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For any given system the number and location of sensors can affect the closed-loop performance as well as the
reliability of the system. Hence one problem in control system design is the selection of the sensors in some
optimum sense that considers both the system performance and reliability. Although some methods have been
proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with
both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set
for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor
redundancy. The proposed systematic framework combines linear quadratic gaussian control, fault tolerant
control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate
simulations on an electro-magnetic suspension system.

Keywords: Optimised sensor Configurations; Sensor fault tolerance; Electromagnetic suspension;Genetic
Algorithms;LQG control

1. Introduction

In recent years, there has been a high demand for technological advances within the automotive,
aerospace and other transport sectors. Consequently, it is increasingly important to reduce cost
and complexity and to improve the reliability and safety of such technologies. In this context,
control systems can play a very important role. Part of the control system design is the selection
of the input/outputs (actuators/sensors) to be used for controlling a plant (Wal and Jager 2001)
and (for safety-critical) systems offer fault tolerance (Blanke et al. 1997, 2003).
Optimum selection of the inputs/outputs subject to control properties (e.g. optimum perfor-
mance, minimum cost and complexity, fault tolerant control and robustness) is a non-trivial
task especially if the system is characterised by complicated dynamics. To solve this problem,
the authors suggest a novel systematic framework which appears to be a simple solution to a
rather complicated and until today unresolved problem. In order to present this framework,
concepts from control and metaheuristics are merged into the proposed systematic framework.
Modern control methods, Fault tolerant control and Genetic Algorithms are combined to develop
the proposed framework. The efficacy of the proposed framework is tested on a maglev vehicle
suspension.
The suspension of a MAGLEV vehicle is designed to support the mass of the vehicle and the
passengers under any circumstances e.g. disturbances and/or faults. Typically, there are broadly
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three types of such suspensions (Lee et al. 2006): (i) The Electro-Magnetic Suspension (EMS),
(ii) Electro-Dynamic Suspension (EDS) and (iii) Hybrid electromagnetic suspension. For the
first two types of suspensions, electromagnets are used while in the latter case combination
with permanent magnets and electromagnets achieve the desired suspension characteristics. The
EMS system consists of an electromagnet where the mass of the vehicle and the passengers are
supported. The levitation is achieved by producing an attractive force onto the rail and, by
controlling the circulated flux, the airgap (distance between the electromagnet and the rail) can
be controlled. The EMS system is a critical part of the MAGLEV vehicle and in fact, is non-
linear, inherently unstable and safety-critical system with non-trivial set of control requirements
as described by Goodall (1994, 2004).
Even though the EMS system has only one control input (electromagnet), selecting the outputs
(sensors) in an optimum manner is a complex and time consuming process to do manually.
Therefore, the proposed systematic framework can be used to simplify the sensor selection pro-
cess for the suspension. Optimum sensor selection for single stage EMS systems has not been
considered before and this can serve as a baseline for larger scale complex plants.
Linear Quadratic Gaussian (LQG) control is a well known modern control method that has
been implemented in many control applications where the state estimation and noise filtering
are essential requirements. The LQG controller design combines a Linear Quadratic Regulator
(LQR) feedback controller and Kalman-Bucy Estimator (KBE). The LQR controller is based on
state feedback control (see Anderson and Moore (1990), Friedland (1986), Maciejowski (1990))
while the KBE introduced by Kalman and Bucy (1961) is used for the state estimation and
noise filtering. Skogestad and Postlethwaite (2005) shows that the LQG controller is designed
according to the separation principle. Firstly, tuning of the LQR controller is done followed by
the KBE tuning. The second part involves the selection of the appropriate measurements which
which a good state estimation and noise filtering are achieved. Under this scope the the proposed
framework can be used to select the best measurements for the LQG controller performance.
Safety-critical systems require mechanism to accommodate faults. This is because faults can lead
to instability which can thread the integrity of such system (e.g. the MAGLEV vehicle, airplane
etc). Faults, are unavoidable therefore the Fault Tolerant Control (FTC) concept is used in many
safety-critical systems. The FTC design aims to maintain the performance of the system after
a fault occurs (Blanke et al. 1997). Typically two approaches exist, the Passive FTC (PFTC)
and the Active FTC (AFTC). The second approach which is used in the framework requires a
priori knowledge about the possible faults that may occur or a mechanism to detect and iso-
late any unanticipated faults. In any case, the controller structure has to change in order to
accommodate the faults. For the PFTC approach the design of the controller ensures robustness
against the faults i.e. when faults happen the performance is maintained without any change of
the controller structure because of the insensitivity to those faults (Patton 1997).
An optimisation tool has to be used in order to achieve multiple system control properties. The
metaheuristic optimisation algorithms are very strong optimisation tools and they been used
in many disciplines (Dreo et al. 2006). Various types of such algorithms exist among them the
Evolutionary Algorithms (EAs) that are successfully merged in the proposed framework. EAs
are well-known and efficient optimisation tools extensively used in control engineering design
because they are able to handle multiple conflicting objectives and many variables in a very
efficient manner (Fleming and Purshouse 2002). However they haven’t been tested under the
scope of sensor optimisation as in this paper. Various versions of EAs have been developed since
the first introduction by Goldberg (1989). These are well summarised by Konak et al. (2006)
with the most recent version published by Zou et al. (2008). In this paper the recently developed
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is used. NSGA-II has been developed
by Deb et al. (2002) and it has been shown to be a powerful optimisation tool in multiobjec-
tive optimisation problems. Details of the particular Genetic Algorithm (GA) can be found in
Michail (2009) where rigorous explanation along with examples using appropriate test functions
are presented.
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The novelty in this paper relies on the fact that LQG control, fault tolerant control and tuning
via genetic algorithms concepts are combined to form a systematic framework in an attempt to
simplify the “best” selection of sensor sets for the EMS system subject to optimum closed-loop
performance and ensuring integrity of the system under possible sensor faults. In this context,
the algorithm explores and separately optimise the performance of the EMS using all feasible
sensor sets in order to identify fallback options under single or multiple sensor faults, i.e. instants
of one or multiple sensors failing stability constraints but with optimum performance maintained
by controller reconfiguration using the remaining healthy sensors.
The rest of the paper is organised as follows: Section 2 presents the need to have a systematic
framework for optimum sensor/actuator selection and the description of the proposed framework
to do that. Section 3 gives a rigorous description of a typical dynamically complex application
like the EMS system. The unstable dynamic non-linear model is given along with the linearized
model, control requirements and all possible sensor sets. Section 4 describes the multiobjective
constrained optimisation that is vital for the implementation of the framework. A short descrip-
tion of the NSGA-II and constrained handling techniques is given. In Section 5 the classical
control strategies are described which are creating a baseline for the development of the system-
atic framework. An insight is given and the NSGA-II efficacy is tested under multiple non-trivial
requirements. The usefulness of the constraint handling techniques is also highlighted in the
same section. Section 6 describes the LQG control formulation for the EMS system as is used
within the systematic framework and in Section 7 the efficacy of the proposed framework is
assessed via appropriate simulations on the EMS. Finally, in Section 8 the conclusion from the
simulation and data analysis is extracted.

2. Which Sensor Set?

Any given plant in nature has a number of control inputs {ui : i = 1, . . . nu}, input disturbances
{di : i = 1, . . . nd} and a set of possible outputs (sensors), Y = {yi : i = 1, . . . ns}. The problem
is to determine the set of sensors, Yopt ⊂ Y, for which the system

(1) satisfies a set of closed-loop performance criteria,
(2) satisfies a set of fault tolerance criteria,
(3) the sensor set has minimum redundancy i.e. the number of elements in Yopt is minimal,
(4) has sufficient robustness against uncertainties and
(5) has low cost

The selection of Yopt subject to the aforementioned properties is a very important and complex
process especially if the plant has a lot of actuator/sensor configuration possibilities. The problem
becomes more complicated if the plant has real, non-trivial set of requirements with inherently
unstable and non-linear characteristics. The work in this paper is focused upon the optimum
sensor selection of the EMS subject to the first three properties. Nevertheless, the proposed
frameworks is very flexible and can be extended to include optimum selection of both actuators
and sensors subject to all of the aforementioned properties.
Figure 1 shows a typical control system diagram which illustrates the sensor selection problem.
The sensor set (Yopt) is a subset of the full sensor set (Y). This is selected among other candidates
in order to control the plant with optimum performance. Obviously, there are many subsets of
the full sensor set and the number of them can be calculated from

Ns = 2ns − 1 (1)

where, Ns is the total number of all sensor sets (having from 1 to ns sensors) and ns the total
number of sensors.
Moreover, safety-critical plants require fault tolerance for sensor failures therefore the selection
of the “best” sensor set has to consider sensor fault tolerance as well with the minimum number
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of sensors. This means that when one or more sensors fail the performance of the plant should
be maintained by using the remaining healthy sensors, Yh i.e. Yh ⊂ Yopt. In this context a bank
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Figure 1. Block diagram for optimum sensor selection for control and fault tolerance.

of controllers is saved and when sensor faults happen the performance of the suspension is main-
tained via controller reconfiguration. This is where the AFTC concept comes in to assist. When
one or more sensors fail the faulty sensors are removed from the loop and the performance is
maintained by switching to the appropriate controller (i.e. controller reconfiguration). The con-
troller is optimally tuned for the remaining healthy sensor set Yh ensuring optimum closed-loop
performance even under sensor faults (note that the performance of the system is optimised for
all candidate sensor sets). In order to achieve controller reconfiguration a Fault Detection and
Isolation (FDI) mechanism is required. The aim of the FDI is: (i) To detect multiple sensor
faults (ii) isolate the faulty sensors.
Finally, the question in hand is posed as “Which is the optimum sensor set, Yopt that is able to

control a complex dynamical system in a desired manner while offering sensor fault tolerance with

minimum redundancy?” This question is answered using the proposed framework. The frame-
work is able to identify the minimum number of sensors that can be used for control and fault
tolerance and thus provide a cheaper and safer control system. In order to do that, it combines
the LQG control and the NSGA-II in order to optimally tune the closed-loop performance for
each feasible sensor set of the EMS system. Additionally, the Fault Tolerant Control concept is
introduced in the framework for sensor fault tolerance with minimum sensor redundancy.
The overall sensor optimisation process is done in two steps: (i) the LQR controller is tuned and
the Pareto-optimality between the multiple objectives is found. In this step, the controller (i.e.
state feedback gains) which results to the desired closed-loop response is selected as the ‘ideal’
or reference response for the tuning of the KBE that is done next. (ii) The KBE is optimally
tuned for every feasible sensor set in order to achieve the ‘ideal’ closed-loop response. At the end
of the second part a table with optimised sensor configurations is given where the ‘best’ sensor
set is selected. The flowchart of the proposed framework is depicted in Fig. 2. The execution of
the algorithm is done in the following way:

Algorithm initialisation: The GA parameter assignment (for the NSGA-II these parameters
are listed on Table 3), the objective functions to be minimized in (9), the control constraints
listed on Table 2 and the user’s controller selection criteria (fci , fu) are the inputs to the
algorithm.
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Figure 2. Flowchart of the proposed sensor optimisation systematic framework.

Optimum LQR tuning: Provided that controllability is achieved the LQR controller is op-
timally tuned in order to find the Pareto-optimality between the objective functions using
NSGA-II. At this stage the ‘ideal’ closed-loop response is selected based on fci and fu. fci
criteria ensure that the selected controllers result to the desired closed-loop characteristics
and fu criterion makes sure that the selected controller results to the ‘ideal’ closed-loop
response.
Sensor set feasibility:At this stage the sensor feasibility is considered. The sensor set is
selected and the state observability is tested. If the state observability is not possible using
the current sensor set then the algorithm moves to the next. When the state observability
is achieved optimum tuning of the KBE is considered next.
Optimum Kalman-Bucy tuning: At this stage the KBE is optimally tuned to achieve the
‘ideal’ response for the current sensor set. After this step a number of controllers (equal to
the number of NSGA-II population) are available from where the best one will be selected.



June 1, 2011 13:42 International Journal of Systems Science IJSS˙revised*version˙V5

6 K.Michail, A.C.Zolotas, R.M.Goodall and J.F.Whidborne

Best controller selection: During this step the best controller which results to a closed-loop
response as close as possible to the ‘ideal’ one is selected. For this purpose two metrics
are used: (i) the overall constraint violation function (Ω) and (ii) the state estimation error
function (Sf ). The first, is used to select those controllers that satisfy the control constraints
as explained in Section 5.1. However, if there is no controller exist to satisfy the control
constraints (i.e. all resulting Ω 6= 0) then the one with the smallest Ω is selected. In the
opposite case (i.e. those controllers that result to Ω = 0) where the group of controllers that
satisfy the control constraints are selected and the one with the smallest state estimation
error Sf is selected as the best controller. The state estimation error function is the error
between the estimated and the ’ideal’ states (for details see Section 6.2). At the end the
rationale is that the controller which results to the closed-loop response closest to the ‘ideal’
is selected.
Optimum sensor set selection: The next step is to optimally tune the KBE for every feasible
sensor set. At this stage the selection of the best sensor set (Yopt) for control and sensor
fault tolerance is done.

3. The EMS System application

3.1 The EMS System model

In this section the EMS system modelling is described. The non-linear model, the linearized
state space, the disturbance inputs and the closed-loop control requirements are analysed.
The 1DOF (degree-of-freedom) model represents the quarter of a typical MAGLEV vehicle. The
basic quarter car model of the MAGLEV vehicle is shown in Fig. 3. This is a single-stage EMS
that has been shown to be suitable for low speed vehicle (Goodall 2004), where other MAGLEV
systems, particularly those for high speed, have a separate conventional secondary suspension for
proper ride quality. The suspension consists of an electromagnet with a ferromagnetic core that
is attracted to the rail which is also made out of ferromagnetic material. The electromagnet has
a pole face area Ap, and a coil of Nc turns. The carriage mass is attached to the electromagnet
giving a total suspended mass of Ms, with zt the rail’s position and z the electromagnet’s
position. The airgap (zt − z) is to be maintained close to the operating condition required
(15mm in this case). As described by Goodall (2008, 1985) there are four important variables in

Track

. .

Carriage
Mass

Coil

Electromagnet

Pole
face

Flux
circulation

+ve

zt
z

Msg

Figure 3. Typical diagram of a single stage EMS System.

an electromagnet named as force F , flux density B, airgap G and the coil’s current I that give
the non-linear characteristics to the suspension.
Assuming that the motion vertically downwards is taken as positive the non-linear model of the
EMS is described by Newton’s equation of motion (2) and the electrical circuit involved from
the electromagnet’s coil (3). Equations in (4) describe the flux density and the force. The airgap
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velocity is given in (5) (Michail 2009).

Ms
d2Z

dt2
=Msg − F (2)

Vc = IRc + Lc
dI

dt
+NcAp

dB

dt
(3)

B = Kb
I

G
,F = KfB

2 (4)

dG

dt
=
dzt
dt

−
dZ

dt
(5)

where, Z is the electromagnet’s position, g the gravity acceleration taken as 9.81m/s2, Vc the
coil input voltage, Rc coil’s resistance, Lc coil’s inductance, Kb the flux constant and Kf force
constant.
The linearisation of the EMS system is based on small perturbations around the operating point.
The lower case letter denotes the small variation around the operating point and subscript ‘o’
represents the operating point, e.g. I = Io + i. Also note that the airgap is taken as G =
Go +(zt − z). As described by Michail (2009) the linearized model of the EMS can be expressed
in state space form (6). The states are x = [i ż (zt−z)]

T and the output equation corresponds
to the following five measurements: the coil’s current i, the flux density b, the airgap (zt − z),
the vertical velocity ż and the vertical acceleration z̈. The matrices A,Bu, Bżt and C are given
in (7) and (8).

ẋ = Ax+Buuc +Bżt żt (6)

y = Cx

A =









− Rc

Lc+
KbNcAp

Go

− KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0

−2Kf
Io

MsG2
o

0 2Kf
I2
o

MsG3
o

0 −1 0









(7)

Bu =







1
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KbNcAp

Go

0
0






, Bżt =







KbNcApIo

G2
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(

Lc+
KbNcAp

Go

)

0
1






, C =















1 0 0
Kb

Go
0 −KbIo

G2
o

0 0 1
0 1 0

−2Kf
Io

MsG2
o

0 2Kf
I2
o

MsG3
o















(8)

The sensor combinations (or sets) can be easily obtained by using the output matrix C in (8).
The total number of sensor sets can be calculated from (1). Given that the EMS system has 5
outputs there are 31 candidate sensor sets from where the Yopt should be identified using the
proposed framework.
A typical quarter car vehicle of 1000kg requires a nominal force of Fo =Ms× g and the nominal
airgap (Go) is set at 15mm to accommodate the track roughness. According to these requirements
the rest of the suspension parameters listed on Table 1 can be calculated. Details on the design
of electromagnets for MAGLEV vehicles are given by Goodall (1985).
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Table 1. Parameters of the Electro-magnetic suspension.

Parameter Value Parameter Value
Operating airgap,Go 0.015m Carriage Mass,Ms 1000kg
Operating flux density,Bo 1T Coil’s Resistance,Rs 10Ω
Operating current,Io 10A Coil’s Inductance,Lc 0.1H
Operating voltage,Vo 100V Number of turns,Nc 2000
Operating force,Fo 9810N Pole face area,Ap 0.01m2

3.2 Input disturbances to the suspension

3.2.1 Deterministic disturbances

The main deterministic inputs to the suspension in the vertical direction are the transitions
onto track gradients. In this paper, the deterministic input is a track gradient of 5% at a vehicle
speed of 15m/s and a vertical acceleration of 0.5m/s2 with jerk level of 1m/s3.

3.2.2 Stochastic disturbances

Stochastic disturbance is the random inputs to the EMS system in the vertical direction.
Random inputs represent the inaccuracies of laying the rail, the lack of straightness of the
rail and the effects of fixtures. Two models of the stochastic track behaviour are presented by
Paddison (1995). The velocity variations in the vertical direction are quantified by a double-
sided power spectrum density which in the frequency domain is expressed by Sżt = πAtVV .
VV is the vehicle’s speed and At is the track roughness taken as 15m/s and 1 × 10−7m (for
high quality rail) respectively. The corresponding (one-sided) autocorrelation function is given
by R(τ) = 2π2AtVV δ(τ). Regardless a linear controller is used for the control, the simulations
are actually based on the implementation of the controller to the nonlinear EMS system (see
Friedland (1996)). Hence, the RMS values of the required quantities (acceleration, current, input
voltage etc) are quantified using time history data.

3.3 Design requirements

The control requirements of an EMS system depend on the type and speed of the MAGLEV
vehicle. The dynamic characteristics of an EMS are described by Goodall (1994, 2004). The
description is focused upon the EMS of the low speed Birmingham Airport Maglev vehicle
requirements which operated successfully in the UK for more than 10 years. Table 2 tabulates
the closed-loop control limitations for the deterministic and stochastic features. Fundamentally,
there is a trade off between the deterministic and the stochastic (ride quality) responses of an
EMS system. In this case, the deterministic response is limited to the maximum standard values
while the stochastic features have been set as objective functions to be minimized, i.e minimize
the vertical acceleration (improve ride quality) and the RMS current variations (input current).
These objectives can be formally given as

φs1 = irms, φs2 = z̈rms (9)

Additionally, in any real application sensors add noise to the measured quantities. Although the
dynamical behaviour of the EMS system is similar to a low pass filter, the noise coming from
sensors could be amplified by the controllers if not taken into account in the design (Michail
2009). Thus an upper limit on the RMS of the noise in the actuator signal is introduced and is
set at 50Vrms. The noise covariance for each sensor is taken as 1% of the maximum value of the
deterministic response for the corresponding measured quantity.
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Table 2. Control constraints for the Electro-Magnetic Suspen-

sion closed-loop performance.

Measurement Value
Response with stochastic track profile

RMS acceleration,z̈rms ≤ 0.5ms−2

RMS airgap variation,(zt − z)rms ≤ 5mm
RMS control effort,ucrms ≤ 300V
Response with deterministic track profile
Maximum airgap deviation,(zt − z)p ≤ 7.5mm
Maximum control effort,ucp ≤ 300V
Settling time, ts ≤ 3s
Airgap steady state error,e(zt−z)ss = 0

Response with idle track profile
RMS of the noise on control effort,unrms ≤ 50Vrms

4. Multi-objective constrained optimisation

The problem described in Section 2 requires a powerful optimisation tool especially if the per-
formance is to be optimised using all sensor sets in an iterative manner. In this Section a
brief description of the NSGA-II (Deb et al. 2002) is done along with the constraint handing
techniques. Constraint handling techniques are used not only to ensure that the closed-loop
performance of the EMS is within limits but they also serve as a controller selection criterion
as described in Section 5.1. In this paper, the NSGA-II is used in three cases where different
parameter assignment is required in each case. Proper assignment of those values is vital because
fast convergence and good spread of the solutions onto the optimum Pareto front depends on
them. There is no generalised way for deciding about the values of the NSGA-II parameters but
they can be selected from experience as it is done in this work. The assigned parameters for
the classical control strategies and the proposed systematic framework are tabulated on Table 3.
The generation number is defined as the stopping criterion and population size is the number of
chromosomes that the population, nc, consists of. The crossover probability is generally selected
to be large for good mixing of genetic material and the mutation probability is a function of the
number of variables nV .
Because this problem requires a lot of control constraints to be simultaneously achieved a

Table 3. NSGA-II parameters for the optimisation of Classical

control and the proposed systematic framework.

Parameter CC LQR Kalman-Bucy
Maximum generation 500 500 50
Population size,nc 70 50 20
Crossover probability 0.9 0.9 0.9
Mutation probability 1/nV 1/nV 1/nV

constraint handling technique is necessary. Various constraint handling techniques exist in the
literature among them the penalty functions that are used here. There are many versions of
penalty functions but only two approaches are useful in this paper. One is the death penalty
approach and the other the static penalty approach (Coello 2002). The purpose of using penalty
functions is twofold: (i) To ensure that the closed-loop responses of the stochastic and deter-
ministic inputs are within the limitations as described in Section 3.3 and (ii) To use the overall
constraint violation function in (12) for selecting appropriate controllers as explained latter in
Section 5.1.
The static penalty method is rigorously described by Deb (2001) and summarised as follows
The ith soft constraint violation ωi, is given as

ωi(k
i) = {

|gli(k
i)|, if gi(ki)≥0

0 otherwise (10)

where, ki is the ith measured variable. The constraint violation, gli(k
i), is given as gli(k

i) =
−(ki/kid)+1 where kid is the maximum allowed desired value of ki. For the ith values constrained
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to be higher than the minimum allowed, the constraint violation is given as ghi
(ki) = (ki/kid)−1.

The hard constraints are those whose values are not allowed to deviate from the predefined ones
i.e. the steady state error of the airgap must be equal to zero. The jth hard constraint violation,
ψj , for each measured variable f j, is given as

ψj(f
j) = {

|hj(fj)| if hj(fj)6=0
0, otherwise (11)

However, this can transformed into a soft constraint, allowing a small tolerance value ξ (Coello
2002). The hard constraint violation hj(f

j), function is then calculated as hj(f
j) =| f j | −ξ < 0.

The overall constraint violation function Ω(k(i), f (j)), is then derived as

Ω(k(i), f (j)) =

i
∑

i=1

ωi(k
(i)) +

j
∑

j=1

ψj(f
(j)) (12)

Ω is then added to each one of the objective functions ω forming the following penalty equation

Φt = φt +RtΩ(k
(i), f (j)) (13)

where φt is the tth objective function, Φt is the tth penalised objective function and Rt is the
tth penalty parameter from (13). It can be seen that if all constraints are satisfied then Ω in
(12) is zero therefore Φt = φt while if there is some constraint violation (i.e. Ω(ki, f j) 6= 0) this
is added to the objective functions reducing the possibilities for the corresponding solution to
survive in the next generations. In this way the objective functions are ‘guided’ towards the
Pareto-optimality with satisfying control constraints. Additionally, Ω is to be used as a metric
for the controllers’ performance towards the given constraints in the real control system design
problem as described in Section 2.

5. An Insight to Optimised Configuration of Sensors by using Classical Control

Although classical control structures for suspensions have been studied previously by Goodall
(2000) the same strategies are used here and they are optimised using the Genetic algorithm.
The aim of this section is: (i) to illustrate the efficacy of the NSGA-II for optimal tuning of
the controllers in a multiobjective framework and (ii) to use the classical control strategies as a
baseline for further investigation utilizing modern control and fault tolerant strategies.
The use of inner loops with classical control strategies is advantageous in controlling an EMS
system as indicated by Goodall (2000). Figure 4 illustrates the two control configurations com-
pared: (i) with the flux density measurement for the inner loop and the airgap in the outer loop,
(ii) current for inner loop and airgap for outer. Control of the non-linear model is achieved by
using linear controllers that are designed based on the linear model of the suspension (Friedland
1996). The control problem of the suspension is posed in a multiobjective constrained optimi-
sation framework where the closed-loop performance of the EMS system is optimised subject
to a number of control constraints tabulated on Table 2. In order to have sufficient robustness
properties, the inner loop bandwidth is constrained between 50Hz−100Hz (Goodall 2000). This
can be achieved with a Proportional-Integral (PI) controller with a structure as given in (14).
The desired outer loop bandwidth of the two control configurations is constrained to be less
than 20Hz and the phase margin is constrained between the range of 35o − 45o. Both, control
properties can give adequate performance and they are adjusted from direct tuning of the Phase
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Figure 4. Classical controller implementation with inner loop feedback control using either {(zt − z), i} or {(zt − z), b}

Advance (PA) controller in (14).

PI = GPI
τis+ 1

τis
, PA = GPA

koτos+ 1

τos+ 1
(14)

The control constraints of the EMS combine both frequency and time responses in order to
achieve proper robustness and performance of the suspension. Considering the control perfor-
mance requirements described in Section 3.3 as well as the robustness properties discussed here,
these clearly pose a multiobjective constrained optimisation problem that aims to improve the
EMS control by minimizing both objectives in (9) subject to the control constraints listed on
Table 2.
NSGA-II is employed to find the Pareto-Optimality between the objectives while ensuring all
constraints are satisfied. Undoubtedly designer experience is advantageous in defining initial pa-
rameters of the GA that remain constant during the optimisation process. Those parameters
are given on Table 3. The mutation probability is defined by the number of the variables to be
tuned (nV ), (five according to (14)).
Figure 5 depicts the Pareto-optimality (i.e. the optimum trade-off) between the ride qual-
ity (z̈rms) and the RMS coil current (irms) for each sensor configuration, i.e the air-
gap(outer)/flux(inner) {(zt − z), b} and the air-gap(outer)/current(inner) {(zt − z), i} cases. For
the former configuration, the vertical acceleration z̈rms, is limited to the desired value of 0.5m/s2

while for the latter configuration is out of the design limitations i.e.z̈rms ≤ 5m/s2. Therefore, a
set of controllers can be selected that satisfy all constraints for the {(zt − z), b} case but not for
the {(zt − z), i}. Furthermore, a detailed comparison between the two sensor configurations is
detailed on Table 4. For the {(zt−z), i} configuration the vertical acceleration and PM limits are
violated in contrast to the {(zt− z), b} configuration where all control constraints are within the
predefined limits. The situation here is simple because there exist only two sensor configurations
to select from. In case where many sensor configurations exist with each one having a trade-off
similar to the ones in Fig . 5 the optimum sensor selection with the desired performance is diffi-
cult thus a criterion is needed to simplify the sensor selection. In the next section, the usefulness
of the overall constraint violation function as a controller selection criterion is demonstrated.

5.1 The overall constraint violation function as a controller selection criterion

The process of selecting a controller with desired closed-loop characteristics is rather simplified
in this case where only two sensor configurations are compared. This can be seen from Table 4
where the {(zt − z), i} configuration violates two constraints therefore {(zt− z), b} configuration
results to a desired performance. The problem becomes more complex when a large number of
sensor configurations (or sensor sets) have to be optimised from where the one that results to
the best performance is to be identified. Additionally, for each sensor set, a number of optimally
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Table 4. Classical control - constraints values for each design.

Constraints
Assigned

{(zt − z), b} {(zt − z), i} Units
values

RMS acceleration,z̈rms ≤ 0.5 0.26-0.47 0.58− 0.65 ms−2

RMS airgap,(zt − z)rms ≤ 5 1.26-1.53 1.4-1.7 mm
RMS input voltage,ucrms ≤ 300 32-108 63-80 V
Airgap peak,(zt − z)p ≤ 7.5 5-7.5 2.5-2.6 mm
Input voltage,ucp ≤ 300 37-53 ≈ 20 V
Settling time,ts ≤ 3 X X s
Airgap steady state error,e(zt−z)ss = 0 X X mm
Phase margin,PM 35o − 45o 35o − 45o 3.3o − 5.5o

Outer bandwidth,fbout
≤ 20 2.9-3.2 ≈ 4 Hz

Inner bandwidth,fbin 50− 100 70-100 ≈ 100 Hz

tuned controllers appears (i.e. those that comprise the Pareto-optimality between the objective
functions). Therefore a large number of controllers exists when thee sensor optimisation frame-
work is executed. That is a function of the number of chromosomes in the population and is
given as

NK = Ns × nc (15)

where NK is the total number of controllers at the completion of the framework, Ns is the
number of feasible sensor sets and nc is the number of chromosomes in the population. Thus,
an indication is needed to distinguish which controllers on the Pareto front of the corresponding
sensor set satisfy the control constraints. This can be done using (12) and it can be demonstrated
via two examples using the Pareto fronts of {(zt − z), b} and {(zt − z), i}. A pair of controllers
that result to the best ride quality (i.e minimum vertical acceleration), is selected for each
sensor set. The parameters that form the controllers in (14) are tabulated in Table 5. The

Table 5. Selected controllers’ parameters from {(zt − z), i} and {(zt − z), b}.

GPI τi GPA τo ko
{(zt − z), b} 11949V/T 0.0181s 3.547T/m 0.038s 3.92
{(zt − z), i} 237V/A 0.023s 790.5A/m 0.00321s 2.493
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resulting closed-loop responses of the suspension for each sensor set are shown on Table 6.
For the {(zt − z), b} configuration the penalty values are zero since all constraints are satisfied
in contrast to {(zt − z), i} where the ride quality and the phase margin (PM) are violated.
Consequently, the overall constraint violation function Ω, is zero for {(zt − z), b} but 1.077 for
{(zt − z), i}. In that sense, using the Ω it is possible to distinguish which controllers satisfy the
control constrains in every feasible sensor set and additionally, indicate which sensor set can be
used for control with satisfactory performance.

Table 6. Closed-loop response of the suspension with {(zt − z), b} and {(zt − z), i} for

both stochastic and deterministic track profiles by using the controllers that result to

the best ride quality.

{(zt − z), b} {(zt − z), i}
Quantity Actual value Penalty value Actual value Penalty value
z̈rms 0.260ms−2 0 0.588ms−2 0.174

(zt − z)rms 1.5mm 0 1.76mm 0
ucrms 32.4V 0 63.14V 0

(zt − z)p 7.48mm 0 2.6mm 0
ucp 53.6V 0 20.53V 0
ts 2.37s 0 2.38s 0

e(zt−z)ss 6.39× 10−6m 0 1× 10−6m 0
PM 35o 0 3.38o 0.903
fbout

3.06Hz 0 4.01Hz 0
fbin 98Hz 0 98.87Hz 0

Ω 0 1.077

6. LQG Control of the EMS system within the framework

In this Section, a short description of the LQG controller formulation for the EMS system as
it is merged into the proposed framework is done. The LQG controller design is performed
according to the separation principle, as described by Skogestad and Postlethwaite (2005). The
state feedback gains (LQR design), −Klqr, are appropriately selected in order to achieve the
desirable control properties while the KBE is merged into the loop at the second stage, to provide
appropriate state estimation. The LQG control problem is to find the optimal control u which
minimizes the following performance index in (16). Note that output regulation is considered
rather than state regulation. This index has to be solved for every feasible sensor set of the EMS
system.

J = E

{

lim
T→∞

∫ T

0

[

yTQy + uTRu
]

dt

}

(16)

6.1 LQR control for the suspension

A linear quadratic feedback controller can be used to control the non-linear EMS model as
illustrated in Fig. 6. An extra state is selected forming a Proportional plus Integral (P+I) state
regulator. The integral action on airgap is an extra state forming a four-state vector given as
x = [i, ż, (zt − z),

∫

zt − z]T . The aim of the particular LQR design is to appropriately select a
state feedback vector, −Klqr which minimizes the performance index in (17). The performance
index represents output regulation of the EMS system with integral action on the airgap.

J =

∫ T

0

[

yTQoy + uTRu
]

dt (17)

where y = [z̈ (zt− z)
∫

(zt − z)]T and u = uc. Qo(3, 3) regulates the speed of response
∫

(zt − z)
while Qo(1, 1) and Qo(2, 2) regulates the vertical acceleration and the airgap respectively.
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Figure 6. LQR control for the nonlinear EMS system.

The output regulation weighting matrices are based on Bryson’s rule (Franklin et al. 2002). Qo

is given in diagonal form in (18) while the input weighting matrix R is a scalar value because
the EMS is a single input system.

Qo = diag

(

1

q2z̈
,

1

q2(zt−z)

,
1

q2∫
(zt−z)

)

, R = 1/r2 (18)

The tuning of the Qo and R aim to minimize the EMS response on straight track irregularities
(i.e. minimize the vertical acceleration and coil current) while enhancing the performance onto
gradient track move. NSGA-II is used for optimal tuning of Qo and R. The selected NSGA-
II parameters for the LQR optimisation are given on Table 3. Four variables (nV = 4) with
real-coded values are used to represent the output weight factors in (18).

6.2 The Kalman-Bucy estimator design

The linear time-invariant KBE has a state space form formally written as

˙̂x = Ax̂+Buu+Klqg(y − ŷ)
(ŷ=Cx̂)
= Ax̂+Buu+Klqg(y − Cx̂) (19)

ŷ = Cx̂ (20)

where Klqg is the observer gain matrix that minimizes E{[x − x̂]T [x − x̂]}. Minimization
can be achieved by appropriately tuning of the measurement noise covariance matrix V , and
process noise covariance matrix W . The measurement noise weighting (V ) is given in (21) for
all five measurements. In a practical situation, this can be calculated from sensor equipment
data sheets or prior simulation of baseline controller designs. In this case is not possible to
have that information therefore it is assumed that the noise covariance for each corresponding
measurement is equal to 1% of the peak value from each measurement of the deterministic track
profile closed-loop response (this is something usual in the area of railway).

V = diag(Vi, Vb, V(zt−z), Vż, Vz̈) (21)

In this design the process noise matrix Bw = Bżt and the process noise covariance matrix W
refers to the track velocity input and this is optimally tuned for each sensor set using the NSGA-
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II (this is a realistic process noise input to the system).
The LQG control for the EMS is illustrated with the block diagram in Fig. 7. During the
execution of the framework algorithm the errors between the estimated and the ‘ideal’ states are
minimized i.e. the comparison between the closed-loop response with the LQR and the response
with the KBE in the loop. The minimization of the errors is performed by the NSGA-II for
each one of the sensor sets. For this purpose, the objective functions to be minimized are: (i)
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ż
z̈

Figure 7. LQG control with optimum sensor selection for the non-linear EMS system

the Integral Absolute Error (IAE) for the closed-loop response with deterministic disturbance
expressed in (22) and (ii) the Root Mean Square Error (RMSE) for the stochastic closed-loop
response described in (23) (Panagopoulos et al. 2002). An extra objective function is added (24)
which is the RMS value of the noise that appears on the input voltage (uc) from the measurements
of the suspension with idle track profile. The final objective functions for the LQG controller
tuning are formally written as

φd1,2,3
=

∫ t

0
|xo − xa|dt (22)

φs4,5,6 = RMS(xo − xa) (23)

φ7 = unrms
(24)

This makes a total of 7 individual objective functions (minimized for each sensor set) where xo
is the vector of the monitored states of interest of the closed-loop with the LQR state feedback
(e.g. ‘ideal’ closed-loop response) and xa the monitored states of interest of the closed-loop with
the overall LQG controller, e.g. actual closed-loop (prior to adding sensor noise). Note that the
EMS system is open-loop unstable and this assessment in tuning is quite attractive i.e taking
directly into account the domain differences.
After the optimal tuning of the LQG controller for each sensor set, there is a large number of
controllers (equal to the population number). Hence the overall penalty parameter Ω in (12), is
used to assist with the best controller selection as it shown in the flow chart of Fig. 2. Since for
a sensor set there could be (which is the usual case) more that one controllers in the population
that satisfy all control constraints another criterion is needed to select the best one among those.
This is given as the sum of the objective functions in (22) and (23) (states error for deterministic
and stochastic responses with and without the KBE) as shown below

Sf =

nx
∑

i=1

φdi
+

nx
∑

j=1

φsj (25)
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where nx is the number of estimated states (nx = 3).
In that way it is ensured that the selected controller for the corresponding sensor set satisfies
the control constraints and has accurate state estimation.

7. Simulations and data analysis

In this Section the efficacy of the proposed framework is assessed using the EMS system. The
framework algorithm is executed in two parts. The first part is the LQR tuning where the
selection of the ‘ideal’ closed-loop response is done. Throughout the second part (where the
sensor information becomes critical) KBE is optimally tuned for every feasible sensor set i.e.
observability is tested for every sensor set.
Figure 8 shows the Pareto-Optimality between the objectives in (9) with the control constraints
listed on Table 2 being satisfied. Figure 9 depicts the airgap (zt − z) and input voltage (uc)
deviations for the deterministic closed-loop response using the 50 optimally tuned controllers
that comprise the last generation of the LQR tuning. It is illustrated that the control constraints
for the deterministic response of thee EMS are restricted to the values as listed on Table 2 (note
that for good resolution the noise is removed form the measurements). At this point, the LQR
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Figure 8. Pareto-optimality from the tuning of LQR control.
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state gain vector Klqr, that results in the ‘ideal’ closed-loop performance can be selected. The
choice of the desired closed-loop response is based on the user’s controller selection criteria
(fci , fu) as follows

(1) Guarantee that the initially selected controllers result to the closed-loop response with ver-
tical acceleration of less than 0.5m/s2.(fc1 ≡ z̈rms < 0.5m/s2).

(2) and ensure that the excitation coil’s current from the closed-loop response of less than 2A
(fc2 ≡ irms < 2A).

(3) Ensure that the finally selected state gain vector Klqr, results to the best ride quality (fu ≡
min(z̈rms)).

The closed-loop response with the selected gains results in an RMS vertical acceleration of
0.346m/s2 with the corresponding state gains tabulated on Table 7. The resulting performance
with these gains is depicted in Fig. 10.
The second part of the framework is the optimisation of the KBE for each sensor set. The aim

Table 7. The selected optimum LQR gain vector values

Ki Kż K(zt−z) K∫

(zt−z)

V/A V/(m/s) V/m V/m
−246.85 −3.366 × 103 2.145 × 105 2.417 × 105
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Figure 10. ‘Ideal’ closed-loop response of the suspension with LQR control.

is to achieve the same closed-loop response for each sensor set as given in Fig. 10. According
to (15) and since all sensor sets are feasible at the completion of the framework, there are 620
optimally tuned KBEs. By appropriate controller selection for each sensor set using (12) and
(25) the end result gives an optimally tuned KBE for each sensor set. There are 24 out of 31
sensor sets found to give the same closed-loop response as the ‘ideal’.
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The results listed on Table 8 include some of the optimally tuned sensor sets. The values of the
third row correspond to the ‘ideal’ closed-loop response. The second column lists the sensor sets
and the first column the corresponding identification number. Columns 3 − 5 show the values
for the closed-loop response from the stochastic track profile and columns 6− 9 show the values
from the closed-loop response from the deterministic track profile. 10th column lists the level of
the noise on the control input taken with the idle track profile. Note the reduction of the level
of the noise with the LQG controller compared to the LQR response. The last column indicates
whether the corresponding sensor set satisfies the control constraints (X) or not (x).

Table 8. Optimised sensor configurations via LQG control.

id Sensor (zt − z)rms ucrms z̈rms (zt − z)p ucp ts e(zt−z)ss unrms Ω
Set mm V ms−2 mm V s mm V

LQR response → 1.5 22.64 0.34 7.3 52.4 2.16 0.019 25.9 X

1 i 1.78 29.16 0.50 2.09 22.93 6.18 0.18 2.95 x
2 b 1.46 22.47 0.32 6.74 63.82 2.18 0.019 5.81 X

3 (zt − z) 1.49 22.41 0.31 10.69 84.83 2.56 0.77 4.84 x
4 ż 1.57 171 6.83 14.6 709 6.58 8.78 210 x
5 z̈ 1.46 22.44 0.32 6.82 63.04 2.19 0.013 5.89 X

6 i, b 1.42 22.24 0.31 6.73 59.13 2.18 0.024 4.03 X

7 i, (zt − z) 1.45 22.25 0.31 10.81 85.21 2.77 0.76 3.69 x
8 i, z̈ 1.46 22.18 0.32 6.82 58.91 2.18 0.03 4.00 X

9 b, (zt − z) 1.43 22.17 0.32 6.81 57.41 2.18 0.027 3.69 X

10 b, z̈ 1.43 22.20 0.32 6.78 59.64 2.18 0.011 4.11 X

11 i, b, (zt − z) 1.46 22.06 0.32 6.79 55.99 2.18 0.02 3.08 X

12 i, b, ż 1.46 22.21 0.32 6.79 59.55 2.20 0.06 4.03 X

13 i, b, z̈ 1.42 22.24 0.31 6.80 59.55 2.20 0.06 3.29 X

14 i, (zt − z), ż 1.48 22.18 0.32 7.69 63.04 2.35 0.10 3.69 x
15 i, b, ż, z̈ 1.42 22.11 0.32 6.81 56.82 2.19 0.03 3.29 X

16 i, (zt − z), ż, z̈ 1.43 22.05 0.32 6.90 58.55 2.18 0.03 3.07 X

17 i, b, (zt − z), ż, z̈ 1.46 22.02 0.32 6.84 55.98 2.19 0.03 2.70 X

7.1 Optimum sensor selection for control

An initial performance comparison between the ‘ideal’ response and the LQG responses with
each of the sensor sets shows that the performance doesn’t change significantly. Although there
is some small variation on the performance with the LQG most of sensor sets can be used to
control the suspension. Since at this stage appropriate control of the suspension is the main task,
one may conclude that instead of using 5 sensors (id:17), only one can be used (id:2 or id:5). The
flux density (id:2) as well as vertical acceleration (id:5) measurements are good choices ensuring
that the suspension performance is adequate. A single sensor is a good first choice to provide an
insight into performance issues and simplified solutions. In this context, Fig. 11 illustrates the
state estimation using a single sensor i.e Yopt=id:5. This choice provides a rather appropriate set
of state estimates, with a small error of the estimation of the vertical velocity state. However,
the performance of the suspension is not affected. The response of the suspension with id:5 is
illustrated in Fig. 12 where the deterministic closed-loop response of the suspension is reflected
on the airgap (Fig. 12(a)) and the input voltage (Fig. 12(b)). Both airgap and input voltage are
within the control constraints given in Section 3.3.

7.2 Optimum sensor selection for fault tolerant control

The EMS system is a safety-critical system hence the sensor fault tolerance is a vital issue and
should be carefully considered in control design. At this point, it worth noting the importance
of the results from the proposed framework regarding the sensor fault tolerance. In particular, a
longer set of sensors provides more information to the controller, and monitors more signals. Thus
provides the means of switching to different controllers (with subsets of sensors), if necessary,
subject to sensor fault conditions and controller banks ready from the off-line framework for
maintaining performance (or almost the ‘ideal’ performance). However, longer set of sensors could
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Figure 12. EMS system closed-loop response to deterministic track profile using id:5.

imply increased number of sensor fault probability. On the contrary, a single sensor provides
simple straight forward hardware redundancy (by using duplicates of the sensor in a voting
selection scheme) but limited costs (in the case of hardware redundancy). Clearly, the information
from the sensor optimisation framework can be used in order to apply FTC for multiple sensor
failures, minimizing the sensor redundancy and maintain optimum performance under relevant
sensor fault conditions as illustrated in Fig. 13 (Blanke et al. 2003). When one or more sensors
fail remedial actions are taken via controller reconfiguration and the performance is restored. At
this point it is possible to answer the question that arose from Section 2 using the simulation
results from the framework listed on Table 8. Aiming to cover multiple sensor faults using id:17,
i.e. the full sensor set, a bank of KBE can be used in order to restore performance following
multiple sensor faults. In fact, when sensor faults happen the performance of the suspension
is easily predicted from the responses of the remaining healthy sensors listed (assuming that
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Figure 13. The proposed FTC diagram for multiple sensor failures.

stability is maintained during controller reconfiguration). For example assume that id:17 is used
for the control of the suspension. If four sensors fail, the only remain healthy sensor will be
the airgap. With that fault scenario in mind it is possible to lead to catastrophic failure of
the suspension because there is a serious constraint violation on the airgap maximum allowed
deviation ((zt − z) = 10.69mm in row id:3). Under this scope the airgap sensor must never
remain alone. This problem can be overcome by perhaps using redundant sensors with the other
sensors in id:17. Nevertheless, different sensor fault conditions can lead to id:4, id:7 or id:14 that
result to serious airgap constraint violation and then the problem becomes complex since a lot
of redundant sensors are necessary in id:17 in order to cover all sensor fault scenarios.
The alternative approach is to avoid using the full sensor set. A second option is id:11 with
current, flux and airgap measurements. The problem with this sensor set is that only four sensor
fault conditions can be covered via controller reconfiguration (i.e id:1, id:2, id:6 and id:9) and the
remaining two i.e id:3 and id:7, result to critical constraint violation (airgap). Another drawback
is that the airgap sensor is generally expensive and vulnerable to external hazards. A different
option is id:12 with current, flux and velocity measurements. Again, with this sensor set the
performance can be covered using only three out of six fault conditions with id:1, id:2 and id:6.
A sensor set with four sensors or the full sensor set could be selected but in such case more sensor
fault probabilities are introduced with increasing number of sensors (i.e four sensors equals to
24 − 1 = 15 sensor fault conditions).
Starting with a different reason, assume that the worst sensor fault condition is to remain with
one sensor. Examining the single sensors it can be seen that id:3 and id:4 have serious constraint
violation (i.e. airgap). The performance with id:1 is acceptable with a longer settling time and
both id:2 and id:5 have acceptable performance. From this point of view, the id:13, that includes
id:1,id:2 and id:5, can be used for controlling the EMS. Note that id:13 and id:17 have very
similar performance, therefore if id:13 is used, the worst resulting performance comes when both
b and z̈ fail i.e. the response with id:1 which has long settling time and a small steady state error.
With the sensor set id:13, there are six possible sensor fault conditions that could happen. The
first three are individual faults on current, flux and acceleration sensors and the remaining three
are combined current/flux, current/acceleration and acceleration/flux sensor faults. Note that
here simultaneous faults are taken into account that is the worst case for two sensor faults. As
explained, in order to accommodate the 6 possible fault conditions via controller reconfiguration
a bank of 6 KBEs can be used. Under this scope, the best sensor set that can be used for control
and fault tolerance is Yopt=id:13.
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7.2.1 Sensor fault tolerance test

In order to test the sensor set with id:13 for sensor fault tolerance some sensor fault scenarios
will be considered. As Isermann (1997) indicates faults are distinguished in three main types:
Abrupt, Incipient and Indeterminant faults. The former type is used for the fault(s) scenario(s):
at time=1s the sensor(s) is(are) impaired giving wrong readings with random low frequency
characteristics. The fault profile for the accelerometer is illustrated in Fig. 14 for both determin-
istic and stochastic closed-loop responses. Similar fault profile is used for the other two sensors
and for the combination of faults the same profiles are used accordingly.
When faults occur the AFTC scheme should take remedial actions in order to maintain the
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Figure 14. Fault profiles for the accelerometer sensor (fault at 1 second).

performance of the EMS system. Particularly, for the accommodation of the sensor faults a bank
of KBEs is used where appropriate reconfiguration is done. For this purpose a Fault Detection
and Isolation mechanism is needed. The Fault Detection (FD) mechanism is used to detect the
faulty sensors and the isolation unit is used to remove them from the loop (i.e. using individual
switches). Model-based FD has been implemented in many practical applications (Isermann and
Ball 1997). A typical way to detect fault(s) is by monitoring the corresponding residual(s) of the
desired components (i.e. actuators, sensors). Various methods exist for the residual generation
including the dedicated observer method, the parity space, FD filter and parameter identification
approaches (Isermann 1997, Frank 1990). When KBE are used for control, a common approach
for the fault detection is to use the residual ryi

(where yi is the corresponding sensor).
The controller reconfiguration is achieved using a binary vector that is residual dependent and
indicates that state of each sensor in the set i.e. which and if a sensor is healthy or faulty (Blanke
et al. 2003). Faulty sensors are indicated by ’1’ and healthy by ’0’. For example, if i, b, z̈ results
to the binary vector [0 0 0] means that all measurements are healthy and the corresponding
KBE is used i.e Koi,b,z̈ . If the residual of the current sensor is larger than a predefined threshold
(ryi

> Vthyi
) then the binary vector indicates the fault in a binary sense ([1 0 0]) and reconfigura-

tion takes place by switching to the relevant KBE i.e. Kob,z̈ . The possible sensor fault conditions
with the resulting binary vector and the corresponding KBE are listed on Table 9.
The next step is to test the sensor fault tolerance under different fault conditions (stability is
tested and negligible switching time is assumed). By testing all 6 possible sensor fault conditions
the stability and performance for the stochastic inputs are both maintained. The same tests
are done for the deterministic input and found stability to be well recovered for all possible
fault scenarios. Under deterministic inputs the performance is, in most cases, maintained except
when faults happen simultaneously on the flux density and acceleration measurements at 1s.
The problem is that the airgap deflection becomes very large during the transition from con-
troller Koi,b,z̈ to Koi . However, extra hardware redundancy can be used for b and/or z̈ in order
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Table 9. Possible sensor fault conditions with Yopt=id:13.

Healthy Faulty Binary Kalman-Bucy EMS Performance
Sensor(s) Sensor(s) V ectora estimator Deterministic Stochastic

[i b z̈] Input Input
i, b, z̈ - [0 0 0] Koi,b,z̈
i, b z̈ [0 0 1] Koi,b X X

b, z̈ i [1 0 0] Kob,z̈ X X

i, z̈ b [0 1 0] Koi,z̈ X X

i b, z̈ [0 1 1] Koi x X

b i, z̈ [1 0 1] Kob X X

z̈ i, b [1 1 0] Koz̈ X X

a ‘0’- Healthy sensor, ‘1’- Faulty sensor

to avoid having the current sensor on its own (It is a scenario that really stretches the limits of
the reconfiguration scheme but for maximum system safety can be considered).
The error between the airgap with fault-free condition (zt − z) and the airgap under the sensor
fault condition (zt − z)f is depicted in Fig. 15 under current and flux density faults at 1s. The
stability is successfully maintained and the performance is well recovered as expected.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

time −sec

e (
z t
−
z
),
(z

t
−
z
) f
−
m

(a) Error between airgap with fault-free and faulty
current/flux measurements (e(zt−z),(zt−z)f

) during

deterministic response.

0 1 2 3 4 5 6 7
−8

−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−5

time −sec

e (
z t
−
z
),
(z

t
−
z
) f
−
m

(b) Error between airgap with fault-free and faulty
current/flux measurements (e(zt−z),(zt−z)f

) during

stochastic response.

Figure 15. Error between airgap with fault-free and faulty current/flux measurements.

8. Conclusion

The optimum sensor selection in control design is not a trivial task especially if the selection
is performed subject to desirable multiple control system properties. In this paper the authors
presented a systematic framework that simplifies sensor selection subject to system performance
and reliability requirements. Without loss of generality the proposed framework is successfully
implemented on a safety-critical system with non-trivial control requirements. Although time
consuming (due to the fact that the performance has to be optimised for all feasible sensor
sets) the framework is simple, flexible and can be used in a variety of practical engineering
applications. The authors are currently investigating extensions of the framework to include
robustness issues (as proposed by Dakev et al. (1997)), and of equipment cost encompassed in
the objective functions.
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Notes

(1) Throughout this paper, the signals taken from the closed-loop responses are with respect to
the operating point indicated by the zero line on the graphs. For example the zero line for
the airgap closed-loop response corresponds to the operating value of 15mm.
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