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Abstract

In the Thesis, two important theoretical problems arising in the theory of one-dimensional

defocusing nonlinear Schrödinger (NLS) flows are investigated analytically and numerically:

(i) the resonant generation of dispersive shock waves (DSWs) in one-dimensional NLS flow

past a broad repulsive penetrable barrier; and (ii) the interaction of counter-propagating

DSW and a simple rarefaction wave (RW), which is referred to as the DSW refraction

problem. The first problem is motivated by the recent experimental observations of dark

soliton radiation in a cigar-shaped BEC by sweeping through it a localised repulsive potential;

the second problem represents a dispersive-hydrodynamic counterpart of the classical gas-

dynamics problem of the shock wave refraction on a RW, and, apart from its theoretical

significance could also find applications in superfluid dynamics. Both problems also naturally

arise in nonlinear optics, where the NLS equation is a standard mathematical model and the

‘superfluid dynamics of light’ can be used for an all-optical modelling of BEC flows.

The main results of the Thesis are as follows:

(i) In the problem of the transcritical flow of a BEC through a wide repulsive penetrable

barrier an asymptotic analytical description of the arising wave pattern is developed using

the combination of the localised “hydraulic” solution of the 1D Gross-Pitaevskii (GP) equa-

tion with repulsion (the defocusing NLS equation with an added external potential) and the

appropriate exact solutions of the Whitham-NLS modulation equations describing the res-

olution of the upstream and downstream discontinuities through DSWs. We show that the

downstream DSW effectively represents the train of dark solitons, which can be associated

with the excitations observed experimentally by Engels and Atherton (2008).

(ii) The refraction of a DSW due to its head-on collision with the centred RW is con-

sidered in the frameworks of two one-dimensional defocusing NLS models: the standard

cubic NLS equation and the NLS equation with saturable nonlinearity, the latter being a

standard model for the light propagation through photorefractive optical crystals. For the
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cubic nonlinearity case we present a full asymptotic description of the DSW refraction by

constructing appropriate exact solutions of the Whitham modulation equations in Riemann

invariants. For the NLS equation with saturable nonlinearity, whose modulation system does

not possess Riemann invariants, we take advantage of the recently developed method for the

DSW description in non-integrable dispersive systems to obtain key parameters of the DSW

refraction.

In both problems, we undertake a detailed analysis of the flow structure for different

parametric regimes and calculate physical quantities characterising the output flows in terms

of relevant input parameters. Our modulation theory analytical results are supported by

direct numerical simulations of the corresponding full dispersive initial value problems (IVP).
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Chapter 1

Introduction and outline of research

The formation of shock waves is the salient feature of hydrodynamic flows. In classical,

viscous fluids, shock dynamics can be well understood mathematically in the context of a

dissipative regularisation of conservation laws. There are, however, a number of fluids with

negligible dissipation whose dominant regularising mechanism is dispersion. Most notably,

superfluidic Bose-Einstein condensates (BECs) and optical waves in defocusing nonlinear

media fall within this class of dispersive fluids. The superfluid counterparts of viscous shock

waves, the so-called dispersive shock waves (DSWs), are nonlinear expanding wavetrains

exhibiting solitons near one of the edges and degenerating into a linear wavepacket near the

opposite edge. These DSWs have yielded novel multi-scale nonlinear wave dynamics and

interesting interaction behaviour and have recently become an object of intensive theoretical

and experimental investigations, notably due to a number of ground breaking BEC experi-

ments, [1, 2], where these waves represent a striking manifestation of quantum statistics on

a macroscopic scale. Another actively developing area of the experimental and theoretical

DSW research is laser optics where the DSWs represent nonlinear interference or diffraction

patterns forming in the propagation of powerful laser beams through an optical crystal with

refractive index defects [3–5]. In a completely different physical context, DSWs (also called

undular bores, especially in classical fluid dynamics applications) have been found to play
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CHAPTER 1. INTRODUCTION AND OUTLINE OF RESEARCH

an important role in the mesoscale atmosphere and ocean processes.

One of the fundamental mathematical models of dispersive hydrodynamics is the non-

linear Schrödinger (NLS) equation which often arises as the equation for an envelope of a

weakly nonlinear wave packet propagating in a medium with quadratic nonlinear response.

However, in a number of applications the NLS equation and its modifications can describe

the propagation of a wave field (not necessarily an envelope) of an arbitrary amplitude. For

example, the wave function of a rarefied BEC is known to be very well described by the

Gross-Pitaevskii (GP) equation, which represents the cubic NLS equation with an added

external potential (a trap or an obstacle potential). Depending on the character of inter-

atomic interactions in a BEC, one deals with focusing (attractive interactions) or defocusing

(repulsive interactions) case. Another area of the application of the NLS equation is the

propagation of a powerful laser beam through optical crystals. In the thesis, we restrict

ourselves to the one-dimensional defocusing case, when the medium (a BEC or an optical

medium) supports stable dark (or gray) solitons propagating on a non-zero background. Our

main concern will be with the analytical and numerical description of DSW generation and

interaction in two configurations:

• The resonant (transcritical) generation of DSW in one-dimensional NLS

flows past broad repulsive penetrable barriers.

This problem is motivated by the recent experimental findings by Engels and Atherton

[6] who observed the radiation of dark soliton in quasi-1D BECs subjected to a moving

localised repulsive potential. One of the unusual features observed in the experiment

was a finite interval of the BEC flow velocities (in the potential barrier reference frame)

for which the soliton radiation takes place. In other words, the superfluidity breakdown

via the radiation of dark solitons (or, more generally, DSWs) occurs when the BEC

velocity v ∈ [v−, v+], where the values v± depend on the strength (amplitude) of the

potential barrier. The most effective generation of solitons occurs in the resonant

case when the flow velocity is equal to the speed of sound in the BEC. This effect

2



CHAPTER 1. INTRODUCTION AND OUTLINE OF RESEARCH

is specific to 1D flows and is in sharp contrast with the classical notion of the single

critical velocity vc in multi-dimensional superfluid flows past obstacles, so that the

superfluidity breakdown either via the radiation of linear waves (Landau [7]) or via the

emission of quantised vortices (Feynman [8]) occurs for all v > vc.

The general theoretical framework for the study of 1D superfluid flows past broad repul-

sive penetrable potentials was developed by Hakim [9] who proposed a very suggestive

mathematical analogy with transcritical shallow water flows past localised topogra-

phies. This latter problem was studied analytically and numerically by Grimshaw and

Smyth [10] and Smyth [11] in the framework of the forced Korteweg – de Vries (fKdV)

equation. The corresponding NLS problem was studied in [9] numerically. In the

Thesis, this problem is solved analytically.

• The interaction of counter-propagating superfluid DSW and a simple rar-

efaction wave (RW), which is referred to as the DSW refraction problem.

This problem represents a dispersive-hydrodynamic counterpart of the classical gas-

dynamics problem of the shock wave refraction on a RW (see e.g. the monograph

by Courant and Friedrischs [12]), and, apart from its pure theoretical significance, is

important for the understanding of superfluid dynamics in some physically relevant

configurations. Various interactions of RWs and DSWs in BECs were recently studied

experimentally and numerically in [13, 14]. For uni-directional KdV flows, the problem

of the overtaking DSW-RW interaction was considered by Ablowitz, Baldwin and Hoe-

fer [15]. The bi-directional DSW-RW interactions studied in the Thesis, to the best of

our knowledge, have not been considered analytically before. The model problem of

the head-on DSW-RW interaction solved in the Thesis, provides a general analytical

framework for the study of the more specific interaction problems of interests for BEC

dynamics and nonlinear optics.

The main mathematical tool in the description of DSWs/undular bores is the Whitham

3



CHAPTER 1. INTRODUCTION AND OUTLINE OF RESEARCH

method of slow modulations [16], which is based on fully nonlinear multiple-scale expansions

(or, alternatively, on an appropriate equivalent averaging technique) applied to nonlinear

dispersive PDEs. The Whitham equations were for the first time applied to the description of

DSWs by Gurevich and Pitaevskii [17] who considered the problem of the decay of an initial

discontinuity for the KdV equation. A similar problem for the defocusing NLS equation

was first considered by Gurevich and Krylov [18] and later, more comprehensively, by El

et. al. [19]. Since then, there has been a large number of research works investigating

the dynamics of DSWs for the NLS equation. The majority of these works considered the

generation and dynamics of isolated DSWs freely propagating in homogeneous media. The

interactions of DSWs with external potentials and/or with hydrodynamic waves (like RWs

or other DSWs) are far less explored and the results of the Thesis make a contribution to

this area of dispersive hydrodynamics and its applications.

The main results of the Thesis have been published in two research papers [20] and [21].

The structure of the Thesis is as follows.

Chapter 2 introduces main concepts, notions and methods of the Thesis. These include

the method of characteristics, Riemann invariants and hodograph solutions (including the

generalised hodograph method for multi-component hydrodynamic type systems). The de-

scription of the fundamental wave breaking phenomenon is followed by the classification of

different types of the resolution of the breaking hydrodynamic singularities. The central no-

tion of the dispersive shock wave (DSW) is introduced and some of the recent experimental

and theoretical works on the DSW dynamics in BECs and nonlinear optics are reviewed.

The Chapter is concluded with the general description of the Whitham method of slow

modulations which is one of the main mathematical methods used in the Thesis.

Chapter 3 outlines the basic properties of the defocusing cubic NLS equation (dispersion

relation, dispersionless limit, conservation laws, travelling wave solutions) necessary for the

subsequent application of the Whitham method of slow modulations, which is presented in

4
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Section 3.2. The Riemann invariant form of the modulation equations is introduced. The

structure of the characteristic velocities is analysed and the their behaviour in the linear and

soliton limits is considered. This Chapter is based on the results of papers [2, 22–24].

Chapter 4 details the DSW theory for the NLS equation using the Gurevich-Pitaevskii

type matching conditions for the modulation equations in Riemann invariants. Although

majority of the results of this Chapter were obtained earlier, we give some new, more direct

proofs and derivaions. We will begin by discussing simple centred DSW and RW solutions

in the NLS dispersive hydrodynamics using the appropriate similarity solutions of the NLS-

Whitham modulation equations. We will then present a full classification for the decay of

an arbitrary discontinuity problem where the solution will generally be a combination of

two simple waves, either DSWs or/and RWs. We then continue with a more general class

of modulation solutions obtained by the hodograph transform and show how the hodograph

NLS modulation equations are reduced to the classical Euler-Poisson-Darboux equation,

whose general solution is known very well. Finally, we present a recent extension of the

Gurevich-Pitaevskii theory to the modulation systems which generally do not possess the

Riemann invariant structure and typically arise when averaging non-integrable dispersive

systems. This ‘dispersive shock fitting’ method was developed by El (2005) and here we

illustrate this method by recovering all key results of the ‘integrable’ NLS modulation theory

for simple DSWs presented earlier in this Chapter.

In the rest of the Thesis, the results and methodologies detailed in Chapters 3, 4 are

used to address two specific new problems. In Chapter 5 we consider the problem of the

transcritical BEC flows past broad penetrable repulsive barriers in BECs. The phenomenon

of the generation of dark soliton trains for a certain interval of the BEC flow velocities

observed in recent experiment [6] is explained. Using a suggestive analogy with transcritical

shallow water flows past variable topographies (Grimshaw and Smyth (1986)), we construct

analytical modulation solutions to the defocusing NLS equation with an external potential

(the GP equation). Our solutions describe the dark soliton generation via the formation of

5
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the steady ‘hydraulic’ transition over the potential barrier and the resolution of the arising

upstream and downstream hydraulic jumps via two simple DSWs. A detailed classification of

the arising wave patterns in the parameter space of the BEC flow velocity and the potential

strength is presented. The drag force exerted on the BEC is calculated. All the obtained

analytical results are supported by direct numerical simulations.

Chapter 6 considers the interaction of the counter-propagating DSW and RW in the

superfluid NLS flows. This problem represents a dispersive counterpart of the classical

viscous shock wave refraction problem formulated by Courant and Friedrischs in 1940s. The

analysis of the interaction is performed by employing the hodograph modulation solutions

presented earlier in Chapter 4. The modulation solutions describing the behaviour of two

interacting waves at all stages of the evolution are constructed and the key parameters of the

DSW refraction are calculated. In particular, we present an explicit analytical expression

for the DSW phase shift due to refraction on the RW. The analytical results are supported

by numerical simulations.

In Chapter 7 we will again consider the DSW refraction problem but this time in the

framework of the NLS equation with saturable nonlinearity describing the powerful light

beams propagation in nonlinear photorefractive media. The saturable NLS equation (sNLS)

is not integrable by the inverse scattering transform (IST) and Riemann invariants are not

available for the associated modulation system. We extend the dispersive shock fitting

method of El (2005) to derive the key physical parameters of the DSW refraction in sNLS

flows and compare our analytical results with numerical solutions.

The Appendix is devoted to the description of numerical methods used in the Thesis.

6



Chapter 2

Hyperbolic waves and dispersive

hydrodynamics: an overview

2.1 Shallow water equations and the Hopf equation

Our theoretical understanding of many fluid flows, including flows in oceans, lakes, canals,

plasmas, superfluids and in the atmosphere, often starts by considering very simplified mod-

els. For many fluid flow considerations, the shallow water equations (SWE) are often used

as a starting point. They have the form

ht + (hu)x = 0,

ut + uux + hx = 0.

(2.1)

Here h(x, t) is the total fluid depth and u(x, t) is the depth–averaged horizontal velocity,

x, t are the spatial and temporal coordinates; all variables are non-dimensional. This model

describes motion of a thin layer of fluid of constant density under the effect of gravity.

Although being a highly simplified model, the SWE capture many features of fluid flows

and can often give a qualitatively accurate description for large-scale, non-thin layer flows

of constant density. At the same time, the SWE have their limitations, governing only

7
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single layer, free surfaces. Being a system of nonlinear hyperbolic equations the SWE do

not include any dissipative or dispersive terms, so for a broad class of initial conditions, the

solution profiles steepen and become multi-valued after a finite time: the behaviour that is

usually referred to as a wave-breaking [16, 25, 26].

To clarify the wave breaking behaviour, we consider a special class of solutions to the

SWE, called simple waves, which is selected by a restriction h = h(u). Substituting this into

the shallow water system (2.1) we readily get

h′(u) = ±
√
h. (2.2)

Integrating we obtain

1
2
u−
√
h = constant or 1

2
u+
√
h = constant. (2.3)

Then for each of the relationships (2.2) both equations (2.3) collapse into a single simple

wave equation:

ut + c+(u)ux = 0, or ut + c−(u)ux = 0 (2.4)

respectively. Here

c±(u) = u±
√
h(u) (2.5)

are the speeds of the right- (+) or left- (−) propagating simple waves (the labels ”right-”

and ”left-” propagating refer to the reference frame moving with the flow speed u) .

By introducing the new variables

λ± = 1
2
u±
√
h, (2.6)

8
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instead of h and u we cast the SWE (2.1) in the canonical Riemann invariant form

∂λ±
∂t

+ V±
∂λ±
∂x

= 0, (2.7)

λ± are the Riemann invariants and

V+ = 1
4
(3λ+ + λ−), V− = 1

4
(3λ− + λ+). (2.8)

are the characteristic velocities which are expressed in terms of the original variables h, u as

V± = u±
√
h, (2.9)

One can see that the characteristic velocities V± are simply c± in equation (2.4) with h and

u being independent variables.

Setting one of these Riemann invariants (λ− for example) to be constant, λ− = λ0
−, we

obtain the simple wave equation for the right propagating wave (first equation in (2.4)).

Similarly, setting λ+ = λ0
+ constant we obtain the left propagating simple wave equation.

Using the substitution v = c(u) we reduce the simple wave equation ut + c(u)ux = 0 to

the so-called Hopf equation

vt + vvx = 0, (2.10)

which is the model equation for the study of uni-directional nonlinear dispersionless wave

propagation. We shall be interested in the solutions, for t > 0 of the initial value problem

(IVP) for the Hopf equation with initial data

v(x, 0) = v0(x) (2.11)

where v0(x) is some continuous function.

9
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2.2 Simple waves: method of characteristics and wave

breaking

2.2.1 Characteristic solution

We solve the IVP (2.10), (2.11) using the method of characteristics. The idea is that a linear

combination in the form

a(v, x, t)
∂v

∂t
+ b(v, x, t)

∂v

∂x
, (2.12)

can be interpreted as the directional derivative of v(x, t) in the direction r = (a,b) in the

(x, t) plane.

A characteristic curve or characteristic C is introduced in the (x, t) plane by the condition

that the tangent vector is (a, b) at each point of C . For the Hopf equation a(v, x, t) = 1,

b(v, x, t) = v so that at each point of C we have

dx

dt
=
b

a
= v (2.13)

Now, along C, v = v(x(t), t) and

∂v

∂t
+ v

∂v

∂x
=
∂v

∂t
+
dx

dt

∂v

∂x
=
dv

dt
, (2.14)

Now, the IVP

∂v

∂t
+ v

∂v

∂x
= 0 ,

t = 0 : v = v0(x) , −∞ < x <∞
(2.15)

10
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Figure 2.1: A characteristic curve in the (xt) - plane

can be re-written in the characteristic form:

on C :


dx

dt
= v , x(0) = ξ, (a)

dv

dt
= 0 , v(0) = v0(ξ) , (b)

(2.16)

where ξ is a parameter (the initial point on the characteristic curve).

Integrating (2.16a,b) we obtain the characteristic solution on C

v = v0(ξ), (a)

x = ξ + tv0(ξ). (b)

(2.17)

Note that characteristics C given by (2.17b) are straight lines.

By varying ξ we get the solution in the whole (x, t) region provided 1 + tv′0(ξ) 6= 0

(solvability of (2.17b) for ξ(x) at a given t). It is not difficult to verify by direct calculation

that solution v(x, t) specified by (2.17a), (2.17b) does solve the IVP.

Combining (2.17a) and (2.17b) we obtain the solution v(x, t) of the IVP in an implicit

form

x = vt+ x0(v) , (2.18)

where x0(v) = v−1
0 (v) is the function inverse to v0(x) (note that by assuming x0(v) to be an

arbitrary function in (2.18) we get a general solution to the Hopf equation).

11
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2.2.2 Rarefaction waves

Rarefaction waves (RWs) represent an important class of of solutions to the Hopf equation.

Consider the IVP

vt + vvx = 0, x ∈ R, t > 0, v(x, 0) = v0(x), (2.19)

where

v0 =


v2, if x ≤ 0

monotonically increasing, if 0 ≤ x ≤ L

v1, if x ≥ L.

(2.20)

where v1 > v2 (i.e. v′0(x) > 0 for 0 ≤ x ≤ L). The characteristic solution

v = v0(ξ), x(r) = v · t+ ξ, (2.21)

describes an expansion fan (or a RW) (see Figure 2.2 left). Since the characteristics do not

vvv vv

Figure 2.2: Expansion fan of characteristics in a RW. Left: general configuration. Right:
centred fan

intersect at t > 0, we obtain the solution v(x, t) as a single-valued function for all t > 0, i.e.

the RW solution is global.

In the limiting case, when L→ 0 we obtain a centred fan where all characteristics between

v2 and v1 pass through the origin, see Figure 2.2 right. The centred fan solution v(x, t), t > 0

12
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is described explicitly as

v =


v2, if x ≤ v2t

x
t
, if v2t ≤ x ≤ v1t

v1, if x ≥ v1t .

(2.22)

The corresponding profiles of v(x, t), for t = 0 and t > 0 are shown in Figure 2.3.

vv

vv

vv

vv

vv

v v

Figure 2.3: Centred RW. Left: initial conditions, t = 0. Right: wave profile for t > 0.

2.2.3 Wave breaking

Let us again look at the characteristic solution

v = v0(ξ), x = v · t+ ξ, (2.23)

but now assume that the initial profile v0(ξ) has a section, where v′0(ξ) < 0. This implies

that the condition 1 + v′0(ξ)t 6= 0 of solvability of the characteristic equation x = ξ+ v · t for

ξ(x, t) will fail for some

t = − 1

v′0(ξ)
> 0. (2.24)

This happens for the first time on the characteristic ξ = ξb, where |v′0(ξ)| assumes its maxi-

mum value; if v0(r) is smooth function, this implies v′′0(ξb) = 0. So

tb = − 1

v′0(ξb)
=

1

|v′0(ξb)|
(2.25)

13
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One can see that the derivatives

vt = −v0(ξ)v′0(ξ)

1 + v′0(ξ)t
, vx =

v′0(ξ)

1 + v′0(ξ)t
(2.26)

become infinite at t = tb and we have a gradient catastrophe. This is the wave breaking

point. The described characteristic construction is illustrated in Figure 2.4.

-3 -2 -1 1 2 4

0.2

0.4

0.6

0.8

1

x

v(x)

t = 0 t = t t > tb b

x x xb - +

Figure 2.4: Wave breaking. Left: Intersection of characteristics at (xb, tb); Right: Gradient
catastrophe formation at t = tb and the multi-valued wave profile for t > tb

To better understand the qualitative meaning of the wave breaking phenomenon we note

that from the characteristic form of the Hopf equation,

dv

dt
= 0 on

dx

dt
= v, (2.27)

one can conclude that each value of v propagates with its own speed v. So, if the initial

profile has a decreasing part, the points with greater values of v will overtake those with

smaller values of v, which will lead to the steepening of the profile v(x) and at some moment

t = tb > 0 one can expect the occurrence of the gradient catastrophe, | ∂v
∂x
| → ∞.

In the simplest case of a step initial conditions for the Hopf equation (2.15)

v0(x) =

 v2, if x < 0

v1, if x > 0,
(2.28)
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where v2 > v1, the wave breaking occurs at t = 0. Formal multi-valued solution for t > 0 is

a centred compression wave with overhanging, see Figure 2.5. The corresponding behaviour

of characteristics is shown in Figure 2.6

v

v  t v  t

v v

v v

v

v

Figure 2.5: Left: initial conditions. Right: multi-value solution, t > 0.

v
v

vv v vv

Figure 2.6: Characteristics behaviour in the solution to the step evolution problem

For arbitrary smooth initial conditions, the wave-breaking time is most conveniently

calculated using an implicit solution of the Hopf equation

x− vt = f(v), (2.29)

where f(v) is the inverse of the initial function v0(x). Then, at the breaking point one must

have

t = tb :
∂x

∂v
= 0,

∂2x

∂v2
= 0. (2.30)
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Figure 2.7: Interaction of two simple waves in the region ABQ of the (xt) plane: behaviour
of charactersitics. Outside this region there are two separately propagating simple waves.

From (2.29), (2.30) we obtain for the wave-breaking time:

tb = −f ′(vb) , f ′′(vb) = 0 , (2.31)

where vb is the value of v at the breaking point, which coincides with the value of v at the

inflection point of the initial profile v0(x).

2.3 Interaction of simple waves: hodograph solution

A simple wave represents a disturbance propagating along a single characteristic family. For

a general Cauchy problem for the SWE (2.1), i.e. when the initial conditions u(x, 0) = u0(x),

h(x, 0) = h0(x) do not satisfy one of the simple wave relations (2.3), i.e. 1
2
u0(x)−

√
h0(x) 6=

const, 1
2
u0(x) +

√
h0(x) 6= const, both families of characteristics dx

dt
= V±(h, u) carry non-

trivial disturbances so we need more general solutions than those described so far. A typical

behaviour of characteristics in such a general solution is shown in Figure 2.7. One can see

that outside the region ABQ there are two separate simple waves propagating in opposite

directions. WithinABQ the simple waves interact and cannot be described individually using

the solutions of the Hopf equation. To describe the interacting simple waves analytically we

make use of the so-called hodograph transformation, which is achieved by interchanging the

role of dependent and independent variables in the SWE (2.1).
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We have u = u(x, t), h = h(x, t) and, assuming that the mapping (x, t) 7→ (u, h) is

invertible, consider the inverse functions

x = x(u, h), t = t(u, h). (2.32)

Now, using implicit differentiation or otherwise we obtain the relations between the deriva-

tives

ht = −xu
J
, ut =

xh
J
, hx =

tu
J
, ux = −th

J
, (2.33)

where J = ∂(x,t)
∂(u,h)

= xuth − xhtu is the Jacobian of the transformation. It is clear that the

hodograph transformation requires that J 6= 0, J−1 6= 0.

Substituting (2.33) into (2.1) we obtain the linear system,

xu − utu + hth = 0, xh − uth + tu = 0 (2.34)

(note that the Jacobian cancels due to the absence of undifferentiated terms). Cross-

differentiation yields a single second-order linear PDE for t:

tuu − hthh = 2th. (2.35)

Introducing the characteristic variables (the Riemann invariants) λ± = 1
2
u ±
√
h instead of

h, u in (2.35) we arrive at the classical Euler-Poisson-Darboux (EPD) equation

∂2t

∂λ−∂λ+

=
2

λ+ − λ−

(
∂t

∂λ+

− ∂t

∂λ−

)
, (2.36)

whose general solution is known very well (see e.g. [27] ).

While the SWE are dramatically simplified under the hodograph transform, the hodo-

graph equations are usually not very convenient for solving IVPs. Consider general initial
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conditions

t = 0 : h = H(x), u = U(x) (2.37)

for the shallow water system (2.1). Expressions (2.37), in principle, parametrically define a

curve in the hodograph (u, h)-plane, where one specifies t = 0 and x. These are the bound-

ary conditions for the hodograph equations. Unfortunately, in most cases these boundary

conditions turn out to be quite awkward so the hodograph solutions are not often used in gas

and fluid dynamics. There are, however, some exceptional configurations when hodograph

solutions are extremely valuable. A classical example: nonlinear shallow water waves on a

sloping beach [28].

For simple waves (i.e. when h = h(u)), the hodograph transform is degenerate (the Jaco-

bian J = 0) so the simple wave solutions are not captured by the hodograph method. Also,

the Jacobian vanishes at the wave breaking point of the general solution, which corresponds

to multi-valuedness of the solution.

Note that in the classical hodograph construction, it is essential that the number of inde-

pendent variables coincides with the number of dependent variables. It turns out, however,

that for a certain class of systems of hydrodynamic type, called semi-Hamiltonian systems,

the hodograph transform can be generalised to the the number of components greater than

two. The corresponding generalised hodograph transformation was introduced by Tsarev in

1985 and will be described in Section 2.5.2.

2.4 Beyond the wave breaking: discontinuous, viscous

and dispersive shocks

As already was mentioned, the multi-valued behaviour beyond the breaking point is not

physically acceptable so one needs to do one of the following:

(i) To retain the model equations (the Hopf equation or the SWE) but extend the class

of admissible solutions to include discontinuous solutions (shocks)
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or

(ii) To extend the mathematical model by including additional dissipative or dispersive

terms to regularise the breaking singularities. The form of the regularising term(s) depends

on the physical properties of the medium through which the wave propagates.

Below we briefly consider both outlined possibilities.

2.4.1 Discontinuous shocks

Let us consider the simple wave equation ρt + c(ρ)ρx = 0 in a conservative form

∂tρ+ ∂xq = 0, (2.38)

where ρ = v and q = Q(ρ) =
∫
c(ρ)dρ. The differential conservation equation (2.38) is

usually derived from the integral form of some fundamental physical conservation law (like

conservation of mass, momentum etc). Importantly, the integral conservation law admits

a broader class of solutions than its differential consequence, in particular, one can derive

solution in the form of a propagating discontinuity (a shock). A standard consideration of

the balance of the “mass”,
∫ x2
x1
ρdx, through the surface of discontinuity leads to the following

reformulation of the basic problem:

ρt + qx = 0, at points of continuity, (2.39)

−U [ρ] + [q] = 0, at discontinuity points. (2.40)

where [·] denotes the jump across the discontinuity and U(t) = ṡ(t) is the shock speed.

Condition (2.40) is usually called “shock condition”. There is a formal correspondence

between the differential equation and the shock condition (2.40), namely,

∂

∂t
↔ −U [·] , ∂

∂x
↔ [·] . (2.41)
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Note that the shock condition can also be written as

U =
q2 − q1

ρ2 − ρ1

=
Q(ρ2)−Q(ρ1)

ρ2 − ρ1

, where ρ1,2 ≡ ρ(s±, t). (2.42)

The direct association of a shock condition with a differential conservation law is not

unique (e.g. two equivalent conservation laws ut + (u2/2)x = 0 and (u2)t + (2u3/3)x = 0

would lead to different shock conditions). To derive a physically admissible shock condition

one should use only the differential conservation law directly originating from an integral

physical conservation law.

The simplest case when the wave breaking occurs is the decay of an initial discontinuity

problem for the simple-wave equation:

ρt + c(ρ)ρx = 0, t > 0 , −∞ < x <∞, (2.43)

t = 0 : ρ =

 ρ2, if x < 0

ρ1, if x > 0 , (ρ2 > ρ1)
(2.44)

with c′(ρ) > 0.

We have seen in Section 2.2.3 that the wave breaking of the step (2.44) will occur imme-

diately at t = 0. The resulting discontinuous solution is

ρ(x, t) =

 ρ2, if x < Ut

ρ1, if x > Ut ,
(2.45)

where the shock velocity is

U =
Q(ρ2)−Q(ρ1)

ρ2 − ρ1

, Q(ρ) =

∫
c(ρ)dρ. (2.46)
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Figure 2.8: Characteristics’ behaviour in the discontinuous solution to the Hopf equation.

For the particular case of the Hopf equation with c(ρ) = ρ, Q(ρ) = 1
2
ρ2 we have

U =
ρ1 + ρ2

2
. (2.47)

The characteristics’ behaviour in the obtained discontinuous solution can be seen in

Figure 2.8. Here c1 = c(ρ1), c2 = c(ρ2). Since ρ2 > ρ1 and c′(ρ) > 0 we have c2 > c1. The

shock condition (2.40) should be complemented by the inequality

c2 > U > c1. (2.48)

Condition (2.48) guarantees stability of a shock wave. In gas dynamics it is associated with

the requirement that entropy of a gas must increase across the shock. Conditions of the type

(2.48) are often called Lax’s entropy conditions [31].

Consider now a system of hyperbolic differential conservation laws

∂

∂t
fi(x, t,u) +

∂

∂x
gi(x, t,u) = 0 , i = 1, . . . , n, (2.49)

where u = (u1, u2, . . . , un) are dependent variables, fi are the conserved densities and gi the

corresponding fluxes. Assuming that system (2.49) is derived from integral equations for

physical conserved quantities (mass, momentum, energy, etc.) one can introduce discontin-
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uous solutions with the jump conditions across the shock

−U [fi] + [gi] = 0 , i = 1, 2, . . . , n , (2.50)

where U is the velocity of the shock. Often (especially in gas dynamics) conditions (2.50)

are called the Rankine-Hugoniot shock conditions.

As an example, we derive the shock conditions for the hyperbolic SWE (2.1) describing

dynamics of a bore – an analog of a shock in shallow water flows. Using physical conserva-

tion laws for “mass”
∫
hdx and “momentum”

∫
(hu)dx we obtain the hydrodynamic jump

conditions across the bore in the form

−U [h] + [uh] = 0,

−U [uh] + [hu2 +
1

2
gh2] = 0.

(2.51)

Eliminating U from the bore jump conditions one can find a restriction on admissible values

of h and u at both sides of the bore

u2 − u1 = (h2 − h1)

√
h1 + h2

2h1h2

. (2.52)

Note that this restriction does not arise for a shock wave in a single hydrodynamic conser-

vation law. For the bore speed U we obtain

U = u1 + h2

√
h1 + h2

2h1h2

. (2.53)

2.4.2 Regularised viscous shock waves

We now look at the second way of removing the multi-valued region in the breaking profile

of the solution of the simple wave equation (2.10) – a regulatisation of the wave breaking

singularity by taking into account higher order terms in the underlying physical model.
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Figure 2.9: Viscous shock wave profile

Often these higher order terms describe dissipation in the medium due to viscosity. The

simplest viscous correction to the Hopf equation is usually proportional to vxx and the

generic mathematical model describing the structure of viscous shocks is the famous Burgers’

equation

vt + vvx + νvxx = 0. (2.54)

where ν > 0 is a constant (viscosity coefficient). The solution of the Burgers’ equation in

the form of the travelling wave v = v(ξ), where ξ = x− Ut− x0, where U is the wave speed

and x0 is the initial phase, has the form of the so-called “Taylor’s profile”

v(x, t) = v1 + (v2 − v1)
exp {−(v2 − v1)ξ/(2ν)}

1 + exp {−(v2 − v1)ξ/(2ν)}
. (2.55)

Solution (2.55) describes a smooth step transition connecting two constant states v = v2 and

v = v1, v2 > v1. (see Figure 2.9) One can see that the transition profile (2.55):

• Propagates with the shock velocity U = 1
2
(v1 + v2) ;

• Has the characteristic width ∆ = 2ν
v2−v1 , so ∆→ 0 as ν → 0 for fixed v1,2, v1 6= v2.

Hence the constructed exact particular solution of the Burgers’ equation is consistent with

the discontinuous shock wave theory and the viscous transition layer (2.55) just reveals the

internal structure of the “discontinuity” in the classical dissipative shock wave.
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We note that the general solution to the Burgers’ equation is obtained using the famous

Cole-Hopf transformation

v = −2ν
φx
φ
, (2.56)

which reduces the Burgers’ equation (2.58) to the classical linear heat equation

φt = νφxx, (2.57)

for which the general solution is well known.

2.4.3 Dispersive regularisation of a shock

In some media the effects of dissipation are negligibly small compared with the effect of

dispersion. Resolution of the wave breaking singularities in such dispersion-dominated me-

dia is accompanied by the generation of nonlinear wavetrains called dispersive shock waves

(DSWs). DSWs represent unsteady, expanding wave structures and have a distinctive spatial

structure characterised by successive solitons forming at one of DSW’s edges and transform-

ing into a linear wave packet near the the opposite edge [16, 25]. Unlike the classical shock,

the DSW has two different speeds associated with its propagation: the speeds of the trailing

and the leading edges.

Physically, DSWs manifest themselves as undular bores on rivers (famous examples in-

clude the undular bore observed on the river Severn) and in density-stratified waters of

coastal oceans, as collisionless shocks in rarefied plasmas and as nonlinear diffraction pat-

terns in laser optics. Having been recognised for decades as a phenomenon of fundamental

physical significance and playing for dispersive fluid flows the role analogous to that of viscous

shocks in classical fluid dynamics, DSWs have gained special interest recently due to ground

breaking experiments on Bose-Einstein condensates [2]. Furthermore, an optical analogue

of superfluid DSWs realised in recent experiments [3] has made it possible to investigate

nonlinear BEC phenomena in an all-optical setting providing further venue for experimental
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Figure 2.10: Oscillatory structure of dispersive shock wave in the KdV equation

studies of this universal physical phenomenon in its“pure” dissipationless form.

The simplest dispersive correction to the Hopf equation is proportional to vxxx and the

corresponding generic mathematical model describing the structure of DSWs in media with

negative dispersion is the KdV equation

vt + vvx + vxxx = 0. (2.58)

A typical example of the DSW solution to the KdV equation is shown in Figure 2.10.

An analytical description of the DSW for the KdV equation (2.58) was for the first time

constructed by Gurevich and Pitaevskii [17] using the Whitham method of slow modulations

[16]. The main assumption in the theory of Gurevich and Pitaevskii was that the DSW can

be locally described by the travelling wave solution of the KdV equation (i.e. is the cnoidal

wave):

v(x, t) = α− (α− β)sn2
(√

(α− γ)/2(x− ct),m
)
, (2.59)

where

c =
1

3
(α + β + γ), m =

α− β
α− γ

. (2.60)

Here α, β and γ are constant parameters (integrals of motion) and 0 ≤ m ≤ 1 is the modulus.

When m = 0, the cnoidal solution (2.59) becomes a vanishing amplitude linear wave; when

m = 1 it transforms into the KdV soliton. If the parameters α, β and γ are allowed to
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vary slowly, their x, t-evolution is governed by the Whitham modulation equations, obtained

by averaging of three KdV conservation laws [16, 29]. In particular, the modulus m varies

across the DSW from m = 0 at the trailing edge to m = 1 at the leading edge. Using the

numerically established structure of a DSW, Gurevich and Pitaevskii formulated a special

system of matching conditions for the KdV-Whitham system and found its similarity solution

describing the variations of α, β and γ in the DSW forming as a result of the decay of an

initial discontinuity v(x, 0) = AH(−x), where A is a constant and H(x) is the Heaviside step

function. In particular, it follows from the Gurevich-Pitaevskii solution, that the DSW is

confined to a uniformly expanding region −At < x < 2
3
At, and the soliton amplitude at the

DSW leading edge is as = 2A. A detailed description of the Gurevich-Pitaevskii approach

applied to the defocusing NLS equation will be presented later in the next Section but we

mention here that the key to the the construction of the modulation solutions for both KdV

and defocusing NLS equations is the existence of the Riemann invariants for the associated

Whitham systems.

Since the pioneering Gurevich-Pitaevskii paper, there have been a significant number of

research works studying formation and evolution of DSWs for the KdV equation (see e.g.

[30] and references therein). One should separately mention the series of works by Lax,

Levermore and Venakides [31, 32] on the zero dispersion limit of the KdV equation where

they rigorously proved that the DSWs are indeed asymptotically described by the solutions

of the KdV-Whitham equations.

2.4.3.1 Dispersive shock waves in Bose-Einstein condensates

One of the main examples of DSWs considered in the Thesis are relevant to the superfluid

dynamics of Bose-Einstein condensates (BECs). Below we shall briefly outline some proper-

ties of BECs and present a list of some important recent experimental and theoretical works

on the DSW dynamics in BECs

A BEC is a quantum fluid created by cooling weakly interacting boson gas to less than
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one millionth of a degree above absolute zero. This state of matter was predicted by Einstein

(1925) by generalising Bose’s work on the statistical mechanics of photons to atoms. The

work introduced the idea of BECs, the condensates modelled by Bose-Einstein statistics,

which describes the statistical distribution of bosons (particles with integer spin) over the

energy states in thermal equilibrium.

The first experimental realisation of the BEC was accomplished by Eric A. Cornell and

Carl E. Wieman [33] and Wolfgang Ketterle [34] in 1995; for which they were awarded the

Nobel Prize in Physics in 2001. The BEC was created by cooling rubidium atoms (Cornell

and Wieman) and sodium atoms (Ketterle) to 20 nanoKelvin, i.e. 20x10−9 degrees above

absolute zero - a temperature achieved using a combination of laser and evaporative cooling

methods. At this temperature, very close to absolute zero, the constituent parts of the atom

extend over a large area and are then free to flow between one another; thus each atom

may occupy the same dimensional space and share the same energy state, thus becoming

indistinguishable. In other words, the atoms coalesce into a single ‘fluid’ or ‘cloud’ known

as the BEC, which some refer to as a superatom. The induced BEC dynamics provide an

opportunity to conduct very subtle experiments where a number of macroscopic effects may

be observed such as formation of bright and dark solitons, vortices and DSWs.

During the creation of the BEC, the atoms are held in place by a magnetic trap whose

potential prevents the fluid from expanding. Once the BEC has been created, waves may be

induced in several ways. The BEC can be made to move through different guides [35]. Laser

beams can be used to create disturbances in the BEC. For instance, in the experiment by

Cornell’s JILA group [1] a 2D ‘pancake’ sample of a BEC was ‘pierced’ with a powerful laser

beam leading to the formation of the so-called ‘blast waves’ [2] (see Figure 2.12). These blast

waves were identified in [2] with circular DSWs using earlier analytical results of [19] on the

1D DSW dynamics in the defocusing NLS equation. A typical profile of the DSW solution to

the 1D defocusing NLS equation is shown in Figure 2.11. One can see that, compared to the

KdV dynamics (see Fig. 2.10), the DSW in the defocusing NLS dispersive hydrodynamics
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Figure 2.11: Oscillatory structure of right-propagating DSW in the defocusing NLS equation

has a ‘reversed’ structure with the trailing dark soliton and the leading linear wavepacket.

In a different series of experiments by Cornell’s group [1], laser beams served as localised

obstacles for BEC flows creating oblique DSWs confined to a Mach cone [24, 36] and linear

waves located outside this cone [37], which can be interpreted as BEC ‘ship-waves’ [38]. The

BEC can also be confined to an elongated trap such that the dynamics become effectively

one-dimensional; then sweeping of a broad laser beam through the BEC has been found to

be accompanied by the generation of a train of dark solitons [6] (see Figure 2.13). As was

shown in [20], this soliton train effectively represents a DSW slowly propagating downstream

the laser beam.

BEC represents a unique model ‘laboratory’ for the study of nonlinear waves in a theo-

retical sense since it is a superfluid (i.e. a purely conservative medium), where the dynamics

are described very well by one of the canonical nonlinear wave equations, namely, an ex-

tended version of the NLS equation, called the Gross-Pitaevskii (GP) equation [39]. The GP

equation is essentially a multi-dimensional NLS equation with an added external potential

term. It reads

i~
∂ψ

∂t
= − ~2

2m
4 ψ + V (r)ψ + g|ψ|2ψ. (2.61)

Here ψ is a complex field variable (the so-called order parameter, or condensate wave func-

tion), ~ is Planck’s constant, g is an effective coupling constant (g > 0 corresponds to BEC

with repulsive interactions between atoms and allows for the formation of dark solitons [25];

g < 0 corresponds to the attractive interactions and the formation of bright solitons [25, 39]),
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and V (r) is the potential of the external forces acting on the condensate, e.g. the confining

trap potential or the potential acting on the BEC in the form of a submerged obstacle in

the BEC.

An important feature of the GP equation is that its one-dimensional reduction coincides

with the integrable nonlinear Schrödinger (NLS) equation with an added potential term

2iψt + ψxx − 2g|ψ|2ψ − 2V0(x, t)ψ = 0. (2.62)

As we already mentioned, there are experimental configurations where the one-dimensional

BEC dynamics arise naturally; these configurations are also of significant theoretical inter-

est for two mutually complementary reasons: (i) 1D dynamics often admits full analytical

description and could provide important insights to the dynamics in the more complicated

configurations; (ii) some non-trivial features of 1D BEC dynamics are absent in higher di-

mensions. The 1D setting will be the focus of the Thesis.

0†Readers may view, browse, and/or download material for temporary copying purposes only, provided
these uses are for noncommercial personal purposes. Except as provided by law, this material may not be
further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in
whole or part, without prior written permission from the American Physical Society.
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Figure 2.12: Experimental figure of a blast wave (circular DSW) in a defocusing BEC [2].
Reprinted figure with permission from M.A. Hoefer, M.J. Ablowitz, I. Coddington, E.A.
Cornell, P. Engels and V. Schweikhard, Physical Review Letters, Dispersive and classical
shock waves in Bose-Einstein condensates and gas dynamics, 74, 023623, 2006. Copyright
(2006) by the American Physical Society.

Figure 2.13: Experimental figure of the density distribution in a one-dimensional defocusing
BEC after the laser beam has been swept through it [6]. Dark fringes are the signatures
of dark solitons. Reprinted figure with permission from P. Engels and C. Atherton, Physi-
cal Review Letters, Stationary and non-stationary fluid flow of a Bose-Einstein condensate
through a penetrable barrier, 99, 160405, 2007. Copyright (2007) by the American Physical
Society.†

Observations of DSWs in BEC have spurred a number of experiments in other media,

where DSWs are a key feature and reveal important information about physical properties of

the medium through which they propagate. From the mathematical point of view, the DSWs

in BECs are of great interest as they provide a unique field of application of some rather

refined mathematical theories connected, in particular, with integrable dynamics. In most

other fluids DSWs come under the effect of dissipation, which leads to significant alterations
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of the DSW properties (and the corresponding mathematical analysis) – to be discussed in

the Subsection 2.4.4 below. As such, experimental studies of DSWs in the context of BECs

have been met with considerable interest. Theoretical study of DSWs in BECs have also

been of great interest for other areas of applied mathematics where the Whitham method

[16] has been utilised. A sample of recent important experimental, analytical and numerical

publications on DSW dynamics in BECs is summarised in Table (2.1).
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Table 2.1: Summary of recent work on DSWs in BECs

Work carried out Author(s) Experimental
(E)/ Ana-
lytical (A)/
Numerical
(N)

Date Reference

First experimental observations of blast
waves in BECs reported.

Cornell E 2004 [1]

First analytical description of 1D DSW
in the BEC context.

Kamchatnov,
Gammal,
Kraenkel

A/N 2004 [40]

A method to generate DSWs in BEC
using Feshbach resonances proposed.

Perez-Garcia,
Konotop, Brazh-
nyi

A 2004 [41]

Blast waves experimentally observed in
BECs identified with DSWs.

Hoefer, Ablowiz
et.al

E/A 2006 [2]

Global regularisation to describe two-
phase interactions of NLS DSWs.

Hoefer,
Ablowitz

A 2007 [13]

DSW generation in BECs via one-
dimensional interactions of degenerate
RWs.

Hoefer, Engels,
Chang

A/N 2008 [14]

Two-dimensional DSWs as oblique soli-
ton trains in BEC flows past obstacles.

El, Kamchatnov A 2006 [36]

Dark soliton generation in the quasi-1D
BEC flow past penetrable barrier.

Engels, Ather-
ton

E 2007 [6]

Generation of piston DSWs in BECs. Hoefer,
Ablowitz, En-
gels

A/N 2008 [42]

DSW generation in the transcritical
BEC flow through a penetrable barrier.

Leszczyszyn et
al.

A/N 2009 [20]

Stationary 2D DSW generation in hy-
personic BEC flows past slender obsta-
cles.

El et al A/N 2009 [24]

Non-stationary 2D DSW generation in
supersonic BEC flows past corners.

Hoefer and Ilan A/N 2009 [43]

2.4.3.2 Dispersive shock waves in nonlinear optics

Nonlinear crystal optics is a branch of optics that describes the behaviour of light in nonlin-

ear media, i.e. in media whose dielectric permittivity depends on the light intensity. This

nonlinearity is typically only observed at very high light intensities. Nonlinear optics has
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been a rapidly growing field in recent decades, as it has many uses: in lasers, telescopes

and in fiber optics communication systems. A particular interest has been drawn to the

properties of optical solitons due to their potential technological applications in the telecom-

munication technologies (see, e.g., [45, 46]). Different kinds of solitons have been observed

in various nonlinear optical media and their behavior has been explained in the frameworks

of such mathematical models as NLS and generalised nonlinear NLS equations for different

dimensions and geometries, so that one can consider the properties of single solitons as well

enough understood. The properties of optical DSWs have been far less explored. One of the

first theoretical papers on optical DSWs [44] was devoted to a systematic study of 1D DSWs

in optical fibers with application to transoceanic communication systems. This was done in

the framework of the defocusing cubic NLS equation. The recent renewed interest to optical

DSWs has been greatly stimulated by the possibility to reproduce, in all-optical settings,

the results of very expensive BEC experiments. Indeed, an analogy between the propagation

of light beams in nonlinear media and superfluid flow is well known and quite suggestive.

Formally, it is based on a mathematical similarity of the equations for electromagnetic field

evolution of light beams in paraxial approximation and GP equations for superfluid motion

of BECs of dilute gases.

In the series of experiments [3] by J. Fleischer’s Princeton group the BEC DSW dy-

namics have been quite accurately reproduced using the laser beam propagation through

self-defocusing photorefractive crystals. Some experimental figures from this work can be

seen in Figure 2.14. Photorefractive materials can be also used to store temporary, erasable

holograms and are useful for holographic data storage [47]. The paraxial light beam prop-

agation along z-axis through the photorefractive crystal is described by the NLS equation

with saturable nonlinearity (the sNLS equation) [45, 48, 50]

2iψt + ψxx −
2|ψ|2

1 + γ|ψ|2
ψ = 0, (2.63)

where ψ(x, z) is the complex optical field envelope and γ is the saturation parameter. Pho-
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torefractive optical solitons were first observed in the experiment [51] and the formation of

photorefractive DSWs was first observed in [52] where the beam non-uniformities gave rise

to the singularities which were resolved by DSWs. Another very interesting photorefractive

DSW experiment was recently reported in [5], where the transcritical (resonant) generation

of DSWs was observed, similar to the Engels-Atherton BEC experiment [6] discussed in the

previous subsection. The results of this experiment were interpreted in [5] as nonlinear wave

tunneling accompanied by the generation of transmitted and reflected DSWs.

To study the BEC effects using such an optical modelling it is important to quantify the

effects of the optical saturation on the DSW formation and evolution since such a saturation

is not present in BECs. For that purpose, the theory of DSWs in the sNLS equation is

necessary. Unlike the cubic NLS equation (which can be obtained from equation (2.63)

by setting γ = 0 in it), the sNLS equation (2.63) with γ 6= 0 is not integrable by the IST

method and the associated Whitham modulation system does not possess Riemann invariants

so that the analytical modulation solutions are very difficult (or even impossible) to obtain.

Nevertheless, it was shown in [53–55] that in this case the main characteristics of the DSW

can be found by using some general properties of the Whitham equations which remain

present even when one deals with non-integrable dispersive-hydrodynamic equations. Some

refer to this method as El’s method [56] and it was used in [57] to construct an analytical

description of DSWs in the framework of the sNLS equation (2.63). We shall refer to it as

the dispersive shock fitting method. This method will be discussed in subsequent section

(4.7) and used in Section 6 to describe the head-on interactions of the photorefractive DSWs

and RWs.

A sample of recent important experimental, analytical and numerical publications on

DSWs in nonlinear optical media is summarised in Table (2.2).
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Table 2.2: Summary of previous work on optical DSWs

Work carried out Author(s) Date Reference

Optical wave breaking was observed in the
propagation of light through a nonlinear fi-
bre.

Rothenberg,
Grischkowsky

1989 [58]

Modulation theory of 1D optical DSWs in
NRZ optical communication systems.

Kodama 1999 [44]

DSWs observed in photorefractive nonlinear
optical crystals.

Wan, Jia, Fleis-
cher

2007 [3]

Experimental observation of DSW in optical
media with thermal nonlinearity.

Ghofraniha,
Conti, Ruocco,
Trillo

2007 [59]

Observation of DSWs in optical media with
nonlocal nonlinearity.

Barsi, Wan, Sun,
Fleischer

2007 [4]

Modulation theory of 1D DSWs in photore-
fractive materials.

El et. al 2007 [57]

Nonlinear optical wave tunnelling accompa-
nied by the DSW generation (experiment).

Wan, Muenzel,
Fleischer

2010 [5].

Figure 2.14: Optical experimental figures of two one-dimensional DSWs and two interacting
two dimensional DSWs performed at Princeton University [3]. Permission obtained for
reprint of figure.

2.4.4 Effects of weak dissipation on a dispersive shock wave

While our main concern in the Thesis will be with purely conservative, superfluid DSWs,

for the completeness of the exposition we also briefly describe the combined effect of weak
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dissipation and dispersion on the structure of a shock wave. Such dispersive-dissipative

resolution of the wave breaking singularity is often modelled by the KdV-Burgers’ (KdV-B)

equation

ut + uux + uxxx = νuxx, (2.64)

where 0 < ν � 1.

We consider solutions of the KdV-B equation (2.15) with the boundary conditions at

infinities

u→

 u2 x→ −∞,

u1 x→ +∞ ,
(2.65)

where u2 > u1. We shall look for a steady profile moving with constant velocity U , i.e. a

travelling wave u = u(ξ), where ξ = x− Ut. Then the KdV-B equation becomes an ODE,

−Uuξ + uuξ + uξξξ = νuξξ. (2.66)

Integrating once we obtain an ODE for a nonlinear oscillator with damping

uξξ + u2/2− Uu+ C = νuξ, (2.67)

where U,C are found from boundary conditions (2.65) (assuming uξ, uξξ → 0 as |ξ| → ∞):

U =
1

2
(u1 + u2) , C =

1

2
u1u2 , (2.68)

i.e. the oscillatory solution moves as a whole with the classical shock speed.

The detailed phase plane analysis of the ODE (2.68) has been performed by Johnson

in [60]. The main result of this analysis is the existence of the critical value νcr for the

viscosity coefficient ν so that for ν < νcr the solution has an oscillatory profile and exhibits

a solitary wave at the leading edge while for ν > νcr the solution is smooth, and for ν � 1

it asymptotically transforms into the viscous shock Taylor’s profile (2.55).
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Figure 2.15: The comparison of the shock profiles for KdV-B equation for different values of
the viscosity coefficient ν. Dashed line: ν = 0, the conservative unsteady DSW of the KdV
equation; Solid blue line: the oscillatory shock profile for 0 < ν < νcr; Solid red line: smooth
viscous shock profile for ν > νcr.

The comparison of KdV-B shock wave profiles for different values of the viscosity coef-

ficient ν is shown in Figure 2.15. It should be stressed that, despite the fact that, similar

to the ‘pure’ DSW in the KdV equation, the KdV-B shock for ν < νcr has an oscillatory

profile and exhibits a solitary wave at its leading edge, there are crucial differences between

the two waves. Firstly, for 0 < ν < νcr the leading soliton amplitude is as = 1.5A rather

than as = 2A for the KdV equation, where A = u2 − u1 is the jump across the shock. Most

importantly, and in sharp contrast with the purely conservative DSW of the KdV equation,

the KdV-B shock is a steady oscillatory structure propagating as a whole with a single clas-

sical shock speed and thus, has global properties of classical shocks rather than DSWs – see

Figure 2.15.

2.5 Hyperbolic quasi-linear systems

Our previous analysis was restricted to a single Hopf (simple wave) equation and its dissipa-

tive and dispersive regularisations in the form of the Burgers’, KdV, and KdV-B equations.

All these equations describe uni-directional evolution of a single quantity. Generally, of
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course, waves can propagate in both directions (in an appropriate reference system) and also

there can be more than one physical quantity describing the system. This establishes our

interest in multi-component quasi-linear systems of a general form

uit + Aij(u, x, t)u
j
x = 0 , i = 1, . . . , N , (2.69)

where u(x, t) = {u1, u2, · · · , uN} ∈ RN , the eigenvalues of the RN×N matrix A(u, x, t) are

real and there are N linearly independent left eigenvectors.

A typical example is the classical shallow water system (N = 2), equation (2.1).

2.5.1 Characteristics and Riemann invariants

Riemann invariants and the corresponding characteristic velocities for the SWE were formally

introduced in Section 2.1 (see (2.6 – 2.8)). In this Section we outline the connection of the

Riemann invariant form of a hyperbolic system of hydrodynamic type with the theory of

characteristics for the general case N ≥ 2.

2.5.1.1 N = 2

We start with the systematic derivation of the Riemann invariant form (2.7) for the SWE

(2.1). The SWE (2.1) contain information about the rate of change of h, u in different

directions of the (x, t) plane. Let us now consider the linear combination

{ut + uux + hx}+m{ht + hux + uhx} = 0, (2.70)

where m is determined by the condition that equation (2.70) assumes a uni-directional form,

in which both quantities h and u are differentiated in the same direction:

{ut + vux}+m{ht + vhx} = 0. (2.71)
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Now comparing equations (2.70) and (2.71) we find

u+mh = u+
1

m
= v, (2.72)

which gives m = ± 1√
h

so that v = v± = u±
√
h.

Setting these values in (2.71), we have

(1
2
u±
√
h)t + (u±

√
h)(1

2
u±
√
h)x = 0. (2.73)

The values λ± = u ± 2h, which remain constant along the respective characteristics dx
dt

=

u ±
√
h, are called the Riemann invariants. The SWE in the Riemann form are given by

diagonal system (2.7), where V± = u±
√
h are the characteristic velocities.

2.5.1.2 N > 2

To generalise the approach outlined in the previous subsection we consider an N -component

quasi-linear system

uit + Aij(u, x, t)u
j
x = 0 , j = 1, . . . , N , (2.74)

(summation over repeating indices is assumed). Also, for simplicity we assume A(u, x, t) =

A(u). We introduce a linear combination

li{uit + Aij(u)ujx} = 0 , (2.75)

where l = l(u) is some vector.

The PDE (2.75) assumes the characteristic form:

li
dui

dt
= 0 on

dx

dt
= λ (2.76)

provided liA
i
j = λlj , (2.77)
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so that l = l{k} is the left eigenvector of the matrix A corresponding to the eigenvalue

λ = λk(u), where λk, k = 1, 2, . . . , N are the roots of the characteristic equation

|Aji − λδ
j
i | = 0. (2.78)

System (2.74) is called hyperbolic if the eigenvectors l{k} form a basis (i.e. if there are N

linearly independent eigenvectors l{k}).

Each equation in the characteristic form (2.76) introduces its own linear combination of

the derivatives lidu
i/dt (we omit the upper index {k} for li). In some cases it is possible to

find an integrating factor µ(u) such that

µlidu
i = dr (2.79)

where r = r(u). Equation (2.79) is equivalent to the requirement that

µli = ∂r
∂ui

, i = 1, . . . , N. (2.80)

If N = 2 one can always find an equation for µ by cross-differentiating (2.80). If the system

has two independent eigenvectors l{k} (hyperbolicity), there are two integrating factors µk

and two corresponding functions r1(u), r2(u). However, for N > 2 the system of equations

for µ is overdetermined and, generally, inconsistent.

If it is possible to introduce rk for each of N characteristic forms (2.76), then the system

of characteristic equations becomes

drk

dt
= 0 on

dx

dt
= V k(r), (2.81)

where V k(r) = λk(u(r)) are the characteristic speeds. Equations (2.81) are equivalent to a

diagonal system:

rkt + V k(r)rkx = 0, k = 1, . . . , N, (2.82)
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(no summation over k is assumed!). Thus rk are the Riemann invariants. As we have seen,

Riemann invariants always exist for hyperbolic hydrodynamic type systems of two equations

but for N > 2 they can exist only in exceptional cases.

2.5.2 Generalised hodograph method

Earlier, in Section 2.3 we formulated the hodograph method for the integration of one-

dimensional hydrodynamic type systems consisting of two equations. In 1985 S. Tsarev

proposed the Generalised Hodograph Method [61], which, under certain conditions, is appli-

cable to systems with N > 2. .

Theorem (Tsarev 1985): The general local smooth non-constant, rix 6= 0, solution of the

diagonal hyperbolic hydrodynamic type system

rkt + V k(r)rkx = 0, k = 1, . . . , N (2.83)

has the form

x− V i(r)t = W i(r) , (2.84)

where N functions W i(r) satisfy linear overdetermined system of PDEs

∂iW
j

W i −W j
=

∂iV
j

V i − V j
, i, j = 1, . . . , N, i 6= j, ∂i ≡

∂

∂ri
(2.85)

provided the characteristic velocities V i(r) satisfy the following set of semi-Hamiltonian con-

ditions

∂j
∂kV

i

V k − V i
= ∂k

∂jV
i

V j − V i
, i 6= j 6= k . (2.86)

This theorem establishes two conditions of integrability of a hydrodynamic type system: (i)

existence of the full system of Riemann invariants; (ii) semi-Hamiltonian property (2.86).
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2.6 Whitham method of slow modulations

The famous Inverse Scattering Transform (IST) method is a powerful tool to analyse be-

haviour of solutions to the so-called completely integrable systems such as the KdV equation,

the cubic NLS equation and many other nonlinear wave equations. The IST method, how-

ever, has a number of restrictions to its applicability. Apart from the existence of the so-called

Lax pair for the equation, it requires that initial conditions must decay sufficiently rapidly

as x→ ±∞. Even within the boundaries of its formal applicability, the IST is not effective

when one has to deal with solutions involving large number of solitons as the N -soliton so-

lutions become increasingly difficult to analyse with growth of N . Since the DSW evolution

involves the production of the increasing number of waves (including solitons) and also, the

DSW solutions tend to different values as x→ ±∞, the IST (at least in its canonical form)

cannot be applied to the DSW description, even in integrable systems.

In the 1960s, G. Whitham developed an asymptotic theory to treat the problems involving

periodic travelling wave solutions (cnoidal waves (2.59) in the KdV equation context) rather

than individual solitons. It is clear that the periodic travelling wave solution to a nonlinear

dispersive wave equation as such, similar to the plane monochromatic wave in linear wave

theory, does not transfer any ‘information’ and does not solve any reasonable class of IVPs

(except for the problem with the initial data in the form of a cnoidal wave). However, one

can try to construct a modulated cnoidal wave, a nonlinear analog of a linear wave packet,

which can presumably be an asymptotic outcome in some class of the nonlinear dispersive

IVPs.

The Whitham method is based on the scale separation and can be viewed as a fully

nonlinear version of the multiple-scale perturbation theory, in which the ‘fast’ wave is a

fully nonlinear periodic solution of the original dispersive equations while the ‘slow’ wave

describes its modulation (variations of the mean, the amplitude, wavelength, frequency etc).

The modulation equations can be obtained in several ways:

1. By using formal multiple scale expansions, in which the leading term is the periodic
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travelling wave solution, parametrised by several ‘integrals of motion’ (constants of

integration). Then the equations describing slow evolution of these integrals of motion

arise as conditions of the absence of an unbounded growth in the first order approx-

imation in the small parameter ε � 1 defining the spatio-temporal scale separation

(see [62]).

2. By applying an appropriate averaging technique (averaging of the conservation laws or

an averaged variational principle) [16, 29].

Both approaches lead to the same system of modulation equations, which are usually referred

to as the Whitham equations. Below we outline the original Whitham method [29] for

obtaining the modulation equations by formal averaging of dispersive conservation laws over

the family of periodic travelling wave solutions. This procedure is more convenient for our

purposes than other techniques.

We consider a general dispersive-hydrodynamic system of the form

KM,N(U; ∂tU, ∂
2
ttU, . . . ; ∂xU, ∂

2
xxU, . . . ) = 0, (2.87)

where K is a vector operator and U(x, t) is a vector function and M,N are the orders of

the system with respect to the t− and x− derivatives respectively. When calling the system

(2.87) a dispersive hydrodynamic system we assume that

• it has real linear dispersion relation ω = ω0(k), and also ω′′0(k) 6= 0;

• its dispersionless limit represents a hyperbolic system of hydrodynamic type (see Chap-

ter 2) (the dispersionless limit is formally obtained by replacing x 7→ εx, t 7→ εt and

then letting ε→ 0 while assuming boundedness of all derivatives of U(x, t) involved).

Examples of dispersive-hydrodynamic systems include the KdV equation, the defocusing NLS

equation, the Boussinesq systems for shallow water waves and many others. On the other

hand, say, the sine-Gordon equation φtt − φxx + sinφ = 0 is not a dispersive-hydrodynamic

43



CHAPTER 2. HYPERBOLIC WAVES AND DISPERSIVE HYDRODYNAMICS: AN
OVERVIEW

system as it does not have a dispersionless limit in the form of a system of hydrodynamic

type.

We assume that system (2.87) possesses a family of periodic travelling wave solutions of

the form U = U(θ), where θ = kx−ωt− θ0, k being the wavenumber, ω the wave frequency

and θ0 is the initial phase. For such a family, the system (2.87) can be reduced to an ODE

of the form

(kfθ)
2 = G(f), (2.88)

for one of the components of the vector U in (2.87) so that

f = f(θ), θ = kx− ωt− θ0, f(θ + 2π) = f(θ). (2.89)

We assume that the function G(f) has at least three real roots f1 < f2 < f3 so that it can

be represented as

G(f) = (f − f1)(f − f2)(f − f3)H(f), (2.90)

and H(f) is a ‘well-behaved’ function, with any zeros lying outside the interval (f1, f3).

This is a typical situation for dispersive-hydrodynamic systems. Let H > 0. Then the

2π−periodic solution specified by (2.88) oscillates between the roots f1 and f2. From the

condition of 2π -periodicity we find the wavenumber k as

k = π

(∫ f2

f1

df√
G(f)

)−1

. (2.91)

Then the wavelength is given by L = 2π/k. The travelling wave (2.89) is parametrised by

N constants of integration Cj, j = 1, · · · , N (one can use any set of N independent integrals

of motion as the parameters, i.e. the roots fj themselves, the wavenumber, the frequency,

the amplitude, the mean value, etc.)

Let F (f) be some functional defined on the solutions of the equation (2.87). We introduce
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the averaging over the family of the periodic travelling wave solutions, by

F (C1, C2, . . . , CN) =
1

2π

∫ 2π

0

F (f(θ);C1, . . . , CN))dθ

=
k

π

∫ f2

f1

F (f)df√
G(f)

.

(2.92)

We now introduce the ‘slow’ variables X = εx and T = εt, ε� 1 and let Cj = Cj(X,T ) (i.e.,

in particular, k = k(X,T ), ω = ω(X,T )). Assume F = F (θ, C1, C2, . . . , CN) and express

partial t- and x- derivatives as asymptotic expansions

∂F

∂t
= −ωdF

dθ
+ ε

∂F

∂T
+O(ε2) ,

∂F

∂x
= k

dF

dθ
+ ε

∂F

∂X
+O(ε2). (2.93)

Then, in view of periodicity of F in θ, the averages of the derivatives (2.93) are calculated

as

∂

∂t
F = ε

∂

∂T
F +O(ε2) ,

∂

∂x
F = ε

∂

∂X
F +O(ε2). (2.94)

Assume that the dispersive hydrodynamics system (2.87) has at least N local independent

conservation laws of the form

∂tPj + ∂xQj = 0, j = 1, . . . , N , (2.95)

where Pj and Qj are some functions of the field variables U and their derivatives. Then

applying the averaging (2.92) to the system of conservation laws (2.95) we obtain a closed

system of evolution equations for Cj(X,T ) in the conservative form

∂

∂T
P j(C1, . . . , CN) +

∂

∂X
Qj(C1, . . . , CN) = 0 , j = 1, · · ·N. (2.96)

System (2.96) is called the Whitham modulation system. It is a system of hydrodynamic

type and the order of the Whitham system is equal to the number of independent integrals

of motion in the periodic solution. Generally, system (2.96) does not possess Riemann
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invariants for N > 2 (see Section 2.5.1.2), however, in some special cases the Riemann

invariants do exist due to very special properties of the original dispersive hydrodynamic

system. This is the case, for instance, for the modulation systems associated with the

KdV, NLS and other completely integrable equations. Moreover, the modulation systems

obtained by averaging of nonlinear dispersive integrable (by IST) systems turn out to be

semi-Hamiltonian (see (2.86)), i.e. integrable by the generalised hodograph transform (2.84),

(2.85). Thus, integrability is inherited under the Whitham averaging.

There is a deep connection between the structure of the IST spectrum of the travelling

wave solution and the Riemann invariants of the modulation system. For the KdV equation,

this connection was discovered in a very general, multiphase form, by Flaschka, Forest and

McLaughlin [49] and for the NLS equation by Forest and Lee [22] and Pavlov [23]. The

method of finding Riemann invariants for integrable averaged systems used in the cited

papers is based on the finite-gap integration theory (see e.g. [64]) and is quite technical.

A simpler version of this method applicable to the single-phase averaging was developed by

Kamchatnov [25].

One should emphasise that, unlike the IST method, the Whitham method of slow mod-

ulations can be applied to non-integrable dispersive-hydrodynamic systems. Of course, for

such systems with N > 2 the modulation Riemann invariants do not exist.

Often, dispersion-hydrodynamic systems have more conservation laws than required for

obtaining the modulation system (say, integrable systems like the KdV or NLS equations

have infinite number of conservation laws). The important result is that all modulation

systems obtained by the averaging of any N independent conservation laws are equivalent.

Apart from the averaged conservation laws (2.96) there is one more conservative mod-

ulation equation, which is consistent with the closed modulation system (2.96) but has no

local dispersive conservation law as a counterpart before the averaging. This equation is the
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conservation of waves law and has the form

kT + ωX = 0 . (2.97)

Equation (2.97) naturally arises in the formal multiple-scale perturbation approach to the

modulation theory (equivalent to the Whitham averaging) as the condition of the existence

of slowly modulated single-phase solutions with the ‘fast’ phase S(X,T )/ε such that the

local wavenumber and local frequency are defined as k = SX and ω = −ST respectively

(see e.g., [16, 62])). Then equation (2.97) follows from the equality of the mixed derivatives,

SXT = STX . We note that in the periodic solution k = k(C1, . . . , CN) and ω = ω(C1, . . . , CN)

so the wave conservation law, being consistent with the full modulation system, can be used

instead of any of the local averaged conservation laws.

The properties of the modulation system associated with the defocusing NLS equation

will be discussed in Chapter 3.
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Chapter 3

The defocusing NLS equation:

periodic solutions and modulation

system

The analysis of DSW dynamics in the superfluid flows is done in the framework of the

nonlinear modulation (Whitham) system associated with the defocusing NLS equation. In

this Chapter, we present the main results of the modulation theory of the defocusing NLS

equation. Although majority of these results were obtained earlier, we give some new, more

direct, proofs and derivations.

As outlined in Section 2.6, there are two main ingredients required for the derivation of

the modulation system for a dispersive-hydrodynamic equation: (i) the family of periodic

travelling wave solutions and (ii) a certain number of dispersive conservation laws. Then

the Whitham modulation equations (2.96) are obtained by the averaging (2.92) of the con-

servation laws over the period of the travelling wave solution. The number of conservation

laws required for the averaging is N − 1, where N is the number of integrals of motion

parametrising the periodic solution. The obtained modulation system is then closed by the

wave conservation law (2.97).
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The defocusing one-dimensional NLS equation is

2iψt + ψxx − 2|ψ|2ψ = 0, (3.1)

where ψ is the complex field variable, x is the spatial coordinate and t is time. Generally, it

describes evolution of an envelope (amplitude) of a small-amplitude modulated wavepacket

propagating in a nonlinear medium with strong dispersion. It also describes evolution of

the wave function of a rarefied BEC with repulsive inter-atomic interactions. Note, that in

the BEC context there is no small-amplitude approximation in the derivation of (3.1), the

small parameter being the BEC density (see [? ]). At last, equation (3.1) describes spatial

‘evolution’ of the complex optical field in the propagation of a paraxial light beam through

the nonlinear medium with the defocusing quadratic (Kerr) nonlinearity (see Section 2.4.3.2).

Let us begin by discussing some important basic properties of the NLS equation (3.1).

3.1 NLS equation: basic properties and travelling wave

solutions

3.1.1 Basic properties

3.1.1.1 Dispersive-hydrodynamic form

By means of the so-called Madelung transformation [63]

ψ =
√
ρ exp(i

∫ x

u(x′, t)dx′), (3.2)

we can conveniently represent the NLS equation in its dispersive-hydrodynamic form. Here

ρ > 0 and u are real variables. By substituting (3.2) into the NLS equation (3.1) and
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separating real and imaginary parts we obtain the system

ρt + (ρu)x = 0, (3.3)

ut + uux + ρx + (
ρ2
x

8ρ2
− ρxx

4ρ
)x = 0. (3.4)

Here the variable ρ has the meaning of the ‘fluid’ density and u the ‘fluid’ flow velocity.

We note that in the BEC context ρ and u are actual condensate density and velocity. In

the nonlinear optics context, ρ is the light intensity and u is the local value of the wave

vector component transverse to the direction of the light beam propagation, in addition t is

the spatial coordinate along the beam propagation direction. One can observe that equation

(3.3) and the first three terms in equation (3.4) are the well-known SWE (2.1). The last term

in equation (3.4) is the dispersive term. It describes the effects of the ‘quantum pressure’ in

the BEC context and the spatial diffraction effects in nonlinear optics.

3.1.1.2 Dispersionless limit

To consider the dispersionless, long-wave limit of the NLS equation (3.3), (3.4) we introduce

the change of variables x′ = εx and t′ = εt, where ε � 1. Then in new variables the

hydrodynamic system (3.3) and (3.4) becomes

ρt′ + (ρu)x′ = 0,

ut′ + uux′ + ρx′ + ε2(
ρ2
x′

8ρ2
− ρx′x′

4ρ
)x′ = 0.

(3.5)

Letting ε→ 0 and assuming smoothness of ρ(x, t) and u(x, t) we obtain, on omitting primes,

the NLS dispersionless limit equations

ρt + (ρu)x = 0, ut + uux + ρx = 0, (3.6)
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which are nothing but the SWE (2.1) with density ρ playing the role of total depth h. As

shown in Section 2.1, equations (3.5) can be represented in the Riemann invariant form (2.7)

with Riemann invariants

λ± = 1
2
u±√ρ (3.7)

and characteristic velocities (2.8).

For sufficiently smooth initial conditions one can generally expect that the evolution (3.6)

would lead to the solution profile steepening and then to the wave breaking. In the vicinity

of the breaking point, one cannot ignore the dispersive term so that the dispersive resolution

of the wave breaking singularity results in the generation of a nonlinear wavetrain – a DSW

– as was outlined in Chapter 2.

3.1.1.3 Linear dispersion relation

Substituting ρ = ρ0 + ρ1 exp(i(kx − ωt)) and u = u0 + u1 exp(i(kx − ωt)), where ρ1 � ρ0

and u1 � u0, into the system (3.3), (3.4) and linearising with respect to ρ1, u1 we obtain

the relationship between frequency ω and the wavenumber k:

ω = ku0 ± k
√
ρ0 + 1

4
k2. (3.8)

Equation (3.8) is the dispersion relation for the defocusing NLS equation (the spectrum

of the so-called Bogolyubov modes in the BEC context). The two signs in equation (3.8)

correspond to the two directions in which the waves can propagate relative to the background

flow u0. One can readily see that ω′′ > 0 (positive dispersion) so the small-amplitude long

waves will propagate faster than small-amplitude short waves.
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3.1.1.4 Conservation laws

Being a completely integrable equation, the NLS equation (3.1) exhibits an infinite number

of conservation laws of the form

∂tPj + ∂xQj = 0. (3.9)

As we shall see, the single-phase periodic NLS travelling wave solution is parametrised by

four independent constants. Therefore, formally, we shall need only three NLS conservation

laws for the Whitham averaging (the fourth equation will be the wave conservation law

(2.97)).

The first conservation law corresponds to the mass, the second to the momentum and

the third to energy conservation:

∂tρ+ ∂x(ρu) = 0, (3.10)

∂t(ρu) + ∂x(u
2ρ+ 1

2
ρ2 +

ρ2
x

8ρ
− ρxx

4
+
ρ2
x

8ρ
) = 0, (3.11)

∂t(ρu
2 + 1

2
ρ2 +

ρ2
x

8ρ
) + ∂x(ρu

3 + 2ρ2u+
ρ2
xu

8ρ
) = 0. (3.12)

3.1.2 Travelling wave solution

We shall seek the periodic travelling wave solution for the NLS equation (3.1) in the form:

ψ(θ) = A(θ) exp (iφ(θ)) , θ = x− ct, (3.13)

where c = ω/k is the phase velocity. Applying this ansatz and separating real and imaginary

parts, we obtain

−cA′ + A′φ′ +
Aφ′′

2
= 0, (3.14)
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Acφ′ + 1
2
A′′ − 1

2
Aφ′2 − A3 = 0. (3.15)

Integrating the first equation we obtain

φ′ = c− 2c1

A2
, (3.16)

where c1 is a constant of integration.

Substituting (3.16) into equation (3.15), the system is reduced to

Ac2 + A′′ − 4c2
1

A3
− 2A3 = 0. (3.17)

Multiplying by A′ and integrating, we obtain

−A4 + c2A2 + A′2 +
4c2

1

A2
+ c2 = 0, (3.18)

where c2 is the second integration constant.

At this point it is convenient to introduce ρ = A2 and u = φ′, which is consistent with

the hydrodynamic transformation (3.2). Then equation (3.18) becomes

ρ′2 = 4(ρ3 − c2ρ2 − 4c2
1 − c2ρ) ≡ Q(ρ), (3.19)

and instead of (3.16) we have

u = c− 2c1

ρ
(3.20)

Equation (3.19) describes motion of a ‘particle’ in the potential −Q(ρ), where ρ > 0 is the

‘coordinate’ of the ‘particle’. A periodic motion takes place when the function Q(ρ) has

three real roots 0 < e1 < e2 < e3, then the particle oscillates between e1 and e2. In Figure

(3.1), three typical configurations of Q(ρ) are shown corresponding to a general nonlinear

periodic wave (solid line – three distinct roots e1, e2, e3), linear wave of infinitesimally small
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amplitude (dashed line – double root e1 = e2) and a (dark) soliton (dash-dotted line – double

root e2 = e3). Introducing the roots 0 < e1 < e2 < e3 of the polynomial Q(ρ) we represent

equation (3.19) in the form

ρ′2 = 4(ρ− e1)(ρ− e2)(ρ− e3). (3.21)

Thus we have the relationships between the parameters in (3.19)and the roots of the poly-

nomial:

c2
1 = 1

4
e1e2e3 , c2 = e1e2 + e1e3 + e2e3. (3.22)

Note that we do not present the relationship for the phase speed c(e1, e2, e3) as, due to the

invariance of the NLS equation under the transformation

ψ(x, t)→ exp(−ic̃(x− 1
2
c̃t))ψ(x− c̃t, t), (3.23)

the phase speed c can be taken as the fourth arbitrary constant (c̃→ c) along with e1, e2, e3.

Equation (3.21) has the well-known integral in terms of the Jacobi elliptic function sn (see,

e.g. [65])

ρ(x, t) = e1 + (e2 − e1)sn2(
√
e3 − e1(x− ct− θ0),m), (3.24)

where θ0 is an arbitrary initial phase and the modulus

m =
e2 − e1

e3 − e1

, 0 ≤ m ≤ 1 . (3.25)

The solution (3.24) is an analog of the famous cnoidal wave solution (as a matter of fact

(3.25) can be re-written in terms of Jacobi elliptic cn function) so we shall use this term for

the solution (3.24) as well.
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     Q(ρ)

ρ
0 e e e1 2 3

Figure 3.1: Plot of the ‘potential’ function Q(ρ). Solid line – periodic nonlinear oscillations,
has three roots e1, e2, e3. Dashed curve corresponding to the linear (harmonic) limit has the
double root e2 = e1. Dash-dotted curve corresponding to the soliton configuration has has
the double root e2 = e3.

The formula (3.20) for the hydrodynamic velocity can be rewritten in the form

u(x, t) = c− σ
√
e1e2e3

ρ
, (3.26)

where σ = ±1; σ = 1 corresponds to the waves propagating to the right and σ = −1 to the

left propagating waves.

Thus, the travelling wave solution to the defocusing NLS equation is parametrised by four

independent constants (integrals of motion) e1, e2, e3 and c. The fifth arbitrary constant θ0

represents the phase shift and will not affect the subsequent modulation analysis, which is

based on the averaging over the period. However, we will show that in some modulation

solutions this parameter plays an important role and can be represented as a function of

the ‘basic’ four parameters e1, e2, e3 and c (or some other equivalent set of their independent

combinations).
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The amplitude of the travelling wave a = e2 − e1. The wavelength L is defined as

L =

∫ L

0

dθ = 2

∫ e2

e1

dρ√
Q(ρ)

= 2

∫ e2

e1

dρ√
4(ρ− e1)(e2 − ρ)(e3 − ρ)

=
2√

(e3 − e1)
K(m),

(3.27)

where K(m) is the complete elliptic integral of the first kind.

We present expressions for the averaged density and velocity in the periodic solution

(3.24), (3.26). We introduce the averaging of a functional F (ρ(x, t)) over the period of the

NLS cnoidal wave (3.24) by (see (2.92))

F (e1, e2, e3, c) =
1

2π

∫ 2π

0

F (ρ(θ); e1, e2, e3, c))dθ

=
k

π

∫ e2

e1

F (ρ)dρ√
(ρ− e1)(e2 − ρ)(e3 − ρ)

,

(3.28)

where k = 2π
L

. Then

ρ̄ = e2
3 − (e3 − e1)2 E(m)

K(m)
,

ū = c+
e2e1

e3

Π1

((e2
3 − e2

1)

e2
3

,m
)
/K(m),

(3.29)

where E(m) and Π1(ν,m) are the complete elliptic integrals of the second and third kind

respectively. For the averaged momentum ρu we have

ρu = ρ̄c− σ
√
e1e2e3. (3.30)

The quantities (3.29), (3.30) will become the important physical characteristics of the

oscillatory flow in the DSW.

There are two important limiting cases of the cnoidal wave solution (3.24): the linear

wave and the soliton.
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Linear (harmonic) limit, m→ 0.

The linear limit is achieved by letting m→ 0 (i.e. the vanishing amplitude a = e2−e1 →

0) in the travelling wave solution. For m� 1 we have an asymptotic representation

ρ(x, t) ' e1 +
e2 − e1

2
cos
(
2
√
e3 − e1(x− ct)

)
. (3.31)

Equation (3.31) describes a linear periodic wave propagating on the background ρ = ρ0 =

e1 = e2. Passing to the linear limit in (3.27) we get for the wavenumber k = 2π/L =

√
e3 − e1 =

√
e3 − ρ0. Also from (3.26) we have for the phase speed c = u0 +σ

√
e3, where u0

is the background velocity (u→ u0 as a→ 0). Then, taking into the account that c = ω/k

we readily recover the defocusing NLS equation linear dispersion relation (3.8).

Soliton limit, m→ 1.

The soliton solution is obtained when m → 1, i.e. e2 → e3 (i.e. k → 0). In this,

infinite-wavelength limit, we obtain from (3.25)

ρ(x, t) = e3 −
e3 − e1

cosh2
(√

e3 − e1(x− ct)
) . (3.32)

This describes the ‘dark’ (or ‘grey’) soliton propagating on non-zero background ρ→ e3 = ρ0

as |x| → ∞. The soliton amplitude is given by a = e3 − e1. Considering (3.26) at |x| → ∞

and assuming ρ→ ρ0, u→ u0 as |x| → ∞ we obtain the relationship

c = u0 + σ
√

(ρ0 − a), (3.33)

connecting the soliton speed c with its amplitude a and the background flow ρ0, u0. This

relationship can be viewed as a defocusing NLS soliton ‘dispersion relation’.
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3.2 NLS-Whitham equations

Allowing the parameters e1, e2, e3, c of the travelling wave solution (3.24) to be slowly varying

functions of x and t, one can obtain, via the averaging or direct multiple-scales perturbation

procedure, a modulated nonlinear periodic wave where the evolution of e1, e2, e3, c is gov-

erned by the NLS-Whitham modulation equations. [22, 23]. The general description of the

Whitham method was presented in Section 2.6.

3.2.1 Averaged conservation laws

According to the Whitham prescription [16], to derive the modulation system for e1, e2, e3, c

one should average (3.28) three NLS conservation laws (3.10) – (3.12) over the period of the

travelling wave solution (3.24) and close the system by the wave number conservation law

(2.97). As a result we obtain the NLS-Whitham system in the form

∂tu+ ∂x(ρu) = 0. (3.34)

∂t(ρu) + ∂x(u2ρ+ 1
2
ρ2 +

ρ2
x

8ρ
− ρxx

4
+
ρ2
x

8ρ
) = 0. (3.35)

∂t(ρu2 + 1
2
ρ2 +

ρ2
x

8ρ
) + ∂x(ρu3 + 2ρ2u+

ρ2
xu

8ρ
) = 0. (3.36)

∂tk + ∂x(kc) = 0, (3.37)

where all dependent variables are expressed in terms of four ‘natural’ modulation parameters

e1(x, t), e2(x, t), e3(x, t) and c(x, t). Note, that we did not formally introduce new ‘slow’

independent variables X = εx T = εt, ε � 1 in the modulation system (3.34) – (3.37),

instead, from now on we shall use the same notations x, t for the independent variables

in the modulation system simply assuming that the dependent modulation variables vary

on a much larger spatio-temporal scale than the typical period and the wavelength of the

travelling wave solution.
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3.2.2 Riemann invariant representation

System (3.34) – (3.37) for e1(x, t), e2(x, t), e3(x, t) and c(x, t) is a system of hydrodynamic

type with a very complicated coefficient matrix (one can see explicit expressions (3.29) and

(3.30) for some of the simplest averages involved), and no apparent structure. This makes a

direct analytical integration of this system a very difficult task. However, it was shown in [22]

and [23] that, by introducing new dependent variables λ1 ≤ λ2 ≤ λ3 ≤ λ4 by relationships

e1 = 1
4
(λ1 − λ2 − λ3 + λ4)2,

e2 = 1
4
(λ1 − λ2 + λ3 − λ4)2,

e3 = 1
4
(λ1 + λ2 − λ3 − λ4)2,

c = 1
2
(λ1 + λ2 + λ3 + λ4),

(3.38)

the modulation system (3.34) – (3.37) reduces to the diagonal Riemann form

∂λi
∂t

+ Vi(λ1, λ2, λ3, λ4)
∂λi
∂x

= 0, i = 1, 2, 3, 4, (3.39)

where λ1, λ2, λ3, λ4 are the Riemann invariants and the characteristic velocities Vi can be

computed using the universal formula [66]

Vi = (1− 1

L
lnL)∂ic, (3.40)

where ∂i ≡ ∂
∂λi

and the wavelength L defined by (3.27), is expressed in terms of the Riemann

invariants λi (3.38) by

L(λ) =

∫ λ4

λ3

dλ√
(λ− λ1)(λ− λ2)(λ− λ3)(λ4 − λ)

=

∫ λ2

λ1

dλ√
(λ− λ1)(λ2 − λ)(λ3 − λ)(λ4 − λ)

=
2K(m)√

(λ4 − λ2)(λ3 − λ1)
> 0, i = 1, 2, 3, 4,

(3.41)
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where the modulus

m =
(λ2 − λ1)(λ4 − λ3)

(λ4 − λ2)(λ3 − λ1)
. (3.42)

The phase velocity c(λ) is given by (3.38).

The universal ‘potential’ representation (3.40) for the characteristic velocities is obtained

by considering the wave conservation law (3.37) as a consequence of the closed modulation

system in the Riemann form (3.39). Indeed, substituting k = k(λ), c = c(λ) into (3.37),

and using (3.39) to express ∂tλi = −Vi(λ)∂xλi we obtain

4∑
i=1

[
−Vi

∂k

∂λi
+ (

∂k

∂λi
c+ k

∂c

∂λi
)

]
∂λi
∂x

= 0. (3.43)

Since the derivatives ∂λi/∂x are independent, each term in the square brackets in (3.43)

must vanish, which yields representation (3.40) on using that k = 2π/L.

Substituting explicit expressions (3.41), (3.38) for L(λ) and c(λ) respectively we obtain

V1(λ1, λ2, λ3, λ4) = 1
2

∑
λi −

(λ4 − λ1)(λ2 − λ1)K(m)

(λ4 − λ1)K(m)− (λ4 − λ2)E(m)
,

V2(λ1, λ2, λ3, λ4) = 1
2

∑
λi +

(λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m)− (λ3 − λ1)E(m)
,

V3(λ1, λ2, λ3, λ4) = 1
2

∑
λi −

(λ4 − λ3)(λ3 − λ2)K(m)

(λ3 − λ2)K(m)− (λ4 − λ2)E(m)
,

V4(λ1, λ2, λ3, λ4) = 1
2

∑
λi +

(λ4 − λ3)(λ4 − λ1)K(m)

(λ4 − λ1)K(m)− (λ3 − λ1)E(m)
,

(3.44)

where E(m) is the complete elliptic integral of the second kind.

3.2.2.1 Properties of the NLS-Whitham system

Below we list some important properties of the NLS-Whitham system, which will be used in

the DSW analysis of the Thesis.
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• Hyperbolicity. The Riemann invariants λi defined by (3.38) are real. It then

follows from (3.44) that the characteristic velocities (3.44) are always real and distinct

as long as the Riemann invariants do not coincide. One can also prove the existence

of four independent left eigenvectors if for the case of multiple values of the Riemann

invariants. So system (3.39) is hyperbolic.

• Genuine nonlinearity. Differentiating (3.40)

∂iVi =
L

2(∂iL)2
∂2
iiL, (3.45)

and using the integral representations of L (3.27), one can deduce that ∂2
iiL > 0 for all

i, which then immediately implies

∂iVi > 0 for all i, (3.46)

so the NLS-Whitham system (3.39) and (3.44) is genuinely nonlinear [67].

• Characteristic velocity ordering. Using (3.40) and the integral representations

(3.27) by direct calculation

i > j implies Vi > Vj. (3.47)

Thus, the ordering λ1 ≤ λ2 ≤ λ3 ≤ λ4 of the Riemann invariants implies a similar

ordering V1 ≤ V2 ≤ V3 ≤ V4 for the characteristic velocities.

• Integrability. Using the ‘potential’ representation (3.40) for the characteristic ve-

locities it is not difficult to show (see [66]) that the relationships (2.86) are identically

satisfied, that is the NLS-Whitham system is semi-Hamiltonian, i.e. integrable by the

generalised hodograph transform (see Section 2.5.2).
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We note that properties (3.46) and (3.47) were established in [44, 68] using finite-gap inte-

gration framework for the derivation of the Whitham equations.

Now we consider the soliton and harmonic limits for the NLS-Whitham system following

the earlier consideration of these limits for the periodic wave.

Soliton limit, m = 1.

In this limit λ2 = λ3, so we have

V2 = V3 = 1
2
(λ1 + 2λ2 + λ4). (3.48)

This is nothing but the dark soliton velocity (see formula (3.55) below). The remaining two

characteristic velocities become

V1 = 3
2
λ1 + 1

2
λ4, V4 = 3

2
λ4 + 1

2
λ1. (3.49)

One can see that V1 and V4 coincide with the characteristic velocities of the SWE (the

dispersionless limit of the NLS equation) (2.8) where λ1 = λ− and λ4 = λ+.

Linear (harmonic) limit, m = 0

The harmonic limit m = 0 can be achieved in two different ways: λ2 = λ1 or λ3 = λ4

(see (3.42)).

When λ3 = λ4:

V3 = V4 = λ4 + 1
2
(λ1 + λ2) +

2(λ4 − λ2)(λ4 − λ1)

2λ4 − λ2 − λ1

,

V1 = 3
2
λ1 + 1

2
λ2, V2 = 3

2
λ2 + 1

2
λ1.

(3.50)
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When λ2 = λ1:

V2 = V1 = λ1 + 1
2
(λ3 + λ4) +

2(λ3 − λ1)(λ4 − λ1)

2λ1 − λ3 − λ4

,

V3 = 3
2
λ3 + 1

2
λ4, V4 = 3

2
λ4 + 1

2
λ3.

(3.51)

Using the NLS linear dispersion relation (3.8) and explicit expressions for k(λ) and ω(λ) = kc

it is not difficult to show that in both cases λ2 = λ1 and λ3 = λ4 the multiple characteristic

velocity coincides with the linear group velocity cg = ∂ω/∂k. The case λ3 = λ4 corresponds

to the right-propagating linear wave (sign ‘+’ in the linear dispersion relation) and λ2 = λ1

– to the left-propagating wave (sign ‘−’ in the linear dispersion relation).

Also, similar to the soliton limit, the remaining characteristic velocities coincide with the

characteristic velocities of the SWE.

Thus, in both harmonic and soliton limits the fourth-order modulation system (3.39)

reduces to the system of three equations, two of which agree with the dispersionless limit

of the NLS equation (3.6) (the SWE). This property makes possible the matching of the

modulation solution with the solution to the dispersionless limit equations at the point

where m = 0 or m = 1. This matching is central to the Gurevich-Pitaevskii problem.

3.2.2.2 Periodic solution in the Riemann invariant parametrisation

It is also instructive to present the NLS periodic solution (3.24) and its limiting forms as

m → 0 and m → 1 in the Riemann invariant parametrisation. Using relationships (3.38)

one casts the periodic solution (3.24) into the form

ρ(x, t) = 1
4
(λ4 − λ3 − λ2 + λ1)2 + (λ4 − λ3)(λ2 − λ1)sn2(

√
(λ4 − λ2)(λ3 − λ1)θ,m),

u = c− C

ρ
,

C = 1
8
(−λ1 − λ2 + λ3 + λ4)(−λ1 + λ2 − λ3 + λ4)(λ1 − λ2 − λ3 + λ4),

θ = x− ct− θ0,

(3.52)
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m =
(λ2 − λ1)(λ4 − λ3)

(λ4 − λ2)(λ3 − λ1)
, (3.53)

The wave amplitude a = (λ4 − λ3)(λ2 − λ1).

Linear limit, m→ 0

The linear periodic solution is obtained when either λ2 → λ1 or λ3 → λ4 and is given by

(we present only the formula for λ4 − λ3 � 1):

ρ(x, t) ' 1
4
(λ1 − λ2 + λ3 − λ4)2 +

(λ3 − λ4)(λ2 − λ1)

2
cos
(
2
√

(λ2 − λ3)(λ1 − λ4)(x− ct)
)
.

(3.54)

Here background density is given by ρ0 = 1
4
(λ1−λ2)2 and the phase velocity c = 1

2
(λ1 +λ2 +

2λ4). Also note that in the linear limit the wavelength (3.41) becomes L = 2√
(λ2−λ3)(λ1−λ4)

π.

Soliton limit

In the limit as m → 1 (i.e. as λ3 → λ2) the travelling wave solution (3.52) becomes a

dark soliton

ρ = 1
4
(λ4 − λ1)2 − (λ4 − λ2)(λ2 − λ1)

cosh2(
√

(λ4 − λ2)(λ2 − λ1)(x− ct− θ0))
, (3.55)

where ρs = 1
4
(λ4 − λ1)2 is the background density, as = (λ4 − λ2)(λ2 − λ1) is the soliton

amplitude and cs = λ1 + 2λ2 + λ4 is the soliton velocity. The velocity profile in the dark

soliton is given by second formula in (3.52), where one sets λ2 = λ3.

64



Chapter 4

DSW theory for NLS equation

The generic mechanism of the formation of DSWs via dispersive regularisation of the wave

breaking singularities was outlined in Section 2.4.3. In this Chapter, we present analytical

solutions describing the evolution of the so-called ‘simple DSWs’ in the dispersive hydrody-

namics governed by the defocusing NLS equation (3.1). These solutions will then be used

in Chapters 5,6 and 7 as ‘building blocks’ for the more complicated NLS flow configurations

involving the interaction of simple DSWs with external potentials and hydrodynamic RWs.

We first consider the NLS equation in the dispersive hydrodynamics form (3.3), (3.4)

with initial conditions

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x) , (4.1)

where the functions ρ0(x) and u0(x) are assumed to vary on a large spatial scale, ∆x � 1.

Then, at the initial stage of the evolution one can neglect the NLS dispersive term and

describe the evolution by the dispersionless limit of the NLS equation, i.e. by the SWE, until

the moment of the formation of the wave-breaking singularity, when the spatial derivatives

become large and one has to take dispersion into account, which results in the generation of

a nonlinear wavetrain – a DSW.

There are two approaches for the analytical description of DSWs using the Whitham

modulation theory. In the Gurevich-Pitaevskii approach [17, 18] one supplies the Whitham
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equations with certain boundary conditons ensuring the continuous matching of the aver-

age flow at the (free) DSW boundaries. In the other approach proposed by Kodama (see

[44, 69]) one uses the so-called ‘regularised initial value problem’ for the Whitham equa-

tions. The Gurevich-Pitaevskii formulation is more general and can be applied to any

type of dispersive-hydrodynamic IVPs while the Kodama’s setting is only applicable to the

dispersive-hydrodynamic problems with piecewise-constant initial conditions. In the The-

sis we shall use the Gurevich-Pitaevskii type problem formulation and its generalisation to

non-integrable systems proposed in [53].

4.1 Gurevich-Pitaevskii problem for the NLS-Whitham

system

Gurevich and Pitaevskii (1974) in their pioneering work [17] studied the DSW problem in

the context of the KdV equation (they referred to the DSW as to the collisionless shock

wave). The key assumption in the Gurevich-Pitaevskii theory is that the DSW can be

asymptotically represented as a slowly modulated periodic (cnoidal) wave. The appropriate

modulation providing matching of the DSW with external hydrodynamic flows is then found

by solving the Whitham equations equipped with certain boundary (matching) conditions.

The solution of the Whitham equations is then substituted into the periodic wave solution

of the original equation. The resulting modulated periodic solution asymptotically describes

the DSW transition between two smooth flows. Thus, instead of solving the original IVP

for the dispersive wave equation the Gurevich-Pitaevskii problem is to solve a boundary

problem for the associated system of modulation equations.

The Whitham equations are of hydrodynamic type (i.e they don’t contain higher order

derivatives, unlike the NLS equation itself). This implies non-existence of the global solution

for a general IVP [29]. Indeed, due to genuine nonlinearity of the NLS-Whitham equations

(see Section 3.2.2.1), the modulation parameters λi would develop infinite derivatives (gradi-
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ent catastrophe) in finite time in their profiles, which would make the whole Whitham system

invalid as it is based on the assumption of the slowly modulated cnodial wave. Therefore,

the Whitham equations should be supplied with certain initial or boundary conditions en-

suring the existence of the global solution. By the existence of global modulation solution

one implies a continuous dependence of the mean values of the oscillating hydrodynamic in

the DSW on the initial data for the original dispersive equation. The existence of the global

solution for DSWs is clearly supported by the results of direct numerical simulations. One

needs to stress that the accuracy of the modulation solution for DSW increases with time

as the small parameter in the problem is proportional to the ratio of the dispersion length

(order of unity in standard normalisation of the NLS equation) to the width of the oscillating

zone, the latter increasing with time.

The asymptotic modulation construction of Gurevich and Pitaevskii was later rigorously

justified by Lax, Levermore and Venakides [70] by considering the singular zero dispersion

limit in the IST theory for the KdV equation. The Lax-Levermore-Venakides approach was

extended to the defocusing NLS equation by Jin, Levermore and McLaughlin [68]. We,

however, mention that the advantage of the direct Gurevich-Pitaevskii formulation is that it

does not rely on the integrability, in the IST sense, of the nonlinear dipersive wave equation

and so can be extended to a more general class of nonlinear dispersive wave equations (see

[53]).

In the Gurevich-Pitaevskii formulation, one requires a continuous matching of the mean

flow at the edges of the DSW. More specifically, for the NLS equation we require continuity

(not necessarily smoothness) of the mean density ρ and the mean momentum ρu at the

DSW boundaries x±(t), where the mean values ρ ρu must match with the corresponding

hydrodynamic quantities ρ and ρu in the smooth flow outside the DSW region described by

the dispersionless limit of the NLS equation (i.e. by the SWE). The boundaries x±(t) are

unknown at the onset, and their determination is part of the problem solution. From general

reasoning, supported by the results of direct numerical simulations, one can suggest that the
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matching of the DSW with non-oscillating external flow can only occur at the points where

either m→ 0 (linear oscillations of infinitesimally small amplitude, a→ 0) or m→ 1 (finite-

amplitude oscillations of vanishing wavenumber, k → 0 – solitary waves). The DSW edge,

where m → 0 is usually referred to as linear, or harmonic, and the edge, where m → 1 as

the soliton edge (see Figure 4.1 left). Then the DSW matching problem for the modulation

equations is formulated as follows:

The upper x, t-plane is split into three domains (see Figure 4.1): ‘external’ smooth solu-

tion regions x < x− and x > x+, where the solution is governed by the dispersionless limit of

the NLS equation, and the ‘internal’ DSW region [x−, x+], where the dynamics are described

by the Whitham equations. Then at the boundaries x±(t) confining the DSW region the

following matching conditions must be satisfied:

Trailing (soliton) edge x = x−(t) : k = 0 , ρ = ρ− , u = u− ,

Leading (harmonic) edge x = x+(t) : a = 0 , ρ = ρ+ , u = u+ .
(4.2)

Here we have used the notations ρ± ≡ ρe(x
±, t), u± ≡ ue(x

±, t), where (ρe(x
±, t), ue(ρe(x

±, t)

is the solution to the SWE (3.6) with initial conditions (4.1) for the full NLS equation (3.3),

(3.4).

Figure 4.1: Left: oscillatory structure of the right-propagating DSW for the defocusing NLS
equation; Right: splitting of the xt-plane in the associated Gurevich-Pitaevskii problem.

The Gurevich-Pitaevskii matching conditions (4.2) can be most conveniently reformulated
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in terms of the dispersionless NLS Riemann invariants λ± = 1
2
u ± √ρ. Substituting the

expressions for ρ, u, a and k in terms of λj from Chapter 3 one obtains an invariant form of

the matching conditions [18, 19]:

x = x−(t) : λ3 = λ2, λ4 = λe+, λ1 = λe−,

x = x+(t) : λ3 = λ4, λ2 = λe+, λ1 = λe−

(4.3)

for the right propagating DSW; and

x = x−(t) : λ2 = λ1, λ4 = λe+, λ3 = λe−,

x = x+(t) : λ2 = λ3, λ4 = λe+, λ1 = λe−,

(4.4)

for the left-propagating DSW. Here λe±(x, t) is the solution of the SWE (3.6) with the initial

conditions (4.1) expressed in terms of λ±. We stress one more time that free boundaries

x±(t) are unknown at the onset and their determination is an inherent part of the solution.

As we already mentioned, matching conditions (4.4) reflect the numerically observed

spatial structure of the DSW in the NLS equation with the dark soliton at the trailing edge

and the linear wave packet at the leading edge. One can also see that these conditions are

consistent with the structure of the NLS-Whitham modulation system described in Section

3.2.2.1. For example, for the right-propagating DSW, at the trailing edge x− one has a

solitary wave, m = 1 (therefore, λ3 = λ2 – see (3.42)). Also, in this soliton limit, the

Whitham equations for λ4 and λ1 transform into the SWE (see (3.49)) so one naturally

requires the continuous matching of λ4 with λ+ and λ1 with λ− at x = x−(t). Hence the

first matching condition (4.4). A similar reasoning applies to the opposite, leading edge –

see (3.50).

It also follows from the properties of the modulation system described in Section 3.2.2.1

that the boundaries x± are multiple characteristics of the Whitham system and can be found
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from the ordinary differential equations (right-propagating DSW):

dx−

dt
= V2(λ1, λ2, λ2, λ4) = V3(λ1, λ2, λ2, λ4),

dx+

dt
= V3(λ1, λ2, λ4, λ4) = V4(λ1, λ2, λ4, λ4),

(4.5)

with the right-hand sides defined on the solution λi(x, t) of the Gurevich-Pitaevskii matching

problem. The multiple characteristic velocities V2 = V3 and V3 = V4 in (4.5) are explicitly

given by equations (3.48) and (3.51) respectively.

4.2 Simple DSWs

The defocusing NLS equation (3.1) is a two-wave equation, therefore, an initial discontinuity

of the flow density and/or velocity (hence four initial arbitrary parameters) generally decays

into two waves (DSWs and/or RWs). These are analogs of simple waves in the shallow water

dynamics (see Section 2.1). It is clear that, to generate a single simple DSW out of an initial

discontinuity, one needs to impose an additional condition on the jumps of ρ and u. Below,

following [18, 19], we construct the modulation solutions for the right- and left- propagating

DSWs. These solutions will be utilised in the subsequent chapters of the Thesis.

4.2.1 Right-propagating DSW

Let us consider the initial data in the form of a sharp step

t = 0 : ρ =

{
ρ0 > 1 if x < 0

1 if x > 0,
, u =

{
u0 if x < 0

0 if x > 0.
(4.6)

Under certain restriction on the values of ρ0 and u0, this initial step will correspond to the

generation of a right-propagating DSW.

We now assume the described above modulation description of the DSW and make use

of the Gurevich-Pitaevskii problem formulation. First we observe that, since both the mod-
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ulation equations (3.39) and the initial data (4.6) are invariant with respect to the linear

transformation x → cx, t → ct, c = constant, the modulation variables must be functions

of a self-similar variable τ = x/t alone, i.e. λj(x, t) = λj(τ). Thus, the Whitham system

(3.39) reduces to the system of ODEs:

dλj
dτ

(Vj − τ) = 0, j = 1, 2, 3, 4. (4.7)

System (4.7) only has non-trivial solutions if three of the Riemann invariants λi are constants

and the remaining, fourth invariant, say λj depends on τ and satisfies algebraic equation

Vj = τ . The choice of the varying Riemann invariant λj and the values of the constant

invariants follow from the matching conditions (4.3), which assume the form for the new

self-similar independent variable τ = x/t:

τ = τ− : λ3 = λ2, λ4 = 1
2
u0 +

√
ρ0, λ1 = 1

2
u0 −

√
ρ0,

τ = τ+ : λ3 = λ4, λ1 = λ− = −1, λ2 = λ+ = 1,

(4.8)

where τ± are the unknown constant speeds of the DSW edges, x± = τ±t. It is now not

difficult to see that the only possible choice for the right-propagating DSW is to set λ1, λ2

and λ4 constants, namely,

λ1 = 1
2
u0 −

√
ρ0 = −1, λ2 = 1, λ4 = 1

2
u0 +

√
ρ0, (4.9)

and for λ3 we have V3(−1, 1, λ3, 2
√
ρ0 − 1) = τ .

From the first expression for the constant λ1 we obtain a relationship between ρ0 and u0

across a simple DSW:

u0 = 2(
√
ρ0 − 1) , (4.10)

which defines the family of admissible jumps (4.6) producing a single, right propagating

DSW. We note that (4.10) coincides with the condition (2.3) for the right-propagating simple
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wave solution of the SWE. Substituting u0 from (4.10) into expression for λ4 (4.9) we obtain

λ4 = 2(
√
ρ0 − 1). (4.11)

Summarising, the BVP (4.7) (4.8) has the solution in the form of a centred simple wave

in which all but one Riemann invariants are constant:

λ4 = 2
√
ρ0 − 1, λ2 = 1, λ1 = −1, V3(−1, 1, λ3, 2

√
ρ0 − 1) =

x

t
, (4.12)

or, explicitly, using the expression (3.44) for the characteristic velocity V3,

1
2
(λ3 + 2

√
ρ0 − 1)−

(2
√
ρ0 − 1− λ3)(λ3 − 1)

(λ3 − 1)− (2
√
ρ0 − 2) E(m)

K(m)

=
x

t
. (4.13)

The obtained solution for the Riemann invariants is schematically shown in Figure 4.2,

left. It provides the required modulation of the cnoidal wave (3.52) in the DSW transition.
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Figure 4.2: Schematic behaviour of the Riemann invariants in the right and left propagating
DSWs.

Since the solution (4.13) represents a characteristic fan, it never breaks up for t > 0 and

therefore is global. The speeds τ∓ of the trailing and leading edges of the right-propagating
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DSW are found by assuming m = 0 and m = 1 respectively in the solution (4.13):

τ− =
√
ρ0,

τ+ =
8ρ0 − 8

√
ρ0 + 1

2
√
ρ0 − 1

,
(4.14)

Thus, the DSW is confined to an expanding zone τ−t ≤ x ≤ τ+t.

The amplitude of the dark soliton at the trailing edge is given by

as = 4(
√
ρ0 − 1). (4.15)

4.2.2 Left-propagating DSW

We shall also need the solution for the left-propagating simple DSW which we find by

considering an initial step with a slightly different normalisation than (4.6):

t = 0 : ρ =

{
1 if x < 0

ρ0 > 1 if x > 0,
, u =

{
0 if x < 0

u0 if x > 0.
(4.16)

Again, under certain restriction on ρ0 and u0 this initial step will correspond to the gener-

ation of a single left-propagating DSW. The purpose of introducing two different normali-

sations of the initial steps for the left- and right-propagating DSWs is that in both chosen

normalisations the DSW will propagate into the equilibrium region with ρ = 1 and u = 0.

For a left propagating self-similar DSW the Gurevich-Pitaevskii matching conditions

(4.4) assume the form

τ = τ− : λ2 = λ1, λ4 = λ+ = 1, λ3 = λ− = −1,

τ = τ+ : λ2 = λ3, λ4 = 1
2
u0 +

√
ρ0, λ1 = 1

2
u0 −

√
ρ0 .

(4.17)

Now, from (4.7), (4.17) the only possible choice is to set λ1, λ3 and λ4 constants, and for λ2

one has an implicit solution V2 = τ .
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Explicitly, the constant Riemann invariants are

λ1 = 1
2
u0 −

√
ρ0, λ3 = −1, λ4 = 1

2
u0 +

√
ρ0 = λ+ = 1. (4.18)

The last relation provides a restriction on the admissible values of ρ0 and u0 (i.e. for the

initial jumps (4.16)) for the family of left-propagating DSWs (cf. (4.10))

u0 = 2(1−√ρ0). (4.19)

Then

λ1 = 1− 2
√
ρ0. (4.20)

For the varying invariant λ2 we have, on using (3.44), an implicit equation

V2(1− 2
√
ρ0, λ2,−1, 1) = 1

2
(1− 2

√
ρ0 + λ2) +

(−1− λ2)(λ2 − 1 + 2
√
ρ0)

(−1− λ2)− (−2 + 2
√
ρ0) E(m)

K(m)

=
x

t
. (4.21)

The obtained solution for the Riemann invariants is schematically shown in Figure 4.2, right.

The edge speeds τ± of the left-propagating DSW are found by assuming m = 1 and m = 0

respectively in the solution (4.21):

τ+ = −√ρ0,

τ− =
8ρ0 − 8

√
ρ0 + 1

1− 2
√
ρ0

.
(4.22)

The amplitude of the trailing dark soliton is given by the same expression (4.15).

4.2.3 Vacuum points

It was shown in [19] that in the defocusing NLS flows, unlike the KdV type flows, it is

possible to observe zero density points, termed vacuum points. Importantly, the vacuum

points can occur in the solutions of the IVPs not containing vacuum states in the initial
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data. This effect has no analogue in both viscous shallow water dynamics and in the DSW

dynamics in media with negative dispersion supporting bright solitons.

Let us consider the soliton solution (3.55) of the defocusing NLS equation. It is clear

that, if the soliton amplitude as is equal to the value of the background flow ρs, the density

at the soliton minimum ρm = 0. According to (3.52), the flow velocity given by u = c − C
ρ

becomes singular at the vacuum point (which implies the rapid phase change in the wave

function ψ (see (3.2)). Now, to obtain the condition of the occurrence of the vacuum point

at the trailing (soliton) edge of the right-propagating DSW we set the soliton background

flow ρs = ρ0 and, using expression (4.15) for the trailing soliton amplitude as in the right-

propagating DSW, find the critical value ρ0 of the initial density jump, for which the vacuum

point occurs exactly at the DSW trailing edge. This happens when ρs = as, which yields

ρ0 − 4(
√
ρ0 − 1) = 0, ⇒ ρ0 = 4. (4.23)

If

ρ0 ≥ 4, (4.24)

then the vacuum point is generated somewhere inside the DSW. Its position is found from

the condition ρm = 0, where ρm = 1
4
(λ4 − λ3 − λ2 + λ1)2 is the value of density at the

troughs of the periodic solution (3.52). Substituting constant Riemann invariants λ1, λ2 and

λ4 (4.12) into this expression we obtain the value of λ3 = 2
√
ρ0 − 3 ≡ λv3 at the vacuum

point. Substituting λ3 = λv3 into the modulation solution (4.13) we find the location of the

vacuum point

xv = V3(−1, 1, λv3, 2
√
ρ0 − 1)t (4.25)

The greater ρ0 is, the closer the vacuum point comes to the linear DSW edge of the DSW.

Asymptotically, it appears at the linear edge as ρ0 →∞.

In conclusion we note that, while the flow velocity u becomes singular at the vacuum

point, the momentum ρu remains finite. The flow velocity itself changes its sign across the
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vacuum point leading to the counterflow, i.e. if the vacuum point occurs inside the DSW

the fluid flows into the DSW from both sides.

The density, velocity and momentum profiles in a right-propagating DSW with the vac-

uum point inside are shown in Figure 4.3.
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Figure 4.3: Behaviour of the (a) density ρ; (b) velocity u and (c) momentum ρu in the
right-propagating NLS DSW with a vacuum point inside.

76



CHAPTER 4. DSW THEORY FOR NLS EQUATION

4.3 Rarefaction waves

We also briefly describe the second type of waves forming in the Riemann (decay of an initial

discontinuity) problem for the defocusing NLS equation. These are the rarefaction waves

(RWs) asymptotically described by the centred simple-wave solutions of the dispersionless

limit equations for the defocusing NLS equation (the SWE (2.1)).

For the right propagating wave, one has

λ− = constant, V+ =
x

t
. (4.26)

For the left propagating wave, one has

λ+ = constant, V− =
x

t
. (4.27)

E.g, the centred right-propagating RW solution connecting two constant flows with ρ = ρ0 <

1, u = u0 = 2(
√
ρ0 − 1) at x → −∞ and ρ = 1, u = 0 as x → ∞ is given explicitly by the

similarity solution

ρ =

{ ρ0 x < x−,

1
9
(2 + x

t
)2 x− > x > x+,

1 x > x+.

(4.28)

The boundaries x± of the RW are

x− = (3
√
ρ0 − 2)t, x+ = t, (4.29)

The velocity profile in this right-propagating RW is found from the simple wave relationship

u = 2(
√
ρ− 1).

Analogously, for the centred left-propagating RW connecting the constant states with
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ρ = 1, u = 0 as x→ −∞ and ρ = ρ0, u0 = 2(1−√ρ0) an explicit similarity solution is

ρ =

{ 1 x < x−,

1
9
(2− x

t
)2 x− > x > x+,

ρ0 x > x+,

(4.30)

where the RW boundaries x−, x+ are given by

x− = −t, x+ = (2− 3
√
ρ0)t. (4.31)

The velocity profile in the left-propagating RW is given by the simple-wave relationship

u = 2(1−√ρ).

The Riemann invariant configurations for the right- and left propagating RW are shown in

Figure 4.4. One can see that the centred RW solutions (4.28) and (4.30) of the dispersionless
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Figure 4.4: Behaviour of the Riemann invariants in the right- and left-propagating RWs.

limit equations exhibit weak discontinuities at the boundaries x = x±. These discontinuities

are resolved in full dispersive NLS hydrodynamics with the aid of linear wavetrains which

smooth out with time [17].
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4.4 Decay of an arbitrary discontinuity

The problem of the evolution of a general initial discontinuity depends on four arbitrary

parameters and generally involves two centred simple waves, DSW and/or RW. Each dis-

continuity can be resolved into a combinations of such waves. In this section we will present

a complete classification of all the possible cases (see [18, 19]).

Without loss of generality, let us consider the initial jump (t = 0) in the form

ρ = ρ0, u = u0, x < 0

ρ = 1, u = 0, x > 0,
(4.32)

where ρ0 > 0, u0 are constants. Reformulating (4.32) in terms of ‘dispersionless’ Riemann

invariants λ± we have

λ+ = 1, λ− = −1, x > 0

λ+ = 1
2
u0 +

√
ρ0, λ− = 1

2
u0 −

√
ρ0, x < 0,

(4.33)

We can illustrate all the arising cases with the aid of a diagram in λ−, λ+-plane of the

initial conditions, see Figure 4.5.

Plotting the Riemann invariants for each case, we have (see Figure 4.6).

As can be seen, one obtains 6 regions:

1. one RW and one DSW (left- and right- propagating respectively),

2. two DSWs,

3. one RW and one DSW (right- and left- propagating respectively),

4. two RWs,

5. two RWs (with a vacuum region between them),
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Figure 4.5: λ+, λ−-plane diagram for the classification of the wave patterns arising in the
decay of an initial discontinuity problem for the defocusing NLS equation.

6. two DSWs separated by a uniform oscillating ‘plateau’ (non-modulated periodic solu-

tion).

In regions 1),2),3) and 4) the density and velocity in the constant flow ‘plateau’ separating

two counter-propagating waves are ρ = 1
4
(λ+ + 1)2, u = λ+ − 1.

The dashed line across regions 2) and 3) corresponds to a vacuum point appearance in

the left-propagating DSW.

The dashed line across regions 1),2) corresponds to a vacuum point appearance in the

right-propagating DSW.

We note that region 6) always contains a vacuum point.

Some numerical plots illustrating different cases of the decay of a step are presented in

Appendix.
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Figure 4.6: The Riemann invariant behaviour in the decay of an initial discontinuity problem.
The parameter region numbers correspond to Figure 4.5.
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4.5 Hodograph solution and reduction to the Euler-

Poisson-Darboux equation

In the modulation solution describing a simple DSW in the NLS dispersive hydrodynamics

three Riemann invariants are fixed and only one Riemann invariant varies. Now we consider

a more general modulation solution by fixing only two Riemann invariants. This system

will be used in Chapter 6 to describe the interaction of a simple DSW with a RW. Since

we have two dependent and two independent variables, we can use the classical hodograph

transform described in Section 2.3. Actually, as we shall see, the formalism of the more

general, Generalised Hodograph Transform (2.84), (2.85) will prove to be very useful even

in this, classical (2 × 2) configuration.

We fix two of the four Riemann invariants in the modulation system (3.39), (3.44),

λi = λi0 = const, λj = λj0 = const, i 6= j, (4.34)

in order to reduce system (3.39) to the system

∂λk
∂t

+ Vk(λk, λl)
∂λk
∂x

= 0,
∂λl
∂t

+ Vl(λk, λl)
∂λl
∂x

= 0, (4.35)

for the remaining two invariant λk(x, t), λl(x, t). Here l 6= k 6= i 6= j, and Vk,l(λk, λl) ≡

Vk,l(λi0, λj0, λk, λl).

In the region where both λl and λk are not constant, one can introduce the hodograph

transform, i.e consider x and t as functions of λl and λk (see Section 2.3),

x = x(λl, λk), t = t(λl, λk). (4.36)
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Transforming system (4.35) into this new coordinate system we obtain linear PDEs

xλk − Vl(λl, λk)tλk = 0, xλl − Vk(λl, λk)tλl = 0 (4.37)

for x and t as functions of λl and λk. Note that this method requires ∂xλk,l 6= 0.

Now,we make the change of variables

Wk = x− Vkt, Wl = x− Vlt, (4.38)

which reduces system (4.37) to the symmetric system for Wk(λl, λk),Wl(λl, λk):

∂kWl

Wk −Wl

=
∂kVl

Vk − Vl
, k 6= l, ∂k = ∂/∂k. (4.39)

We note in passing that the above symmetric hodograph construction can be realised for any

pair of Riemann invariants taken as independent variables. Moreover, it remains valid even

if three or all four Riemann invariants vary. The compatibility conditions for hodograph

transforms in all planes (λi, λk) lead to the Semi-Hamiltonian condition (2.86).

The symmetry between Vl and Wl in (4.39) and the ‘potential’ structure

Vi(λ) = (1− L

∂iL
∂i)c, i = 1, .., 4, ∂i = ∂/∂λi, (4.40)

of the vector functions (λk, λl) implies the possibility of introducing a single scalar function

g(λl, λk) instead of the vector (Wk,Wl)

Wi = (1− L

∂iL
∂i)g, i = 3, 4, (4.41)
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or, using (4.40)

Wi = g + 2(Vi − c)∂ig. (4.42)

Substituting (4.40), (4.41) into (4.39) and taking into account the expression (3.41) for the

wavelength L we arrive at the Euler-Poisson-Darboux (EPD) equation for g(λl, λk) first

obtained in the KdV context in [72] and in the NLS context in [66] (also see [71])

2(λl − λk)∂2
klg = ∂lg − ∂kg. (4.43)

Equation (4.43) was obtained for the KdV modulation system in . It is remarkable that

system (4.35) describing a complicated interaction of modulated dispersive waves, reduces,

in the hodograph plane, to the EPD equation (4.43), which describes interaction of two

simple waves in classical, dispersionless shallow water theory.

The general solution of the EPD equation (4.43) can be represented in the form (see for

instance [27])

g =

∫ λk

a1

φ1(λ)dλ√
(λ− λk)(λl − λ)

+

∫ λl

a2

φ2(λ)dλ√
(λ− λk)(λl − λ)

, (4.44)

where φ1,2(λ) are arbitrary (generally complex) functions and a1,2 are arbitrary constants

which could be absorbed into φ1,2.

As a matter of fact, the same construction can be used for any pair of Riemann invariants

while the remaining two are fixed. Moreover, equations (4.37)–(4.41) are valid even when

all Riemann invariants vary (see [66, 71]). This is possible for two reasons: firstly the NLS

modulation system (3.24) (3.44) is integrable via the generalised hodograph transform [61]

which converts it into overdetermined consistent system (4.39) where k, l = 1, .., 4, k 6= l.

Secondly, the ‘potential structure’ of the characteristic speeds (4.40) makes it possible to use

the same substitution (4.41) for all k = 1, .., 4 which results in the consistent overdetermined

84



CHAPTER 4. DSW THEORY FOR NLS EQUATION

system of six EPD equations (4.43) involving all pairs λl, λk, l 6= k.

Thus, the problem of integration of the nonlinear Whitham system (3.24) with rather

complicated coefficients (3.44) is essentially reduced to solving the classical linear EPD equa-

tion (4.43) with certain boundary conditions following from the Gurevich-Pitaevskii match-

ing conditions. As a result, one should be able to express the functions φ1,2(λ) in the general

solution (4.44) in terms of the initial or boundary conditions for the NLS equation. This

will be done in Chapter 6 for a specific configuration involving bi-directional interaction of

a DSW with a RW.

Note, that the classical hodograph solution does not include the special family of the sim-

ple wave solutions as the latter correspond to the vanishing of the Jacobian of the hodograph

transform (λk.λl) → (x, t) [16]. However, the similarity solution can be formally included

in the hodograph solution in the generalised form (4.38). Indeed, putting one of Wk = 0

and setting constant all the Riemann invariants λj with j 6= k one arrives at the similarity

solution, in which λk = λk(x/t) is implicitly specified by the equation Vk = x/t.

4.6 Modulation phase shift

In the non-modulated periodic travelling wave solution (3.52) the initial phase θ0 is an

independent arbitrary parameter. In the modulated periodic solution, θ0 is no-longer an

independent constant parameter but rather becomes a slow function of x, t. As such, it

is better described as the modulation phase shift. It was shown in [73], that the function

θ0(x, t) can be found from the requirement that the local wavenumber k = 2π/L and the

local frequency ω = kc in the modulated wave (3.52) must satisfy the generalised phase

relationships

k = Θx, ω = −Θt, (4.45)

where

Θ = kθ = kx− ωt− kθ0 (4.46)
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is the angular phase. Relations (4.45) imply the ‘conservation of waves’ law (3.37),

kt + ωx = 0, (4.47)

which is consistent with the modulation system (3.52). Thus, we can obtain the representa-

tion

Vi =
∂iω

∂ik
, (4.48)

for the characteristic speeds, equivalent to (3.40).

For the general modulation relation (4.45) to be consistent with the linear x, t dependence

of the phase (4.46) entering the local single-phase NLS solution (3.52) one must assume that

the phase shift is completely determined by the evolution of the Riemann invariants λi(x, t),

i.e.

θ0(x, t) = ϑ0(λ1, λ2, λ3, λ4). (4.49)

To obtain ϑ0 , we differentiate (4.46)

Θx = k +
4∑
i=1

{x∂ik − t∂iω − ϑ0∂ik − k∂iϑ0}∂xλi. (4.50)

Comparing (4.45) with (4.50) we see that for any pairs i, j, i 6= j we have

x∂ik − t∂iω − ϑ0∂ik − k∂iϑ0 = 0, x∂jk − t∂jω − ϑ0∂jk − k∂jϑ0 = 0, (4.51)

provided ∂xλi,j 6= 0. Using (4.48) and k = 2π/L the system (4.51) can be transformed to

x− Vnt =
(
1− L

∂nL
∂n
)
ϑ0, n = i, j, i 6= j. (4.52)

Comparing equation (4.52) with the modulated hodograph solution (4.39),(4.41), we can

identify the phase shift ϑ0(λ) = θ0(x, t) with the solution g(λ(x, t)) to the relevant BVP for
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the EPD equation (4.44), i.e.

θ0(x, t) = g(λ(x, t)). (4.53)

We should also note that from (4.52) that one should set θ0 = 0 for the simple centred DSW

described by the modulation solution in which all but one Riemann invariants are constant

and the varying invariant, say λm, is implicitly specified by the equation x− Vmt = 0. The

condition θ0 then implies that in the dispersive Riemann decay of a step problem the DSW

trailing dark soliton is centred exactly at the trailing edge x−(t).

4.7 DSW fitting method

As we have seen on the example of the defocusing NLS equation, the Whitham equations

inherit the integrability property from the original, dispersive system and can be represented

in this case in a diagonal, Riemann form. This allows for the construction of explicit analytic

modulation solutions describing the DSW dynamics. However, in many physically relevant

cases the nonlinear dispersive wave propagation is described by non-integrable systems. Such

systems often arise in the description of fully nonlinear dispersive waves, which are far less

explored analytically than the weakly nonlinear waves described by the KdV, NLS and

similar integrable equations. As was shown by Whitham himself [16], in a non-integrable

case, one can still derive the modulation equations via averaging of the available conservation

laws but the Riemann form for these equations is normally not available, which makes full

analytical description of DSWs in non-integrable systems a very difficult task. On the other

hand, there is a strong numerical evidence that the DSW resolution of breaking singularities

in such non-integrable dispersive systems is qualitatively similar to that observed in their

small-amplitude integrable counterparts in the sense that the ‘non-integrable’ DSWs have

the slowly modulated periodic structure and are characterised by two asymptotic regimes

(linear and soliton) allowing for the matching with the external, non-oscillating flow. The

analytical method to study the DSW dynamics in non-integrable dispersive-hydrodynamic
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systems was developed by El and collaborators [53, 55]. This method is sometimes referred

to as the ‘DSW fitting method’ [56] as it represents a dispersive conservative counterpart

of the classical shock wave fitting when the propagating discontinuity (shock) is ‘fitted’

in the external smooth flow using certain transition conditions (Rankine-Higoniot jump

conditions and Lax’s entropy conditions) – see Section 2.4.1. As a matter of fact, the

transition conditions for a DSW do not coincide with classical shock transition conditions

since the DSW expands in time, so the classical analysis of the conservation laws across the

(fixed width) shock transition does not apply.

The DSW fitting method allows one to obtain all the key physical parameters of the simple

DSW transition between two constant hydrodynamic states bypassing global integration

of the Whitham modulation equations. Namely, the method yields certain hydrodynamic

transition condition across the DSW, the location of the DSW boundaries and the amplitude

of the leading (or trailing) soliton, i.e. all experimentally observable DSW parameters.

To this end, let us demonstrate this method using the cubic defocusing NLS equation as

a test example. Our aim is to recover some of the key results of Section 4.2 without using

the integrable structure of the NLS equation (namely, without using the Riemann invariants

for the associated modulation system) and also without global integration of the Whitham

equations. In Chapter 7 we shall apply this method to describe the interaction of DSW and

RW in a genuinely non-integrable system, the saturable NLS equation (2.63) describing the

light beam propagation through nonlinear photorefractive crystals.

We consider the defocusing NLS equation in the dispersive hydrodynamic form (3.3),

(3.4) with discontinuous initial conditions (4.32) (without any a priori restrictions on the

values of ρ0 and u0).

4.7.1 Dispersive shock fitting method requirements

To be amenable to the dispersive shock fitting method [53] the equation under consideration

must satisfy several very general requirements. It must
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• Have a real-valued linear dispersion relation ω0(k).

• Admit a dispersionless limit in the form of a hyperbolic system of hydrodynamic type,

which can be expressed in the Riemann invariant form.

• Support a family of periodic travelling wave solutions admitting two limits: harmonic

(linear) and solitary wave limit.

• Posses a sufficient number of independent conservation laws. By ‘sufficient’ one im-

plies that the number of available conservation laws is no less than the number of

independent parameters in the periodic solution.

All these requirements can be relatively easily verified for a given specific dispersion-hydrodynamic

system. In particular, the results presented in Chapter 3 show that the defocusing NLS sat-

isfies all these requirements.

The main assumption of the DSW fitting method is that the Whitham system obtained

by averaging the conservation laws is hyperbolic for the modulation solutions of our interest.

This requirement can only be verified indirectly, say by a posteriori numerical check of the

DSW stability. The hyperbolicity of the Whitham system allows one to use general properties

of characteristics and, in particular, use the fact of the existence of the simple-wave solutions

to the hyperbolic system of hydrodynamic type [74]. Although in the absence of Riemann

invariants such solutions are usually not obtainable analytically, the DSW fitting method

enables one to establish some key properties of these solutions.

4.7.2 Summary of the method: simple DSW transition conditions

Let a simple centred DSW of the defocusing NLS equation (or some its non-integrable

generalisation) propagate to the right and connects two different constant hydrodynamic

states (ρ−, u−) at the trailing edge and (ρ+, u+) at the leading edge, ρ− > ρ+. Then the

DSW edges propagate with constant velocities and Gurevich-Pitaevskii matching conditions
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in a physical form (4.2) can be written as

x = s−t : k = 0 , ρ = ρ− , u = u− ,

x = s+t : a = 0 , ρ = ρ+ , u = u+ ,
(4.54)

where s+, s− are the speeds of the leading and trailing edges respectively. Then, it was

shown in [53, 55] using the time reversibility argument that the following hydrodynamic

transition condition across the right-propagating DSW must be satisfied:

λ−(ρ−, u−) = λ−(ρ+, u+), (4.55)

i.e. the value of the hydrodynamic Riemann invariant λ− is ‘transferred’ across the right-

propagating DSW. Explicitly, for the NLS equation

1
2
u− −

√
ρ− = 1

2
u+ −

√
ρ+ . (4.56)

For the left-propagating DSW an analogous condition is formulated in terms of the zero

jump of λ+ across the DSW.

The DSW fitting method is based on the fact, that the Whitham modulation systems

admit exact reductions for the wave regimes corresponding to those realised at the DSW

edges, i.e. when a = 0 and k = 0. Importantly, this property does not depend on the

availability of the Riemann invariant form and is connected with the origin of the Whitham

equations as certain averages over the family of periodic solutions with two limiting regimes:

linear and soliton. Say, the zero-amplitude reduction for the NLS-Whitham system (3.34) –

(3.37) has the form (note that in the zero-amplitude limit the oscillations do not contribute

to the averaging so u2 = u2, ρu = ρ · u etc.):

a = 0, ρ̄t + (ρ̄ū)x = 0, ūt + ūūx + ρ̄x = 0,

kt + [ω0(k, ρ̄, ū)]x = 0,

(4.57)
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where

ω0(k, ρ̄, ū) = kū+ k

√
ρ̄+ k2

4
(4.58)

is the NLS dispersion relation (3.8) for linear waves propagating against slowly varying

background with locally constant values of ρ̄, ū. Equations (4.57) comprise a closed system,

which represent an exact zero-amplitude reduction of the full Whitham system (3.34)-(3.37).

It has been shown in [53] that the simple-wave solution ū = ū(ρ̄), k = k(ρ̄) to the system

(4.58) subject to the first matching condition (4.54) and transition condition (4.55) yields

the necessary information about the DSW leading (linear) edge, which propagates with the

linear group velocity, dx+/dt = ∂ω0/∂k.

The zero-wavenumber, k = 0, reduction of the Whitham system is obtained by introduc-

ing a conjugate wave number k̃, which for the NLS equation is defined as

k̃ = π

(∫ e3

e2

dρ√
−Q(ρ)

)−1

(4.59)

(cf. (3.27) for the ‘normal’ wavenumber k = 2π/L). It can be shown (see [57]) that when

m → 1, the conjugate wavenumber k̃ → κ, where κ is the inverse soliton half-width (some-

times called the soliton wavenumber). We note that the conjugate wavenumber k̃ remains

finite when k → 0 and vanishes when a→ 0. The asymptotic analysis of the modulation sys-

tem for k → 0 is somewhat more involved than that for the zero-amplitude limit above but,

again, as shown in [53], the simple-wave solution ū = ū(ρ̄), k̃ = k̃(ρ̄) of the limiting system,

subject to the second matching condition (4.54) and transition condition (4.55) yields the

necessary information about the DSW trailing edge, which propagates with the NLS soliton

velocity, dx−/dt = u+
√
ρ− a (see (3.33)).

We now formulate the summary of the general DSW fitting method of [53, 55] in the

application to the dispersive hydrodynamic systems with positive dispersion, i.e. having

the linear dispersion relation ω0 = ω0(k) such that ω′′0 > 0. These are the systems of the
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defocusing NLS type, in which the DSW exhibits dark solitons at the trailing edge x−(t)

and degenerates into a linear wave packet at the leading edge x+(t).

The results can be summarized as follows. Let the dispersionless limit of the governing

equations be represented in the Riemann form with the Riemann invariants λ±(ρ, u) and

the respective characteristic velocities V±(ρ, u) such that the λ− = constant corresponds

to the simple wave propagating to the right. Let the linear dispersion relation for the

wave propagating on the background ρ̄, ū have the form ω = ω0(k, ρ̄, ū). Then the DSW

propagating to the right and connecting two different constant states (ρ−, u−) and (ρ+, u+),

ρ− > ρ+ satisfies the following transition conditions:

(i) the relationship between the admissible values of (ρ−, u−) and (ρ+, u+), which can be

connected by a single DSW

λ−(ρ−, u−) = λ−(ρ+, u+) ≡ λ0 (4.60)

(ii) the equations for the DSW edges x± = s±t where the speeds s± are specified by the

expressions

s+ =
∂Ω0

∂k
(k+, ρ+) , s− =

Ωs(κ
−, ρ−)

κ−
, (4.61)

where

Ω0(k, ρ̄) = ω0(k, ρ̄, ū(ρ̄)) , Ωs(κ, ρ̄) = −iΩ0(iκ, ρ̄) . (4.62)

Here the dependence ū = ū(ρ̄) is given by

λ−(ρ̄, ū) = λ0 . (4.63)

The parameters k+, κ− in Eqs. (4.61) are found as k+ = k(ρ+) , κ− = κ(ρ−), where the

functions k(ρ̄) and κ(ρ̄) are determined from the ordinary differential equations:

dk

dρ̄
=

∂Ω0/∂ρ̄

V (ρ̄)− ∂Ω0/∂k
, k(ρ−) = 0 , (4.64)
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dκ

dρ̄
=

∂Ω̃0/∂ρ̄

V (ρ̄)− ∂Ω̃0/∂κ
, κ(ρ+) = 0 , (4.65)

where V (ρ̄) = V+(ρ̄, ū(ρ̄)).

(iii) the ‘entropy’ conditions providing consistency of (i) and (ii):

V−(ρ−, u−) < s− < V+(ρ−, u−), V+(ρ+, u+) < s+, s+ > s− . (4.66)

Conditions (4.66) represent a DSW analog of Lax’s exntropy conditions for viscous shocks

(see Section 2.4.1).

Thus, the DSW fitting conditions (4.60) – (4.66) require only the linear dispersion re-

lation of the governing system and the Riemann invariants and characteristic velocities of

its nonlinear dispersionless limit. We stress that the construction (4.60) – (4.66) does not

require availability of the Riemann invariant form for the full Whitham system.

4.7.3 DSW fitting method results for the defocusing NLS equation

We now apply conditions (4.60) – (4.66) to the right-propagating DSW of the defocusing

NLS equation (3.3), (3.4). In order to be able to compare our results with earlier results of

Section 4.2.1 we set ρ+ = 1, u+ = 0, ρ− = ρ0 > 1, u− = u0. The necessary ingredients are:

λ− =
1

2
u−√ρ, V+ = u+

√
ρ , ω0(k, ρ̄, ū) = kū+ k

√
ρ̄+ k2

4
. (4.67)

Now substituting (4.67) into (4.60) – (4.66) we obtain:

(i) The simple DSW hydrodynamic transition condition (4.60) assumes the form:

u0 = 2(
√
ρ0 − 1) . (4.68)

This is consistent with relationship (4.10) derived in Section 4.2.1 from the exact solution of

the NLS-Whitham system in Riemann invariants.
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(ii) The DSW edge speeds.

(a) Leading (linear) edge.

We need first to calculate the functions V (ρ̄) and Ω0(k, ρ̄) entering the definitive ODE

(4.64). Using (4.67), (4.68) and (4.62) we obtain

V+(ρ̄) = 3
√
ρ̄− 2, Ω0(k, ρ̄) = ω0(k, ρ̄, ū(ρ̄)) = k

(
2(
√
ρ̄− 1) +

√
ρ̄+ k2

4

)
. (4.69)

Substituting (4.69) into (4.64) one obtains, after introducing a new variable α instead of k

by the relation

α =

√
1 +

k2

4ρ̄
, (4.70)

an ODE

dα

dρ̄
= −α + 1

2ρ̄
, (4.71)

with the initial condition

α(ρ0) = 1. (4.72)

Once the solution α(ρ̄) is found, the wavenumber k+ at the leading edge, where ρ̄ = ρ+ = 1,

is determined as

k+ = k(1) = 2
√
α(1)2 − 1. (4.73)

The velocity of the propagation of the leading edge is defined by the equations (4.61)

s+ =
∂Ω

∂k
(k+, 1) = 2α(1)− 1

α(1)
. (4.74)
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Now, equation (4.71) is readily integrated to give

α(ρ̄) =
2
√
ρ0√
ρ̄
− 1. (4.75)

Thus, from equation (4.74)

s+ =
8ρ0 − 8

√
ρ0 + 1

2
√
ρ0 − 1

. (4.76)

This is consistent with the result calculated earlier (4.14) using the solution of the NLS-

Whitham system in the Riemann invariant form.

b) Trailing (soliton) edge

For the determination of the trailing edge we need the conjugate linear dispersion re-

lation Ω̃0(κ, ρ̄) = −iΩ0(iκ, ρ̄) (see (4.62)) for dark solitons propagating on the simple-wave

hydrodynamic background ρ̄, ū(ρ̄) = 2(
√
ρ̄− 1). Using (4.69) we obtain

Ω̃0(κ, ρ̄) = κ

(
2
√
ρ̄− 2 +

√
ρ̄− κ2

4

)
. (4.77)

Substituting (4.77) into ODE (4.65) we reduce it to

dα̃

dρ̃
= − α̃

2 + 1

2ρ̄
, α̃(1) = 1, (4.78)

where α̃ =
√

1− κ2

4ρ̄
. Equation (4.78) can be readily integrated to give

α̃(ρ̄) =
2√
ρ̄
− 1. (4.79)

The velocity of the trailing soliton s− is determined by equation (4.61), which becomes (using
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ρ− = ρ0)

s− =
Ω̃0(κ−, ρ0)

κ−
= 2
√
ρ0 − 2 +

√
ρ0α̃(ρ0) =

√
ρ0 . (4.80)

which is consistent with formula (4.14) obtained from the global solution (4.13) of the NLS-

Whitham equations.

The speed of the DSW trailing edge s− is the speed of the trailing soliton cs propagating

on the background ρ0, u0. It is defined by formula (3.33) with σ = −1 (right-propagating

soliton). The amplitude of the trailing soliton as is then obtained from as

as = (s− − u0)2 − ρ0 = 4(
√
ρ0 − 1), (4.81)

which, again, matches with the previously obtained result (4.15).

(iii) The ‘entropy’ conditions.

It can be readily verified that inequalities (4.66) are satisfied for all values of ρ0 > 1.

The DSW fitting method will be used in Chapter 7 to calculate parameters of the in-

teraction of DSW and RW in photorefractive materials described by the defocusing NLS

equation with saturable nonlinearity (2.63), whose modulation equations do not possess the

Riemann invariant structure.
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Chapter 5

Transcritical NLS flows past

penetrable barriers

Fluid flow past an obstacle is of great importance in both normal fluids and superfluids

(a quantum state of matter in which viscosity (or friction) of a fluid vanishes, e.g. super-

fluid helium, BEC). The problem of fluid flow past an obstacle for the dynamics of viscous

compressible flows has a strong relationship with viscous shocks (see, e.g. [12, 75]). In the

theoretical study of surface water waves it has lead to the detailed description of ship waves

and corresponding drag forces (see e.g. [76]). In the dynamics of superfluids, one of the most

interesting phenomenon is the existence of a critical velocity in the flow past an obstacle,

where below this velocity the flow becomes frictionless (or a superfluid) and above this ve-

locity the obstacle induces dissipation (drag) and superfluidity breaks down. Understanding

this feature was most important in developing superfluid theory [7, 8, 77]. It was found by

Feynman [8] that below this velocity for sufficiently large obstacles quantised vortices were

generated.

It was a matter-of-course that this problem attracted much interest in the context of BEC

dynamics, where DSWs and ship waves have been studied theoretically [2, 36, 38, 40, 78–80]

and experimentally [2, 38, 78]. Hypersonic flow of a BEC with repulsive interactions past a
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slender ‘wing’ was investigated in [24], vortex shedding from an obstacle potential moving in

a BEC was investigate in [81] and quantum turbulence in the supersonic BEC flow around a

corner was investigated in [43], in all these investigations existence of a single critical velocity

vc was found, where for velocities v > vc nonlinear waves were generated.

Experimental, numerical and analytical investigations in BECs have focused mainly on

physically multi-dimensional problems. In some cases these could be asymptotically reduced

to effectively 1D models for the purposes of mathematical convenience. There however,

exist essentially 1D situations when the phenomena observed are specific to the 1D case

only. One such problem appears in the description of the water flow over a bottom ridge

[10, 82, 83]. In the context of BEC, an effectively 1D problem of this type arises when one

considers a BEC flow induced by a penetrable barrier moving through an elongated BEC.

This configuration has been recently experimentally investigated by Engels and Atherton

[6]. The most characteristic phenomenon observed in the experiment, is that a chain of

dark solitons is generated for a finite interval, v− < v < v+, of the barrier velocities v.

The existence of a critical threshold velocity v− matches with the main concepts of the

superfluidity theory introduced by Landau [7] and also matches with the earlier observations

of experiments [84] on the appearance of a critical velocity for an impenetrable obstacle

moving through the condensate at different velocities. The formation of vortices is impossible

in a quasi-1D setting, taking this into account one can deduce from the dispersion relation

for linear Bogoliubov excitations in weakly non-ideal Bose gas that the velocity v− coincides

with the sound velocity, and this conclusion was confirmed in the experiments [84]. However,

the nonlinear effects present modify the Landau criterion noticeably. For example, in the

case of a wide smooth potential used in [6] one has to take into account nonlinear effects

which makes possible the generation of nonlinear excitation, in particular dark solitons, and

which reduce the critical velocity v− to a subsonic value [9]. It was noticed in [9, 85] that

the near-critical NLS flow through the delta-function potential showed that for some barrier

velocity the flow looses stability through a saddle-node bifurcation resulting in the generation
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of dark solitons for v > v−. It is remarkable that this nonlinear mechanism is effective for

a finite interval of the barrier velocities only. As was first noticed in [86], there exist such

special forms of the barrier potential that no radiation is generated at supersonic velocities

greater than a second velocity v+. The result was confirmed numerically for the potentials

of a more general form. It was noticed in [87], that while some linear radiation still exists for

v > v+, its amplitude decreases exponentially with the growth of the ratio of the obstacle

size to the healing length, so that broad and smooth potentials can always be considered as

radiationless outside the interval [v−, v+]. These results were also confirmed by the numerical

simulations of waves generated by supersonic motion of a repulsive rectangular potential [88]

and the oscillating supersonic motion of the Gaussian potential [89].

Thus, for smooth wide penetrable potentials the production of solitons is effective only

in a finite range of barrier velocities. In this chapter, motivated by the experimental results

of [6] and the theoretical setting of [9, 10, 83], we develop full asymptotic theory of the

transcritical BEC flow for the case of a broad repulsive potential.

We note that, although the experiment [6] was performed with a dense BEC for which

the radial motion of the gas is essential, we shall confine ourselves here to the case of

a rarefied gas with a frozen radial motion when the full GP equation can be reduced to

the 1D NLS equation (see, e.g. [90]). This limiting case qualitatively reproduces all the

main characteristic features of the phenomenon. In addition, the present formulation in the

framework of the 1D GP equation can be used for the quantitative description of nonlinear

wave tunneling in optical crystals [5].

The results presented in this chapter were published in joint paper [20].

5.1 Mathematical model

Engels and Atherton [6] considered a wide penetrable barrier moving with constant speed

through an elongated BEC confined to an elongated cigar-shaped trap. This setup is illus-
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Figure 5.1: Sketch of experimental setup in Ref. [6]. The potential barrier created by the
laser beam is moved through the BEC along the −x direction. The trap tightly confines the
BEC in the radial y, z directions.

trated schematically in Figure 5.1. In the experiment, the role of the barrier was played by

a repulsive potential created by the laser beam which is swept through the BEC with the

velocity v along the −x direction. The dynamics of the BEC can be described by the GP

equation with moving potential, which in standard non-dimensional units has the form

iψt + 1
2
ψxx − |ψ|2ψ = V (x+ vt)ψ, (5.1)

where V (x + vt) > 0 is the moving potential barrier. We have seen in Chapter 3, that it is

convenient to transform this equation by means of the substitution

ψ(x, t) =
√
ρ(x, t) exp

(
i

∫ x

u(x′, t)dx′
)

(5.2)

to a hydrodynamic-like form. Performing this transformation and passing to the reference

frame moving with the velocity −v by introducing x′ = x + vt, u′ = u + v we obtain, on
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omitting primes,

ρt + (ρu)x = 0,

ut + uux + ρx +

(
ρ2
x

8ρ2
− ρxx

4ρ

)
x

+ Vx(x) = 0.
(5.3)

Here ρ and u are the condensate density and velocity, respectively. It is supposed that in this

reference frame and in our non-dimensional units the flow at infinity satisfies the conditions

ρ→ 1, u→ v as |x| → ∞, (5.4)

that is the length of the elongated condensate is assumed to be much longer than the size of

the wave structures generated in the flow. Thus, equations (5.3)-(5.4) represent an idealised

mathematical model for the description of BEC dynamics in the configuration of our interest.

The study of the problem (5.3)-(5.4) was initiated in the paper by Hakim [9] where the

time-independent flows induced by a slowly varying in space barrier moving with subcritical

velocity were analysed. Unsteady supercritical flows were considered in [9] numerically and

it was noticed there that the results are reminiscent of those for the flow of a stratified fluid

over a broad localised topography [10, 91]. In [10, 11] the shallow water flow past topography

problem was studied in the framework of the fKdV equation, and this approach provides a

clue to solving our NLS equation problem (5.3)-(5.4). The first step in this direction is the

study of the stationary solutions of Eqs. (5.3)-(5.4) in the case of a wide and smooth potential

V (x) so that the dispersion terms in (5.3) can be neglected and one can take advantage of

the so-called ‘hydraulic’ or ‘hydrostatic’ approximation.

5.2 Slowly varying potentials: hydraulic solution

Let the potential V (x) be localised in the interval (−l, l), where l� 1 (i.e. the spatial range

of the potential in dimensional units is supposed to be much greater that the healing length
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(distance over which the condensate wave-function tends to its bulk value when subject to a

localised perturbation) of the BEC. Then one can make use of the hydraulic approximation

by assuming that the characteristic length at which all variables change has the order of

magnitude of l. Thus one can neglect the terms with the higher derivatives in (5.3) and

consider the stationary solutions described by the system

(ρu)x = 0,

uux + ρx + Vx(x) = 0.

(5.5)

Actually, these are equations for the stationary hydraulic flow in the reference frame with

the barrier at rest. Both equations (5.5) are readily integrated once to give

ρu = v,

1
2
u2 + ρ+ V (x) = 1

2
v2 + 1 ,

(5.6)

where the integration constants are found from the boundary conditions (5.4). Equations

(5.6) thus define a stationary flow that connects smoothly to ρ = 1, u = v at both infinities.

Eliminating ρ we obtain an implicit equation for the flow velocity u as a function of x,

V (x) = F (u), where F (u) = 1
2
(v2 − u2)− v

u
+ 1. (5.7)

It is clear that the maximum of V (x) is attained when F (u) attains its maximum (i.e

when dF
du

= 0). Thus

dF

du
= −u+

v

u2
= 0. (5.8)

Thus, the maximum of F (u) is attained when u = um = v
1
3 , and so the maximum of V (x)

is given by

Vm = 1
2
v2 − 3

2
v2/3 + 1, (5.9)

where Vm = maxV (x).
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Figure 5.2: Plot of the function µ(v); for Vm = 0.5 the critical values are equal to v− ≈
0.2, v+ ≈ 1.9.

For (5.5) to have a solution defined for all x we require that

Vm ≤ 1
2
v2 − 3

2
v2/3 + 1 . (5.10)

Indeed, the function F (u) varies within the interval −∞ < F (u) ≤ µ(v), where µ(v) =

max{F (u)} = 1
2
v2 − 3

2
v2/3 + 1. So for the equation (5.7) to have a real solution for all x the

interval [0, Vm] must lie within the range of the function F (u) (the condition (5.10) in the

present superfluid context was obtained in [9, 87] but can also be found in earlier studies on

shallow water flows past topography — see, for instance [83]).

Inequality (5.10) defines the subcritical v ≤ v− and supercritical v ≥ v+ regimes where

v± are the roots of the equation (see Figure 5.2)

µ(v) = 1
2
v2 − 3

2
v2/3 + 1 = Vm (5.11)

and we have v− = 0 for Vm ≥ 1.
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If Vm � 1, then v± must be close to unity. So introducing the expansion of v with respect

to small parameter ε� 1

v = 1 + v1ε+ v2ε
2 + · · · , (5.12)

and substituting it into (5.11), we have

1
2
(1 + v1ε+ v2ε

2 + · · · )2 − 3
2
(1 + v1ε+ v2ε

2 + · · · )2/3 + 1 = Vm. (5.13)

It is clear the terms of the orders ε0 and ε vanish. Gathering coefficients of order ε2 and ε3,

we obtain

O(ε2) : 2
3
v2

1ε
2 = Vm,

O(ε3) : 4
3
v1v2 −

2

27
v3

1 = 0.
(5.14)

Thus,

v1ε = ±
√

3
2
Vm,

v2ε
2 =

1

12
Vm.

(5.15)

Thus, the controlling small parameter ε ∼
√
Vm. So, to the second order, the critical

velocities are equal to

v± ≈ 1±
√

3Vm
2

+
Vm
12
. (5.16)

In the transcritical regime, v− < v < v+, condition (5.10) does not hold so it is natural

first to look closer at what happens with the hydraulic solution when v approaches its

boundaries from outside. We now look at the dependence of the flow velocity u(x) and the

density ρ(x) on the space coordinate x determined by equations (5.6), (5.7) which can be

re-written as

1
2
u2 +

v

u
+ V (x) = 1

2
v2 + 1 (5.17)
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and

v2

2ρ2
+ ρ+ V (x) = 1

2
v2 + 1, (5.18)

respectively. Formally, the solution to (5.17) (or (5.18)) has two branches only one of which

satisfies the necessary boundary conditions (5.4) so just this branch should be considered as

the physical one. These two branches of the solution for the flow velocity u(x) are plotted

in Figure 5.3 for the case of the potential

V (x) =
Vm

cosh(x/σ)
(5.19)

with Vm = 0.5, σ = 2, for which equation (5.11) yields v− ≈ 0.2, v+ ≈ 1.9. We see that the

subcritical (v ≤ v−) and supercritical (v ≥ v+) hydraulic solutions have similar structure

but are characterised by the “exchanged” relative positions of the physical and non-physical

branches.

In Figure 5.4 we have plotted two series of hydraulic solutions for different subcritical and

supercritical values of the velocity v. As one can see, the physical and non-physical families

are separated by two separatrices. When one approaches v = v− from below (Figure 5.4a),

the physical branch becomes more and more pointed up at the centre of the barrier (x = 0),

and when v = v−, it bifurcates into the separatrix line. This separatrix solution satisfies

the necessary boundary condition v = v− as x→ −∞ (effectively at x = −l) but it fails to

satisfy the same equilibrium condition at x → +∞ so one can expect that this bifurcation

will be accompanied by the generation of an unsteady flow downstream.

Indeed, the analysis of the near-critical NLS flow through the delta-functional potential

V (x) in [9, 85] shows that for some v = vcr(Vm) the flow loses its stability through the saddle-

node bifurcation resulting in the generation of dark solitons for v > vcr. The numerical

simulations in [9] also suggest that one can expect a qualitatively similar scenario with the

soliton train generation for slowly varying potentials moving with the supercritical velocity.

To describe this generation of solitons in the NLS flow past broad potential barrier quan-
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Figure 5.3: Plots of the fluid velocity u(x) in the hydraulic solution (5.17) for the potential
barrier (5.19) for which v− ≈ 0.2, v+ ≈ 1.9; (a) corresponds to subcritical velocity v = 0.1
and (b) to supercritical velocity v = 2.0. The physical branches are shown by solid lines and
non-physical by dashed lines.

titatively, we shall take advantage of the analytical construction proposed in [10], where the

transcritical shallow water flow past extended localised topography was considered in the

framework of the fKdV equation. The key in this construction is the assumption (confirmed

numerically a posteriori) of the existence, for certain interval of the flow velocities, of the

local steady transcritical transition over the forcing region, which is described by the rele-

vant hydraulic solution. This solution does not satisfy the equilibrium boundary conditions

outside the spatial range [−l, l] of the forcing, so one introduces discontinuities at x = ±l,

which are resolved into the equilibrium state with the aid of unsteady nonlinear wave trains

– the DSWs. By applying a similar assumption here for v = v− we consider the described

above separatrix hydraulic solution as a local one defined on the interval [−l, l]. Then we

get a discontinuity at x = l, which should be further resolved into the undisturbed state
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u = v, ρ = 1 as x→∞ via the DSW. Thus, when the BEC flow velocity is equal to v = v−,

the formation of DSW downstream of the potential barrier is expected.

In a similar way, when we get closer to v = v+ from above (Figure 5.4b), the physical

solution becomes pointed down, and at v = v+ it bifurcates into the separatrix line which

satisfies the boundary condition u = v+ as x→ +∞ (effectively at x = l) and a discontinuity

u = u− 6= v+ occurs at the left edge x = −l. Hence, in this case v = v+ we expect the

formation of the upstream DSW. One should note that in the NLS dispersive hydrodynamics

a general discontinuity resolves into a certain combination of two waves: dispersive shock(s)

and/or rarefaction wave(s). The actual combination depends on the relation between the

specific initial jump values for the density and velocity [18, 19] – see the decay of an initial

discontinuity classification in Section 4.4. The closure conditions enabling one to single out

the unique combination in our problem will be formulated in the next section.

Thus, one can suggest that in the two limiting cases v = v± the full solution can be built

of two parts: the steady hydraulic transition solution defined within the spatial range of the

potential barrier and the unsteady DSW/RW combination at one of the sides of the barrier.

Since the DSW is generated essentially outside the spatial range of the potential, one can

use the potential-free NLS equation for its description and take advantage of the theory

developed in [18, 19] on the basis of the original Gurevich-Pitaevskii approach (outlined in

Chapter 4) using the Whitham method of slow modulations [16, 17]. This modulation theory

of the NLS DSWs was recently applied to the description of DSWs in freely expanding BECs

in [2, 40].

Generally we are interested in the flow corresponding to the transcritical region

v− ≤ v ≤ v+ (5.20)

so one can expect formation of both upstream and downstream discontinuities with their

further dispersive resolution into the undisturbed states at x → ±∞. To be precise, we

expect a subcritical jump upstream, a supercritical jump downstream and the exact crit-
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Figure 5.4: a) subcritical hydraulic solutions for u at different values of v < v− (thin solid
lines) and a separatrix solution at v = v− (thick solid line); b) supercritical hydraulic solution
at different values of v > v− (thin solid lines) and separatrix solution at v = v+ (thick solid
line). Short-dashed lines: non-physical branches. Long-dashed line: non-physical separatrix.
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icality at the top of the potential. One should emphasise that the suggested description

of the transcritical BEC flow as a combination of local hydraulic solution connected with

the equilibrium state at infinities by unsteady DSW(s) is an assumption which should be

validated by the comparison of the analytical solution with direct numerical simulations for

a range of the oncoming flow/potential barrier parameters. As we shall see, this assumption

works very well when the oncoming flow velocity is not too close to the transcritical region

boundaries v±(Vm). The reason for that is clear: if the speed v is close to one of its critical

values v±(Vm), the characteristic relaxation time is expected to be very large (see [85] for

the bifurcation scaling analysis in the case of the delta-functional potential) so the local

transcritical steady flow does not establish in finite time. Nevertheless, it is instructive to

perform the analysis, based on the above assumption, for the whole range of velocities in

the interval [v−, v+] and then see how well this approximation works for different parameter

values.

We denote the values of the density and velocity at the boundaries x = ±l of the hydraulic

solution as

ρ(−l) ≡ ρu, u(−l) ≡ uu (upstream of the barrier) (5.21)

and

ρ(l) ≡ ρd, u(l) ≡ ud (downstream of the barrier) . (5.22)

We assume that the potential maximum is located at x = 0, i.e. Vx(0) = 0. The transcritical

hydraulic solution of our interest is then distinguished by two sets of conditions:

(i) ux 6= 0 at x = 0; (5.23)

(ii) uu ≤ um, ρu ≥ ρm and ud ≥ um, ρd ≤ ρm, (5.24)

where um, ρm are the values of u and ρ at x = 0. As we shall see the condition (i) actually

coincides with the requirement that um is equal to the local sound velocity at the top of
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the potential (exact criticality) – this is why the problem can be viewed as the resonant

generation of unsteady nonlinear wavetrains.

Now we take the solution of the hydraulic equations (5.5) in the general form

ρu = c1,
1
2
u2 + ρ+ V (x) = c2, (5.25)

c1,2 being arbitrary constants, so that instead of (5.7) we obtain

c2 −
u2

2
− c1

u
= V (x) . (5.26)

Differentiating (5.26) we obtain (
u− c1

u2

)
ux = Vx . (5.27)

Applying condition (5.23) we get

c1 = u3
m . (5.28)

Combining this relation with the first integral (5.25) applied to the point x = 0 yields

ρm = u2
m , (5.29)

which simply means that the local sound velocity at x = 0 is
√
ρm = um.

Substituting (5.28), (5.29) into the second integral (5.25) gives the value of c2:

c2 =
3

2
u2
m + Vm. (5.30)

On the other hand, the integrals (5.25) applied to the upstream and downstream boundaries

x = ±l where V (x)→ 0 yield the relations

ρu,duu,d = u3
m,

1
2
(uu,d)2 + ρu,d = 3

2
u2
m + Vm. (5.31)
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Eliminating um we get three equations

ρuuu = ρdud , 1
2
(uu)2 + ρu = 1

2
(ud)2 + ρd , 1

2
(uu)2 + ρu − 3

2
(ρuuu)2/3 = Vm (5.32)

for four quantities ρu,d, uu,d. Obviously, the last equation can be replaced by

1
2
(ud)2 + ρd − 3

2
(ρdud)2/3 = Vm, (5.33)

that is uu, ρu and ud, ρd satisfy the same set of equations. One more equation is needed for

closing the system, and this will be obtained in the next subsection.

Once uu,d and ρu,d are found, the integration constants c1 and c2 in (5.25) are expressed

as

c1 = ρu,duu,d, c2 = 1
2
(uu,d)2 + ρu,d. (5.34)

Hence, the transcritical hydraulic solution (5.25) is given by

1
2
u2 +

ρu,duu,d

u
+ V (x) = 1

2
(uu,d)2 + ρu,d, (5.35)

1
2

(
ρu,duu,d

ρ

)2

+ ρ+ V (x) = 1
2
(uu,d)2 + ρu,d. (5.36)

At the boundaries v = v± of the transcritical region, where either ρu = 1, uu = v− or

ρd = 1, ud = v+, equations (5.35), (5.36), reduce to (5.17), (5.18) respectively as it should

be.

5.2.1 Closure conditions

To get the closure condition for (5.32) we shall take advantage of the transition condition

across the DSW, which is most conveniently formulated in terms of the Riemann invariants

of the dispersionless hydrodynamic system associated with the NLS equation (see equation
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(3.6))

ρt + (ρu)x = 0,

ut + uux + ρx = 0 ,

(5.37)

and is equivalent to the classical SWEs (2.1). Introducing the Riemann invariants

λ± = 1
2
u±√ρ, (5.38)

we represent (5.37) in the diagonal form (see equation (2.7))

∂λ+

∂t
+ 1

4
(3λ+ + λ−)

∂λ+

∂x
= 0,

∂λ−
∂t

+ 1
4
(λ+ + 3λ−)

∂λ−
∂x

= 0 . (5.39)

In the problem of the decay of an initial discontinuity in the NLS hydrodynamics the transi-

tion across the DSW is characterised by the zero jump of one of the hydrodynamic Riemann

invariants (5.38) (see [18, 19], and Chapter 4). It should be stressed that this condition

is not a small-amplitude approximation of the classical shock jump condition but rather is

a non-perturbative consequence of the data transfer along characteristics of the associated

Whitham modulation system describing DSW region [53]. It will transpire later that in the

present problem of the right-propagating BEC through a potential barrier at rest, the “con-

serving” invariant is λ+ (this corresponds to the waves propagating to the left (see Chapter

4) which might seem somewhat counter-intuitive with regard to the downstream DSW).

The upstream DSW is adjacent to the oncoming flow ρ = 1, u = v so the Riemann

invariant condition yields the relationship

1
2
uu +

√
ρu = 1

2
v + 1 , (5.40)

which closes the system (5.32). We also recall that we are interested in the solution satisfying

condition (5.24) which allows one to identify the roots of (5.32), (5.40) as upstream and
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Figure 5.5: Riemann invariants λ± as functions of x in the hydraulic solution (5.35), (5.36)
for the potential (5.19) with Vm = 0.5. Note: λu+ ≈ λd+.

downstream ones. Now all four values ρu,d, uu,d are fixed in terms of Vm, v, which, in

particular, implies that the downstream discontinuity generally cannot be resolved by a

single DSW but requires an additional right-propagating RWs to adjust to the undisturbed

flow at +∞. While the introduction of this RW does not present one with a serious technical

problem, we shall see that in practical terms this additional complication is not actually

necessary.

First we note that, since the matching of the (external) hydrodynamic solution and

the (internal) modulation solution describing DSW is most naturally formulated in terms

of Riemann invariants (see [18, 19] and Chapter 4 for details) it is instructive to plot the

transcritical hydraulic solution (5.25), (5.28), (5.30) in terms of λ± (the physical branch of

the solution is selected using inequalities (5.24)). The plot in Figure 5.5 suggests that for

weak enough potentials one can neglect the change of λ+ across the barrier, which would

remove the necessity of introducing an additional RW. To justify this supposition we first

eliminate ρu,d from the second equation (5.31) to represent it in the form

(uu,d)2

2
+
u3
m

uu,d
− 3

2
u2
m = Vm. (5.41)
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Introducing the normalised quantities ν± = ud,u/um we represent (5.41) as

ν2
± +

2

ν±
− 3 = α, (5.42)

where α = 2Vm/u
2
m. Now let us suppose that Vm � 1, which implies ν± ≈ 1, u ≈ um ≈ 1,

α� 1. Then from (5.42) we get the expansion

ν± = 1±
(α

3

)1/2

+
α

9
+ c±α

3/2 + . . . , (5.43)

i.e. the controlling small parameter is again ε ∼ V
1/2
m (note that the coefficients c± in (5.43)

will not contribute to the result so we do not present them explicitly). We now consider the

boundary values of the Riemann invariant λ+ (5.38)

λu,d+ =
1

2
uu,d +

√
ρu,d =

1

2
uu,d +

u
3/2
m

(uu,d)1/2
. (5.44)

Again, normalising, Λu,d = λu,d+ /um, and expanding for small Vm we obtain

Λd,u =
1

2
ν± +

1

ν
1/2
±

=
3

2
+
α

8
∓ 1

48
√

3
α3/2 . . . (5.45)

Now, taking into account that um = 1 to leading order, we get

δ = λu+ − λd+ =

(
Vm
6

)3/2

+ · · · (5.46)

Thus, for weak potentials the jump of the Riemann invariant λ+ across the potential has

the third order in the controlling small parameter (Vm)
1
2 . This result has certain analogy

with the classical result from the shock wave theory which reads that the relevant Riemann

invariant has just the third order jump across the weak shock [6, 10]. The coefficient (1/6)3/2

before V
3/2
m suggests that one can neglect the jump of λ+ even for the potentials of moderate

strength (of course, provided that the coefficients for the successive powers of the small
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parameter V
1/2
m in the expansion (5.46) are reasonably small). Indeed, for our potential

(5.19) with Vm = 0.5 we have λu,d+ ≈ 1.5 while according to (5.46) δ ≈ 0.025 i.e. just about

1.7%, which is confirmed by the numerical transcritical hydraulic solution shown in Figure

5.5. So, for weak to moderate potentials one can safely assume that the value of the Riemann

invariant λ+ is preserved across the potential, which allows one to use an additional closure

condition

1
2
uu +

√
ρu = 1

2
ud +

√
ρd = 1

2
v + 1 . (5.47)

Relation (5.47) is asymptotically consistent with exact conditions (5.32), (5.40) and will be

especially useful in our further consideration of the dispersive resolution of the downstream

discontinuity. We also note that an immediate implication of (5.47) is that both upstream

and downstream DSWs are “based” on the same family of characteristics corresponding

to left-propagating hydrodynamic simple-waves, which will be essential for the modulation

solution in the subsequent sections.

5.2.2 Weak potentials: explicit formulae

Using asymptotic closure conditions (5.47) one can obtain simple approximate explicit ex-

pressions for ρu,d, uu,d in terms of v, Vm, which will be useful later. We use (5.47) to eliminate

ρu,d from (5.32) to obtain a single equation for w = uu,d,

w2

2
+

(
v − w

2
+ 1

)2

− 3

2

[
w

(
v − w

2
+ 1

)2
]2/3

= Vm. (5.48)

This equation has two roots, the larger one corresponds to ud and the smaller one to uu (see

(5.24)).

Equation (5.48) can be solved approximately for Vm � 1. It is easy to see that for Vm = 0

this equation is satisfied if w = 1 + (v−w)/2 i.e. w = (v+ 2)/3. In the next approximation
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we obtain

uu = 1 +
1

3
(v − 1)−

√
2Vm

3
, ud = 1 +

1

3
(v − 1) +

√
2Vm

3
, (5.49)

where we have used that v takes its values in the transcritical region (see (5.16))

1−
√

3Vm
2

< v < 1 +

√
3Vm

2
. (5.50)

Respectively, with the same accuracy we get from (5.47)

ρu = 1 +
2

3
(v − 1) +

√
2Vm

3
, ρd = 1 +

2

3
(v − 1)−

√
2Vm

3
. (5.51)

Using (5.49), (5.51) we calculate the upstream and downstream values of the Riemann in-

variant λ− = 1
2
u − √ρ, which undergoes discontinuities at both edges of the transcritical

hydraulic solution (see Figure 5.5),

λu− = λ−(−l) = −1

2
− 1

12
(v−1)−

√
2Vm

3
, λd− = λ−(l) = −1

2
− 1

12
(v−1)+

√
2Vm

3
(5.52)

Obviously, λu− < λ∞− , λd− > λ∞− , where λ∞− = v/2 − 1 is the value of λ− for the undisturbed

flow at infinity.

5.3 Resolution of downstream and upstream disconti-

nuities

Summarising the results of the previous section, we have the following values for the Riemann

invariants λ± at the boundaries x = ±l of the hydraulic transition and at x = ±∞:

λ+(−∞) = λd+ = λu+ = λ+(+∞) = 1
2
v + 1 , (5.53)

λ−(−∞) = λ−(+∞) = 1
2
v − 1 , (5.54)
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λd− = 1
2
ud −

√
ρd , λu− = 1

2
uu −

√
ρu. (5.55)

From now on we consider the values λu,d− (v, Vm) as known. Thus, there are upstream and

downstream discontinuities in λ− and no discontinuities in λ+.

As was mentioned above, the upstream and downstream discontinuities are resolved

through the generation of DSWs which can be described using modulated periodic solutions

of the defocusing NLS equation (5.1) without the barrier potential V (x+ vt). The potential

term can be neglected because the shock resolution occurs essentially outside the poten-

tial range −l < x < l. The potential-free NLS equation is Galilean invariant and hence it

preserves its form (up to inessential in our case phase factor in ψ-function) after the trans-

formation to the reference frame with the barrier at rest which is used in our calculations.

The periodic solution of the NLS equation for ρ(x, t), u(x, t) can be found in Chapters 3,

see equation (3.52). The wavelength L is given by (3.41).

The parameters λ1 ≤ λ2 ≤ λ2 ≤ λ4 vary slowly through the DSW and their evolution

is governed by the Whitham modulation equations (3.39) where the characteristic velocities

are given by equations (3.44).

The waveform (3.52) within the DSW wave region gradually changes from the vanishing

amplitude harmonic wave at one of the edges to a dark soliton at the opposite edge so that

generally the modulus m runs over the whole range from 0 to 1. The Riemann invariants

λj of the Whitham equations are matched with the “external” hydrodynamic invariants λ±

at some free boundaries x±(t) defined by the conditions m = 0 (harmonic edge) or m = 1

(soliton edge). The specific matching conditions and relative position of the harmonic and

soliton edges depend on whether one considers the left- or right-propagating DSW (see [19]

and Chapter 4).

For the left-propagating case of our interest the matching conditions are given by (4.4),
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Figure 5.6: Qualitative behavior of the Riemann invariants λj as functions of x in the full
hydraulic/modulation solution.

repeated they are

λ2 = λ1 , λ4 = λ+, λ3 = λ− at x = x−(t);

λ2 = λ3 , λ4 = λ+, λ1 = λ− at x = x+(t).
(5.56)

Since DSWs expand with time, their widths at sufficiently large t are much greater than

the range l of the barrier potential, so for t� l one can assume the hydraulic solution to be

asymptotically localised at x = 0 and use the similarity solutions of the Whitham equations

(3.39) with only one variable changing through each DSW [18] (note that the formal condition

of applicability of the Whitham method itself to the decay of a step problem is t� 1 — see

[17, 53]). From the matching conditions (5.56) it is clear that the varying invariant should

be λ2. Thus, in each DSW the invariants λ1, λ3, λ4 are constant and the invariant λ2 varies

according to the similarity solution (4.21). Repeated again this is,

V2(λ1, λ2, λ3, λ4) =
x

t
, (5.57)
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where

V2(λ1, λ2, λ3, λ4) = 1
2

∑
λi +

(λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m)− (λ3 − λ1)E(m)
. (5.58)

The values of λ1, λ3, λ4 in (5.58) are fixed and the Riemann invariant λ4 must have the same

constant value

λ4 = 1
2
v + 1 (5.59)

in both downstream and upstream DSW since the value of λ+ is transferred through the

hydraulic transition (see (5.53)). At the same time, the values of λ1 and λ3 are different

upstream and downstream of the barrier so we shall consider the downstream and upstream

DSWs separately. Before we proceed with the detailed analysis of the DSWs it is instructive

to get a picture of qualitative behavior of the Riemann invariants in the entire flow. For

that, we use the matching conditions (5.56) and the inequality ∂λ2/∂x > 0 following from

the similarity modulation solution (5.57) and the general property ∂vi/∂λi > 0 of the char-

acteristic velocities (3.44). As a result, one arrives at the qualitative scheme of the behaviour

of the Riemann invariants sketched in Figure 5.6.

5.3.0.1 Downstream DSW/soliton train

In the downstream DSW we have (see the matching conditions (5.56) and Figure 5.6)

λ1 = λ∞− =
v

2
− 1, λ3 = λd−, λ4 = λ∞+ =

v

2
+ 1, (5.60)

and λ2 as a function of the self-similar variable x/t is determined by the equation

V2(v/2− 1, λ2, λ
d
−, v/2 + 1) =

x

t
. (5.61)

In the linear limit λ2 → λ1 (i.e. m→ 0) we have

V2(λ1, λ1, λ3, λ4) = λ1 + 1
2
(λ3 + λ4) +

2(λ3 − λ1)(λ4 − λ1)

2λ1 − λ3 − λ4

. (5.62)

119



CHAPTER 5. TRANSCRITICAL NLS FLOWS PAST PENETRABLE BARRIERS

This velocity determines the speed sd− of the trailing edge of the downstream DSW and it

is not difficult to check using formulae (5.49), (5.52) that for Vm � 1 it is negative, that is

at least for weak potentials the trailing edge cannot be located in the downstream region.

Hence, in the equation (5.61) the variable λ2 is limited from below by some cut-off value

λ∗2, and, as a result, the downstream shock gets attached to the barrier at its boundary

x ≈ l . Then one can find λ∗2 in the approximation described above by taking l/t → 0 in

equation (5.61), which yields

V2(v/2− 1, λ∗2, λ
d
−, v/2 + 1) = 0. (5.63)

Since V2 has the meaning of nonlinear group velocity, equation (5.63) can be interpreted as

an asymptotic condition that the modulated wave “stops” at x = 0 and this is why it can

be directly connected (on the level of the Riemann invariants, i.e. in the “averaged” sense)

to the stationary hydraulic transition, which on the modulation length scale can be viewed

as a discontinuity located at x = 0. In more precise terms, relation (5.63) means that for

the solution under study the characteristic of the Whitham equations dx/dt = V2 coincides

with the characteristic dx/dt = 0 of the dispersionless equations (5.37) in the hydraulic

approximation at x = 0 so the modulation solution can be “terminated” at x = 0 and the

free-boundary matching conditions (5.56) at the (non-existent) trailing edge x− < 0 can be

replaced with the boundary conditions at x = 0:

λ3 = λd−, λ4 = 1
2
v + 1, λ1 = 1

2
v − 1 at x = 0. (5.64)

The modulation solution is then considered in the upper right quarter of x, t-plane, x > 0, t >

0. One should mention that the similar situation occurs in the problem of the transcritical

shallow water fluid flow past an obstacle described by the fKdV equation where the “partial

undular bore” attached to the obstacle is generated in the upstream flow [10, 11] (see also

[92]). Qualitative behavior of the Riemann invariants in the attached downstream DSW is
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Figure 5.7: Qualitative behavior of the Riemann invariants in the partial (attached) down-
stream DSW.

shown in Figure 5.7. Equation (5.63) determines λ∗2, and therefore, using the formula for c

(3.38), the value of the modulus m∗ at which the downstream DSW is generated at x = 0.

This value is equal to

m∗ =
(λ∗2 − 1

2
v + 1)(1

2
v + 1− λd−)

(1
2
v + 1− λ∗2)(λd− − 1

2
v + 1)

. (5.65)

Within the partial DSW the modulus changes in the interval m∗ ≤ m ≤ 1. The dependence

of the cut-off modulus m∗ on the BEC flow velocity v is shown in Figure 5.8a for Vm = 0.5.

One can see that for this case the cut-off modulus ranges in the interval 0 < m∗ . 0.75 and

for the transcritical flow velocities v sufficiently close to the lower boundary v− one can treat

the downstream DSW as a dark soliton train slowly propagating to the right relative to the

barrier. This is the dark soliton train that should remain within the finite elongated BEC

for some time after the potential has been swept and, therefore, could be observed in the

experiment. Therefore it is instructive to study its parameters in more detail.

First we calculate the downstream soliton emission rate. This can be done using the

formula

f ∗ = c∗/L∗ , (5.66)
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Figure 5.8: a) Cut-off modulus m∗ in the downstream DSW (dark soliton train) and b)
Downstream dark soliton emission rate f ∗ at the potential location vs oncoming BEC velocity
v. Both figures correspond to Vm = 0.5. At v ≈ 1.4 the downstream DSW detaches from
the potential. Crosses in (b) correspond to the numerical simulations data. The dashed line
in (b) corresponds to the frequency at the trailing edge of the detached downstream DSW.

where

c∗ = 1
2
(λ1 + λ∗2 + λ3 + λ4) = 1

2
(v + λd− + λ∗2) ,

L∗ = L(λ1, λ
∗
2, λ3, λ4) =

2K(m∗)√
(1

2
v + 1− λ∗2)(λ−d − 1

2
v + 1)

(5.67)

are the phase velocity (3.38) and the wavelength (3.41) respectively, calculated at the soliton

train generation point x = 0.

Dependence f ∗(v) for Vm = 0.5 is shown in Figure 5.8b where it is also compared with

the data from the direct numerical simulation using the potential (5.19) with Vm = 0.5,

σ = 2. Some features seen on this plot deserve additional explanation. Firstly we notice

that the analytically obtained value for the soliton emission frequency is finite for the flow

velocities close to (but slightly greater than) the lower transcritical boundary v− ≈ 0.2.

At the same time, the numerically obtained values of f ∗ suggest that the rate of soliton

production tends to zero as one approaches the lower transcritical region boundary v− ≈ 0.2

(we did not observe any soliton generation at v = 0.25 for the time range up to t = 50). The

disagreement between the analytical solution and actual behaviour of the soliton emission

frequency is due to the failure, close to the transcritical region boundary v = v−, of our
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main assumption about the existence of the local transcritical hydraulic solution forming

discontinuities with the equilibrium basic flow (see the discussion in Section 5.6). We note

that the detailed analysis of the dynamical scaling law for the soliton emission frequency

for near-critical NLS flows through short-range (delta-function) potentials was performed in

[85], where the frequency was shown to vanish as δ1/2, δ being the deviation of the controlling

parameter (for instance, potential strength) from its critical value.

The second “non-standard” feature in Figure 5.8b is an abrupt change, back to zero, of

the emission frequency f ∗ for v ≈ 1.4. This change does not constitute the cease of the

soliton generation downstream but simply reflects the fact that the downstream DSW gets

detached from the obstacle potential for velocities greater than some v = v∗, so there are

no waves generated at the potential location at x = 0 (where the frequency f ∗ is defined).

Indeed, as v increases within the transcritical region [v−, v+], the speed sd− of the trailing

edge (computed formally by (5.62)) can change the sign from minus to plus (see Figure 5.9),

which implies that for some v = v∗ the downstream DSW must detach from the barrier. The

detachment threshold velocity is determined from the condition

sd−(v∗) = 0, (5.68)

where sd−(v) = V2(m = 0) is given by equation (5.62). For Vm = 0.5 this velocity is v∗ ≈ 1.4

(which can also be clearly seen in Figures 5.8a,b).

One of the physical consequences of the downstream DSW detachment from the obstacle

is the zero frequency of oscillations for the drag force (see Section 5.5 below). At the

same time, one should note that at the point of the detachment, the amplitude of the

DSW vanishes, so the described discontinuity in the emission frequency at the obstacle has

no practical significance. We stress that the solitons keep get generated downstream for

v∗ < v < v+, but the generation point—the trailing edge of the downstream DSW – now

moves away from the potential with constant velocity sd−. The corresponding wave frequency

at the moving generation point is shown in Figure 5.8b by the dashed line.
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Figure 5.9: Dependence of the downstream DSW trailing edge speed sd− vs transcritical BEC
velocity v calculated by formula (5.62). The detachment point v = v∗ ≈ 1.4 is found from
the condition sd− = 0.
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Figure 5.10: Leading soliton parameters: a) amplitude Ad and b) speed sd+ — in the down-
stream DSW (dark soliton train) vs oncoming BEC velocity v for Vm = 0.5. Solid line:
modulation solution; Crosses: direct numerical solution.
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Figure 5.11: a) Cut-off modulus m∗ in the downstream DSW and b) Downstream dark soliton
emission rate f ∗ vs potential strength Vm. Both figures correspond to v = 1.0. Crosses in
(b) correspond to the numerical simulations data.
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Figure 5.12: Leading soliton parameters: a) amplitude Ad and b) speed sd+ — in the down-
stream DSW (dark soliton train) vs potential strength Vm. Both figures correspond to
v = 1.0. Solid line: modulation solution; Crosses: direct numerical solution.

The limit λ2 → λ3 (m→ 1) corresponds to the leading edge x+ of the downstream DSW.

The amplitude of the leading soliton is given by

Ad = (λ4 − λ3)(λ3 − λ1) = (2 + v − ud)(ud − v), (5.69)

and it moves with the velocity

sd+ = V2(λ∞− , λ
d
−, λ

d
−, λ

∞
+ ) = ud − 1. (5.70)

The dependencies Ad(v) and sd+(v) for Vm = 0.5 are shown in Figure 5.10 along with the

corresponding numerical simulations data. In Figures 5.11, 5.12 we plot the same set of

quantities: Ad, sd+,m
∗ and f ∗—as functions of the potential strength Vm for fixed v = 1.

One can see that our solution predicts the main physical parameters of the downstream

wave quite well provided the flow velocity is not too close to the critical values v± and the

potential strength Vm is not too large.

Summarising, the downstream DSW occupies the region

s∗− · t < x < sd+ · t, (5.71)

where s∗− = 0 for v− < v < v∗ and s∗− = sd− for v∗ < v < v+.
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5.3.0.2 Upstream DSW

The calculations in this case are very similar to those for the downstream DSW. Now the

constant Riemann invariants are equal to

λ1 = λu−, λ3 = λ∞− = v/2− 1, λ4 = λ∞+ = v/2 + 1, (5.72)

and λ2 as a function of x/t is determined by the equation

V2(λu−, λ2, v/2− 1, v/2 + 1) = x/t. (5.73)

The zero-amplitude leading edge with λ2 → λ1 propagates with the velocity

su− = V2(λu−, λ
u
−, v/2− 1, v/2 + 1) = 2λu− −

1

λu− − v/2
(5.74)

which is always negative. The limit λ2 → λ3 corresponds to the trailing (soliton) edge. The

amplitude of the trailing soliton is equal to

Au = 2(v − uu), (5.75)

and it moves with the velocity

su+ = V2(λu−, v/2− 1, v/2− 1, v/2 + 1) = 1
2
(uu + v − 2). (5.76)

In the case of of small Vm � 1 we get on using expansion (5.49) that

su+
∼= 2

3
(v − 1)−

√
Vm
6
, (5.77)

which implies that in the transcritical interval (5.50) su+ positive. Thus there exists the range

of velocities v for which the upstream DSW is also attached to the barrier and realised only
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partially. In contrast to the attached downstream DSW, in the partial upstream DSW the

modulus m varies between 0 and some cut-off value m∗∗ < 1, i.e. this wave can be viewed

as a nonlinear oscillatory tail rather than solitary wave train.

The value λ2 = λ∗∗2 , is found from the equation

V2(λu−, λ
∗∗
2 , v/2− 1, v/2 + 1) = 0, (5.78)

and determines the value of the cut-off modulus m∗∗ via (3.38). The threshold velocity

v = v∗∗ at which the upstream dispersive shock gets attached to the potential is found from

the condition su+ = 0 and is determined implicitly by the equation

uu(v) = 2− v, (5.79)

so that in the interval of velocities

v∗∗ < v < v+ (5.80)

the upstream DSW is attached to the barrier. Thus, the upstream shock occupies the region

su− · t < x < s∗∗+ · t, (5.81)

where s∗∗+ = 0 for the velocities v in the interval (5.80) and s∗∗ = su+ for v− < v < v∗∗.

5.4 Consolidated wave pattern

Putting together the analytical results of this Chapter, we obtain full asymptotic description

of the wave pattern generated in the transcritical 1D flow of a BEC past a wide penetrable

barrier. The pattern consists of two DSWs propagating upstream and downstream of the

barrier and connected with each other by the transcritical hydraulic transition localised over

the potential barrier spatial range. The behavior of the density and velocity within the
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DSWs is obtained by the substitution of the slowly varying similarity modulation solutions

(5.60), (5.61) and (5.72), (5.73) for λj into the rapidly oscillating travelling wave solution

(3.38). One should note that the matching conditions (5.56) used in the construction of the

modulation solution only guarantee the continuous matching of the average flow at the DSW

boundaries. To get exact matching of the rapidly oscillating wave field within the DSWs

with the constant (or slowly varying) flow outside, one should use the higher order analysis.

The “weak limit” formulation of the DSW problem used above is now well established owing

to the studies based on the Lax-Levermore-Venakides rigorous approach (see [68, 70] and

references therein).

The obtained combined modulated/hydraulic solution is shown in Figure 5.13 at t = 30

for the potential with Vm = 0.5 and the oncoming flow velocity v = 1 (phase adjustments

within the accuracy of the modulation theory are made to ensure continuity of the graph at

the boundaries of the DSWs).

We have also performed direct numerical integration the GP equation (5.3) with boundary

conditions (5.4). The simulations were performed using two different methods: the classical

finite difference explicit scheme [93] and the quasi-spectral split step method [94]. Both

methods gave the same results. In Figure 5.14 the numerical solution of the GP equation

(5.3) is plotted for the potential (5.19) with Vm = 0.5 and σ = 2. One can see excellent

agreement between the wave patterns in Figures 5.13 and 5.14

An additional small wave located about x = 60 in the numerical solution (Figure 5.14)

is due to the generation of a small-amplitude right-propagating wave packet formed from

the Bogoliubov linear waves created by a switching on the obstacle’s potential (see [95]).

The group velocity vg = dω/dk of the Bogoliubov waves obeying the dispersion relation

ω(k) = k
√

1 + k2/4 is always greater than the sound speed cs =
√
ρ = 1 and tends to

this value in the long wavelength limit k → 0. Taking into account that this wave packet

is convected by the flow with velocity v, we find that the wave packet occupies the region

x > (cs + v) · t and its predicted position is about x > 60 for the chosen parameters with
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Figure 5.13: Plot of the combined analytical (hydraulic + modulated oscillatory) solution
for the condensate density distribution in the wave pattern generated by a BEC flow with
v = 1 through the potential barrier with Vm = 0.5 at t = 30.

cs = v = 1 and t = 30 in agreement with the numerical results. Besides this wave packet,

one can notice a tiny RW right before the wave packet. It is formed due to the small

discrepancy between the upstream and downstream values of the Riemann invariant λ+

(see Figure 5.5 and the related explanation of the closure conditions). It is not difficult to

show using standard hydrodynamic reasoning that to leading order the density jump across

this RW should be ∆ρ ≈ δ = (Vm/6)3/2 (see (5.46)) while the RW speed is calculated as

u +
√
ρ ≈ v + 1. For the parameters Vm = 0.5, v = 1 used in our numerical simulation this

implies ∆ρ ≈ 0.025 and at t = 30 the predicted position of the RW is about x = 60. Both

predictions completely agree with the numerical solution.

The agreement between the analytical and numerical solutions seen in Figures 5.13 and

5.14 is especially remarkable in view of the relatively small width of the potential, σ = 2, used

in the numerical simulations. This width is comparable with the dispersion length in the

system, which is of order of unity, so the formal requirement l = σ/2� 1 of the applicability

of the local hydraulic solution is clearly violated. The robustness of the hydraulic solution

here looks quite surprising and deserves special attention. In this regard we note that

our analytical construction implies that two potentially conflicting requirements should be
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Figure 5.14: Numerical simulation of the condensate density distribution as a function of
the space coordinate x in the wave pattern generated by a BEC flow with v = 1 through the
potential barrier (5.19) with Vm = 0.5, σ = 2. The evolution time is equal to t = 30.

satisfied: the potential barrier should be (i) broad enough for the hydraulic approximation

to be applicable but (ii) not too broad for the similarity modulation solution to be used

for the description of the DSWs (i.e. the characteristic time of the establishing of the

steady transcritical hydraulic solution should be much less than the characteristic time of

the formation of the DSW). While it might look that these requirements are difficult to

satisfy simultaneously, our numerical simulations show that the resulting analytical solution

works quite well when σ = O(1). We have also performed numerical simulations for v = 1

with potentials of different shapes with the conclusion that for potentials with Vm . 1 and

σ = O(1) the parameters of the oscillatory structure almost do not depend on the actual

potential width and shape. This implies that for a reasonably broad range of the barrier

potentials the whole wave pattern is characterised only by the potential strength Vm and

the flow velocity v, which agrees with the parametrisation in our analytical solution. On

the other hand, our simulations with very broad potentials σ = O(10) show that the steady

hydraulic transition with constant jumps outside the potential does not form within a finite
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time interval so the developed quantitative description of the DSWs with the aid of the

similarity modulation solutions does not apply.

As we see in Figures 5.13 and 5.14, the parameters v = 1, Vm = 0.5 correspond to the

case when the downstream DSW is attached to the obstacle. It is natural to ask at which

values of the parameters v, Vm the upstream DSW gets detached and whether there exists

the region of the parameters when both shocks are detached from the obstacle. To answer

these questions, we first notice that the downstream DSW detaches from the obstacle when

the velocity of the trailing (m = 0) edge of the shock V2(v/2−1, v/2−1, λd−, v/2+1) defined

by equation (5.62) vanishes. This condition gives the equation

3
4
v2 − (9 + λd−)v − (λd−)2 + 6λd− + 11 = 0. (5.82)

Taking into account equation (5.47) we find λd− = ud/2−
√
ρd = ud− v/2− 1, and cast this

equation to the form

v2 − 12v − (ud)2 + 8ud + 4 = 0, (5.83)

which gives the value v∗ of the “detachment” velocity

v∗ = 6−
√

(ud − 4)2 + 16, (5.84)

where ud is the greater root of the equation (5.48). In the weak potential limit Vm � 1 we

obtain the series expansion

v∗ = 1 +
1

2

√
3Vm

2
− Vm

8
+ . . . . (5.85)

The upstream DSW detaches from the obstacle at velocity v∗∗ which satisfies the equation

(5.79) and again in the weak potential limit we obtain

v∗∗ = 1 +
1

2

√
3Vm

2
− Vm

24
+ . . . . (5.86)
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Figure 5.15: Dependence of the velocities v− and v+ at the boundaries of the transcritical
region (solid lines) and of the velocities of v∗ and v∗∗ (dashed lines) on the maximum value
Vm of potential.

It is easy to see that the region v∗ < v < v∗∗ is located inside the transcritical region (5.50)

and is relatively narrow; its position is illustrated in Figure 5.15.

We have verified the above predictions by constructing numerical solutions of the GP

equation with Vm = 0.5 and v = 1.4 (v∗ < v < v∗∗), v = 1.8 (v > v∗∗). The respective plots

are presented in Figure 5.16.

In Figure 5.16a both DSWs are completely developed and actually they both are detached

from the obstacle although because of the small difference between the soliton edge velocity

of the upstream shock and the velocity of the small amplitude edge of the downstream shock,

it takes very long time to reach a well developed hydraulic transition solution located near

x = 0 solution. Nevertheless we see that both DSWs are not cut off at the edges close

to the obstacle which means their detachment from the obstacle. In contrast, in Figure

5.16b the downstream DSW is detached from the obstacle whereas the upstream shock

is attached and is cut off towards the soliton edge. However, one should notice that the

parameters of the DSWs for the velocity v near the upper boundary v+ of the transcritical

region do not agree well enough with the analytical predictions. This disagreement has

already been discussed in Section 5.2 and is due to the violation of our main supposition

that the flow forms a steady hydraulic transition over the potential range interval with the

jumps at the both its sides: here we cannot neglect the time of forming of the hydraulic
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Figure 5.16: Numerical simulation of the condensate density distributions as functions of x
in the wave pattern generated by the potential barrier (5.19) with Vm = 0.5 and (a) v = 1.4,
(b) v = 1.8. Evolution time t = 45.

solution compared with the time of the development of the DSWs and therefore, the self-

similar solutions used in the analytical theory are not accurate enough. In spite of this

reservation, the developed theory qualitatively agrees with numerics even in this region: one

can easily distinguish in the numerically obtained pattern all the characteristic ingredients

of our analytical construction, namely, the smooth transition region over the potential range

and downstream and the upstream DSWs.

5.5 Drag force

We now consider the drag force, i.e. the force exerted on the BEC due to its motion through

the potential barrier. This force can be calculated as the spatial mean value of the operator

133



CHAPTER 5. TRANSCRITICAL NLS FLOWS PAST PENETRABLE BARRIERS

0.5 1.0 1.5
v

0.20

0.25

0.30

0.35

Fdrag
(a)

0.2 0.4 0.6 0.8 1.0
V

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F drag

m

 

(b)

Figure 5.17: The drag force Fdrag vs: a) BEC oncoming flow v in the transcritical region
(v−, v+) and b) potential strength Vm for fixed v = 1. Solid lines are drawn according
to the approximate equation (5.96) and dots correspond to the full numerical solution of
equation (5.92).

dV (x)/dx over the condensate wave function (see [88] for a detailed derivation),

Fdrag =

∞∫
−∞

ψ∗
∂V

∂x
ψdx =

∞∫
−∞

ρ
∂V

∂x
dx . (5.87)

For subcritical and supercritical flows, ρ = ρ(x) is given by the hydraulic solution (5.18)

which connects smoothly to ρ = 1 as |x| → ∞ and satisfies the system (5.5). Then integrating

the associated Bernoulli equation

(ρu2 + ρ2/2)x + ρVx = 0 (5.88)

from −∞ to +∞, and using that ρ → 1, u → v as |x| → ∞ we obtain Fdrag = 0 which is

the expression of BEC superfluidity at sub- and supercritical velocities. Strictly speaking,

the superfluidity is exact for v < v− < cs = 1 where no excitations are generated. In the

supersonic region v > v+ > cs = 1 the generation of excitations exists but it is exponentially

small for a slowly varying obstacles’s potential [87] and this generation is neglected in the

hydraulic approximation used here.

For the transcritical regime, v− ≤ v ≤ v+, there is no global hydraulic solution and the
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integral (5.87) can be split into three parts

Fdrag =

−l∫
−∞

ρd(x, t)
∂V

∂x
dx+

l∫
−l

ρtr(x)
∂V

∂x
dx+

∞∫
l

ρu(x, t)
∂V

∂x
dx. (5.89)

Here ρu,d(x, t) are the unsteady upstream and downstream solutions describing the density

behavior in respective DSWs and ρtr(x) is the local transcritical hydraulic solution (5.36)

defined on the interval (−l, l). Assuming that the potential V (x) sufficiently rapidly decays

for |x| > l together with its first derivative Vx, one can neglect the contributions of the first

and third integrals in (5.89). The remaining second integral can be evaluated again with the

use of the Bernoulli equation (5.88) to obtain

Fdrag = ρu(uu)2 + 1
2
(ρu)2 − ρd(ud)2 − 1

2
(ρd)2. (5.90)

If the downstream or upstream shock is attached to the hydraulic solution, then the limiting

values of the density and the flow velocity in the right-hand side of equation (5.90) oscillate

with time according to the DSW solution (3.52) considered at x = 0 and the parameter m

equal to m∗ or m∗∗ depending on whether the downstream or upstream DSW is attached.

The frequency of the drag force oscillations for the downstream attachment case is given by

formula (5.66) (a similar formula can be easily obtained for the upstream attachment case as

well). Averaging of the expression (5.90) over time yields the mean value of the drag force.

The situation simplifies greatly when both dispersive shocks are detached from the obstacle

and ρu,d and uu,d are given by the limiting values of the hydraulic solution. Although the

corresponding region of the potential maximum Vm and velocity v values is rather narrow,

the discussion of this case is quite instructive and enables one to estimate the accuracy of

the drag force series expansion in powers of V
1/2
m for small Vm.

As was shown above, w = uu,d are two roots of the equation (5.48) which can be rewritten
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in a more convenient form after introduction of new variables

w = u0(1− z), ρ = u2
0(1 + z/2)2, u0 = (v + 2)/3, ε = Vm/u

2
0 = 9Vm/(v + 2)2, (5.91)

so that equation (5.48) takes the form

1
2
(1− z)2 + (1 + z/2)2 − 3

2
(1− z)2/3(1 + z/2)4/3 = ε. (5.92)

One can easily derive series expansions of the roots of this equation in powers of ε1/2 to

obtain

zu =

√
2ε

3
− ε

18
+ . . . , zd = −

√
2ε

3
− ε

18
+ . . . , (5.93)

where the first order terms reproduce actually Eqs. (5.49) after taking into account inequal-

ities (5.50). With the use of equation (5.92) we represent equation (5.90) as

Fdrag = u4
0

[
G(zu)−G(zd)

]
(5.94)

where

G(z) = (1− z)2(1 + z/2)2 + 1
2
(1 + z/2)4. (5.95)

Then substitution of (5.93) into (5.94) yields with the accepted accuracy the expression

Fdrag ∼= u4
0

(√
2

3
ε3/2 − 5

6
√

6
ε5/2

)
∼=
(
Vm
6

)3/2 [
4(v + 2)− 5

6
Vm

]
, (5.96)

where v varies in the transcritical region (5.50). In Figure 5.17 we compare the plots of

dependence of Fdrag on v and Vm according to equation (5.96) and calculated by means of

the exact numerical solution of equation (5.92). As we see, the accuracy is very good even

for Vm = 1.
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5.6 Discussion

In the experiment [6] it was found that the solitons are generated by a moving potential

barrier in the interval of velocities

0.3mm/s < v < 0.9mm/s. (5.97)

This result agrees qualitatively with existence of the finite interval (5.20) for which the

expanding DSWs are generated. However, we encounter a quantitative contradiction if we

accept the value of the sound velocity calculated in [6] cs = 2.1mm/s as correct, because in

our non-dimensional units the sound velocity is equal to unity and hence it must be located

inside the interval (5.20), (see Figure 5.2), or, in dimensional units, inside the interval (5.97).

This disagreement can be explained by noticing that the above value of the sound velocity

was calculated in [6] according to the expression

c0
s =

√
ρ0g

2m
, (5.98)

where ρ0 is the condensate density at the center of the trap. Here

g = 4π~2as/m (5.99)

is the effective coupling constant in the BEC consisting of atoms with mass m and s-wave

scattering length as. But this expression is correct only for a rarefied enough condensate

confined to the cigar-shaped trap with “frozen” radial motion and this condition was not

fulfilled in [6].

Dynamics of a dense BEC is described by the full 3D GP equation, which can be reduced

to some effectively 1D systems much more complicated than the NLS equation (5.1). For

example, the variational approach to the dynamics of the dense BEC was developed in [96]

where it was shown that the sound velocity along the axial direction of the trap is given by
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the expression (see Eqs. (67) and (70) in [96])

cs = c0
s ·

(1 + 3G/2)1/2

(1 + 2G)3/4
, (5.100)

where the parameter G is calculated by the formula

G =
a2
⊥

8ξ2

√1 +

(
a2
⊥

8ξ2

)2

+
a2
⊥

8ξ2

 . (5.101)

Here a⊥ =
√
~/mω⊥ is the radial “oscillator length” and ξ = ~/

√
2mρ0g is the healing

length. Equation (5.100) reduces to equation (5.98) in the limit G� 1 of a rarefied BEC. In

the experiment [6] these parameters were equal to a⊥ = 0.73 · 10−4cm and ξ = 0.17 · 10−4cm,

so that equation (5.101) gives G = 11.4, that is the experiment [6] corresponds to the

opposite limit of dense BEC. The sound velocity calculated according to equation (5.100) is

equal to cs = 0.8mm/s, and this value agrees much better with the interval (5.97). Thus,

for quantitative description of the experiment [6] the theory of dispersive shocks in a dense

BEC should be developed what is beyond the scope of this thesis. Therefore we shall confine

ourselves here to some qualitative remarks only.

The famous Landau criterion [7] for the loss of superfluidity was based on the consid-

eration of linear excitations only and it contradicted to the experiments with liquid HeII.

This discrepancy was explained by Feynman by taking into the consideration the formation

of such nonlinear structures as vortices in the flow of a superfluid in capillaries or past ob-

stacles. However, the notion of the threshold velocity below which the flow is superfluid has

not been changed by this modification of the theory. Taking into account the generation of

DSWs in 2D situation [36, 97] did not change this notion either, since the stationary spatial

DSWs are generated by the supersonic flow of BEC only. Our results, as well as the results

of the previous works [9, 86–89], show that the situation can be more subtle in the case

of 1D flows. In this case, the flow past a broad barrier leads to the generation of DSWs
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for a finite interval of the flow velocities bounded not only from below but also from above.

Moreover, the lower boundary value of the velocity v− can become equal to zero for strong

enough barriers, that is even very slow motions could lead to the generation of solitons. This

observation is in striking contrast with the standard reasonings based on the linear theory

of excitations.

In conclusion we note that the obtained results can be used for the description of the

nonlinear optical wave tunneling through penetrable barriers. Observation of the generation

of DSWs in the plane wave tunneling through a refractive index defect in a photorefractive

crystal was reported in the very recent paper by Wan, Muenzel and Fleischer [5]. The

qualitative dynamics observed in [5] agree with the NLS theory presented in this Chapter.

The quantitative theory can be constructed in the framework of the NLS equation with

saturable nonlinearity (2.63) (see Section 2.4.3.2) using the DSW fitting method described

in Chapter 4 (Section 4.7).
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Chapter 6

DSW refraction in Kerr media

The problem of the interaction of viscous shock waves with RWs is a canonical problem in

gas and fluid dynamics. It was first mathematically formulated by Courant and Friedrischs

in 1943 [98] and has been later the subject of numerous studies (see some of the original

research papers [99–102] as well as classical monographs [12, 74]). One can distinguish two

types of such interactions: unidirectional (overtaking) and bidirectional (head-on). The

problem of the the interaction of a shock wave with a simple RW is often referred to as the

shock wave refraction problem since, after the interaction, the intensity and the speed of

the shock wave change, which corresponds to the ‘refraction’ of the shock trajectory in the

x, t-plane.

It is clear that the shock wave refraction problem can be considered for dispersive con-

servative media such as BECs or optical media. In such media, viscous shocks are replaced

by DSWs while the RW description remains the same. Ablowitz, Baldwin and Hoefer [15]

considered the problem of the overtaking interactions of DSWs and RWs associated with

the KdV equation. Their analysis performed using the analytical inverse scattering trans-

form (IST) solutions for the KdV equation and numerical solutions of the KdV-Whitham

equations has revealed certain similarities as well as fundamental differences between classi-

cal and dispersive-hydrodynamic overtaking shock wave-RW interactions. In many physical
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settings, however, one has to deal with bi-directional (head-on) wave collisions which cannot

be captured by the KdV type models and should be studied in the framework of appropriate

two-wave equations.

In this Chapter we consider head-on collisions of DSWs and RWs in the framework of

the defocusing NLS equation with cubic (Kerr) nonlinearity, which is the main mathemat-

ical model used in the Thesis. This problem is fundamentally important as a dispersive

counterpart of a classical gas dynamic problem and also can find applications in superfluid

dynamics and nonlinear optics.

The results presented in this Chapter have been published in the joint paper [21].

6.1 Formulation of the problem

We consider the NLS equation (3.1) and rewrite it in its dispersive-hydrodynamic form (3.5)

ρt + (ρu)x = 0,

ut + uux + ρx + ε2(
ρ2
x

8ρ2
− ρxx

4ρ
)x = 0

(6.1)

with the explicitly introduced dispersion parameter ε. We note that, since the results of the

modulation theory do not depend on the value ε in (6.1), we shall be assuming ε = 1 in

the analytical representations of the periodic solutions (i.e. will make use of the results in

Section 3.1.2, while in the numerical simulations we shall normally be using smaller values of

ε to reduce the numerical time of the slowly modulated DSW structure establishment. This

proved to be essential in the modelling of the DSW-RW interaction problem because the time

required for the waves to settle down to their ‘quasi-steady’ profiles after the interaction can

be very significant.

As we have seen in Section 3.1.1.2, the dispersionless (ε = 0) limit of the hydrodynamic

system (6.1) (the SWE (3.6)) can be written in diagonal form (2.7) by introducing the

Riemann invariants λ± = 1
2
u ± √ρ, where the associated characteristic velocities V± are
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given by (2.8).

λ

λ

A

A

1

-1

+

-

+

-

l

Figure 6.1: Initial conditions for the NLS equation (6.1) leading to the head-on DSW-RW
interaction: profiles of hydrodynamic Riemann invariants λ± (6.2).

To model the interaction of a DSW and RW we consider the IVP for the NLS equation

(6.1), formulated in terms of the shallow water Riemann invariants λ± rather than ρ and

u separately as in Chapter 4. Namely, we consider two jumps for λ±, which have different

polarity and which are separated from one another by a distance l, see Figure 6.1:

λ+ =

{
1 for x > 0,

A+ for x < 0,
λ− =

{
−1 for x > l,

A− for x > l.
(6.2)

where A+ > 1 and −1 < A− < 1. In terms of the density ρ and velocity u initial conditions

(6.2) assume the form (see Figure 6.2):

ρ(x, 0) =

{ 1
4
(1 + A+)2 > 1 for x < 0,

1 for 0 < x < l,

1
4
(1− A−)2 < 1 for x > l;

u(x, 0) =

{ A+ − 1 > 0 for x < 0,

0 for 0 < x < l,

1 + A− > 0 for x > l.

(6.3)

With these initial conditions, it is expected that the NLS dynamics will lead to the

formation of a DSW and a RW (see Fig. 6.3) which, after a period of time, will begin to
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ρ u

ρ=1

ρ>0 u=0

x=lx=0 x=0 x=l

Figure 6.2: Piecewise constant initial conditions for density and velocity (6.3) corresponding
to the Riemann invariant profiles (6.2).

interact and then will completely separate so that we get a refracted DSW and RW with

new parameters. The crucial difference between the present problem (6.1), (6.3) and the

canonical problem of the decay of an initial discontinuity described in Section 4.4, is that

the two discontinuities for λ+ and λ− are now spaced a large distance l so the modulation

problem is no longer self-similar and a more general, hodograph solution is required to

describe the interaction of the two waves.

Figure 6.3: Sketch of the density profile in the NLS flow prior to head-on DSW-RW inter-
action

6.2 Refraction of shock waves in classical gas dynamics

Before we proceed with the analysis of the bidirectional dispersive refraction problem (3.1),

(6.3) we outline some classical results on the head-on interaction of viscous shocks and RWs

(see e.g. [98, 99]).

Consider a one-dimensional motion of a polytropic isentropic gas, i.e. a gas with the
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equation of state p = cργ, where p and ρ are the gas pressure and density respectively, γ is

the adiabatic exponent and c is a constant (the dispersionless shallow water dynamics (2.1)

is equivalent to the dynamics of the polytropic gas with γ = 2). Let the gas motion at some

moment of time, say t = tc ≥ 0 consist of three regions of constant flow separated by two

waves: a right-propagating shock wave (SW) located at some x = xc and a left-propagating

RW centred at x = l and occupying a finite region of space, such a configuration can be

created by piston motion inside a tube (see e.g. [99]). Let the density and velocity of the

flow be (ρ1, u1) as x→ −∞ and (ρ2, u2) as x→ +∞. Then the gas motion at t > tc can be

qualitatively described as follows:

ct

*t

l

0t

0x

SW

RW

Refracted SW

x

t

Refracted RW

Entropy
Wave

Figure 6.4: Head-on interaction of shock wave and RW in classical gas dynamics

• The shock wave and RW propagate independently until the moment t = t0, when

the shock enters the RW region at some x = x0 say. Before that moment, i.e. for

0 < t < t0, the entropy undergoes a rapid constant change across the shock wave so

the shock wave speed and strength (the pressure excess across it) are determined by

the standard Rankine-Hugoniot conditions. The RW is described by the centred left-
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propagating simple-wave solution of the inviscid hydrodynamic equations of motion.

The parameters of the constant flow between the shock wave and RW are found at the

intersection of the ρ− u diagrams for the shock wave and RW (see e.g. [12]).

• During certain time interval t0 < t < t∗ the shock wave and the RW interact. The

interaction is accompanied by the variations of the shock strength and results in the

formation of the varying entropy region (the so-called ‘entropy wave’) behind the shock

wave. Therefore, the flow behind the refracted shock wave is not isentropic.

• At t = t∗ the shock wave exits the RW region and the two waves again propagate

separately in opposite directions, each having an altered (as compared with the values

before the interaction) set of parameters. An important general result is that the speeds

of the refracted shock wave and RW and the density/velocity jumps across them are

exactly as they would have been in the corresponding origin-centred Riemann problem

(i.e. in the decay of an initial discontinuity problem with the gas parameters (ρ1, u1)

at x < 0 and (ρ2, u2) at x > 0 ), however, the spatial locations of the refracted waves

differ from those in the corresponding Riemann problem. The refracted shock wave

always has greater speed and strength than the original one.

As already was mentioned, the presence of the ‘entropy wave’ behind the refracted shock

wave radically complicates quantitative analysis of the motion and, as a result, the shock

wave-RW head-on collision problem can generally be treated only numerically. In contrast

to classical gas dynamics, dispersive hydrodynamic flows governed by completely integrable

equations often admit full analytical description. In particular, such a description is available

for the DSW refraction process. This description can also be generalised (to some extent) to

certain types of non-integrable dispersive equations. The generalisation to the NLS equation

with saturated nonlinearity will be described in Chapter 7.
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6.3 DSW-RW interaction: numerical simulations

In Figures 6.5 and 6.6 the results of direct numerical simulations of the DSW-RW interaction

are presented. Details of the numerical methods used can be found in the Appendix. In
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Figure 6.5: Numerical simulation of the bidirectional interaction of a DSW and RW: density
(upper panel) and velocity (lower panel) profile; Initial data parameters: A+ = 1.5, A− =
−0.4, l = 50. The value of the dispersion parameter ε used in the simulations is 0.4

Figure 6.5 the plots for the density and velocity profiles at different stages of the NLS

evolution of the initial profile (6.2) are shown. In Figure 6.6 a density x, t plot is presented

for the same evolution. One can clearly see the change of the DSW and RW parameters due
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Figure 6.6: Density plot corresponding to the DSW-RW interaction shown in Figure 6.5.
The regions are as follows: I – incident DSW; II – incident RW; III – DSW-RW interaction
region; IV – Refracted RW; V – Refracted DSW.

to the interaction, and the DSW refraction phase shift d.
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6.4 Modulation solution

In the problem we are considering, we have an initial discontinuity in the Riemann invariant

λ+ at x = 0 evolving into a right-propagating simple DSW and a discontinuity in the

Riemann invariant λ− at x = l evolving into a left-propagating simple RW. These wave

structures remain separated until some time t0. They then interact during the time interval

t0 < t < t∗ and for t > t∗ the DSW and RW again separate but now each having a new set

of parameters.

In this section we construct modulation solutions describing all stages of the evolution of

the DSW and RW. We shall assume the general modulation description of DSWs and RWs

presented in Chapters 3 and 4 and apply it to the specific IVP (6.1), (6.2). Along with the

self-similar (x/t) modulation solutions found in Section 4.2. we shall need a more general,

hodograph solution (4.5) from Section 4.5 to describe the DSW-RW interaction region and

then determine the parameters of the refracted DSW and RW.

6.4.1 Before interaction, 0 < t < t0

6.4.1.1 Incident DSW

Translating the initial dicontinuity (6.2) at x = 0 into the Gurevich-Pitaevskii matching

conditions (4.3) (see also the self-similar version (4.8)) we obtain

x = x−(t) : λ3 = λ2, λ4 = A+, λ1 = −1,

x = x+(t) : λ3 = λ4, λ2 = 1, λ1 = −1.

(6.4)

The similarity modulation solution satisfying matching conditions (6.4) has the form (see

(4.12)

λ1 = −1, λ2 = 1, λ4 = A+,

x

t
= V3(−1, 1, λ3, A+) =

λ3 + A+

2
− (A+ − λ3)(λ3 − 1)K(m)

(λ3 − 1)K(m)− (A+ − 1)E(m)
,

(6.5)
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where

m =
2(A+ − λ3)

(A+ − 1)(λ3 + 1)
. (6.6)

The schamatic behaviour of the Riemann invariants in the obtained modulation solution is

shown in Figure 6.7.

−1

Α

1

Α

xx x x− + − +

+

−
λ−

λ+

λ

λ

λ

λ

Figure 6.7: Schematic behaviour of the Riemann invariants before the interaction of the
DSW and RW, 0 < t < t0.

The boundaries of the DSW are found from (6.5) by assuming m = 0 (i.e. λ3 = A+ –

leading edge x+
1 ) and m = 1 (i.e. λ3 = 1 – trailing edge x−1 ):

x−1 =
1 + A+

2
t, x+

1 =
2A2

+ − 1

A+

t. (6.7)

The dark soliton at the trailing edge x−1 of the DSW has the amplitude as and propagates

on the background ρs defined by

as = 2(A+ − 1), ρs = 1
4
(1 + A+)2 . (6.8)

The value A+ = 3 corresponds to the formation of a vacuum point at the trailing edge

of the DSW [19] so that the density at the dark soliton minimum is ρs− as = 0. For A+ > 3
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the vacuum point occurs inside the DSW at some point xv where x− < xv < x+ (see Section

4.2.3).

We define the DSW intensity I as the relative jump across it:

I =
ρ1

ρ2

, (6.9)

where ρ1 and ρ2 are the values of the density upstream and downstream of the DSW re-

spectively. For the incident DSW, i.e. before interaction, we have ρ1 = ρs and ρ2 = 1 and

therefore its intensity is

I0 = 1
4
(1 + A+)2. (6.10)

6.4.1.2 Incident RW

Now, the left-propagating RW is asymptotically described by the centred at x = l similarity

solution of the NLS dispersionless limit equations (3.6) – see Section 4.3. The relevant

solution in Riemann invariants has the form

λ+ = 1, (6.11)

λ− = −1, x < x−2 ,

x− l
t

= V−(λ−, 1) =
3λ− + 1

2
, x−2 ≤ x ≤ x+

2 ,

λ− = A−, x > x+
2 .

(6.12)

The behaviour of the Riemann invariants in the RW is shown in Figure 6.7. The boundaries

x±2 are given by

x−2 = l − t, x+
2 = l +

3A− + 1

2
t. (6.13)

Note, the modulation system (3.39) in the harmonic limit is consistent with the SWE
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(2.7), (2.8) — see (3.50), the RW solution (6.11), (6.12) can also be found to be a solution

of the full modulation system (3.39), (3.44), namely

λ3 = λ4 = A+, λ2 = λ+ = 1, λ1 = λ−(x, t). (6.14)

The DSW and RW evolve independently until they meet at the moment t = t0, when

the leading edge of the DSW overtakes the trailing edge of the RW. So at t0 we have

x0 = x+
1 (t0) = x−2 (t0). Now using (6.7) and (6.13) we obtain

t0 =
A+l

2A2
+ + A+ − 1

, x0 =
2A2

+ − 1

2A2
+ + A+ − 1

l. (6.15)

6.4.2 DSW-RW interaction, t0 < t < t∗

At t > t0 the DSW and RW begin to overlap so that a nonlinear interaction region [x−2 , x
+
1 ]

forms (see Figure 6.8) and evolves in time up to a time t = t∗ when the DSW completely

overtakes the RW and the waves separate from each other. At the point of separation we have

x+
2 (t∗) = x−1 (t∗). Both waves at this point acquire new sets of parameters λj, different from

their initial Riemann invariant distributions found in previous Section. Schematic behaviour

of the Riemann invariants in the interaction zone is shown in Figure 6.8. One should stress

that, for t > t0 the functions x±1 (t) and x±2 (t) are no longer described by the formulae (6.7),

(6.13) from the previous Section.

In the interaction region [x−2 , x
+
1 ] one still has λ2 = 1 and λ4 = A+ but the remaining two

Riemann invariants (λ1 and λ3) now vary so the modulation solution is no longer self-similar

and a more general, hodograph solution (4.38), (4.39) for k = 1, l = 3 is needed. This is

found via the additional transformation (4.41),

Wi =

(
1− L

∂iL
∂i

)
g , i = 1, 3, (6.16)
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Figure 6.8: Schematic behaviour of the Riemann invariants during the interaction of the
DSW and RW, t0 < t < t∗.

reducing Tsarev’s equations (4.39) for W1,3(λ1, λ3) ≡ W1,3(λ1, 1, λ3, A
+) to a single EPD

equation (4.43)

2(λ3 − λ1)∂2
31g = ∂3g − ∂1g . (6.17)

The general solution (4.44) of the EPD equation (6.17)

g(λ1, λ3) =

λ1∫
a1

φ1(λ)dλ√
(λ− λ1)(λ3 − λ)

+

λ3∫
a2

φ2(λ)dλ√
(λ− λ1)(λ3 − λ)

, (6.18)

is parametrised by two arbitrary functions φ1,2(λ) and two constants a1,2, which should be

found from appropriate boundary conditions. These conditions, in their turn, must follow

from the continuity matching conditions for λ1 and λ3 at the unknown boundaries x−2 (t) and

x+
1 (t).

At the left boundary x = x−2 (t) of the interaction region (segment PQ in the interaction

diagram in Figure 6.9, left), we have (see Figure 6.8)

λ1 = −1, λ2 = 1, λ3 = λs3(x−2 (t), t), λ4 = A+, (6.19)
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Figure 6.9: DSW-RW interaction diagram. Left: physical, (x, t) plane; Right: hodograph,
(λ1λ3) plane.

where λs3(x, t) = λ3(x/t) is found from the similarity modulation solution (6.5).

At the right boundary x = x+
1 (t) of the interaction zone (segment PR in the interaction

diagram in Figure 6.9, left), we have (see Figure 6.8)

λ1 = λr−(x+
1 (t), t), λ2 = 1, λ3 = λ4 = A+, (6.20)

where λr−(x, t) = λ−((x− l)/t) is found from the rarefaction solution (6.11) and (6.12).

The boundary conditions (6.19) and (6.20) have to be translated into the boundary

conditions for the function g(λ1, λ3) satisfying the EPD equation (6.17). This can be done in

two steps. In the first step, we derive the boundary conditions for the functions W1(λ1, λ3)

and W3(λ1, λ3) satisfying the system of linear PDEs (4.39)

∂kWl

Wk −Wl

=
∂kVl

Vk − Vl
; k, l = 1, 3, k 6= l, (6.21)

and defining the hodograph solution (4.38)

x− V1t = W1, x− V3t = W3 . (6.22)

Using the boundary condition (6.20) at x = x+
1 and the expression (3.50)for the characteristic
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velocity V1 for the degenerate case when λ3 = λ4, the first equation in (6.22) becomes

x− 3λ1 + 1

2
t = W1(λ1, A+). (6.23)

Due to the matching condition (6.20) we have λ1 = λ− at x = x+
1 , then we get by comparing

(6.23) with the RW solution (6.11) and (6.12) that

W1(λ1, A+) = l. (6.24)

Next we turn to the boundary condition (6.19) and deduce from the comparison of second

equation (6.22) with similarity solution (6.5) that

W3(−1, λ3) = 0 . (6.25)

Thus, the unknown at the onset curvilinear interaction zone PQTR in the (x, t)-plane (Fig-

ure 6.9, left) maps to the prescribed rectangle PQTR in the hodograph (λ1λ3) plane (Fig-

ure 6.9, right). We also note that, in contrast to the original free-boundary matching

conditions (6.19), (6.20) for the Riemann invariants λj(x, t), the boundary conditions (6.24)

and (6.25) for the functions W1,3(λ1, λ3) are linear (i.e. they do not depend on the particular

solution).

To deduce boundary conditions for the EPD equation (6.17) from conditions (6.24),

(6.25) for the Tsarev equations (6.21) we use the relations (6.16) between W1,3(λ1, λ3) and

the scalar function g(λ1, λ3). From (6.24) and (6.16) considered for λ2 = 1 we obtain a

simple ODE

g(λ1, A+)− L(λ1, 1, A+, A+)

∂1L(λ1, 1, A+, A+)
∂1g(λ1, A+) = l, (6.26)
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which can be easily integrated, giving boundary value of the function g(λ1, A+) at λ3 = A+,

g(λ1, A+) = C1L(λ1, 1, A+, A+) + l =
C1√

A+ − λ1

+ l, (6.27)

where C1 is an arbitrary constant of integration.

From (6.25) we find, using relation (6.16)

g(−1, 1, λ3, A+)− L(−1, 1, λ3, A+)

∂3L(−1, 1, λ3, A+)
∂3g(−1, 1, λ3, A+) = 0. (6.28)

So the solution is found to be

g(−1, λ3) = C2L(−1, 1, λ3, A+), (6.29)

where C2 is a second constant of integration.

Important note, we aim to satisfy the boundary conditions (6.24) and (6.25) for W1,3.

For that, we have two arbitrary functions φ1,2(λ) and two arbitrary constants C1,2. We

first observe that, according to Section 4.6, the function g(−1, λ3) has the meaning of the

modulation phase shift in the incident DSW. Since this DSW is described by a centred simple

wave modulation solution, this phase shift must be equal to zero (see the end of Section 4.6).

Thus we set C2 = 0 so that condition (6.29) assumes the form

g(−1, λ3) = 0. (6.30)

Then setting φ2(λ) ≡ 0 and a1 = −1 in the general solution (6.18) of the EDP equation

(6.17) we have

g =

∫ λ1

−1

φ1(λ)dλ√
(λ3 − λ)(λ1 − λ)

. (6.31)
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Now we substitute conditions (6.27) and (6.30) in an aim to find φ1(λ) and C1. Doing

so we obtain

∫ λ1

−1

φ1(λ)dλ√
(λ3 − λ)(λ1 − λ)

=
C1√

A+ − λ1

+ l, (6.32)

which is an Abel integral equation for φ1(λ) (see e.g. [65]). Recall,

if

∫ x

a

φ(ζ)√
x− ζ

dζ = f(x), then φ(x) =
1

π

d

dx

∫ x

a

f(ζ)√
x− ζ

dζ. (6.33)

The solution to (6.32) can then be obtained

φ1(λ) =
1

π
√
λ+ 1

(
C1

√
A+ + 1

A+ − λ
+ l
√
A+ − λ

)
. (6.34)

Equation (6.30) is now satisfied by (6.31) and (6.34) only if φ1(−1) = 0 which implies that

c1 = −l
√
A+ + 1, so

g(λ1, λ3) = − l
π

∫ λ1

−1

√
λ+ 1 dλ√

(A+ − λ)(λ3 − λ)(λ1 − λ)

= − 2l(A+ + 1)√
(A+ − λ1)(λ3 + 1)

(K(z)− Π1(s, z)),

(6.35)

where

z =
(A+ − λ3)(λ1 + 1)

(A+ − λ1)(λ3 + 1)
, s = − λ1 + 1

A+ − λ1

. (6.36)

Then the exact modulation solution describing the interaction of counter-propagating DSW

and RW is given by the formulae

λ2 = 1, λ4 = A+, x− V1,3(λ1, 1, λ3, A+)t =
(
1− L

∂1,3L
∂1,3

)
g(λ1, λ3), (6.37)
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where g(λ1, λ3) is given by (6.35).

The interaction takes place until time t = t∗ given by

t∗ =
2
√

2lE(r)

π(1− A−)
√
A+ − A−

, (6.38)

where

r =
(A+ − 1)(A− + 1)

2(A+ − A−)
. (6.39)

x∗ is given by, x∗ = P (1) (see (6.46) below).

6.4.3 After interaction, t > t∗

At t = t∗ the DSW exits the RW region and the two waves separate.

6.4.3.1 Refracted DSW

The modulation solution describing the DSW after the separation is given by three constant

invariants, see Figure 6.10

−1

Α

1

Α

x x xx− + − +

+

−
λ−

λ+ λ

λ
λ

λ

Figure 6.10: Schematic behaviour of the Riemann invariants after the interaction of the
DSW and RW, t > t∗.
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λ1 = A−, λ2 = 1, λ4 = A+, (6.40)

while for the remaining one, λ3, we have from (6.37) a simple-wave modulation solution (cf.

(6.5))

x = V3(A−, 1, λ3, A
+)t+ P (λ3)

= (1
2
(1 + A− + A+ + λ3) +

(A+ − λ3)(λ3 − 1)(λ3 − 1)

(λ3 − A−)µ(m)
)t+ P (λ3),

(6.41)

where

m =
(1− A−)(A+ − λ3)

(A+ − 1)(λ3 − A−)
, µ(m) = E(m)/K(m) (6.42)

and the function P (ζ) is found as

P (ζ) = W3(A−, ζ) = (1− L(A−, 1, ζ, A+)

∂3L(A−, 1, ζ, A+)
∂3)g(A−, ζ)

=
2l

π
√

(A+ − A−)(ζ + 1)
((A+ + 1)Π1(p, z)+

[(A+)2 − 1](ζ − A−)K(z)µ(y)− [ζ2 − 1][A+ − A−]E(z)

(ζ − A−)[(ζ − 1)− (A+ − 1)µ(y)]
),

(6.43)

where

p = − A− + 1

A+ − A−
, z =

A− + 1

A+ − A−
A+ − ζ
ζ + 1

, y =
(1− A−)(A+ − ζ)

(A+ − 1)(ζ − A−)
, (6.44)

Expressions (6.44) are obtained from formulae (6.36), where one sets λ1 = A−, λ3 = ζ, and

the modulus m in (6.43) is specified by (6.42) where λ3 is replaced by ζ. Thus, as a result

of the interaction, the DSW is no longer described by the similarity modulation solution in

the form of an expanding centred fan but rather becomes a general simple wave solution of

the modulation system corresponding to the following IVP for the NLS equation (6.1):

λ−(x, 0) = A−, λ+(x, 0) = P−1(x), (6.45)
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P−1(x) being inverse of the function x = P (λ+). The function P (λ+) in (6.41) represents

the DSW de-centring distribution acquired as a result of the interaction with the RW. It

is related to the modulation phase shift θ0(x, t) via (4.52), (4.53), so we shall call it the

refraction shift function.

It is not difficult to verify that P (ζ) ≡ 0 for A− = −1. This is exactly what one should

expect since when A− = −1, there is no RW generated and therefore no refraction of the

DSW.

The boundaries x−1 and x+
1 of the refracted DSW are found by setting in (6.41) λ3 = 1

(i.e. m = 1) and λ3 = A+ (i.e. m = 0) respectively

x−1 = (1 +
A− + A+

2
)t+ P (1), x+

1 = (2A+ − (1− A−)2

2(2A+ − 1− A−)
)t+ P (A+). (6.46)

The density background and the amplitude of the trailing dark soliton in the refracted DSW

are

ρsr = 1
4
(A+ − A−)2, asr = (A+ − 1)(1− A−). (6.47)

The intensity Ir of the refracted DSW is determined using

Ir =
ρ1

ρ2

(6.48)

where ρ1 = ρsr and ρ2 = 1
4
(1− A−)2, thus

Ir = (
A+ − A−

1− A−
)2. (6.49)

6.4.3.2 Refracted RW

The solution for the refracted RW, is found from the hodograph modulation solution (6.37)

by setting in it λ4 = λ+ = A+, λ3 = λ2 = 1, λ1 = λ− (see (6.11)) and using that
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V1(λ1, λ3, λ3, λ4) = V−(λ1, λ4) (see 6.28). As a result we get

λ+ = A+, x = V−(λ−, A
+)t+G(λ−) =

3λ− + λ+

2
t+G(λ−), (6.50)

where the function G(ζ) has the form

G(ζ) = W1(ζ, A+) = (1− L(ζ, 1, 1, A+)

∂1L(ζ, 1, 1, A+)
∂1)g(ζ, A+)

=
l
√

2

π
√
A+ − ζ

[(A+ + 1)(Π1(n, r)−K(r)) + 2E(r)],

(6.51)

where

r =
(A+ − 1)(ζ + 1)

2(A+ − ζ)
, ρ = − ζ + 1

A+ − ζ
. (6.52)

Similar to the refracted DSW, the refracted RW is no longer described by a centred fan

solution but rather a general simple-wave solution of the shallow water system (3.3), (3.4)

with the effective initial conditions λ+ = 1 and λ−(x, 0) given by the function inverse to the

refraction shift function G(λ−).

The boundaries of the refracted RW are given by the expressions

x−2 =
A+ − 3

2
t+G(−1), x+

2 =
3A− + A+

2
t+G(A−). (6.53)

6.4.4 Vacuum points

As was described in Section 4.2.3, an important feature of the DSWs in the defocusing

NLS flows is the possibility of the vacuum (ρ = 0) point(s) occurrence in the solutions

for the problems not containing vacuum states in the initial data [19]. This effect has no

analogue in both viscous shock dynamics and in the DSW dynamics in media with negative

dispersion supporting bright solitons. Across the vacuum point, the flow speed changes its

sign, which implies the generation of a counterflow. The DSW counterflow due to the vacuum

point occurrence has been recently observed in the experiments on nonlinear plane wave
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tunneling through a broad penetrable repulsive potential barrier (refractive index defect) in

photorefractive crystals [5].

If we fix the state ρ1 = 1, u1 = 0 in front of the DSW (as we do for the incident wave),

then, by increasing the density jump ρ2 across the DSW we will be able to increase the

DSW relative intensity only up to the value I = 4 at which the vacuum point occurs at the

DSW trailing edge [18] (recall, we denoted by ρ1 and ρ2 the values of the density upstream

and downstream DSW respectively – see Section 6.3.1). If ρ2 increases further, beyond the

vacuum point threshold, the relative intensity of the compression part of the DSW decreases

and, asymptotically as ρ2/ρ1 → ∞, vanishes so that the DSW completely transforms into

the classical (smooth) left-propagating RW [19]. This limit can alternatively be achieved by

keeping the upstream state ρ2 fixed and letting ρ1 → 0: then we arrive at the well-known

solution of the classical shallow water dam-break problem (see e.g. [16]).

−1.0 −0.5 0.5 1.0
Α−

1

2

3

Α+

ΙΙΙ

ΙΙ

Ι

Figure 6.11: Regions in the plane of initial parameters (A−, A+) — the classification with
respect to the vacuum point occurrence. (I): No vacuum points; (II): No vacuum points
in the incident DSW, a vacuum point in the refracted DSW; (III): Vacuum points in both
incident and refracted DSWs.

If asr = ρsr, which by (6.47), yields the relation A+ = 2−A−, then the condition for the

vacuum point appearance in the refracted DSW assumes the form

A+ ≥ 2− A− . (6.54)
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Figure 6.12: Numerical simulation: evolution of the profile (2.11) with A− = 0, A+ = 2.2,
l = 50 (Region II in Fig. 6.11) leading to the occurrence of a vacuum point in the refracted
DSW.

Setting A− = −1 we recover the already mentioned criterion A+ ≥ 3 for the vacuum point

occurrence in the incident DSW. The regions of the A−, A+ plane corresponding to different

(with respect to the vacuum point appearance) flow configurations arising in the IVP (6.1),

(6.2) are presented in a diagram shown in Fig. 6.11. An example of the particular flow

evolution corresponding to Region II is shown in Fig. 6.12. One can see that the vacuum

point occurs in the refracted DSW as predicted by our theory.

We stress that, although the vacuum point appearance modifies the oscillatory DSW

profile (the lower DSW density envelope becomes non-monotonous and the velocity profile

acquires a singularity at the vacuum point — see Figure 4.3), all the dependencies of the

DSW edge speeds, density jumps and trailing soliton amplitudes on the initial data A+, A−

remain unchanged.
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6.5 DSW refraction parameters: comparison with nu-

merical simulations

It is convenient to characterise the DSW refraction by three key parameters:

a. The amplification coefficient ν defined as the ratio of intensities (6.48) of the refracted

and the incident DSWs.

b. The acceleration coefficient σ which we define as the difference between the values of the

DSW trailing dark soliton speed s− after and before the interaction.

c. The refraction shift d which we define as the phase shift of the DSW trailing soliton due

to the DSW interaction with the RW.

For ν we have from (6.10) and (6.49)

ν =
Ir
I0

= (
2(A+ − A−)

(1− A−)(1 + A+)
)2. (6.55)

For σ we have from (6.7) and (6.53)

σ = s−r − s−0 =
dx−1
dt
|t>t∗ −

dx−1
dt
|t<t0 =

1 + A−

2
> 0. (6.56)

Here we have used the subscript ‘r’ to denote the refracted wave and the subscripted ‘0’

to denote the incident wave. The acceleration coefficient σ does not depend on the DSW

intensity before refraction (i.e. on A+). It is completely determined by the initial jump A−,

of the Riemann invariant λ− across the RW. Since A− > −1, one has σ > 0, therefore the

DSW is always accelerated as a result of a head-on collision with a RW. This matches with

the classical gas dynamics result that the shock wave is always accelerated after a head-on

collision with a RW because the shock waves meet the gas of decreasing density [99].

Unlike the acceleration coefficient σ, the amplification coefficient ν can have both signs

depending on the specific values of A+ and A− chosen, the boundary between the regions

163



CHAPTER 6. DSW REFRACTION IN KERR MEDIA

- 0.8 - 0.6 - 0.4 - 0.2 0.0 0.2 0.4
A-

1.2

1.4

1.6

1.8

2.0

2.2

2.4

υ

Figure 6.13: DSW amplification coefficient ν. Solid lines: analytic curve (6.55), ν(A−) for
A+ = 1.5, circles: numerical simulations data.
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Figure 6.14: DSW amplification coefficient ν. Solid lines: analytic curve (6.55), ν(A+) for
A− = 0, circles: numerical simulations data.

of the DSW (relative) strengthening and attenuation being given by equation A+ = (1 −

A−)/(1 + A−). We also note that, while the amplification coefficient ν is formally defined

for the full range of values of A+ and A−, its original significance is retained only for the

DSWs not containing vacuum points.

The function (see (6.43), (6.53))

d(A+, A−) = P (1) =

√
2l

π

A+ − 1√
A+ − A−

(Π1(p, z∗)−K(z∗)), (6.57)

where

z∗ =
A− + 1

A+ − A−
A+ − 1

2
, p = − A− + 1

A+ − A−
, (6.58)

describes the refraction shift of the trailing dark soliton in the DSW as a function of the

initial parameters A+, A−. This phase shift d can be clearly seen in Figure 6.6.
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Figure 6.15: DSW acceleration coefficient σ. Solid lines: analytic curve (6.56), σ(A−) for
A+ = 1.2, circles: numerical simulations data.
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Figure 6.16: DSW acceleration coefficient σ. Solid lines: analytic curve (6.56), σ(A+) for
A− = −0.8, circles: numerical simulations data.

One can observe by comparing (6.57) with the solution g(λ1, λ3) (6.35), (6.36) of the

EPD equation for the DSW-RW interaction region, that

d(A+, A−) = g(A−, 1), (6.59)

which corresponds to the value of g at the moment t = t∗ (see (6.38)), when the DSW exits

the interaction region. This is of course expected from the general modulation phase shift

consideration described in Section 4.6.

Comparisons for the modulation parameters (6.55), (6.56) and (6.57) with the direct nu-

merical simulations data for the IVP (6.1), (6.2) are presented in Figures 6.13 — 6.18. One

can see an excellent agreement. One can also observe that the dependencies of the accelera-

tion coefficient σ and the refraction shift d on the intensity of the RW (roughly proportional

to A−) are much stronger than on the intensity of the incident DSW (proportional to A+).
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Figure 6.17: DSW refraction phase shift d. Solid line: formula (6.57), d(A−) for fixed
A+ = 1.5, circles: direct numerical simulations data.
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Figure 6.18: DSW refraction phase shift d. Solid line: formula (6.57), circles: direct numer-
ical simulations data. Dependence d(A+) for fixed A− = 0.

6.6 Discussion

In this Chapter, we have considered a dispersive counterpart of the classical gas dynamics

problem of the interaction of a shock wave with a counter-propagating simple RW often

referred to as the shock wave refraction problem. Apart from the obvious contrast between

both local and global structures of viscous shock waves and DSWs, there is a fundamental

difference between the classical dissipative, and the present, dispersive conservative settings.

While the parameters defining the flow containing shock waves in classical gas dynamics

are determined by appropriate systems of shock conditions, which take into account the

changes of the thermodynamic properties of the medium through which the shock waves

propagate, in dispersive dynamics the change of the hydrodynamic flow across the DSW is

completely determined by the transfer of the Riemann invariants along the characteristics of

the governing hyperbolic (Whitham) system, which makes possible a complete asymptotic

description of the flow.
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One can trace certain analogy between the considered DSW-RW interaction and the

two-soliton collisions in integrable systems: both interactions are elastic in the sense that

they both can be interpreted in terms of the “exchange” of spectral parameters by the

interacting waves so that the global spectrum in the associated linear scattering problem

remains unchanged. In the DSW-RW interaction the role of isospectrality is played by the

transfer of the constant values of appropriate Riemann invariants of the modulation system

through the varying DSW and RW regions so that one can predict the jumps of density

and velocity across the refracted DSW and RW without constructing the full modulation

solution. At the same time, the DSW and RW do not simply pass through each other

and “exchange” the constant Riemann invariants: there are additional phase shifts for both

interacting waves, similar to the classical soliton phase-shifts.

We conclude with the remark that the approach used in this Chapter can also be applied

to obtain analytical solution to the problem of the overtaking DSW-RW interaction in the

NLS flows. While this problem was studied in the KdV equation framework in [15], we

believe that it deserves special attention in the context of the defocusing NLS flows since,

due to a different dispersion sign and the possibility of the vacuum point occurrence within

the DSW one can expect a number of qualitative and quantitative differences compared to

the KdV flows. Also, the developed theory can be readily extended to the problem of the

generation of DSWs by the interference of two simple RWs studied numerically in [14].
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Chapter 7

DSW refraction in optical media with

saturable nonlinearity

In this Chapter we perform analysis of the DSW refraction in the framework of the NLS

equation with saturable nonlinearity (sNLS equation (2.63) describing, in a certain approxi-

mation, the one-dimensional propagation of a plane stationary light beam through a photo-

refractive crystal (see e.g. [103, 104]). This particular choice of the mathematical model

has a clear physical motivation: there have been recently a number of major experiments

involving DSWs in photorefractive materials (see e.g. [3, 5]). Also, photorefractive crystals

are widely used for an all-optical modelling of the hydrodynamic effects of BECs so it is

important to be able to quantify the contribution of the optical saturation to the purely

‘superfluid’ DSW evolution. As we already mentioned, the sNLS equation is not integrable

by the IST method, thus the associated system of averaged conservation laws (the Whitham

modulation system) does not possess Riemann invariants. That means that the modulation

analysis of Chapter 6 based on the Riemann invariant representation of the Whitham equa-

tions is not applicable. Instead, we shall use the DSW fitting method of [53] outlined in

Section 4.7 of Chapter 4.
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7.1 sNLS equation: some basic properties

The Madelung transformation (5.2) maps equation (2.63) to the dispersive hydrodynamics

system (cf. (3.1)),

ρt + (ρu)x = 0,

ut + uux +

(
ρ

1 + γρ

)
x

+

(
ρ2
x

8ρ2
− ρxx

4ρ

)
x

= 0 .
(7.1)

Here ρ has the meaning of the light beam intensity and u is the local value of the wave

vector component transversal to the beam propagation direction; γ > 0 is the saturation

parameter. We repeat that in the nonlinear optics context the role of the time variable t

is played by the spatial coordinate z along the beam propagation direction while x is the

transversal coordinate. If the saturation effects are negligibly small, γρ� 1, then the sNLS

equation (7.1) reduces to the cubic NLS equation (3.1). A detailed study of the periodic

solutions to (7.1) can be found in [57]. Here we present some of the properties of the sNLS

traveling waves necessary for the subsequent DSW fitting analysis.

Linear dispersion relation

The sNLS linear dispersion relation for the waves of infinitesimally small amplitude prop-

agating against the constant background flow with u = u0, ρ = ρ0 has the form

ω = ω0(k, ρ0, u0) = ku0 ± k

√
ρ0

(1 + γρ0)2
+
k2

4
, (7.2)

where ω is the wave frequency and k is the wavenumber.

Dispersionless limit

In the dispersionless limit, system (7.1) can be cast in the diagonal form (2.7) with the

Riemann invariants λ± and characteristic velocities V± expressed in terms of the hydrody-
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namic variables ρ and u as

λ± =
u

2
± 1
√
γ

arctan
√
γρ, V± = u±

√
ρ

1 + γρ
. (7.3)

When γ → 0 expressions (7.3) go over to the shallow water relationships (2.6), (2.9).

Soliton speed-amplitude relationship

The sNLS equation supports dark solitons propagating on non-zero density background.

Although explicit analytic expression for the photorefractive dark soliton profile is not avail-

able, one can derive the relationship connecting the soliton speed c, the background flow

parameters ρ0, u0 and the soliton amplitude a [57]:

(c− u0)2 =
2(ρ0 − a)

γa

[
1

γa
ln

1 + γρ0

1 + γ(ρ0 − a)
− 1

1 + γρ0

]
. (7.4)

7.2 Problem formulation

Similar to (6.2), we specify initial conditions for (7.1) in terms of two spaced steps for the

hydrodynamic Riemann invariants λ±

λ+(x, 0) =

 A+ for x < 0,

1√
γ

arctan
√
γ for x > 0;

λ−(x, 0) =

 −
1√
γ

arctan
√
γ for x < l,

A− for x > l,

(7.5)

where A+ > 1√
γ

arctan
√
γ, and − 1√

γ
arctan

√
γ < A− < 1√

γ
arctan

√
γ. The special values of

λ+ for x > 0 and λ− for x < l are chosen such that initially the DSW and RW will propagate

into an undisturbed “gas” (indeed one can readily see, using (7.3) that ρ = 1, u = 0 in the

middle region 0 < x < l (cf. (6.3)).

Our numerical simulations show that evolution (7.1), (7.5) for a broad range of initial

data parameters A± leads to the same qualitative DSW refraction scenario as in the cubic

NLS case described in Chapter 6 (see Figures 6.5, 6.6). The quantitative characteristics of

170



CHAPTER 7. DSW REFRACTION IN OPTICAL MEDIA WITH SATURABLE
NONLINEARITY

the DSW refraction, however, now depend not only on the initial data parameters A± but

also on the saturation parameter γ entering the sNLS equation. The results of [57] suggest

that this dependence could be quite strong. Thus the DSW-RW interaction problem in

the framework of the sNLS equation deserves a separate study. As we already mentioned,

the knowledge of the effects of photorefractive saturation on the parameters of a DSW is

especially important in the context of an all-optical modelling of BEC dynamics (see [3]).

7.2.1 DSW transition conditions

We now use the DSW fitting method of [53] (see also Section 4.7 for the method description

in application to the cubic NLS equation) to formulate the of the DSW transition relations

for the sNLS equation (7.1).

Let the right-propagating simple DSW of the sNLS equation be confined to a finite region

of space x− < x < x+ and connect two constant hydrodynamic states (ρ1, u1) at x < x− and

(ρ2, u2) at x > x+; ρ1 > ρ2. At the trailing edge x− the DSW assumes the form of a dark

soliton moving with constant velocity s− and at the leading edge x+ it degenerates into a

vanishing amplitude linear wavepacket moving with constant group velocity s+, s+ > s−.

The lines x± = s±t represent free boundaries where the continuous matching of the mean

flow (ρ̄, ū) in the DSW region with the external constant states (ρ1, u1) and (ρ2, u2) occurs

(see Section 4.1).

Then the simple DSW transition between the hydrodynamic states (ρ1, u1) and (ρ2, u2)

is described by the following relationships:

• The conservation of the value of the Riemann invariant λ− across the DSW,

u1

2
− 1
√
γ

arctan
√
γρ1 =

u2

2
− 1
√
γ

arctan
√
γρ2 ≡ λ0

− . (7.6)

• The DSW edge speeds s± are defined by the kinematic conditions (cf. conditions (4.61)
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for the cubic NLS case)

s+ =
∂Ω0

∂k

∣∣∣∣
ρ̄=ρ2, k=k+

; s− =
Ω̃0

κ

∣∣∣∣∣
ρ̄=ρ1, κ=κ−

. (7.7)

The quantities k+ (the leading edge wavenumber) and κ− (the trailing edge “soliton

wavenumber” – the trailing soliton inverse half-width) in (7.7) represent the boundary

values, k+ = k(ρ2) and κ− = κ(ρ1), of two functions k(ρ̄) and κ(ρ̄) satisfying the

following ODEs:

dk

dρ̄
=

∂Ω0/∂ρ̄

v+(ρ̄)− ∂Ω0/∂k
, k(ρ1) = 0 ; (7.8)

dκ

dρ̄
=

∂Ω̃0/∂ρ̄

v+(ρ̄)− ∂Ω̃0/∂κ
, κ(ρ2) = 0 . (7.9)

Here

v+(ρ̄) = V+(ρ̄, ū(ρ̄)) = ū(ρ̄) +

√
ρ̄

1 + γρ̄
, (7.10)

Ω0(ρ̄, k) = ω0(k, ū(ρ̄), ρ̄) = k

[
ū(ρ̄) +

√
ρ̄

(1 + γρ̄)2
+
k2

4

]
, Ω̃0(ρ̄, κ) = −iΩ0(ρ̄, iκ);

(7.11)

and

ū(ρ̄) = 2

(
λ0
− +

1
√
γ

arctan
√
γρ̄

)
. (7.12)

• The ‘entropy’ inequalities must hold ensuring that the hydrodynamic characteristics

transfer data into the DSW region:

V 1
− < s− < V 1

+, V 2
+ < s+, s+ > s−. (7.13)

Here V 1
± ≡ V±(ρ1, u1), V 2

+ ≡ V+(ρ2, u2) – see (7.3) for the definitions of V±(ρ, u).

Relationships (7.6) – (7.13) enable one to ‘fit’ the DSW into the solution of the dispersionless

limit equations without the knowledge of the detailed solution of the full dispersive system

within the DSW region (much as in classical gas dynamics shock wave is fitted into the
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solution of the inviscid equations by means of the Rankine-Hugoniot conditions subject to

Lax’s entropy condition).

Using the speed-amplitude relationship (7.14) for the photorefractive dark solitons one

can find the amplitude as of the DSW trailing soliton. Setting the value s− (7.7) of the DSW

trailing edge for the soliton velocity c and ρ1, u1 for the background flow ρ0, u0 in (7.14) we

obtain:

(s− − u1)2 =
2(ρ1 − as)

γas

[
1

γas
ln

1 + γρ1

1 + γ(ρ1 − as)
− 1

1 + γρ1

]
(7.14)

(note: u1(ρ1) is given by the simple DSW transition condition (7.6)).

7.2.2 DSW refraction

Our concern here will be with the calculations of two DSW refraction parameters: the DSW

amplification and acceleration coefficients, defined earlier in (6.56) and (6.55) as

ν =
Ir
I0

and σ = s−r − s−0 (7.15)

respectively. We note that analytical determination of the refraction phase shift d is, un-

fortunately, not feasible now as it requires knowledge of the full modulation solution, which

is not available for the sNLS equation due to its non-integrability so we shall present only

numerical results for d.

7.2.2.1 Before interaction, t < t0

The previous analysis of [57] and our numerical simulations for the sNLD equation suggest

that the decay of two spaced initial discontinuities (7.5) for the hydrodynamic Riemann

invariants λ± would result, similar to the cubic NLS case, in a combination of a right-

propagating simple DSW centred at x = 0 and a left-propagating simple RW centred at

x = l. Indeed, the simple DSW transition condition (7.6) is satisfied by the initial step at

x = 0, which implies a single DSW resolution of this step (provided the “entropy conditions”
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(7.13) are satisfied – see [57] for the justification); similarly, the jump at x = l with constant

Riemann invariant λ+ across it asymptotically produces a single left-propagating RW (see

Figure 7.1). Indeed, our numerical simulations of the sNLS equation (7.1) for a range of

the saturation parameter γ values confirm this scenario producing the plots qualitatively

equivalent to that presented in Figure 6.6.

Now, following [57], we derive the key parameters of the simple photorefractive DSW in

the form convenient for the further application to the refraction problem.

Α

Α

xx x x
−         + − +

+

−
λ−

λ+

−1/ √γ  arctan √γ

1/√γ arctan √γ

DSW RW

Figure 7.1: Distribution of the classical (dispersionless limit) Riemann invariants before the
DSW-RW interaction

To take advantage of formulae (7.7) – (7.12) for the speeds of the DSW edges we first

need to find the constant states (ρ1, u1) at x < x− and (ρ2, u2) at x > x+ defining the

hydrodynamic jumps across the DSW. These are readily found from the initial conditions

(7.5) and the relationship (7.6) for the transfer of the Riemann invariant λ− across the

simple DSW. According to the initial conditions (7.5) the simple DSW must connect two

hydrodynamic states with the same λ− = − 1√
γ

arctan
√
γ while λ+ = A+ for x < x− and

λ+ = 1√
γ

arctan
√
γ for x > x+ (see Figure 7.1). Then, using (7.6) and expressions (7.3)
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relating the Riemann invariants and the hydrodynamic variables ρ, u we find

ρ2 = 1, u2 = 0 , ρ1 =
1

γ
tan2

(
A+√γ + arctan

√
γ

2

)
, u1 = A+ − 1

√
γ

arctan
√
γ .

(7.16)

Thus, the I0 of the incident DSW defined by (6.9) is simply

I0 =
1

γ
tan2

(
A+√γ + arctan

√
γ

2

)
. (7.17)

Next, from (7.6) we have λ0
− = − 1√

γ
arctan

√
γ, which by (7.12) yields ū(ρ̄) = 2√

γ
(arctan

√
γρ̄−

arctan
√
γ) and so completely defines, via (7.10), (7.11), ODEs (7.8), (7.9).

As was shown in [57], it is convenient to introduce a new variable α̃ instead of κ using

the substitution

α̃ =

√
1− κ2(1 + γρ̄)2

4ρ̄
, (7.18)

which reduces ODE (7.9) to the form

dα̃

dρ̄
= −(1 + α̃)[1 + 3γρ̄+ 2α̃(1− γρ̄)]

2ρ̄(1 + γρ̄)(1 + 2α̃)
, α̃(1) = 1. (7.19)

The form (7.19) has an advantage of being a separable ODE when γ = 0, which makes it

especially useful for the asymptotic analysis for small γ . Once the function α̃(ρ̄) is found,

the velocity of the trailing soliton is determined by Eqs. (7.7), (7.11) as

s−0 =
2
√
γ

(arctan
√
γρ1 − arctan

√
γ) +

√
ρ1

1 + γρ1

α̃(ρ1) , (7.20)

where ρ1 is given by Eq. (7.16).

The amplitude of the trailing soliton is given by speed-amplitude relationship (7.14).

Using (7.14), (7.20) and the relationship u1 = 2√
γ
(arctan

√
γρ1 − arctan

√
γ) following from

(7.6) one can derive the condition of the vacuum point occurrence at the DSW trailing edge
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(see [57]):

α̃(ρ1) = 0. (7.21)

Condition (7.21) yields, for a given value of the saturation parameter γ, the value of the

initial density jump ρ1 (and, therefore, of the parameter A+ — see (7.16)) corresponding to

the vacuum point appearance at the DSW trailing edge. Say, for γ = 0.2 this value of A+ is

about 2.18 (cf. the critical value A+ = 3 for γ = 0)

In conclusion of this Section we present an asymptotic expansion of s−0 for small γ. First,

to leading order we have from (7.19) a separable ODE

γ = 0 :
dα̃

dρ̄
= −1 + α̃

2ρ̄
, α̃(1) = 1 , (7.22)

which is readily integrated to give

α̃(ρ̄) =
2√
ρ̄
− 1 ≡ α̃0(ρ̄). (7.23)

We now introduce

α̃ = α̃0 + α̃1. (7.24)

Substituting (7.24) into (7.19) and assuming α̃1 ∼ γ for γ � 1 we obtain to first order

dα̃1

dρ̄
= − α̃1

2ρ̄
+

4− 3
√
ρ̄

4−
√
ρ̄

2γ√
ρ̄
. α̃1(1) = 0, (7.25)

Eq. (7.25) is readily integrated to give

α̃1(ρ̄) =
2γ√
ρ̄

(
3(ρ̄− 1) + 16(

√
ρ̄− 1) + 64

[
ln

4−
√
ρ̄

3

])
. (7.26)

Now, substituting (7.24), (7.26) into (7.20) and using expansion of ρ1 (7.16) for small γ we
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obtain to first order

s−0 =
A+ + 1

2
+ γ

(
1

12
[(A+)3 + 15(A+)2 + 219A+ − 245] + 128 ln

7− A+

6

)
+O(γ2) . (7.27)

As one can see, expression (7.27) agrees to leading order with the cubic NLS result (6.7)

for the trailing edge speed. We also notice that our perturbation approach formally breaks

down for A+ ≥ 7 because of the logarithmic divergence in Eq. (7.27) as A+ ↑ 7 (we note

that such values of A+ correspond to very large density jumps (ρ1/ρ2 > 10) across the DSW

— see [57]).

Formulae (7.16), (7.20) define all the key parameters of the incident simple photorefrac-

tive DSW. We have also checked that the ‘entropy’ inequalities (7.13) are satisfied for a

broad range of parameters involved providing the consistency of the whole construction (see

also [57]).

7.2.2.2 After interaction, t > t∗

Relations (7.6) – (7.13) describe a simple DSW transition between two constant states so

they are not applicable to the varying transition in DSW-RW interaction zone. However,

one should still be able to use these relations for the determination of the key parameters of

the refracted DSW when the interaction is over, provided no new waves sre generated and

the output pattern consists only of the pair of the refracted DSW and RW separated by a

constant flow as it takes place in the Kerr nonlinearity case. In other words, relations (7.6)

– (7.13) can be applied if the DSW-RW interaction is “clean” (elastic) on the level of the

averaged Whitham description (which does not exclude the possibility of some constant-mean

radiation due to non-integrability of the sNLS equation). If we accept this supposition (to be

confirmed a-posteriori), then we can apply the transition relation (7.6) to the refracted DSW

and determine the values of ρ1 and u1 in the ‘plateau’ region between the refracted DSW

and RW. Since the refracted DSW propagates to the right into the region with λ− = A−

(see the initial conditions (7.5) at x → +∞) one must have, by (7.6), the same λ− = A−
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across it, in the constant ‘plateau’ region.

Next, the refracted RW propagates to the left, into the region with λ+ = A+ (again,

see initial conditions (7.5) at x → −∞) and, therefore λ+ = A+ everywhere through this

wave and in the ‘plateau’ region. From the initial condition (7.6), the value of λ− to the

left of the RW is λ− = − 1√
γ

arctan
√
γ and the value of λ+ to the right of the DSW is

λ+ = 1√
γ

arctan
√
γ. Thus, we arrive at the Riemann invariant diagram schematically shown

in Figure 7.2 (cf. diagram in Figure 6.10 for the cubic NLS case).

Α

Α

x x xx- + - +

+

−
λ−

λ+

1/√γ arctan √γ

-1/√γ arctan √γ

Refracted RW Refracted DSW

Figure 7.2: Distribution of the dispersionless limit Riemann invariants after the DSW-RW
interaction.

Thus, using relationships (7.3) between the Riemann invariants λ± and the hydrodynamic

variables ρ, u, one arrives at the set of equations determining the hydrodynamic states (ρ1, u1)

and (ρ2, u2) at the trailing and leading DSW edges respectively:

u1

2
+

1
√
γ

arctan
√
γρ1 = A+;

u1

2
− 1
√
γ

arctan
√
γρ1 =

u2

2
− 1
√
γ

arctan
√
γρ2 = A−;

u2

2
+

1
√
γ

arctan
√
γρ2 =

1
√
γ

arctan
√
γ .

(7.28)

178



CHAPTER 7. DSW REFRACTION IN OPTICAL MEDIA WITH SATURABLE
NONLINEARITY

So

ρ1 =
1

γ
tan2

(
√
γ
A+ − A−

2

)
, u1 = A+ + A−,

ρ2 =
1

γ
tan2

(
1

2
arctan

√
γ − A−

2

√
γ

)
, u2 = A− +

1
√
γ

arctan
√
γ .

(7.29)

To verify our key assumption about the ‘semi-classically clean’ DSW-RW interaction in

the sNLS equation case we have compared the values of the density and velocity in the

region between the refracted DSW and RW obtained from direct numerical simulations

of the sNLS equation with the predictions for ρ1 and u1 of formulae (7.29) based on this

assumption. As one can see from Figure 7.3 the comparisons show an excellent agreement

confirming our hypothesis for a range of values of γ, A+ and A−. At the same, one can notice

a small discrepancy visible at larger values of A+ (A+ & 1.7) in the plots for ν(A+). This

is connected with the occurrence of the vacuum point in the refracted DSW for sufficiently

large density jumps across it. As was observed in [57], for large-amplitude photorefractive

DSWs the Riemann invariant transition condition (7.6) is replaced by the classical Rankine-

Hugoniot shock jump conditions so relation (7.29) holds only approximately for large A+.

- 0.8 - 0.6 - 0.4 - 0.2 0.2 0.4
A-

0.0

0.5

1.0

1.5

=0

=0.3
=0.2
=0.1

1

1.0 1.2 1.4 1.6 1.8
A+

0.8

1.0

1.2

1.4

1.6

1.8

=0
=0.1

=0.2

=0.31

Figure 7.3: Density ρ1 in the constant flow region between the refracted DSW and RW. Left:
ρ1(A−) for fixed A+ = 1.5; Right: ρ1(A+) for fixed A− = 0. Solid lines: analytic (modulation
theory) curves; dots: direct numerical simulations data.

Now, we shall use general relationships (7.7) — (7.14) to derive the trailing soliton

parameters in the refracted DSW.

Comparing (7.6) and (7.28) we find λ0
− = A− so expression (7.12) for ū(ρ̄) assumes the
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form

ū(ρ̄) = 2

(
A− +

1
√
γ

arctan
√
γρ̄

)
. (7.30)

Substituting (7.30) into (7.10) and (7.11) and using the same change of variable (7.18) in

ODE (7.9) we arrive at the same ODE (7.19) for the function α̃(ρ̄) but now with a general

boundary condition α̃(ρ2) = 1 since ρ2 6= 1 for the refracted wave (see (7.29)). As before,

this condition follows from the boundary condition for κ in (7.9) and the relationship (7.18)

between α̃ and κ. The velocity of the trailing soliton in the refracted DSW is determined by

Eqs. (7.7), (7.11) as

s−r = 2

(
A− +

1
√
γ

arctan
√
γρ1

)
+

√
ρ1

1 + γρ1

α̃(ρ1) , (7.31)

where ρ1 is now given by Eq. (7.29). Comparison for the dependence s−r (A+) for a fixed value

of A− = −0.8 is presented in Figure 7.5. One can see that the value of s−r quite strongly

depends on the saturation parameter γ. Expanding s−r for small γ we get (cf. (7.27))

1.0 1.2 1.4 1.6 1.8 2.0
A+0.6

0.8

1.0

1.2

1.4

1.6
S-

=0

=0.3

=0.2

=0.1

Figure 7.4: The refracted DSW trailing edge speed s−r as a function of an input parameter
A+ for fixed A− = −0.8. Solid lines: modulation solution (7.31); dots: numerical simulations
data.

s−r = 1 +
A− + A+

2
+ γ

[
2

3
∆3 + 4∆2δ + 32∆δ2 − 112

3
δ3 + 128δ3 ln

4−∆/δ

3
− 1

3

]
+O(γ2)

(7.32)

Here ∆ = A+−A−
2

, δ = 1−A−
2

. Again, one can see that the leading order of expansion (7.32)
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agrees with the cubic NLS result (6.7) as expected.

Given the value of s−r , the trailing dark soliton amplitude as in the refracted DSW is

found from formula (7.14). Comparisons of the analytically found values of as for γ = 0.2

with direct sNLS numerical simulation data are presented in Figure 7.5. and show excellent

agreement. Also, the dashed lines show the dependencies as(A
−) and as(A

+) for γ = 0.

As one can see, the nonlinearity saturation has strong effect on the refracted DSW soliton

amplitude.

- 0.8 - 0.6 - 0.4 - 0.2 0.2 0.4
A-

0.4

0.6

0.8

1.0

1.2

1.4
αs

1.2 1.4 1.6 1.8
A+

0.5

1.0

1.5

αs

Figure 7.5: Trailing soliton amplitude as. Left: as(A
−) for A+ = 1.5; Right: as(A

+) for
A− = −0.4. Solid line: analytic curve for γ = 0.2; Dots: direct numerical simulations data
for γ = 0.2. Dashed line: the curve for γ = 0.

The condition as = ρ1 defining the vacuum point occurrence at the trailing edge of the

refracted DSW, leads to the same equation (7.21), which was obtained earlier for the incident

DSW, with the only (essential) difference that ρ1 is now given by (7.29). The vacuum point

regions diagram for γ = 0.2 is presented in Figure 7.6.

Comparison with the analogous diagram for the Kerr nonlinearity case γ = 0 (Figure 11)

shows that variations of the saturation parameter γ have rather significant effect on the

vacuum point appearance. Our numerical simulations confirm this conclusion. As already

was mentioned, in the developed modulation theory we assume a semiclassically “clean”

DSW-RW interaction, which, strictly speaking, applies only to the region I in Figure 7.6.

However, our comparisons show that, if the initial parameter A+ is not too large, the DSW

fitting approach [53] based on the Riemann invariant transition condition (7.6) gives reason-
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-1 arctan√γ

1 arctan√γ

1 arctan√γ_

_

_

√γ

√γ√γ

Figure 7.6: Regions of the plane of initial parameters A−, A+ for γ = 0.2: (I) No vacuum
points; (II) No vacuum points in the incident DSW, a vacuum point in the refracted DSW;
(III) Vacuum points in both incident and refracted DSWs.

ably good quantitative predictions for the refracted DSW parameters in regions II and III

as well.

7.2.3 DSW refraction parameters

The DSW amplification coefficient is defined as ν = Ir/I0, where the incident DSW relative

intensity I0 is given by (7.17). Using (7.29) the relative intensity of the refracted DSW is

readily found in terms of the input parameters A+ and A− as (see (6.9))

Ir =
ρ1

ρ2

=
tan2

(√
γA

+−A−
2

)
tan2

(
1
2

arctan
√
γ − A−

2

√
γ
) . (7.33)

In Figure 7.7 we present the dependencies ν(A−) and ν(A+). One can see that the amplifica-

tion coefficient (unlike individual parameters of the incident and refracted DSWs — see e.g.

Figure 7.3 above and Figs. 7.5, 7.6) shows a very weak dependence on the saturation param-

eter γ for rather broad intervals of A+ and A− so that one can safely use simple expression

(6.55) obtained for γ = 0. The direct numerical simulations fully confirm this conclusion
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(we do not present numerical points on Figure 7.7 to avoid cluttering the plot).
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Figure 7.7: DSW amplification coefficient ν. Left: ν(A−) at A+ = 1.5, A+ = 1.5. Right:
ν(A+) at A− = 0;

Now we look at the behaviour of the acceleration coefficient σ = s−r − s−0 , which is found

analytically with the aid of formulae (7.31) and (7.20). The dependence σ(γ) for A+ = 1.2,

A− = −0.7 (Region I in Figure 7.7) is shown in Figure 7.8. One can see that, similar to the

0.1 0.2 0.3 0.4 0.5
γ

0.146
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σ

Figure 7.8: Analytical curve for the DSW acceleration coefficient σ as a function of the
saturation parameter γ for A+ = 1.2, A− = −0.7.

amplification coefficient ν, the dependence of σ on γ and A+ (i.e. on the intensity of the

incident DSW) is quite weak. Indeed, the relative change of σ does not exceed 10% over the

broad interval of γ from 0 to 0.5). Thus, at least in region I, one can safely assume the simple

expression (6.56) σ = (1 +A−)/2 obtained for the cubic nonlinearity case. The comparisons

with numerics presented in Figure 7.9 confirm this observation. To analytically quantify the

deviations of the quite complicated general “photorefractive” dependence σ(A+, A−, γ) from
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Figure 7.9: The DSW acceleration coefficient σ as a function of input parameters A− and
A+. Dashed lines: analytic curves for γ = 0; Circles: numerical data for γ = 0.2. Left:
σ(A−) at fixed A+ = 1.2; Right: σ(A+) for fixed A− = −0.4

the simple dependence σ = (1 + A−)/2 in the cubic nonlinearity case given by (6.56), we

derive an asymptotic expansion for σ for the case when both interacting waves have small

intensity. Introducing ε+ and ε− by

A− = − 1
√
γ

arctan
√
γ + ε− , A+ =

1
√
γ

arctan
√
γ + ε+ (7.34)

and assuming ε− � 1, ε+ � 1 we obtain from (7.27) and (7.32) on retaining second order

terms,

σ = s−r − s−0 =
ε−
2

+ ε−γ +O(ε−γ
2; ε2
−γ; ε−ε+γ). (7.35)

One can see that expansion (7.35) does not contain terms proportional to ε+γ, which implies

that, for the interactions involving weak photorefractive DSW and RW, the acceleration σ

of the DSW up to second order does not depend on its initial intensity.

Finally, in Figure 7.10 we present numerical values for the DSW refraction shift d (see

Figure 6.6) taken for the particular value of γ = 0.3. The numerics (circles) are put against

the analytical curves d(A−, A+) defined by formula (6.57) for the cubic nonlinearity case,

γ = 0. One can see that, similar to other definitive DSW refraction parameters ν and σ, there

is almost no dependence on A+ and γ at a fixed value of A− (roughly, the RW intensity),

however, the departure of the dependence d on A− from the Kerr case γ = 0 becomes more
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Figure 7.10: DSW refraction phase shift d. Left: dependence d on A− for fixed A+ = 1.5;
Right: dependence d on A+ for fixed A− = 0. Dashed lines correspond to γ = 0, circles —
to γ = 0.3.

pronounced with growth of A−.

7.2.4 Discussion

Our consideration of ‘non-integrable’ DSW refraction in the framework of the NLS equation

with saturable nonlinearity (7.1) is based on the assumption (confirmed by direct numer-

ical simulations) that the head-on DSW-RW interaction is ‘semiclassically elastic’, i.e. is

not accompanied by the generation of new DSWs or/and RWs. The comparisons of the

key parameters of the photorefractive DSW refraction: the amplification coefficient ν and

the acceleration coefficient σ defined by formulae (7.15 a) and (7.15 b) respectively, with

their Kerr (γ = 0) counterparts have revealed a rather weak dependence of these particular

parameters on the saturation coefficient γ, which could prove useful for the experimental

all-optical modelling of the BEC DSW refraction using photorefractive materials.

A very good agreement of the predictions of our asymptotic analytical results with the di-

rect numerical simulations in the DSW refraction problem provides further striking confirma-

tion of the robustness of the modulation theory in non-integrable dispersive wave problems,

now in the more complicated setting involving DSW-RW interactions.
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Chapter 8

Conclusion

In the Thesis, two important theoretical problems arising in the theory of one-dimensional

defocusing NLS flows have been investigated analytically and numerically: (i) the resonant

(transcritical) generation of DSWs in one-dimensional NLS flow past a broad repulsive pen-

etrable barrier; and (ii) the interaction of NLS counter-propagating DSW and a simple RW,

which is referred to as the refraction of a DSW.

One-dimensional NLS flows have been considered not only because they arise naturally

in BEC and nonlinear optics, but because these configurations are also of significant the-

oretical interest for two mutually complementary reasons: (a) 1D dynamics admit a full

analytical description and provide important insights to the dynamics in the more compli-

cated configurations; (b) some non-trivial features of 1D BEC dynamics are absent in higher

dimensions.

The first problem (i) is motivated by the recent experimental observations of dark soliton

radiation in BECs by moving a localised repulsive potential through a quasi-1D BEC (Engels

and Atherton 2008 [6]) and is related to the fundamental issue of the onset of dissipation in

superfluid flows; the second problem (ii) represents a dispersive-hydrodynamic counterpart

of the classical gas-dynamics problem of the shock wave refraction on a RW (Courant &

Friedrischs 1948 [12]), and, apart from its theoretical significance could also find applications
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in superfluid dynamics.

As mentioned, both problems also naturally arise in nonlinear optics, where the NLS

equation is a standard mathematical model and the ‘superfluid dynamics of light’ can be

used for an all-optical modelling of BEC flows.

(i) In the problem of the BEC flow through a wide repulsive penetrable barrier it is

found that in the plane of parameters (v, Vm), where v is the incident flow speed and Vm is

the potential strength (amplitude), there is a finite region within which the generation of

nonlinear waves occurs both upstream and downstream the potential. The global unsteady

wave pattern is studied analytically using the combination of the local “hydraulic” solution

of the 1D Gross-Pitaevskii equation and the solutions of the Whitham modulation equations

describing the resolution of the upstream and downstream discontinuities through the gen-

eration of DSWs. It is shown that within the physically reasonable range of parameters, the

downstream dispersive shock is attached to the potential barrier and effectively represents

the train of very slow dark solitons, which can be observed in experiments. The rate of the

soliton emission, the amplitudes of the solitons in the train and the drag force exerted on

the potential are determined in terms of just two input parameters v and Vm. Remarkably,

the key parameters of the generated wave pattern are shown to almost not depend on the

potential barrier shape. A good agreement with direct numerical solutions is demonstrated.

In the experiment [6] it was found that the solitons are generated by a moving potential

barrier in the interval of velocities 0.3mm/s < v < 0.9mm/s. This result agrees qualita-

tively with existence of the finite interval v− < v < v+ for which the expanding DSWs

are generated. However, we encounter a quantitative contradiction due to the experiment

construction in a dense BEC, where the systems governing the 1D dynamics are much more

complicated than the standard cubic NLS equation (5.1). Thus, the quantitative description

of the experiment [6] is beyond the scope of this thesis. The theory of dispersive shocks in

a dense BEC could be developed and would make for interesting further research.
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The famous Landau criterion [7] for the loss of superfluidity was based on the consid-

eration of linear excitations only and it contradicted to the experiments with liquid HeII.

This discrepancy was explained by Feynman by taking into the consideration the formation

of such nonlinear structures as vortices in the flow of a superfluid in capillaries or past ob-

stacles. However, the notion of the threshold velocity below which the flow is superfluid has

not been changed by this modification of the theory. Taking into account the generation of

DSWs in 2D situation [36, 97] did not change this notion either, since the stationary spatial

DSWs are generated by the supersonic flow of BEC only. Our results, as well as the results

of the previous works [9, 86–89], show that the situation can be more subtle in the case

of 1D flows. In this case, the flow past a broad barrier leads to the generation of DSWs

for a finite interval of the flow velocities bounded not only from below but also from above.

Moreover, the lower boundary value of the velocity v− can become equal to zero for strong

enough barriers, that is even very slow motions could lead to the generation of solitons. This

observation is in striking contrast with the standard reasonings based on the linear theory

of excitations.

The constructed analytical theory of the transcritical (resonant) NLS flows through wide

penetrable repulsive potential barriers is supported by direct numerical simulations.

The theory can extended to the framework of the NLS equation with saturable nonlin-

earity (2.63) (see Section 2.4.3.2) using the DSW fitting method described in Chapter 4

(Section 4.7).

(ii) The refraction of a DSW due to its head-on collision with the centred RW has been

considered in the framework of the one-dimensional defocusing cubic NLS equation. This is

the dispersive counterpart of the classical gas dynamics problem of the interaction of a shock

wave with a counter-propagating simple RW often referred to as the shock wave refraction

problem. Apart from the obvious contrast between both local and global structures of viscous

shock waves and DSWs, there is a fundamental difference between the classical dissipative,

and the present, dispersive conservative settings. While the parameters defining the flow
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containing shock waves in classical gas dynamics are determined by appropriate systems of

shock conditions, which take into account the changes of the thermodynamic properties of

the medium through which the shock waves propagate, in dispersive dynamics the change

of the hydrodynamic flow across the DSW is completely determined by the transfer of the

Riemann invariants along the characteristics of the governing hyperbolic (Whitham) system,

which makes possible a complete asymptotic description of the flow.

In the Thesis, a full asymptotic description of the DSW refraction in the 1D defocusing

NLS flows has been obtained by constructing appropriate exact solutions of the Whitham

modulation equations.

One can trace certain analogy between the considered DSW-RW interaction and the

two-soliton collisions in integrable systems: both interactions are elastic in the sense that

they both can be interpreted in terms of the “exchange” of spectral parameters by the

interacting waves so that the global spectrum in the associated linear scattering problem

remains unchanged. In the DSW-RW interaction the role of isospectrality is played by the

transfer of the constant values of appropriate Riemann invariants of the modulation system

through the varying DSW and RW regions so that one can predict the jumps of density

and velocity across the refracted DSW and RW without constructing the full modulation

solution. At the same time, the DSW and RW do not simply pass through each other

and “exchange” the constant Riemann invariants: there are additional phase shifts for both

interacting waves, similar to the classical soliton phase-shifts.

The refraction of a DSW due to its head-on collision with the centred RW is also con-

sidered in the framework of the one-dimensional defocusing NLS equation with saturable

nonlinearity (the sNLS equation) (7.1). Our consideration of ‘non-integrable’ DSW refrac-

tion in the framework of the sNLS equation is based on the assumption (confirmed by direct

numerical simulations) that the head-on DSW-RW interaction is ‘semiclassically elastic’, i.e.

is not accompanied by the generation of new DSWs or/and RWs.

Since the modulation system for the sNLS equation does not possess Riemann invari-
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ants, we take advantage of the recently developed DSW fitting method, applicable to non-

integrable dispersive systems, to obtain key parameters of the DSW refraction. Our modu-

lation theory analytical results are supported by direct numerical simulations of the corre-

sponding full dispersive IVPs.

The comparisons of the key parameters of the photorefractive DSW refraction: the ampli-

fication coefficient ν and the acceleration coefficient σ defined by formulae (7.15 a) and (7.15

b) respectively, with their Kerr (γ = 0) counterparts have revealed a rather weak depen-

dence of these particular parameters on the saturation coefficient γ, which could prove useful

for the experimental all-optical modelling of the BEC DSW refraction using photorefractive

materials.

A very good agreement of the predictions of our asymptotic analytical results with the di-

rect numerical simulations in the DSW refraction problem provides further striking confirma-

tion of the robustness of the modulation theory in non-integrable dispersive wave problems,

now in the more complicated setting involving DSW-RW interactions.

The approaches used in the latter problem (ii) can also be applied to obtain analytical

solution to the problem of the overtaking DSW-RW interaction in the NLS flows. While

this problem was studied in the KdV equation framework in [15], we believe that it deserves

special attention in the context of the defocusing NLS flows since, due to a different dispersion

sign and the possibility of the vacuum point occurrence within the DSW one can expect a

number of qualitative and quantitative differences compared to the KdV flows. Also, the

developed theory can be readily extended to the problem of the generation of DSWs by the

interference of two simple RWs studied numerically in [14].
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Appendix A

Numerical methods

With the advent of modern computers, numerical methods have exploded in popularity. It

is now common to support analytical results with full numerical solutions.

Numerical methods are very useful, as we can quickly produce images of what happens

in complicated nonlinear dispersive systems. These systems are often non-integrable and

so obtaining analytical results can be impossible. Therefore, using numerical methods can

sometimes be the only way to produce and visualise the solution without completing the

experiment itself.

A.1 Spectral methods

Spectral methods are the group of numerical methods that discretise the continuous system

and solve, often involving the use of the fast Fourier transform (FFT).

Spectral methods are very similar to finite difference and finite elements methods. How-

ever, spectral methods differ from these methods by rather than locally approximating the

functions, spectral methods approximate functions globally. As such, spectral methods have

excellent convergence and excellent error properties.

In finite difference methods, the derivative of a function depends on the neighbouring

points. It can be approximately calculated by taking the value to the left and to the right
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and dividing by the distance between those points. Contrastingly, in spectral methods

functions are represented as finite sums of orthogonal functions, with the span being the

entire domain. Derivatives can usually be taken analytically since the basis functions are

known. The derivative at a point thus depends on the entire domain.

We shall be utilising spectral methods to produce direct numerical solutions to problems

solved analytically in Chapters 5, 6 and 7. This is necessary to justify a number of assump-

tions used in the analytic asymptotic constructions of Chapters 5 –7. Such assumptions

(like hyperbolicity of the averaged system associated with the sNLS equation) are often very

difficult (or impossible) to verify analytically.

A.1.1 Discrete Fourier transform

The most well known example of spectral methods are operations involving Fourier series.

We represent a periodic function f(x) in one dimension, as

f(x) =
∞∑

k=−∞

ak expikx, (A.1)

over the interval 0 < x < 2π.

If the function f(x) is known and the coefficients are unknown, we can find the coefficients

easily by taking advantage of the fact that expikx is orthogonal. Taking k and m to be

integers, ∫ 2π

0

expimx expikx dx = 0; k 6= −m. (A.2)

When k = −m, the above integral is equal to 2π. Using this property, we can multiply both

sides of equation (A.1) by expimx and integrate over the domain.

∫ 2π

0

(
f(x) expimx =

∞∑
k=−∞

ak expikx expimx
)
dx. (A.3)
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Using the orthogonality property, the above simplifies

ak =
1

2π

∫ 2π

0

(
f(x) exp−imx

)
dx. (A.4)

This allows us to calculate the coefficient ak in the Fourier series.

We are interested in the discrete version of this process. Let us assume we only know the

function value along discrete points along 0 < x < 2π. Then we can evaluate the integral

numerically using he trapezium rule.

This simply breaks the function in the several trapezoids. The integral then become the

sum of the areas of trapeziums, i.e.

∫ 2π

0

f(x)dx = ∆x
[

1
2
f(x1) + 1

2
f(xN−1) +

N−1∑
j=2

f(xj)
]
. (A.5)

Since, f(0) = f(2π), we have

∫ 2π

0

f(x)dx = ∆x
N−1∑
j=1

f(xj). (A.6)

Using this definition, we discretise the domain as xj = 2π
N

(0, 1 · · · , N − 1) and the sum then

runs over all points in the domain,

∫ 2π

0

f(x)dx =
2π

N

N∑
j=1

f(xj). (A.7)

Thus, we compute the Fourier coefficient,

ak =
1

N

N∑
j=1

exp−ikxj f(xj). (A.8)

Equation (A.8) defines the discrete Fourier transform (DFT).
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A.1.2 Fast-Fourier Transform

The Fast-Fourier Transform (FFT) was developed in 1965 by Cooley and Tukey. The FFT

enables one to compute the DFT and thus calculate spectral derivatives. It is essentially a

more efficient algorithm for completing the DFT.

We take a discrete bounded subspace [−L,L] of the infinite continuous physical space,

and discretise in time. So we have the Figure A.1. Here N is even and is the number of

discrete points. The points are uniformly spaced with the spacing being h = 2L/N .

Figure A.1: Physical space transformed into discrete space.

Now considering the FT of these discrete points, we move into the Fourier space.

Physical space : x ∈ {−L+ h,−L+ 2h, · · · 0, · · ·L− h, L}

Fourier space : k ∈ {−1
2
N + 1,−1

2
N + 2, · · · 0, · · · , 1

2
N − 1, 1

2
N}

, (A.9)

We have the map of the FFT shown in Figure A.2.

So completing a FFT of a function u(x), we cross over from the physical space to the

Fourier space. Then, multiplying by ik and returning to the physical space, via the inverse

FFT (IFFT), we essentially complete a differentiation on the function u(x), i.e. we have

u′(x) = IFFT [ik(FFT [u(x)])]. (A.10)

A similar process may be complete for the second differential u′′(x),

u′′(x) = IFFT [−k2(FFT [u(x)])]. (A.11)

In solving the NLS equation, we have utilised the FFT in the split-step method that we
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Figure A.2: FFT map.

shall now describe.

A.2 Split-step Method

This method was first suggested by Hardin and Tappert (1973). This method solves the

NLS

iψt +
1

2
ψxx − |ψ|2ψ = 0, (A.12)

subject to the initial conditions ψ = ψ0.

The split-step method consists of two main steps. We write the NLS equation in the

form

ψt = iLψ + iNψ, (A.13)
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where L,N are the linear and nonlinear parts respectively, so

Lψ = 1
2
ψxx, and N = −|ψ|2ψ. (A.14)

The solution can be obtained by solving the nonlinear part N exactly and linear part L

separately using FFT.

The solution at (x, t0 + ∆t) can be written in the form

ψ(x, t0 + ∆t) = S(∆t)ψ(x, t0), S(∆t) = exp(i(L+N)∆t), (A.15)

where S(∆t) is the solution operator to time ∆t.

Taking a series expansion of S(∆t)

S(∆t) = exp(i(L+N)∆t) = 1+ i∆t(L+N)−∆t2

2
(L2 +N2 +LN+NL)+O(i∆t3). (A.16)

We can approximate the solution operator S(∆t) by

exp(iL∆t) exp(iN∆t) ≈ S̃(∆t),

= 1 + i∆tL+ i∆tN − 1
2
∆t2(L2 +N2 + 2LN) +O(∆t3).

(A.17)

This expression matches exactly in (A.16) whenever L,N commute. Otherwise this approx-

imation is first order accurate.

We see that the exact and approximate solution operators have the same expansion up to

order ∆t2. We thus use the approximate operator to step forward in time. For a single time

step of ∆t this causes an error of ∆t3. The solution can thus be approximated at (x, t0 + T )

by applying S̃(∆t) until T = NT∆t, where NT is the number of iterations to get to T , i.e.

ψ(x, t0 + T ) = S̃(∆t)NTψ(x, t0). (A.18)
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If NT = O(1/∆t), the global error becomes error = ∆t31/∆t = ∆t2.

The problem can now be calculated in terms of the operator S̃(∆t), in two steps (as

mentioned before) using FFT.

Firstly, one advances the solution using the nonlinear part

iψt = |ψ|2ψ. (A.19)

This is solved exactly by

ψ(x, t0 + ∆t) = exp[−i|ψ(x, t0)|2∆t]ψ(x, t0), (A.20)

where ∆t is the time step, and t0 is the initial time.

ψt(x, t0 + ∆t) = −i|ψ(x, t0)|2 exp[−i|ψ(x, t0)|2∆t]ψ(x, t0),

= −i|ψ(x, t0)|2ψ(x, t0 + ∆t),

(A.21)

where k is the Fourier wavenumber

Secondly, one then solves the linear part

iψt = −1

2
ψxx, (A.22)

by means of the FFT

FFT [ψ]t = −1

2
ik2FFT [ψ],

FFT [ψ(x, t0 + ∆t)] = exp(−1
2
ik2∆t)FFT [ψ(x, t0)],

ψ(x, t0 + ∆t) = IFFT [exp(−1
2
ik2∆t)FFT [ψ(x, t0)]].

(A.23)

where FFT denotes the FFT, IFFT denotes the inverse FFT and k2 = −4nπ2

L2 is the square

wavenumber.
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A.3 Sample cases: decay of an initial step

To demonstrate the FFT method, we shall numerically solve the decay of an initial disconti-

nuity problem considered in Chapter 4. We shall consider the initial step values for ρ = |ψ|2,

u = (argψ)x corresponding to different regions in diagram (4.5) to illustrate the classification

presented in Section 4.4 and test our MATLAB code (see Appendix B) by comparing the

numerical results with the exact (modulation) analytical solutions. The developed MATLAB

code will be then appropriately modified (also presented in Appendix B) to be applied to

the problems of transcritical NLS flow past broad penetrable barrier (Chapter 5 ) and DSW

refraction on a simple RW (Chapters 6 and 7).

The test examples we are considering are the following:

1. one DSW and one RW (one left and one right propagating, separated by the region of

constant flow),

2. two DSWs (one left and one right propagating, separated by the region of constant

flow; no vacuum points),

3. two DSWs (one left and one right propagating, with one of the DSWs having a vacuum

point),

4. two RWs (one left and one right propagating) separated by the region of constant flow.

In the following subsections, these cases will be characterised by two constant parameters ρ0

and u0 in the corresponding initial step data (4.32).

The number of Fourier modes used in the numerics is N = 10, 000; the time step ∆t =

0.05 and the half space period L = 1000.
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Figure A.3: The density profile in the decay pattern corresponding to the initial step param-
eters (A.24): right propagating DSW and left propagating RW separated by the constant
flow region.

A.3.1 One DSW and one RW

We consider an initial step (4.32) with the following parameters (Region 1 in the parametric

solution diagram Figure 4.5):

ρ0 = 2, u0 = 0. (A.24)

Running the numerical code we produce the plot in Figure A.3. As predicted by the analytical

solution in Chapter 3, a right propagating DSW and a left propagating RW separated by the

constant flow region are formed. The considered configuration corresponds to the Riemann

invariant setup shown in Figure 4.6a. We have checked that the parameters of the DSW

(the leading and trailing edge speeds, the trailing dark soliton amplitude, the hydrodynamic

jumps of ρ and u across the DSW) in our numerical solution are in complete agreement with
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Figure A.4: The density profile in the decay pattern corresponding to the initial step pa-
rameters (A.25): two counter-propagating DSWs.

the exact modulation solutions from Section 4.2.1.

A.3.2 Two DSWs, no vacuum points

We consider an initial step characterised by the parameters

ρ0 = 2, u0 = 2.8. (A.25)

This step corresponds to the Region 2 (left part with respect to the vertical dashed line) in the

parametric solution diagram Figure 4.5. Running the numerical code we obtain numerical

solution, and obtain the plot in Figure A.4. One can see that the chosen initial step produces

two counter-propagating DSWs without vacuum points, exactly as it is predicted by the
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modulation theory. As in the previous case, the parameters of the DSWs have been checked

to agree with the modulation solution.

A.3.3 Two DSWs, with one DSW having vacuum point

Typical parameters of the initial step producing two DSWs, with one DSW having a vacuum

point, are:

ρ0 = 2, u0 = 4. (A.26)

This step corresponds to the Region 2 (right part with respect to the vertical dashed line)

in the parametric solution diagram Figure 4.5. Running the numerical code we obtain the

plot in Figure A.5 One can clearly see a vacuum point in the right-propagating DSW. All

the DSW parameters agree with the modulation solutions.

A.3.4 Two RWs

Example of the parameters on the initial step producing two rarefaction waves (Region 4 in

the parametric solution diagram Figure 4.5);

ρ0 = 2, u0 = −2.8. (A.27)

Running the numerical code we obtain the plot in Figure A.6 One can see small-amplitude

wavetrains propagating from the points where the RWs match with the constant flow. The

generation of these linear wavetrains is due to the dispersive resolution of the weak discon-

tinuities (see Section 4.3). The amplitude of these wavetrains decays with time so asymp-

totically the numerical NLS solution for the chosen step (4.32), (A.27) becomes the classical

solution of the dispersionless SWE in accordance with the theoretical predictions.
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Figure A.5: The density profile in the decay pattern corresponding to the initial step pa-
rameters (A.26), two counter-propagating DSWs, vacuum point in the right-propagating
DSW.
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Figure A.6: The density profile in the decay pattern corresponding to the initial step pa-
rameters (A.27): two counter-propagating RWs.
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A.4 Numerical solution of the GP equation

Clearly, to include a potential we must adjust the nonlinear part of the numerical solution.

So instead of (A.21) we have

ψt(x, t0 + ∆t) = −i(|ψ(x, t0)|2 + V0(x, t))ψ(x, t0 + ∆t), (A.28)

where V0(x, t) is the external potential of the system.

We can then proceed to solve the linear part of the GP equation (A.22) using the FFT

in the same way as before.
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MatLab numerical scheme

B.1 Potential barrier sweeping

% Antin Leszczyszyn March 2009

% So lve s the non l i n ea r Schrod inger equat ion with the f i r s t order s p l i t−s tep Four i e r method←↩

( Hardin and Tappert )

N = 10000; % Number o f Four i e r modes

q = −1; % C o e f f i c i e n t o f non l i nea r term

dt = 0 . 0 1 ; % Time step

vm=0.5; % Max o f p o t e n t i a l

T=30; %t o t a l time

M = T/dt ; % Total number o f time s t ep s

J =10; % Steps between output , Total time

L = 2∗1000; % Space per iod 1/2

h1 = 2∗L/N ; % Space s tep

n = [−N / 2 : 1 : N /2−1] ' ; % I n d i c e s

x = n∗h1 ;
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%v=1;

r ( 1 : N /2) =1; % I n i t i a l dens i ty x<0

r ( N/2+1:N ) =1; % I n i t i a l dens i ty x>0

v ( 1 : N /2) =1; % I n i t i a l v e l o c i t y x<0

v ( N/2+1:N ) =1; % I n i t i a l v e l o c i t y x>0

u0 = s q r t (r ' ) .∗ exp (1 i∗v ' ∗ h1 .∗ x ) ;%

u=u0 ;

U = ( abs ( u ) ) ; % Compute i n i t i a l cond i t i on ; save i t in U

e = −4∗n .∗ n∗ pi ∗ pi /(4∗ L∗L ) ; % Squares o f wavenumbers . ∗4 on the denomintor c l o s e s ←↩

up the spread

tdata=0;

h = waitbar (0 , ' Please wait whi l e c a l c u l a t i n g . . . ' ) ;

f o r m = 1 : 1 : M

waitbar ( m/M )

% Star t time evo lu t i on

u = exp ( dt∗1i∗q ∗( abs ( u ) .∗ abs ( u ) )−1i∗dt∗vm ∗( sech ( x+v ' ∗ m∗dt ) ) . ˆ 2 ) .∗ u ;% Solve non l i n ea r part ←↩

o f NLS

c = f f t s h i f t ( f f t ( u ) ) ; % Take Four i e r trans form

c = exp ( (1/2 ) ∗dt∗1i∗e ) .∗ c ; % Advance in Four i e r space

u = i f f t ( f f t s h i f t ( c ) ) ; % Return to p h y s i c a l space

i f rem( m∗dt , 1 ) == 0

tdata = [ tdata ; dt∗m ] ; % Save output every J s t ep s .

m∗dt ;

U = [ U ( abs ( u ) . ˆ 2 ) ] ; % So lu t i on o f rho i s s to r ed in U.

end

end

save ( 'U. mat ' , 'U ' ) % Saves rho
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save ( 'x . mat ' , 'x ' ) % Saves x

save ( ' tdata . mat ' , ' tdata ' ) % Saves t

z=U ' ;

x=x ( 1 : end−(4∗N /10) , : ) ; % Cuts the x range s h o r t e r

x=x (4∗ N /10 : end , : ) ;

Y=rand (2001 ,1) ' ;

f o r j = 1 : 1 : T % Cuts the rho range s h o r t e r and moves to the moving ←↩

r e f e r e n e frame

y=z (j , 1 : end−round ( ( v∗j ) /( h1 ) ) ) ;

y=y ( 1 : end−(4∗N /10) ) ;

y=y (4∗ N/10−round ( ( v∗j ) /( h1 ) ) : end ) ;

Y=[Y ; y ] ;

end

% Calcu la te downstream lead s o l i t o n amplitude and speed

Ad=0;

f o r o = 1001 :1 :2001

i f 1−Y (31 , o )>Ad

Ad=1−Y (31 , o ) ; % Ca lcu la te amplitude downdtream

Sd=x ( o ) /30 ; % Calcu la te speed downstream

end

end

f o r o = 1001 :1 :1401

i f Y (31 , o )<0.95

Sd=x ( o ) /30 ; % Calcu la te speed downstream

end

end

207



APPENDIX B. MATLAB NUMERICAL SCHEME

Ad % Amplitude downdtream

Sd % Speed downstream

c l o s e ( h )

B.2 Interaction of DSW and RW

% Antin Leszczyszyn July 2009

% I n t e r a c t i o n o f DSW and r a r e f a c t i o n wave in de fo cus ing NLS

c l e a r

f o r r=1:1:9 % Loop in Aplus

epsilon =0.4; %0 .4

L = 10000; % Space per iod 1/2

N = 17∗L ; % Number o f Four i e r modes

q = −1; % C o e f f i c i e n t o f non l i n ea r term

dt = 0 . 0 0 5 ; % Time step

T=400; %t o t a l time

M = T/dt ; % Total number o f time s t ep s

J =10; % Steps between output , Total time

h1 = 2∗L/N ; % Space s tep

n = [−N / 2 : 1 : N /2−1] ' ; % I n d i c e s

x = n∗h1 ;

l=100; %gap between RW and DSW

Aplus=1.+0.1∗r ;

Aminus=−0.4;

lm=−1;

lp=1;

A=[0.5 0 . 5 ;

1 −1]; %in gennady ' s notat ion l a+ and la−
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%%%%%%%% reg ion 1 downstream x<0

B=[Aplus lm ] ; %in gennady ' s notat ion A+ and A−

u1=(B/A ) ' ;

u2=u1 (1 ) ; %u

u3=u1 (2 ) ; %s q r t ( rho )

%%%%%%%% reg ion 2 0<x<l

B=[lp lm ] ; %in gennady ' s notat ion 1 and A−

u4=(B/A ) ' ;

u5=u4 (1 ) ; %u

u6=u4 (2 ) ; %s q r t ( rho )

%%%%%%%% reg ion 3 x>l

B=[lp Aminus ] ; %in gennady ' s notat ion 1 and −1

u7=(B/A ) ' ;

u8=u7 (1 ) ; %u

u9=u7 (2 ) ; %s q r t ( rho )

%%%%%%%%%%%%%%%

u0 = ( u3 . ∗ ( exp (1 i∗u2∗x/epsilon ) ) ) . ∗ ( x<=0) ;

u0 = u0+(u6 . ∗ ( exp (1 i∗u5∗x/epsilon ) ) ) . ∗ ( x>0 & x<l ) ;

u0 = u0+(u9 . ∗ ( exp (1 i∗u8∗x/epsilon ) ) ) . ∗ ( x>=l ) ;

u = u0 ;

U = ( abs ( u ) ) . ˆ 2 ; % Compute i n i t i a l c ond i t i on ; save rho in U

UU=( grad i en t ( ang le ( u0 ) , x/epsilon ) ) ;% Compute i n i t i a l c ond i t i on ; save u in UU

e = −4∗n .∗ n∗ pi ∗ pi /(4∗ L∗L ) ; % Squares o f wavenumbers .

tdata=0;

h = waitbar (0 , ' Please wait whi l e c a l c u l a t i n g . . . ' ) ;

f o r m = 1 : 1 : M

waitbar ( m/M )
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% Check f o r Cancel button pr e s s

i f getappdata (h , ' c a n c e l i n g ' )

break

end

% Star t time evo lu t i on

u = exp (1/ epsilon∗dt∗1i∗q ∗( abs ( u ) .∗ abs ( u ) ) ) .∗ u ;% Solve non l i n ea r part o f NLS

mu = f f t s h i f t ( f f t ( u ) ) ; % Take Four i e r trans form

mu = exp ( 0 . 5∗ epsilon∗dt∗1i∗e ) .∗ mu ; % Advance in Four i e r space

u = i f f t ( f f t s h i f t ( mu ) ) ; % Return to p h y s i c a l space

i f rem( m∗dt , 1 ) == 0

tdata = [ tdata ; dt∗m ] ; % Save output every J s t ep s .

%m∗dt ; % Counter , d e l e t e ; i t view .

U = [ U ( abs ( u ) ) . ˆ 2 ] ; %saves rho

UU = [ UU grad i en t ( ang le ( u ) , x/epsilon ) ] ; %saves u

% rho s o l u t i o n i s s to r ed in U

% u s o l u t i o n i s s to r ed in UU

z=U ' ;

c l o s e ( h )

f o r ii=3:N−3 % Removes the e x c e s i v e o s c i l a t i o n in the phase

i f UU ( ii , 1 4 1 )>UU ( ii+1 ,141)+pi /2 & UU ( ii+3 ,141)>UU ( ii+2 ,141)+pi /2

UU ( ii+1 ,141)=UU ( ii , 1 4 1 ) ;

UU ( ii+2 ,141)=UU ( ii , 1 4 1 ) ;

e l s e i f UU ( ii , 1 4 1 )>UU ( ii+1 ,141) +0.5 & UU ( ii+3 ,141)>UU ( ii+2 ,141) +0.75

UU ( ii+1 ,141)=UU ( ii , 1 4 1 ) ;

UU ( ii+2 ,141)=UU ( ii+3 ,141) ;

e l s e i f UU ( ii , 1 4 1 )<−1

UU ( ii+1 ,141)=UU ( ii , 1 4 1 ) ;

e l s e i f UU ( ii , 1 4 1 )<UU ( ii+1 ,141)−2 & UU ( ii+3 ,141)<UU ( ii+2 ,141)−2
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UU ( ii+1 ,141)=UU ( ii , 1 4 1 ) ;

UU ( ii+2 ,141)=UU ( ii+3 ,141) ;

e l s e i f UU ( ii , 1 4 1 ) >1.5

UU ( ii , 1 4 1 )=UU ( ii+2 ,141) ;

UU ( ii+1 ,141)=UU ( ii+2 ,141) ;

end

end

end

end

c l o s e ( h )

save ( strcat ( i n t 2 s t r ( r ) , U . mat ' ) , 'U ' ) % Saves rho

save ( strcat ( i n t 2 s t r ( r ) , UU . mat ' ) , 'UU ' )% Saves u

c l e a r A Aminus Aplus B J L M N T U ans c dt e epsilon gamma h h1 l lm lp q tdata u u0 u1 ←↩

u2 u3 u4 u5 u6 u7 u8 u9

%c l e a r to make loop run f a s t e r

end

B.3 Plotting

B.3.1 Multiple plots

load x . mat

load tdata . mat

load U . mat

%Plot 1

subplot ( 3 , 3 , 1 )

p l o t (x , U ( : , 3 2 1 ) )

t i t l e ( ' t=0 ' )

a x i s ([−20 75 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,
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%Plot 2

subplot ( 3 , 3 , 2 )

p l o t (x , U ( : , 3 3 1 ) )

t i t l e ( ' t=5 ' )

a x i s ([−20 75 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

%Plot 3

subplot ( 3 , 3 , 3 )

p l o t (x , U ( : , 3 4 1 ) )

t i t l e ( ' t=10 ' )

a x i s ([−20 75 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

%Plot 4

subplot ( 3 , 3 , 4 )

p l o t (x , U ( : , 3 5 1 ) )

t i t l e ( ' t=15 ' )

a x i s ([−20 75 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

%Plot 5

subplot ( 3 , 3 , 5 )

p l o t (x , U ( : , 3 6 1 ) )

t i t l e ( ' t=20 ' )

a x i s ([−20 75 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

%Plot 6

subplot ( 3 , 3 , 6 )

p l o t (x , U ( : , 3 7 1 ) )

t i t l e ( ' t=35 ' )

a x i s ([−20 150 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

%%Plot 7

subplot ( 3 , 3 , 7 )

p l o t (x , U ( : , 3 8 1 ) )

t i t l e ( ' t=70 ' )

a x i s ([−100 300 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

%%p lo t 8

subplot ( 1 , 2 , 1 )

p l o t (x , U ( : , 1 0 1 ) )

t i t l e ( ' t=100 ' )

a x i s ([−100 600 0 1 . 7 5 ] )
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y l a b e l n , x l a b e l x ,

%Plot 9

subplot ( 1 , 2 , 2 )

p l o t (x , U ( : , 1 4 1 ) )

t i t l e ( ' t=140 ' )

a x i s ([−100 300 0 1 . 7 5 ] )

y l a b e l n , x l a b e l x ,

B.3.2 Waterfall plot

load x . mat

load tdata . mat

load Y . mat

w a t e r f a l l (x , [ 2 ; 6 ; 1 0 ; 1 4 ; 1 8 ; 2 2 ; 2 6 ; 3 0 ] , [ Y ( 3 , : ) ; Y ( 7 , : ) ; Y ( 1 1 , : ) ; Y ( 1 5 , : ) ; Y ( 1 9 , : ) ; Y ( 2 3 , : ) ; Y ( 2 7 , : )←↩

; Y ( 3 1 , : ) ] ) ;

a x i s ([−5 5 0 T 0 1 ] ) , view (10 ,80) , g r i d off %−L/5 L/5 0 T −1 2

colormap (1e−6∗[1 1 1 ] ) ; y l a b e l t , z l a b e l rho , x l a b e l x ,

B.3.3 2-d colour plot

load x . mat

load tdata . mat

load U . mat

imagesc (x , tdata , U ' ) ; f i g u r e ( g c f ) ; a x i s ([−20 300 0 14 0 ] )

y l a b e l t , x l a b e l x ,
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[90] V.M. Pérez-Garćıa, H. Michinel, and H. Herrero, Bose-Einstein solitons in highly asym-

metric traps, Physics Letters A, 57, 3837, 1998.

[91] T.R. Akylas, On the excitation of long nonlinear water waves by a moving pressure

distribution, Journal of Fluid Mechanics, 141, 455, 1984.

222



REFERENCES

[92] T.R. Marchant and N.F. Smyth, The initial boundary problem for the Korteweg-de

Vries equation, IMA Journal of Applied Mathematics, 47, 247, 1991; Proceedings Royal

Society A, 458, 857, 2002.

[93] Th.R. Taha and M.J. Ablowitz, Numerical Simulations of Certain Nonlinear Evolution

Equations of Physical Interest, Journal of Computational Physics, 55, 203, 1984.

[94] J. Javanainen and J. Ruostekoski, Journal of Physics A: Mathematical and General,

39, L179, 2006.

[95] B.B. Baizakov, A.M. Kamchatnov, and M. Salerno, Matter sound waves in two-

component Bose-Einstein condensates, Journal of Physics B, 41, 215302, 2008.

[96] A.M. Kamchatnov and V.S. Shchesnovich, Dynamics of Bose-Einstein condensates in

cigar-shaped traps, Physical Review A, 70, 023604, 2004.

[97] G.A. El, A. Gammal, and A.M. Kamchatnov, Oblique dark solitons in supersonic flow

of a Bose - Einstein condensate, Physics Review Letters, 97, 180405, 2006.

[98] R. Courant and K. O. Friedrichs, Interaction of shock and rarefaction waves in one-

dimensional media, National Defense Research Committee, Applied Mathematics Panel

Report 38.1R, PB32196, AMG-1, 1943.

[99] H.E. Moses, The head-on collision of a shock wave and a rarefaction wave in one di-

mension, Journal of Applied Physics, 19, 383, 1948.

[100] V. Ya. Arsenin, and N.N. Yanenko, On the interactions of progressive waves with shock

waves in an isothermal gas, Dokl. Akad. Nauk SSSR, 109, (1956), 713716

[101] Z. Hasimoto, Interaction of a simple expansion wave with a shock wave in two-

dimensional flows of a gas, Physical Society of Japan, 19, 1074-1078, 1964.

[102] J. Rosciszewski, Calculations of the motion of non-uniform shock waves, Journal of

Fluid Mechanics, 8, 337, 1960.

223



REFERENCES

[103] S. Gatz and J. Herrmann, Soliton propagation in materials with saturable nonlinearity,

Journal of the Optical Society of America B, 8, 2296, 1991.

[104] D.N. Christodoulides and M.I. Carvalho, Bright, dark, and gray spatial soliton states

in photorefractive media, Journal of the Optical Society of America B, 12, 1628, 1995.

224


