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Abstract—Since RFID tags are ubiquitous and at times even oblivious to the

human user, all modern RFID protocols are designed to resist tracking so that the

location privacy of the human RFID user is not violated. Another design criterion

for RFIDs is the low computational effort required for tags, in view that most tags

are passive devices that derive power from an RFID reader’s signals. Along this

vein, a class of ultralightweight RFID authentication protocols has been designed,

which uses only the most basic bitwise and arithmetic operations like exclusive-

OR, OR, addition, rotation, and so forth. In this paper, we analyze the security of

the SASI protocol, a recently proposed ultralightweight RFID protocol with better

claimed security than earlier protocols. We show that SASI does not achieve

resistance to tracking, which is one of its design objectives.

Index Terms—Security of cryptographic protocols, pervasive and embedded

computing, RFID, authentication, ultralightweight, cryptanalysis, traceability, SASI.
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1 INTRODUCTION

RFIDS have found widespread use in many commercial as well as
national security applications, ranging from e-passports [10], [4],
[9], [12], [19], contactless credit cards [8] to supply chain manage-
ment [1], [5], [17], [18], [31].

Since RFID tags are mobile and very tiny, attached to diverse

items, and often oblivious to the human user, privacy is a major

concern in the design and use of RFIDs. Indeed, these tags are

commonly embedded in personal devices carried around by an

individual wherever he is, e.g., credit cards, e-passports, personal

digital assistants (PDAs), Bluetooth devices, clothes that s/he

wears, tires on his/her car, and so forth. So if an RFID tag can be

tracked, it means the human user’s whereabouts can be tracked. It

can consequently be argued that one of the fundamental human

rights of an individual is that his location or movements should not

be trackable, especially if it is without his consent or worse without

his knowledge [34]. Thus, designers of RFID protocols want to

ensure that RFID tags cannot be tracked, so that location privacy of

the human RFID user can be safeguarded. This issue of untrace-

ability has been treated formally in security models, e.g., by

Avoine [2], Juels and Weis [11], Le et al. [13], and Vaudenay [32],

[33]. Indeed, being able to guarantee untraceability is the first step

in achieving privacy even in the sense of anonymity. This is

because if an adversary can break the anonymity of RFID

protocols, he can then trivially break untraceability, while the

converse is not necessarily true. Thus if an RFID protocol is proven

to achieve untraceability, then by implication it also achieves

anonymity. Untraceability is hence a strong notion of privacy that

subsumes anonymity.
Another issue related to the design of RFIDs is the computa-

tional effort required at the tag side. This is because most common

tags are passive devices in the sense that they derive electrical

power from the signals sent by a reader. Thus, most tags cannot be

expected to perform computationally intensive operations.

Peris-Lopez et al. [24], [25], [26] initiated the design of the so-
called ultralightweight RFID protocols, which involve only simple
bitwise logical or arithmetic operations like exclusive-OR (XOR),
OR, addition, subtraction, bit rotation, and so forth. Subsequent
work appeared in [14], [15], [7], and [6].

In particular, Chien [6] presented the SASI protocol, which is
designed to offer better security than previous protocols of Peris-
Lopez et al. [24], [25], [26]. SASI is claimed to achieve a list of security
properties, including resistance to tracking, i.e., untraceability.

In this paper, we show that SASI does not achieve its design
objective of untraceability. Our attack exploits the relationship
between the bitwise operations used within SASI. We then draw
some lessons to be learned from this.

2 PRELIMINARIES

2.1 Notations

For better clarity, Table 1 summarizes the symbols and indexing
terms used in this paper.

2.2 The Juels-Weis Untraceability Model

Rather than reproduce the detailed definitions of the untraceability
model proposed by Juels and Weis [11], we briefly describe here, in
a style commonly used to define security protocol models [3], the
basic ideas of the model [21], [22] that will be sufficient to present
our attack later.

A protocol party P is a T 2 Tags or R 2 Readers interacting in

protocol sessions. Adversary A controls the communications

between all protocol parties by interacting either passively or

actively with them as defined by the protocol. A’s interactions are

formally captured by its ability to issue the following queries:

. ExecuteðR; T ; iÞ query. This models passive attacks,
where adversary A by eavesdropping gets read access
to an honest execution of the protocol session i between
R and T .

. SendðP1;P2; i;mÞ query. This models active attacks by
allowing the adversary A to impersonate some party P1

(P1 ¼ R respectively P1 ¼ T ) in some protocol session i
and send a message m of its choice to an instance of some
other party P2 (P2 ¼ T respectively P2 ¼ R). Note that this
query is a generalization of the TagInit and ReaderInit
queries as well as challenge and response messages
defined in the Juels-Weis model.

. CorruptðT ;K0Þ query. This query allows the adversary A
to learn the stored secret K of the tag T 2 Tags, and
which further sets the stored secret to K0, and is the
equivalent of the SetKey query of the Juels-Weis model.
This kind of attack is possible in view that RFID tags are
typically not designed to be tamper-resistant, thus once
tags are deployed it is possible for an adversary to tamper
with the tag to read from or write to its nonvolatile
memory in which stored secrets are kept. This attack is an
invasive one that is much stronger than active attacks
captured by the Send query; because Corrupt queries
mean that the adversary has physical access to the tag,
compared to Send queries where the adversary has access
only to the communication channel between the reader
and tag. Indeed, in the event that Corrupt queries are
possible, i.e., the adversary can read and tamper with the
tag’s nonvolatile memory used to store secrets, the most
that can still be offered is that security (respectively
privacy) of previously completed sessions are not com-
promised. This notion is known as forward security
(respectively forward privacy), and it captures the extent
of the damage caused by the compromise of the tag’s
stored secret.
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. Testði; T 0; T 1Þ query. This query does not correspond to
any of A’s abilities but rather is included so that we
can define the indistinguishability-based [20], [30]
notion of untraceability (UNT). Upon the issuance of a
Test query for session i, then depending on a randomly
chosen bit b 2 f0; 1g, A is given IDb from the set
fID0; ID1g corresponding to tags fT 0; T 1g. Informally,
A succeeds if it can guess the bit b.

Now that the adversary’s abilities are clear, then untraceability

(UNT) is defined using the game G played between an adversary A
and a collection of reader and tag instances. A runs the game G
whose setting is given as follows (see Fig. 1):

Phase 1 (Learning). A can send any Execute, Send, and

Corrupt queries. This phase models the adversary A interacting

with reader and tag instances in protocol sessions, and its ability

to mount passive attacks to eavesdrop on protocol messages, or

active attacks to modify, insert, or delete messages, or even to

tamper with the tag’s nonvolatile memory.
Phase 2 (Challenge).

1. Sometime during G, A chooses two fresh tag identifiers

ID0, ID1 (corresponding to tags T 0, T 1) to be tested and

sends a Test query corresponding to this. Freshness means

that the tags have not been issued any Corrupt query.

Depending on a randomly chosen bit b 2 f0; 1g, A is given

a challenger identifier IDb from the set fID0; ID1g.

2. A continues making any Execute, Send, and Corrupt

queries, subjected to the restriction that the tags T 0, T 1 are

not issued any Corrupt query.

Phase 3 (Guessing). Eventually, A terminates the game and

outputs a bit ~b as its guess of the value of b.

The definition of this game is similar in style to the indistinguish-

ability-based game definitions for security protocols, e.g., [3];

indeed, an RFID authentication protocol is a security protocol.

This UNT game models the untraceability notion because if A
cannot even be able to distinguish between any two tags, i.e., it

fails to win the game, then clearly it cannot track any tag since it

cannot tell if tags are the same ones or not. This models the fact

that the adversary cannot get even one bit of privacy information

from the protocol.
The success of A in winning G therefore translates to its success

of breaking untraceability and is quantified in terms of A’s

advantage in distinguishing whether A received ID0 or ID1, i.e., it

correctly guesses b, compared to randomly flipping a coin for the

value of b. This is denoted by AdvUNT
A ðkÞ, where k is the security

parameter, e.g., bit length of some secret unknown to the

adversary.
Then, we have

AdvUNT
A ðkÞ ¼ Pr½A wins� � Pr½random coin flip�j j ð1Þ

¼ Pr½~b ¼ b� � 1

2

����

����; ð2Þ

where Pr½~b ¼ b� for a typical adversary is a function of k. An RFID

protocol achieves untraceability (UNT) if AdvUNT
A ðkÞ < "ðkÞ for

some negligible function "ð�Þ. As an illustrative example, consider

if the probability for the adversary to win the game, i.e., Pr½~b ¼ b�,
is 1

2 . Then, AdvUNT
A ðkÞ is zero, meaning the adversary has zero

advantage in winning the game since he could just as well have

flipped a coin to make the guess, which would have given him the

same probability of winning. Thus, the protocol did not leak even

one bit of information to the adversary.
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3 THE SASI PROTOCOL

SASI [6] is a very recent ultralightweight RFID protocol, which is

designed to be more secure than earlier such kinds of protocols

[24], [25],[26].
Since the communication between the reader and the back-end

server is assumed to be secure, SASI considers the reader and

server as one entity. Each tag T j has a 96-bit static identification

IDj and for a particular session i preshares with the reader a

96-bit pseudonym IDSi and two secret keys K1i, K2i each of

96 bits. Every tag keeps two entries, each of the form

ðIDSi;K1i; K2iÞ, where one corresponds to old values used in

the most recent completed protocol session, while the other

corresponds to the stored values to be used in the next protocol

session.
A tag is not expected to perform any computations except for

basic bitwise logical or arithmetic operations like XOR ð�Þ, OR ð_Þ,
addition ðþÞ, subtraction ð�Þ, and bit rotation ð<<Þ.

The SASI protocol consists of the tag identification phase,

mutual authentication phase, and updating phase (see Fig. 2 for

more details).
Tag Identification:

1. The reader R sends a hello message to the tag T .
2. T sets the pseudonym IDS to the value of IDSnext from its

record. It also sets K1 and K2 to, respectively, the values of
K1next and K2next. It then sends IDS to R.

3. R checks if there exists an entry IDSi in its record that
equals the received IDS. If not, it resends the hello

message to T and waits for an IDS message.
4. Upon receiving a second hello message, T now sets the

pseudonym IDS to the value of IDSold from its record, and
correspondingly K1 and K2 are set equal to K1old and
K2old, respectively.

5. OnceR finds an entry IDSi in its record that is equal to the
received IDS, it proceeds to the next steps with IDSi and
corresponding K1i, K2i from the record entry.

Mutual Authentication:

6. R randomly generates two numbers n1, n2, and proceeds
to compute the values A, B, K̂1, K̂2, C as per Fig. 2,
involving XOR, OR, addition, and bit rotation.

7. The concatenation of AkBkC is then sent to T .
8. T computes the numbers n1, n2 and values K̂1, K̂2 from

the received AkBkC. It then computes Ĉ from the values of
K1, K2, K̂1, K̂2 via the XOR and addition operations, as
per Fig. 2.

9. If the computed Ĉ is equal to the received C, then T
computes D via XOR, addition, and OR operations, as per
Fig. 2.

10. This D is sent to R, and T now proceeds to the Updating
phase.

11. R computes D̂ as per Fig. 2 and checks if it equals the
received D. If so, R proceeds to the Updating phase.

Updating:

12. R updates its record entry for ðIDSi;K1i; K2iÞ, while T
updates its record entry for ðIDSold;K1old; K2oldÞ;
ðIDSnext;K1next; K2nextÞ as per Fig. 2.

At the completion of the protocol, both the reader and the tag have

successfully authenticated each other and, furthermore, have

updated their stored record entries in preparation for the next

protocol session. Since these updates are functions of the newly

computed and exchanged K̂1, K̂2, and they have verified the

received C, D against their own computed Ĉ, D̂, which are

functions of K̂1, K̂2, then both the reader and tag are also assured

that they have the same K̂1, K̂2 values and are in synchrony, thus

preventing desynchronization attacks.
SASI is claimed to provide a list of security properties,

including mutual authentication, tag anonymity, untraceability,
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and forward security. Its untraceability is claimed due to the
frequent update of the pseudonym IDS dependent on random
numbers, so the argument is that any two pseudonyms should be
random and not linkable with each other.

4 BREAKING THE TRACKING RESISTANCE OF SASI

One of the goals of SASI’s design was to achieve resistance to
tracking, i.e., untraceability, and it is claimed to offer more security
properties than earlier ultralightweight RFID protocols like LMAP,
M2AP, and EMAP [24], [25], [26].

We show how to track tags in the SASI protocol and thus break
untraceability. In particular, consider an adversary A performing
the following steps:

1. Learning: Issue an Execute query to eavesdrop on a
protocol session between the reader and a tag T 0, to obtain
C and D.

2. Challenge: Some time later, the adversary A chooses two
fresh tags T 0, T 1 with identifiers ID0, ID1, where ID0 �
0 mod 2 and ID1 � 1 mod 2. A then sends a Test query for
these. Adversary A is then given a test challenge identifier
IDb 2 fID0; ID1g. Note that by construction, b ¼ IDbLSB.

3. Guessing: The adversary A outputs a guess
~b ¼ CLSB �DLSB.

Next, we show why AdvUNT
A ðkÞ is nonnegligible:

AdvUNT
A ðkÞ ¼ Pr½A wins� � 1

2

����

���� ð3Þ

¼ Pr½~b ¼ b� � 1

2

����

���� ð4Þ

¼ Pr½CLSB �DLSB ¼ b� �
1

2

����

���� ð5Þ

¼ Pr½CLSB �DLSB ¼ IDbLSB� �
1

2

����

���� ð6Þ

¼ 3

4
� 1

2

����

���� ð7Þ

¼ 1

4
> "ðkÞ; ð8Þ

where the security parameter k is essentially the bit length of the
unknown secret IDj, compromise of which would allow the
adversary to win the game.

Equations (3) to (6) are straightforward from the definition
of the untraceability game and from the description of the
adversary above. To see the reasoning behind (7), recall the
values of C and D:

C ¼ ðK1� K̂2Þ þ ðK̂1�K2Þ; ð9Þ

D ¼ ðK̂2þ IDiÞ � ðK1�K2Þ _ K̂1
� �

: ð10Þ

If we only concentrate on the LSBs of C and D, we obtain

CLSB ¼ K1LSB � K̂2LSB � K̂1LSB �K2LSB; ð11Þ

DLSB ¼ K̂2LSB � IDiLSB � ðK1LSB �K2LSBÞ _ K̂1LSB

� �
: ð12Þ

Equations (11) and (12) stem from the fact that addition ðþÞ equals
XOR ð�Þ for the LSB.

Now, by inspection of the truth table for XOR ð�Þ and OR ð_Þ,
we see that they are equal for a fraction 3

4 of the time. Thus, we

can rewrite (12) as a probabilistic equation depending on a

probability p ¼ 3
4 :

DLSB ¼
p
K̂2LSB � IDiLSB �K1LSB �K2LSB � K̂1LSB: ð13Þ

Combining (11) and (13), we have

CLSB �DLSB ¼
p
IDbLSB;

and (7) follows.
Since AdvUNT

A ðkÞ ¼ 1
4 is nonnegligible, hence SASI does not

achieve untraceability.

5 CONCLUDING REMARKS AND DISCUSSION

We have shown that the SASI protocol cannot achieve untrace-

ability even under a passive attack. The weakness we exploit is

that the public C and D messages are each a function of the

same unknown secrets K1, K2, K̂1, K̂2, and the static identifier

ID is only contained in D; thus by further exploiting the bit

interaction between the operators �, þ, and _ and canceling out

the secrets K1, K2, K̂1, K̂2, we showed that C and D in

combination leaks at least one bit of information about the static

identifier ID of a tag.
The claim in [6] that SASI achieves untraceability is grounded

on the fact that the pseudonym IDS is updated at every session as

a function of random numbers, and hence any two pseudonyms

are expected to look random and thus be unlinkable. Yet, our

attack does not exploit nonrandomness in the pseudonyms at all

and instead shows that the LSB of C and D are less randomized

compared to other bits, and what is worse for SASI is that with

nonnegligible probability their XOR difference is independent of

the randomly generated K̂1 and K̂2 and instead is only

dependent on the static identification ID. To put this into

perspective: rather than linking two pseudonyms IDS to track a

tag, our attack instead directly tracks a tag by obtaining

information about its static identification ID. So, the flaw in the

untraceability argument of SASI in [6] was assuming a particular

way (that of linking two pseudonyms) for which an adversary

mounts a tracking attack.
Our attack is a passive one. Passive attacks are feasible in

practice since they only require eavesdropping, which is a typical

threat in RFID setting where the physical wireless communication

channel is open to parties within transmission range. With the

ubiquity of RFID tags, whose existence is often oblivious to the

human user or whose embedded presence around the human is

often beyond his/her control, the location privacy of the user

therefore comes under threat when s/he goes about daily

activities, coming into contact with other parties that share the

common physical wireless space, and that could potentially launch

passive attacks without being noticed.
Interestingly, the earlier ultralightweight RFID protocols

LMAP, M2AP, and EMAP by Peris-Lopez et al. [24], [25], [26] do

not exhibit the abovementioned properties that we exploited for

our attack on SASI. The main reason is because any combination of

their messages A, B, C, D, ðEÞ does not allow to cancel out all of

the unknown secrets K1, K2, ðK3Þ, ðK4Þ or random numbers n1,

n2; and so it is not possible to leak information about the static

identifier ID in this way.
This paper is a further case to support [28], [29], [27] that newer

protocol versions designed with better security should not

necessarily be taken for granted to be more secure than older
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versions, even against attacks considered by both old and new
designs, e.g., in this case, untraceability.

ACKNOWLEDGMENTS

Part of this work was done while the author was with the
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