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ABSTRACT 

This paper investigates the recursive estimation of vehicular speed using the information 

provided by a single Inductance Loop Detector (ILD). A statistical model for space-mean 

speed measured by an ILD is developed, upon which a Bayesian analysis is carried out to 

estimate vehicular speed. This results in a set of recursive formulae which is analytically nice 

and neat. The incurred computational cost for updating the estimate of vehicular speed is kept 

to be a minimum. As a by-product, a simple method for the calibration of the effective 

vehicle length of an ILD is also developed. The proposed method is illustrated using 

simulation studies and a practical example. 
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1. Introduction 

 

Traffic management relies on online collection and processing of information on traffic 

flow. Single Inductance Loop Detectors (ILDs) are cheap devices for collecting traffic data 

and thus are widely installed, playing a crucial role in online traffic controls. Data provided 

by an ILD include traffic volume km  and occupancy kO  measured during each time interval 

k. They form the basis of various investigations on traffic flow such as speed estimation, 

accident analysis, etc. In recent years processing data collected from ILDs has been paid 

much attention in traffic engineering. This paper focuses on the issue of the estimation of 

vehicular speed using a pair of data ),( kk mO  collected via an ILD in each time interval k.  

Most classical estimation methods of vehicular speed are based on the first-order method 

of moments approach, resulting in an estimator by the space-mean speed measurement ks  

which can be calculated using a pair of data ),( kk mO  collected via an ILD during time 

interval k (see e.g. Kurkjian et al., 1980). These methods, however, lead to a biased estimator 

due to the replacement of the harmonic average by an arithmetic average (Hazelton, 2004). 

To address the issue of biasedness of the estimators, various methods have been developed to 

correct the biases.  For instance Hall and Persaud (1989) have proposed to adjust an estimator 

by multiplying a correction constant. As Hall and Persaud (1989) have realised, however, the 

biases cannot be completely removed by a constant adjustment because the effect of the bias 

is not uniform.  

In addition, the quality of the estimators derived by these methods is poor because they 

are based on a single piece of data, i.e. the space-mean speed measurement ks  during time 

interval k. Statistically, pooling information obtained in successive time intervals can 

improve estimators. To address the issue of pooling information, Dailey (1999) has applied 

the Taylor’s expansion to expand the space-mean speed measurement ks  to the first two 
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moments, resulting in a nonlinear function of the population speed parameter. This nonlinear 

function is linearised and is treated as the observation equation of a state space model. Dailey 

(1999) has then applied a standard technique, the Kalman filter, to estimate the population 

speed parameter. This approach produces a smooth estimate of vehicular speed by pooling 

information over successive time intervals. One consequence of these approximations, 

however, is that the resulting estimate is not robust in the sense that it greatly depends on the 

linearization (Ye et al. 2006). As demonstrated later in this paper, Dailey’s method is 

sensitive to the choice of initial guess and/or changes in vehicular speed, where a slightly 

different choice of the initial point or an abrupt change in speed may lead the filter to 

completely break down. Recently, the approach of using Kalman filter method for vehicular 

speed estimation has been also considered by Ye et al. (2006) and Bickel et al. (2007).  

To avoid approximations, Hazelton (2004) has performed Bayesian analysis and applied 

Markov Chain Monte Carlo (MCMC) to simulate the posterior distribution of vehicular 

speed, which has greatly improved on existing methods in terms of accuracy. This offline 

approach, however, is not practical in traffic controls. Due to the nature of traffic flow, an 

online estimation method is required in practice.  

This paper contributes the literature of traffic engineering in two aspects. First, we 

investigate a statistical model for space-mean speed measurements. From a statistical point of 

view, the major difficulty in drawing statistical inference about vehicular speed lies in the 

fact that the distribution of space-mean speed measurements is analytically intractable under 

the normality assumption for individual speed measurements. In this paper, following Polus 

(1979), we assume that the traveling time required by a vehicle traversing a short road section 

has a gamma distribution. We then show that a space-mean speed measurement obtained by 

an ILD, ks , follows an inverse gamma distribution. Secondly, we develop a set of recursive 

formulae via Bayesian analysis for fast estimation of vehicular speed. The recursive formulae 
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are analytically nice and neat, incur a minimum computational cost, and can be easily 

implemented in practice. As a by-product, we also propose a simple method to calibrate the 

effective vehicular length of an ILD.  

This paper is structured as follows. Section 2 is devoted to a statistical model for space-

mean speed measurements. In Section 3, a Bayesian analysis is carried out to estimate 

vehicular speed recursively. Some practical issues raising when applying the recursive 

estimation method, including the calibration of the effective vehicular length, are investigated 

in Section 4. To illustrate the proposed method, simulation studies are examined in Section 5 

and a practical example is investigated in Section 6. Finally concluding remarks are offered 

in Section 7. All proofs of theorems are given in the Appendix.  

 

2.   A model for space-mean speed measurements  

 

2.1. Notation 

Consider a single ILD that measures traffic flow during a time period that consists of a 

number of successive time intervals, each having a duration of T (typically 20 to 30 seconds). 

In each time interval k, data measured by the ILD include the traffic volume km  (the count of 

vehicles) and the occupancy kO  (the percentage of time that the ILD is occupied).  

Now consider individual vehicles passing through the ILD. For the jth vehicle passing 

through the ILD during time interval k, define 

 kjL  as the Effective Vehicle Length (EVL) associated with vehicle j that is 

detectable by the ILD; 

 kjt  as the time required by vehicle j  to travel the distance kjL ; 

 kjs  as the speed measurement  of vehicle j calculated as  kjkjkj tLs / .  
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It is conventional in traffic engineering to assume that the EVL is common to all vehicles 

which pass through an ILD during a time interval k, i.e. kkj LL   for all j. In most of the 

studies, the common EVL kL  is further assumed to be a constant parameter L across different 

time intervals which is provided exogenously. Consequently, for a constant EVL parameter 

L, individual speed measurements reduce to  

 kjkj tLs /          (j=1,…,mk).        (2-1) 

This latter assumption of the constant EVL parameter across different time intervals will be 

relaxed as a piecewise function of time in Section 4. 

In traffic engineering the space-mean speed measurement ks  during a time interval k is 

defined to be the harmonic average of individual speed measurements 
kkmk ss ,...,1 , i.e. 

1

1

1}{ 




km

j

kjkk sms . Let v denote the population speed parameter which is the parameter that is 

to be estimated. Note that the space-mean speed ks  is a biased estimate of the population 

speed parameter v (Hall and Persaud, 1989; Hazelton, 2004). 

Now substituting equations (2-1) and 
k

m

j

kj TOt
k


1

 into 1

1

1}{ 




km

j

kjkk sms , the space-mean 

speed measurement can be calculated using the measurements ),( kk mO  collected from the 

ILD during time interval k:  

 )/( kkk TOLms  .        (2-2) 

 

2.2.   A model for space-mean speed measurements from an ILD 

In this subsection we investigate a model for space-mean speed measurements. Let 

),(   denote a gamma distribution   having a probability density function 

) exp()}(/{)( 1 tttf    
, where ( ) is the gamma function. In addition, let 
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),( inv  denote an inverse gamma distribution   having a probability density function 

) /exp()}(/{)( )1( tttg     .  

We first consider a special case where there is only one vehicle passing through the ILD 

during a time interval k, i.e. 1km . In this case, the space-mean speed measurement 

1

1

1}{ 




km

j

kjkk sms  reduces to the single speed measurement 1ks . Polus (1979) has shown that 

the travelling time for a vehicle traversing a fixed distance approximately follows a gamma 

distribution, upon which the speed measured by the ILD can be characterised by the 

following theorem: 

 

Theorem 1. Suppose that the travelling time 1kt  required by a vehicle to traverse a distance 

of L at a speed of v follows a gamma distribution )/ ,( Lv  with an expected value of 

vL /  and a diffusion parameter  . Then the speed 11 / kk tLs   measured by the ILD has an 

inverse gamma distribution ) ,( vInv  . 

 

We next turn to investigate the general situation where there is more than one vehicle 

passing through the ILD during a time interval k, i.e. 1km . For the space-mean speed 

measurement ks  we have the following results: 

 

Theorem 2. Let 
kkmk ss ,...,1  denote the unobservable speed measurements of km  ( 1km ) 

vehicles passing through an ILD during time interval k. If kjs  have an inverse gamma 

distribution with a known diffusion parameter  , i.e. ) ,(~| vInvvskj   ( kmj ,...,1 ), and 

conditional on v, the measurements 
kkmk ss ,...,1  are independent of each other, then  
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(i) the space-mean speed measurement 

1

1

1




















 

km

j

kjkk sms  also follows an inverse gamma 

distribution given by 

) ,(~| vmmInvvs kkk  ;       (2-3) 

(ii) the space-mean speed measurement 

1

1

1




















 

km

j

kjkk sms  is a sufficient statistic for v.  

 

We note that in many traffic studies, individual speed measurements 
kkmk ss ,...,1  derived 

from timing devices (e.g. stopwatches) over a fixed and short baseline are assumed to follow 

normal distributions (see e.g. Salter, 1989). Based on this assumption, the distribution of the 

space-mean speed measurement 

1

1

1




















 

km

j

kjkk sms  is no longer analytically tractable. As a 

consequence, approximations are commonly used in practice to simplify problems related to 

space-mean speed measurements, see for instance, Daily (1999). Theorem 2 (i), in contrast, 

provides a simple statistical model to analyse space-mean speed measurements.  

Under the assumption of a common EVL parameter, Theorem 2 (ii) further indicates that 

the aggregate signal ks  has absorbed all useful information in 
kkmk ss ,...,1  in terms of drawing 

inference for vehicular speed v. Hence, no information is lost when it is the aggregate signal 

ks , rather than the individual measurements 
kkmk ss ,...,1 , that is observable.  

 

3.   Bayesian analysis  

 

In this section, we perform a Bayesian analysis to investigate the recursive estimation of 

speed parameter v using the collected space-mean speed measurement ks  in a time interval k. 
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3.1.  Bayesian inference during a time interval k 

Bayesian analysis combines two sources of information to draw inference about 

parameters of interest: (a) prior knowledge; and (b) the current observation on the parameters.  

To draw statistical inference about the vehicular speed parameter v, we first consider the 

specification of the prior. In traffic engineering, normal and log-normal distributions, as well 

as gamma distributions are commonly used to model vehicular speed (Gerlough and Huber, 

1975; Haight, 1963).  The latter two types of distribution, log-normal and gamma, avoid the 

theoretical difficulty of negative speeds given by the left tails of normal distributions. In this 

paper, the prior distribution of vehicular speed v during time interval k is chosen as the 

following gamma distribution for mathematical convenience:  

 )/,(~ 1 kkkv  ,        (3-1) 

where the prior mean is equal to 1k  and the prior standard deviation is equal to 
2/1

1 / kk   . 

The prior mean 1k  represents an estimate of the speed parameter v obtained a priori. The 

hyper-parameter k  reflects how accurate the prior information is about the vehicular speed 

parameter v. In general, the prior distribution is determined on the basis of the information 

collected in the previous time intervals. As shown later, because the prior and posterior 

distributions are conjugate, the same functional form of the prior distribution can be retained 

over successive time intervals. Further, the hyper-parameters of the prior distribution k  and 

1k  can be calculated recursively.  

Now suppose that a space-mean speed measurement ks  is available from the ILD during 

time interval k. According to Theorem 2, it follows an inverse gamma distribution given by 

equation (2-3). We can then apply Bayes’ rule to combine the two sources of information: (a) 

the prior information (3-1); and (b) the current observation on the vehicular speed parameter 
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v, i.e. the space-mean speed measurement ks  in equation (2-3). The main result is 

summarised as follows: 

 

Theorem 3. Suppose that a random variable s  given v has an inverse gamma distribution 

) ,(~| vInvvs   with a known parameter  .  Then for the prior distribution 

)/,(~ aav  , the posterior distribution is also a gamma distribution given by 

 ) ,(~| 11   saasv  .      

 

From Theorem 3, given the space-mean speed measurement ks , the posterior distribution 

of v in time interval k is also a gamma distribution: 

 ),(~| 11

1



  kkkkkkk smmsv  .     (3-2) 

On the basis of this posterior distribution, it is straightforward to obtain the posterior mean 

and posterior variance of the vehicular speed parameter v:  

 
111

1 })1({)|( 

  kkkkk ssvE  ,      

 )/()|var( 2  kkkk msv  ,       

with a weight of )/(  kkkk m . In addition, a (1)100% credible interval for v is 

given by  

 ( )}(2/{))(2(2

2/1   kkkkk mm  , )}(2/{))(2(2

2/   kkkkk mm  ), 

where )(2 df  is the value for the chi-squared distribution with df degrees of freedom that 

provides a probability of   to the right of the )(2 df  value.  

Denote the posterior mean as k . We use k  to estimate the population parameter v in 

time interval k. It is a weighted harmonic average of 1k  and ks : 

111

1 })1({ 

  kkkkk s .        
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3.2.   Recursive estimation 

Next, we turn to the issue of updating the estimate of the vehicular speed parameter v 

when a new space-mean speed measurement 1ks  becomes available in time interval k+1. 

Apparently, the prior information in time interval k+1 should be based on the posterior 

distribution obtained during time interval k. So from equation (3-2), the prior distribution in 

time interval k+1 can be taken as 

)/,(~ 11 kkkv   ,        (3-3) 

where  

 kkk m1 .        (3-4) 

Note that the prior distribution (3-3) in time interval k+1 has the same functional form as 

equation (3-1). When a new observation of the space-mean speed 

) ,(~| 111 vmmInvvs kkk     becomes available, the following posterior distribution in time 

interval k+1 can be obtained by applying Theorem 3 again: 

),(~| 1

11

1

1111







  kkkkkkk smmsv  .     (3-5) 

Clearly, except for the subscript k being replaced by k+1, it has the same form as equation (3-

2). The updated estimate of the speed parameter v is thus given by  

)/( 1111    kkkk m ,  

11

11

1

11 })1({ 





  kkkkk s .        

Consequently we can estimate vehicular speed recursively. 

 

3.3.   Forgetting factor 

In practice, however, vehicular speed may evolve slowly over time. To take this into 

account, a standard practice in Bayesian statistics for utilizing information obtained 
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previously or obtained elsewhere is to inflate the variance of the posterior distribution 

obtained in the past when it is treated as the prior distribution in the current analysis, 

reflecting the fact that we are less sure about the current value of the parameter (see e.g. 

Congdon, 2001). To put this in another word, we may define a ‘forgetting factor’ so that 

observations are weighed differently when they are used to estimate a parameter, where the 

latest observation weighs highest. This is a commonly used approach in the algorithms of 

recursive estimation (see e.g. Ljung and Soderstrom, 1987). 

Specifically, instead of equations (3-3) and (3-4), the prior distribution incorporated in 

time interval k+1 is now taken as 

))(),((~ 11

1



  kkkkkk smmv  ,     (3-6) 

where   ( 10  ) is a forgetting factor. As demonstrated in Li (2005), the forgetting factor 

  in equation (3-6) does not affect the mean so that the prior mean in time interval k+1 is 

still equal to k . However, the prior standard deviation in equation (3-6) becomes to  

})(/{ 2/1 kkk m  which is inflated since 10  . In practice, the forgetting factor is 

usually treated as a tuning parameter (see e.g. Ljung and Soderstrom, 1987).  

Now let 

)(1  kkk m   for k=1, 2, …,     (3-7) 

so that the prior distribution can be rewritten as )/,(~ 111 kkkkv    . The posterior 

distribution in time interval k+1 still has the same functional form as equation (3-5) but 1k  

is now updated as (3-7) rather than (3-4). The algorithm for the recursive estimation of 

vehicular speed is summarised as follows: 

 

ALGORITHM. 
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Given: Tuning parameter  ; Diffusion parameter  ; Initial estimates 0  and 0 ; 00 m ; 

EVL parameter L; Constant coefficient T. 

For k=1: K 

Step 1. Collect a pair of data ),( kk mO ; 

Step 2. Calculate the space-mean speed measurement )/( kkk TOLms  ; 

Step 3. Calculate )( 11    kkk m  and )/(  kkkk m ; 

Step 4. Estimate the speed parameter v as 
111

1 })1({ 

  kkkkk s ; 

End. 

 

It should be noted that in practice, there may not be any vehicles passing through an ILD 

during a particular time interval k. In this case, the posterior distribution can be simply taken 

the same as the prior distribution, i.e. 1 kk   and 1 kk  .  

In addition, we note that when the chosen forgetting factor   is sufficiently small, the 

weight k  will be very close to zero.  Consequently the estimated speed 

111

1 })1({ 

  kkkkk s  reduces to the first-order method of moments approach.  

 

3.4.   One-step-ahead forecasting  

For a given number of vehicles passing through the ILD, 1km , during time interval k+1, 

we can predict the space-mean speed measurement 1ks  on the basis of the information 

collected in time interval k.  

 

Theorem 4. The one-step-ahead predictive distribution of kks /1  obtained in time interval k 

has an F distribution with degrees of freedom 12 k  and 12 km   respectively. The predicted 
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value of 1ks , taken as the mean of the predictive distribution, is )1/(ˆ
111    kkkk mms . A 

(1)100% credible interval for 1ks  is 

 ( )2,2( 112/1    kkk mF , ))2,2( 112/    kkk mF , 

where ),( baF  is the value for the F distribution with degrees of freedom a and b that 

provides a probability of   to the right of the ),( baF  value.  

 

4. Some practical issues 

 

In this section we discuss some practical issues raising when applying the recursive 

estimation method developed in the previous section.  

 

4.1.   Estimation of the diffusion parameter   

For the recursive formulae developed in the previous section it is assumed that the 

diffusion parameter   is a known parameter. In practice, this diffusion parameter has to be 

estimated from historical data before the recursive method is applied.  

The method of moments can be used to estimate   as follows.  Suppose that we have 

collected some data from an ILD, ),( kk mO  (k=1,…R), under the circumstance that vehicular 

speed is approximately uniform. Define kkk TOmu /  to be a scaled space-mean speed 

measurement such that kLu  is a space-mean speed. Then we have 

)/ ,(~| LvmmInvvu kkk  . Let 
1 kk uh . Then we have )/ ,(~| Lvmmvh kkk   with 

vLEhk /  and 
12 ) ()/()var(  kk mvLh . Let h  and 2̂  denote the sample mean and 

sample variance of kh  respectively (k=1,…R). It is easy to verify that  

 vLhE /    and    

 
R

k k RmvLE
1

1122 )1/()/(ˆ  . 



 14  

Consequently, we obtain })1/(/{ˆ/)(
1

122  

 
R

k k RmEhE   which is not related to the 

parameters v and L. Hence, the diffusion parameter   can be estimated as 

 

 
R

k k Rmh
1

122 )1/()ˆ/(ˆ  .  

 

4.2.  Initial prior distribution 

In the algorithm outlined in the previous section, the parameters 0  and 0  of the initial 

prior distribution in time interval k=1 need to be specified.  

A non-informative prior in time interval k=1 can be incorporated, where 0  is taken 

sufficiently small, say 610 , and 0  can be taken as any reasonable value between 0 to 100, 

resulting in a sufficiently large prior variance. Consequently, in time interval k=1, the weight 

1  is close to zero and 1

11

11

1

011 })1({ ss    . Note that this is also the approach 

incorporated in the recursive least squares estimation (see e.g. Ljung and Soderstrom, 1987).  

One advantage of using the method proposed in this paper is that it is not sensitive to the 

choice of initial estimates as long as the prior variance is taken sufficiently large.  

 

4.3.   Estimation of the EVL parameter via calibration 

The value of the EVL parameter L is usually determined using exogenous data collected 

from a comparable type of road (Dailey, 1999; Hazelton, 2004). In this subsection, we 

suggest an alternative method for the estimation of the EVL parameter.  

First we note that it is unrealistic to assume that the EVL parameter is constant across 

different time intervals. In practice, the EVL parameter may vary during the time of day. For 

instance, in the earlier morning or late evening road trains and trucks are usually more 

prevalent so that the EVL parameter may have a larger value.  
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The assumption of the constant EVL parameter is relaxed as follows. First, we separate 

peak hours from the rest of time by dividing a whole day of time into several time periods 

and treat the EVL as a piecewise function of time within each of these time periods.  

Now we focus on one particular time period and consider the calibration of the EVL. 

Suppose that a random sample of vehicular speed data, }{ kz (k=1,…,M),  is available in M 

time intervals via a temporally installed speedmeter, subject to some measurement errors ek 

with a zero-mean. In addition, suppose measurements ),( kk mO  (k=1,…,M) have been 

collected via an ILD during the same time period. As defined in Section 4.1, let 

kkk TOmu /  be a scaled space-mean speed measurement. Applying the recursive formulae 

in Section 3 to the scaled space-mean speed measurements ku , we can obtain a sequence of 

estimates of vehicular speed }{ kx , up to a proportional constant L . Then the value of the 

EVL parameter L may be estimated by solving the following least squares problem, 





M

k

kk
L

Lxz
1

2}{min , which yields an estimate of the EVL parameter, 



M

k

k

M

k

kk xxzL
1

2

1

ˆ . 

If a more accurate estimate is required, the EVL can be treated as a piecewise linear 

function of time, i.e. kccL 10   within each time period, where k represents the kth time 

interval in the time period. c0 and c1 are two coefficients to be determined. We further require 

that the piecewise linear function is continuous over the whole time period of interest. 

Mathematically this imposes some equality constraints at boundary points of each time period 

since EVL expressions in two adjacent time periods are equal at the common boundary point. 

The EVL function can be estimated by solving a least squares problem to minimize the 

observed and calculated speeds, subject to the continuity constraints.  

Other time dependent, location specific vehicle length estimation methods have also been 

proposed; see Jain and Coifman (2005) and references therein. 
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4.4.   Choice of the forgetting factor 

The optimal value for the forgetting factor   depends on many other factors such as the 

level of vehicle congestion, etc. In practice, it is usually treated as a tuning parameter so that 

it is determined experimentally.  

In the case where measured speed data are available via a temporarily installed 

speedmeter, the forgetting factor can be calculated as follows. Consider a grid of points 

between 0 and 1 that   may take, say from m in  to max  by a step of 
~

 ( 10 maxmin   ). 

For each point of  , we apply the algorithm in Section 3 to estimate vehicular speed. We 

then compare the estimated speed with the measured speed. The forgetting factor is chosen as 

the one which leads to the minimum mean squared error.  

 

5.  Simulation studies 

 

In this section, we examine two numerical examples to illustrate the developed method. 

One major advantage of carrying out simulation studies is that ‘true’ values of vehicular 

speed are known a priori so that it is straightforward to assess the performance of an 

estimation method in terms of accuracy. 

 

5.1. Simulation study I 

In this subsection a simulation study is carried out to illustrate how the developed method 

works under the assumptions outlined in Sections 2 and 3.  

 

5.1.1. Data generation 

Consider an ILD that provides measurements of traffic volume and occupancy during a 

number of time intervals of duration 20 seconds. The EVL parameter is assumed to be a 

constant and set as L=24 feet. Traffic flow was simulated in 1000 time intervals. To 
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accommodate the nature that vehicular speed evolves slowly over time, ‘true’ values of 

vehicular speed were simulated using a random walk having an initial speed of 60 mph and a 

standard deviation of 1 mph. The number km  of vehicles passing through the ILD was 

simulated using a Poisson distribution having a mean of 4. The time required by each 

vehicles to pass through the ILD was simulated from  )/ ,( Lv  with 15 , where v was 

the speed  simulated above. 

 

5.1.2. Recursive estimation with a known L 

We first assumed that the EVL parameter of L=24 feet was known a priori. An initial 

prior representing vague information about vehicular speed was incorporated with 500   

and 
6

0 10  . The forgetting factor was set as 8.0 . Because 0  was set to be small, the 

initial prior had little impact on the subsequent recursive estimation.  

The traffic data in the first 200 time intervals were considered as historical data and used 

to estimate the diffusion parameter  . The traffic data in the remaining 800 time intervals 

were used to estimate vehicular speed. Figure 1a displays the estimates of vehicular speed 

using k  (dotted line). For comparison the ‘true’ values of vehicular speed are also 

superimposed (real line). It can be seen that the estimates of vehicular speed have captured 

most variation of the ‘true’ values. Figure 1b displays the envelop of a nominal 95% credible 

intervals (the dotted lines), where the ‘true’ values of vehicular speed are also plotted (real 

line) on the same graph. In total there were 2.13% time intervals during which the ‘true’ 

values lied outside the nominal 95% credible intervals. 

 

Figure 1a. The ‘true’ values of vehicular speed (real line) and the estimated values by the 

recursive method (dotted line). 
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Figure 1b. The envelop of a nominal 95% credible intervals (dotted lines) and the ‘true’ 

values of vehicular speed (real line). 

 

5.1.3. Recursive estimation with an unknown L 

We next turn to investigate the impact when the value of the EVL parameter L is 

unknown. Suppose that speed data were available, subject to some errors, via a temporarily 

installed speedmeter in the first 200 time intervals. These measured speed data were 

generated in the simulation study as the ‘true’ values of speed plus a normal random noise 

having a zero-mean and a standard deviation of 2 mph.  

Applying the calibration method in Section 4.3, we obtained an estimated value of L. The 

recursive estimation method was then applied to analyse the data in the remaining 800 time 

intervals. The root mean squared error (RMSE) between the estimated values and the 

corresponding ‘true’ values of vehicular speed was calculated, 2.25 mph. They are 

comparable to the RMSE obtained using the ‘true’ value of the EVL parameter, 2.15 mph.  

 

5.1.4. The impact of the choice for the forgetting factor 

It is of interest to investigate the impact of the forgetting factor on the accuracy of 

estimation. Table 1 displays the estimation errors in terms of RMSE when the forgetting 

factor   takes a value from 0.60 to 0.95 by a step of 0.05. It can be seen that the errors are 

comparable to each other unless the forgetting factor becomes too large/small. For this 

particular data set, a value of the forgetting factor between 0.75 to 0.85 is a good choice.  

In practice, the forgetting factor is usually treated as a tuning parameter. A suitable value 

may be determined experimentally using the method in Section 4.4.  
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(Table 1) 

 

5.1.5. Repeated experiments 

Finally we assess the developed method via repeated simulation experiments, where the 

diffusion parameter   is taken as 15 and 25 respectively, and the value of the forgetting 

factor   is determined using the method in Section 4.4. Totally 30 experiments were 

conducted. The resulting RMSEs averaged over the 30 experiments are displayed in Table 2. 

 

(Table 2) 

 

From Table 2 we see that the developed method has a better performance than that of the 

classical method where vehicular speed is estimated using the current observation of space-

mean speed ks  (Kurkjian et al., 1980). This is not surprising because as pointed out earlier, 

the classical method may be considered as a special case of the developed method where the 

forgetting factor is small. Consequently, by tuning the forgetting factor, the developed 

recursive method can always produce a better estimate. The developed method will become 

significantly superior to the classical method when measurements of space-mean speed are 

very noisy due to measurement errors. In this case a smoothed estimate can greatly improve 

the quality of estimation by pooling information collected over successive time intervals.  

It can also be seen from Table 2 that the estimates of vehicular speed obtained without 

knowing the ‘true’ value of the EVL parameter were only slightly worse than that obtained 

with the known ‘true’ value of the EVL parameter.  

 

5.2. Simulation study II 
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We next turn to draw a numerical comparison with Dailey’s method (1999). The Dailey’s 

method is based on the Kalman filter, where the system equation which characterises the 

evolution of vehicular speed over the time is assumed to be an AR(2) process, 

kkkk wbvavv   21 , and the observation equation is   kkkskk vvTLmO   322 /)()/(/ , 

where a and b are two coefficients, kw  and k  are two independent error terms having zero-

means and standard deviations of s  and NO /  respectively.  

 

5.2.1. Data generation 

Data were generated according to the parameters used in Dailey (1999).  The values of 

‘true’ vehicular speed were simulated as an AR(2) process, kkkk wvvv   21 2104.07837.0 , 

with ),0(~ 2

sk Nw   and 14s . The initial speed was set as 60 mph. The EVL parameter 

was set as L=22 feet. The number of vehicles km  was generated as an outcome of a Poisson 

variable with a mean of 8.775. Following Hazelton (2004), the measured time by the ILD 

during time interval k was simulated as )05.01)(/( kkkk zvLmt   with )1 ,0(~ Nzk . As 

shown later, this resulted in an average estimate of NO /   equal to 0.00040 whose magnitude 

was in line with that of 0.00078 used in Dailey (1999).  

 

5.2.2. Speed estimation using Dailey’s method 

For Dailey’s method to have a full power, the data used to identify the system equation 

was re-used to estimate vehicular speed. Specifically, the simulated speed data and loop data 

were used to estimate the coefficients a and b of the AR(2) process  as well as s  and NO / . 

Then the Kalman filter was applied to estimate vehicular speed using the loop data only, 

where the initial speed used for simulating speed data, 60 mph, was incorporated as the initial 

guess of the Kalman filter. The values of the estimated speed were compared to the ‘true’ 
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values of the simulated speed, and the error in terms of RMSE was calculated. The 

experiments were repeated 30 times.  

The estimated parameters by Dailey’s method were close to their corresponding true 

values. The averages of the estimated parameters over the 30 experiments were â =0.7586, 

b̂ =0.2290, ŝ =13.8778 and NO /̂ =0.00040 respectively. The resulting value of RMSE is 

displayed in Table 3.   

Next s  was re-set as 10 mph and 5 mph respectively and the experiments were 

conducted in the same manner as outlined earlier. The averages of the estimated parameters 

were â =0.7519, b̂ =0.2421, ŝ =9.7559 and NO /̂ = 0.00032 when 10s ; whereas the 

averages of the estimated parameters were â =0.8001, b̂ =0.1962, ŝ = 5.0513  and  NO /̂ =  

0.00035 when 5s . The resulting values of RMSE are also displayed in Table 3.  

 

5.2.3. A comparison 

For comparison, the recursive method developed in this paper was also applied to 

estimate the vehicular speed as follows. First the simulated data were used to estimate the 

coefficient  . The optimal value of the forgetting factor   was determined using the method 

in Section 4.4. The values of the estimated speed by the developed recursive method were 

compared to the ‘true’ values of the simulated speed, and the error in terms of RMSE was 

calculated and displayed in Table 3.  

It can be seen from Table 3 that Dailey’s method has higher estimation errors than the 

developed method due to the approximations made in Dailey’s method. 

 

(Table 3) 
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Finally before concluding this section, we note that as a consequence of linearisation, the 

Dailey’s method was sensitive to the choice of initial speed. During our simulation study, it 

was not unusual that the Kalman filter completely broke down (i.e. greatly deviated from the 

trajectory of the ‘true’ vehicular speed) even if the initial speed of 60 mph used in data 

generation was incorporated as the starting point of the filter. All the cases where the Kalman 

filter broke down were excluded from the reported results in Table 3.  

 

6.  A practical example 

 

In this section we present an empirical analysis to real traffic flow data. To evaluate the 

performances of different methods, we follow Dailey’s and Hazelton’s approaches and 

compare the estimated vehicular speed with the measured speed data obtained by a speed trap 

located close to a selected ILD. Although the measured speed data are not noise-free, they 

provide a reference point about the values of vehicular speed with which the estimated values 

of vehicular speed can be compared.  

 

6.1. Data 

The data were downloaded from the database managed by Traffic Data Acquisition and 

Distribution (TDAD) project by the Intelligent Traffic Systems group at the University of 

Washington at http://www.its.washington.edu/tdad. The downloaded data were recorded 

between 5:00 am and 10:00 am on Thursday, May 10, 2007, at a site in Interstate 5. Figure 2a 

displays the space-mean speed measurements ks  calculated from the ILD detector. 

 

6.2. Data analysis 

http://www.its.washington.edu/tdad
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First, the data collected during 5:00 am to 6:00 am were considered as historical data used 

to estimate the diffusion parameter  . With the speed data measured via the speed trap 

during 5:00 am to 6:00 am, the constant EVL parameter was also calibrated.  

Then we applied the recursive estimation method to estimate vehicular speed of traffic 

flow during 6:00 am to 10:00 am. We used the same vague initial prior as in the simulation 

study, i.e. 500   and 
6

0 10  , and the forgetting factor was set as 8.0 . Figure 2b 

displays the estimated vehicular speed (real line). For comparison, the speed data measured 

by the speed trap are also superimposed (dotted line). Note that there were some missing 

values in the measured speed data which were replaced by their adjacent speed measurements 

when plotting Figure 2b. Overall, it can be seen that the developed method has done a good 

job in terms of reproducing the measured vehicular speed. Also, as shown in Figure 2b, the 

recursive estimation method provides a quite smooth estimate of vehicular speed. In contrast 

the measurements of vehicular speed via the speed trap were very noisy.  

 

Figure 2a. The observations of space-mean speed. 

 

Figure 2b. The measured vehicular speed by a speed trap (dotted line) and the estimated 

vehicular speed by the developed method (real line). 

 

6.3. Analysis using Dailey’s method 

On the basis of the historical loop data measured by the ILD and the speed data measured 

by the speed trap during 5:00 am to 6:00 am, the parameters in Dailey method were 

estimated. 

We then applied Dailey’s method to estimate vehicular speed of traffic flow during 6:00 

am to 10:00 am, where the same value of the EVL parameter and the same initial value of 
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speed used in Section 6.2 were incorporated. Figure 2c displays the estimated vehicular speed 

(real line). For comparison, the speed data measured by the speed trap are also superimposed 

(dotted line). Overall, it can be seen that Dailey’s method performed well until about 9 am. 

Shortly after 9:00 am, however, the speed of the traffic flow suddenly reduced and this abrupt 

change caused the Dailey’s method broke down due to the linearization of the non-linear 

observation equation in Dailey’s method, as shown in Figure 2c.   

 

Figure 2c. The measured vehicular speed by a speed trap (dotted line) and the estimated 

vehicular speed by Dailey’ method (real line).  

 

 

7.   Concluding remarks 

 

In this paper, we have investigated the recursive estimation of vehicular speed using the 

data collected from a single ILD. A recursive estimation method has been developed. The 

resulting recursive formulae have a nice analytical form, and the incurred computational cost 

is kept to be a minimum. As a by-product, a simple calibration method is developed to 

estimate the effective vehicle length.  

This proposed recursive estimation method includes the first-order method of moments 

approach as its special case where the forgetting factor is chosen as a small value. It is thus 

not surprising that it has a better numerical performance than the classical method. In 

comparison with Dailey’s method, it is more reliable where the linearization used in Dailey’s 

method is avoided. In addition, there is no need for this method to identify a dynamic system 

equation as required in Dailey’s method.  

We have also developed a statistical model for space-mean speed measurements. Space-

mean speed plays an important role in traffic engineering. As a harmonic average of 
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individual speed measurements, however, it is hard to deal with space-mean speed 

analytically under the normality assumption for individual speed measurements. In this paper 

we have developed a model for space-mean speed measurements which possesses some very 

nice theoretical properties and can be applied in a wider areas in traffic engineering. 
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Appendix. Proofs of theorems 

 

Proof of Theorem 1. According to the definition of inverse gamma distributions, 

)/ ,(~1 Lvtk    )/ ,(~/1 1 Lvinvtk  . Since L is a constant, we obtain 

),(~1 vInvsk  .   

 

Proof of Theorem 2. (i) ) ,(~| vInvvskj   if and only if 1

kjs  has a gamma distribution, 

) ,( v . Since ) ,(~/1

1

vmmms kkkkj

m

j

k





 , we obtain ) ,(~ vmminvs kkk  . 

(ii) Let )|( vsp kj  denote the density function of ) ,( vInv  . We note that the joint 

distribution of 
kkmk ss ,...,1 , )|()|,...,(

1
1

vspvssp
k

jm

m

j

kkk 


 , is given by 
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From part (i) we know that the density )|( vsp k  is ) ,( vmmInv kk  . Hence the conditional 

distribution of 
kkmk ss ,...,1  given ks , )|(/)|,...,(

1
vspvssp kkk m

, can be shown to be 
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which does not depend on  v. Hence, ks  is a sufficient statistic for v. This completes the 

proof.  

 

Proof of Theorem 3. Let )(vp  and )|( vsp  denote the prior distribution )/,( aa  and 

observation distribution ) ,( vInv   respectively. Applying Bayes’ rule, the posterior 

distribution of the parameter v is given by: 

 )|()()|( vspvpsvp   

 )/ exp()/exp(1 svvavva      

})//(exp{1 vsava    .  

Hence, the posterior distribution of the parameter v is a gamma distribution, i.e.  

) ,(~| 11   saasv  . This completes the proof.      

 

Proof of Theorem 4. Let )|( 1 vsp k  and )|( ksvp  denote the distribution of the space-mean 

speed measurement and the prior distribution in time interval k+1. They are given by 

) ,( 11 vmmInv kk    and )/,( 11 kkk    respectively. The one-step-ahead predictive 

distribution is 

 dvsvpvspssp kkkk )|()|()|( 11 
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where )}()(/{)( 11111
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we have 



 27  

 
11

1

1

21
1)()|(







 k

kkkkk sAssp
 )(1

111
11)(  

  kkm

kkkk sm
 , 

where )( 1112   kkmAA  . Hence, conditional on ks , kks /1  follows an F-distribution 

with degrees of freedom 12 k  and 12 km  respectively. This completes the proof.  
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Table 1. The forgetting factor   and estimation error 

  0.60 0.65 0.70 0.75 0.8 0.85 0.90 0.95 

RMSE (mph) 2.65 2.50 2.38 2.29 2.25 2.29 2.43 4.11 

 

 

 

 

 

Table 2. Average RMSEs (mph) over 30 simulation experiments for the developed method 

and the classical method  

 

 With the ‘true’ value of EVL With an estimate of EVL 

  The classical 

method 

The developed 

recursive method 

The classical 

method 

The developed 

recursive method 

15 9.5937 2.8247 9.5089 2.8955 

25 7.3644 2.5128 7.3558 2.5807 

 

 

 

 

Table 3. A comparison of average RMSEs (mph) between Dailey’s method and the 

developed method over 30 simulation experiments 

 

s  The Dailey’s 

method 

The developed 

method
 

14 10.7161 4.0808 

10 8.1034 3.8196 

5 4.4396 2.8649 
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Figure 1a. The ‘true’ values of vehicular speed (real line) and the estimated values by the 

recursive method (dotted line). 
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Figure 1b. The envelop of a nominal 95% credible intervals (dotted lines) and the ‘true’ 

values of vehicular speed (real line). 
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Figure 2a. The observations of space-mean speed. 
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Figure 2b. The measured vehicular speed by a speed trap (dotted line) and the estimated 

vehicular speed by the developed method (real line). 
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Figure 2c. The measured vehicular speed by a speed trap (dotted line) and the estimated 

vehicular speed by Dailey’ method (real line).  

 


