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Synaptically Generated Wave Propagation in Excitable Neural Media
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We study the propagation of solitary waves in a one-dimensional network of excitable integrate-and-
fire neurons with axo-dendritic synaptic coupling. We show that for small axonal delays there exists a
stable solitary wave, and derive a power scaling law for the velocity as a function of the coupling. In
the case of large axonal delays and fast synapses we establish that the solitary wave can destabilize via
a Hopf bifurcation in the firing times. [S0031-9007(99)08852-3]

PACS numbers: 87.10.+¢, 05.45.-a

Many cells in nature are excitable in the sense that @oupling evolving according to the equation
sufficiently strong stimulus will induce the membrane po-

. . oV(x,t) Vi(x,1)
tential of the cell to undergo a large excursion, known — = =]y - —— + I(
as an action potential, before coming back to rest. Ex- ot Tm
amples include cardiac cells, smooth muscle cells, seHereV (x,t) denotes the membrane potential of the neuron
cretory cells, and most neurons. Excitability is a usefulat x € R at time ¢, 7, is the membrane time constant,
property since it confers on a cell the ability to trans-7, is a constant external input, andx,¢) is the total
mit signals reliably in the presence of noise. An inter-synaptic input into the cell. Equation (1) is supplemented
esting feature of spatially extended excitable systems iby the reset conditiol (x, ¢*) = O wheneveW (x,t) = h,
that they can support the propagation of solitary wavesvhere # is the threshold for firing. We set = 1 and
in the form of traveling fronts and pulses and, in ther, = 1 for convenience. This fixes the units of time to
case of two-dimensional networks, more complex geobe of the order of 1-10 msec. In the absence of any
metrical structures such as spirals. (For a recent reviewsynaptic inputs, we can distinguish betweeroaaillatory
see Ref. [1] and references therein.) Most studies of exregime(I, > 1) in which each neuron independently fires
citable waves assume that the underlying mechanism fait regular intervals of periofly = In(Io/[I, — 1]), and an
wave propagation is diffusive in nature, as exemplified byexcitableregime(l, < 1) in which each neuron requires an
an action potential traveling along an axon. However, additional stimulus before it can fire. We restrict ourselves
number of recent experimental studies have revealed thgere to the excitable regime by settihg= 0. (Oscillatory
propagation of synaptically generated waves in slices ofF networks are studied in some detail elsewhere [9].) The
excitable neural tissue taken from the cortex [2,3], hip-synaptic current is taken to be of the form
pocampus [4,5], and thalamus [6]. Such waves have also o
been observed in detailed computational models of neural I(x,7) = g] W(x — xE(x', 1) dx’, (2)
tissue treated as a one-dimensional continuum [3-5,7]. —o

A simplified integrate-and-fire (IF) version of these mod-whereE(x, 1) is the input at time due to the firing of the
els has been analyzed by Ermentrout [8], who derived @resynaptic neuron at, g is a positive coupling parame-
self-consistency condition for the velocity of a solitary ter, andw (x) is taken to be positive, symmetric, and a
pulse and showed that there exists a fast solution branghonotonically decreasing function pf| with Jo W(x) X

and a slow solution branch. Moreover, the velocity of jx < «. Typical choices for such a weight function
a fast wave scales as a power of the coupling strengtiyre W (x) = 27 02)~/2¢*'/2¢" (Gaussian) andV (x) =
Although the Stablllty of these waves was not addressqua-)*lefh"/lf (exponentiaD_ For concreteness, we choose

numerical evidence suggested that the fast (slow) wave ige exponential function, although our basic results will not
stable (unstable). depend on the precise form 8f(x)

~In this Letter, we analyze the stability of splitary waves e define a solitary wave solution of Egs. (1) and (2)
in a spatially distributed network of synaptically coupled g pe one for which

excitable IF neurons. We prove that in the case of small

axonal delays fast solitary waves are stable, whereas slow E(x,1) = J(t = x/c), (3)
waves are unstable. Moreover, we establish that in thevherec is the velocity of the wave andl(¢) is the wave
case of large axonal delays and fast synapses, a fast wapsofile with J(r) = 0 for all # = 0. The physical inter-
can itself destabilize due to a Hopf bifurcation in the pretation of such a solution is that each neuron fires once
firing times. To formulate the basic problem, considerwith the neuron ak firing at time7(x) = x/c (up to an

a one-dimensional network of IF neurons with excitatoryarbitrary constant reflecting translation invariance). The
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function J(¢) represents the linear response of a neuron to Itis clear from the above analysis that both the existence
an incoming spike idealized as a Dirac delta-function (se@and stability of a solitary pulse depend crucially on the
below). In order to determine the velocity of a soli-  properties of the linear response functib). There are
tary pulse, we substitute Egs. (2) and (3) into Eq. (1), and number of possible contributions f¢r). These include
then integrate with respectt@ver the interval-0 < ¢t = the finite transmission time for the propagation of a spike
T(x) = x/c. This generates a self-consistency conditionalong an axon, the time-dependent opening and closing

for ¢ of the form of ionic conductance channels in the postsynaptic mem-
o x/c brane, and diffusion of the postsynaptic potential along
1= g] W(x)e /¢ ] e'J(t)dt dx . (4) the dendritic tree of a neuron. These various features can

0 0

be taken into account at the simplest level by assuming that
This is equivalent to the self-consistency condition derived/(¢) has the general form
in Ref. [8]. We can explicitly integrate over and ¢ in _ . B
Eq. (4) by Fourier expanding(s) and using the analyticity ) = Jolt = 7)0( = 7a), (11)
properties of/ (w) = [~ e"*®"J(¢) dt, namely, that/(w) ~ Wherer, is a typical discrete axonal dela@(z) = 1 if

is analytic in the lower-half complex plane since/(r) = ¢t = 0 and is zero otherwise, anth(7), ¢t = 0, is a uni-
0 forr = 0. After performing a contour integral we arrive modal function of time with/o(0) = 0. We denote the
at the useful result time at whichJy(z) reaches its maximum b¥max, Tmax >
0, and refer to the synaptic coupling as either fast or slow
= 8% TJ(—ic). (5) according to whethetrma, is small or large. A com-
2(1 + ¢) mon representation of the time-dependent variation in

The (local) asymptotic stability of a solitary wave can beMembrane conductance is the so-called alpha function, for
determined by considering perturbations of the firing timegVhich Jo(z) = a’te” " wherea is the inverse rise time
[10]. Suppose thaf(x) = x/c + u(x)with u(x) = ¢ (x) with the time to peakrmax = a~!. (This partlcula_r case
for x = 0 and ¢(x) a prescribed, bounded function on Was studied in Ref. [8].) The effects of dendritic pro-

(—=,0]. Asymptotic stability then corresponds to the con-C€SSes can be incorporated by takings) to be the
dition u(x) — 0 asx — o for arbitrary nonuniform initial  Green’s function of the associated cable equation. The

datag(x). Integrate Eq. (1) over the intervak, T(x)]  latter describes the diffusive effects of passive membranes
and expand the resulting nonlinear integral equation t@n the spread of synaptic currents along the dendritic tree
first order inu(x). Substitution of a solution of the form ©f a neuron [11]. Suppose, for simplicity, that each neu-

u(x) = e into the linearized integral equation then yields "N consistg of a soma or cell bod.y yvhere spike generation
the characteristic equation occurs, which is connected resistively to the end of a

" semi-infinite uniform dendritic cable. As a further sim-
] [e™™ — 1IW()f(x/c)dx = 0, (6) pIifi(_:f_;\tion, suppose that all synapses are Iocate_d at a fixed
0 position &y, 0 = £&; < o on the dendritic cable indepen-
where dently of the positions of the interacting neurons. Solving
the resulting cable equation then leads to the result

f(r) = fo ’ e () dt, 7) o 1/Ta

Jot) = G(&0,1) = @e-fﬁ/‘””, (12)

andJ’ denotes differentiation with respect to Asymp-

totic stability holds if all nonzero solutions of Eg. (6) where 7, is the membrane time constant of the cable

have a negative real part. Such solutions depend indirectlgnd D is the diffusivity. The Green’s functioiiz (¢, ¢)

on the coupling via the speed, which satisfies Eq. (5). determines the membrane potential response at the end

Equation (6) can be evaluated along identical lines to thef the cable due to an instantaneous injection of unit

analysis of Eq. (5). If we seh = a + ib and expand current at point at timez. It follows from Eq. (12) that

equation (6) into real and imaginary parts, then we obtainr,, = r,[—1 + /1 + 4£2/(D7,) /4.

the pair of equations We now investigate the existence and stability of solitary
Hi(a,b) = ReP(c + a + ib) — P(c) =0, (8) Pulsesasafunction of the time to peak, of the dendritic

response function (12) and the axonal delgy First,

H>(a,b) = —ImP(c + a + ib) =0, (9)  Fourier transform Egs. (11) and (12) to obtain
where ~ 1 A .
J(w) — e*\/l+lw §nefzw'r,1, (13)
~ VI + i
P(z) = ——J(~iz). (10) e
(1+2)

where we have set; = D = 1. Using Egs. (5) and
Note thatP(z) is real whenz is real, andP(z) — 0 as  (13), we plot solutions:(g) for various values of, and
|z] — oe. 7. in Fig. 1. It can be seen that there exists a critical
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FIG. 1. Variation of the speed of a traveling pulse (in
units of \/D/7;) as a function of the synaptic coupling
for different values of the dendritic coordinat (in units
of /D7) and axonal delay,. (a) & = 0.0; (b) & = 0.1;
(c) &0 = 0.5. For fixed 7, and &, there exists a fast solution
branchC, and a slow solution branof_.

coupling g = g,(&o, 7,) such that there are no solitary
wave solutions fog < g, and two solutions fog > g;.
Moreover, when&, = 0 (synapses are proximal to the
soma) andr, = 0, the velocity exhibits a power scaling
law given byc ~ g? for large ¢c. This contrasts with
the square-root law ~ /g found previously for synaptic
delays [8].

tion of x, it follows from Eq. (8) thatH;(a,b) < 0 for

all a > 0 andb = 0 whencTmax is sufficiently large. In
other words, the branc@'; is stable in the large-limit.

It can also be established thHi{«a,0) = 0 does not have
any positive definite solutions whan& C. so that the
upper branch is stable with respect to static bifurcations.
The proof is completed by establishing conditions for the
occurrence of a Hopf instability on the upper branch. This
requires searching for solutioms= 0,5 # 0 of Egs. (8)
and (9) [12]. We shall carry this out explicitly fofy(r)
given by Eq. (12) andn.x — &o. Similar results hold for
an alpha-function response with., — a L.

Let ¢, denote the largest velocity for which a solution
a=0,b # 0 of Egs. (8) and (9) exists. Also se{ =
c+(gy), which is the critical velocity at which the two
solution branchef’~ meet. In Fig. 2, we plot the critical
velocitiesc,(&y) andcy(&p) as a function of the dendritic
coordinatefy and various delays,. For a given delay,,

c € Ctifc>cy(éy)ande € C_ if ¢ < ¢y(&p). Itcan

be seen from Fig. 2 that for, > 7, = 0.5 there exists

a critical point&, such thatc,(£9) > ¢, (&) for & > &,
and ¢, (&y) < cp(&p) for & < &,. The crossover points
in the particular cases, = 0.75 andr, = 1.0 are labeled
by A and B, respectively. Suppose that we now reduce
¢ or, equivalentlyg, along the branchC. for fixed &
andr, > 0. For &, < &, (fast synapses), we find that
a Hopf bifurcation occurs at a critical coupling, such

The stability of the fast and slow solution branchesthatc(g,) = c,(£0) and solitary waves are unstable for

displayed in Fig. 1 can be determined from the followingall ¢ < ¢;(&o)-

theorem:

Theorem 1—Let C+ andC_ denote, respectively, the
fast and slow solution branches= c.(g), g = g,, of
the self-consistency condition (5) for the velocity of a
solitary pulse, assuming a unimodal response function
satisfying Eq. (11). Here, is the critical coupling for the

On the other hand, i&, > £, (slow
synapses) then the bran€h remains stable until it merges
with the unstable lower brandf_ atc = c,(&y).

Our analysis of solitary pulses is easily extended to
two-dimensional networks. Consider a plane wave propa-
gating in the directiom with speedc. That is, the neuron

existence of a solitary wave. Denote the time to peak of

Jo(r) by Tmax. The following stability results then hold:
(i) The branchC_ is unstable for allry.c andr,. (ii) The
branchC is stable for allrn,y in the case of zero axonal
delays,r, = 0. (iii) In the case of large axonal delays and
fast synapses (smath,ay), there exists a Hopf bifurcation
point g, such thatc.(g) is stable (unstable) fog > g,
(85 = & < gn).

We shall sketch the proof of this theorem. First, differ-
entiation of Eq. (8) with respect @ and Eq. (5) with re-
spect toc shows thatg?dH(a,0)/dal,—o = —c*dg/dc.
Hence,dH(a,0)/dal,—o > 0 whendg/dc < 0, that is,
whenc € C_. Since lim—«Hi(a,0) = —P(c) <0, it
follows thatH (a, 0) must cross the positive axis at least
once where € C_. This implies that (a,0) = 0 has at
least one solution for > 0 and, hence, that the branch
C_ is unstable. Second, since the delay kethgl) of
Eq. (11) is unimodal with a maximum &t,qy, it follows
that the functionf(7) of Eq. (6) is also unimodal with a
maximum atr = tmax Such thatf(r) > 0 for 0 < 7 <
Tmax SiNce W(x) is a monotonically decreasing func-

ol e

0.2t

0.5
€0

FIG. 2. Plot of critical velocitiesc,(&;) (solid curves) and
cp(&o) (dashed curves) as a function of the dendritic coordinate
&y and various axonal delays,. (&) 7, = 0.5; (b) 7, = 0.75;

(c) 7, = 1.0. The critical velocityc,(&,) determines the point

at which the fast and slow wave branchés of Fig. 1
bifurcate. For fixedr, and &, the fast branchC, undergoes

a Hopf bifurcation at the critical velocity;, (&) if and only if
cn(éo) > c5(&p). Same units as Fig. 1.
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at positionr = (x,y) fires once at tim&'(r) = n - r/c.  the interpretation of (r) as an impulse response function.
The speed: satisfies the self-consistency condition [seeSecond, their stability analysis is mainly based on studying

Eq. (4)] changes in local field potentials, which is not sufficient to
guarantee asymptotic stability with respect to more general

| — f W(rDe "< @ - l')fn.r/cel]([) dt dPr perturbations of the firing times as considered here. In
g R 0 ' particular, it does not take into account the full spectrum

(14) of the linearized firing time map, which is crucial in
establishing the occurrence of Hopf instabilities (see also

The stability of such a wave can be analyzed by considRef. [9]). The numerical results presented in Ref. [14]
ering perturbations of the firing times as in the deriva-do, however, reveal a rich repertoire of geometrical waves

tion of Eq. (6). Suppose that = (1,0) and takeT'(r) =  such as spirals and target patterns, which certainly warrant
x/c + u(r). Linearizing the resulting integral equation further study. (Spiral waves have also been generated in
for the perturbationsu(r) and taking u(r) = e**®T  IF networks [15].)

p = (p1, p2), we obtain a characteristic equation far

[R W(lel) (e — 1)f(x/c)®(x) d’r.  (15)
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