenario,  is the concentration of any hazardous material present 
below the classification l imit for hazardous waste?

Existing legislative requirements which require management

Does the end-of-l ife process avoid the generation of any 
emissions to air, water or soil  which require monitoring under 
local health, safety and environmental legislation?

Is the end-of-l ife SOFC stack free from all  hazardous materials?

Is the concentration of any hazardous materials in the end-of-l ife 
SOFC stack below the classification l imit for hazardous waste?

Local regulations must be complied with when handling, storing and transporting 
hazardous waste.

Does the end-of-l ife  scenario avoid the input of any hazardous 
materials?

Legislative compliance risk assessment (1) 



 CHAPTER 9 

118 

9.3.2 A risk-assessment methodology for evaluating compliance with future legislation 

Much of the legislation identified as being relevant to end-of-life management of SOFC stacks 

in the review documented in Chapter 4 of the thesis was classified as future legislation.  This 

legislation establishes requirements which are not currently applicable to the management of 

end-of-life SOFC stacks, but which are considered likely to be relevant in the future.  For 

example, EPR legislation exemplified by the WEEE Directive and End-of-life vehicles Directive 

does not include end-of-life waste from SOFC stacks.  The technology is not included within the 

scope of any similar legislative measure; however, it would be unwise for SOFC developers to 

consider the technology immune from legislation encompassing the concept of EPR, and future 

developments in legislation should be anticipated. 

In order to allow consideration of these potential future legislative requirements, a legislative 

risk assessment tool was developed.  This tool aims to evaluate the risk of future non-

compliance with legislation, based on predictions that can be made from today’s existing 

legislative framework.  The tool is required to evaluate whether a proposed end-of-life 

scenario represents a high risk of non-compliance or a low risk of non-compliance.  Scenarios 

representing a low risk of non-compliance should be favoured over those representing a high 

risk of non-compliance. 

The following terminology is adopted in the risk assessment tool: 

• Potential impact (i): A specific impact which future legislation will potentially have on 

the end-of-life management of SOFC stacks. 

• Magnitude of the potential impact (Mi): Reflects the magnitude of the impact upon 

the end-of-life management of SOFC stacks.  If the end-of-life scenario already 

addresses the future legislative requirements then the magnitude of the impact is 

small.  If substantial modification is required in order to address the future legislative 

requirement then the magnitude of the impact is large.  The scoring system used to 

evaluate Mi is defined in Table 9.1. 

• Probability of the potential impact arising (Pi):  Reflects the likelihood of the future 

legislative requirement becoming directly relevant to the end-of-life management of 

SOFC stacks, based on current knowledge regarding the development of legislative 

trends.  The scoring system used to evaluate Pi is defined in Table 9.2. 
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• Risk arising from the potential impact (Ri): Calculated as the product of Mi and Pi.  The 

designation of the final risk score as “high”, “medium” or “low” is depicted in Figure 

9.4. 

In order to support the application of the legislative compliance risk assessment methodology 

within the evaluation methodology an Excel-based tool has been developed, and an output 

screen is shown in Figure 9.4.  This tool illustrates the potential impacts from future legislation, 

defined based on the knowledge gained during the review of legislation documented in 

Chapter 4 of the thesis.  For each impact the user provides a score for Mi and Pi based on his or 

her knowledge of the end-of-life scenario and the SOFC stack.  The tool automatically 

calculates the risk associated with each impact (Ri).  The overall risk of non-compliance for an 

evaluated scenario is calculated as the average of all the individual risk scores. Further 

description of the application of this method to the complete SOFC life cycle is provided in 

Wright et al. (2009). 

The presentation of results from the legislative risk evaluation methodology, as shown in 

Figures 9.3 and 9.4 was developed through various iterations.  Initially the tool was presented 

as a simple Excel spread sheet, however, it was found that this method of presentation lacked 

visual impact, and thus the appearance of the tool was improved, with the introduction of 

colour.  Following discussions with various industrial contacts throughout the course of the 

research, a simple traffic light colour-coding system was found to provide a familiar visual 

representation of high, medium and low risk and was therefore adopted. 

Table 9.1:  Scoring system used to evaluate Mi in the 

legislative compliance risk assessment methodology 

 Table 9.2:  Scoring system used to evaluate Pi in the 

legislative compliance risk assessment methodology 

Score Magnitude (Mi)  Score Probability (Pi) 

1 Will have minimal impact on the scenario 
proposed for the end-of-life management 
of SOFC stacks. The requirement is already 
met by the end-of-life scenario. 

 1 Low probability—general trend suggests 
potential future impact in >25 years. 

 

2 Will impact on the scenario proposed for 
the end-of-life management of SOFC 
stacks.  Modifications to the end-of-life 
scenario in order to meet the requirement 
are feasible with some development effort. 

 2 Moderate probability—current or 
developing legislation is likely to impact 
within 5–25 years. 

 

3 Will have severe impact on the scenario 
proposed for the end-of-life management 
of SOFC stacks. Modifications to the end-
of-life scenario in order to meet the 
requirement are substantial, and of 
unknown feasibility. 

 3 High probability—legislation currently 
impacts or is expected to impact in <5 
years. 

 



 

Figure 9.4: Risk assessment tool for evaluating risk of non-compliance with future legislative requirements. 

2 2 4

2 3 6

2 2 4
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1 2 2
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4.13

HIGH RISK, RT > 4

MEDIUM RISK, 2 < RT ≤ 4

LOW RISK, RT ≤ 2

Where ni is the total number of impacts 
evaluated.

SCORING FOR P i

TOTAL RISK SCORE (RT) = ∑Ri / niEXAMPLE SCENARIO: TOTAL RISK SCORE (RT) =

Mi RiPi

1 = Low probability—general trend suggests potential 
future impact in >25 years.                                                                                                         

2 =  Moderate probability—current or developing 
legislation is likely to impact within 5–25 years.                                                               

3 = High probability—legislation currently impacts or is 
expected to impact in <5 years.

International transportation of hazardous wastes is prohibited.

International transportation of wastes is prohibited.

Disposal of all  wastes to landfil l  is prohibited.

Disposal of all  hazardous wastes to landfil l  is prohibited.

Definition of hazardous waste becomes more stringent, such that all  waste 
containing hazardous substances is classified as hazardous.

Recycling or recovery of up to 40% of the product (by weight) is required.

Recycling or recovery of 40 - 80% of the product (by weight) is required.

Recycling or recovery of more than 80% of the product (by weight) is 
required.

Potential impacts identified from future legislative requirements
The second step of the legislative compliance risk 
assessment evaluated the risk of non-compliance with 
future legislative requirements.  The questionnaire 
identifies potential impacts arising from the development 
of existing legislative trends.                                                                                        
For each impact the user is required to evaluate the 
MAGNITUDE of the impact (M i) on the end-of-life 
scenario and the PROBABILITY  of the impact arising 
(P i) .

SCORING FOR M i

1 = Has minimal impact on the end-of-life scenario. The 
requirement is already met by the scenario.                                       

2 =  Will impact on the end-of-life scenario.  Modifications 
to the end-of-life scenario in order to meet the 
requirement are feasible with some development effort.                                                                                                                           

3 = Will have severe impact on the end-of-life scenario. 
Modifications to the end-of-life scenario in order to meet 
the requirement are substantial, and of unknown 
feasibility.

GUIDANCE NOTES
EXAMPLE SCENARIO: Compliance with future legislative requirements

Legislative compliance risk assessment (2) 
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9.4 Evaluation of environmental performance using life cycle assessment 

Life cycle assessment (LCA) is a standard methodology for evaluating the environmental 

impacts of products and processes, and has been reviewed in some detail in Chapter 4 of the 

thesis.  During the early scoping phase of the research, it became apparent that the 

completion of full LCA, encompassing the complete SOFC life cycle, was not necessary for 

comparing the relative performance of alternative end-of-life scenarios.  However, it was also 

believed that LCA provides a rigorous data-driven approach to the quantification of 

environmental impacts, which would support the development of a quantitative multi-criteria 

decision making methodology.  Therefore a streamlined LCA approach, based on a restricted 

system boundary, was identified as an appropriate method to support the evaluation of the 

environmental impacts of alternative end-of-life scenarios for the SOFC stack, within the multi-

criteria evaluation methodology.   

A commercial LCA software package, GaBi4 (PE International GmbH, 2007) was utilised to 

support the environmental evaluation of alternative end-of-life scenarios.  The environmental 

evaluation method developed in the research follows the four principal steps of LCA, as 

defined in ISO 14040 (ISO, 2006a) and summarised in Chapter 4 of the thesis (see Figure 4.4).  

These steps are highlighted in Figure 9.5, which provides an overview of the method.  The 

method has been developed to minimise the requirement for the user to be involved in the 

operation of the GaBi4 software, which requires an element of specialist knowledge.  GaBi4 is 

principally used to generate life cycle inventory data for individual material, energy, transport, 

Environmental 
evaluation of end-of-

life scenarios 

Definition of end-of-
life scenarios 

Definition of goal and scope (1) 

Interpretation of results (4) 

Application of life cycle impact 
assessment (3) method to produce 
a streamlined environmental impact 
database. 

 
Generation of life cycle inventories  
(2) for materials, energy, transport, 
waste and emissions processes. 

Figure 9.5:  Overview of the method for environmental evaluation indicating the four 

principal steps of LCA methodology and the use of GaBi4 software. 
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waste and emissions processes, and then perform impact assessment calculations on these 

inventories using methods available within the software.  This generates a streamlined 

environmental impact database, which, in combination with the definition of end-of-life 

scenarios (described in Chapter 8) provides the background data for the scenario evaluation.  

Results from the environmental evaluation are presented to the user, and the final 

environmental impact score provides one of the inputs to the multi-criteria decision support 

tool.  Sections 9.4.1 – 9.4.4 provide a detailed description of the environmental evaluation 

method, following the four steps of LCA methodology. 

9.4.1 Determination of goal and scope 

The goal of the LCA within the multi-criteria evaluation methodology can be summarised in the 

following statement: 

• To provide a comparative evaluation of the environmental impacts of alternative end-

of-life scenarios for SOFC stacks.   

The scope of the LCA is illustrated by the boundary definition shown in Figure 9.6.  In defining 

this boundary, the following assumptions are made: 

• The end-of-life phase of the SOFC stack life cycle does not influence the preceding 

stages (e.g. materials production, manufacture and use).  These early steps of the life 

cycle will remain constant for alternative end-of-life scenarios and therefore are 

excluded from the scope of the LCA. 

• Each end-of-life scenario comprises of collection and sorting, reprocessing and 

redistribution steps.  Each of these steps may contribute to the total environmental 

impact of the end-of-life scenario. 

• The principal input to the end-of-life scenario is end-of-life SOFC stacks.  Other inputs 

include ancillary materials consumed during processing, energy and transportation.  

Outputs from the systems include emissions to air, water and soil, waste and recycled 

materials.  Impacts of waste disposal are included within the system boundary. 

• Recycled materials are considered as avoided impacts. Where X kg of a recycled 

material is produced by the end-of-life scenario, the impact of producing X kg of the 

equivalent virgin material is subtracted from the total environmental impact arising 

from the end-of-life scenario.  This approach is only applied to recycled materials for 
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which a known market exists.  Transportation of the recycled material to the new user 

is not included within the system boundary.  

The functional unit for the LCA is considered to be the weight of SOFC stack having a total 

electricity generating capacity of 1 kW. This value is based on theoretical output from the fuel 

cell stack operating at design point and does not take into account inefficiencies in power 

delivery from the fuel cell stack to the customer, nor those arising from non-optimal operating 

conditions.  This approach to the functional unit links performance at end-of-life with 

performance during the operation phase of the life cycle.  One of the primary goals for the 

development of SOFC technology is to increase the power density of the SOFC stack, expressed 

in terms of kW generating capacity per kg of SOFC stack.  In order to support a life cycle 

MATERIALS 
PRODUCTION 

MANUFACTURE USE 

END-OF-LIFE 

COLLECTION AND 
SORTING 

REPROCESSING 

REDISTRIBUTION 

Emissions to 
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soil Avoided 

impacts from 
recycled 
materials 

Disposal 

Transportation 

Energy 

Ancillary materials 

End-of-life SOFC 
stacks 

 

System Boundary 

Figure 9.6:  High level representation of the System Boundary for LCA within the multi-criteria 

evaluation framework. 
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approach to product design and improvement, especially in this pre-commercial phase of SOFC 

development, it is beneficial if the evaluation of the end-of-life phase reflects technological 

performance during operation. 

9.4.2 Generation of a life cycle inventory 

Inventory data for individual processes describing the production of ancillary materials; the 

generation of process energy; transportation; waste disposal; and emissions to air, water and 

soil are developed in GaBi4.  Relevant processes are identified in the definition of alternative 

end-of-life scenarios, as defined in Chapter 8.  

Figure 9.7 illustrates the user interface in GaBi4 whereby processes can be modelled.  In the 

example, the process “transport by lorry” is modelled.  This process requires both the 

production of the lorry (requiring inputs of materials and energy) and the operation of the 

lorry (where the principal input is fuel).  The example is modelled using data available within 

GaBi4, taken from the Ecoinvent database, version 2.0 (Ecoinvent Centre, 2007).  This database 

was used within the research to support the generation of inventories for many generic 

processes, including the production of materials, energy and transportation.  GaBi4 also allows 

for user-specific processes to be modelled, based on data collected in the supply chain, from 

experimental work, or from the literature. 

Following the development of a process model, such as that shown in Figure 9.7, GaBi4 

calculates the inventory for the process, expressed in substance flows to and from the 

Figure 9.7:  Example of process modelling in GaBi4 to support the generation of a process inventory. 
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environment.  An example of such a process inventory is shown in Figure 9.8.  The input and 

output flows identified in the inventory form the basis of the impact assessment step, 

described in Section 9.4.3. 

Within the environmental evaluation method developed as part of the research, individual 

inventories are generated for each of the processes identified in the definition of end-of-life 

scenarios described in Chapter 8.  These process inventories form the basis of the streamlined 

environmental impact database used in the environmental evaluation of alternative end-of-life 

scenarios, as depicted in Figure 9.5.   

9.4.3 Evaluation of environmental impacts 

Various impact assessment methods are available within GaBi4 to evaluate a range of 

environmental impacts.  Figure 9.9 illustrates the presentation of impact assessment results 

for a single process in GaBi4. For the purposes of the multi-criteria evaluation methodology it 

was beneficial to select an impact assessment method which offers the facility to generate a 

single score representation of the environmental impacts of an end-of-life scenario.  The 

CML2001 – Dec. 2007 method was selected as an appropriate method.  This is a well-

established method, which was updated within the GaBi4 software in December 2007.  As well 

as including within its scope a full range of environmental impacts, the method has been 

Figure 9.8:  Example of a process inventory, generated in GaBi4. 
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developed in GaBi4 to allow the application of normalisation and weighting to the impact 

assessment data, providing the opportunity of presenting the results as a single impact score.  

The normalisation and weighting steps available in GaBi4 for the CML2001 – Dec.07 method 

can be applied to a set of six impact categories: 

• Abiotic depletion (AD) 

• Acidification potential (AP) 

• Eutrophication potential (EP) 

• Global warming potential (GWP) 

• Ozone layer depletion potential (ODP) 

• Photochemical ozone creation potential (POCP) 

This set of impact categories, defined in Table 4.3, was therefore selected for application to 

the inventory data developed for individual processes. 

After developing impact assessment data for each individual process, based on the inventories 

described in Section 9.4.2, these datasets were exported to Excel, forming a streamlined 

database of environmental impacts.   

Figure 9.9:  Life cycle impact assessment data calculated in GaBi4. 
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This database forms the basis of the environmental impact assessment included within the 

multi-criteria evaluation methodology used to compare alternative end-of-life scenarios for 

SOFC stacks.  Based on the defined end-of-life scenario, as described in Chapter 8, the impacts 

associated with each input and output flow of material, energy, transportation, waste and 

other emissions, are added together. This stage in the evaluation method requires the use of 

data collected from experimental work and/or commercial process trials, or simulated data 

representing proposed end-of-life scenarios.  Specific issues concerning data availability at this 

stage of the evaluation method are explored further within the case studies, reported in 

Chapter 10.   

The calculation of individual environmental impact scores provides a detailed view of the 

environmental performance of the alternative end-of-life scenarios.  However, in order to be 

able to use the environmental impact as part of a multi-criteria evaluation tool, a single score 

output was required.  The CML2001 Experts IKP (Northern Europe) evaluation method, 

available within GaBi4 was selected to combine the individual outputs from each of the impact 

categories described above (PE International GmbH, 2007).  The method applies weighting, 

according to a panel decision, to each of the impact categories.  In addition a normalisation 

step is required, which normalises the calculated impact score against the average annual 

impact for a given geographical region of population.  In this case the northern European 

average was used (PE International GmbH, 2007).  The weighting assigned under this method 

is shown in Table 9.3.  While useful in supporting decision-making, the application of 

normalisation and weighting to the output from the impact assessment stage of the LCA is 

optional in the ISO 14044 methodology (ISO, 2006b).   

 

Table 9.3:  Weighting factors applied in the life cycle impact assessment evaluation method  

CML2001 – Dec. 07,  Experts IKP (Northern Europe)  (PE International GmbH, 2007) 

Environmental impacts (CML2001 – Dec. 07 method) Units Weighting 

Abiotic Depletion (ADP) kg Sb-Equiv. 1.5 

Acidification Potential (AP) kg SO2-Equiv. 4 

Eutrophication Potential (EP) kg Phosphate-Equiv. 7 

Global Warming Potential (GWP 100 years) kg CO2-Equiv. 10 

Ozone Layer Depletion Potential (ODP, steady state) kg R11-Equiv. 4 

Photochem. Ozone Creation Potential (POCP) kg Ethene-Equiv. 1.5 
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The generation of individual environmental impact results, prior to the application of 

normalisation and weighting factors, provides a level of transparency which is lost through the 

calculation of an amalgamated single score result.  In addition, the expression of individual 

environmental impact scores as absolute values allows an expert to interpret the results within 

a wider context, based on his or her expert knowledge of the absolute environmental impacts 

arising from other processes.  However, for the purposes of supporting decision making in a 

practical way, and potentially within an industrial environment where expert knowledge 

cannot be guaranteed, it is useful to remove the complexity inherent to a set of six individual 

scores through the generation of a single figure result.  Despite the simplification that this 

additional step in the impact assessment methodology brings, the single figure result could be 

disputed by an expert, on the grounds that the normalisation and weighting factors used in its 

generation were not representative or accurate.  Therefore, and as shown in the following 

section, the output from the LCA evaluation method includes one screen showing individual 

environmental impacts, expressing as absolute values, and a second screen showing the 

amalgamated results following the application of normalisation and weighting factors. 

9.4.4 Interpretation of results 

The required input for the multi-criteria evaluation tool is the single-figure impact score, 

calculated following the application of normalisation and weighting to the impact assessment 

data.  While this is useful in supporting decision-making, an element of transparency is lost 

with regard to the individual impact categories investigated, and their connection with 

different stages in the end-of-life process.  For this reason, the output from the environmental 

evaluation is provided in two formats.  On the first results screen, a set of charts is presented 

to the user, identifying the impact assessment results for each of the six impact categories.  

These impacts are categorised according to the three stages within the end-of-life 

management process, with impacts from the reprocessing stage further categorised as arising 

from transportation or material processing.  These results are presented for a single 

comparison, and represent the impact assessment results, prior to any normalisation or 

application of weighting factors.  Figure 9.10 provides an illustrative screenshot of this first 

results page, generated using example data. 

The final results page provides normalised, weighted results for all scenarios under 

comparison.  As well as providing the numerical single-figure score, a chart is provided showing 

the contribution of each of the end-of-life stages to the overall score.  An example of the 

format in which results are presented is shown in Figure 9.11. 



 

Figure 9.10:  Initial presentation of results from the environmental evaluation, showing results for a single scenario for individual impact categories, prior to any normalisation or weighting. 

   



 

 

Figure 9.11:  Final presentation of results from the environmental evaluation, showing a single-figure environmental impact for each scenario,  

and a chart showing the breakdown of impacts arising. 
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9.5 Evaluation of economic performance using a parametric cost-benefit ratio approach 

A cost-benefit analysis (CBA) approach is adopted in the evaluation methodology in order to 

provide an economic performance metric for alternative end-of-life scenarios.  CBA is used to 

support decision-making across a broad range of situations, including the development of 

environmental and social policy as well as in the adoption of new technologies or processes.  In 

contrast to traditional accounting methods, CBA originally evolved to provide a means by 

which external effects, i.e. those of a social or environmental nature, may be captured within 

economic analysis, alongside merely commercial considerations (Hanley and Spash, 1993).  

CBA therefore allows a holistic approach to the evaluation of economic performance by 

extending economic analysis to include both direct and indirect benefits and costs (Doeleman, 

1985).  However, in the evaluation methodology adopted in the research, CBA is used only as a 

simple method to quantify direct benefits and costs.  The other elements of the methodology, 

namely the legislative risk assessment tool and the use of LCA, support evaluation of other 

aspects of the end-of-life scenario. 

Unlike for LCA, which has a standardised methodology documented in the ISO14000 series of 

international standards (ISO, 2006a and 2006b), the CBA method is founded on some 

fundamental principles, which may be applied in many different ways to a broad range of 

situations.  Some examples of the application of CBA, in particular with respect to the 

evaluation of end-of-life management, are provided in the review of the literature reported in 

Chapter 4.   

The fundamental principles on which CBA are founded require the quantification of all relevant 

costs (C) and revenues, or benefits (B), associated with the scenario under evaluation.  

Quantification of these values is considered in terms of present value (PV), which incorporates 

a discount rate (i) to reflect changes in monetary value over time (t).  The equations used to 

express the total costs and revenues associated with a given scenario are adapted from Hanley 

and Spash (1993) and are shown in Equations 9.1 and 9.2 respectively:        

𝑃𝑉 (𝐶) = �
𝐶𝑡

(1 + 𝑖)𝑡

𝑛

𝑡=0

                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.1 

       

𝑃𝑉 (𝐵) = �
𝐵𝑡

(1 + 𝑖)𝑡
                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.2

𝑛

𝑡=0
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  where  PV (C ) = present value of costs 

PV (B ) = present value of benefits 

  i  = discount rate 

  t  = time in years 

  n = number of years 

Within the research, it is assumed that alternative end-of-life scenarios are applied according 

to the same timescales, and that costs and benefits quantified within the streamlined CBA 

approach adopted in the evaluation method are immediate.  This provided justification for 

removing the time element associated with the CBA method, such that i = 0 and t = 0.  A 

similar approach was adopted by Staikos (2007).  This provides the simplified expressions: 

      

𝑃𝑉 (𝐶) = �
𝐶𝑚

(1 + 0)0 

𝑛

𝑚=1

= � 𝐶𝑚

𝑛

𝑚=1

                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.3 

       

𝑃𝑉 (𝐵) = �
𝐵𝑚

(1 + 0)0 

𝑛

𝑚=1

= � 𝐵𝑚

𝑛

𝑚=1

                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.4 

    

where PV (C )  = present value of costs 

PV (B ) = present value of benefits 

 Cm = individual cost associated with the scenario, for m = 1, 2, 3, ..., n. 

 Bm= individual revenue associated with the scenario for m= 1, 2, 3, ..., n. 

Results from CBA are typically expressed as a ratio of the summed costs and revenues, and can 

be presented either as a cost-benefit ratio (CBR) or benefit-cost ratio (BCR).  In the evaluation 

methodology developed in the research, it is necessary that the results from the economic 

evaluation tool are consistent in form with the results from the legislative risk assessment and 

LCA evaluations.  For both of these other evaluation methods, high value result indicates poor 

performance (i.e. high risk of non-compliance and high environmental impact, respectively).  

Thus, it was decided to calculate the CBA results in terms of a cost-benefit ratio.  Therefore an 

unfavourable scenario with high associated cost and low associated benefit yields a high 

numerical result.  Conversely, a favourable scenario with low associated costs and high 

associated benefit yields a low numerical result.  Calculation of the cost-benefit ratio (CBR) is 

according to the formula:       
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𝐶𝐵𝑅 =
𝑃𝑉(𝐶)
𝑃𝑉(𝐵)

=
∑ 𝐶𝑚𝑛
𝑚=1

∑ 𝐵𝑚𝑛
𝑚=1

                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.5 

      

This generic formula is used to define parametric cost-benefit models for alternative end-of-

life scenarios, within the economic evaluation method applied as part of the multi-criteria 

evaluation methodology. 

9.5.1 Definition of parametric cost-benefit models for end-of-life scenarios 

In order to evaluate alternative end-of-life scenarios, a parametric cost-benefit model is 

required for each scenario, encompassing all costs and revenues arising throughout the end-

of-life management process.  In order to illustrate this approach, an illustrative parametric cost 

model has been developed for the first end-of-life scenario defined in Chapter 8. A summary of 

the terminology used in the development of these models is presented in Table 9.4.  

Example:  Scenario 1 - Mechanical separation with selective recycling 

The cost-benefit ratio for scenario 1 (CBRMECH) is defined as:   

𝐶𝐵𝑅𝑀𝐸𝐶𝐻 =
∑ 𝐶𝑚𝑛
𝑚=1

∑ 𝐵𝑚𝑛
𝑚=1

                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.6 

     

The total costs associated with end-of-life scenario 1 (CMECH) arise from the transportation of  

end-of-life SOFC stacks from the operating site to the initial treatment facility (Ctrans1), the 

operating costs of the mechanical material separation process (Cop1), transportation of the 

recyclable material fraction to the recycling facility (Ctrans2) and the operating costs of the final 

recycling process (Cop2).  In addition, the disposal of the non-recyclable material fraction (Cdisp) 

contributes. 

This gives a parametric model for the costs associated with scenario 1 as:  

𝐶𝑀𝐸𝐶𝐻 =  𝐶𝑡𝑟𝑎𝑛𝑠1 + 𝐶𝑜𝑝1 +  𝐶𝑡𝑟𝑎𝑛𝑠2 +  𝐶𝑜𝑝2 + 𝐶𝑑𝑖𝑠𝑝

=  (𝑊𝑡𝑟𝑎𝑛𝑠1  × 𝑃𝑡𝑟𝑎𝑛𝑠1) + �𝑊𝑜𝑝1  × 𝑃𝑜𝑝1�  + (𝑊𝑡𝑟𝑎𝑛𝑠2  ×  𝑃𝑡𝑟𝑎𝑛𝑠2)

+ �𝑊𝑜𝑝2  ×  𝑃𝑜𝑝2�  +  �𝑊𝑑𝑖𝑠𝑝 × 𝑃𝑑𝑖𝑠𝑝� 

                Equation  9.7 

Scenario 1 yields two output flows with redistribution value:  ceramic plates from the 

mechanical separation process (RCER), and precious metal from the final recycling step (RPM).  

The total benefits associated with scenario 1 (BMECH) are calculated as the sum of all revenues 
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generated by the recovery of these valuable materials.  This gives a parametric model for the 

benefits associated with scenario 1 as: 

𝐵𝑀𝐸𝐶𝐻 =  𝑅𝐶𝐸𝑅 + 𝑅𝑃𝑀 =  �𝐶𝐸𝑅𝑤𝑒𝑖𝑔ℎ𝑡  ×  𝐶𝐸𝑅𝑣𝑎𝑙𝑢𝑒�+ �𝑃𝑀𝑤𝑒𝑖𝑔ℎ𝑡  ×  𝑃𝑀𝑣𝑎𝑙𝑢𝑒�   

                Equation 9.8  

Similarly, parametric cost-benefit models may be developed for any alternative end-of-life 

scenario. 

 

 

 

Table 9.4:  Summary of terminology used in defining parametric cost-benefit models for end-of-life scenarios. 

COSTS DEFINITION 

Ctrans = Wtrans x Ptrans 
Cost of collection of end-of-life product or part-processed material from its original 
location and transportation to the necessary processing site, in £.   
One or more collection and transportation costs may be included in a scenario, 
depending on the number of process steps involved and their location. 

Wtrans 
Weight of end-of-life product or part-processed material requiring collection or 
transportation, in kg. 

Ptrans 
Price for collection and transportation of 1 kg end-of-life product or part-processed 
material, in £ per kg. 

Cop = Wop x Pop 
Operating costs for a treatment step within the end-of-life process, in £. 
One or more operating costs may be included in the scenario, depending on the 
number of treatment steps and the extent to which cost data is broken down by the 
data provider. 

Wop 
Weight of end-of-life product, or part-processed material stream requiring 
treatment, in kg. 

Pop Price for treatment step, in £ per kg. 

Cdisp = Wdisp x Pdisp 

Disposal costs for residual material remaining after all treatment processes have 
been completed, in £.   
Residual material may originate directly from the end-of-life product or may arise 
from ancillary materials used in the treatment of wastes.  Disposal costs may be 
incorporated in operating costs or provided separately. 

Wdisp Weight of end-of-life product or residual material requiring disposal, in kg. 

Pdisp Price for disposal of residual material, in £ per kg. 

BENEFITS DEFINITION 

RM = Mweight x Mvalue 
The revenue recovered from the recovery of valuable material, in £. 
For any scenario one or more valuable material streams may be recovered. 

Mweight The weight of valuable material recovered in a form suitable for resale, in kg.   

Mvalue The market value of recovered material in £ per kg. 
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9.5.2 Evaluation of cost-benefit ratios for end-of-life scenarios  

In order to conduct an economic evaluation of alternative end-of-life scenarios, the parametric 

models defined in Section 9.5.1 are used.  Values for each of the required parameters are 

developed from available data, originating from a variety of primary and secondary sources.  

The challenges and limitations associated with data collection for the economic evaluation are 

illustrated and discussed through the case studies reported in Chapter 10. 

9.6 E2LM: a multi-criteria decision support tool  

A multi-criteria evaluation tool has been developed to allow the output from the legislative 

risk assessment, LCA and CBA to be combined into a single score.  The single score 

encompasses legislative compliance, environmental impact and economic impact for each 

evaluated scenario, and as such supports decision making, with respect to the selection of the 

end-of-life scenario demonstrating best overall performance.   

The tool developed as part of the research to support multi-criteria decision making is called 

E2LM, which stands for Environmental, Economic and Legislative impact Model for end-of-life 

management.  The tool was developed in Excel to provide a user-friendly interface and to 

allow integration with the single-criterion evaluation methods described in the previous 

sections of this chapter.   

Various approaches to multi-criteria decision making are available and have been briefly 

reviewed in Chapter 4 of the thesis.  However, at the outset of the development of the multi-

criteria decision support tool it was identified that the requirements for this tool were 

relatively simple.  One principal requirement was the ability to apply weighting factors to the 

three evaluated criteria in order to incorporate the perceived relative significance of legislative 

risk, environmental impact and economic impact. A Weighted Sum Method (WSM) was 

identified as meeting this requirement, and was therefore applied in the research.  This 

method is one of the oldest and simplest approaches to multi-criteria decision making 

(Triantaphyllou, 2000) and can be expressed in the equation (Fishburn, 1967): 

 

𝐴𝑊𝑆𝑀 𝑠𝑐𝑜𝑟𝑒
∗ = min(𝑖)�𝑎𝑖𝑗𝑤𝑗

𝑛

𝑗=1

        𝑓𝑜𝑟 𝑖 = 1, 2, 3, … ,𝑛.               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9.9  

    where, for the evaluation of m scenarios against n criteria: 

       𝐴𝑊𝑆𝑀 𝑠𝑐𝑜𝑟𝑒
∗  = the WSM score of the best scenario 
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      min(i) = the minimum WSM score, for scenario i  

      aij = the actual value of the scenario i, in terms of criterion j 

      wj = the weight of importance assigned to criterion j 

This equation describes the “minimisation” case, in which a low scoring scenario is preferential 

to a high scoring scenario.   

The application of the WSM approach to a multi-criteria decision support tool for end-of-life 

management of SOFC stacks is described in Sections 9.6.1 – 9.6.6 below.  The main limitation 

of this method is that the summation of values requires all individual criteria to be expressed 

using the same units.  This is not directly achieved using the evaluation methods described in 

Sections 9.3 – 9.5; the results from the application of the legislative risk assessment tool, LCA 

and CBA bear no relation to each other.  In order to overcome this problem, a normalisation 

step is conducted on the individual evaluation results, before the multi-criteria decision 

method is applied.  Since E2LM is a comparative tool, the results values can be normalised 

using a simple relative normalisation method.  This method is performed in Step 3 of the 

method, as outlined in Section 9.6.3 below. 

9.6.1 Step 1:  Define alternative end-of-life scenarios 

The first stage in the E2LM methodology requires the user to identify the end-of-life scenarios 

under evaluation. The methodology is comparative and thus a minimum of two scenarios must 

be entered to provide meaningful results.  The simple name assigned to each scenario in the 

single criterion evaluation steps is used for identification purposes and is imported, together 

with the scores produced by the legislative risk assessment, environmental impact assessment 

and economic impact assessment.  Within the example shown in Figure 9.12, illustrative values 

are provided for three end-of-life scenarios which are to be compared within the E2LM tool.  

Values of the results for the three individual evaluation methods differ significantly and have 

no relationship to each other. This disparity is eliminated in the subsequent normalisation 

step, which allows the three performance metrics to be combined eventually into a single 

score for each scenario.  The only similarity between the values for the individual criterion 

evaluation methods is that a low value represents a favourable outcome, with respect to 

scenario performance. 
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9.6.2 Step 2:  Define evaluation criteria weightings 

In the second step of the E2LM methodology, the relative importance of each of the individual 

performance criteria is defined.  At least one of the performance criteria must be allocated a 

weighting factor of 1, which is the highest value allowable.  The other two weighting factors 

may be equal to 1, where all performance criteria are considered to be equally important, or 

may be assigned values less than 1.  In the example provided in Figure 9.12, legislative 

compliance is assigned a weighting factor Legf = 1.  Environmental impact is considered to be 

slightly less important than legislative compliance and as such is assigned a weighting factor 

Envf = 0.8.  Economic impact is considered to be only half as important as legislative 

compliance and is assigned a weighting factor Ecof = 0.5.   

Weighting factors should be defined by an individual or group, based on expert opinion.  The 

ability for the user to define customised weighting factors gives the tool added flexibility.   

Weighting priorities may change over time, depending on business requirements, technology 

maturity, external pressures and other factors. 

 

Figure 9.12:  User interface for Steps 1 and 2 of the E2LM methodology in which the results 

from single criterion evaluation methods are imported, and weighting priorities are defined. 

9.6.3 Step 3:  Normalise single score results 

The third step of the E2LM methodology requires normalisation of the single score results.  

Normalised scores are expressed as a fraction of the largest score for each criterion, according 

to equations 9.10, 9.11 and 9.12:  

𝐿𝑒𝑔𝑛𝑥 =  𝐿𝑒𝑔𝑥 𝐿𝑒𝑔𝑚𝑎𝑥
�       Equation 9.10 
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     𝐸𝑛𝑣𝑛𝑥 =  𝐸𝑛𝑣𝑥 𝐸𝑛𝑣𝑚𝑎𝑥
�       Equation 9.11  

     𝐸𝑐𝑜𝑛𝑥 =  𝐸𝑐𝑜𝑥 𝐸𝑐𝑜𝑚𝑎𝑥
�      Equation 9.12 

Where Legnx, Envnx and Econx represent the normalised scores for scenario x for legislative risk, 

environmental impact and economic impact respectively; Legx, Envx and Ecox represent the 

original scores for scenario x for legislative risk, environmental impact and economic impact 

respectively; Legmax, Envmax and Ecomax represent the maximum score from all scenario results 

for legislative risk, environmental impact and economic impact respectively. 

The example in Figure 9.13 provides an illustration of how these normalised scores are 

presented in the E2LM tool.  Normalised scores are calculated automatically and are presented 

as numerical values.  Bar charts are automatically produced to allow comparison of the 

scenarios across each of the three evaluation criteria.   

 

Figure 9.13:  User interface for Step 3 of the E2LM methodology in which normalised scores are 

calculated and plotted. 

In Figure 9.13, scenario 1 has the highest economic impact, but has a legislative risk score 

equal to scenario 2, and the second highest environmental impact of the three scenarios.   

Whilst scenario 3 performs worst in terms of legislative risk and environmental impact, its 

economic impact is the lowest.  None of the scenarios shows superior performance across all 

three performance criteria, and based upon the numerical values and visual representations 

provided in Figure 9.13 the identification of the “best” end-of-life solution is not immediately 

obvious.   
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9.6.4 Step 4:  Apply weighting factors 

In Step 4 of the E2LM methodology weighting factors, as defined by the user in Step 2, are 

applied to the normalised scores.  The user defined weighting factors are applied as simple 

multipliers, with:  

𝐿𝑒𝑔𝑤𝑥 =  𝐿𝑒𝑔𝑛𝑥  ×  𝐿𝑒𝑔𝑓      Equation 9.13 

 𝐸𝑛𝑣𝑤𝑥 =  𝐸𝑛𝑣𝑛𝑥  ×  𝐸𝑛𝑣𝑓       Equation 9.14 

     𝐸𝑐𝑜𝑤𝑥 =  𝐸𝑐𝑜𝑛𝑥  ×  𝐸𝑐𝑜𝑓      Equation 9.15 

Where Legwx, Envwx and Ecowx are the weighted normalised scores for scenario x for legislative 

risk, environmental impact and economic impact respectively; Legnx, Envnx and Econx are the 

normalised scores calculated in Step 3; Legf, Envf and Ecof  are the user defined weighting 

factors specified in Step 2.  These weighted values are plotted on a radar chart, shown in 

Figure 9.14, and form the basis of the calculations for a single-score result. 

9.6.5 Step 5: Compare scenarios 

The comparison of alternative end-of-life scenarios is achieved by combining the normalised, 

weighted results from the individual evaluation methods into a single representation of overall 

performance.  In order to achieve this, the E2LM decision support tool presents the final results 

for the three evaluated scenarios as a triangular radar plot (Figure 9.14).  The axes for the plot 

represent legislative risk, economic impact and environmental impact.  This visual 

representation of results provides the user with a clear picture of the relative contribution of 

each of these individual performance criteria to the overall performance of the scenario.  From 

the example provided in Figure 9.14 it can be seen that the scenario “Example 3” has the 

Figure 9.14:  Detail of the multi-criteria evaluation output used for comparison of three example  

end-of-life scenarios. 
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highest legislative risk, while the scenario “Example 1” has the greatest economic impact. 

While this visualisation is useful as a comparison tool there is a possibility of some ambiguity 

remaining regarding the identification of the scenario with the overall “best” or “worst” 

performance.   

In order to overcome this potential ambiguity, this final stage in the evaluation methodology 

includes the calculation of a single numerical performance score, which combines all three 

performance criteria.  This score is defined as the area represented by the triangle, plotted on 

the triangular radar graph exemplified in Figure 9.14.  The overall impact score for scenario x 

(Impactx) can therefore be calculated by: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑥 = 0.5 × sin(120)

×  [(𝐿𝑒𝑔𝑤𝑥) × (𝐸𝑛𝑣𝑤𝑥) +  (𝐸𝑛𝑣𝑤𝑥) × (𝐸𝑐𝑜𝑤𝑥) + (𝐸𝑐𝑜𝑤𝑥) × (𝐿𝑒𝑔𝑤𝑥)]             

Equation 9.16 

Figure 9.15 illustrates the user interface for Steps 4 and 5 of the E2LM methodology, showing 

the triangular plot of results.  In addition the calculated impact scores are quantified and 

visualised in a bar chart in the bottom right hand corner of the E2LM user interface to allow 

clear identification of the relative performance of each of the defined end-of-life scenarios.  In 

the example shown in Figure 9.15 it is clear that the scenario called “Example 3” has highest 

overall impact, and thus would be the least desirable end-of-life solution.  The scenario 

“Example 2” in this case achieves the lowest overall impact score and as such would be the 

preferred solution. 

It is a deliberate feature of the scenario comparison results screen (Figure 9.15) that the 

triangular plot of results is provided, alongside the numerical single score result for each 

evaluated scenario.  It was identified that the distillation of results to a single score provides a 

useful tool to support decision making, especially when the outcome from an evaluation 

methodology has to be presented to a non-expert audience, as may be the case in an industrial 

setting.  In this case, a single score can provide clear direction.  On the other hand, it is 

recognised that the process of generating a single score result removes a degree of 

transparency, which can be detrimental to the decision-making process.  The triangular plot 

therefore provides a clear, visual representation of the relative strengths and weaknesses of 

the individual scenarios under evaluation.  It should be noted that this total impact score 

provides a relative value only, and could not be used for comparison with scenarios considered 

in a separate evaluation. 
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Figure 9.15:  User interface for the final evaluation step of the E2LM methodology in 

which the overall impact score is presented for each scenario. 

9.6.6 Step 6: Sensitivity analysis 

The final stage in the E2LM methodology allows the user to investigate the sensitivity of the 

single-score result obtained to the weighting factors applied to the three individual evaluation 

criteria.  Figure 9.16 illustrates the application of revised weighting factors to the results 

shown in Figure 9.15.   In the example provided in Figure 9.13, the revision of weighting values 

does not change the scenario with the lowest overall impact score: in both cases “Example 2” 

would be selected as having the lowest overall impact score.   

It is believed that this ability to test the weighting factors adopted within the E2LM 

methodology is an essential part of the tool, since it supports the validation of decision-making 

which might otherwise be based on weighting factors incorporating a high degree of 

subjectivity. However, it is recognised that the final results generated by the multi-criteria 

evaluation tool could be sensitive to many other factors, beginning with the accuracy of data 

collected from individual end-of-life process steps, through the application of LCA 

characterisation factors, cost data and subjective influences arising in the legislative risk 

assessment.  Therefore, in order to develop a more rigorous understanding of the sensitivity of 

results to these factors, much more extensive sensitivity analysis is required.  However, given 

the commercial availability of software applications to support a statistical approach to 

sensitivity analysis, it suggested that improvements to this aspect of the evaluation 

methodology could be implemented at a later date. 
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Figure 9.16:  User interface for the sensitivity analysis step in the E2LM methodology, in 

which revised weighting values can be tested to investigate their impact on the final result. 

9.7 Summary 

Methods have been described for the evaluation of end-of-life scenarios for SOFC stacks 

according to three performance criteria.  A novel method for evaluating the risk of non-

compliance with existing and future legislative requirements has been developed.  For the 

evaluation of environmental impact, an LCA-based approach has been adopted, which utilises 

commercially available LCA software to support the generation of life cycle inventories for 

alternative scenarios and the application of a selected impact assessment method.  Economic 

impacts associated with alternative end-of-life scenarios are quantified using a simplified CBA 

method.  Together, these evaluation methods provide inputs to a multi-criteria evaluation 

methodology which has been developed to support decision making during the development 

of end-of-life management processes for the SOFC stack.  The application of this evaluation 

methodology in supporting decision making is explored further in the case studies, reported in 

the following chapter.  Based on the findings from these case studies, the benefits and 

limitations of the evaluation methodology are discussed in Chapter 11. 
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CHAPTER 10 END-OF-LIFE MANAGEMENT OF SOLID OXIDE FUEL CELLS: 

CASE STUDIES 

10.1 Introduction 

This chapter documents two case studies which have been selected to demonstrate the 

application of the research reported in the thesis.  The chapter begins with an overview of the 

case studies, followed by a systematic description of their completion.  Results from both case 

studies are reported and analysed, in order to draw some conclusions regarding the validity of 

the framework and evaluation methods reported in the thesis in supporting end-of-life 

management of SOFCs. 

10.2 Overview of selected case studies 

Two case studies have been selected in order to demonstrate the application of the framework 

for end-of-life management of SOFCs as described in Chapter 6 of the thesis.  These case 

studies reflect two different modes of applying the framework in order to support the 

development of an end-of-life management solution which demonstrates compliance with 

end-of-life legislation, low environmental impact and low economic impact.  In the first case 

study, the framework is used to support the identification of a preferred end-of-life scenario, 

based on a comparison of three alternatives.  This case study demonstrates a reactive 

approach to end-of-life management.  The second case study demonstrates the ability of the 

framework in supporting a more proactive approach to end-of-life management.  In this case 

study, the impact of a design modification to the SOFC stack on the selection of a preferred 

end-of-life scenario is investigated. 

A wide range of research concepts are addressed in this thesis. These two case studies have 

been selected to demonstrate and test the following concepts: 

Case study 1 

• Application of the framework for end-of-life management according to a reactive 

approach, focusing on the evaluation of alternative processes for material recovery 

and recycling. 
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• Implementation of the multi-criteria evaluation methodology to identify an end-of-life 

scenario demonstrating legislative compliance, low environmental impact and low 

economic impact, when compared with alternatives. 

Case study 2 

• Exploration of the proactive application of the framework for end-of-life management 

through the consideration of a design modification to the SOFC stack, and the resulting 

impact on the evaluation results for alternative end-of-life scenarios. 

• Validation of the end-of-life framework as a flexible tool to support the development 

of a more sustainable product design for SOFC stacks, based on impacts arising at the 

end-of-life stage. 

 

A visual overview of both of the case studies is provided in Figure 10.1. 
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Figure 10.1:  Visualisation of case studies 1 and 2.  

Images of SOFC stack © 2009 Rolls-Royce Fuel Cell Systems Limited, used by permission. All rights reserved. 
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10.3 Case study 1  

During the course of the research reported in this thesis, Rolls-Royce Fuel Cell Systems Limited 

was involved in a collaborative project with the Singapore Institute of Manufacturing 

Technology (SIMTech) to investigate alternative process routes for material separation and 

recovery from end-of-life SOFC components.  The project explored a number of approaches 

based on small scale laboratory experiments.  During the same period, a commercially 

available process was identified for the recovery of precious metals from SOFC components 

which had been manufactured for development purposes.  These components had used 

valuable materials in the current-collecting layer of the SOFC stack to facilitate electrochemical 

testing and other technology development requirements.  There was a desire by the company 

to recover the value contained in this inventory of components.  An initial industrial trial was 

conducted, based on a 500 kg batch of SOFC components, in order to evaluate the efficiency 

and suitability of this commercially available process.   

From the laboratory and industrial trials described above, various process routes have been 

identified as being feasible for the recovery and recycling of materials from the SOFC stack.   

These process routes are equally relevant for the management of components which have 

been manufactured for technology development purposes and which are no longer required, 

as for end-of-life SOFC stack components which will arise in the future from the maintenance 

and decommissioning of commercial products.  In order to prioritise further development 

efforts concerned with the optimisation of the most suitable end-of-life process route, it is 

necessary to compare the alternative options in terms of their legislative, environmental and 

economic performance.  Development effort can then be directed towards the process which 

performs best, according to these criteria.  This comparison of alternative end-of-life scenarios 

is the subject of the first case study. 

It is recognised that this case study would benefit from the availability of more specific data, 

with regard to the end-of-life scenarios investigated.  The scenarios investigated in the case 

study represent conceptual processes, for which a level of feasibility has been demonstrated 

through the practical work described above: however, these processes have not been 

optimised for end-of-life management of SOFC stacks, nor have they been fully validated.  The 

case study therefore represents a first attempt at evaluating alternative end-of-life options, 

and paves the way for further, more rigorous, investigation of end-of-life processes as SOFC 

technology proceeds towards commercialisation. 
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The case study follows the four stages of the framework for end-of-life management of SOFC 

stacks, as described in Chapter 6 of the thesis, namely: 

1. Characterisation of the product stream 

2. Definition of end-of-life scenarios 

3. Single criterion scenario evaluation 

4. Multi-criteria evaluation and comparison of scenarios 

Sections 10.3.1 and 10.3.2 below document the first two stages of the framework as applied to 

case study 1.  Sections 10.3.3 and 10.3.4 describe data collection and other aspects of the 

implementation of the case study and the application of the evaluation methodology. Results 

from the single and multi-criteria evaluation methods are analysed in section 10.3.5. 

10.3.1 Characterisation of the product stream for case study 1 

The product stream considered in this case study comprises end-of-life SOFC stacks, based 

on the Integrated Planar SOFC concept under development at Rolls-Royce Fuel Cell 

Systems.  The following assumptions underline the characteristics of the product stream 

identified as being relevant to the end-of-life management process: 

• The SOFC stack has a material composition as defined for the IP-SOFC concept in 

Chapter 7. The end-of-life stacks have been used for pre-commercial technology 

development and utilise a palladium-based current collector, instead of the lower-cost 

lanthanum-based material. The palladium content of the end-of-life SOFC stack is 

approximately 1% by weight. 

• The material composition of the SOFC stack components has not changed during the 

operational life of the SOFC stack. 

• 1000 kg of end-of-life SOFC stack components are available for processing. 

• The generation of 1 kW electricity requires 3.5 kg of SOFC stack components for a 

product operating at design point.   

• The end-of-life SOFC stack components arise from installations in Derby, UK.   

• The end-of-life SOFC stack has been disassembled from the SOFC product system. 

• The end-of-life SOFC stack is physically intact, with no damage arising to individual 

components during operation, shut-down or disassembly from the SOFC product 

system. 
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10.3.2 Definition of end-of-life scenarios for case study 1 

Based on the laboratory and industrial trials investigating alternative end-of-life processing 

routes, three end-of-life scenarios have been identified as feasible solutions for the end-of-life 

management of the SOFC stack.  These scenarios have been outlined previously in Chapter 8.  

Summaries of the data developed to define each of these scenarios during the completion of 

the case study are provided in Tables 10.1 – 10.3.  The assumptions underlying these data are 

explained below.  Scenarios are defined in terms of the three principal stages in end-of-life 

management defined in Chapter 8 of the thesis, namely: 

A. Collection and sorting 

B. Reprocessing 

C. Redistribution 

10.3.2.1 Scenario 1:  Mechanical separation and selective recycling 

The end-of-life process route developed as scenario 1 is represented graphically in Figure 8.9 

of the thesis, and is defined in detail in this section. 

A. COLLECTION AND SORTING 

• Collection and sorting is conducted at the site where the end-of-life components arise.  

No additional transportation is required to the location of the first process step. 

• All of the end-of-life SOFC stack components (1000 kg) are suitable for reprocessing. 

None are reused or repaired. 

B. REPROCESSING 

• The reprocessing route has three principal process steps: 

1. Mechanical disassembly of SOFC stack  

2. Mechanical removal of active fuel cell printed layers from the surface of 

individual SOFC components 

3. Precious metal recovery from the removed active fuel cell layers. 

• Process steps 1 and 2 are conducted at a site within the UK, where specialist 

equipment is available. Process step 3 is conducted at a location in Belgium.  Transport 

requirements are derived from calculated distances between locations (Google Maps, 

2011).   

• Mechanical disassembly of the SOFC stack is carried out using abrasive water jet 

cutting (Figure 10.2).  No practical trials have been conducted to evaluate the 
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feasibility of this method; however, it is widely accepted that this method is suitable 

for cutting a broad range of materials, including ceramics.  A cutting speed of up to 7.5 

m min-1 is quoted for cutting of reinforced plastics (Kalpakjian and Schmid, 2008); 

however, given the relative hardness of the ceramic material from which the SOFC 

stack is made, and the complexity of the structure, a cutting time of 5 minutes is 

assumed for each strip assembly, with an additional 5 minutes required for setting up 

each strip assembly for cutting.  An additional 15 minutes time is also required for 

cleaning equipment after processing 500 kg of end-of-life SOFC stack.  Material and 

energy inputs are assumed to be 10 litres hour-1 of water, 36 kg hour-1 of abrasive, with 

the operation of the water jet cutting system requiring 35 kW electricity (Tesko Laser 

Division, 2005).  It is assumed that a closed-loop system is employed (e.g. Jet Edge 

Waterjet Systems, 2011) such that in effect no water or abrasive are consumed during 

the cutting process.  A yield of 95% for the recovery of individual fuel cell components 

is assumed, allowing for a level of component breakage resulting in the production of 

damaged components which would not be suitable as inputs to the grinding process. 

• Mechanical removal of active fuel cell printed layers is carried out using a mechanical 

grinding process. Limited practical trials of this process have been conducted by 

collaborators at SIMTech, but were not pursued far enough to obtain quantitative 

data.  Therefore, the Ecoinvent database was used to provide energy consumption 

data representative of a mechanical process.  Data for chipping processes (such as 

drilling and milling) of metals indicate an energy requirement of approximately 0.2 – 

2.4 MJ for the removal of 1 kg of material.  Given the relative hardness of ceramic 

materials compared with metal, a value of 10 MJ is assumed as the energy 

requirement for the removal of 1 kg active material from the surface of the ceramic 

plates.  It is assumed that a closed system is in operation to recover the ground layers, 

Figure 10.2: Illustration of cutting by abrasive water jet (Flowwaterjet.com, 2011) 

Image third party copyright 
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thus eliminating dust emissions. A yield of 85% for the recovery of active material is 

assumed for this process step since it is likely that a relatively high proportion of the 

ground material will be lost in the grinding media.  

• Precious metal recovery from the removed active material is based on data from the 

Ecoinvent database (Ecoinvent Centre, 2007), reflecting the recovery of precious 

metals from used autocatalysts.  Some small scale practical trials have been conducted 

in collaboration with Rolls-Royce Fuel Cell Systems Limited and SIMTech, proving the 

feasibility of this process, as applied to end-of-life SOFC stack components.  Input 

materials and energy are related to the quantity of precious metal produced from the 

process, and are calculated accordingly.  Similarly, emissions from the process are 

calculated, based on known emissions for the production of 1 kg of secondary 

palladium as documented in the Ecoinvent database (Ecoinvent Centre, 2007).  A 

recovery rate of 97% is assumed, based on the lower end of efficiency estimates 

quoted by a range of industrial recyclers. 

C. REDISTRIBUTION 

• The principal outputs from the three process steps are dense ceramic components; 

ceramic plates; and precious metals and residual materials from the precious metal 

recovery operation. 

• The dense components are scrapped as non-hazardous ceramic waste. 

• The ceramic plates are sold to a ceramics supplier for use as raw material.  The market 

value of the plates is identified as being lower than the cost of the original raw 

material since some crushing and decontamination processes will need to be applied, 

before the material is suitable for reuse as a high purity ceramic.  It is unlikely that the 

material will be suitable for direct reuse in SOFC components, given likely 

contamination with species which may disrupt the electrochemical performance of the 

fuel cell; however, it is assumed that the material would be suitable for use in a high 

value application. 

• The precious metal is recycled in closed loop model and retains the original market 

value.  

The definition of scenario 1 is summarised in Table 10.1. 
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Table 10.1:  Data definition for scenario 1. 

 Collection & Sorting Reprocessing  Step 1 
Abrasive water jet cutting 

Reprocessing Step 2 
Surface grinding 

Reprocessing Step 3 
Precious metal recovery 

Yield = 100% Yield = 95% Yield = 85% Yield = 97% 

Material inputs 

End-of-life SOFC stack 
 

1000 kg End-of-life SOFC stack 1000 kg End-of-life SOFC 
components 

816 kg 
 

Active material 57 kg 

  Water 0 kg*   Lime 626 kg 

  SiC abrasive 0 kg*   Copper 7.8 kg 

Energy inputs 
None  Electricity 162 MJ Electricity 665 MJ Electricity 30408 MJ 
      Natural gas 6069 MJ 

Transport inputs 
None  Road transport 75 tkm None  Road transport 31 tkm 
      Rail transport 3 tkm 

Material outputs 
End-of-life SOFC stack 
for reprocessing 

1000 kg End-of-life SOFC 
components 

816 kg 
 

Active material 57 kg None  

        

Redistribution 

None  Dense ceramics 134 kg Ceramic plates 637 kg Palladium metal 7.8 kg 
  Scrap components 50 kg Scrap components 122 kg Process waste 

(hazardous) 
56.7 kg 

 
      Process waste 

(non-hazardous) 
626 kg 

        

*Closed loop system is assumed. 
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10.3.2.2 Scenario 2: Chemical-mechanical separation and selective recycling 

The end-of-life process route developed as scenario 2 is represented graphically in Figure 8.10 

of the thesis, and is defined in detail in this section. 

A. COLLECTION AND SORTING 

• Collection and sorting is conducted at the site where the end-of-life components arise.  

No additional transportation is required to the location of the first process step. 

B. REPROCESSING 

• The reprocessing route has three principal process steps: 

1. Pressurised steam treatment to break down the SOFC stack components. 

2. Material separation, using sieving process. 

3. Precious metal recovery from the recovered active material fraction. 

• Process steps 1 and 2 are conducted in Derby, UK, at the site where collection takes 

place. Process step 3 is conducted at a location in Belgium.  Transport requirements 

are derived from calculated distances between locations (Google Maps, 2011). 

• Pressurised steam treatment to break down the SOFC stack components has been 

proven at the laboratory level by collaborative work conducted by SIMTech, using a 

domestic pressure cooker.  At a larger scale, industrial autoclaves (Figure 10.3) provide 

a pressurised steam environment commonly used for the treatment of municipal and 

hazardous wastes (Sterecycle, 2008; Babcock International Group Plc, 2011; Mott 

MacDonald Group, 2011). Energy requirements for a large-scale process are calculated 

based on the reported value for the treatment of 1000 kg of municipal waste (Friends 

of the Earth, 2008).  Trials at SIMTech indicated a five hour treatment time was 

required to fully break down the ceramic SOFC stack, whereas domestic waste can be 

treated in around one hour (Friends of the Earth, 2008): energy data are scaled 

accordingly.  It is assumed that 1000 kg of end-of-life SOFC stack can be processed as a 

single batch.  A yield of 98% is assumed for this process step, allowing for some 

material loss during the recovery of treated material from the autoclave. 

• Material separation using a sieving process has been proven at SIMTech at the 

laboratory scale with a manual process.  A large-scale process would require the use of 

an automated, high-volume sieving system, such as that described by Nordson 

Corporation (1999), which has a power rating of 0.75 kW, and can process around 500 
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kg of powder in 1 hour. These data are used to calculate energy requirements for the 

sieving process step in scenario 2.  A yield of 70% is assumed for this process step, 

since it is not known that the accuracy of the sieving process is high for this 

application.   

• Precious metal recovery from the recovered material is based on data from the 

Ecoinvent database (Ecoinvent Centre, 2007), reflecting the recovery of precious 

metals from used autocatalysts.  Some small scale practical trials have been conducted 

in collaboration with Rolls-Royce Fuel Cell Systems Limited and SIMTech, proving the 

feasibility of this process, as applied to end-of-life SOFC stack components.  Input 

materials and energy are related to the quantity of precious metal produced from the 

process, and are calculated accordingly.  Similarly, emissions from the process are 

calculated, based on known emissions for the production of 1 kg of secondary 

palladium as documented in the Ecoinvent database (Ecoinvent Centre, 2007).  A 

recovery rate of 97% is assumed, based on the lower end of efficiency estimates 

quoted by a range of industrial recyclers. 

C. REDISTRIBUTION 

• The principal outputs from the three process steps are large fragments of dense 

ceramic components; a fine ceramic powder; and precious metals and residual 

materials from the precious metal recovery operation. 

• The dense ceramic fragments are scrapped as non-hazardous ceramic waste. 

Figure 10.3: Example of an industrial autoclave for waste treatment  

(OnSite Sterilization LLC, 2011) 

Image third party copyright 
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• The fine ceramic powder is sold to a ceramics supplier for use as raw material.  The 

market value of the powder is identified as being lower than the cost of the original 

raw material since some additional reprocessing will need to be applied, before the 

material is suitable for reuse as a high purity ceramic.  It is unlikely that the material 

will be suitable for direct reuse in SOFC components, given likely contamination with 

species which may disrupt the electrochemical performance of the fuel cell; however, 

it is assumed that the material would be suitable for use in a high value application.  As 

such, the market value of the recovered powder is identified as being lower than the 

cost of the original raw material (see Table 7.3), but higher than the value of the 

ceramic plates recovered in scenario 1.  

•  The precious metal is recycled in a closed loop model and is produced at sufficient 

purity to be re-sold at their original market value (see Table 7.3) 

The definition of scenario 2 is summarised in Table 10.2. 
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Table 10.2:  Data definition for scenario 2. 
 

 Collection & Sorting Reprocessing  Step 1 
Pressurised steam treatment 

Reprocessing Step 2 
Sieving 

Reprocessing Step 3 
Precious metal recovery 

Yield = 100% Yield = 98% Yield = 70% Yield = 97% 

Material inputs 

End-of-life SOFC stack 
 

1000 kg End-of-life SOFC stack 1000 kg Pulverised SOFC stack 980 kg 
 

Active material 48 kg 

  Water 0 kg*   Lime 532 kg 

      Copper 6.6 kg 

Energy inputs 
None  Electricity 56 MJ Electricity 0.82 MJ Electricity 25833 MJ 
  Gas 396MJ   Natural gas 5156 MJ 

Transport inputs 
None  None  None  Road transport 23 tkm 
      Rail transport 3 tkm 

Material outputs 
End-of-life SOFC stack 
for reprocessing 

1000 kg Pulverised SOFC stack 980 kg 
 

Active material 48 kg None  

        

Redistribution 

None  Process waste 
(non-hazardous) 

20 kg Ceramic powder 569 kg Palladium metal 6.7 kg 

    Dense fragments 363 kg Process waste 
(hazardous) 

48.4 kg 
 

      Process waste  
(non-hazardous) 

532 kg 

        

*A closed system is assumed, such that net water consumption is nil.
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10.3.2.3 Scenario 3: Non-selective recycling 

The end-of-life process route developed as scenario 3 is represented graphically in Figure 8.11 

of the thesis, and is defined in detail in this section. 

A. COLLECTION AND SORTING 

• Collection and sorting is conducted at the site where the end-of-life components arise.  

No additional transportation is required to the location of the first process step. 

B. REPROCESSING 

• The reprocessing route has two principal process steps: 

1. Mechanical crushing of the SOFC stack. 

2. Precious metal recovery from the pulverised material. 

• Process step 1 is conducted in Buxton, UK.  Process step 2 is conducted at a location in 

Belgium.  Transport requirements are derived from calculated distances between 

locations (Google Maps, 2011). 

• Mechanical crushing of the SOFC stack has been proven at an industrial scale level, 

using a ball milling process (Figure 10.4); however, specific data from the process trials 

are not available for quantifying energy and other process requirements.  Therefore 

data are taken from the Ecoinvent database (Ecoinvent Centre, 2007).  The production 

of limestone, as documented in the Ecoinvent database, includes two separate process 

steps for crushing and then milling.  Energy requirements for these two process steps 

are combined, and multiplied by a factor three, based on known differences in the 

hardness of the materials being processed.  From observation of the industrial trials it 

is clear that the dense components in the SOFC stack slow down the crushing process, 

thus indicating an overall requirement for more process energy. 

• Precious metal recovery from the recovered material is based on data from the 

Ecoinvent database (Ecoinvent Centre, 2007), reflecting the recovery of precious 

metals from used autocatalysts.  Some small scale practical trials have been conducted 

in collaboration with Rolls-Royce Fuel Cell Systems Limited and SIMTech, proving the 

feasibility of this process, as applied to end-of-life SOFC stack components.  Input 

materials and energy are related to the quantity of precious metal produced from the 

process, and were calculated accordingly.  Similarly, emissions from the process are 

calculated, based on known emissions for the production of 1 kg of secondary 
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palladium as documented in the Ecoinvent database (Ecoinvent Centre, 2007).  A 

recovery rate of 97% is assumed, based on the lower end of efficiency estimates 

quoted by a range of industrial recyclers. 

C. REDISTRIBUTION 

• The principal outputs from the three process steps are precious metals and residual 

materials from the precious metal recovery operation.  

• The precious metals are recycled in a closed loop model and are produced at sufficient 

purity to retain their original market value (Table 7.2) 

• Compared with scenarios 1 and 2, the composition of the material input to the 

precious metal recovery process is much higher in inert ceramic content.  As such it is 

assumed that the majority (80%) of this ceramic material is suitable for application as 

low-grade structural filler.  In the case study no revenue is associated with this 

material stream at the redistribution stages since it is assumed that the inherent low 

value of the recovered material results in its redistribution being cost neutral.   

The definition of scenario 3 is summarised in Table 10.3. 

Figure 10.4: Example of an industrial ball mill, suitable for processing end-of-life SOFC stacks.  

(NSI Equipments Ltd, 2011) 

Image third party copyright 
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Table 10.3:  Data definition for scenario 3. 
 

 Collection & Sorting Reprocessing  Step 1 
Mechanical crushing 

Reprocessing Step 2 
Precious metal recovery 

Yield = 100% Yield = 98% Yield = 97% 

Material inputs 

End-of-life SOFC stack 1000 kg End-of-life SOFC stack 1000 kg Pulverised SOFC stack 980 kg 

    Lime 759 kg 

    Copper 9.5 kg 

Energy inputs 
None  Electricity 16.7MJ Electricity 36904 MJ 
    Natural gas 7365 MJ 

Transport inputs 
None  Road transport 20 tkm Road transport 608 tkm 
    Rail transport 59 tkm 

Material outputs 
End-of-life SOFC stack for 
reprocessing 

1000 kg Pulverised SOFC stack 980 kg 
 

None  

      

Redistribution 

None  Process waste 
(non-hazardous) 

20 kg Palladium metal 9.5 kg 

    Ceramic for structural filler 707 kg 
    Process waste (hazardous) 273 kg 
    Process waste (non-hazardous) 759 kg 
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10.3.3 Data for case study 1 

High level data defining each of the end-of-life scenarios evaluated in case study 1 are 

captured in the Tables 10.1 – 10.3.  These data are collated from various sources, and 

developed from real data and assumptions, as described in Section 10.3.2.  In order to apply 

the evaluation methods to these three scenarios, more detailed data are required regarding 

the environmental and economic attributes of the process steps described.  

10.3.3.1 Data to support legislative compliance risk assessment 

Data to support legislative compliance risk assessment is obtained from knowledge regarding 

the composition of the integrated-planar SOFC stack concept described in Chapter 7 of the 

thesis, as well as a high level knowledge of the alternative end-of-life scenarios defined in 

Section 10.3.2.  Results from the application of this evaluation method are reported in Section 

10.3.5.1. 

10.3.3.2 Data to support evaluation of environmental impact 

The evaluation of environmental impact requires the application of LCA methodology, as 

described in Chapter 9.  Data to support the development of a life cycle inventory for each 

end-of-life scenario are obtained from the Ecoinvent database (Ecoinvent Centre, 2007).  Table 

10.4 summarises the principal datasets used in the case study.  Manipulation of the data to 

obtain inventories is carried out using GaBi4 software (PE International GmbH, 2007).  The 

datasets summarised in Table 10.4 are identified as providing the closest representation of the 

processes utilised in the end-of-life scenarios, in the absence of process-specific data. 

10.3.3.3 Data to support evaluation of economic impact 

As described in Chapter 9, the evaluation of economic impact using cost-benefit analysis (CBA) 

requires the quantification of all costs and revenues arising during the end-of-life management 

process. Cost data to support the case study is available from various sources.  

For each of the scenarios evaluated, the final process step is for the recovery of precious metal 

from the SOFC stack material.  Cost data were obtained for this process from various precious 

metal recycling companies, located in the UK, Europe and Singapore, during the course of 

practical trials conducted at Rolls-Royce Fuel Cell Systems.  The data used in the case study 

reflect an average cost profile for this process, based on these commercial data.  The principal 

costs associated with the precious metal recovery process step are summarised in Table 10.5. 
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Similarly, commercial cost data are available for crushing end-of-life SOFCs – required as the 

first process step in scenario 3. 

With regard to scenarios 1 and 2, no commercial cost data are available, since these processes 

have not been practically trialled at volume.  However, cost estimates are generated based on 

assumptions regarding process energy requirements and process time.  A summary of these 

cost estimates is presented in Table 10.6.    

Table 10.4: Summary of data used to support evaluation of the environmental impact of alternative end-of-life 

scenarios in case study 1. 

Material inputs Units Name of dataset Source 

Water Kg RER: tap water, at user Ecoinvent database, version 2.0 

Abrasive Kg RER: silicon carbide, at plant Ecoinvent database, version 2.0 

Lime  Kg CH: lime, hydrated, loose, at plant Ecoinvent database, version 2.0 

Copper Kg RER: copper, at regional storage Ecoinvent database, version 2.0 

Energy inputs    

Electricity MJ 
BE: Powermix, 
GB: Powermix 

Ecoinvent database, version 2.0 

Natural gas MJ 
RER: natural gas, burned in industrial 
furnace >100kW 

Ecoinvent database, version 2.0 

Transport inputs    

Transport by lorry Tkm RER: transport, lorry 16-32t, EURO5 Ecoinvent database, version 2.0 

Transport by rail Tkm RER: transport, freight, rail Ecoinvent database, version 2.0 

Material outputs (avoided impact)  

Palladium Kg RER: palladium, at regional storage Ecoinvent database, version 2.0 

Ceramic plates Kg Ceramic material production 
Developed with ceramic material 
suppliers to RRFCS.   

Ceramic powder Kg Ceramic material production 
Developed with ceramic material 
suppliers to RRFCS.   

Residual structural 
filler 

Kg CH: gravel, crushed, at mine 
Ecoinvent database, version 2.0 

Waste    

Waste to inert 
material landfill 

Kg 
CH: disposal, inert waste, 5% water, to 
inert material landfill 

Ecoinvent database, version 2.0 

Waste to hazardous 
material landfill 

Kg 
DE: disposal, hazardous waste, 0% water, 
to underground deposit 

Ecoinvent database, version 2.0 
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Revenues from the end-of-life management of the SOFC stack arise from the production of 

useable material, with a market value.  The assumptions underlying the calculation of 

revenues for the case study are summarised in Table 10.7.  

 

 

Table 10.6:  Development of cost data for unknown processes 

Process Estimated operator time 
 

Estimated 
cost rate 

Energy requirements 
(per 1000 kg) 

Energy unit cost* 

Water jet 
cutting 

5 minute setup time per 10 kg 
5 minute cutting time per 10 kg 

15 minute clean-up time per 500 kg 

£50 per hour 162 MJ electricity £0.07 per kWh 

Surface 
grinding 

1 minute per 0.125 kg 
30 minute clean-up time per 200 kg 

£50 per hour 665 MJ electricity £0.07 per kWh 

Pressurised 
steam 
treatment 

30 minutes setup per 1000 kg 
30 minutes clean-up per 1000 kg 

£50 per hour 56 MJ electricity 
396 MJ natural gas 

£0.02 per kWh 

Sieving 30 minute setup per 1000 kg 
30 minute clean-up per 1000 kg 

£50 per hour 0.81 MJ electricity 
 

£0.07 per kWh 

*Estimated, based on data within Department of Energy and Climate Change, 2011 

 

Table 10.5:  Cost data for precious metal recovery step 

Cost element Range of commercial values Value used in case study 1 

Lot charge £30 - £500 £500 

Processing charge per kg material £4 - £6 £5 

Refining charge per kg precious metal £170 - £250 £190 

Precious metal accountability 
Initial analysis of material provides a theoretical 
precious metal concentration from which the 
amount repayable to the waste supplier is derived.  
The refinery does not repay 100% of this value, but 
repays a percentage, based on a pre-defined 
“accountability” percentage. 

90% - 98% depending on 
precious metal concentration 

Specified in results for 
individual scenario 

evaluation 

Table 10.7:  Data for calculation of revenue from end-of-life scenarios in case study 1 

Recovered material Assumed market value  

(£ per kg) 

Source 

Palladium £15000 Johnson Matthey, 2011 
Ceramic plates (from surface 
grinding)  

£0.50 Estimated, based on market value of £1 per kg for 
ceramic raw material (alibaba.com, 2011f) assuming 
some reprocessing required prior to reuse  

Ceramic powder (from sieving) £0.70 Estimated, based on market value of £1 per kg for 
ceramic raw material (alibaba.com, 2011f) , 
assuming some reprocessing required, prior to reuse  

Structural filler (from precious 
metal recovery, scenario 3) 

Cost neutral Estimated 
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10.3.4 Implementation of case study 1 

Case study 1 was implemented using the data and assumptions generated by the application 

of the first two stages of the framework, definition of product stream and definition of end-of-

life scenarios, described in Sections 10.3.1 – 10.3.3 above. The third and fourth stages of the 

framework were applied, following the evaluation methodology developed in Chapter 9 of the 

thesis. Each of the three end-of-life scenarios was evaluated to determine legislative risk, 

environmental impact and economic impact (Figure 10.5).  Legislative risk was evaluated using 

the novel risk assessment tool described in Chapter 9 of the thesis.  Environmental impact was 

evaluated using GaBi4 software to perform LCA of each end-of-life scenario, according to the 

goal, scope and system boundaries described in Chapter 9.  Microsoft Excel was used to 

manipulate the results generated in GaBi4 in order to generate a graphical representation of 

results.  A cost-benefit spreadsheet was generated in Microsoft Excel in order to support the 

RA method 

Literature 
data Laboratory 

trials 
Industrial 

trials 
Scenario definition  

Scenario 
1 

Scenario 
2 

Scenario 
3 

Evaluation of legislative risk 

Evaluation of environmental impact 

Evaluation of cost-benefit ratio 

Multi-criteria evaluation 

Scenario comparison 

 

LCA 
method 

CBA 
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Figure 10.5: Implementation of case study 1. 
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parametric cost-benefit analysis (CBA) described in Chapter 9, and again to generate a 

graphical representation of results.  The numerical results from the individual evaluation 

methods were used as the input to the E2LM decision support tool.   

10.3.5 Analysis of results for case study 1 

The following sections present the results obtained from the individual evaluation methods for 

legislative compliance, environmental impact and economic impact. In addition, the 

application of the multi-criteria decision support tool, E2LM, is applied to support identification 

of the preferred end-of-life scenario. 

10.3.5.1 Legislative compliance risk assessment results 

Figures 10.6 – 10.8 show the results from the legislative compliance risk assessment for each 

of the scenarios under evaluation in the case study. 

All three scenarios are shown to have the same performance with regard to compliance with 

existing legislation.  The presence of various hazardous materials within the SOFC stack is 

indicated.  These hazardous substances, as discussed in Chapter 7, are present in very small 

concentrations in the manufactured SOFC stack, and as such the SOFC stack waste stream 

would not be classified in its entirety as hazardous waste.  The exception to this is nickel oxide, 

which, as a category 1 carcinogen, has a concentration limit of 0.1% by weight, over which 

waste containing this substance is classified as hazardous waste.  Within the SOFC stack, nickel 

oxide is converted to nickel metal during operation, on exposure to a hydrogen-rich 

environment.  However, this transformation is reversible, depending on the conditions under 

which the SOFC stack is shut down.  If the SOFC stack is shut down in an oxygen-rich 

environment, then nickel oxide re-forms.  If, however, the SOFC stack is shut down in a 

hydrogen-rich environment, then nickel remains in the metallic form.  Nickel, in the metallic 

form, is allowed in concentrations up to 1% by weight before a waste stream is classified as 

hazardous. 

Based on the low concentration of nickel oxide within the SOFC stack, it is possible therefore, 

that the answer to the question “Is the concentration of any hazardous materials in the end-of-

life SOFC stack below the classification limit for hazardous waste?” would only be answered 

“YES”, if it could be guaranteed that the SOFC stack has been shut down in a non-oxidising 

environment.  For each of the three scenarios it is assumed that such controls are not currently 

in place, and so a negative response is entered on the risk assessment form. 
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None of the scenarios, as defined in the case study, require the input of hazardous materials, 

however, individual process steps result in the generation of small quantities of hazardous 

waste, principally arising from the concentration of the small quantities of hazardous materials 

contained within the SOFC stack.  Similarly, emissions of dust and contamination of waste 

water will require monitoring under local health, safety and environment regulations, with 

appropriate controls implemented. 

With regard to the international transportation of waste, all scenarios require the shipment of 

hazardous waste overseas, based on the assumptions made within the case study regarding 

the state of the nickel within end-of-life SOFC stacks.  Under controlled shut-down conditions, 

scenario 3 would not require the shipment of hazardous waste overseas.  The initial material 

separation steps conducted in scenarios 1 and 2 result in the removal of the bulk ceramic 

material, prior to shipment of waste for precious metal recovery.  As such, this concentrated 

material fraction for scenarios 1 and 2 would be classified as hazardous, regardless of whether 

the nickel was in metal or oxide form. 

The results from the risk assessment step of the legislative evaluation indicate that scenarios 1 

and 2 achieve an equal score of 3.88.  The evaluation method identifies two areas of “high” 

risk.  The first area relates to the weight percentage of the end-of-life SOFC stack which is 

recycled.  Scenarios 1 and 2 both achieve recycling rates of between 55% and 70% of the input 

material.  A requirement to recycle a higher percentage would require significant 

improvement to be achieved in the material separation steps of the end-of-life processes.  The 

disposal of hazardous waste to landfill also introduces a high level risk for scenarios 1 and 2. 

Development of legislation to prohibit disposal of all hazardous wastes to landfill would 

require alternative solutions to be developed for the low levels of residual hazardous waste 

arising from the processing of end-of-life SOFC components.  Similarly, the prohibition of 

disposal of non-hazardous wastes would require significant modification of the end-of-life 

scenarios; however, this development in legislation is identified as having only a low 

probability, such that a medium risk is identified. 
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Figure 10.6: Case study 1 results from legislative risk assessment for scenario 1 
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Figure 10.7: Case study 1 results from legislative risk assessment for scenario 2 
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Figure 10.8: Case study 1 results from legislative risk assessment for scenario 3 
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For scenario 3, two additional areas of high risk are identified, leading to a higher risk score of 

4.63.  In scenario 3, the majority of the weight of material recycled from the end-of-life SOFC 

stack is in the form of residual waste from the precious metal recovery process step, which is 

used as low-grade structural filler.  While this has been considered within the case study to be 

recycled material, with associated avoided environmental impacts, its definition as such is 

tenuous, and no market value has been assigned during the evaluation of economic impact.  If 

this material fraction were to be classified as waste rather than recycled material then 

significant modification to the end-of-life scenario would be required to achieve recycling rates 

greater than that attributed to the recovery of precious metal (which is at most 1% by weight). 

Overall, the results from the legislative risk assessment in case study 1 highlight the risks 

introduced at end-of-life when hazardous materials are present within a product.  These risks 

could be alleviated by substitution of hazardous materials with less hazardous alternatives.  In 

addition, the comparison of the results obtained for scenarios 1 and 2 with that of scenario 3 

illustrate the value of early separation of materials within the end-of-life SOFC stack, in 

supporting higher overall levels of material recycling. 

10.3.5.2 Environmental impact results 

Results from the evaluation of environmental impact are shown in Figures 10.9 – 10.12.  These 

results were obtained by applying the streamlined LCA method, described in more detail in 

Chapter 9.  Results indicate the environmental impact associated with the end-of-life 

management of a SOFC stack capable of producing 1 kW of electrical power when operating at 

design point.   

When examining the results from the three alternative scenarios, it is immediately clear that 

similar patterns can be observed, with regard to the distribution of environmental impacts 

across the three stages of the end-of-life process (collection and sorting; reprocessing; 

redistribution).  Graphical representations of the single impact results, for each of the six 

impact categories included within the scope of the evaluation, indicate that the environmental 

benefits arising from the redistribution stage in all cases substantially outweigh the cumulated 

detrimental effects of the other stages.   

The benefits at the redistribution stage arise from the avoided impacts assigned to the 

production of recycled palladium metal, as well as recycling of ceramic materials in scenarios 1 

and 2.  This effect reflects the high environmental impacts associated with the production of 

virgin palladium, especially considering the low concentration of palladium present in the SOFC 
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stack.  It should be noted that a complete life cycle assessment of the SOFC components 

examined in this case study would also take into account the detrimental environmental 

impacts of palladium production in the manufacturing phase of the SOFC product life cycle.  

None-the-less, the results from the case study indicate that these high impacts during 

manufacture would be alleviated if efficient recovery of material at end-of-life was routinely 

achieved. 

It is also clear from the results presented in Figures 10.9 to 10.11 that the collection and 

sorting step of end-of-life management makes an insignificant contribution to the overall 

environmental impact of any of the scenarios evaluated.  Also, the impacts of transportation 

during the reprocessing step were found to be negligible.  All three scenarios investigated in 

this case study were limited in their geographical scope, with all process steps being conducted 

within Europe, which is at present relatively close to the point of origin of the end-of-life SOFC 

stacks.  Given the intention of Rolls-Royce Fuel Cell Systems Limited to enter a global market, it 

is possible that the impacts of transportation would be more prevalent in the future, 

depending on the proximity of recycling processing plants to the installed SOFC products.   

By the application of normalisation and weighting factors, the aggregated scores can be used 

to compare performance more clearly across the three scenarios, as shown in Figure 10.12.  All 

three scenarios have an overall score which is a negative number, which indicates that in all 

cases the proposed reprocessing routes would be beneficial within the complete product life 

cycle.  With an overall impact value of -2.13 x 10-9, scenario 3 provides the greatest 

environmental benefits.  This is directly related to the high efficiencies associated with the 

recovery of palladium metal.  Scenario 3 demonstrates the least complex process route, and as 

such material losses associated with initial material separation steps are minimised.  In 

contrast, scenario 2 incurs high losses during the sieving separation step, resulting in a smaller 

amount of palladium being recovered in the final process step.  This scenario performs the 

least well of the three, with an overall impact of -1.53 x 10-9.   

These environmental impact results illustrate that investing in the end-of-life management of 

SOFC stacks is of benefit with regard to the environmental impact of the technology.  This is 

especially significant in cases such as this where environmentally damaging materials are used 

in the production of components. 
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Figure 10.9: Case study 1 results from environmental impact assessment for scenario 1 
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Figure 10.10: Case study 1 results from environmental impact assessment for scenario 2 
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Figure 10.11: Case study 1 results from environmental impact assessment for scenario 3 
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Figure 10.12: Single score results from the evaluation of environmental impact for the three scenarios              

investigated in case study 1. 

 

10.3.5.3 Economic impact results 

The results from the economic impact evaluation are presented in Figure 10.13, with costs 

displayed as negative values, and revenues displayed as positive values.  It is immediately clear 

from the results that the value of the recycled materials dominates the performance of all 

three scenarios.  The recovery efficiency for palladium in scenario 2 is lower than scenarios 1 

and 3, due to inefficiencies in the sieving process step.  Scenario 3 has the highest recovery 

efficiency for palladium. 

The costs associated with all three scenarios are marginal in comparison with the revenues 

recovered from recycled materials.  Scenario 2 has the lowest costs associated with it, based 

on the assumptions defined in Sections 10.2 and 10.3.  In contrast, scenario 1 has higher costs 

associated with the initial material separation stages of the process. 

The cost-benefit ratio provides a single figure result for the economic impact evaluation.  A low 

cost-benefit ratio value represents a low economic impact.  In all cases the cost-benefit ratio 

associated with the end-of-life scenarios is less than one, indicating than an overall economic 

benefit is realised.  The results from the case study indicate that scenario 2 performs best 

economically, while scenario 1 has the highest economic impact. 
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Figure 10.13: Results from the evaluation of economic impact for the three scenarios investigated in case study 1. 

 

10.3.5.4 Multi-criteria decision making 

Individual results from the evaluation methods presented in the previous sections were 

imported into the E2LM multi-criteria decision support tool, and results were normalised. 

Results from the multi-criteria evaluation method are shown in Figures 10.14 – 10.17.  Figure 

10.16 shows the final outcome for the comparison between the three scenarios evaluated in 

case study 1.  Scenario 2 is identified as being the preferred end-of-life option, based on the 

single score calculated using the weightings for individual performance criteria.  Scenario 1 

performs least well, when all performance criteria are considered together. 

A sensitivity analysis was performed on the results generated using the multi-criteria decision 

support tool, as shown in Figure 10.17.  Weighting levels were changed to represent a 

situation where legislative compliance is considered to be half as important as environmental 

and economic impact, which are considered equal.  Results from the application of these 

revised weightings show the same order of preference to be obtained for the three end-of-life 

scenarios evaluated. 
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Figure 10.14: Individual performance scores are imported to the multi-criteria decision support tool, and weightings 

are defined for case study 1. 

 

 

 

Figure 10.15: Normalised results from the individual evaluation methods for case study 1. 
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Figure 10.16: Final comparison of scenarios 1, 2 and 3 investigated in case study 1. 

 

 

 

Figure 10.17: Sensitivity analysis showing the results of applying revised weightings in the multi-criteria evaluation 

method used in case study 1. 
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10.3.6 Conclusions from case study 1 

Case study 1 demonstrates the application of the framework for end-of-life management of 

SOFC stacks, as developed in the research presented in this thesis.  The results from the 

individual evaluation methods are summarised qualitatively in Figure 10.18.  These results 

indicate that evaluation of individual performance criteria does not necessarily provide a clear 

selection of a preferred end-of-life scenario from several alternative options.  In case study 1, 

none of the three scenarios evaluated was found to perform “best” against all three 

performance criteria: similarly there was not a clear worst performer.  As such, this highlights 

the paramount importance of the multi-criteria decision support tool. The application of this 

tool in this case study identifies scenario 2 as providing the best overall performance, relative 

to the other two end-of-life options. 

This final conclusion from the case study is interesting.  At present, only scenario 3 represents 

a commercially “ready” process for the treatment of end-of-life SOFC components, but has not 

been tailored to meet the specific requirements of this end-of-life waste stream.  Scenarios 1 

and 2 have been developed based on preliminary feasibility studies. The results from case 

study 1 indicate that improvements on the commercially available process route could 

potentially be achieved, through development of a new end-of-life process (scenario 2): 

however, the results also indicate that poor process selection could result in the impact of 

end-of-life management being increased (scenario 1), rather than decreased.  
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Figure 10.18: Summary of results from case study 1. 

 



CHAPTER 10   

177 

10.4 Case study 2 

The results from case study 1 indicate the dominance of the palladium content of the end-of-

life SOFC stack with respect to the overall environmental and economic impact associated with 

its end-of-life management.  However, the end-of-life SOFC stack considered in case study 1 

consists of pre-commercial components, manufactured during the development of 

manufacturing processes, and prototyping of the technology.  As such, the material 

composition of the SOFC stack considered in case study 1 is unrepresentative of the material 

composition of commercial product, since the use of precious metals, such as palladium, is 

considered to be necessary only for product development and testing purposes.  Alternative 

materials with lower market value are available to replace the use of palladium in the IP-SOFC 

design. 

Therefore, case study 2 investigates the impact of reducing the palladium content of the SOFC 

stack on the end-of-life phase of the life cycle.  Case study 2 builds on the results obtained in 

case study 1, and so is subject to the same data limitations as described in Sections 10.2 and 

10.3. The intention of case study 2 is to demonstrate the application of the end-of-life 

framework developed in the thesis to inform decisions regarding the design of the SOFC stack, 

thus supporting a more proactive approach to end-of-life management.  

10.4.1 Characterisation of the product stream for case study 2 

Three variations of product stream were investigated during this case study, reflecting changes 

in material composition effected by modification of the SOFC stack design.  One of the 

principal design challenges for fuel cell developers is cost reduction.  As such the use of 

expensive materials is constantly being reviewed, and their use minimised wherever possible.  

However, valuable material content is an attractive attribute of end-of-life products, since the 

revenues recovered often contribute to the economic feasibility of the recycling process.  In 

order to investigate this apparent conflict between design requirements and end-of-life 

requirements, three different design concepts were evaluated: 

• Design concept 1: High palladium content – this material composition was the subject 

of case study 1, representing pre-commercial products where the use of noble metals, 

such as palladium, is useful for performance testing.  Palladium content is assumed to 

be 1%, by weight, of the SOFC stack. 

• Design concept 2: Medium palladium content – this material composition represents a 

significant reduction in the use of palladium.  Palladium is partially replaced with a 
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ceramic current collecting material, similar to the SOFC cathode.  Palladium content is 

assumed to be 0.1%, by weight, of the SOFC stack. 

• Design concept 3: Trace palladium content – almost all precious metal is removed from 

the SOFC stack, and is replaced with a ceramic current collector material, similar to the 

SOFC cathode.  Palladium content is assumed to be 0.01%, by weight. 

All other assumptions regarding the characterisation of the product stream are the same as 

those documented for case study 1 in Section 10.3.1. 

10.4.2 Definition of end-of-life scenarios for case study 2 

The end-of-life scenarios investigated for case study 2 are the same as those previously 

defined in case study 1 in Section 10.3.2. 

10.4.3 Data for case study 2 

In general the data requirements for case study 2 are the same as those for case study 1 and 

the data utilised in case study 2 are the same as those defined in Sections 10.3.2 and 10.33.  

Data are only adapted to reflect changes in palladium content of the SOFC stack.  All other 

design and process parameters are assumed to remain the same. 

10.4.4 Implementation of case study 2 

The implementation of case study 2 followed the same process as depicted in Figure 10.5, 

repeated three times for each of the design concepts investigated.  Further to supporting a 

comparison of three alternative end-of-life scenarios, case study 2 had an additional purpose 

of exploring the link between the product design and end-of-life stages.   

10.4.5 Analysis of results for case study 2 

The following sections present the results obtained from the individual evaluation methods for 

legislative compliance, environmental impact and economic impact. Finally, the application of 

the multi-criteria decision support tool, E2LM, is applied to support identification of the 

preferred end-of-life scenario. 

10.4.5.1 Legislative compliance risk assessment results 

Changes to the palladium content of the SOFC stack were not found to impact upon the risk of 

non-compliance with legislative requirements.  Therefore the results for the legislative risk 

assessment are the same for all three design concepts, and are the same as the results 

presented in case study 1, in Figures 10.6 – 10.8. 
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10.4.5.2 Environmental impact results 

Environmental impact results for the three design concepts are shown in Figures 10.19 – 

10.21, with each figure showing a comparison of the results obtained for all three end-of-life 

scenarios.  It can be seen that even with elimination of all but a trace quantity (0.01%) of 

palladium, the benefits of the material recycling continue to outweigh the detrimental impacts 

of the reprocessing step, as shown in Figure 10.21.  However, in this third design concept, the 

benefits of recycling ceramic material in addition to the precious metal become apparent, 

illustrated by the superior benefits offered by scenarios 1 and 2.   

These results from case study 2 indicate that for the first design concept (1% palladium) 

scenario 3 provides the greatest environmental benefit, while scenario 2 performs least well.  

This same order is observed for the second design concept (0.1% palladium), although the 

variation in performance for the three scenarios is much less marked.  However, for the final 

design concept evaluated (0.01% palladium), scenario 3 provides the greatest environmental 

benefit, while scenario 1 would be the least preferred option from an environmental 

perspective. 

These results indicate that a design modification, such as that defined in case study 2, can play 

a significant role at the end-of-life stage of the product life cycle.  In this case study example, 

the outcome of the selection of an end-of-life solution for the SOFC stack based on 

environmental impact alone would differ for design concepts 1 and 3. 

 

Figure 10.19: Single score results from the evaluation of environmental impact arising from the end-of-life 

management of Design Concept 1 (1% Palladium) by three alternative scenarios. 
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Figure 10.20: Single score results from the evaluation of environmental impact arising from the end-of-life 

management of Design Concept 2 (0.1% Palladium) by three alternative scenarios. 

 

 

Figure 10.21: Single score results from the evaluation of environmental impact arising from the end-of-life 

management of Design Concept 3 (0.01% Palladium) by three alternative scenarios. 
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10.4.5.3 Economic impact results 

Economic impact results for the three design concepts are shown in Figures 10.22– 10.24, with 

each figure showing comparison of results obtained for each of the end-of-life scenarios.  It 

can be seen that for the first two design concepts, with 1% and 0.1% palladium respectively, 

the revenues recovered from the recycling process outweigh the total costs of end-of-life 

management for all three scenarios.  This is indicated by cost-benefit ratio values of less than 

one.  For the third design concept (0.01% palladium), the recycling process becomes 

uneconomic for all but scenario 2.  Scenarios 1 and 3 both have cost-benefit ratio values 

greater than one, indicating that the process costs outweigh the revenues generated through 

recycling valuable materials. 

For this final design concept, the revenue recovered from each of the end-of-life scenarios 

similar:  the main variation lies in the costs of reprocessing.  The high costs associated with 

scenario 1 are due to the labour intensive material separation steps, prior to precious metal 

recycling.  For scenario 3 the high costs are associated with the precious metal recycling.  In 

contrast to scenarios 1 and 2, no prior material separation is conducted, and so a large volume 

of material with low precious metal content is treated by the precious metal recycler.  This 

incurs a high process cost, arising from a charge per kg of material received.  When precious 

metal content is high, such as for design concept 1, this treatment cost is outweighed by the 

value of the recovered metal.   

 

Figure 10.22: Single score results from the evaluation of economic impact arising from the end-of-life management 

of Design Concept 1 (1% Palladium) by three alternative scenarios. 
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Figure 10.23: Single score results from the evaluation of economic impact arising from the end-of-life management 

of Design Concept 2 (0.1% Palladium) by three alternative scenarios. 

 

 

Figure 10.24: Single score results from the evaluation of economic impact arising from the end-of-life management 

of Design Concept 3 (0.01% Palladium) by three alternative scenarios. 

 

These results indicate that as palladium content decreases, the adoption of a low-cost material 

separation process, prior to recovering the metal, becomes highly beneficial.  Therefore this 
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demonstrates that design parameters can be useful in directing the development of an 

economically viable end-of-life solution. 

10.4.5.4 Multi-criteria decision making 

Results from the application of the multi-criteria decision support tool are shown in Figures 

10.25 – 10.27.  Each figure shows a comparison of the performance of the three end-of-life 

scenarios, for Design Concept 1, 2 and 3 respectively.  It can be seen from these results that 

although the magnitude of the results arising from the environmental and economic 

evaluation methods, presented in Sections 10.4.5.2 and 10.4.5.3 above, vary considerably for 

the different design concepts, the overall conclusion from the multi-criteria decision support 

tool remains unchanged:  scenario 2 represents the lowest impact end-of-life scenario, relative 

to the other scenarios investigated in the case study.  The difference in performance between 

the three scenarios becomes increasingly significant as the palladium metal is removed from 

the SOFC stack. 

Despite there being no change in the scenario which would be recommended as the preferred 

end-of-life solution, changes in the triangular plots of the results are interesting.  In Figure 

10.25, the blue triangle (representing scenario 3) shows lowest environmental impact:  by 

Figure 10.27 the contribution of environmental impact to the overall performance of scenario 

3 has become more significant.    

 

 

Figure 10.25: Final multi-criteria comparison of end-of-life scenarios for Design Concept 1 (1% Palladium) 



CHAPTER 10   

184 

 

Figure 10.26: Final multi-criteria comparison of end-of-life scenarios for Design Concept 2 (0.1% Palladium) 

 

 

Figure 10.27: Final multi-criteria comparison of end-of-life scenarios for Design Concept 3 (0.01% Palladium) 

 

10.4.6 Conclusions from case study 2 

Case study 2 illustrates the application of the end-of-life management framework, developed 

in the thesis, to investigate the relationship between design modification and selection of an 

appropriate end-of-life scenario.  The design modification investigated was concerned with the 
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reduction of palladium within the SOFC stack.  The results presented from this case study 

indicate the influence of the design modification on each of the three end-of-life performance 

parameters.   

With regard to legislative compliance, no change was identified in association with a reduction 

in palladium content.  The environmental impact of the end-of-life scenarios was found in case 

study 1 to be dominated by the recovery of palladium metal and ceramic material from the 

end-of-life process: this was shown to remain the case, even when the palladium content was 

reduced by an order of magnitude, as shown in the environmental impact results for the 

second design concept.  However, when only trace amounts of palladium metal were available 

for recovery (i.e. design concept 3) the recycling of the bulk ceramic material became 

significant in scenarios 1 and 2.  For this third design concept, the preferred end-of-life 

scenario, from an environmental perspective, changed from scenario 3 to scenario 2.   In fact, 

whereas for the design concepts with 1% and 0.1% palladium content scenario 3 was found to 

offer the greatest environmental benefit, this scenario performed least well when applied to 

design concept 3 (0.01% palladium). In the economic impact evaluation, the removal of 

palladium metal from the SOFC stack has been shown to substantially increase the economic 

burden associated with the end-of-life phase of the product life cycle.  When only a trace 

amount of palladium is present in the end-of-life waste stream (design concept 3), only 

scenario 2 is economically viable, with the other scenarios presenting a net cost. However, it is 

noted that this increase in cost associated with the end-of-life phase would presumably be 

counterbalanced with reduced production costs, assuming that palladium is replaced with a 

less expensive material.  The adoption of a low-cost material separation step prior to precious 

metal recycling has been shown to have an economic benefit, which becomes more significant 

as the amount of precious metal in the SOFC stack is decreased.  This finding from case study 2 

is significant with respect to the development of an end-of-life management solution for 

future commercial SOFC products.   

The application of a multi-criteria decision support tool to case study 2 leads to the conclusion 

that the preferred end-of-life scenario (scenario 2) remains unchanged when the three 

proposed design concepts are considered.  However, it must be noted that the end-of-life 

scenarios developed for investigation in the case studies have been devised with priority given 

to precious metal recovery.  In the absence of precious metals within the SOFC stack, it is 

necessary to investigate alternative end-of-life processes, which put more emphasis on 

recovery of the other materials contained within the SOFC stack.   
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Case study 2 illustrates how a simple design modification can be evaluated using the 

framework for end-of-life management defined in the thesis, in order to investigate the effect 

of the design change on legislative, environmental and economic performance at end-of-life.  

By using a simple example, the importance of the relationship between design and end-of-life 

management has been demonstrated.  Although the results from the evaluation of design 

concept 1 (1% palladium) indicate a preference for the selection of end-of-life scenario 2, in 

terms of practical adoption of an end-of-life process only scenario 3 currently exists as a 

commercially available solution.  Therefore, based on the strong environmental performance 

of scenario 3, as well as the large economic benefit achieved through recycling, it may be 

attractive for a SOFC developer to pursue non-selective recycling, despite the findings 

provided by the multi-criteria decision support tool.  Although in the short term this pragmatic 

decision may avoid the need to invest in the development of the non-commercial process 

described in scenario 2, the results from case study 2 indicate that this decision may be short-

sighted.  Failure to develop an end-of-life solution which is economically viable when planned 

design changes (i.e. the removal of precious metals from the SOFC stack) are implemented 

could result in unnecessary costs being associated with the end-of-life phase of the 

commercial product life cycle.   

10.5 Summary of findings from case studies 

The case studies reported in this chapter apply the framework for end-of-life management, 

introduced in Chapter 6 of the thesis, to the question of end-of-life management of SOFCs.  In 

the first case study, the framework is applied in a reactive approach: the design of the SOFC 

stack is fixed, and the framework supports the evaluation and comparison of three alternative 

end-of-life process routes.  In the second case study, the framework is applied in a proactive 

approach: the relationship between end-of-life management and modification to the SOFC 

stack design is explored.  Together, therefore, the case studies demonstrate the flexibility of 

the framework with regard to mode of application.   

The first case study identifies the process defined as scenario 2 as being the preferred end-of-

life solution, based on the application of the multi-criteria evaluation methodology developed 

within the research.  This process utilises steam treatment in an autoclave to break down the 

ceramic stack components, followed by an automated sieving process to separate the active 

material fraction from the bulk ceramic material.  This material separation step yields a highly 

concentrated fraction containing the palladium, which is sent for recycling at a smelter.  In 

addition, the recovered ceramic is recycled.  Although this process performs least favourably 
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with respect to overall environmental impact, the low cost-benefit ratio and comparatively low 

risk of legislative non-compliance result in the overall impact score being superior to that of 

the other two end-of-life scenarios proposed.   

The results from the first case study indicate that although scenario 2 provides the best overall 

performance, all three scenarios provide environmental and economic benefits.  At present, 

the process described in scenario 3 (non-selective recycling) has been implemented within 

Rolls-Royce Fuel Cell Systems Limited in order to recover value from historic inventory of 

prototype components.  This scenario provides the only process which is currently 

commercially available.  The results from case study 1 suggest that greater benefits could be 

achieved by investing in further development of the process described in scenario 2; however 

they also indicate that nothing would be gained by investing further in the development of the 

process described in scenario 1.    

Despite these interesting insights, it is acknowledged that the data utilised in the completion 

of case study 1 is of mixed quality, and as such the results provided by the application 

methodology should be considered with caution.  In particular, the data used to define 

scenarios 1 and 2 have been based primarily on laboratory scale trials, supported with 

additional data from the literature.  As such the accuracy of data, while believed to be 

representative of the processes described, has the potential to affect the final outcomes and 

therefore provide misleading direction.  It is therefore important that the industrial application 

of the results produced in case study 1 would be subject to scrutiny, especially with regard to 

the details of the results generated using the environmental and economic evaluation 

methods.  

The second case study identifies the preferred end-of-life solution for three different design 

concepts which reflect the fact that the SOFC stack adopted in future commercial products is 

not reliant on the use of precious metals.  The results indicate that as the removal of palladium 

from the SOFC stack is implemented, the environmental and economic impacts of the end-of-

life phase of the product life cycle are subject to significant change.  Similar to case study 1, 

case study 2 also presents scenario 2 as the preferred end-of-life scenario, for all three of the 

proposed design modifications.  However, more detailed examination of results provides some 

more interesting insights.  Although, for the first design concept, all three scenarios provide 

environmental and economic benefits, for the final design concept where a minimal amount of 

palladium is utilised, only scenario 2 is economically viable.  This result is specifically significant 

with respect to industrial application of the research, since it identifies a need to invest in the 
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development of new end-of-life supply chains (such as that described in scenario 2) prior to 

the commercialisation of the SOFC product.  While the benefits of the commercially available 

process described in scenario 3 may be useful as a short-term solution for the recovery of 

prototype components, the results from case study 2 indicate that a reliance on this available 

process route is not viable in the long term. 

Case study 2 therefore illustrates the important link between product design and end-of-life 

management.  SOFC developers are in an advantageous position, compared with other 

industrial sectors, in the fact that the designs for commercial products which will be produced 

at volume are in general not yet finalised.  It is clear that the application of a framework for 

end-of-life management, such as that developed in this thesis, in a proactive manner could 

support the direction of end-of-life process development so as to maximise economic and 

environmental benefit arising at this stage of the product life cycle. 

Although the results generated from both case studies are be influenced by the quality of the 

data available, the findings provide some interesting insights with regard to the quantification 

and comparison of alternative end-of-life scenarios.  In addition, and perhaps of more value in 

the long term for the SOFC industry, the case studies illustrate the application of a systematic 

approach to end-of-life management which supports the development of a process which 

meets specified performance criteria.  As the industry moves towards large scale 

commercialisation, the framework presented in this thesis and demonstrated through these 

case studies provides a useful tool to support the development of end-of-life management 

solutions which are environmentally and economically beneficial, and for which compliance 

with existing and future legislation has been considered. 
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CHAPTER 11 CONCLUDING DISCUSSION 

11.1 Introduction 

This chapter begins with a summary of the principal research contributions proposed in the 

thesis.  The subsequent discussion follows the headings of the original research objectives and 

scope defined in Chapter 2, and aims to highlight the significant findings and knowledge gained 

from the research. 

11.2 Research contributions 

The research in this thesis has investigated the end-of-life management of SOFCs.  The 

principal contributions from the research can be summarised as follows: 

i. Identification of a need for the issues arising during the end-of-life phase of the SOFC 

life cycle to be addressed, prior to wide-scale commercialisation, in order to ensure 

that the environmental credentials of the technology are fully realised. 

ii. Investigation of the challenges and opportunities presented by the end-of-life SOFCs 

based on a systematic analysis of design and material characteristics of the product 

within the wider context of extended producer responsibility legislation and other 

environmental product policies. 

iii. Proposal of alternative practical solutions for the end-of-life management of SOFCs, 

based on a mixture of existing and novel waste management technologies and 

capability. 

iv. Definition of a novel method for evaluating risks of non-compliance with existing and 

future legislative requirements in the development of end-of-life management 

solutions for products incorporating a new technology. 

v. Demonstration of a novel multi-criteria evaluation methodology, which incorporates 

environmental, economic and legislative compliance performance criteria in order to 

support decision-making with respect to the development of an end-of-life 

management solution for SOFCs.  
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11.3 Concluding discussion 

The following sections outline the results of the research under each of the headings defined 

within the original research objectives and scope. 

11.3.1 Review of the current status of SOFC technology and relevant requirements and 

evaluation methods for end-of-life management 

In order to establish the context for the research, it was necessary to complete a literature 

review.  Two specific areas of literature were identified as being of particular relevance to the 

research: the review of SOFC technology is reported in Chapter 3 of the thesis, and a review of 

end-of-life requirements and evaluation methods is reported in Chapter 4. 

Together, these review chapters identify that fuel cells are a technology in which significant 

investment continues to be made, with the view to developing a broad range of power 

generation products for both mobile and stationary applications.  A substantial impetus for the 

technology lies in perceived environmental benefits resulting from high efficiencies during 

operation.  These environmental claims have been substantiated by studies comparing the 

impacts of the technology during operation with impacts arising from other power generation 

technologies.  Besides these environmental benefits, SOFC technology offers interesting 

opportunities for providing distributed power generation.   

Based on this evidence it would appear that SOFC technology has a significant place in the 

future energy market, especially given growing demand for electricity in the developing world, 

and increasing concerns regarding the environmental impacts of conventional power 

generation.  Widespread commercialisation of the technology will result in the eventual 

generation of a high-volume of end-of-life products and components, highlighting the need for 

consideration of various end-of-life management options, prior to market penetration.  It was 

clear from the literature that end-of-life management of SOFC technology has not been 

considered with any rigour, and as such the literature review identified a gap in existing 

knowledge which the research presented in this thesis begins to address. 

11.3.2 Development of a framework for end-of-life management of SOFC stacks  

In the absence of an existing end-of-life management solution for SOFC technology there was a 

need within the research to explore various possible practical solutions.  It was also identified 

that these potential solutions should be evaluated in terms of environmental performance, 

economic performance and compliance with existing and future legislation, in order to 

establish their viability. In order to ensure that this complex problem could be approached 
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systematically, a framework was devised to support the research.  This framework provides a 

step-wise approach to develop alternative end-of-life scenarios, based on a defined product 

design, and then to evaluate each of the performance criteria independently.  The framework 

further supports decision making by, in its final stage, combining the three individual 

performance outcomes into a single performance measure. 

This research therefore enables end-of-life management of SOFC technology to be considered 

in a holistic approach, using a framework which can be applied prior to design finalisation, in 

order to feed back into design refinement activity, and after design finalisation, in order to 

feed back into refinement of end-of-life management processes.   Considering the lack of prior 

knowledge in this area, the framework provides a flexible, comprehensive approach to support 

the SOFC industry in addressing the need for an environmentally responsible and economically 

viable end-of-life solution which complies with relevant legislative requirements. 

11.3.3 Definition of existing SOFC concepts in terms of design and material characteristics 

and development of alternative end-of-life scenarios for SOFC stacks  

The initial review of SOFC technology identified the fact that various different stack design 

concepts have emerged during development by different commercial and academic bodies.  

Although these different concepts generally utilise common materials for the principal fuel cell 

components, the characteristics of different designs result in significant variation in the final 

material composition of the product.  This therefore generates different priorities and 

challenges in the development of end-of-life management solutions, when environmental 

performance, economic performance and legislative compliance of the end-of-life processes 

are considered.  These research findings, presented in Chapter 7 of the thesis, highlight the 

need for end-of-life management of SOFC stacks to be considered with focus given to a single 

design concept.  While the research presents some broad findings of relevance to the end-of-

life management of all SOFC stack concepts, a single SOFC stack design was selected for the 

subsequent stages of the research. 

In defining the SOFC stack design, considered within the research as the future end-of-life 

product, various assumptions were made based on available data and knowledge.  A 

significant assumption was made regarding the impact of the use phase on the SOFC stack.  It 

was assumed that the material composition of the SOFC stack at end-of-life would be identical 

to the material composition of the as-manufactured product.  In reality, issues such as 

contamination from fuel and oxidant gases and exposure to prolonged periods of high 

temperature and elevated pressure may impact the quality and chemical composition of the 
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end-of-life product.  While the author did not consider these impacts to be substantial, it is 

noted that further exploration of these issues would be beneficial in future research. 

The development of alternative end-of-life scenarios was based on the assumption that the 

predicted size of the end-of-life waste stream did not warrant the development of bespoke 

process technologies, and as such existing infrastructure should be adopted where possible.  

This led to the development of three end-of-life scenarios, which the author identifies as being 

practically feasible, based on available waste processing capability.  The research does not aim 

to present an optimised end-of-life management process, but rather uses these scenarios as a 

vehicle for developing and validating the evaluation methodology.  Generation of additional 

end-of-life scenarios, based on real-life process development activities, would add value to the 

research.  

11.3.4 Development of a methodology to evaluate risk of non-compliance with current and 

future legislation 

One of the primary drivers for effective end-of-life management is legislation.  Environmental 

policy increasingly adopts a life cycle approach, identified in policies such as IPP and the 

growing body of extended producer responsibility legislation in the European Union.  

Manufacturers therefore face the challenge of needing to design products to a wide range of 

legislative requirements.   

This challenge, although significant for all product types, presents a particular issue for 

manufacturers developing novel technologies for commercialisation in the medium to long 

term.  From the review of legislation conducted in this research, few existing legislative 

requirements were identified as being of direct relevance to the end-of-life management of 

SOFC stacks;   however, any end-of-life management solution must anticipate future legislative 

requirements, especially regarding the development of the EPR principle. 

The research therefore presents a novel methodology to support manufacturers in identifying 

potential future requirements, and evaluating the significance of these requirements in terms 

of risk.  High risk of future non-compliance indicates that a proposed end-of-life solution is 

likely only to be viable for a short period, and therefore will need further investment and 

improvement following its implementation.  Low risk of future non-compliance indicates that a 

proposed end-of-life process has anticipated legislative developments and is likely to be viable 

as a long-term solution.  This methodology has been developed on the basis of legislation in 
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force today, and will need periodic revision to ensure that the assumptions continue to be 

based on the most up-to-date legislative requirements. 

11.3.5 Application of life cycle assessment and cost-benefit analysis methodologies to the 

evaluation of alternative end-of-life scenarios for SOFC stacks 

LCA and CBA are commonly applied to the evaluation of end-of-life management options and 

have proved to be useful tools for the evaluation of environmental and economic impacts, 

respectively.  While both tools adopt a recognised methodology for generating an evaluation 

result, the limitations are widely recognised in that results are heavily influenced by the scope 

of the models used in the evaluation process and the quality and completeness of the input 

data.  Given the novel area of the research, and commercial sensitivities regarding the 

development of fuel cell technology, data availability was one of the greatest challenges 

encountered during the completion of the thesis.  Opportunities for development of the LCA 

and CBA models will arise as this area is explored in more detail by the SOFC industry, and as 

more comprehensive, high quality data become available. 

An interesting feature of the research arose from the selection of a SOFC stack concept for 

which the current design incorporates an amount of precious metal.  This precious metal flow 

was found to have associated with it both high environmental impact in its production (and 

hence high impact avoidance through recovery and recycling operations), and high economic 

impact, especially with regard to offering an attractive revenue from end-of-life recovery 

processes.  The requirement for commercial products to reach tight cost targets is driving 

reduction and/or elimination of such materials from the product design.  This research 

highlights the requirement to consider cost reduction activities within the context of the 

complete product life cycle.  While reduction of these high impact materials is likely to be 

beneficial, elimination may detrimentally affect the end-of-life waste stream by removing a 

financial incentive for pursuing resource-efficient processes.  The results obtained from the 

LCA and CBA presented in the thesis are valid in relation to the current product design 

definition.  The impact of design change on the outcome of these evaluation methods is 

illustrated in the second case study, and highlights the need for updating of the LCA and CBA 

models as the product design evolves towards the final commercial solution. 

11.3.6 Development of a method for evaluating the outputs from compliance, 

environmental and economic assessments using a single performance parameter 

While existing evaluation tools, such as LCA and CBA, are valuable for assessing individual 

performance characteristics, it became apparent during the course of the research that the 
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value of the output from these tools was limited, for a number of reasons.  Firstly, the results 

can be difficult to interpret in a meaningful manner, especially when data are presented to a 

non-expert, such as an industrial manager.  Secondly, the individual evaluation of three 

performance parameters (environmental impact, economic impact and legislative compliance) 

results in three disparate results which may conflict in their evaluation of alternative end-of-

life options, leading to a decision-making challenge. 

The potential benefits of a methodology for amalgamating the three individual assessment 

results were identified, in supporting decision-making in a user-friendly manner.  The 

evaluation methodology presented in Chapter 9 provides a flexible and customisable decision 

support tool, which provides clear and simple results with transparency.  This tool was 

demonstrated in the case studies reported in Chapter 10, and provides a powerful approach 

for further development and optimisation of end-of-life management solutions for SOFCs.  The 

author is of the opinion that with minimal effort this tool could find application across a broad 

range of multi-criteria decision making applications. 

11.3.7 Demonstration and of the framework through case studies 

Two case studies were carried out to demonstrate the framework for end-of-life management 

of SOFC stacks, and the evaluation methodology developed in the research.  The primary 

objective of the case studies was to implement the framework for end-of-life management of 

SOFCs, as defined in Chapter 6 of the thesis, in a systematic manner in order to support 

decision making regarding the selection of the most appropriate end-of-life solution.  The case 

studies were specifically selected to demonstrate application of the evaluation methodology in 

a reactive approach (case study 1) and in a proactive approach (case study 2).  In the first case 

study, the evaluation methodology was simply required to support selection of an end-of-life 

solution which provided best performance when environmental impact, economic impact and 

legislative compliance were considered together.  The second case study explored the 

relationship between design and end-of-life management by evaluating end-of-life 

management of design concepts containing varying levels of precious metals. 

11.4 End-of-life management of SOFCs 

The principal research assertion, presented at the beginning of this thesis is that prior to 

commercialisation of SOFC technology, the challenges and opportunities arising at the end-of-

life phase must be identified and addressed.  This assertion has been supported by a 

comprehensive review of the literature, which identifies end-of-life management as a 

challenge to product designers and manufacturers, driven by legislation and environmental 
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concerns.  The exploration of end-of-life management of SOFC technology, as reported in the 

thesis, extends an existing body of knowledge by applying proven approaches and principles to 

a novel power generation technology still in the development stage, but likely to play an 

important role in future energy scenarios. 

The challenges and opportunities arising during the end-of-life management of products can 

be categorised as falling into three categories.  Environmental challenges exist in ensuring that 

wastes arising from end-of-life products are processed in a way which presents least 

environmental burden, while opportunities for recovering and reusing resources can be 

exploited to offset the impacts of virgin material production.   

As evidenced by other product waste streams (i.e. packaging, WEEE and ELV), economic 

challenges and opportunities are, in reality, of greater significance, especially when developing 

end-of-life solutions viable for commercial application.  The recovery of revenue from recycled 

material streams can play an important role in offsetting end-of-life management costs and, 

where valuable materials are concerned, can also offset original manufacturing costs.   

Finally, increasing legislative control on end-of-life management presents a challenge to 

designers and manufacturers in ensuring products demonstrate compliance across the 

complete product life cycle.  This legislation, however challenging, also provides opportunities 

to explore and implement more sustainable approaches to end-of-life management.    

The requirement to be able to evaluate all three performance criteria and to weigh the relative 

significance of one against the other is necessary to support decision-making, whether end-of-

life management is considered in a reactive or proactive approach.  The research therefore 

allows the challenges and opportunities in end-of-life management of SOFC stacks to be 

addressed by providing a comprehensive evaluation methodology which systematically 

assesses the environmental impact,  economic impact and legislative compliance of alternative 

solutions, providing the final evaluation output in a single score format to allow effective 

decision making.   

End-of-life management has historically been based on a reactive approach, in which the end-

of-life product is regarded as a waste problem which must be managed in an appropriate 

manner.  However, environmental policy is increasingly prompting a proactive approach to 

end-of-life management, with end-of-life considerations being taken into account during 

product design.  In the development of a new technology, such as SOFCs, designers are faced 

with many challenges; notably those concerned with technical functionality and cost.  These 
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aspects of a new product are fundamental to commercialisation, and have a tendency to 

dominate design priorities.   

The framework presented in the research has been constructed in such a way as to 

acknowledge this aspect of new product development.  The framework assumes the existence 

of a product concept which has been developed with technical functionality and other critical 

aspects in mind.  This concept is the subject of the end-of-life scenario definition and 

subsequent evaluation steps.  The output from the framework supports the selection of a 

preferred end-of-life scenario; however, the knowledge gained during the process of applying 

the framework supports a deepening understanding of the issues associated with the end-of-

life management of the product concept, and the impact the design has on environmental 

impact, economic impact and cost. Thus, where the framework is applied in a reactive manner 

to an early product concept, this knowledge can inform future design iterations, prior to the 

finalisation of a commercial product. 

Therefore, the research not only draws some preliminary conclusions regarding the viability of 

some proposed practical solutions for end-of-life management of SOFCs, but also provides a 

flexible and transparent evaluation methodology which can be adopted to support further 

optimisation of the life cycle impacts of this emerging power generation technology. 

11.5 Constraints and limitations to the research 

While the previous discussion indicates that the research has been successful in addressing the 

original aim and objective, several weaknesses are acknowledged. 

The principal weakness in the research stems from the very nature of the product under 

consideration.  SOFC technology is still, in general, in the pre-commercial phase of 

development, which presents a number of challenges with regard to the application of data-

driven evaluation methods.  The main challenge arises from ambiguity surrounding various 

aspects of the product, including those related to design and market behaviour.  These two 

factors have been shown to be closely linked with the impacts associated with the end-of-life 

phase of the product life cycle, such that uncertainties regarding the exact nature of the 

commercial product result in uncertainties regarding end-of-life management.  Therefore, 

much of the research presented in the thesis is based on assumptions and synthesised data.  

The lack of real data, with which to rigorously challenge and validate the theories presented in 

the thesis, is a weakness.   
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This lack of data has further been fuelled by the confidentiality requirements attached to the 

development of a product in its pre-commercial phase.  While part of the research was 

conducted during a Knowledge Transfer Collaboration project, allowing access to data owned 

by the sponsoring company, sensitivity regarding the use and publication of company data has 

hindered reporting and wider dissemination of research findings.  In addition, concerns 

regarding the loss of intellectual property through the distribution of prototype SOFC 

components to third parties have significantly restricted the amount of practical work which 

has been able to be conducted, in particular with respect to conducting trials of alternative 

commercially available recycling routes. 

Based on this experience, the absence of literature specifically addressing the end-of-life 

management of SOFC products raises some questions.  While this is undoubtedly a novel area 

in which to be conducting research, it is possible that some other preliminary research in this 

area has been completed by individual SOFC developers, but not disseminated.  While the 

need to preserve commercial advantage is acknowledged to be a necessity for SOFC 

businesses, the inability to share and build on knowledge gained from similar studies restricts 

the development of ideas and practical solutions. 

Aside from limitations resulting from the nature of the SOFC product, it is acknowledged that 

the evaluation methodology, and in particular the cost-benefit analysis model, could be further 

developed to provide a more robust evaluation of economic impacts at end-of-life.  While a 

limited amount of sensitivity analysis has been conducted as part of the validation of the multi-

criteria evaluation tool, more systematic and extensive sensitivity analyses of different aspects 

of the complete evaluation methodology would provide a higher level of confidence in and 

understanding of the results generated.  Also, while it has been attempted to develop a user-

friendly interface to facilitate the application of the evaluation methodology by a non-expert 

user, it is acknowledged that the development of software lies outside the author’s primary 

skill-set.  As such, it is clear that a more sophisticated and automated tool could be developed, 

based on the principles outlined in the thesis. 
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CHAPTER 12 CONCLUSIONS AND FURTHER WORK 

12.1 Introduction 

This chapter summarises the principal research conclusions proposed by the thesis and 

identifies some interesting opportunities for extension of the work. 

12.2 Research conclusions 

SOFC technology offers the potential to contribute to generation of electrical power within a 

future energy market characterised by decentralised power generation and improved 

sustainability with regard to fuel consumption and emissions.  This potential is highly attractive 

given the ever-increasing demands for electricity arising in particular from industrialising 

nations alongside a developing awareness of the link between conventional power generation 

technologies and their detrimental impacts on the planet.   

The research presented in the thesis leads to the following conclusions: 

i. The immaturity of SOFC technology, especially with respect to the development of 

commercial products, leaves various uncertainties regarding the complete product life 

cycle.  In particular, widespread uptake of the technology will result in the generation 

of high volumes of end-of-life waste products and components: significantly the SOFC 

stack, which will require replacement several times throughout the operational life of 

a SOFC power generation system.  The published literature suggests that little 

consideration has been given to the management of the end-of-life SOFC stack.  It is 

clear that a failure to address the issues arising at end-of-life represents a risk to SOFC 

developers in terms of the technology failing to live up to its environmental credentials 

and failing to comply with legislative requirements. 

ii. Legislation relating to end-of-life management, incorporating principles such as IPP 

and EPR, has been adopted in the European Union and continues to develop globally.  

As such, the development of new products must increasingly consider how compliance 

with existing and future legislation can be achieved.  While much of the current 

legislation in this area is not directly relevant to SOFCs today, the identification of 

potential future conflicts, as both the legislation and the technology develop, may 

allow early mitigation of risks of non-compliance through design modifications and/or 
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the implementation of management plans and controls.  In light of this, the research 

has proposed a risk assessment approach as means of drawing early attention to 

potential legislative conflicts. 

iii. The practical challenges regarding the processing of end-of-life SOFC stacks can in part 

be met by existing waste management infrastructure, however, optimisation with 

regard to material separation and recycling processes would provide opportunities for 

improving overall environmental and economic performance.  In particular, as the 

drive to commercialisation continues, changes in material selection and design are 

likely to increase the challenges associated with end-of-life management, particularly 

as expensive, yet highly recyclable, materials are “designed out” of commercial 

products.  It would be beneficial for SOFC developers to consider such design 

improvements in the light of the complete product life cycle, including in their 

considerations the capabilities and limitations of existing recycling technologies.  

Investment in recycling technologies for less mainstream materials may be necessary 

to ensure ongoing compliance and to conserve valuable resources. 

iv. End-of-life management is influenced significantly not only by technical aspects, but 

also by the business model adopted for the commercialisation of the product.  With 

respect to SOFC technology, a Product Service Systems model presents an attractive 

option, especially with regard to stationary power generation applications.  The ability 

of the SOFC manufacturer to maintain control of the product throughout its life time 

allows optimised end-of-life management solutions to be applied.  In such a model, the 

commercial feasibility of SOFC technology depends on the life cycle costs rather than 

being primarily dependent on production costs.  The emphasis for cost reduction 

initiatives must therefore focus on processes (including manufacturing and recycling) 

with less dependence on material costs.  This may be significant where the use of 

expensive materials allow for improved durability or performance  

v. The consideration of legislative compliance, environmental impact and cost is essential 

in deciding between alternative end-of-life routes, however, it is unlikely that a single 

solution will demonstrate superior performance across all three criteria.  Therefore, 

the complex issues involved in developing an end-of-life management solution require 

a systematic approach to be adopted when tackling this problem.  This research 

therefore provides a framework within which alternative end-of-life scenarios can be 

defined and evaluated based on existing product concepts.  In particular, the definition 
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of a bespoke multi-criteria evaluation methodology which incorporates LCA, CBA and a 

novel legislative risk assessment method, and supports decision making by combining 

the results from these individual evaluation methods into a single performance 

parameter.  This methodology maintains a degree of rigour, in terms of dealing with 

the complex issues associated with end-of-life management, while presenting the final 

results in a simple, user friendly format. 

vi. The results from the case studies emphasise the fact that all evaluation methods are 

limited by the availability and quality of relevant data.  In particular, the challenge of 

developing an end-of-life process for a product which incorporates novel technology 

and has not yet reached commercial maturity has been emphasised.  Uncertainties 

regarding final product design and market behaviour lead to uncertainties in the 

development of end-of-life scenarios, and the absence of high quality data from 

repeated process trials results in the requirement for economic and environmental 

impact evaluations to be based on assumptions rather than facts.  However, the 

benefits of the research are believed by the author to outweigh these shortcomings, 

since the conceptualisation of future challenges paves the way for proactive measures 

to be taken before SOFC technology reaches full-blown commercialisation and 

opportunities for influencing and improving the environmental and economic impacts 

of the product life cycle become substantially reduced. 

vii. The challenge of end-of-life management of SOFCs is significant, but it is the author’s 

view that the end-of-life phase of the life cycle should be viewed as an opportunity to 

ensure that the benefits of the technology are fully maximised, rather than viewing the 

requirements imposed by developing legislation as a burden.  SOFC developers should 

view the end-of-life stack as a resource-rich asset which, if managed effectively, offers 

the potential for contributing to reductions in the environmental impact and cost of 

the technology across its life cycle. In contrast to many product manufacturers, the 

fact that most SOFC products are still within the pre-commercial stage offers SOFC 

developers a unique opportunity to embrace end-of-life considerations in the 

finalisation of their product designs, rather than being lumbered with mature products 

which are awkward to manage at end-of-life and expensive to modify. 

12.3 Further work 

The research documented in this thesis could be further developed in various directions.  

Aspects of particular interest to the author are described below. 
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12.3.1 Further practical work to explore alternative end-of-life processes for SOFC stacks   

The objective of this research has not been to develop an optimised end-of-life solution for 

SOFC stacks, but rather to provide a framework by which such an end-of-life solution could be 

realised.  As such, practical trials of end-of-life processes were limited to some small-scale 

laboratory trials of novel processes, and large-scale commercial trials using existing waste 

management infrastructure.  However, the research has identified that the SOFC stack 

presents some interesting challenges with respect to material separation and recycling at end-

of-life.  In particular, processes for recovering and recycling rare earth oxides and ceramic 

materials are not widely available, and further development of this capability would be 

beneficial to the end-of-life management of SOFC stacks in general, and the IP-SOFC stack 

concept in particular.  Further practical research into alternative end-of-life processes for the 

SOFC stack would not only support the development of optimised process routes, but would 

also act as a source of data to support further understanding the environmental and economic 

impacts associated with the end-of-life phase of the technology. 

12.3.2 Integration of end-of-life considerations in a complete SOFC life cycle study 

This research has deliberately focused on the end-of-life phase of the product life cycle, based 

on an identified knowledge gap.  However, the author acknowledges the importance of a 

complete life cycle approach in the development of products and processes.  As such, it is 

important to be able to place the environmental and economic impacts arising during end-of-

life management in the context of the environmental and economic impacts arising during the 

manufacture and use phases.  In particular, it would be interesting to complete a comparative 

study of alternative power generation technologies (including conventional and renewable 

energy technologies) which incorporates in a detailed manner the end-of-life management of 

power generating components and products.  This comprehensive study could be compared 

with existing studies of alternative power generation technologies in order to identify the 

influence that end-of-life management might have on technology selection. 

12.3.3 Consideration of additional performance parameters at end-of-life and integration of 

factors into the multi-criteria evaluation methodology 

The research reported in this thesis has identified legislative risk, environmental impact and 

economic impact as the three principal performance parameters associated with the end-of-

life management of SOFC stacks.  However, it is acknowledged that additional performance 

parameters may grow in significance over time.  In particular, concerns regarding material 

security have become an issue at the national and international level in recent time.  While 
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economic factors, such as material cost, are likely to be affected by specific material security 

concerns, it is unclear as to whether the issue would be adequately incorporated into the 

economic impact evaluation method defined in the current research.  Additional 

considerations, including global political stability and international relations are likely to play a 

substantial role in defining materials whose long-term supply poses substantial concern.  The 

author believes that these issues may become increasingly significant in directing end-of-life 

management priorities, as material recycling becomes not just an economic and 

environmental issue, but also one of resource retention, reducing the need for material 

imports.  Therefore it is suggested that the consideration of these issues, and how they might 

be incorporated into end-of-life decision making, may be essential to ensure end-of-life 

management priorities continue to be relevant in future climates. 

12.3.4 Further development of the framework for end-of-life management and decision 

support tool 

The issues addressed in this research with regard to end-of-life management are not unique to 

SOFCs.  It is believed that the framework for end-of-life management provides a systematic 

approach for exploring and evaluating these issues, and could be applied to other 

technologies.  In particular, other alternative energy technologies, such as photovoltaic cells, 

wind turbines and wave power, face similar challenges to fuel cells as they aim to penetrate 

the energy market.  As well as the general framework for end-of-life management, it is 

believed that the multi-criteria evaluation methodology could further be developed to support 

end-of-life decision with wider industrial application. 
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ABSTRACT  

Solid oxide fuel cell (SOFC) systems offer an alternative technology for stationary power 
generation and their development has been driven primarily by environmental benefits during 
operation.  SOFC systems offer the potential for reduced emissions of green-house gases and 
other pollutant species when compared with conventional combustion technologies.  At 
present SOFC systems are not yet generally commercially available and the technology is 
being developed from the prototype stage towards the first generation of product.  
 
Given the green credentials of SOFC technology, it is important that the emerging concept of 
sustainable product design is integrated into ongoing development activities.  Environmental 
policy places an increasing emphasis on the life-cycle impacts of products, as demonstrated 
by the implementation of various recent legislative measures.  Assuming that compliance with 
environmental legislation is one of the fundamental steps in the development of a sustainable 
product, this paper presents a review of new and recent legislation perceived to be of direct 
relevance to the life-cycle of stationary SOFC systems.  Specific European Directives and 
Regulations have been identified and mapped against a matrix constructed from defined 
product sub-assemblies and individual life-cycle stages.  A discussion regarding the specific 
implications of each piece of legislation is presented. 
 
The findings presented in this paper will provide input to further studies regarding the 
implementation of sustainability principles in the development of commercial SOFC systems 
for stationary power generation applications.    

1 INTRODUCTION 

1.1 Solid oxide fuel cells for stationary power generation 
Solid oxide fuel cells (SOFCs) offer an alternative technology for electrical power generation. 
The ceramic electrolytes used in SOFCs require an operating temperature of between 600 °C 
and 950 °C to be employed to maximise efficiencies.   The technology is well suited to 
applications in stationary power generation and internal reforming capability allows cost-
efficient operation on a range of readily available hydrocarbon fuels.  In addition, the 
operating temperature results in the production of high-quality waste heat, making the 
technology suitable for combined heat and power generation and for incorporation into a 



 
 

The Proceedings of the 5th International Conference on Design and Manufacture for Sustainable Development 
Loughborough University, 10th-11th July 2007 

  

hybrid system with conventional gas turbine technology.  An example of the type of product 
currently under development is shown in Figure 1. 

 
Stationary power generation systems based on SOFC technology are characterised by 
efficient fuel utilisation, reduced emissions of carbon dioxide and other greenhouse gases, and 
virtual elimination of other polluting emissions, such as oxides of nitrogen and sulphur.  
These advantageous characteristics stem from the electrochemical nature of the devices, 
which eliminates both the energy losses associated with intermediate thermal and mechanical 
conversion steps and the formation of undesirable combustion products common to most 
conventional power generation technologies.   
 
These benefits are widely accepted and continue to drive the development of commercially 
viable products.  Several detailed reviews of the technology are available (for example, Minh 
1993, Stambouli and Traversa 2002).  Published environmental assessments of the operation 
of SOFC systems and comparisons with conventional power generation systems can also be 
read (for example, Bauen and Hart 2000). 

 

SOFC stack 

Pressure vessel and 
stack infrastructure 

Fuel processor 
Micro turbine

Power electronics 

Figure 1,  Schematic of the 1 MW SOFC system being developed by 
Rolls-Royce Fuel Cell Systems Limited (adapted from Rolls-Royce plc. 2006).  This is a 
hybrid system where a small gas turbine is used to provide the pressurised conditions 
under which the fuel cell stack operates. 

Decommissioning 

Selection of materials/components 
Design for disassembly/recycling 

Sourcing of materials/components 
Selection of suppliers 

Resource consumption 
Waste generation 

Design 

Procurement 

Manufacture and assembly 

Use Operating efficiency/emissions 
Life expectancy/maintenance requirements 

Reuse/recycling/recovery/disposal of materials/components 
Transportation of wastes 

Figure 2,  A simple product life-cycle showing some examples of common activities 
associated with each life-cycle stage which may influence the total environmental impact 
of the product. 
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1.2 Trends in environmental policy and legislation 
During the second half of the twentieth century the focus of environmental policy shifted. 
Around the time of the First International Conference on the Human Environment in 
Stockholm, environmental policy was shaped by responding to environmental crises; in the 
1980s the emphasis moved to target point sources of pollution and control emissions; by the 
end of the 20th century and in response to growing consumerism, products became the focus 
of environmental policy (Tukker 2006).   
 
The environmental policy of the 1990s is reflected in the legislation of today.  In Europe, 
recent developments in legislation have brought many aspects of the product life-cycle 
outlined in Figure 2 under legislative control.  For example, the Waste Electrical and 
Electronic Equipment Directive (Directive 2002/96/EC) has introduced recycling/recovery 
targets for a specific product sector; the new REACH chemicals legislation (Regulation (EC) 
No 1907/2006) will impact aspects of materials selection and procurement; the Energy using 
Products Directive (Directive 2005/32/EC) provides a framework for regulating eco-design 
activities. 
 
Although legislation will not in itself lead to optimised environmental performance of 
products it surely provides a minimum standard to which all producers are obligated.  In 
addition, forward-looking businesses will strive to keep ahead of legislative developments in 
order to ensure that future requirements do not compromise their products and activities.  
Environmental excellence will only be achieved when businesses are committed to 
minimising all environmental impacts, even when self-imposed standards surpass the 
requirements laid down by law.   

1.3 The implications of environmental legislation for the life-cycle of solid oxide fuel 
cell systems for stationary power generation  
It could be argued that, given the green credentials of SOFC power generation systems during 
operation, customers and other stakeholders are likely to be more demanding of 
environmental excellence across all aspects of the product life-cycle.  In order to achieve this, 
it is important that a thorough understanding of the environmental legislation relevant to the 
life-cycle of the product is in place as a foundation during product development.  Only when 
compliance is ensured can opportunities for improvement be determined and pursued and 
sustainable product design practiced successfully. 

2 METHODOLOGY  

Figure 3 illustrates the methodology adopted in identifying environmental legislation relevant 
across the SOFC system product life-cycle.  A systematic approach was required, given both 
the complexity of the product system, as illustrated by Figure 1, and the wide range of issues 
addressed by environmental legislation. 
 
In order to simplify the product system, discrete sub-assemblies were defined, each 
characterised by distinct component-types and materials employment.  The field of 
environmental legislation is very broad and spans the complete life-cycle of the product.  To 
maintain clarity and focus in identifying relevant legislation, individual life-cycle phases were 
defined into which environmental legislation could be categorised. 
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Following the definition of these two sets of categories a two-dimensional matrix was 
developed against which legislation could be reviewed, evaluated and the relevant legislation 
mapped. The product system, based on understanding gained from general information 
published by SOFC developers, was then assessed against the relevant legislation to identify 
any potential compliance issues.  The legislation identified was not fully comprehensive, but 
focused on recent legislative developments which could be regarded as promoting sustainable 
product design. 

3 RESULTS 

3.1 Definition of sub-assemblies 
The definition of discrete sub-assemblies within the SOFC system product is shown in  
Table 1.  Three principal sub-assemblies were defined, namely the SOFC Stack, the SOFC 
System and the Power & Controls.  This expands on previous studies where the SOFC System 
and the Power & Controls are grouped together as the “Balance of Plant” (e.g. Karakoussis et 
al. 2001).  For the purposes of the current work this distinction was made to allow the 
relevance of legislation specifically targeted at electrical and electronic equipment to be 
clearly evaluated. 
 
Although a variety of SOFC Stack designs exist the general characteristics are similar (Minh 
2004). The fuel cell consists of a multi-layer assembly of functional materials, supported on a 
substrate.  The substrate is fabricated from one of the functional materials, from a conducting 
interconnect material (i.e. a suitable high temperature alloy (Bance et al. 2004)) or from 
ceramic (Costamagna et al. 2004). In addition to the substrate material, the SOFC Stack sub-
assembly is comprised principally of functional ceramics and other metal/rare-earth oxides 
(Haile 2003).        
 
The SOFC System sub-assembly incorporates fuel processing assemblies, piping and 
insulation infrastructure required for supply of fuel and air to the SOFC Stack, heat 

SOFC system product 
Complex assembly of diverse components and materials 

Sub-assembly  
1 

Sub-assembly 
           3… etc 

Sub-assembly 
2 

Discrete sub-assemblies, each defined by distinct component and 
material characteristics 

Environmental 
legislation 

Broad legislative 
field spanning 

complete product 
life-cycle 

Life-cycle phase A 

Life-cycle phase B 

Life-cycle phase C… etc

Individual  
life-cycle phases 
into which 
environmental 
legislation can be 
categorised 

Figure 3,  Pictorial description of the methodology applied to the mapping of 
environmental legislation relevant to the SOFC system product life-cycle.  Legislation 
was identified in each of the overlap areas, i.e. for each life-cycle phase of the pre-
defined sub-assemblies. 
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exchangers and all external casing.  In addition this sub-assembly will incorporate pressure 
vessels required for pressurised systems and gas turbine machinery utilised in a hybrid 
system.  Operating environments range from room temperature to the operating conditions 
experienced by the SOFC Stack.  Components can be regarded as employing conventional 
technology used in other power generation systems.  The principal material groups will be 
insulation materials and alloys (ranging from standard steels to specialised high-temperature 
alloys).   
 
The Power & Controls sub-assembly contains all the electrical and electronic assemblies 
required to convert the DC signal produced in the SOFC Stack to AC electricity suitable for 
grid-connection.  Control and safety systems are also included in this sub-assembly.  
Components can be regarded as employing conventional electrical/electronic technology and 
materials.    

3.2 Definition of life-cycle stages 
Table 2 shows the life-cycle stages identified and used for the categorisation of environmental 
legislation. At the Design stage, components and assemblies are conceptualized, and 
appropriate materials are selected and specified.  The Procurement stage encompasses the 
sourcing of materials and components according to specification.  This is a significant stage 
of the life-cycle for ensuring compliance with legislation, since it acts as a gate through which 
every material or component must pass before being incorporated into the product.   
 
To date the work has focused on product-related legislation; therefore the environmental 
legislation regulating the Manufacturing stage is not reported in this paper.  Some aspects of 
manufacturing will be similar to activities in other stages of the life-cycle, such as the 
selection of process materials (see materials selection, Design) and waste management (see 
Decommissioning). 
 
For the purposes of this study it was assumed that emissions and fuel utilisation efficiencies 
for a SOFC system in operation would fall well within the limits of current legislation 
relevant to conventional power generation facilities.  Future work will explore this area in 
greater detail, but the Use stage was excluded from the scope of this paper. 

Table 1, Definition of sub-assemblies 
SOFC system 

Sub-assembly Characteristics 

SOFC Stack Constructed from multi-layer assemblies of active materials on single substrates. 
Principal active materials:  Yttria-stabilised zirconia, Nickel oxide, Strontium-doped 
lanthanum manganite, doped lanthanum chromite 
Substrate materials:  Any active material (as above), high temperature alloys, inert 
ceramics     

SOFC System Plant infrastructure including fuel processor, vessel and pipe-work. 
Principal material groups:  Low-temperature alloys, High-temperature alloys, 
Insulation materials 

Power & Controls Conventional electrical/electronic components 
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The final stage of the life-cycle, namely Decommissioning, concerns all aspects of the 
management of products after they reach the end of their useful life.  This includes any 
disassembly activities and waste management.  A good understanding of the legislative 
requirements for the Decommissioning stage can be used to influence future design iterations. 

3.3 Identification and mapping of legislation 
From these definitions a matrix was developed and populated with relevant environmental 
legislation.  The result of this mapping process is shown in Table 3.  The focus of the 
mapping exercise was restricted to the most recent developments in environmental legislation.  
In total seven distinct legislative measures were identified as being of greatest relevance; 
these are listed below. 
 
EuP Directive: The Directive establishing a framework for setting requirements for the 
Ecodesign of Energy using Products imposes no regulatory requirements, but indicates that 
eco-design as a practice is likely to be brought under legislative control (Directive 
2005/32/EC). 
 
REACH Regulation: REACH stands for the Registration, Evaluation, Authorisation and 
Restriction of Chemicals and is a new regulation, of which the final text was agreed in 
December 2006.  The regulation will be phased in over a period of approximately 10 years 
and requires all chemical substances manufactured in or imported to Europe to be registered 
and evaluated (Regulation (EC) No 1907/2006) 
 
WEEE Directive: The Waste Electrical and Electronic Equipment Directive specifies 
recycling and recovery targets for defined product categories.  The Directive is closely linked 
with the RoHS Directive (Directive 2002/96/EC). 
 
RoHS Directive: Under the Directive on the Restriction of the Use of Certain Hazardous 
Substances in Electrical and Electronic Equipment, the use of lead, mercury, cadmium, 
hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers is 
restricted (Directive 2002/95/EC). 
 
Landfill Directive: The Landfill Directive controls the operation of landfill sites.  The 
Directive specifies requirements for disposal of hazardous, non-hazardous and inert wastes to 
separate sites and has introduced increased levels of administration and monitoring of sites 
(Directive 1999/31/EC). 
 
Hazardous Waste Directive: The amended Waste Directive (Directive 75/442/EEC) applies to 
hazardous waste as well as general waste types; however supplementary provision for the 
control of hazardous waste requiring special treatment is contained in the Hazardous Waste 
Directive (Directive 91/689/EEC).  The Directive, together with the European list of wastes 

Table 2, Definition of life-cycle stages 
Life-cycle stages 

Life-cycle stage Comments 

Design Design of components and assemblies; materials selection 

Procurement Sourcing of specified components and materials 

Manufacture Outside scope of current work 

Use Outside scope of current work 

Decommissioning Disassembly; waste management (reuse, recycling, recovery and disposal) 
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(Decision 2000/532/EC) provides guidance for categorising waste as hazardous or  
non-hazardous.  Under this legislation, producers are responsible for ensuring wastes are 
properly stored, packaged, labelled, transported and treated. 
 
Shipments of Waste Legislation: The regulation on waste shipments (Regulation (EC) No 
1013/2006) controls the shipment of waste into, out of and through the European Community.  
In particular the regulation is intended to protect developing countries from being used as a 
disposal ground for hazardous or difficult waste streams. 

4 DISCUSSION 

4.1 The implications of environmental legislation for the Design phase  
The EuP Directive specifies its scope as being limited to “…a product which, once placed on 
the market and/or put into service, is dependent on energy input (electricity, fossil fuels and 
renewable energy sources) to work as intended, or a product for the generation, transfer and 
measurement of such energy…”(Directive 2005/32/EC).  On the basis of this definition the 
Directive would be directly applicable to SOFC system products, however the Directive 
emphasises its focus on consumer goods with a high market volume (over 200,000 units per 
year).  With respect to the content of the Directive, the framework for establishing cross-
sector metrics by which the environmental profile of a product could be communicated to 
consumers is a useful tool which SOFC developers could utilise to their advantage.  
Assuming an environmentally-aware customer base, it is likely that the availability of this 
type of information would be advantageous, and that an ability to demonstrate a life-cycle 
approach to product design would provide a competitive edge in the initial period of 
commercialisation.    
 
Materials selection is part of the Design activity and the implications of REACH are 
significant.  It will be advantageous to select low-risk materials, which are not subject to 
Authorisation or Restriction under the regulations.  In particular, substances of very high 
concern (SVHC) should be avoided, since these will effectively become black-listed.  Nickel 
oxide is commonly used in the fuel electrodes of the SOFC stack and is classified as a 
category 1 carcinogen.  It is probable that there will be pressure to substitute this material for 
a safer alternative, and SOFC developers should be able to demonstrate technical justification 
for their continued use of this material, as well as considering the provisions under REACH 
for authorisation of substances based on a socio-economic argument (Regulation (EC) 
No 1907/2006).    

Table 3, Matrix showing results of legislation mapping exercise 

 SOFC Stack SOFC System Power & Controls 

EuP Directive EuP Directive  Design 
REACH Regulations REACH Regulations  

REACH Regulations REACH Regulations  
  RoHS Directive Procurement 
  WEEE Directive 

Manufacture Outside scope 

Use Outside scope 
Landfill Directive Landfill Directive Landfill Directive 

Hazardous Waste Directive Hazardous Waste Directive  
Shipments of Waste Shipments of Waste Shipments of Waste 

Decommissionin
g 

  WEEE Directive 
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The Power & Controls sub-assembly is likely to be built from commercially available 
components; therefore the implications of the above legislation will principally be the concern 
of individual suppliers.   

4.2 The implications of environmental legislation for the Procurement phase  
The Procurement phase of the life-cycle acts as a gate through which all components and 
materials must pass before being incorporated into a product through manufacturing and 
assembly activities.  This is therefore a stage where measures can be taken to ensure that each 
material or component purchased meets the necessary compliance standards.  The 
Procurement phase will also be affected by legislation introduced further up the supply chain. 
 
REACH (Regulation (EC) No 1907/2006), as well as providing some direction for materials 
selection, poses significant implications for the manufacturers and importers of chemical 
substances into Europe.  Fuel cell developers will in most cases be classified as downstream 
users of substances, in which case their primary responsibility will be to communicate with 
their supply chain to ensure that all substances, and the way in which those substances are 
being used, have been registered.  It is possible that some manufacturers or importers will 
choose to discontinue the supply of a specific substance, especially where the economic 
benefit of them keeping it in their portfolio does not outweigh the administrative effort of 
registration.  It is therefore possible that some substances will become unavailable.  This is a 
potential cause of concern for SOFC developers who are reliant on specialty chemicals to 
provide the functionality of their product.  This is especially relevant to the SOFC Stack sub-
assembly, where some unusual metal oxides are employed, and also in the SOFC System 
where specialised high-temperature alloys or insulating materials may be required. 
 
REACH also poses economic implications; where a supplier is an SME with limited 
resources, it may be necessary for the SOFC developer to contribute to the costs of substance 
registration in order to ensure continued supply.  The administrative burden of REACH is 
almost certain to be reflected in increased material prices. 
 
With regard to the Power & Controls sub-assembly, SOFC developers should be aware of the 
impact of RoHS (Directive 2002/95/EC) on the supply chain.  Although the SOFC system as 
a product is outside the scope of the Directive and therefore is not required to use compliant 
components, manufacturers will move towards production of compliant components as 
standard.  This may involve increased costs, or substitution of materials resulting in unknown 
technical reliability.  In order to promote a “green” image, SOFC developers may choose to 
source only components which are compliant with the RoHS restrictions. 
 
As with RoHS, the SOFC system product falls outside the scope of the WEEE Directive 
(Directive 2002/96/EC).  However, it is reasonable to expect that at the end of a product’s 
life, the manufacturer will face some responsibility for management of the waste produced.  
This should be considered during the Procurement phase and, where appropriate, division of 
responsibility agreed between the SOFC manufacturer and the suppliers of electrical and 
electronic components.  

4.3 The implications of environmental legislation for the Decommissioning phase  
Little information regarding the strategy for end-of-life management of stationary SOFC 
systems has been published (Karakoussis et al.).  However, this phase of the life-cycle has 
become the focus of environmental legislation in several different product sectors.   
 
Most general waste legislation requires the classification of waste as hazardous or non-
hazardous, and the results of this classification define the regulatory controls to which the 



 
 

The Proceedings of the 5th International Conference on Design and Manufacture for Sustainable Development 
Loughborough University, 10th-11th July 2007 

  
waste is then subject during storage, packaging, transportation, treatment and disposal.  
Hazardous waste is understandably subject to tighter controls than non-hazardous waste, and 
therefore its management is a more costly process; from both environmental and economic 
perspectives it is in the interests of SOFC developers to minimise the volume of hazardous 
waste produced during the decommissioning of end-of-life products. 
 
Waste is categorised depending on the presence of hazardous substances and their 
composition with respect to bulk material.  Most of the materials employed in the SOFC stack 
are non-hazardous; however, nickel oxide is commonly used in the fuel electrodes (Haile, 
2003).  As a category 1 carcinogen, the concentration threshold for a waste stream containing 
this substance is only 0.1 % by weight, over which it is classified as hazardous (Decision 
2000/532/EC).  SOFC developers may want to consider the minimisation or substitution of 
this material in order to ensure that waste streams generated after Decommissioning fall 
below this threshold. 
 
Legislation such as the Landfill Directive (Directive 1999/31/EC) has been implemented with 
the aim of reducing the amount of waste sent for disposal, while sector-specific legislation 
sets mandatory recycling targets.  SOFC developers should therefore anticipate economic 
penalties for disposal to landfill, and increasing pressure to demonstrate recyclability of their 
products.  Even before this becomes a legislative requirement, the elevated profile of resource 
efficiency and waste management issues will undoubtedly provoke consumer expectation.  
While, for the Power & Controls sub-assembly, some of this pressure may be shared with the 
supply chain, the SOFC Stack and the SOFC System sub-assemblies will possibly require 
more sophisticated and novel solutions for end-of-life management. 
 
Since the development of bespoke end-of-life treatments for SOFC Stack or SOFC System 
sub-assemblies may spur the development of centralised processing plants, the legislation 
controlling shipments of waste into, out of, and within Europe holds implications where a 
global market is anticipated.  In considering the viability of such a scenario, SOFC 
manufacturers should take into account the administrative and financial burden of obtaining 
the correct permits and consents.  The viability of waste shipment operations will also be 
related to the classification of waste streams, since different restrictions apply for hazardous 
and non-hazardous wastes (Regulation (EC) No 1013/2006). 
 
These implications of environmental legislation at the Decommissioning phase of the  
life-cycle should influence future Design activities as first and second generation commercial 
SOFC products are developed. 

4 CONCLUSIONS 

Environmental legislation is a broad-ranging area impacting SOFC systems across their life-
cycle and its significance should be appreciated as products are developed towards 
commercialisation.  Although the impact of a new regulation such as REACH cannot be fully 
appreciated until it is put into practice, awareness and anticipation of its potential implications 
will provide an advantage.  
 
For companies developing SOFC systems for stationary power generation, the environmental 
benefits of the technology are a significant selling-point.  A conscientious approach to the 
additional requirements imposed by environmental legislation should be sufficient to ensure 
compliance is achieved as a fundamental principle, underpinning further commitment to 
minimising the total environmental burden of products across their life-cycle. 
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ABSTRACT 
 
Solid oxide fuel cell (SOFC) systems offer an alternative technology for power generation in stationary plants.  The 
environmental benefits of this technology in the use phase are well understood and stem from improved fuel 
efficiencies when compared with combustion-based systems.  These benefits have driven technology development 
towards commercialisation.  Recent trends in environmental policy have highlighted the need to manage products 
responsibly throughout their entire life-cycle, including the end-of-life (EoL) phase.  At present EoL management of 
SOFC stacks is not well understood and requires consideration prior to market entry.  Using the waste management 
hierarchy as a framework for the development of an EoL strategy a methodology is proposed to move from a reactive 
approach to a proactive approach.  This paper presents results from the initial steps of this methodology. Analysis of 
existing SOFC stack design has provided an initial definition of the EoL problem.  By drawing parallels with EoL 
problems faced by other more mature product streams and existing waste management solutions, a body of 
knowledge is built.  This knowledge will support the development of a reactive short-term solution to EoL 
management of SOFC stacks, and will provide input to the longer-term development of a proactive approach to 
minimising the environmental burden of this future waste stream. 
 
 
Introduction 
Solid oxide fuel cell (SOFC) systems offer an alternative technology for power generation in stationary plants.  
Systems currently under development range from small domestic units providing power to a single home, to larger 
units offering power outputs of several Megawatts [1]. The environmental benefits of SOFC technology have driven 
its development, especially in recent decades when a reliance on fossil-fuels and combustion-based technologies has 
been recognized as unsustainable and detrimental to the local and global environment.  Indeed, SOFC systems have 
the potential to offer a highly efficient means of converting hydrogen-rich fuels into electricity, with a reduction in 
carbon dioxide emissions and virtual elimination of the release of other pollutants, including oxides of nitrogen and 
sulphur and particulate matter [2].   
 
The commercialisation of SOFC systems is being pursued by several companies in Europe, North America and  
Asia [3].  However, prior to the release of a significant volume of products into the market-place, a solution for the 
end-of-life (EoL) is required.  This requirement is driven by:  
 
i) Legislative developments 
Environmental legislation is increasingly concerned with EoL management of products.  The automotive and 
electrical/electronics sectors have been set mandatory recovery and recycling targets by recent European legislation 
[4, 5].  Although no legislation currently applies directly to EoL management of SOFC systems, development of this 



observed trend to encompass a wider range of product-types should be anticipated.  In addition, a lack of provision 
for EoL management may preclude the incorporation of SOFC technology as a power source in products which 
themselves are subject to legislated recycling requirements. For example, SOFC-based auxiliary power units are 
being developed for automotive applications [6].  If these are not readily recyclable then their adoption by car 
manufacturers may conflict with the requirements imposed by legislation such as the European End-of-Life Vehicles 
Directive [4, 7]. 
 
ii)  Customer expectations  
Although SOFC technology offers increased efficiency and reduced emissions during operation, the environmental 
impacts of all life-cycle stages must be taken into account when evaluating the benefits of the technology.  Previous 
authors have identified a lack of information regarding EoL management of the technology as a barrier to 
understanding the total life-cycle impacts [6, 8, 9].  Since SOFC systems are promoted as a “green” source of power 
generation, it would be highly damaging to their commercialisation if any aspect of the life-cycle were to be exposed 
as presenting an unreasonable environmental burden. 
 
For the purposes of the current work it is assumed that sub-assemblies within the SOFC system which are based on 
conventional technologies will follow established EoL routes exploiting existing waste management capability.  
These sub-assemblies include pipe work for fuel and air supplies, vessels and containers, electrical and electronic 
systems and fuel processing equipment.  Therefore the scope of the current study is limited to the SOFC stack, which 
is the term for an assembly of individual fuel cells. 
 
Methodological considerations 
It is proposed that the waste management hierarchy be used as the foundation for the development of an EoL 
management strategy for SOFC stacks.  This hierarchy defines a preferred route to waste minimisation, and has been 
adopted at an international level [10].  The hierarchy identifies the reduction of waste at source as the preferred 
approach to waste management, followed by reuse, recycling and, only as a last resort, disposal to landfill.  Where 
the waste management hierarchy is applied specifically to wastes arising from EoL products, it can be considered to 
be a hierarchy for EoL management.  
 
Figure 1 shows a schematic of the waste management hierarchy and outlines the means by which compliance with 
the principle can be approached within EoL management.  Reduction of waste volume and toxicity by addressing the 
primary source (namely the product 
design) can be considered to be a 
proactive approach.  This requires 
early consideration of how design 
and materials selection define the 
waste streams arising from EoL 
products.  Similarly opportunities 
for reuse of components will be 
significantly improved if 
disassembly considerations are 
incorporated at the design stage.  
 
Reducing waste by recycling the 
materials contained within EoL 
products requires an additional level 
of processing.  Segregation and 
purification of different material-
types are required in order to 
produce useful inputs to 
downstream processes, whether in 
closed-loop or open-loop scenarios.  

REDUCE
Volume

Toxicity

Design optimisation 

REUSE
Components

Materials

Materials selection 

DISPOSE

Materials separation

RECYCLE

High value materials 

Low value materials

Hazardous materials 

Hazardous materials

Resource recovery  

Value recovery 

Disposal cost reduction 

Figure 1:  Hierarchical approach to end-of-life management  
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Although incorporating recyclability into design by careful materials 
selection is a proactive approach to EoL management, recycling can 
also be applied in a reactive approach.   Although product design may 
limit the technical and/or economic feasibility of pursuing recycling 
as a viable EoL strategy, most EoL products offer opportunities for 
the recovery of useful materials.  As a last resort, disposal may be 
considered for any non-recyclable fraction. The separation of 
hazardous materials from a non-hazardous bulk waste stream prior to 
disposal may have benefits from both environmental and economic 
perspectives. 
 
Although a proactive approach to end-of-life management supports 
the preferred routes of reducing waste at source and reusing 
components, there may be barriers to applying this approach to novel 
products which are based on immature technologies.  During early product or technology development, the focus of 
the design process is likely to be heavily dominated by technical requirements, reliability and cost.  Therefore the 
initial solution to EoL management must be developed in reaction to an initial product (or prototype) design.  During 
the development of this solution, a body-of- knowledge will be generated.  This body-of-knowledge should 
determine the limitations of existing waste management capability in coping with the requirements posed by the 
novel product. Where limitations exist these may be eliminated either by modification of the design in future product 
development, or, if this is not possible, by the development of new waste management processes.  It is anticipated 
that most product manufacturers will not wish to invest in a bespoke waste treatment capability, therefore using the 
body-of-knowledge to influence design development will be the preferred option.  The EoL management strategy 
therefore begins with a reactive approach and develops into a proactive approach (Figure 2). 
 
This methodology is being applied to the development of an EoL strategy for SOFC stacks in the ongoing project 
work.  This paper presents the initial part of the work including: 
i)  The definition of the EoL management problem based on analysis of existing SOFC stack design; 
ii) Preliminary steps towards the compilation of a body-of-knowledge based on existing EoL management solutions 

from other product sectors. 
Given the status of SOFC-based products with regard to commercialisation it is hoped that a proactive  
EoL management strategy can be implemented prior to large-volume manufacture. 
 
Results and discussion 
Definition of existing problem 
The existing EoL management problem is 
characterised primarily by the material 
composition of the waste stream.  During 
SOFC development, a common set of 
materials has emerged which satisfy the 
requirements of electrochemical 
performance and stability.  Although 
improved performance is pursued through 
ongoing materials development it is likely 
that the first commercial products will 
utilise the materials shown in Table 1 
[11].  The contribution of each material to 
the composition of the EoL waste stream 
is defined by the cell and stack design.  
The dominating material will come from 
the layer providing structural support.  

Table 1:  Common SOFC materials 

Component Material Material 
classification* 

Hazardous waste 
threshold** 

Material 
value 

Electrolyte Yttria-stabilized zirconia Non-hazardous N/A Med 

Anode*** Nickel oxide 
Nickel 

Cat. 1 carcinogen 
Cat. 3 carcinogen 

> 0.1 wt% 
> 1 wt% Med 

Cathode Strontium-doped 
lanthanum manganite Irritant > 20 wt% Med 

Doped lanthanum 
chromate Irritant, harmful > 20 wt% Med 

Interconnect
Inert metals/alloys Non-hazardous N/A High 

Sealant Glass/Glass-ceramic Non-hazardous N/A Low 

Substrate Ceramic Non-hazardous N/A Low 

* As defined on Material Safety Data Sheets provided by material suppliers. 
** As defined by the European Waste Catalogue.  If materials are present in compositions 
greater than this threshold value, the entire waste stream is classified as hazardous. 
*** Under controlled shut-down conditions all nickel in the anode will be present in metallic 
form.  Nickel oxide would therefore only be present in end-of-life stack experiencing 
abnormal shut-down conditions or in end-of-life stack which had never been exposed to a 
fuel environment. 

REACTIVE 

End-of-life management 

Define problem based 
on existing design 

Develop solution to 
problem 

Generate body of 
knowledge/understanding

PROACTIVE 

Contribute to design 
evolution 

Figure 2:  Methodology applied to the 
development of a proactive end-of-life 
strategy 



This can be any functional layer (electrolyte, 
anode, cathode or interconnect) or an external 
substrate [1]. 
 
The Integrated-Planar SOFC stack design under 
development at Rolls-Royce Fuel Cell Systems 
Limited utilises an external substrate as a 
support for the functional fuel cell layers.  The 
substrate material is a low-cost ceramic which 
minimises the use of high-value fuel cell 
materials [12].  The waste stream will consist 
mainly of inert ceramic, highly integrated with 
a small amount of hazardous and valuable 
materials.  It is assumed that common SOFC 
materials are used for each of the active layers.   
 
As a reactive approach to the management of 
waste from this existing design, the strategy 
shown in Figure 3 is proposed.  High-value and 
hazardous materials will be recovered from the 
low-value ceramic waste.  It is anticipated that 
the high-value materials will be readily 
recycled in a high-value application.  Recovery of hazardous materials from the bulk waste stream should be carried 
out primarily to minimise the volume of hazardous waste produced.  Following the recovery process the hazardous 
content may be available for recycling and, depending on purity, may be suited to high or low-value applications.  
Recycling of the material in a low-value application would be preferable to disposal.  Following the recovery of the 
high-value and hazardous materials the bulk waste stream, which consists of low-value ceramic material, is available 
for recycling.  Disposal of the low-value ceramic waste should be avoided; however, if no suitable recycling 
application can be found then the previous extraction of hazardous and high-value materials will have minimised the 
negative impacts of disposal.   
 
The feasibility of pursuing this approach has been explored by investigating existing waste-management capability 
from other product sectors. 
 
Recovery of hazardous and valuable metals from end-of-life catalysts 
Ceramic-supported catalysts are used in a range of applications and present an end-of-life waste stream with 
similarities to that arising from EoL SOFC stacks.  Of particular interest with respect to the current work are 
catalysts which incorporate valuable metals or nickel/nickel oxide as the active material.  These find application in 
the automotive and petrochemical industries [13-16].  The environmental implications of disposing of nickel oxide 
catalysts to landfill have prompted the development of a recovery process for nickel oxide [13].  The process is based 
on the reaction of nickel oxide with sulphuric acid to form nickel sulphate.  A maximum recovery rate of 99% was 
achieved under optimised conditions.  Nickel sulphate is a useful feedstock for the electroplating industry, providing 
an opportunity for recycling in a high-value application.   
 
The recovery of valuable metals from EoL catalyst waste is driven by economic return and increasing demand for 
raw materials [15-17]. Recovery is often carried out using traditional metallurgical routes similar to the smelting 
process required for extraction of virgin metals from ore.  Recent research has investigated alternatives to the 
recovery of valuable metals, including chemical leaching followed by ion-exchange and pyrolysis [15] and the use of 
microbiological processes [16].   

Disassembly 

Low-value ceramic waste 

High-value
materials 

Conventional waste 
streams 

SOFC stack 

Hazardous 
materials 

Controlled shut-down of end-of-life system 

Recover 
& recycle

High-value 
application 

Recover Recycle 

Dispose 
Recycle 

Dispose 

High-value 
application 

Low-value 
application

High-value 
application 

Low-value 
application 

Figure 3:  Proposed strategy for end-of-life management of 
SOFC system.  Dashed lines and italic text indicate the least-
preferred route. 



Metal extraction from electrical and electronic equipment  
Recovery of metals from electrical and electronic equipment is an area of growth, especially given recent legislative 
developments setting mandatory recycling targets for the industry [5].  In addition to traditional thermal and 
metallurgical methods, initial materials separation is carried out by mechanical means. EoL waste is shredded: from 
the residue ferrous metals are recovered using magnetic separation, and eddy current separation is used to recover 
non-ferrous metals.  These techniques are dependent on discrete particles containing high concentrations of metals 
and eddy current separation methods do not work when non-separable materials encase separable materials [18]. 
 
Recycling of ceramics 
The high energy requirements associated with ceramic processing and the inherent low material value do not 
encourage recycling of this waste stream.  Some success has been reported in closed-loop recycling of refractory 
ceramics [19] in response to the environmental concerns of resource depletion and disposal to landfill.  With regard 
to the recycling of the bulk ceramic waste stream from end-of-life SOFC stacks it is unlikely that a closed-loop 
solution would be easily developed.  The high temperature environments required during cell fabrication promote the 
migration of chemical species and the presence of contaminants, even in trace amounts, will lead to performance 
degradation [20].  It is likely that the economic and environmental costs of obtaining a high-purity recycled material 
would outweigh any benefits gained in waste management.  Recycling ceramics in down-graded applications 
removes the requirements for extensive processing.  The construction industry is a potential user of recovered 
ceramic waste and the use of fired pottery ware in brick manufacture has been reported [21].  Ceramic is also a 
potential replacement for aggregate in the manufacture of concrete.  One study reports the successful use of waste 
from the electrical insulator industry in this application [22].  
 
Conclusions and further work 
A methodology has been presented for the development of a proactive approach to the development of an EoL 
management strategy for products based on novel technologies.  It has been proposed that the initial approach must 
be reactive in response to early product/prototype design.  The reactive approach attempts to provide a suitable EoL 
management solution by exploiting existing capability from the waste management of other product types.  The 
body-of-knowledge generated through the development of this reactive solution provides direction for future design 
improvement activities.   
 
This methodology is being applied to the development of an EoL strategy for SOFC stacks.  The EoL problem based 
on early SOFC stack design has been identified and some of the materials-related issues have been related to existing 
EoL product streams including catalysts, electrical and electronic equipment and ceramics.  Many techniques exist 
for the recovery of hazardous and valuable materials from existing EoL wastes.  These need to be explored in further 
depth and their application to SOFC stacks investigated.  Some experimental work is required to evaluate the 
efficiency of material recovery when these processes are applied to a novel product-type.  With regard to the 
recycling of the bulk ceramic waste stream, it is unlikely that a closed-loop solution would be easily developed; 
therefore the reuse of this material in lower-grade applications should be explored.  Further investigative activity 
should explore the recovery of the more unusual medium-value SOFC materials, including those used in the cathode 
and current collectors. 
 
These initial findings provide direction for future research, which should include more detailed analysis of how 
existing materials separation processes might be applied to existing SOFC stack designs.  This analysis will lead to 
an appreciation of the limitations of existing waste management capability in processing this novel waste stream.  An 
understanding of the limitations and challenges will direct the development of a proactive approach to EoL 
management of SOFC stacks. 
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a b s t r a c t

Ongoing development of solid oxide fuel cell (SOFC) technology coincides with a rapid increase in legisla-
tion aiming to control the environmental impacts of products across their life cycle. A risk-based method
is used to explore the potential future impacts of this body of legislation on the technology. Legislation
controlling the use of hazardous materials is one area of significance. Under the new European REACH
Regulation some nickel compounds, used widely throughout general industry but also in the fabrication
of anode structures, may fall under the classification of a substance of very high concern (SVHC) in future,
which presents a risk of restrictions being placed on their continued use. This risk must drive the develop-
ment of alternative anode materials, or requires the SOFC industry to identify a socio-economic argument
nvironmental product legislation
nd-of-life management
EACH Regulation
xtended Producer Responsibility

justifying exemption from any future restrictions. A legislative trend establishing recycling requirements
for end-of-life products is also identified as having a potential future impact on the technology. Recycling
strategies for SOFC products must be considered, prior to commercialisation. It is proposed that failure
to meet these future environmental requirements may be detrimental to the perception of SOFC technol-
ogy, the demand for which is substantially driven by the environmental benefits offered over incumbent
power generation technologies. The consideration of these issues in the design of commercial products
will mitigate this risk.
. Introduction

The past decade has seen the rapid increase of legislation
ddressing the environmental impacts of products. In Europe, the
ntegrated Product Policy identifies the opportunities for reduc-
ng human impact on the environment through direct targeting
f product life cycles [1]. At the early stages of the product life
ycle, manufacturers are increasingly constrained in their selection
f materials by legislation aiming to reduce the use of substances
hich have potential to detrimentally impact the health of humans

nd/or the wider environment [2,3]. At the other end of the product
ife cycle the concept of Extended Producer Responsibility attempts
o extend the responsibility of the manufacturer beyond the fac-
ory to include the management of wastes arising from end-of-life
roducts [4,5].

Against this background, the development of fuel cell technol-

gy continues. Fuel cells have long been hailed as a clean and
fficient means of electricity generation; however, general avail-
bility of the technology in a commercial market has yet to be
ealised. In particular, the development of solid oxide fuel cell
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(SOFC) technology for application in stationary power generation
is being pursued towards commercialisation by a number of global
players [6–8]. While the environmental benefits of the technology
during operation are particularly attractive with current climate
change concerns, it must be expected that these will lead future cus-
tomers to scrutinise and demand environmental excellence across
all aspects of the technology life cycle. An ability to demonstrate
compliance, as a minimum standard, is essential for successful mar-
ket entry. In order to ensure that compliance is achieved, current
and future legislative requirements must be considered within the
design process.

The principal aim of this research is to develop an awareness
of some of the issues which SOFC developers are likely to face as
this area of legislation continues to evolve, and thus to highlight
opportunities for addressing these issues during continuing design
development, prior to commercialisation. Sections 2 and 3 of the
paper provide information regarding the two main subject areas
behind the research; namely SOFC technology and environmental
legislation. In Section 2, the SOFC stack, the SOFC system and the
power and controls system are defined as representing the three

principal technologies employed in stationary power generation
systems, while in Section 3 specific developments in environmen-
tal legislation are described. In Section 4 the risk-based method
used to evaluate the impacts of legislation on the technology is
presented, and this method is applied and the findings discussed

http://www.sciencedirect.com/science/journal/03787753
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Table 1
Common SOFC materials.

Component Material Hazardous waste
threshold*

Electrolyte Yttria-stabilized zirconia N/A

Anode
Nickel >1 wt%
Nickel oxide** >0.1 wt%

Cathode Strontium-doped lanthanum manganite >20 wt%

Interconnect
Doped lanthanum chromate >20 wt%
Inert metals/alloys N/A

Sealant Glass/glass-ceramic N/A
Substrate Ceramic N/A

* As defined by the European Waste Catalogue. If materials are present in com-
positions greater than this threshold value, the entire waste stream is classified as
hazardous.

**
E.I. Wright et al. / Journal of P

n Section 5. The principal conclusions drawn from this discussion
re summarised in the final section of the paper.

. Solid oxide fuel cells for stationary power generation

Solid oxide fuel cell technology offers an alternative means
f electricity generation. The ceramic electrolytes used in SOFCs
equire an operating temperature of between 600 ◦C and 950 ◦C
o maximise efficiencies. The technology is well suited to appli-
ations in stationary power generation, and offers opportunities
or cost-effective internal reforming over a range of readily avail-
ble hydrocarbon fuels. In addition, the operating temperature
esults in the production of high-quality waste heat, making the
echnology suitable for combined heat and power generation and
or incorporation into a hybrid system with conventional gas
urbine technology. Examples of commercial developments are
escribed by Rolls-Royce [6], Siemens-Westinghouse [7] and Mit-
ubishi Heavy Industries [8].

.1. Definition of sub-assemblies

SOFC products under development for stationary power gen-
ration applications are complex systems incorporating several
echnology types. Given that different technology types are
mpacted differently by environmental legislation, the principal
omponents within a stationary SOFC plant have been classified
nto three high-level sub-assemblies. These sub-assemblies are the
OFC stack, the SOFC system and the power and controls sys-
em. This expands on previous studies where the SOFC system
nd the power and controls system are grouped together as the
Balance of Plant” [9]. For the purposes of the current work this
istinction was made to allow the relevance of legislation specifi-
ally targeted at electrical and electronic equipment to be clearly
valuated. Each of the sub-assemblies is defined in the following
ections.

.1.1. SOFC stack
The SOFC stack is the heart of any SOFC plant, and consists of

n assembly of individual fuel cells, in which a hydrogen-rich gas
ndergoes electrochemical reaction with oxygen to yield electri-
al power. Although a variety of SOFC stack designs exist [10], the
eneral characteristics are similar. The fuel cell consists of a multi-
ayer assembly of functional materials, supported on a substrate.
he substrate is fabricated from one of the functional materials,
rom an electrically conducting interconnect material [11] or from
eramic [12]. In addition to the substrate material, the SOFC stack is
omprised principally of functional ceramics and other metal/rare-
arth oxides [13,14]. An overview of the most commonly used SOFC
tack materials is provided in Table 1.

.1.2. SOFC system
The SOFC system incorporates the fuel processing assemblies

nd pipe-work infrastructure required for supply of fuel and air to
he SOFC stack, as well as heat exchangers, insulation and exter-
al casing. In addition this sub-assembly incorporates pressure
essels required for pressurised systems and gas turbine machin-
ry utilised in hybrid systems. Operating environments range from

oom temperature (for external components) to the high temper-
tures required for good SOFC stack performance. Components
an be regarded in general as employing conventional technology
sed in other power generation systems. The principal material
roups are ceramics (silica- or alumina-based insulating materi-
ls) and metal alloys (ranging from standard steels to specialised
igh-temperature alloys) [9].
Under operating conditions, all nickel in the anode will be present in metallic
form. Nickel oxide will be present only during the initial fabrication of the anode,
until exposed to a fuel environment. A controlled shut-down of end-of-life systems
will prevent the oxide re-forming.

2.1.3. Power and controls system
The power and controls system contains all the electrical and

electronic assemblies required to convert the electrical output from
the fuel cell stack into a suitable input for local or national grid
connection. Control and safety systems are also included in this sub-
assembly. Components can be regarded as employing conventional
electrical and electronic technology and materials.

2.2. Environmental characteristics of SOFC technology

Stationary power generation systems based on SOFC technology
are characterised by efficient fuel utilisation, reduced emissions
of carbon dioxide and other greenhouse gases, and virtual elim-
ination of other polluting emissions, such as oxides of nitrogen
and sulphur. These advantageous characteristics stem from the
electrochemical nature of the devices, which eliminates both the
energy losses associated with intermediate thermal and mechan-
ical energy conversion steps and the formation of undesirable
combustion products common to many conventional power gen-
eration technologies.

These benefits are widely accepted and continue to drive the
development of commercially viable products. Several detailed
reviews of the technology are available [10,13,15,16]. Published
environmental assessments of the operation of SOFC systems and
comparisons with conventional power generation can also be read
[9,17,18].

3. Developments in environmental legislation

Tukker [19] describes an observable shift in the emphasis of
environmental legislation across the second half of the twen-
tieth century. Historically the emphasis was directed towards
controlling the impacts of high profile, large-scale processes and
point-sources of pollution. More recently, and in reaction to
increased consumerism, the emphasis of legislation has moved to
control the less obvious and dispersed environmental impacts of
products.

Every manufactured item contributes to detrimental human
impact on the environment. In a typical product life cycle (Fig. 1),
impacts arise at each stage; for examples, depletion of natural
resources during materials production; waste generation during
the manufacturing process; energy or fuel consumption during

operation; and, leaching of hazardous substances after disposal.
In 2001 the European Commission published a Green Paper on
Integrated Product Policy (IPP) [1], recognising that environmen-
tal impacts from products are dispersed across the product life
cycle, and cannot be effectively addressed by focusing regulatory
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Fig. 1. A generic product life cycle for an electricity-generating product. All s

equirements on processes alone. Although IPP identifies a need
or a multi-pronged approach towards tackling life cycle issues,
ncluding voluntary market-driven schemes such as environmental
roduct declarations, mandatory measures in the form of legisla-
ion also form part of the strategy for implementation. Much of the
egislation explored in the current research has its roots in the IPP
oncept.

.1. Geographical considerations

The power generation market, and hence the future market
or SOFC power generation systems, is global in nature. Efforts
o develop the technology are ongoing in Europe, North Amer-
ca and Asia. When developing a product with global market
pportunities, it is important to recognise the different legisla-
ive standards required in different regions. Unless a clear strategy
xists in which the product is to be sold only into a spe-
ific market, then it is prudent to design products which match
he most stringent global requirements. This approach reduces
he risk of products being excluded from certain markets on
he grounds of non-compliance, and also pre-empts inevitable
egislative “catch-up”, where regions with slower or less innova-
ive legislative processes follow the routes determined by more
ro-active regions. Efforts to comply with the most advanced

egislative requirements also demonstrate a commitment to best
ractice.

Following a brief survey of trends in global product-centred
nvironmental legislation it was decided to narrow the scope of
he current research to European legislation only. This decision was

ade on the basis that Europe appears to be the global leader in the
evelopment of this body of legislation, when compared to Asia and
orth America.

Japan was identified as being the major legislative influence in
sia, and has long-embraced concepts such as waste reduction and
ustainable use of resources [20]. However, these concepts were

ound to be emphasised in policy documents but not translated
learly into regulatory requirements. No evidence was found that
he legislation controlling the life cycle impacts of products was
urther advanced than in Europe. In addition, European legisla-
ion such as the Restriction of Hazardous Substances Directive [3]
of the product life cycle are influenced by and can influence product design.

has prompted the development of similar regulations in China and
other Asian countries [21,22].

The USA was perceived as leading the development of leg-
islation on the American continent, with California pioneering
environmental legislation at state level. However, with respect
to product-focused legislation, few developments appear to have
emerged at federal level [23]. At state level no evidence was found
to indicate that this type of legislation was more advanced than in
Europe, with initiatives from business appearing to be at least as
significant as any regulatory controls [24].

3.2. Developments in environmental legislation in Europe

In Europe, recent developments in legislation have brought
many aspects of the product life cycle under legislative con-
trol. Various aspects of the use phase of stationary SOFC systems
are expected to be regulated by specific legislation controlling
emissions, noise and interaction with existing fuel and electricity
infrastructures. These legislative aspects have not been explored
in the current research: it is assumed that they are so funda-
mental to the product performance that known requirements
will already form the basis for design targets in SOFC develop-
ment. It is also expected that any new developments in legislation
specifically targeting the installation and operation of SOFC tech-
nology will be developed with direct consultation with SOFC
developers. The current research identifies legislation relevant to
the wider life cycle, the relevance of which may not have been
widely recognised within the SOFC sector. In this research leg-
islation has been classified as targeting materials selection and
design of products, and end-of-life or waste management. Spe-
cific pieces of legislation identified as being most relevant to
the current research are described below. A web-based refer-
ence has been provided for each, which can be followed for
further information and to review the most recent develop-
ments.
3.2.1. Legislation targeting materials selection and design
Two principal legislative developments were identified as being

of relevance to the early part of the product life cycle, since they
control the selection of materials from which products are manu-
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actured. These are the REACH Regulation [2], which deals with the
egistration, Evaluation and Authorisation of Chemicals and the
estriction of Hazardous Substances Directive [3], which applies
pecifically to electrical and electronic equipment. In addition the
co-design of Energy using Products Directive [25] was identified
s being more generally relevant to product design.

.2.1.1. REACH Regulation. The REACH Regulation was adopted in
ecember 2006 and entered into force in June 2007. The princi-
al requirements are that all chemical substances manufactured
r imported in Europe must be registered with a central European
hemicals Bureau. Registered substances are evaluated based on
azards to human health and the environment, and in the case of
hose posing a significant risk the continued use of that substance

ay be prohibited, or limited to authorised applications. Imple-
entation of the regulation is being phased in from June 2007 to
ay 2018, with priority given to the registration of substances with

xisting hazard classifications and high market volumes. Further
etails and updates with regard to implementation can be found at
he European Commission’s website [26].

.2.1.2. Restriction of Hazardous Substances Directive. The Restric-
ion of Hazardous Substances (RoHS) Directive identifies specific
igh risk substances and, from July 2006 has restricted their use in
efined categories of electrical and electronic equipment. The scope
f the RoHS Directive is closely linked with the Waste Electrical
nd Electronic Equipment (WEEE) Directive [4], and together these
wo legislative measures aim to reduce the hazards of a specific
nd-of-life waste stream through pro-active (materials selection)
nd reactive (waste management) measures. Further details and
pdates with regard to implementation can be found at the Euro-
ean Commission’s website [27].

.2.1.3. Eco-design of Energy using Products Directive. The Eco-
esign of Energy using Products (EuP) Directive was adopted in July
005 and establishes a framework for implementing eco-design
rinciples, with particular respect to products which consume
nergy during their operation. The Directive establishes no direct
equirements, but identifies aspects which may be required to be
ommunicated to customers and other stakeholders relating to a
roduct’s environmental performance across its entire life cycle.
he Directive places emphasis on high volume consumer products.
urther details and updates with regard to implementation can be
ound at the European Commission’s website [28].

.2.2. Legislation targeting the end-of-life management of
roducts

The end-of-life management of products is targeted specifically
y legislation encompassing the principle of Extended Producer
esponsibility (EPR), and also by more conventional waste man-
gement legislation. The Waste Electrical and Electronic Equipment
WEEE) Directive [4] was identified as being the most relevant piece
f legislation encompassing the EPR principle, although other leg-
slative measures with less direct relevance were also considered.
he conventional field of waste management legislation is exten-
ive [29] covering all aspects from storage and transportation of
aste to the operation of treatment facilities. The current research

onsiders waste management legislation with specific relevance to
he end-of-life phase of the SOFC product life cycle. As such, the
andfill Directive [30] and the Hazardous Waste Directive [31] were
dentified as being most significant.
.2.2.1. Waste Electrical and Electronic Equipment Directive. The
EEE Directive establishes mandatory recycling and recovery tar-

ets for specific categories of domestic and industrial electrical and
lectronic equipment, and places the responsibility on equipment
Sources 190 (2009) 362–371 365

manufacturers to demonstrate compliance. The targets established
by the Directive range from 50% to 80% recycling of components
and materials by weight, and from 70% to 80% recovery, which
includes material burnt for energy generation purposes. These
requirements have been in force since December 2006. Further
details and updates with regard to implementation can be found
at the European Commission’s website [27].

3.2.2.2. Other Extended Producer Responsibility legislation. Other
end-of-life waste streams subject to legislation implementing the
EPR concept include cars, batteries and packaging. Similar to the
WEEE Directive, the End-of-life Vehicles Directive [5,32] establishes
a requirement to recycle 80% by weight of the material in a scrapped
car. The Batteries and Accumulators Directive [33,34] defines appro-
priate disposal routes for different types of batteries, again placing
a significant emphasis on recycling targets. Packaging is another
waste stream which has been targeted under Extended Producer
Responsibility legislation [35,36].

3.2.2.3. Landfill Directive. The Landfill Directive entered into force
in July 1999 and has established restrictions and controls over waste
disposal to landfill since July 2001. The emphasis of the legislation
is on reducing the volumes of waste disposed of, with no recovery
of material or energy resources, and on reducing the hazards likely
to result from landfill sites, such as leaching of hazardous materials
into the local environment. Further details and updates with regard
to implementation can be found at the European Commission’s
website [37].

3.2.2.4. Hazardous Waste Directive. The Hazardous Waste Directive,
with other supporting legislation, identifies wastes which are per-
ceived as having hazardous properties, which include those which
are likely to harm human health and/or the environment. The Direc-
tive establishes additional requirements on the management of
such wastes, controlling storage, labelling, transportation and treat-
ment. Further details and updates with regard to implementation
can be found at the European Commission’s website [38].

4. A risk-based method for evaluating future legislative
impacts

SOFC technology has not yet reached commercial maturity and
therefore is not yet the target of specific legislation in the same way
that other product-types, such as vehicles and electrical consumer
goods, have become. In addition, much of the legislation considered
in the current research encompasses relatively new concepts, such
as Extended Producer Responsibility. These new concepts are likely
to be rolled out across other product sectors in time, if the current
legislation proves to be a successful approach.

Therefore the evaluation of the impacts of the legislation on
SOFC technology must consider a future scenario where both the
legislative and the technological landscapes have evolved beyond
today’s situation. For this reason, a risk-based method was identi-
fied as the most appropriate means of evaluating future impacts.

4.1. Impact evaluation in four steps

The risk-based method employed in the current research is
shown in Fig. 2. The method follows four steps, in line with a con-
ventional risk assessment methodology.
The first step requires identification of potential impacts (i). This
requires knowledge of both the SOFC product and the body of leg-
islation. Impacts are likely to be indicated by conflicts between
current SOFC design parameters and specific requirements within
the legislation.
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Fig. 2. The risk-based method developed to evaluate future impacts of legislation on
SOFC technology. Required inputs to the process are knowledge of the SOFC product
and knowledge of the relevant legislation. The process results in output which can
be used to define design priorities.

Table 2
Definition of scoring system for impact magnitude.

Score Magnitude (Mi)

1 Will have minimal impact on SOFC technology. Solutions are already
available for implementation or can be developed with no significant
impact on technology adoption.

2 Will impact on SOFC technology. May result in setback for technology
adoption, but a feasible solution should be achievable with some
development effort.

3 Will have severe impact on SOFC technology requiring significant
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development efforts of unknown feasibility. May result in serious
setbacks for widespread technology adoption.

The second step requires the magnitude of the impact (Mi) to
e evaluated. In this case, the magnitude is related to technology
doption, and Table 2 provides definitions for each available score.

In the third step, the probability of the impact occurring (Pi) is
valuated. This is related to how the technology and the legislation
re expected to develop with time. The score definition used for
his parameter is presented in Table 3.

Finally, the overall impact score (Ri) is calculated as a product of
i and Pi. This parameter would be the risk score in a traditional

isk assessment process. A high impact score indicates that the
mpact poses a significant risk to the success of SOFC technology. All
mpacts identified using this method should be considered during
ngoing design development prior to commercialisation. Quantifi-

ation of scores for each impact allows priority to be given to high
isk areas, thus directing design efforts.

able 3
efinition of scoring system for impact probability.

core Probability (Pi)

Low probability—general trend suggests potential future impact in
>25 years.
Moderate probability—current or developing legislation is likely to
impact within 5–25 years.
High probability—legislation currently impacts or is expected to
impact in <5 years.
Sources 190 (2009) 362–371

4.2. Application of the risk-based method to evaluate future
impacts of legislation

The risk-based method was used to evaluate future impacts
of product-centred legislation on SOFC technology. A systematic
approach was followed, evaluating the impact of each piece of
legislation, outlined in Section 3.2, against each sub-assembly,
defined in Section 2.1. Fig. 3 provides an overview of the evaluation
matrix. Shaded areas indicate that the legislation was perceived
to impact the sub-assembly. All legislation impacting an individual
sub-assembly impacts the SOFC product by default. Only the Energy
using Products Directive was identified as impacting the overall
product assembly with no additional specific impacts associated
with individual sub-assemblies.

The results from the application of the risk-based evaluation
method are presented in Tables 4–7. Results are presented sep-
arately for each sub-assembly of a SOFC-based stationary power
generator unit; namely the SOFC stack, the SOFC system and the
SOFC power and controls; and for the complete stationary SOFC
system package, respectively. Results are presented as risk scores
for each piece of relevant legislation. The magnitude of the impact
presented by the legislation has been evaluated, and awarded a
numerical score as defined in Table 2. A short justification for this
score is provided in the table of results. Similarly, the probability
of each impact arising has been evaluated according to the scale
presented in Table 3, and justified. The magnitude and probability
scores have been used to calculate the overall risk score.

The results presented in Tables 4–7 are discussed in Sections
4.2.1–4.2.4.

4.2.1. Impacts of environmental legislation on the SOFC stack
Table 4 summarises the impacts identified for the SOFC stack

arising from REACH and waste legislation.

4.2.1.1. REACH Regulation. REACH is a complex and broad-ranging
piece of legislation, impacting many areas of the manufacture,
supply and use of all chemical substances. The first area of risk iden-
tified for the SOFC stack is future restriction on the use of hazardous
materials. Under REACH the continued use of all substances is sub-
ject to the approval of the European Chemicals Agency, following
a registration stage. Substances which pose significant hazards to
human health and/or the environment will be subject to authori-
sation. This means that the ongoing use of these substances may
be restricted to specific applications, and, in the worst cases, pro-
hibited. Nickel oxide which is typically used in the fabrication of
anode structures, has been classified under REACH as a substance
of high concern (SVHC), with the potential that it may be subject to
authorisation and, in the worst instance its use may be prohibited.

The inability to use nickel oxide could have a potentially signif-
icant effect on the SOFC industry. Although several other materials
suitable for application in the SOFC anode are under development
no single alternative has been adopted by the industry. While future
anode materials may provide optimised performance, the time-
frame for commercial availability could be considerable. Nickel
oxide has the advantage of being a readily available material, used
in a number of high volume industries. Thus the supply chain is
well established.

The probability of restrictions being implemented on nickel
oxide is uncertain. REACH is in its very early stages and, as a sub-
stantial and controversial piece of legislation, its implementation
is very much uncertain. In any case, the impacts of the legislation

are not likely to be felt by industry for a number of years. REACH
has made provision for substances which, although hazardous in
themselves, provide over-riding benefits in their application. Socio-
economic analysis can be used as evidence to persuade regulators
to authorise continued use of a substance. It is likely that, given the
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ig. 3. A summary matrix indicating the scope of the research. Shading indicates th
OFC product.

otential benefits offered by SOFC technology, justification for the
ontinued use of nickel oxide could be established.

The second way in which REACH may impact the SOFC stack
s by adversely affecting the supply chain. REACH introduces an
dditional administrative burden on the supply chain, where reg-
stration of all manufactured and important chemical substances is
equired. The costs of registration are to be met by the payment of
ees by the manufacturer or importer. This risk is associated most
losely with materials utilised exclusively in SOFC applications.
xamples would be the perovskite materials commonly used in
athode components. It is anticipated that where these are supplied
y SMEs, the financial burden may be prohibitive for continued sup-
ly. In SMEs and larger companies, product portfolios are likely to
e stream-lined to minimise costs of registration. Given that SOFC
echnology is not currently a significant market sector with large
emand and reward, these SOFC-specific materials may be candi-
ates for portfolio exclusion.

Although the magnitude of the impact of discontinued mate-
ials supply was identified as being high, the probability of the
ituation was determined to be low. Suppliers of specialised mate-
ials tend to have close relationships with their customers, since
utual dependence is generally clear to both parties. In situations
here the company developing SOFC technology has substantially

reater economic power than the material supplier, it would be
n its interest to support the financial requirements imposed by
EACH. Smaller SOFC developers are less likely to be able to sup-
ort the supply chain, however, providing that several major players
emain in the field the small SOFC developers will be able to reap
he benefits of their intervention.

The final aspect of REACH which has potential to impact the
evelopment of SOFC stack technology is the increased adminis-
rative burden being transferred into material costs. Cost reduction
s one of the significant challenges faced by SOFC developers,
nd therefore any unexpected increase in raw material costs will
ncrease the extent of the challenge. It is, however, recognised that

ncreased material costs of this origin are unlikely to be signifi-
ant compared with the overall requirements for cost reduction.
eal breakthroughs in cost reduction require manufacturing solu-
ions, especially for high volume production, and may potentially
nvolve the substitution of high value materials with cheaper alter-
ecific legislative measure was found to impact upon a specific sub-assembly of the

natives. Various cost breakdown studies for SOFC stacks explore
the relationship between material and manufacturing costs and
show the relative contribution to unit cost as being dependent
on specific aspects of stack design and production assumptions
[39].

4.2.1.2. Waste legislation. Waste legislation was the second area
identified as having specific relevance to the SOFC stack assemblies.
Management of end-of-life stack assemblies is a challenge yet to
be encountered at any great scale in the SOFC industry. Although
components manufactured for research and development purposes
have been produced for several decades, the volumes involved are
comparatively low and most components will be retained for future
analysis or other scientific purposes. To date, the disposal of stack
components has therefore not been a high priority issue for SOFC
developers.

On the other hand, measures for responsible management of
waste must be in place before SOFC technology becomes widely
adopted in the commercial energy market. Legislation has been
identified as being relevant in two principal areas: in the first
instance in the classification of hazardous waste, and in the second
instance in controlling how waste is treated.

Waste arising from the SOFC stack has the potential to be clas-
sified as hazardous. Waste classifications arise from the content
of hazardous substances present in a given waste stream. The
state-of-the-art anode material for SOFCs is nickel. Nickel metal
is permitted in waste in concentrations up to 1 wt% before the
entire stream is classified as hazardous. SOFC anodes are typically
fabricated from nickel oxide, exposure to fuel gas results in reduc-
tion to nickel metal. Nickel oxide, if entering a waste stream, has
the potential for classifying it as hazardous in concentrations of
0.1 wt% or greater. The classification of waste arising from SOFC
stack assemblies is therefore heavily dependent on the stack design,
which defines the content of anode material, as well as the envi-
ronmental history. Alternative anode materials may also possess

hazardous properties, although the current work has not fully
explored these alternatives. With regard to the other state-of-the-
art SOFC stack materials (Table 1), the hazard classifications do not
present a significant risk of this waste stream being classified as
hazardous.
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Table 4
Impacts of legislation on the SOFC stack, evaluated using a risk-based method.

Legislation Identified impact (i) Magnitude (Mi) Probability (Pi) Risk (Ri)

REACH Regulation Use of hazardous substances is
prevented.

2 NiO is the state-of-the-art
anode material, and classified
under REACH as SVHC*.
Activity to develop alternative
materials is ongoing but the
technology would be
significantly impacted by
prevented use of NiO.

2 REACH is already in force, but
is a complex regulation, so
details of implementation
remain uncertain. Timescale
for implementation is 0–15
years. Continued use of some
SVHCs may be justifiable.

4

Supply of low volume specialty
materials is discontinued.

3 Several state-of-the-art SOFC
materials (esp. cathode
materials) are specific to the
technology and manufactured
at low volume by SME
suppliers. An inability to source
the required materials would
be prohibitive to
commercial-scale production.

1 If the supply chain is unable to
sustain continued supply,
investment from fuel cell
developers should be able to
support the requirements of
REACH.

3

Cost of materials increases to a
prohibitive level.

2 Cost is one barrier to
commercialisation of the
technology. Increased material
costs may result in failure to
achieve cost targets.

1 Any incremental increase in
material cost arising from
REACH is likely to be small
relative to existing material
and manufacturing costs.

2

Hazardous Waste Directive End-of-life SOFC stack
assemblies are classified as
“hazardous waste”.

1 Classification of end-of-life
assemblies as “hazardous
waste” will have little impact
in its own right. Handling and
treatment of hazardous waste
may incur higher charges, but
unlikely to be significant
compared to technology costs.

2 By existing legislation,
classification is most likely to
arise from nickel oxide content,
but is dependent on stack
design, composition and
whether nickel is in oxide form
at end-of-life. Should
anticipate future legislation as
being increasingly strict.

2

Landfill Directive End-of-life SOFC stack requires
pre-treatment prior to disposal.

1 Requires process development
for pre-treatment prior to
disposal OR process
development for an alternative
end-of-life solution.
Pre-treatment requirements
may be fairly minimal.

3 Requirement would be in force
if disposal was attempted
today.

3

Disposal of end-of-life SOFC
stack assemblies to landfill is
prohibited.

2 Requires process development
for an alternative end-of-life
solution, requiring substantial
recycling/recovery activities to
allow material to be diverted
from landfill.

2 The goal of zero landfill is
widely accepted but legislation
likely to demand progressive
reduction. Also customer
perception of environmental
benefits of SOFC technology

4
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* Substance of very high concern.

The impact of waste from SOFC stack assemblies being classi-
ed as hazardous is perceived to be small. Handling, treatment and
isposal fees may introduce additional cost into the assembly life
ycle, although it is assumed that compared to the material and
abrication costs these will be small. Restrictions on shipments of
astes between countries may also be experienced [40], directing
hose handling waste to use local waste management capability.
erhaps more important is the public perception of fuel cell tech-
ology. It could be argued that the generation of hazardous waste
ould be damaging to the environmentally beneficial image pro-

able 5
mpacts of legislation on the SOFC system, evaluated using a risk-based method.

egislation Identified impact (i) Magnitude (Mi)

EACH Regulation Use of hazardous substances is prevented. 2 Nickel-b
for some
compone
material
chromiu
associate
makes disposal to landfill
unfeasible.

moted by SOFC developers. On the other hand, methodologies such
as life cycle assessment should be used to evaluate the detrimen-
tal impacts of hazardous waste generation in the context of the
complete technology life cycle rather than in isolation.

The second area of waste management legislation identified as
having potential impacts on the SOFC stack is the legislation gov-

erning landfill activities. Without the development of alternative
waste management strategies, disposal to landfill may appear to
be the baseline available option. However, within the current leg-
islative framework, some pre-treatment of waste is required prior

Probability (Pi) Risk (Ri)

ased alloys required
high-temperature
nts. Some alternative

s may be available but
m alloys have
d technical problems.

1 Nickel in bulk metallic form is
not especially hazardous,
although re-classification is a
possibility. Much larger users of
nickel-based alloys (aerospace
industry etc) have significant
lobbying influence and ability
to negotiate continued use.

2
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Table 6
Impacts of legislation on the SOFC power and controls, evaluated using a risk-based method.

Legislation Identified impact (i) Magnitude (Mi) Probability (Pi) Risk (Ri)

RoHS Directive RoHS-compliant components
have reduced reliability.

2 Failure of components may
cause reliability issues for the
product system.

1 Unlikely to be a significant
issue, since good suppliers
should be able to solve any
reliability problems.

2

WEEE Directive Fuel cell developers are
responsible for
recovering/recycling a
proportion of power and

1 Recycling infrastructure is
developing to support
requirements of WEEE.
Responsibility will belong in

e OEM

2 Not a current issue, since
components installed within a
SOFC system are excluded from
WEEE. Future requirements

2

t
t
t
i
D
t
r
i
f
s
p

c
a
t
w
p
n
s
d
m
d
b

c
T

4

s
r
p
w
T
a
S
t
d

T
I

L

E

E

control components. part to th

o disposal to landfill. Article 6 of the Landfill Directive [30] states
hat, “. . .only waste that has been subject to treatment is (allowed
o be) landfilled.” In the same article, the definition of “treatment”
s an operation which, “. . .contribute(s) to the objectives of this
irective. . .by reducing the quantity of the waste or the hazards

o human health or the environment.” The extent of pre-treatment
equired is not explicitly stated, and it would appear that fairly min-
mal levels of treatment (such as shredding or baling) are acceptable
or some existing waste streams. Therefore, it is assumed that a
olution for SOFC stack assemblies could be developed prior to the
roduction of large volumes of this waste stream.

From a longer term perspective, the general policy trend indi-
ates a move towards zero landfill, with emphasis being put on
hierarchical approach to waste management in which reduc-

ion, reuse and recycling are identified as being priority actions,
ith landfill being accepted only as a last resort. It is therefore
robable that the legislation surrounding landfill will tighten sig-
ificantly within the next 10 years. An inability to dispose of SOFC
tack assemblies to landfill will require SOFC developers to invest in
eveloping alternative waste management solutions, prior to com-
ercialisation. In addition, the public perception of landfill as a

isposal solution is contradictory to the “green” image presented
y fuel cells.

Other legislation directing alternatives to landfill, such as recy-
ling, are likely to become applicable to the entire product assembly.
hese are discussed in Section 4.2.4.

.2.2. Impacts of environmental legislation on the SOFC system
In general the impacts of environmental legislation on the SOFC

ystem have been explored in less detail. Table 5 summarises the
isks identified and the scores allocated. The SOFC system incor-
orates conventional components, such as heat exchangers, pipe
ork, casing and shelving, and employs commonly used materials.
herefore, it is assumed that, for example, existing waste man-
gement processes can be adopted to manage waste arising from
OFC system components in a compliant manner. In comparison to
he SOFC stack, less emphasis will fall on the SOFC community to
evelop bespoke approaches to waste management.

able 7
mpacts of legislation on the complete SOFC product, evaluated using a risk-based metho

egislation Identified impact (i) Magnitude (Mi)

uP Directive SOFC developers are required
to implement and provide
evidence of eco-design.

1 Does not necess
technology at al
cost and bad pu
requirements ar

PR legislation Fuel cell developers are
responsible for
recovering/recycling a
proportion of the complete
product.

2 Requires develo
but should be fe
to comply woul
negative impact
technology’s im
. might arise with extension in
scope and/ or technology
adoption in non-stationary
applications.

REACH legislation has been identified as having a potential
future impact on the SOFC system in a manner similar to the SOFC
stack. The principal area of relevance identified in the current work
regards the use of high-temperature nickel-based alloys. The oper-
ating conditions for high-temperature SOFC systems are such that
materials with suitable properties, including durability, are limited.
It is possible that, under REACH, re-classification of nickel metal
could arise, bringing it onto the list of Substances of Very High
Concern. However, given the low risk associated with handling and
using nickel in bulk metallic or alloyed form, it appears unlikely
that the use of nickel–metal alloys would be heavily restricted. In
addition, these materials are used by other large industry sectors,
such as aerospace and conventional energy generation. It would be
expected that these sectors possess sufficient lobbying influence to
negotiate the continued use of nickel in this type of application.

4.2.3. Impacts of environmental legislation on the SOFC power
and control system

Electrical and electronic equipment has been the target of recent
developments in environmental legislation. Two specific directives
have been introduced in Europe which control the use of hazardous
substances in these applications, and prescribe recycling targets for
equipment at the end of its life. The potential future impacts of
these directives on the SOFC power and control systems are out-
lined below. This discussion is based on the impacts identified and
evaluated in Table 6.

4.2.3.1. Restriction of Hazardous Substances Directive. Large SOFC
product systems designed for stationary power generation do
not fall within the scope of the RoHS Directive, which applies
to a defined list of equipment categories. As such, compliance
with the Directive is not required, and even the use of com-
pliant components is not necessary. However, it is likely that

given the requirement for RoHS-compliance across a wide range
of product-types, the demand for compliant components will
drive manufacturers of common components to eliminate the
use of RoHS substances (namely lead, mercury, cadmium, hex-
avalent chromium, polybrominated biphenyls and polybrominated

d.

Probability (Pi) Risk (Ri)

arily impact
l, but may incur
blic image if
e not met.

2 Not a current issue, since SOFC
system is outside scope. Likely
to become a direct requirement
in time.

2

pment activity,
asible. Failure
d have serious
on the

age.

2 Not a current issue, since SOFC
system is not covered by scope
of existing legislation. Likely to
become a direct requirement in
time.

4
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iphenyl ethers). Therefore the availability of non-compliant com-
onents is likely to reduce substantially. Although this may be
egarded as a benefit, in that SOFC system developers will have
eady access to more environmentally benign components, there
re also potentially detrimental effects of this change in the supply
hain.

In order to meet the requirements of the RoHS Directive, and
ational implementing legislation, material substitution will be
equired. This requires the replacement of tried and trusted mate-
ials, most likely selected for their suitability to a given application,
ith alternatives. Although suppliers will strive to maintain compo-
ent standards, it is possible that some compromise in performance
nd/or reliability may result. Any reliability issues within the power
nd control systems of a SOFC power generation system will have
nock-on effects for the reliability of the entire system. While
mportant to recognise this aspect of legislative change, it is not
erceived that the probability of significant issues arising is likely
o be high.

.2.3.2. Waste Electrical and Electronic Equipment Directive. The
EEE Directive establishes recycling and recovery targets for elec-

ronic waste and its aim is to place responsibility for meeting these
argets on the original equipment manufacturers. An increase in
he availability of recycling technologies for electrical and elec-
ronic components has grown since the introduction of WEEE, and
t is anticipated that SOFC developers could utilise existing recy-
ling infrastructure to handle any relevant wastes arising. However,
nder existing legislation, components installed within large sta-
ionary power generation systems are perceived to lie outside the
cope of the WEEE Directive. Therefore any requirements to meet
pecified recycling targets would arise from future developments
f this type of legislation.

.2.4. Future impacts of environmental legislation on stationary
OFC products

As well as the impacts of legislation on individual assemblies
ithin stationary SOFC units, additional impacts have been identi-
ed which are more relevant to the complete product. In particular
hese relate to the design and end-of-life stages of the product
ife cycle. Table 7 presents the identified impacts along with the
llocated risk scores.

.2.4.1. Energy using Products Directive. The EuP Directive repre-
ents a new approach to environmental legislation, by establishing
framework by which eco-design requirements may be imple-
ented and regulated. Eco-design has been identified as an

pproach which can aim to minimise the environmental impacts of
roducts by ensuring the complete life cycle has been considered at
he design stage. This means that efforts to minimise manufacturing
osts will have to be considered along with material selection and
aste management, in order to achieve the solution which is best

or the complete product life cycle. This Directive is aimed specifi-
ally at products which require electricity to function, and therefore
equires electrical efficiency to be considered together with these
ther life cycle aspects.

The current Directive simply defines a framework, and as such
o specific measures are required to demonstrate compliance. In
ddition, the scope is limited to high volume consumer products
nd, as such, excludes large stationary power generation systems.
owever, the Directive is likely to be indicative of a developing trend

n environmental legislation, which shifts the emphasis from spe-

ific points within the life cycle to a more holistic consideration of
he impacts of products.

Incorporating eco-design practices within SOFC development
s unlikely to have a significant detrimental impact on the tech-
ology. However, SOFC developers should be aware of the likely
Sources 190 (2009) 362–371

future requirement to be able to demonstrate life cycle thinking, and
therefore should dedicate resource to addressing these issues. It is
encouraging to see this aspect of technology development already
being addressed by the academic community and also in Euro-
pean consortia projects [41,42]. Continuation of these initial efforts
should be part of the ongoing strategy for the SOFC industry.

4.2.4.2. Extended Producer Responsibility legislation. Environmen-
tally responsible management of products reaching the end of their
useful life has appeared as a priority issue across a number of
product types. Electrical and electronic components have been pre-
viously mentioned, and similar legislation applies to batteries. The
automotive sector has substantial recycling targets to meet under
the End-of-life Vehicles Directive.

Although within the current legislative climate, no legislation
of this sort is directly applicable to large stationary SOFC systems,
the trend indicates that this type of legislation is likely to develop
in its scope. With recycling targets set at up to 85% of a product
by weight (as for vehicles), SOFC developers would be advised to
understand the feasibility of achieving this level of recycling within
their products. Although it is likely to be several years before specific
applicable targets are set, the damage to the technology’s image
resulting from any future non-compliance in this area is likely to be
significant.

5. Conclusions

Future impacts of environmental product legislation on large
stationary SOFC power generation systems have been identified for
the stack and system assemblies and for the power and controls
systems. In addition, impacts relevant to the complete product sys-
tem have been identified. A simple scoring system has been used to
identify priority issues defined by higher impact scores. Although
the scores presented in this paper will contain a degree of sub-
jectivity, the intention of the research is to direct SOFC developers
towards some of the potential future risks and prompt further, more
specific exploration of these issues within the industry.

In summary, the following recommendations are made, based
on the identified impacts with highest calculated risks:

• With regard to material selection and supply the new REACH
Regulation has potential implications, specifically for the SOFC
stack. SOFC developers should familiarise themselves with this
legislation as implementation progresses over the coming years.
In particular, the restrictions planned for substances identified
as being of very high concern (specifically nickel oxide) should
be taken into account in materials selection and development
activities.

• With regard to end-of-life management, increasing emphasis is
being placed on legislative control. This legislation has supported
the development of facilities for recycling electrical and elec-
tronic components, as found in the power and controls assembly.
A reasonable existing infrastructure for recycling metals should
provide the facilities for effective management of waste from
system components. Therefore SOFC developers should focus on
strategies for end-of-life management of the stack in order to
divert waste from landfill and demonstrate pro-active pursuit of
predicted future recycling requirements for this assembly and for
the product as a whole.
In order that stationary SOFC power generation is suitable for
adoption in a future energy network, developers should recognise
that environmental legislation extends beyond emissions targets
and encompasses a broad range of issues across the product life
cycle. A pro-active approach to addressing these issues will remove
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