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Strong Wiggler Field Assisted Amplification in a
Second-Harmonic Waveguide Free Electron Laser

Xiehe Zhong, Student Member, IEEE,and Michael G. Kong, Senior Member, IEEE

Abstract—As a technique to reduce the size of compact
waveguide free electron lasers (FELs) operated from microwave
to the far infrared, a longitudinal interaction mechanism was
recently proposed to operate waveguide FELs at the second
harmonic. With a gain formulation based on Madey’s theorem
in the limit of small wiggler field, it was shown analytically that
second harmonic waveguide FELs can reduce significantly the
electron energy required for radiation at a given frequency.
As it is advantageous to operate second harmonic waveguide
FELs with strong wiggler field, Madey’s theorem is used here to
reformulate their interaction gain for strong wiggler fields up to
2 2

0

2

0
= 1 with the axial electron velocity Taylor expanded

to the eighth order of the wiggler field. Given that Madey’s
theorem has not been established for second harmonic waveguide
FELs, their interaction gain is also formulated independently by
solving their pendulum equation without recourse to Madey’s
theorem. These two gain formulas are not analytically identical,
but numerically they lead to an excellent agreement over a wide
range of system parameters, thus confirming the applicability
of Madey’s theorem. The interaction analyses presented form a
thorough and detailed description of second harmonic waveguide
FELs in the small-signal regime and for wiggler field that is both
practical and beneficial.

Index Terms—Free electron lasers, harmonic generation,
masers.

I. INTRODUCTION

COMPACT waveguide free electron lasers (FELs) driven by
low current electron beams have recently attracted much

interest, largely because they offer a cost-effective means to de-
liver coherent radiation in the spectrum from microwave to the
far infrared [1]–[9]. Aimed as a laboratory instrument rather
than a national user facility [1], their output power is modest,
up to a few kilowatts, but nevertheless adequate for many ap-
plications in basic research, medicine, and industry. Adding to
the cost saving already achieved from employing low current
electron beams, further system simplification and size reduc-
tion are now sought through improvement of their output power
at a given beam current. This approach has led to the concep-
tion of many gain and efficiency enhancement techniques such
as the employment of prebunched electron beams [6], [7] and
the waveguide optical klystron arrangement [10].

Parallel to the efforts to improve the output power at a given
electron beam current, an equally important issue in the devel-
opment of the compact waveguide FEL technology is to reduce
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the minimum electron energy needed to generate strong radia-
tion at a given frequency [4], [11]–[13]. FEL operations at re-
duced electron energy not only permit the use of smaller and less
expensive power supplies, but also increase the interaction gain
indirectly through its inverse proportion to [3], [4]. Re-
cently, an electron energy reduction technique was considered
by exploiting the electron interaction with the longitudinal elec-
tric field component of TM modes in a cylindrical waveguide
[14]. In such a beam-wave interaction configuration, electrons
acquire first in the wiggler field a rapid longitudinal velocity
oscillation twice as fast as their transverse velocity oscillation.
Hence, their subsequent interaction with thecomponent of
TM modes may be considered as in an effective wiggler having a
period half as much as that of the actual wiggler. For this reason,
these free electron lasers are referred to as second harmonic
waveguide FELs [14]. It was shown analytically that the elec-
tron energy required for radiation at a given frequency may be
reduced significantly in second harmonic waveguide FELs from
that needed in comparable conventional waveguide FELs where
the transverse electron velocity couples with the transverse elec-
tric field component of TE modes in a rectangular waveguide
[14], [15]. Second harmonic waveguide FELs are also different
from conventional waveguide FELs in that they have a nonreso-
nant electron velocity component that couples with the resonant
velocity component to contribute significantly to the interaction
gain [15]. This unique feature may be exploited to enhance the
beam-wave interaction and to control the radiation spectrum.

Analytical treatments of second harmonic waveguide FELs
have so far been based on the employment of Madey’s the-
orem in the limit of small wiggler field [14], [15]. Compared to
conventional waveguide FELs however, second harmonic wave-
guide FELs have a much stronger dependence on the wiggler
field with their small-signal gain proportional to [15]. It
is, therefore, preferable to operate second harmonic waveguide
FELs with a strong wiggler field in order to enhance the inter-
action gain at a given beam current. As a result, our previous
gain formulation developed in the limit of small wiggler field
needs to be reassessed and, if necessary, extended. It is con-
ceivable that in a sufficiently large wiggler field the oscilla-
tory component of the axial electron velocity is no longer in
a linear proportion to and in general the electron trajectory
becomes a significantly nonlinear function of the wiggler field.
This complexity in electron trajectory needs to be taken into ac-
count in any gain formulation of second harmonic waveguide
FELs having a strong wiggler. In Section II, the nonlinear de-
pendence of electron trajectory upon the wiggler field is con-
sidered with a Taylor expansion of the axial electron velocity to
the eighth order of the wiggler field. With the electron velocity
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formulated, Madey’s theorem is employed to reformulate the
small-signal gain of second harmonic waveguide FELs. Com-
parison with the interaction gain obtained previously in the limit
of small wiggler field [15] will be presented and relevant impli-
cations discussed.

It is important to note that the applicability of Madey’s the-
orem to second harmonic waveguide FELs has not been estab-
lished so far, although it is known to be applicable to conven-
tional waveguide FELs [3], [10], [16]. Compared to their con-
ventional counterparts, second harmonic waveguide FELs have
a much more complex beam-wave interaction having the addi-
tional contribution of a nonresonant electron velocity compo-
nent and its strong coupling with the usual resonant velocity
component [15]. Consequently, it remains unclear whether these
significantly new features of the beam-wave interaction make
second harmonic waveguide FELs fundamentally different from
conventional waveguide FELs, and thus compromise the va-
lidity of Madey’s theorem. To address this issue, we derive in
Section III a pendulum equation for second harmonic wave-
guide FELs and then employ perturbation theory to formulate
the small-signal interaction gain without recourse to Madey’s
theorem. It will be shown that the gain formulation obtained
from Madey’s theorem and perturbation theory are not analyti-
cally identical though very similar. To illustrate their difference
and similarities, numerical comparisons will be presented.

The two gain formulations developed with and without
Madey’s theorem provide a thorough assessment of the
beam-wave interaction in second harmonic waveguide FELs
in the small-signal regime and for a parametric range of
wiggler field that is both practical and beneficial. Numerical
examples presented and conclusions drawn are used to aid an
enhanced insight into the beam-wave interaction mechanism in
second harmonic waveguide FELs. These are summarized in
Section IV.

II. GAIN FORMULATION USING MADEY’S THEOREM

Different from conventional waveguide FELs, second har-
monic waveguide FELs generate strong radiation in TM modes
in a cylindrical waveguide. Wiggler magnets used for these new
FELs are usually planar and in the one-dimensional (1-D) limit
their magnetic field may be approximated with the following
on-axis expression:

(1)

where 2 is the spatial wavenumber of the wiggler
magnet and the wiggler period. For an electron beam fed
along the axis of the wiggler magnet, a transverse electron ve-
locity is induced. It can be shown easily as

(2)

where is the dimensionless wiggler strength
and is the relativistic factor. In the small-signal regime, the in-
fluence of the waveguide fields on the electron velocity is much

smaller than the wiggler field and so the longitudinal electron
velocity, , is related to as follows:

where is the initial relativistic factor of the electron beam.
Alternatively

(3)

where 1 1 and 2. As the
axial electron velocity is strongly dependent on the magnitude
of the wiggler field, an approximation to the first order of ,
as employed previously, is no longer accurate at strong wiggler
field. To this end, (3) is Taylor expanded to include higher order
terms

(4)

where . To determine how many terms to keep in
the above equation, the maximum possible value ofneeds to
be estimated for second-harmonic waveguide FELs, and this in
turn relates directly to the choice of the wiggler field.

It should be noted that while a large wiggler field is desirable
for a strong beam-wave interaction at a given beam current it
also reduces the axial electron velocity [see (3)] and, hence, un-
dermines the maximum electron energy reduction achievable in
second-harmonic waveguide FELs. Therefore, it is not always
beneficial to increase the wiggler field as much as possible and,
in general, the choice of the wiggler field is a compromise. Wig-
gler magnets used in microwave waveguide FELs typically have
a period of a few centimeters and a peak on-axis field up to a few
thousands Gausses [1]–[12]. For theX-band waveguide FEL
considered previously [15], if we employ an electron beam of 95
kV and a strong wiggler of 0.1431 and 3.8 cm,
theX-band FEL system generates strong radiation between 8–12
GHz in a cylindrical waveguide of a diameter 2 3.175 cm. In
this case, it can be shown that 0.4439 and 0.4646. If
the magnetic field of the wiggler is increased further, the elec-
tron energy needs to be increased accordingly to compensate
for the reduction in the effective axial electron velocity (see (2))
and to maintain strong FEL radiation over the same frequency
range. Thus, 0.4646 0.5 is perhaps close to what can
be reasonably expected as its maximum value for microwave
waveguide FELs. For second-harmonic waveguide FELs oper-
ated at higher frequencies, shorter wiggler period or/and higher
electron energy are required. These requirements imply, respec-
tively, smaller or/and larger and, as such, the max-
imum possible value of is likely to reduce to below 0.5. If the
system parameters of the aboveX-band FEL system are consid-
ered as typical for microwave waveguide FELs, it is reasonable
to assume, albeit somewhat arbitrarily, a general ceiling limit
of 0.5 for second-harmonic waveguide FELs operated at
wavelengths from microwave to the far infrared. Substituting the
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ceiling value of 5 into (4), we find that relevant coefficients
are respectively 25 , 8 3.13 , 16 0.78
and 5 128 0.24 . For higher-order terms (those terms
with 4), their coefficients are significantly smaller than
0.24%, and so the axial electron velocity is sufficiently accurate
when expressed to the fourth order of(the eighth order of the
wiggler field). For our remaining analysis of second-harmonic
waveguide FELs, we will use the axial electron velocity in (4)
to the eighth order of the wiggler field (the fourth order of).

With the wiggler field in the direction, electrons wiggle in
the direction and so their off-axis motion subjects them to
off-axis magnetic fields. Therefore, the wiggler field needs to be
sufficiently uniform in the direction to ensure all electrons ex-
periencing approximately the same magnetic field. This is also
important to ensure the accuracy of (4). To this end, the width
of a plannar wiggler in the direction needs to be sufficiently
large. To illustrate this, we consider the plane-focusing wiggler
structure used for sheet electron beams [17]. For these wiggler
magnets, the -directed wiggler field follows varia-
tion and may be approximated by 2 with being
the radius of the waveguide [17]. To keep the off-axis variation
of the wiggler field within 5% at the largest electron excursion
from the axis, , 6.351 needs to be satisfied. At

0.5, our numerical simulation suggests that 0.8
and this requires 21 cm. This can be much reduced by im-
proved wiggler focusing as suggested in [18]. In addition, the re-
quirement for (4) to be accurate is less stringent than that for the
wiggler field itself as

. In the case of theX-band example considered above,
it can be shown that when 0.5.
This would further lower the minimum wiggler width needed
for electrons to experience sufficiently uniform wiggler field.

It is of interest to note that in (4)

each of which may be considered to consist of a fundamental
term, 2 and its harmonic terms such as 4 ,

6 and 8 . Thus (4) becomes

where is the average of and . Har-
monic terms in the above equation, 2 2, 3, 4 ,
represent harmonic contents in the axial electron velocity, at the
fourth, sixth, and eighth harmonic of the wiggler magnet’s spa-
tial periodicity. Given that second-harmonic waveguide FELs
are normally designed to couple with the 2 term of the
electron velocity and that , the contribution
of harmonic terms to the beam-wave interaction is likely to be
much smaller than that of the nominal 2 term. Thus, the
previous equation reduces to

(5)

with and given by

(6a)

(6b)

Equation (5) is identical in format to that used previously [15],
although and are formulated more accurately in (6) than
in our previous treatment [12].

With the stable electron trajectory described in (2) and (5), the
beam-wave interaction and the consequent amplification of the
waveguide fields can be derived from the energy conservation
equation

where . If we consider only the
lowest TM mode in a cylindrical waveguide, the TMmode,
the previous equation is reduced to [15]

(7)

Similar to the usual treatment of waveguide free electron lasers,
the third term may be ignored in comparison with the second
term. On the other hand, the first term is the new nonresonant
term and it needs to be included [15]. Thus, (7) becomes

(8)

where . It should be noted that on the
right-hand side of the above equation is related tovia the
axial electron velocity and the latter is usually a function of
time. Thus, an exact integral of the above equation is in general
mathematically complicated and does not necessarily lead to
an analytically convenient formula. To enable a simplified
analytical integration, we consider the usual technique of
approximating the relation by means of the average axial
electron velocity. For most waveguide FELs, this simplification
is usually realized through the following approximation

where is the average axial electron velocity given in (6a) and
the wiggler length. However, as the wiggler field is strong,

the previous approximation may not be sufficiently accurate.
To assess this, the spatial integral in the previous equation is
calculated from Taylor expanding the reciprocal of (3) to the
fourth order of to give

(9)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 26, 2009 at 07:13 from IEEE Xplore.  Restrictions apply. 



ZHONG AND KONG: STRONG WIGGLER FIELD ASSISTED AMPLIFICATION 633

where represents a spatial average. Comparison of the
above equation with 1 suggests that the average of 1
is not analytically the same as 1 at large wiggler field. As
an illustration, it can be shown that1 is 2.3545 and 1
is 2.2849 at 0.5. Although their difference is only about 3%,
the FEL resonant condition is likely to be considerably altered
if the axial electron velocity is shifted by 3%. For this reason,
(9) is employed throughout our gain formulation.

Substituting (9) into (8) gives

(10)
where and are respectively the resonant and nonresonant
FEL detuning parameters given by [15]

Integrating (10) directly over yields the energy change of a
single electron

to the first order of the waveguide field. Using Madey’s theorem
[19]

(11)

with an average over the initial electron phase, the net
energy change of the electron beam is obtained, to the second
order of the waveguide field, as follows

sinc
sinc

sinc
sinc

sinc sinc
(12)

where 2 and 2. Let the propagating
power of the TM mode, the power gain is then given by

(13)

Note that

Fig. 1. Small-signal gain as a function of frequency calculated from (14) (solid
line) and [15] (dots) for (a)� = 0.02(p = 0.04) and (b)� = 0.1(p = 0.22).

the interaction gain of (13) is derived from (12) as

sinc sinc

sinc
sinc

sinc
sinc

(14)

where the cutoff wavenumber of the TMmode 2.4048
and is given by

(15)
with 2 being the effective cross-sectional area of
the TM mode. The interaction gain formulated in (14) and
(15) is very similar to that reported previously [15] in terms
of format. Their main difference lies in the formulation of,

and 1 . At the limit of 1, the small wiggler
field approximation becomes valid and the interaction gain in
(14) can be shown to reduce to that formulated previously [15].
To illustrate quantitatively their difference at different wiggler
fields, (14) and the gain formula in [15] are used to calculate
the small-signal gain of anX-band system of 3.8 cm,

11 and 20 mA but for two different values of
, 0.02 0.04 and 0.1 0.22 . As

shown in Fig. 1, the two gain formulas produce almost the same
gain curve when the wiggler field is week at 0.02 and the
electron voltage is 53.2 kV. However, when the wiggler
field is increased to 0.1 with the electron voltage adjusted
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to 68 kV, there is a significant difference and the previ-
ously formulated gain is no longer applicable. Equation (14) is,
therefore, applicable to a much wider range of the wiggler field.
Also, the above comparison suggests that while the interaction
gain is increased by a factor of five in Fig. 1(b) the electron en-
ergy required is also increased by68 53.2 1 28 . Thus,
when second-harmonic waveguide FELs are designed to operate
at strong wiggler field for a large interaction gain, care must be
exercised not to incur too large an increase in electron energy.

It is worth noting that under the free space condition (when
) the interaction gain of (14) becomes zero through its

dependence upon 1 . This is consistent with the
fact that the electromagnetic wave becomes a TEM mode in free
space and so it does not have a longitudinal electric field com-
ponent to support its interaction with the longitudinal electron
velocity.

It is also of interest to consider the interaction gain of (14)
for the wiggler-free case. By setting to zero (thus 0)
and to infinity in (14), the interaction gain does not always
reduce to zero, although it is very small because of the very
large when . This can be understood from the fact
that there are, in general, a finite energy exchange between an
electron and a travelling wave even when they are not in res-
onance in the absence of a wiggler magnet. If they are not in
resonance, the electromagnetic wave bypasses the electron in
the electron–rest frame and the electron experiences accelera-
tion in one half-cycle of the wave and deceleration in the next
half cycle. When the electromagnetic wave bypasses the elec-
tron by a complete number of full cycles, the energy gained is
cancelled out completely by the energy lost and the net energy
exchange is zero. This corresponds to the case when 0.
However, if the wave bypasses the electron by incomplete cy-
cles, finite energy exchange is expected between electrons and
the electromagnetic wave.

III. GAIN FORMULATION USING PERTURBATION THEORY

Madey’s theorem simplifies the mathematical processes to
obtain the interaction gain of conventional free electron laser
systems that rely on a strong coupling between the transverse
electron velocity and the transverse electric field component of
the radiation field [19]. As shown in (11), Madey’s theorem re-
lates the net electron energy change at the second order of the ra-
diation field to the electron energy change at the first order of the
radiation field, thus eliminating the need of direct formulation
of the former. This is clearly mathematically efficient. However
as Madey’s theorem has yet to be established for second-har-
monic waveguide FELs, our gain formulation in the preceding
section is effectively based on an hypothesis. An independent
gain formulation is, therefore, important given that the signif-
icant difference in interaction behaviors between second-har-
monic waveguide FELs and their conventional counterparts may
compromise the applicability of Madey’s theorem to these new
waveguide FELs. To calculate their interaction gain without re-
course to Madey’s theorem, their electron energy change needs
to be formulated directly to the second order of the waveguide
field [20].

Under the combined field of the wiggler magnet and the
TM mode, the electron trajectory is described by its equation
of motion

In the 1-D limit and with (1) and (2), the above equation reduces
to

(16)

Electron energy change is described by (8), which may be
rewritten as

(17)

where is the phase of the TM mode and
2 is the phase of the ponderomotive po-

tential associated with the desired coupling betweenof the
TM mode and the component of the axial electron ve-
locity in second-harmonic waveguide FELs. It is shown in (17)
that the electron energy change consists of two terms. The first
term on the right-hand side represents the preferred beam-wave
interaction at the second harmonic of the wiggler’s periodicity.
System parameters are usually chosen such thatremains rel-
atively unchanged during the electron passage through the wig-
gler magnet. As a result, electrons are kept decelerated in the
ponderomotive potential and this first term in (17) makes an ac-
cumulatively significant and dominating contribution to the net
electron energy change. On the other hand, the second term on
the right-hand side of (17) represents the electron interaction
with the waveguide field in the absence of the wiggler magnet.
Since it is impossible to synchronize the electron beam and
the waveguide field without the wiggler in a smoothbore wave-
guide, varies quickly and so the term oscillates rapidly
between its positive and negative bounds as the electron beam
transverses through the wiggler magnet. As a result, electrons
gain energy from and loss energy to the waveguide fields alter-
natively and the total net energy exchange through this second
term is likely to be very small. As highlighted in [12] however, it
is important to include this second term in our gain formulation.

To describe the beam-wave interaction in the ponderomotive
potential, we employ the technique used in [20] and consider
the second time derivative of

is obtained from substituting (17) into (16)

(18)

and so

(19)
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with

(20)

Equation (19) is the pendulum equation of electrons in the pon-
deromotive potential. It is of interest to note the second and third
terms on the right-hand side of (19) which describe the indi-
vidual influence of the waveguide field and the wiggler magnet,
respectively. Since these two terms are absent in the pendulum
equation for conventional FELs [20], the solution of (19) is
likely to be more complex and the electron energy exchange
with the radiation field is likely to contain significantly new fea-
tures in second-harmonic waveguide FELs.

Comparing (17) with (19), we find that

(21)

or alternatively in a more useful format of

(22)

To integrate the above equation, we assume that
is approximately constant and at the exit of the wiggler this ap-
proximation gives

(23)

where the second term in (22) has been integrated to zero and
. As

2 (24)

(23) becomes

2
(25)

Thus, and, hence, the interaction gain can be formulated
when is known. The formulation of may be obtained
from (19), which may be rewritten as

(26)

In general, the solution of (26) for requires elliptical inte-
grals and the relevant mathematical formulation is rather com-
plex. This is particularly so when the radiation field is large and
its influence on the relationship has to be included in the ex-
pression of and in (26). In the small-signal regime however,
the phase of the ponderomotive potential may be considered to
be determined predominately by the stable electron trajectory
of (2) and (5) with the influence of the radiation field treated
as small perturbations. Therefore,may be Taylor expanded to

different orders of the radiation field, or more conveniently that
of as follows:

where and with 1, 2, 3, Thus,
can be expressed as

(27)

Equation (26) can be shown to deduce

(28)

Substituting (27) into the left-hand side of (28) gives

(29)

So the solution of (26) can be obtained by solving the previous
three equations. Since

(30)

the first equation of (30) becomes

(31)

where (1 ) has been replaced by1 , as an approxima-
tion, to permit a direct integral of (32). With the initial condition
specified in (24), we have

Note that from the above equation at . Again,
we use 1 to approximate (1 ) to obtain the integral of
the above equation with respect toas

(32)

From (24), the first two terms on the right-hand side of (32)
become
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where has been used. From (5), (6), and (9), we
have

Hence, in (32)

and (32) becomes

The first term in the previous equation describes the desired
phase evolution of the ponderomotive potential while the second
term represents a small correction. The latter describes detailed
features of electron trajectory that are not included in the sim-
plified relationship of 1 . As this second term
oscillates between its positive and negative bounds, its accumu-
lated effects are likely to very small indeed. Mathematically on
the other hand, its inclusion in (32) makes it analytically difficult
to progress our gain formulation. From the above two consider-
ations, we ignore this second term as an approximation. Note
that , the above equation becomes

(33)

The second equation in (29) may be rewritten as

(34)

Substituting (33) into (34) and, subsequently, integrating the
latter gives

(35)

where the initial condition of 0 0 and the relationship
of 2 have been used. It should be mentioned
also that (1 ) is again replaced by1 in the integral from
(34) to (35), similar to the technique used in arriving at (31). By
using its initial condition of , is obtained from
(35) as

(36)

Similar to (34), the third equation of (29) may be rewritten as

(37)

where has been approximated. With (36), (37)
becomes

(38)

Further formulation of the previous equation involves the use of
(36) and in principle this leads to the formulation of the energy
change of a single electron to the second order of the wave-
guide fields. The overall energy change of the electron beam
can then be obtained from an average over the electrons’ initial
phase. Mathematically, however, it is more efficient to perform
the electron phase average to (38) directly before the spatial in-
tegrals in (38) are formulated. To relate this to the net energy
change of the electron beam, we note that from (25)

(39)

where represents an average over the initial electron
phase and

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on August 26, 2009 at 07:13 from IEEE Xplore.  Restrictions apply. 



ZHONG AND KONG: STRONG WIGGLER FIELD ASSISTED AMPLIFICATION 637

Letting and , we have
from (38) (The equation at the bottom of the page.) after (36)
has been used and subsequently phase integral performed. With
the spatial integrals from 0 to , the previous equation
reduces to

(40)

Hence, from (39)

(41)

where

Consequently

(42)

By substituting (42) into (13), we obtain the following small-
signal gain:

(43)

Fig. 2. Small-signal gain of anX-band second-harmonic waveguide FEL
calculated using (14) derived from Madey’s theorem (dots) and using (43)
derived from the perturbation theory (solid line) atp = 0.46.

It is worth emphasizing that the small-signal gain in second-har-
monic waveguide FELs formulated in (43) is derived from a
direct solution of their pendulum equation using a perturba-
tion theory to the second order of the radiation field. Its format
is very similar to that derived from Madey’s theory in (14).
However, they are not identical with a noticeable difference be-
tween and the last term in (14), as well as differences
in the gain coefficient. To see this quantitatively, we consider
anX-band second-harmonic waveguide FEL with 95 kV,

0.1431 , 3.8 cm, 11 , 20 mA and
0.4646. Interaction gains calculated with (14) and (43) are

plotted as a function of frequency in Fig. 2. It is clearly shown
that these two gain curves are in an excellent agreement. Fur-
ther numerical calculations for cases with larger wiggler fields
(with 0.5 0.8) result in a similar agreement. These nu-
merical studies suggest that Madey’s theorem is indeed appli-
cable to second-harmonic waveguide FELs even though their
beam-wave interaction is much more complex than that of their
conventional counterparts.

IV. CONCLUSION

As a novel beam-wave interaction configuration to reduce
the electron energy necessary for radiation at a given fre-
quency, second-harmonic waveguide FELs have been studied
in this contribution with and without Madey’s theorem. In
order to maximize their interaction gain at a given electron
beam current, it is advantageous to operate second-harmonic
waveguide FELs with a strong wiggler field. To this end, the
axial electron velocity was Taylor expanded to the eighth order
of the wiggler field to capture accurately the highly nonlinear
dependence of electron trajectory upon the wiggler field.
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Madey’s theorem was then assumed and used to formulate the
small-signal gain and numerical examples were subsequently
used to demonstrate the extended applicability of the resulted
gain formula to a full parametric range of wiggler magnets.
On the other hand, it was noted that Madey’s theorem had not
been established for second-harmonic waveguide FELs whose
interaction behaviors are considerably different from that of
conventional waveguide FELs. To address this, an independent
gain formulation was developed by solving the pendulum equa-
tion of second-harmonic waveguide FELs with a perturbation
treatment. With necessary accounts of strong wiggler fields
in a number of derivation steps, the small-signal gain was
again formulated, but without recourse to Madey’s theorem.
While this second gain formula is not analytically identical to
that derived from Madey’s theory, numerical examples were
used to show that they agree with each other over a wide
range of the wiggler field as well as other system parameters.
Effectively, this validates the applicability of Madey’s theorem
to second-harmonic waveguide FELs.

It was shown that the choice of the wiggler field is a compro-
mise between a large interaction gain and a significant electron
energy reduction. Therefore, the implementation of second-har-
monic waveguide FELs in future designs of compact waveguide
FEL systems is likely to be influenced by specific application
constraints. To minimize the electron energy and the cost of the
overall FEL system, other electron energy reduction techniques
need to be considered in parallel and assessed against each other.
Examples of these techniques include a similar but different
second-harmonic scheme based on a transverse beam-wave in-
teraction achieved in a rectangular waveguide [21], a radio-fre-
quency modulation based harmonic generation scheme [7] and
a nonlinear harmonic generation scheme [22]. It is conceivable
that the individual development of these novel harmonic gener-
ation techniques will collectively lead to an economically im-
portant reduction in the electron energy and hence in the capital
cost of compact waveguide FELs.
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