View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Loughborough University Institutional Repository

B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the
following Creative Commons Licence conditions.

@creative
commons

COMMONS D D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vYou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

® Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/



https://core.ac.uk/display/288389304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

630 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 2, APRIL 2002

Strong Wiggler Field Assisted Amplification in a
Second-Harmonic Waveguide Free Electron Laser

Xiehe Zhong Student Member, IEEENd Michael G. KongSenior Member, IEEE

Abstract—As a technique to reduce the size of compact the minimum electron energy needed to generate strong radia-
Wavegwde.free electron Ia§er§ (FE.Ls) opgrated from microwave tion at a given frequency [4], [11]-[13]. FEL operations at re-
to the far infrared, a longitudinal interaction mechanism was duced electron energy not only permit the use of smaller and less

recently proposed to operate waveguide FELs at the second . . . . . .
harmonic. With a gain formulation based on Madey's theorem ©€XPE€NSive power supplies, but also increase the interaction gain

in the limit of small wiggler field, it was shown analytically that indirectly through its inverse proportion tg’3° [3], [4]. Re-
second harmonic waveguide FELs can reduce significantly the cently, an electron energy reduction technique was considered

electron energy required for radiation at a given frequency. py exploiting the electron interaction with the longitudinal elec-
As it is advantageous to operate second harmonic waveguideyis field componen£. of TM modes in a cylindrical waveguide

FELs with strong wiggler field, Madey’'s theorem is used here to 147, | hab int fi fi i lect
reformulate their interaction gain for strong wiggler fields up to [14]. In such a beam-wave interaction configuration, electrons

ai/»-ygﬁzo = 1 with the axial electron Ve|ocity Tay|0r expanded acquire first in the ngglel’ field a rapid |0ngitudina| VeIOCity
to the eighth order of the wiggler field. Given that Madey’s oscillation twice as fast as their transverse velocity oscillation.
theorem has not been established for second harmonic WaveguideHence, their subsequent interaction with #ie component of
FELs, their interaction gain is also formulated independently by - 1\, modes may be considered as in an effective wiggler having a
solving their pendulum equation without recourse to Madey’'s iod half h as that of th tual wigaler. Eor thi
theorem. These two gain formulas are not analytically identical, PEN0dhaitasmuch astnatofthe actual wiggler. Forthis reason,
but numerically they lead to an excellent agreement over a wide these free electron lasers are referred to as second harmonic
range of system parameters, thus confirming the applicability waveguide FELs [14]. It was shown analytically that the elec-
of Madey's theorem. The interaction analyses presented form a tron energy required for radiation at a given frequency may be
thorough and detailed description of second harmonic waveguide ¢ qy,ced significantly in second harmonic waveguide FELs from
FELs in the small-signal regime and for wiggler field that is both that ded i bl ti | ide FELs wh
practical and beneficial. atneeded in comparable conventional waveguide s where
the transverse electron velocity couples with the transverse elec-
» tric field component of TE modes in a rectangular waveguide
[14], [15]. Second harmonic waveguide FELs are also different
from conventional waveguide FELs in that they have a honreso-
I. INTRODUCTION nant electron velocity component that couples with the resonant
locity component to contribute significantly to the interaction
in [15]. This unique feature may be exploited to enhance the
A

interest, largely because they offer a cost-effective means to im-lvv?vel Tterf\ctlort] anfd to condtrﬁ | the ra?d'a“"” sp%ctrgrgl._
liver coherent radiation in the spectrum from microwave to the nalytical treatments of second harmonic waveguide S

far infrared [1]-[9]. Aimed as a laboratory instrument rathe ave so far been based on the employment of Madey’s the-

than a national user facility [1], their output power is modes?,rem in _the limit of S"?a” wiggler field [14], [15]. Compar_ed to
up to a few kilowatts, but nevertheless adequate for many nventional waveguide FELs however, second harmonic wave-

plications in basic research, medicine, and industry. Adding ide FELs have a much stronger dependence on the wiggler

the cost saving already achieved from employing low curre Id with their small-signal gain proportional &, .[15]' It .
electron beams, further system simplification and size red Lthere_fore, preferab_le to opera_te second harmonic WayeQU|de
tion are now sought through improvement of their output pow: I_‘S W'th a strong wiggler field in order to enhance the |nt_er-
at a given beam current. This approach has led to the concg F—'on gain aF agiven beam_ curren_t. AS a result, our previous
tion of many gain and efficiency enhancement techniques sgin formulation developed in the limit of small wiggler field

as the employment of prebunched electron beams [6], [7] aﬂ(aeds to be reassessed and, if necessary, extended. It is con-

the waveguide optical Klystron arrangement [10] ceivable that in a sufficiently large wiggler field the oscilla-
Parallel to the efforts to improve the output power at a givetﬂr_y componenf[ of the2 aX|aI_eIectron velocity is no Io_nger n
electron beam current, an equally important issue in the dev&[N€ar proportion ta3,, and in general the electron trajectory

opment of the compact waveguide FEL technology is to r(e(miln%comes a S|_gn|.f|cantly nonlm_ear function of the W|ggle.r field.
is complexity in electron trajectory needs to be taken into ac-

count in any gain formulation of second harmonic waveguide

Manuscript received December 4, 2000; revised December 13, 2001.  FELs having a strong wiggler. In Section Il, the nonlinear de-
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formulated, Madey’s theorem is employed to reformulate ttemaller than the wiggler field and so the longitudinal electron
small-signal gain of second harmonic waveguide FELs. Comelocity, ¢3., is related tqg3, as follows:
parison with the interaction gain obtained previously in the limit
of §mal|vyigg|erfield [15] will be presented and relevant impli- 8. = \/1 . i? _ \/1 B i? (1 + a2 sin? sz)
cations discussed. 5 Y5
It is important to note that the applicability of Madey'’s the- ) o L

orem to second harmonic waveguide FELs has not been esfé{B-ere'VQ is the initial relativistic factor of the electron beam.
lished so far, although it is known to be applicable to conveAtternatively
tional waveguide FELs [3], [10], [16]. Compared to their con- X

B = /30\/1 +

2
a2, cos 2k, z
232
Y%

erefo = \/1— (1+a2,)/42 anday, = a,/V?2. As the
jal electron velocity is strongly dependent on the magnitude
the wiggler field, an approximation to the first orderd,.,
employed previously, is no longer accurate at strong wiggler
(Lf_ld. To this end, (3) is Taylor expanded to include higher order

ventional counterparts, second harmonic waveguide FELs have
a much more complex beam-wave interaction having the addi-
tional contribution of a nonresonant electron velocity compo-
nent and its strong coupling with the usual resonant veloci
component[15]. Consequently, itremains unclear whether th
significantly new features of the beam-wave interaction mak
second harmonic waveguide FELs fundamentally different fro
conventional waveguide FELs, and thus compromise the
lidity of Madey’s theorem. To address this issue, we derive fgrms
Section Il a pendulum equation for second harmonic waver
guide FELs and then employ perturbation theory to formulate

®3)

2
= o [1 + g cos 2k,z — %COSQkaz

the small-signal interaction gain without recourse to Madey’s P spt
theorem. It will be shown that the gain formulation obtained +1g 8 2kyz — 128 °°8 2kpz+---|  (4)

from Madey’s theorem and perturbation theory are not analyti-
cally identical though very similar. To illustrate their differencavherep = a2, /72/32. To determine how many terms to keep in
and similarities, numerical comparisons will be presented. the above equation, the maximum possible valug néeds to
The two gain formulations developed with and withoupe estimated for second-harmonic waveguide FELs, and this in
Madey’s theorem provide a thorough assessment of thgn relates directly to the choice of the wiggler field.
beam-wave interaction in second harmonic waveguide FELSs]t should be noted that while a large wiggler field is desirable
in the small-signal regime and for a parametric range @r a strong beam-wave interaction at a given beam current it
wiggler field that is both practical and beneficial. Numericahlso reduces the axial electron velocity [see (3)] and, hence, un-
examples presented and conclusions drawn are used to aidi@fmines the maximum electron energy reduction achievable in
enhanced insight into the beam-wave interaction mechanisnsigtond-harmonic waveguide FELs. Therefore, it is not always
second harmonic waveguide FELs. These are summarizethéheficial to increase the wiggler field as much as possible and,
Section IV. in general, the choice of the wiggler field is a compromise. Wig-
gler magnets used in microwave waveguide FELSs typically have
a period of a few centimeters and a peak on-axis field up to a few
Il. GAIN FORMULATION USING MADEY’S THEOREM thousands Gausses [1]-[12]. For teband waveguide FEL
considered previously [15], if we employ an electron beam of 95
Different from conventional waveguide FELS, second hakV and a strong wiggler oB3,,, = 0.1431" and\,, = 3.8 cm,
monic waveguide FELs generate strong radiation in TM modg#seX-band FEL system generates strong radiation between 8—12
in a cylindrical waveguide. Wiggler magnets used for these neBHz in a cylindrical waveguide of a diameter 2 3.175 cm. In
FELs are usually planar and in the one-dimensional (1-D) lintitis case, it can be shown thag = 0.4439 anc = 0.4646. If
their magnetic field may be approximated with the followinghe magnetic field of the wiggler is increased further, the elec-
on-axis expression: tron energy needs to be increased accordingly to compensate
for the reduction in the effective axial electron velocity (see (2))
By, = &Byocoskyz (1) and to maintain strong FEL radiation over the same frequency
range. Thusp = 0.4646 = 0.5 is perhaps close to what can

wherek,, = 27 /), is the spatial wavenumber of the wigglee reasonably expected as its maximum value for microwave
magnet and\,, the wiggler period. For an electron beam fedvaveguide FELs. For second-harmonic waveguide FELs oper-
along the axis of the wiggler magnet, a transverse electron @ed at higher frequencies, shorter wiggler period or/and higher

locity C/L is induced. It can be shown easily as electron energy are required. These requirements imply, respec-
tively, smallera,, or/and largery232 and, as such, the max-

/ﬁ _ _Qa;w sin k2 @ imum possible value af is likely to reduce to below 0.5. Ifthe

5y system parameters of the abo«band FEL system are consid-
ered as typical for microwave waveguide FELS, it is reasonable
wherea,, = eB,,0/mck,, is the dimensionless wiggler strengthto assume, albeit somewhat arbitrarily, a general ceiling limit
and~ is the relativistic factor. In the small-signal regime, the inef p = 0.5 for second-harmonic waveguide FELs operated at
fluence of the waveguide fields on the electron velocity is muakavelengths from microwave to the far infrared. Substituting the
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ceiling value ofp = 5 into (4), we find that relevant coefficientswith 3., andyg given by
are respectively/2 = 25%, p*/8 = 3.13%, p®/16 = 0.78%

and 9*/128 = 0.24%. For higher-order terms (thogé& terms B0 =0 [1 — in ) p4:| (6a)
with n > 4), their coefficients are significantly smaller than R 16 1024

0.24%, and so the axial electron velocity is sufficiently accurate _Fo |1 3 4 (6b)
when expressed to the fourth ordenafthe eighth order of the X0 "~ Beo 2P Tl |

wiggler field). For our remaining analysis of second-harmoni
waveguide FELs, we will use the axial electron velocity in (4
to the eighth order of the wiggler field (the fourth ordendf

h W'tg.the \_nggle:jﬂeld 'r? t_he:cﬁd|re_ct|on, _electrobns ngghle N With the stable electron trajectory described in (2) and (5), the
the y direction and so their off-axis motion subjects them ¢y \ave interaction and the consequent amplification of the

Oﬁ'?‘x_'s magn_etlc f|e_lds. The_refo.re, the wiggler field needs to kWaveguide fields can be derived from the energy conservation
sufficiently uniform in they direction to ensure all electrons ex-

L . ;L 2" equation
periencing approximately the same magnetic field. This is also
important to ensure the accuracy of (4). To this end, the width 2 5,

. . - . .- — (’ymc ) =—ck. - 7,.
of a plannar wiggler in thg directionw needs to be sufficiently dt -7

large. To illustrate this, we consider the plane-focusing WignghereE, — Egcos(k.z — wt + ). If we consider only the

structure used for sheet electron beams [17]. For these WngW/est TM mode in a cylindrical waveguide, the FMmode
magnets, the-directed wiggler field follows:osh(k,y) varia- the previous equation is reduced to [15] ' '

tion andk, may be approximated by, = 2k,,b/w with & being
the radius of the waveguide [17]. To keep the off-axis variation d (’ych)
of the wiggler field within 5% at the largest electron excursion dt
from the axisym, w > 6.35%,,by,, needs to be satisfied. At

p = 0.5, our numerical simulation suggests that < 0.8

and this requires»y = 21 cm. This can be much reduced by im-

proved wiggler focusing as suggested in [18]. In addition, the re-
qguirement for (4) to be accurate is less stringent than that for the (7)

: o Py
vAwggle; f'elld |rt]self aSAfzégzb_ C(i%/ﬁz _I 1) (A[%/ﬂé) ; Similar to the usual treatment of waveguide free electron lasers,
: /L//br Et € Cﬁ;‘;? t} —<an ezajmpicm?]& ere< gsovethe third term may be ignored in comparison with the second
it can be shown thahf. /6. < 0.03A5. /4. whenp < 0.5. cierm. On the other hand, the first term is the new nonresonant

This would further '°V.Ver the m.in.imum w!ggler V\.’idth ngede erm and it needs to be included [15]. Thus, (7) becomes
for electrons to experience sufficiently uniform wiggler field.

quation (5) is identical in format to that used previously [15],
Ithoughyo andj.o are formulated more accurately in (6) than
in our previous treatment [12].

= — eEycfocos (k2 — wit+ )
1
- §6EOCX0/3;:0 cos (2ky,z + k.2 — wt + @)

1
— §CE00XO/3Z0 cos (2ky,z — k.2 —wt + @) .

It is of interest to note that in (4) dy _ _xowas fo (2hwz + koz — wt + )
. dz 2 ¢ f. ¢ -
cos” 2hiyz 2 (14 cosdkw2) _was fo cos(k.z —wt+¢) (8)
1 c B
397, _ . .
cos” 2k z =7 (3 cos 2ky 2 + cos 6ky.2) wherea, = cEy/mcw. It should be noted that on the

right-hand side of the above equation is related: teia the
axial electron velocity and the latter is usually a function of
each of which may be considered to consist of a fundament&€- Thus, an exact integral of the above equation is in general
term, cos 2k, > and its harmonic terms such ass4k,z, mathematically complicated and does not necessarily lead to
an analytically convenient formula. To enable a simplified
analytical integration, we consider the usual technique of
B = B.o (1 + x0c082kyz + x1 cosdky,z approximating the: — ¢ relation by means of the average axial
electron velocity. For most waveguide FELS, this simplification
is usually realized through the following approximation

1
cos* 2k~ =3 (3 + 4 cosdkyz + cos 8ky,2)

cos 6k,,z andcos 8k,,z. Thus (4) becomes

+x2 08 6kyz + X308 8ky2)

wheref. is the average of. andxg > x1 > x2 > xs . Har- L

monic terms in the above equatiams 2nk,,z (n = 2,3, 4), t :/ dz ~ 2
represent harmonic contents in the axial electron velocity, at the o P P

fourth, sixth, and eighth harmonic of the wiggler magnet's spatheres. is the average axial electron velocity given in (6a) and
tial periodicity. Given that second-harmonic waveguide FELS the wiggler length. However, as the wiggler field is strong,
are normally designed to couple with thes 2k~ term of the the previous approximation may not be sufficiently accurate.
electron velocity and thag, > x1 > x2 > x3, the contribution To assess this, the spatial integral in the previous equation is
of harmonic terms to the beam-wave interaction is likely to healculated from Taylor expanding the reciprocal of (3) to the
much smaller than that of the nominak 2k,, » term. Thus, the fourth order ofp to give

previous equation reduces to L
Lffde _JLIN_ L3, 105 00 o
B. = Beo (1 + x0 co8 2k 2) (5) L) B: \B/ & 167 T 10247
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where (---) represents a spatial average. Comparison of the
above equation with 43., suggests that the average of3l
is not analytically the same ag3., at large wiggler field. As
an illustration, it can be shown thét/g3.) is 2.3545 and A5.¢
is2.2849 ap = 0.5. Although their difference is only about 3%,
the FEL resonant condition is likely to be considerably altered
if the axial electron velocity is shifted by 3%. For this reason,
(9) is employed throughout our gain formulation.

Substituting (9) into (8) gives

d s 3. s 3,:/ 7.
’y__ﬁwa <[”0>C05Akz—wa <[30>COSA/€Z.

(a)

N
T

-
T

™ ~

S

'
-

Interaction gain (%)
o

'
N
T

dz 2 ¢ 0. C . 3 . , ‘ .
(10) 7 75 g 8.5 9 95 10
whereAk andAf are respectively the resonant and nonresonant 20 ‘ ‘requenc‘y (GHZ), ‘
FEL detuning parameters given by [15] (b)

-
w
T

=
o

w /1
Ak =2k, + k. — = </3_~>

= w /1

g
S 5 "/\;
[ H
o : S eoremmessarvssstessrt oo,
£ 0 : e -
‘é 5 : w |
Integrating (10) directly oveL yields the energy change of a g :
single electron =-100
A wasxoL </3ZO> sin (24L) <AkL . ) e
v = — — ) a7 COS| —— 2 _ L L : .
! 2¢ 3. % 2 20; 75 8 8.5 9 95 10
Frequency (GHz)

. L ~
wa,L [ B\ S\ 2 ) AkL . . . . .
- ——>cos| — + o Fig. 1. Small-signal gain as a function of frequency calculated from (14) (solid
c B kL line) and [15] (dots) for (a), = 0.02(p = 0.04) and (b)y, = 0.1(p = 0.22).

to the first order of the waveguide field. Using Madey's theorefme interaction gain of (13) is derived from (12) as

[19]
E2L [ [dsindz  x3 dsincz
Ay = LD Ay y €7 Ok—{{ di 4 de }
(Av2), = 2dy <( Y1) >p (11) =
. dsinct _dsince
with {---), an average over the initial electron phase, the net +Xo {S'”C’?' ge Tsiner- —— } } (14)
energy change of the electron beam is obtained, to the second
order of the waveguide field, as follows where the cutoff wavenumber of the TMmodek, = 2.4048/b
andGj is given by
Xo [wa,L]? / B0\’ i
<M%=z[c}<ﬁv Go = L [%“}ﬁ%<1yrm@
z - 7 .
[ dz dsinct . dx dSinQU:| 8‘]12 (24048) mc? Aem ﬁz ’78 (15)
- |sinCr —— ———— + sinci —
I dy dz dy dx with A.,,, = 7b*/2 being the effective cross-sectional area of
1 [wa,L]? /Bo\? the TMy; mode. The interaction gain formulated in (14) and
1 [ c } < B, > (15) is very similar to that reported previously [15] in terms
"di dsin@z ¥ dz dsinCa of format. Their main difference lies in the formulation g,
e = L g } (12) B0 and (1/5.). At the limit of p <« 1, the small wiggler
Ly dz 4dy do field approximation becomes valid and the interaction gain in

(14) can be shown to reduce to that formulated previously [15].
To illustrate quantitatively their difference at different wiggler
fields, (14) and the gain formula in [15] are used to calculate

wherex = AkL/2 andi = AI%L/Z. Let P, the propagating
power of the TM; mode, the power gain is then given by

(Ay2) me? L the small-signal gain of aX-band system o, = 3.8 cm,
G=_—"" "l (13) L = 11), and! = 20 mA but for two different values of
Ly X0 Yo = 0.02(p = 0.04 andxo = 0.1(p = 0.22). As
Note that shown in Fig. 1, the two gain formulas produce almost the same
gain curve when the wiggler field is weekaj = 0.02 and the
de di wlL /1 P14 a,. electron voltage i9. = 53.2 kV. However, when the wiggler
dy  dy 2 </Z> - field is increased tag = 0.1 with the electron voltage adjusted
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to V. = 68 kV, there is a significant difference and the previ- Under the combined field of the wiggler magnet and the
ously formulated gain is no longer applicable. Equation (14) i§M,; mode, the electron trajectory is described by its equation
therefore, applicable to a much wider range of the wiggler fieldf motion
Also, the above comparison suggests that while the interaction d . .
gain is increased by a factor of five in Fig. 1(b) the electron en- g (ymts) = —c [E~ + Uy X Bw} :
ergy required is also increased {88/53.2— 1) = 28%. Thus,
when second-harmonic waveguide FELs are designed to ope
at strong wiggler field for a large interaction gain, care must
exercised not to incur too large an increase in electron energyy , - .

It is worth noting that under the free space condition (whegy (’WZ) = —Z|wagcos(k.z —wt +¢)
b — o0) the interaction gain of (14) becomes zero through its
dependence upokf/A.,, o 1/b*. This is consistent with the a2,k sin 2k 7] (16)

}gt@e 1-D limit and with (1) and (2), the above equation reduces

. . +
fact that the electromagnetic wave becomes a TEM mode in free ¥

space and so it does not have a longitudinal electric field com-

ponent to support its interaction with the longitudinal eIe<:tro'|Ef|eC_ttrtOn energy change is described by (8), which may be
rewritten as

velocity.
It is also of interest to consider the interaction gain of (14) dy _ Xo =
for the wiggler-free case. By setting, to zero (thusyg = 0) dt was o [ g “*  +cos (I)} (17)

and A, to infinity in (14), the interaction gain does not alway%vhereé

reduce to zero, although it is very small because of the very = k.2 —wt + ¢ is the phase of the TH mode and
large# when\,, = cc. This can be understood from the fact_ . (2ky +k-)z—wi 4 Is the phase of the ponderomotive po-

X - ntial i with th ir lin W. f th
that there are, in general, a finite energy exchange betwee {e fial associated with the desired coupling betwerof the

lect dat li hen th ti 01 mode and theos k,, component of the axial electron ve-
electron and a travelling wave even when they are not in rqgéity in second-harmonic waveguide FELSs. It is shown in (17)
onance in the absence of a wiggler magnet. If they are not

resonance. the electromaanetic wave bvpasses the electrotwarﬁ the electron energy change consists of two terms. The first
the elect ' 0 gd the elect yp . lﬂellm on the right-hand side represents the preferred beam-wave
he electron-rest frame and Ine electron eXperiences acCelglas» ion at the second harmonic of the wiggler’s periodicity.
tion in one half-cycle of the wave and deceleration in the ne

half cvele. When the elect " b the el stem parameters are usually chosen suchithiatnains rel-
ar cycle. en the electromagnetic wave bypasses the elg vely unchanged during the electron passage through the wig-
tron by a complete number of full cycles, the energy galned%%/

ncelled out comoletely by the eneray lost and the net en er magnet. As a result, electrons are kept decelerated in the
cancetied out compietely by the energy lost a € net enelhderomotive potential and this first term in (17) makes an ac-

exchange is zero. This corresponds to the case when 0. cumulatively significant and dominating contribution to the net

However, If the wave bypasses the electron by incomplete Cé’lié;tron energy change. On the other hand, the second term on

cles, finite energy gxchange Is expected between electrons fih right-hand side of (17) represents the electron interaction
the electromagnetic wave. with the waveguide field in the absence of the wiggler magnet.
Since it is impossible to synchronize the electron beam and
the waveguide field without the wiggler in a smoothbore wave-
[ll. GAIN FORMULATION USING PERTURBATION THEORY guide,® varies quickly and so thevs ® term oscillates rapidly
o ) between its positive and negative bounds as the electron beam
Madey's theorem simplifies the mathematical processes {9 qyerses through the wiggler magnet. As a result, electrons
obtain the interaction gain of conve_nt|onal free electron Iasséin energy from and loss energy to the waveguide fields alter-
systems that rely on a strong coupling between the ransvefsgely and the total net energy exchange through this second

electrop \{eloqity and the transver;e electric field component @f., is likely to be very small. As highlighted in [12] however, it
the radiation field [19]. As shown in (11), Madey's theorem re jmnortant to include this second term in our gain formulation.

lates the net electron energy change at the second order of the 13y yescribe the beam-wave interaction in the ponderomotive

diation field to the electron energy change atthefirstorderoftla%temialy we employ the technique used in [20] and consider
radiation field, thus eliminating the need of direct formulatiol,o second time derivative &

of the former. This is clearly mathematically efficient. However )
as Madey's theorem has yet to be established for second-har- b = e _ (2ky + k) cdﬁZ_
monic waveguide FELs, our gain formulation in the preceding dt? Todt
section is effectively based on an hypothesis. An independeyit. /dt is obtained from substituting (17) into (16)

gain formulation is, therefore, important given that the signif-

icant difference in interaction behaviors between second—héﬁ@_ﬁ - _ 1- 42 /3Z0wagﬁ cos

monic waveguide FELs and their conventional counterparts mdff 7B S 2

compromise the applicability of Mgdey’s thgorem.to these new 1= B2 B.owa, cos® — g, sin2ky,z  (18)
waveguide FELs. To calculate their interaction gain without re- vB3. ~2

course to Madey’s theorem, their electron energy change negy o,

to be formulated directly to the second order of the waveguide

field [20]. b =—-0%cos®— 0 cos® — msin 2k, z (19)
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with different orders of the radiation field, or more conveniently that
1- 82 of Q2 as follows:
Q? =(2k,, + k.)wascxo 2—ﬁzﬁzo
T Q=g+ D+ Pyt ...
14+ay,. /1
~ (2ky + k) wascxo 3 <7> B0 -
, 2 \Ps where®,, oc (Q2)" and®,, o« (Q2)" withn = 1,2,3,... Thus,
~ 1-p2 2 b
02 = (2k, +k.)c P Boowa, = —O2 ¢ can be expressed as
vB3. X0 .. . .
2 Ak : . =00 +P1 +P2+.... 27
i — S ky (2ky + k,,)' (20) 0 1 2 (27)

72
. . . ) Equation (26) can be shown to deduce
Equation (19) is the pendulum equation of electrons in the pon-

deromotive potential. Itis of interest to note the second and thi&)dN
terms on the right-hand side of (19) which describe the indi- ~
vidual influence of the waveguide field and the wiggler magnet,—? (sin @ + cos O sin @1 ) sin 2k, 2 — msin 2k, 2. (28)
respectively. Since these two terms are absent in the pendulum
equation for conventional FELs [20], the solution of (19) iSubstituting (27) into the left-hand side of (28) gives
likely to be more complex and the electron energy exchange
with the radiation field is likely to contain significantly new fea- by = — msin 2k, z
tures in second-harmonic waveguide FELs. By = — 0% cos By — Q2 cos 2k, z cos Do

Comparing (17) with (19), we find that

[—QQ cos 2k, 2 — QQ} (cos ®g — sin O sin )

— ?sin 2k, 2 sin Pg
2 . ~
d2‘21> _ (2ky +k2)c (1 - @) dy msin 2k, z 1) O, =0 ?in ®osin®; + Q2 cos 2k, z sin B sin D,
dt V8- dt — Q2 sin 2k, z cos o sin ;. (29)
or alternatively in a more useful format of

a2 kwe B

So the solution of (26) can be obtained by solving the previous
d_’Y _ wasﬁzOXO T

~ = —5e3 &+ T sin 2k 2. (22) three equations. Since
To integrate the above equation, we assume/ghay(1 — 3?) @ - dz d [@} - cﬁzi [@} (30)
is approximately constant and at the exit of the wiggler this ap- d?  dt dz | dt dz | dt
proximation gives the first equation of (30) becomes
T = % [‘i> - ‘5(0)} @3 g rde, 02, e 2k + k) / 1\
where the second term in (22) has been integrated to zero amﬂE [W} T 72 </3_<> oz (31

® = dd/dt. As where (¥/3.) has been replaced RiL/3.), as an approxima-

<i>(()) = (2ky +k)v.(0) —w = Aw (24) tion, to permit a direct integral of (32). With the initial condition
specified in (24), we have
(23) becomes
2 . .
¢ - Aw] @z—w<i>(1—m2sz)+m.
202

Thus, Ay and, hence, the interaction gain can be formulatd¥ote that from the above equatién = Aw atz = L. Again,
whend(t) is known. The formulation ob(t) may be obtained We Use(1//3.) to approximate (15.) to obtain the integral of

Ay = wasB0Xo0

from (19), which may be rewritten as the above equation with respecti@s
b = —0%cos ® — OF cos 2k,,z cos ® Awz /1 2 (o k. 1\2
o _ _ Do(z) — Bo(0) = wz [N 0y kot k) /1
— sin @ sin 2k, 2z — msin 2k,z.  (26) ¢ o 4v2k,, 3.

. -2k w2z —sin2k,2). (32
In general, the solution of (26) fab(¢) requires elliptical inte- 2k —sin2kyp2) . (32)

grals and the relevant mathematical formulation is rather com: - (24), the first two terms on the right-hand side of (32)
plex. This is particularly so when the radiation field is large anlslecome '

its influence on the —¢ relationship has to be included in the ex-

pression ofb and® in (26). In the small-signal regime however, A, / 1 a2 (2ko+ k) / 1\°

the phase of the ponderomotive potential may be considere </3_4> T 4k, </3_4> 2k

be determined predominately by the stable electron trajectory no

of (2) and (5) with the influence of the radiation field treated_ i> ~ [(% + k) B.(0) — w (2ke + k) r </3_0>]
as small perturbations. Therefofiemay be Taylor expanded to B ©o ¢ COTT 2\ B
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wherep = ag,,,/fygﬁg has been used. From (5), (6), and (9), werhere the initial condition oﬁ)l(O) = 0 and the relationship

have of Ak = Ak — 2k, have been used. It should be mentioned
- also that (¥73.) is again replaced b{1/3. ) in the integral from
(2k,, + k.)B.(0) <i> — (2ky + k2) p /B <i> (34) to (35), similar to the technique used in arriving at (31). By
B 2\B:/\pP using its initial condition of®, (0) = 0, ®,(z) is obtained from
1 (35) as
= (2ky +k)</3> o 2
[ Q 1
g 3p? ()= || (2
| B0 <1 + /é—(;g) 5 {1 + i} /30] 1(2) Ak </3Z>
—(2kw—|—k~)<i> . [cosw—cos (Akz+<p) —Akzsmd
_ 2/3‘ s [ Q '2< 1 >2
-\ Bo <1 - p—) Bl Pj - ﬁ/éo} Ak \ B
- 16 2 2 32 - [cos @ — cos (Akz + ) — Akzsing]. (36)

Hence, in (32)

2 2
:(2kw+k)i{1+—} {/3()( —p——giﬂ . : , ,
Bo 16 32 Similar to (34), the third equation of (29) may be rewritten as

Dy 7 Q2P sin (A/;z + <,0) + Q2@ sin (Akz + @) (37)

Awz 2 (2 + k- 1\2 wheresin ®; ~ ¢; has been approximated. With (36), (37)
. </3 > % </3—> 2kwz = (2kw + k=) becomes
and (32) becomes a®y @ 1 /Z 9_2 1
1 & - \& D1 sin (Ak7 + <p) dz + 3
w =
@o(2) — ©o(0) = {(ka +k.)— = </3—4>} z / @y sin (Akz + @) dz. (38)
0
P /30 . 2/€ . . . .
“o\ & SUL 2, 2 Further formulation of the previous equation involves the use of
) (36) and in principle this leads to the formulation of the energy
Bo ) change of a single electron to the second order of the wave-
=Akz -3 3. sin 2k, 2 guide fields. The overall energy change of the electron beam

can then be obtained from an average over the electrons’ initial

The first term in the previous equation describes the desirBgase. Mathematically, however, itis more efficient to perform
phase evolution of the ponderomotive potential while the secolitf electron phase average to (38) directly before the spatial in-
term represents a small correction. The latter describes detafle@rals in (38) are formulated. To relate this to the net energy

features of electron trajectory that are not included in the sirdbange of the electron beam, we note that from (25)
plified = — ¢ relationship ot = z(1/3.)/c. As this second term )
oscillates between its positive and negative bounds, its accumb- N do — wasB0X0

lated effects are likely to very small indeed. Mathematically o= /, 1T o0
the other hand, its inclusion in (32) makes it analytically difficult . . .
to progress our gain formulation. From the above two consider- ’ <(I)0> + <(I)1> + <(I)2> +o = Awl o (39)
ations, we ignore this second term as an approximation. Note
that®4(0) = ¢, the above equation becomes where (---), represents an average over the initial electron
phase and
Qo(z) = Akz+ . (33)
2w
The second equation in (29) may be rewritten as <<i>0> :2i Awdp = Aw
P ™
Py = —Q%cos (Do — 2k,2) — Q% cos Dy. (34) & > _ Q2 <i>
_ . . . ' p 2mcAk \B-
Substituting (33) into (34) and, subsequently, integrating the o )
latter gives . / [sin (Akz + <p) — sin 4,0} de
0
dd, Q2 /1\7. - , Q2 1
&= an () [ (8 p) -] ~mesi ()
2 27
_ci—k <; > [sin (Akz 4+ ¢) —sing| (35) . /0 [sin (Akz + ¢) — sing] dp = 0.
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Letting A = Q(1/3.) JeAk andA = Q(1/43.) /eAk, we have

from (38) (The equation at the bottom of the page.) after (36)
has been used and subsequently phase integral performed. With

the spatial integrals from = 0 to z = L, the previous equation

reduces to
. LN/ 1\?[ d sin’z 4 d sin’?z
(), () (3) [+ )
20 /LN / 1\°
(&) (&)
sint | d sinz cosi sing
oz {% i i xx}
200 /L\* /1 \°
) ()
' su}x [i sinz  cosz smfﬂ ' (40)
T |dr =z T TT

Hence, from (39)

XOQQwas LN\*/1\?
A AT = =
(A2, 2 <2c> 3.
dsin®z 4 dsin’z 2
=y - - "y = T 41
[da: 2 +X(2)d§: 2 +X0f($7x)} (41)
where
f i) = sin [iSiI}j 4 CO?.% B Siﬂf:}
T Az T T
sin x isina: Cosa:_sina:
z |ldr =z x x|
Consequently
1 fwa. L\ / 1 41—i—a2
Avyg), == - — ) T (2, + k) L2
< 72>P 8< c ) </3,4> ,YS, ( + ) /40
X%iSiHQaZ

d sin® .
X [% = + X0 (a:,a:)} (42)

4 dr a2 2

By substituting (42) into (13), we obtain the following small-
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Fig. 2. Small-signal gain of aX-band second-harmonic waveguide FEL
calculated using (14) derived from Madey’s theorem (dots) and using (43)
derived from the perturbation theory (solid line)pat= 0.46.

It is worth emphasizing that the small-signal gain in second-har-
monic waveguide FELs formulated in (43) is derived from a
direct solution of their pendulum equation using a perturba-
tion theory to the second order of the radiation field. Its format
is very similar to that derived from Madey’s theory in (14).
However, they are not identical with a noticeable difference be-
tweenf(x,z) and the last term in (14), as well as differences
in the gain coefficient. To see this quantitatively, we consider
an X-band second-harmonic waveguide FEL with= 95 kV,

B, = 0.1431", A, = 3.8cm,L = 11\, I = 20 mA and

p = 0.4646. Interaction gains calculated with (14) and (43) are
plotted as a function of frequency in Fig. 2. It is clearly shown
that these two gain curves are in an excellent agreement. Fur-
ther numerical calculations for cases with larger wiggler fields
(with p = 0.5— 0.8) result in a similar agreement. These nu-
merical studies suggest that Madey’s theorem is indeed appli-
cable to second-harmonic waveguide FELs even though their
beam-wave interaction is much more complex than that of their
conventional counterparts.

IV. CONCLUSION

As a novel beam-wave interaction configuration to reduce
the electron energy necessary for radiation at a given fre-
quency, second-harmonic waveguide FELs have been studied
in this contribution with and without Madey’s theorem. In
order to maximize their interaction gain at a given electron
beam current, it is advantageous to operate second-harmonic
waveguide FELs with a strong wiggler field. To this end, the
axial electron velocity was Taylor expanded to the eighth order
of the wiggler field to capture accurately the highly nonlinear
dependence of electron trajectory upon the wiggler field.

signal gain:
1 IC L2 C(2k'u} +I€Z)
I
P 8JI2(2.4048) { OmCQ} Aerm w
1\*1+d2, k2L
SENEET MY
B Yo k.
d sin®z  x3 d sin®z  xo
° Xo 4 X0 w5 . (4
[di 22 4dr 22 | 2 f(“”x)} (43)
02

IRk

z A2
/ dz{ - [Akz cos Akz — sin Akz] +
0

[A/;z cos Akz — sin A/;z} + %2 [Sin (A/; — Ak) 2+ Akzcos Akz — sin (A/;z)} }

% [Sin (Ak - AIE) z + Akz cos Akz — sin (Akz)} }
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Madey'’s theorem was then assumed and used to formulate thp]
small-signal gain and numerical examples were subsequently
used to demonstrate the extended applicability of the resultqqo]
gain formula to a full parametric range of wiggler magnets.
On the other hand, it was noted that Madey’s theorem had ndét!!
been established for second-harmonic waveguide FELs WhOpr]
interaction behaviors are considerably different from that o
conventional waveguide FELs. To address this, an independe 1t3]
gain formulation was developed by solving the pendulum equa-
tion of second-harmonic waveguide FELs with a perturbation
treatment. With necessary accounts of strong wiggler field§l4]
in a number of derivation steps, the small-signal gain was
again formulated, but without recourse to Madey’s theoremji5]
While this second gain formula is not analytically identical to
that derived from Madey’s theory, numerical examples werg,g,
used to show that they agree with each other over a wide
range of the wiggler field as well as other system parameters.
Effectively, this validates the applicability of Madey’s theorem [17]
to second-harmonic waveguide FELs.

It was shown that the choice of the wiggler field is a compro-
mise between a large interaction gain and a significant eIectro[r%S]
energy reduction. Therefore, the implementation of second-har9]
monic waveguide FELs in future designs of compact waveguide
FEL systems is likely to be influenced by specific application
constraints. To minimize the electron energy and the cost of tho]
overall FEL system, other electron energy reduction techniques
need to be considered in parallel and assessed against each othet.
Examples of these techniques include a similar but different
second-harmonic scheme based on a transverse beam-wavelf#!
teraction achieved in a rectangular waveguide [21], a radio-fre-
guency modulation based harmonic generation scheme [7] and
a nonlinear harmonic generation scheme [22]. It is conceivable
that the individual development of these novel harmonic gener-
ation techniques will collectively lead to an economically imj
portant reduction in the electron energy and hence in the cap
cost of compact waveguide FELSs.
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