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Abstract 

 

The key factor that complicates statistical inference for an origin-destination (O-D) matrix 

is that the problem per se is usually highly underspecified, with a large number of unknown 

entries but many fewer observations available for the estimation. In this paper, we investigate 

statistical inference for a transit route O-D matrix using on-off counts of passengers. A 

Markov chain model is incorporated to capture the relationships between the entries of the 

transit route matrix, and to reduce the total number of unknown parameters. A Bayesian 

analysis is then performed to draw inference about the unknown parameters of the Markov 

model. Unlike many existing methods that rely on iterative algorithms, this new approach 

leads to a closed-form solution and is computationally more efficient. The relationship 

between this method and the maximum entropy approach is also investigated.  

 

 

Keywords:  Bayesian analysis; Markov model; Maximum entropy method; O-D matrix; 

Transit route. 
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1.   Introduction 

 

An origin-destination (O-D) matrix provides fundamental information on flows of 

vehicles or people traveling from one specific geographical area to another. It plays a crucial 

role in traffic and transportation management.  

In practice, large-scale direct sampling for statistical inference for O-D matrices is usually 

too expensive (Van Zuylen and Willumsen 1980; Li, 2005; Li and Cassidy, 2007). A common 

approach for the estimation of an O-D matrix is to calculate its entries using traffic counts 

obtained on pre-selected links of a transport network, without imposing any specific model on 

the entries. This approach is much cheaper than the method of large-scale sampling. For 

economic reasons, however, the number of selected links is relatively small in practice, 

resulting in a highly underspecified problem with a huge number of unknown parameters 

(entries) but many fewer observations (see e.g., Van Zuylen and Willumsen 1980). 

Furthermore, in some applications, even were counts to be observed on every link, the O-D 

matrix would still be underspecified (Hazelton, 2001; Li 2005).  

In order to deal with this underspecified problem, Van Zuylen and Willumsen (1980) 

proposed a maximum entropy method that determines an O-D matrix such that the chosen trip 

matrix adds as little information as possible to the knowledge contained in the data collected 

on pre-selected links of a transport network.  

On the other hand, many existing approaches assume that prior knowledge about an O-D 

matrix is more or less available (e.g., obsolete O-D matrices). An early approach, termed the 

balancing method, relies on a reference (also called seed) trip matrix that is composed of 

initial estimates obtained from a previous year. On the basis of observed totals of trips for each 

row and column, this O-D matrix is adjusted by multiplying each entry in a matrix row by a 

constant such that the row’s total matches the actual count, and repeating this for each column. 

This iterative process continues to convergence (Lamond and Stewart, 1981). There are two 
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major issues associated with the balancing method. First, from a computational perspective, 

the balancing method is subject to the problem of non-structural zeros (Ben-Akiva et al., 

1985), i.e., if an entry in a reference matrix is zero, then this entry retains a zero in every 

iteration. Further, when the number of zero entries becomes large, this algorithm may even fail 

to converge. Secondly, from a statistical point of view, this method does not incorporate an 

efficient way to make use of prior information because it fails to properly take into account the 

relative precision of prior information compared to that of current observations.  

A much better approach in terms of utilizing prior information was developed by Maher 

(1983) and Hazelton (2001), who carried out Bayesian analysis to combine prior information 

with current observations on traffic flow. Recently, Li (2005) has developed a general 

approach to draw inference about O-D matrices; this approach can be nicely linked to many 

existing methods, such as the Bayesian approaches of Maher (1983) and Hazelton (2001), and 

the maximum entropy method of Van Zuylen and Willumsen (1980).  

In this paper, we consider a particular type of problem: statistical inference for O-D 

matrices of transit-route ridership using on-off counts of passengers. In contrast to a general 

O-D matrix, a transit route O-D matrix possesses some important characteristics. So instead of 

estimating the entries of the O-D matrix as individual parameters, we will use these 

characteristics to build a parsimonious model with a much smaller number of parameters.  

A parametric approach for the estimation of transit route O-D matrices was first 

incorporated by Li and Cassidy (2007), where all the stops of a bus route were classified into 

two categories, major and minor stops. Then the conditional probability that a passenger 

alights at a major (or minor) stop given that the passenger boarded at a major (or minor) stop 

was modeled and estimated using on-off counts of passengers. The entries of an O-D matrix 

were calculated on the basis of these conditional probabilities. This approach was shown to 

have many computational advantages over the balancing method (Li and Cassidy, 2007).  
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This paper also follows a parametric approach for the estimation of transit route O-D 

matrices. However, instead of classifying stops into just two categories (major and minor), this 

paper incorporates a Markov chain model to describe the relationships between entries of a 

transit route matrix. Consequently, the entries of the O-D matrix are characterized by a small 

number of parameters in the model, i.e., Markov transition probabilities.  

To draw inference about the parameters in the Markov model, we carry out a Bayesian 

analysis to combine prior information with the current on-off counts of passengers. In 

comparison with the balancing method, this approach provides an efficient way to utilize prior 

information. Furthermore it leads to a closed-form solution, so its computational cost is much 

lower than that of existing methods. In the special case where no prior knowledge is available 

in practice, the prior in the Bayesian analysis can simply be chosen as non-informative so that 

the statistical inference is based solely on observed on-off counts.  

Further, we show that when no prior is available, the developed method produces an 

estimate of a trip matrix that is equivalent to that obtained by the well-known maximum 

entropy approach. For transit route O-D estimation problems, this suggests a very close link 

between the maximum entropy method and the implicit assumption on the ‘forgetfulness’ in 

the Markov model, which is easily overlooked in practice when applying the maximum 

entropy method in the scenario of no prior information. 

Finally we note that for some applications the first-order Markov process may not be able 

to model the reality well. Hence in this paper we also investigate Bayesian analysis for transit 

route O-D estimation using a higher order Markov model. With a reasonably large order m, an 

mth-order Markov model can provide a satisfactory approximation to the reality.  

The paper is organized as follows. In Section 2 we develop a Markov model for the 

estimation of transit route matrices. Section 3 is devoted to Bayesian inference for the 

parameters in the Markov model. In Section 4 we investigate the relationship between the 
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proposed method and the maximum entropy approach. The obtained results are then extended 

to a more general situation in Section 5. In Section 6 the proposed method is illustrated using a 

practical example. Finally, concluding remarks are given in Section 7.  

 

 

2.   A Markov Model for Transit Route Matrices 

Consider a (bus) route serving N stops at which transit passengers board or alight. In this 

section we investigate a model for statistical inference for a transit route matrix using on-off 

counts of passengers.  

 

2.1.   Counts of Passengers 

Let iy  be the observed number of passengers who board at stop i (i=1,…,N) and let jz  be the 

observed number of passengers who alight at stop j (j=1,…,N), where it is assumed that no 

passengers board at the terminal stop, i.e. 0Ny , and no passengers alight at the initial stop, 

i.e. 01 z . Define ijx  to be the unobservable counts of passengers boarding at stop i and 

alighting at stop j (i, j=1,…,N). Finally, define ijp  to be the probabilities of passengers 

alighting at stop j given that they boarded at stop i (i, j=1,…,N). Figure 1 illustrates a transit 

route. Due to the nature of transit routes, we have  

0ijp    and    0ijx      for all ji  .  

 

(Figure 1 is about here) 

Figure 1. A diagram of a bus transit route serving N stops, where ijx  are counts of 

passengers boarding at stop i and alighting at stop j, iy  and iz  are on and off counts of 

passengers at stop i respectively. 
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The counts of passengers are linked through the following equations: 

 


N

ij iij yx
1

  (i=1,…,N-1),       (1) 

and       







1

1

j

i jij zx   (j=2,…,N),       (2) 

as displayed in Table 1.  

(Table 1 is about here) 

 

2.2.   A Markov Chain Model 

Following Hazelton (2001) and Li (2005), we distinguish two different problems for 

transit routes: the estimation problem and the reconstruction problem. The aim for the former 

is to estimate unknown parameters, e.g. an alighting probability matrix NNijp  ][P , whereas 

the aim for the latter is to reconstruct actual numbers of passengers, i.e., a trip matrix 

NNijx  ][X  occurred during the observational time period. A major advantage of drawing 

inference about the alighting probability matrix rather than the trip matrix per se is that the 

probability parameters are more likely to remain constant across transit trips made under 

similar conditions (Li and Cassidy, 2007). The reconstruction of ][ ijxX  is straightforward 

once the alighting probability matrix P has been estimated. So we focus on the former problem 

in this paper. 

In general, for the estimation problem for O-D matrices, the number of unknown 

quantities is much larger than the number of observations except for some special scenarios 

such as the estimation of intersection O-D matrices (see e.g., Li and De Moor, 1999 and 2002). 

When the relationships between the entries of an O-D matrix are ignored so that the entries 

have to be estimated individually, this is an underspecified problem. To circumvent this 
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difficulty, a parametric model will be developed in this paper to reduce the number of 

unknown parameters.  

To specify an appropriate model, we first note that due to the nature of transit routes, the 

transition probability that a passenger will alight at stop i given that he/she is on board at stop 

1i  is crucial. Consequently, rather than estimating individual entries of a transit route matrix 

directly, we use a first-order Markov model (termed Markov model hereafter) to characterize 

transition probabilities. 

A Markov chain is a stochastic process where given the present state, the past and future 

states are independent. In a Markov model, transition probabilities play an important role. Let 

i  be a random variable representing a passenger’s state at stop i, where 1i  if the 

passenger is on board at stop i and 0i otherwise.  The Markov transition probabilities of 

the Markov model for a transit route are defined by: 








 

1 if       1

1 and 0 if            
} | Pr{ 1

mkq

mkq
mk

i

i

ii         for i=2,…,N-1,    (3) 

where iq  is the probability that a passenger will alight at stop i given that he/she is on board at 

stop 1i . Clearly, we have 1Nq . 

Using the Markov transition probabilities, the alighting probability matrix ][ ijpP  can 

be calculated as follows. First, at stop 1, we have 212 qp   by definition. Next, using the 

properties of Markov chains, we have  

1} stopat  boarding | 3 stopat  alightingPr{13 p }1 |1 ,0Pr{ 123    

}1| 1Pr{}1,1 | 0Pr{ 12213   )1( 23 qq  . 

In general, at stop i (i=1,…,N-1), we have  

1)1(   iii qp       and      





1

1
)1(

j

ik kjij qqp        (j=i+2,…,N).   (4) 
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Once the alighting probability matrix has been calculated, we may reconstruct the actual 

counts of passengers boarding at i and alighting at j as follows: 

 iijij ypx ˆ  (i=1,…,N-1; j=i+1,…,N),      (5) 

with 0ˆ ijx  if ij. 

It should be noted that the above Markov model assumes that once a passenger has 

boarded the transit vehicle, he/she ‘forget’ his/her origin in terms of choice of destination. 

From a practical point of view, this assumption may not be realistic and thus too restrictive for 

some applications. In particular, for those passengers who stay on the transit vehicle for 

exactly one stop, the alighting probabilities may be unrealistic under the Markov model if the 

two stops are very close. Extensions will be considered in Section 5.   

 

3.   Bayesian Inference 

In this section we carry out Bayesian analysis to estimate ][ ijpP  using the prior 

information and collected data, i.e. on-off counts of passengers, iy  and jz  (i,j=1,…,N). 

 

3.1. Likelihood 

We first note that immediately before the transit vehicle reaches stop j (j=2,..,N),  the 

number of passengers on board is 





1

1
)(

j

k kk zy . Due to the nature of the Markov model, the 

number of passengers alighting at stop j, i.e. jz , follows a binomial distribution 

),)((
1

1 j

j

k kk qzyBin 



 .   The maximum likelihood estimate of jq  is thus given by 

 )(/ˆ
1

1





j

k kkj

ML

j zyzq   j=2,…,N-1.     (6) 

 

3.2. Posterior Distribution 



 9 

To complete the specification for Bayesian analysis, we consider the following conjugate 

prior for jq : 

 ),(~ jjj betaq           (7) 

where ),( beta  is a beta distribution with a mean of )/(    and a variance of 

)]1()/[( 2   . The hyper-parameters j  and j  are determined using prior 

knowledge of jq . In the case where no prior knowledge is available, we take a non-

informative prior, 1j  and 1j , so that the prior of jq  is a uniform distribution on the 

interval [0, 1].  

Applying Bayes’ rule to combine the likelihood ),)((
1

1 j

j

k kk qzyBin 



  with the prior (7), 

the posterior distribution of jq  is given by  

 ))(,(~) allfor   ,( | 
1

1 1


 
j

k kkjjjkkj zyzbetakzyq        j=2,…,N-1.  (8) 

In Bayesian analysis, the estimate of a parameter is usually taken as its posterior mean. 

Calculating the mean of the posterior distribution (8) yields an estimate of  jq :  

 ))(/()(ˆ
1

1





j

k kkjjjjj zyzq    j=2,…,N-1.   (9) 

Once the Markov transition probabilities are estimated as equation (9), the alighting 

probability matrix ][ ijpP  and the trip matrix ][ ijxX  can be calculated by substituting 

equation (9) into equations (4) and (5) respectively. 

We also note that when several (say A) independent samples of on-off counts are drawn, 

},...,,,...,{ )()(

2

)(

1

)(

1

k

N

kk

N

k zzyy   (k=1,…,A), the on-off counts iy  and jz  in equation (9) may be 

replaced by the corresponding aggregated total counts,  

A

k

k

iy
1

)(  and  

A

k

k

jz
1

)(  respectively.  

 

3.3. Posterior Distribution Simulation 
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The previous analysis focuses on the point estimation of parameters only. However, the 

joint posterior distribution of the entries of ][ ijpP  or ][ ijxX  can be simulated easily as 

outlined below. First we draw samples of jq  from equation (8). Then samples of ijp  and ijx  

can be calculated using equation (4) and (5), upon which a joint posterior distribution of ijp  

and ijx  can be calculated.  

On the basis of simulated posterior distributions, Bayesian credible intervals for any of 

the parameters of interest, say the entries of ][ ijpP  or ][ ijxX , can be easily calculated.  

 

4.   Relationship with the Maximum Entropy Approach 

In this section we explore the relationship between the method developed in the previous 

sections and the maximum entropy approach.  

The maximum entropy approach was developed to reconstruct the actual number of trips 

ijx  for a general trip matrix (Van Zuylen and Willumsen, 1980).  Mathematically, the 

reconstructed numbers of trips ijT  are the solution of an optimization problem having a 

criterion of entropy constrained by observed trip counts. For the problem of transit route 

matrices, this optimization problem reduces to:  

  






N

ij ijijij

N

iijT
TTT

ij
1

1

1for  
)log(max ,      (10) 

subject to  


N

ij iij yT
1

  (i=1,…,N-1),     (11) 

                     





1

1

j

i jij zT   (j=2,…,N).     (12) 

The solution obtained by Van Zuylen and Willumsen (1980) for a general O-D matrix 

does not apply to transit route matrices because there are some extra constraints for problem 
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(10)-(12), i.e., 0ijT  for all ji  . The solution to problem (10)-(12) is given by the following 

theorem. See the Appendix for the proof. 

 

Theorem 1. The optimal solution to problem (10)-(12) is given by: 

 


 


otherwise          0

 if      
ˆ

ijba
T

jiME

ij
,        (13) 

where 0ia  and 0jb  satisfy the following recursive equations  

1 iii aa       (i=1,…,N-2),            (14) 

and  1 jjj bb      (j=N,…,3).         (15) 

The coefficients i  and j  are given by  

 
2

21
1  

y

zy 
       and      







 

 




i

m mm

i

m imm

i

i
i

zy

zzy

y

y

1

1 1

1 )(

)(
     (i=2,…,N-2),     (16) 

 
1

1 





N

NN
N

z

yz
       and      










 

 




1

1

2

1 1

1 )(

)(
 

j

m mm

j

m jmm

j

j

j

zy

zzy

z

z
   (j=N-1,…,3).  (17) 

 

Now let  
i

ML

ij

ML

ij ypx ˆˆ   denote the reconstructed number of trips via the maximum 

likelihood method, where ML

i

ML

ii qp 1)1(
ˆˆ
   and 






1

1
)ˆ1(ˆˆ

j

ik

ML

k

ML

j

ML

ij qqp  (j=i+2,..,N). ML

jq̂  is the 

maximum likelihood estimate given by equation (6). The relationship between ML

ijx̂  and ME

ijT̂  

is given in the following theorem. See the Appendix for the proof.  

 

Theorem 2. In the case of no available prior information, the reconstructed number of trips 

ME

ijT̂  by the maximum entropy approach is the same as the maximum likelihood estimate ML

ijx̂ :   

ML

ij

ME

ij xT ˆˆ      for all i and j. 
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Theorem 2 has an important practical implication. When no prior information is available, 

the use of the maximum entropy method for the estimation of transit route O-D matrices is 

equivalent to the maximum likelihood estimation under a very strong assumption on the 

structure of the O-D matrices, i.e. the ‘forgetfulness property’ of the Markov model. 

Consequently, for the estimation problem of transit route O-D matrices, anyone who has 

doubts about the practical applicability of the first-order Markov model should have the same 

concerns about using the maximum entropy method.  

 

5.    Extensions 

In this section we extend statistical inference for transit route O-D matrices to an mth-

order Markov model ( Nm 2 ). For simplicity, we focus on the case of 2m  but the 

developed method can be easily generalized to a higher order.  

 

5.1.   The Second-Order Markov Model 

A first-order Markov model may give undue weight to very short trips. A natural 

extension is to assume that the probability of alighting at a stop depends on the passenger’s 

status over the past two stops. In doing so, the probability of staying on the transit vehicle for 

exactly one stop can be modeled separately from the rest of the alighting probabilities. This 

leads to a second-order Markov model. Following the notation used in Section 2, we define the 

Markov transition probabilities of the second-order Markov model as follows: 








 

1 if       1

 0 if            
}1,1 | Pr{ 21

kq

kq
k

i

i

iii          (i=3,…,N),   

where iq  is the probability that a passenger will alight at stop i given that he/she is on board at 

both stops 1i  and  2i . In addition, we have 02 q  by definition. 
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To address the issue of undue weight for very short trips, we define the conditional 

probability that a passenger stays on the transit vehicle for exactly one stop: 








 

1 if       1

 0 if            
}0,1 | Pr{ 21

kr

kr
k

i

i

iii          (i=2,…,N),   

where ir  is the probability that a passenger will alight at stop i given that he/she boarded at 

stop 1i . Clearly we have NN rq  1  . 

The alighting probability matrix ][ ijpP  can be calculated as follows: 

1)1(   iii rp    and    


 
1

21 )1()1(
j

ik kijij qrqp        (i=1,…,N-1;j=i+2,…,N). (18) 

Then the actual counts of passengers boarding at i and alighting at j can be reconstructed: 

 iijij ypx ˆ  (i=1,…,N-1; j=i+1,…,N).      (19) 

 

5.2.   ‘Complete-Data’ Posterior Distribution 

Immediately before arriving at stop j (j=2,..,N),  the number of passengers on board is 







1

1
)(

j

k kkj zyM . Now let js  denote the unobservable number of the passengers boarding 

at stop 1j  and alighting at stop j  (j=3,..,N-1). Hence, jj sz   is the number of the 

passengers who alight at stop j but boarded at stop 2j  or earlier. jj zM   is the number of 

passengers who do not alight at stop j. The triplet ),,( jjjjj zMszs   forms ‘complete’ data 

for statistical inference, which follows a trinomial distribution ),( jjMMult θ  with 

T

jjjjj qrqr ]1,,[ θ  due to the nature of the second-order Markov model. 

Now we consider a conjugate prior for jθ , Dirichlet distribution 

),,(~ 321 jjjj Dirichlet θ , where all the hyper-parameters jk  are determined using prior 

knowledge of jθ  (j=3,..,N-1) (see, e.g. Schafer (1997, Section 7.2) for the definition of 
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Dirichlet distributions). When no prior knowledge is available, we take a non-informative 

prior, 1jk , so that the priors are uniform. Applying Bayes’ rule to combine the likelihoods 

with the priors, the posterior distributions of jθ  (j=3,..,N-1) are given by  

)),(,(~) allfor   ,( | 321 jjjjjjjjkkkj zMszsDirichletkz,ys  θ . (20) 

Finally we note that all passengers alighting at stop j=2 stay on the transit vehicle for one 

stop only. So the number of passengers alighting at stop j=2 follows a binomial distribution 

),( 21 ryBin . On the other hand, all passengers alight at stop N so that the number of the 

passengers alighting at stop N given that they boarded at stop 1N  follows a binomial 

distribution ),( NN rzBin . Then for the conjugate priors chosen as beta distributions, 

),(~ 22212 betar  and ),(~ 21 NNN betar  , the posterior distributions of 2r  and Nr  are  

))(,(~) allfor   ,( | 21222212 zyzbetakzyr kk   ,    (21) 

))(,(~) allfor   ,( | 21 NNNNNkkkN sMsbetakz,ysr   .    (22) 

 

5.3. Posterior Distribution Simulation 

The posterior in (21) is based on observed data only so 2r  can be simulated 

straightforwardly. The posteriors in (20) and (22), however, are ‘complete-data’ posterior 

distributions, i.e. they depend on unobservable ‘complete’ data js  (j=3,..,N). For ‘complete-

data’ posteriors, data augmentation (see e.g. Schafer, 1997, Chapter 3) can be used to simulate 

parameters of interest.  

We first note that for given js , we may draw jθ  and Nr  from the ‘complete-data’ 

posteriors in (20) and (22). On the other hand, for given jθ  and Nr , the distribution of js  is a 

binomial distribution ))/(,( jjjj qrrzBin   (j=3,…,N) (see e.g. Schafer, 1997, pp 243-244). An 
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algorithm based on data augmentation for simulating jθ  and Nr  is given below. It simulates 

the parameters, jθ  (j=3,..,N-1) and Nr , and the unobservable numbers js  alternately. 

 

Initialisation: Set initial guess of js  (j=3,…,N); 

Posterior step: draw jθ  (j=3,..,N-1) from (20) and draw Nr  from (22) for given js ; 

Imputation step: draw js  from ))/(,( jjjj qrrzBin   (j=3,…,N) for given jθ  and Nr ; 

Alternate the Posterior step and Imputation step to convergence.  

 

After the posterior distributions of jθ , 2r  and Nr  have been simulated, the corresponding 

][ ijpP  and ][ ijxX  can be calculated using equations (18) and (19). This produces 

posterior distributions of ][ ijpP , and ][ ijxX  respectively. Upon the posteriors, estimates 

of the parameters and the corresponding Bayesian credible intervals can be calculated. 

 

5.4. Statistical Inference Based on A Higher-order Markov Model 

In general, an mth-order Markov model can be used so that the probability of alighting 

depends on the passenger’s status over the past m stops. Define complete data consisting of 

unobservable numbers of passengers boarding at stop kj   and alighting at stop j (k=1,…,m; 

j=3,..,N-1). Then the ‘complete-data’ likelihood at stop j is an (m+1)-dimensional multinomial 

distribution. Choosing a prior as a Dirichlet distribution, the posterior also follows a Dirichlet 

distribution with updated parameters. Similar to Section 5.3, data augmentation can be used to 

simulate the parameters of interest. 

 

6.    A Numerical Example 
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In this section we illustrate the developed method using a practical example. Li and 

Cassidy (2007) investigated a bus route served by AC Transit. This route is 26 km in length 

and serves 58 stops in total. On-off counts of passengers for six trips were collected during a 

three-hour-long morning peak.  

This data set was re-analyzed as follows. To illustrate the Bayesian approach, we first 

carried out a preliminary analysis where the data collected in the first two trips were used to 

estimate the Markov transition probabilities, the alighting probability matrix, and the trip 

matrix via a Bayesian analysis with a non-informative prior. The resulting estimates were 

considered as prior information in the subsequent analysis.  

Next, a Bayesian analysis using the data collected from the last four trips was carried out. 

Figure 2 displays prior estimates (taken as prior means) of the Markov transition probabilities 

iq  (i=2,…,57) and the envelop of associated 95% credible intervals (the dotted lines) in the 

Bayesian analysis. In addition, Figure 3 displays the corresponding posterior estimates (taken 

as posterior means) and the envelop of associated 95% credible intervals (the dotted lines). 

Comparing Figure 3 with Figure 2, it can be seen that the posterior credible intervals are much 

narrower, indicating that the quality of the estimates was greatly improved once the data 

collected from the last four trips were used. This can also be seen from Figure 2 where the 

Markov transition probabilities for the last ten or so bus stops were considerably overestimated 

a priori. They were then adjusted to some extent when more information became available 

from the last four trips, as indicated by the posterior estimates in Figure 3. 

 

(Figure 2 is about here) 

Figure 2. The prior estimates of the Markov transition probabilities (real line) and the envelop 

of associated 95% credible intervals (dotted line) 
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(Figure 3 is about here) 

Figure 3. The posterior estimates of the Markov transition probabilities (real line) and the 

envelop of associated 95% credible intervals (dotted line) 

 

7.    Discussion and Conclusions  

For on-off counts of passengers, a parametric approach to statistical inference for transit 

route O-D matrices has been investigated via the first-order Markov model. A Bayesian 

method was incorporated to draw statistical inference about the parameters of the first-order 

Markov model by combining prior information with current observations, leading to a closed-

form solution given by equation (9). This method has a close link with the maximum entropy 

approach: when prior information is not available, the two approaches produce the same 

estimate of a transit route trip matrix. This indicates that when no prior information is 

available, there is a close link between the maximum entropy method and the implicit 

assumption on the ‘forgetfulness’ in the first-order Markov model.  

In many applications prior information about a transit route matrix is available, so the 

efficiency of utilizing prior information is an important issue. In contrast to conventional 

approaches such as the balancing method (Lamond and Stewart, 1981), the method developed 

in this paper incorporates Bayesian analysis, an efficient way to make use of prior information. 

Consequently the problem of non-structural zeros is completely circumvented. It also allows a 

full Bayesian analysis of the quantities of interest, such as Markov transition probabilities, 

alighting probability matrices, and trip matrices, via the obtained joint posterior distributions.  

From a computational perspective, the developed method admits a closed-form estimate 

of a transit route matrix that can be calculated non-iteratively. It is thus computationally more 

efficient than iterative methods such as the balancing method (Lamond and Stewart, 1981), the 

MCMC approach (Hazelton, 2001), and the EM algorithm (Li, 2005).  
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When the first-order Markov model is too restrictive for some applications, we have 

shown that an mth-order Markov model may be used, where the probability of alighting 

depends on the passenger’s status over the past m stops. It is worth noting that an Nth-order 

Markov model virtually becomes to the general scenario where no particular structure is 

imposed on O-D matrices. Hence, with a relatively high order m, an mth-order Markov model 

can approximate the reality reasonably well. The price to pay, however, is that the total 

number of the mth-order Markov transition probabilities will increase rapidly when the order 

m becomes large.  

One of the referees suggests that the passenger’s status may be modeled by some 

additional variables such as passengers’ trip purposes. Undoubtedly using additional 

information like trip purposes will greatly improve the quality of the statistical inference about 

transit route OD matrices. For this purpose, a much more comprehensive survey has to be 

carried out at each stop, which leads to a different assumption about the data structure from 

that assumed in this paper, i.e. on-off counts. This approach will be explored in our future 

research.  
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Appendix. Proofs of Theorems 

Proof of Theorem 1. Define the Lagrangian for problem (10)-(12) as  
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Differentiating the Lagrangian with respect to ijT  and equating them to zero yield the first-

order conditions. It is easy to verify that the optimal solution given by  
ji

ME

ij baT ˆ  (for ij  ) 

satisfies these first-order conditions, where )exp( iia   and )exp( jjb  . Substituting 

ME

ijT̂  into equations (1) and (2) we have 

 i

N

ij ji yba   1
,      i=1,…,N-1,       (A1) 

and       j

j

i ij zab 




1

1
, j=2,…,N.       (A2) 

Next, we show the recursive equation (14). The proof is by induction. First, we consider 

the case of i=1. We note that equations (A1) and (A2) with i=1 and  j=2 are  

 1321 )...( ybbba N  ,        (A3) 

and 212 zab  .           (A4) 

Substituting (A4) into (A3) we obtain 

  1131 )...( zybba N  . 

In addition, equation (A1) with i=2 is 232 )...( ybba N  . Combining these two equations we 

have 22211 }/)( { ayzya  . Hence, equation (14) holds for i=1. 

Now suppose that equation (14) holds for i=k such that 1 kkk aa   with 







 

 




k

m mm

k

m kmm

k

k
k

zy

zzy

y

y

1

1 1

1 )(

)(
  .  We consider the case of  i=k+1. Equation (A2) with j=k+2 is  

 2112 )...(   kkkk zaaab .       (A5) 

It is easy to verify the following identity: 

 


k

m mmkkk zyyaaa
11 )()/(... . 

Inserting equation 1 kkk aa   and the above identity into (A5), we obtain  

 


 
1

11212 )(/
k

m mmkkkk zyyzab .       (A6) 
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We note that equation (A1) with i=k+1 is  

 121 )...(   kNkk ybba .        (A7) 

So substituting (A6) into (A7) we obtain 

 

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1

1

1
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m mm
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m kmmkNkk zyzzyybba .   (A8) 

On the other hand, equation (A1) with j=k+2 is  

 232 )...(   kNkk ybba .        (A9) 

Combining (A8) and (A9) we obtain 211   kkk aa   with 
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Hence, equation (14) holds for i=k+1. By the induction principle, recursive equation (14) holds 

for any i=1,…,N-1.  

The proof for equation (15) is similar. This completes the proof. 

 

Remark: Although solution ME

ijT̂  can be uniquely determined by the first order conditions, ia  

and jb  cannot: if ( *ia , *jb ) is a solution, so does ( *ia , /*jb )  for any 0 . In 

practice, we may simply choose any positive numbers as initial values, say 1~
1 Na  and 1

~
2 b

, and apply recursive equations (14) and (15) to calculate ia~  (i=1,…,N-2) and 
jb

~
 (j=3,…,N). 

Then estimate ME

ijT̂  is proportional to 
jiba

~~ , up to a constant, say  . The constant   can be 

determined by substituting ME

ijT̂ jiba
~~  into equation (A4).  

 

Proof of Theorem 2. It is easy to verify that 
j

ML

j

ML

j

ML

j

ME

ji

ME

ij qqqTT   11)1(
ˆ/)ˆ1(ˆˆ/ˆ , where j  

is given by equation (17). Hence, we have ME

jij

ME

ij TT )1(
ˆˆ

 ,  so ME

ijT̂  satisfies the same recursive 

equation, equation (15), as jb . Consequently, to prove ME

ijji

ML

ij Tbax ˆˆ   for any fixed i and 
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j=i+1,…,N, we only have to show this is true for the initial value of each row i, i.e. 1iiba  is 

equal to ML

iix )1(
ˆ


. For this end, we note that we have the following identity: 

  
i

m mmiiNi zyzbbb
1111 )()/(... . 

Substituting this identity into equation (A1), i

N

ij ji yba   1
, we obtain 1iiba

)(/
11   

i

k kkii zyzy  ML

iix )1(
ˆ

 . This completes the proof. 
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Table 1. Illustration of counts of passengers 

origin destination row total 

1 2 3  i-1 i i+1  N-1 N  

1  x12 x13  x1(i-1) x1i x1(i+1)  x1(N-1) x1N y1 

2  x23  x2(i-1) x2i x2(i+1)  x2(N-1) x2N y2 

          

i-1  x(i-1)i x(i-1)(i+1)  x(i-1)(N-1) x(i-1)N  

i  xi(i+1)  xi(N-1) xiN yi 

i+1   x(i+1)(N-1) x(i+1)N  

     

N-1  x(N-1)N yN-1 

N  yN0 

column total z10 z2 z3  zi-1 zi zi+1  zN-1 zN  
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Figure 1. A diagram of a bus transit route serving N stops, where ijx  are counts of passengers boarding at stop i and alighting at stop j, iy  

and iz  are on and off counts of passengers at stop i respectively. 
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Figure 2. The prior estimates of the Markov transition probabilities (real line) and the envelop 

of associated 95% credible intervals (dotted line) 
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Figure 3. The posterior estimates of the Markov transition probabilities (real line) and the 

envelop of associated 95% credible intervals (dotted line) 


