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ABSTRACT 

We address the problem of blind recovery of multiple sources 
from their linear convolutive mixture with the cross-comelation 
and constant modulus algorithm. The steady state mean- 
squared error of this algorithm is first derived to justify the 
proposal of a new cross-correlation and constant modulus 
type algorithm for PAM-PSK type non-constant modulus 
signals. Simulation studies are presented to support the im- 
proved steady-state performance of the new algorithm. 

1. INTRODUCTION 

In a multi-input and multi-output (MIMO) system, one of 
the challenging problems is to reconstruct multiple indepen- 
dent and identically distributed (i.i.d.) sources from their 
linear convolutive mixture. In spatial division multiple ac- 
cess (SDMA) for use in multiuser telecommunications, for 
example, a number U of i.i.d. sources is transmitted through 
linear channels, which can be modeled as FIR filters of or- 
der L, and picked up by an array R of sensors to exploit 
spatial diversity. A bank of space-time equalizers is em- 
ployed to mitigate intersymbol interference ( I S )  and in- 
teruser interference (IUI). Among various adaptive algo- 
rithms proposed, the cross-correlation and constant modu- 
lus algorithm (CC-CMA) utilizes the underlying constant 
modulus property of the transmitted signals’ and separates 
different signals by introducing a decorrelation penalty within 
the cost function, [ I ] .  Provided that some mild conditions 
regarding the channel and the sources are satisfied, the CC- 
CMA algorithm exhibits mean convergence to a zero-forcing 
solution corresponding to the retrieval of one of the multi- 
ple sources with possible delay. However, the mean-squared 
emor (MSE) of the CC-CMA algorithm in the steady state 
cannot be avoided due to the stochastic gradient used in 
the equalizer update equation. In this paper, by applying a 
similar approach as [2], the steady state MSE of the CC- 
CMA algorithm is derived. As the analytical expression 
indicates that the steady state MSE of the CC-CMA algo- 
rithm increases when the signal constellation is not constant 

modulus, a novel integration of the CC-CMA cost func- 
tion together with a constellation match error penalty is pro- 
posed for Pulse Amplitude Modulation - Phase Shift Keying 
(PAM-PSK) type signals in a multiuser system. 

2. THE CC-CMA ALGORITHM 

At time instant k ,  the equalizer regressor is given by 

x ( k )  = [xT(k) . . .XZ(k)]T = AT+) ( I )  

where x j ( k )  = [ z j ( k ) ,  . . z j ( k  - N)IT is the jth sensor 
output vector, N is the order of the sub-equalizer, A is the 
channel convolution matrix, s ( k )  = [ s l ( k ) .  . . s l ( k  - N - 
L )  . . . s ~ ( k  -N -L)IT is the composite source vector, [3]. 
Thenotations (.)H, ( . )T  and(.)* denote respectively herm- 
tian, transpose and complex conjugate. Representing the l th  
space-time equalizer tap vector as w , ( k ) ,  its output is writ- 
ten as  yi(k) = wr(k)x(k). Define hl (k) as the combined 
channel and equalizer4 impulse response. The l th equalizer 
output can also he written as yi(k) = hT(k)s (k) .  The CC- 
CMA algorithm cost function for the l t h  equalizer is written 
as 

(2) 
where E{(lyl(k) lz  - R2)2}  is the constant modulus cost, 
R2 = is the so-called dispersion constant, y E R+ 
isthemixingparameterandr,,a(k) = E{yr(k)y&(k - d)} 
is the cross-correlation between the l th  equalizer and the 
mth equalizer output with lag 6. For notational convenience, 
we rewrite the cost function in eqn (2) as 

J i ( k )  =E{(l~i(k) l ’ -R 2 ) .  ’} +rT(k)y’ (k )  (3) 

where r(k) and y’ (k)  are vectors containing the elements of 
T,,J ( k )  and y,(k-6) with different values in the indices m 

T 
and 6, i.e., r(k) = [ T I , - ( N + L ) ( ~ )  . . . . . . T I - - ~ , ( N + L ) ( ~ ) ]  
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and y’(k)  = [yl(k + N + L )  . . . . . . yc-~(k - iV - L)IT. 
With the parameter X E (0, I] controlling the length of the 
effective data window in the estimation, the cross-correlaton 
vector r(k) can be estimated by the following update equa- 
tion. 

q k )  = XF(k - 1) + (1 - X)Yl(k)Y’*(k) (4) 

With the stochastic gradient descent method, the l t h  equal- 
izer update equation is given by 

wc(k + 1) = wc(k) + peb(k)x*(k) ( 5 )  

where the positive scalar p is the step size parameter and 
eb(k) = (Rz - /yi(k)I’) yl(k) - ;FT(k)y’(k) is the in- 
stantaneous error signal of the Ith equalizer 

3. THE CC-CMA STEADY STATE MSE ANALYSIS 

We note that additive channel noise is inevitable in all prac- 
tical communication models and contributes to the steady 
state MSE. However, in this study, as in [2], a noise-free en- 
vironment is assumed since our focus is on the influence of 
the stochastic gradient estimator of the CC-CMA algonthm 
towards its steady state MSE performance. Without loss of 
generality, we assume that the l th  equalizer asymptotically 
converges to the retrieval of the l th  source with delay dc, 
[4]. Define apriori error ek(k)  for the Z t h  equalizer at the 
kth iteration as 

e k ( k )  = S l ( k  - d)  - y&) (6 )  

The expression of the steady state MSE for the I t h  equalizer 
is shown in eqn (7) and this is the quantity that we wish to 
determine. 

Before continuing, the statistical properties of the cross- 
correlation estimator F,,a(k) after convergence of the l*h 
equalizer are studied. 

(a )  The expectation of the cmss-correlation estimator is 
equal torero in thesteady state, i.e., E {Fm,a(k)} = 0 

PmoJ With respect to eqn (4) and considering the fact that 
lim E{F&(k)} = E{Fm,6(k - I)}, we obtain 

E {?&(k)} = E{yi(k)yL(k - 6 ) } .  Two assumptions are 
introduced. ( I )  In the steady state, the ith source signal 
si ( k )  is independent of the estimation error signal at the j t h  
equalizer output, e3,(k). This is actually a generalized as- 
sumption of that given in [2], whereby the case i = j is 
specified. Justification of this assumption is based upon the 
fact that the estimation error of the equalizer-j, e i ( k ) ,  is in- 
sensitive to the ith source signal. (2) The estimation error 

k - m  

signals at the outputs ofdifferent equalizers are assumed un- 
correlated, i.e., E { e d ( k ) e i ( k  - 6)’) = 0 for i # j .  This 
assumption becomes realistic when the equalizer is long 
enough so that its output in the steady state contains only 
an estimate of the corresponding source but no significant 
contribution from other interference sources. Under these 
two assumptions, by substituting y;(k) with the expression 
si (k-di)-eh(k)  and uti1izingthepropertyofi.i.d. sources, 
the result E {?m,&(k)} = 0 is proven. 

(b )  Whenk- oo,E{l~m,6(k)12} ~ E { l s r ( k ) ~ ’ 1 ~ ~ ( k ) 1 ’ }  

Proof: Expand the quantity E { lFm,&(k)/*} with respect to 
eqn (4). In the resultant expansion, we assume the quantity 
r,,a(k- 1) is uncorrelated with the equalizer output signals 
yt(k) andy,(k-6) whenF&(k-l)  convergestoacon- 
stant in the steady state. This assumption is justified when 
the parameter X is chosen to be close to unity, which means 
a long data window is used in the cross-correlation estima- 
tion, [3]. Using the result of E {?,,,a(k - 1)} = 0 and for 
stationalysources lim E 1~, ,a (k)1~} = E {  l~,,a(k - 1)lZ}, 
the following approximation is achieved 

- 

k-m { 

wherethetermsIs,(k- 6)12 /ek(k)I2, I s I ( ~ ) ~ ’  6)l2 
and ieh(k)i2 l e r ( k  - 6)lz are neglected for small values of 
lei(k)lz and l e r ( k  - 6 f .  

Employing an energy preservation approach, the following 
relationship is derived in [2], 

(9) 
Firstlyconsiderp’E { / ek(k)I ’ }  on the left hand side. Sub- 

stitutingtheexpressionforek(k), theexpansion ofp’E { lek(k)l’} 
can be written as the sum of four terms. 

p * E { l e k ( k ) l z }  = termA+termB+termC+termD (IO) 

where = pZE { 1 ( R z  - l ~ ( k ) l ~ )  ~i(k)1~}, 

termB = gy’Tr { E  {F(k)FH(k)} E { ~ ’ ( k ) y ’ ( k ) ~ } } ,  

and termD is the complex conjugate oftermC. In [2], termA 
isapproximatedbyp2E{/s1’R~ -2Rz ~ s I ~ ‘ + ~ s I / ~ ) .  To 

termc = %*E { (lY(k)IZ - R2) YXk) ( W Y W ) }  

derive the expression for termB, on the basis that P(k) tends 
towards a vector with constant elements in the steady state, 
which is achieved by using a sufficiently long data window, 
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we assume that matrices P(k)PH(k) and ~ ’ ( k ) y ’ ( k ) ~  are 
uncorrelated, [3]. Under this assumption, termB is written 
astermB= $ p 2 T ~ { E { F ( k ) P H ( k ) } E { y ’ ( k ) y ’ ( k ) H } } .  

Using the result o f E  IFm,a(k)12} in eqn (8) and the statis- 
tical independence of the sources, termB is approximated by 

{ 
$ p 2 ( 2 N + 2 L + 1 ) e E  { l s ~ ( k ) l ~ }  L E  { Ism(k)12)*, 

where terms which contain Iek(k)l’ are neglected for small 
value of leb(k)l. For termC, it is in fact the correlation be- 
tween the instantaneous error signal contributed from the 
constant modulus cost and the decorrelation penalty. Hence, 
for small values of instantaneous error signals, termC can be 
approximated by zero. Since termD is the complex conju- 
gate oftermC, it is also approximately zero. 

Refer to the right hand side of equ (9). As the value of 
F(k) approaches to a constant vector in the steady state, the 
estimator ofthe cross-correlation between the current equal- 
izer and the previous equalizer output P(k) is assumed to be 
uncorrelated with the product of estimation error eh(k) and 
the previous equalizer outputs y’ (k)  in the steady state. Jus- 
tification is also based upon P(k) approaching a vector with 
constant elements, when X is large, which corresponds to a 
long data window in the estimation of the cross-correlation 
penalty. Since E {?(k)} = 0, the right hand side of eqn (9) 
canbewrittenas2pE p l s ~ ( k ) / ~  leh(k)12 - R2 leh(k)/2}, 
where p equals to 3 for a real system and 2 when the system 
is complex, [2]. Summarizing the above results and substi- 
tuting the corresponding expression into eqn (9), the steady 
state MSE of the CC-CMA algorithm, i.e., E { le~(k)lz} 
when k + CO; is given by 

{ 

M S E  = PE { l lX (~ ) I l * )  x (11) 

When the mixing parameter y = 0, eqn ( I  1) agrees with the 
results in [2] for the constant modulus algorithm. Eqn (1  1) 
shows that the CC-CMA steady state MSE is affected by the 
two-norm of the equalizer regressor E l l ~ ( k ) 1 1 ~ } ,  the step 
size p, the mixing parameter y. the parameter A, the num- 
ber of i.i.d. sources and the source statistics. Large values 
of p and y lead to high level of MSE. However, with small 
p,  convergence rate reduces and there exists a lower hound 
for the mixing parameter y, [4]. For a system with a larger 
number of sources, the steady state MSE increases, which is 
reasonable since the adaptation ofthe current equalizer is re- 
lated to the output of the previous equalizer due to the cross- 

c 

correlation penalty and the error of the previous equalizer 
output would propagate to the equalizer at the later stage. 

4. THE MODIFIED CC-CMA ALGORITHM 

When compared with constant modulus sources, open eye 
pattems are more difficult to achieve for non-constant mod- 
ulus sources due to the high level of steady state MSE. To 
overcome this problem, the cost function of the modified 
CC-CMA algorithm (MCC-CMA) for the I th equalizer is 
written as 

r ( k )  = JL (I;) +?,E {P(k)} (12) 

where yz is an additional mixing parameter to combine a 
constellation matched error penalty together with the con- 
ventional cost function. The term E { p ( k ) }  is newly intro- 
duced to reduce the constellation matched error. Notice that 
in the selection of the function p(k), the following factors 
should be considered [5]. Firstly, p ( k )  should provide uni- 
form performance over the information symbols. Secondly, 
it should he symmetric around each member of the alpha- 
bet. Thirdly, the maximum value should be reached at the 
centre point between two consecutive symbols from the al- 
phabet. The minimum values are zeros and only occur at the 
constellation points. For a PAM-PSK signal constellation, a 
similar constellation matched error function to that in [5] is 
employed. That is, 

p(k) = 1 -sin2” ( ~ ’ ’ ~ ~ ” ~ )  (13) 

where 2d is the minimum distance between symbols and 
n is a positive integer which gives some degree of free- 
dom for the selection ofp(k). Using the stochastic gradient 
method to minimize the MCC-CMA cost function, the in- 
stantaneous error signal is modified so that the update equa- 
tion of the MCC-CMA algorithm at the kfh iteration is writ- 
ten as 

The performance of the newly proposed modified MCC- 
CMA algorithm is examined in the following simulation 
section. 

5. SIMULATIONS 

Firstly we examine the steady state MSE of the CC-CMA 
algorithm. A MIMO system with three i.i.d. sources and 
four sensors is assumed. The order of the channel and the 
sub-equalizer are respectively L = 1 and N = 2. We as- 
sume a QPSK system with source alphabet { +& * + j }  
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1.. ;TI ioiTl 6. CONCLUSION 

Table 1. MSE signal at the output of equalizer-1, 2, 3 for 
the QPSK and 8-PAM-PSK systems * % ?  * c P o  c 

.I * 

An analytical expression for the steady state MSE of the 
CC-CMA algorithm is derived. Its value is proportional to 
the step size p and the quantity of E { ~ / ~ ( k ) ~ ~ ~ )  and is fur- 

1 2 , 1 3 0  
__n- 

, 1 3 1 5 6  
-w 

Fig. l .  Comparison between CC-CMA and MCC-CMA. 
(a) Residual error at EQ-l (b) Residual error at EQ-2 (c) 
Eye diagram of EQ-l after 20000 samples, MCC-CMA (d) 
Eye diagram of EQ-2 after 20000 samples, MCC-CMA (e) 
Combined channel plus EQ-l response ( f )  Combined chan- 
nel plus EQ-2 response 

for a constant modulus source. For the non-constant modu- 
lus source, an 8-PAM-PSK constellation is employed, page 
179 [6]. Fixing the parameters X = 0.999 and y = 4, the 
experimental results are shown in Table (1). Fairly close 
agreement between the experimental result and analysis can 
be observed. Note that the step size p for equalizer-I, 2,3 
arerespectivelychosen as 3 x  
for the QPSK system and 3 x 10V3, 5 x 
for the 8-PAM-PSK system. Simulations indicate that the 
steady state MSE for the non-constant modulus sources are 
much larger than that of the constant modulus sources even 
though much smaller step sizes are used. More simulation 
results regarding varying value of A, y and p are shown 
in [3]. The performance of the MCC-CMA algorithm is 
next examined. A two usen and three sensors 16-PAM- 
PSK system is assumed. Let L = N = 1 and set the 
degree n = 1. The conventional CC-CMA algorithm and 
the MCC-CMA algorithm are compared in Fig ](a) and (b) 
in terms of residual error. Analogous to the steady state 
MSE, the residual error for the Ith. equalizer is defined as 
"h"'~~~-~~~;kclt;:(k)')Z and is an important measure in indi- 
cating wben the open eye condition can be achieved. With 
the MCC-CMA algorithm, both equalizer-] and equalizer-2 
achieve open eye patterns within 20,000 data samples (com- 
pared with more than 60000 data samples with the CC- 
CMA algorithm). The combined channel plus equalizer- 1 
and equalizer-2 impulse responses are shown in Fig l(e) and 
(0. It can be observed that equalizer-I retrieves source-I 
with two delays and equalizer-2 reconstructs source-2 also 
with two delays. 

2x 10V3 and 0 . 6 ~  
and 5 x 

I I 
thermore affected by the choice of the mixing parameter y, 
the parameter A, which controls the window length within 
the estimation of the cross-correlation penalty, the source 
statistics and the number of users in the system. To reduce 
the steady state MSE when the signal constellation is not 
constant modulus, an addition constellation matched error 
penalty is introduced, resulting in the new modified CC- 
CMA algorithm. Simulation results support the analysis and 
confirm the improvement of the MCC-CMA algorithm. 

7. REFERENCES 

[I] C.B. Papadias and A. Paulraj, "A constant modulus al- 
gorithm for multiuser signal separation in presence of 
delay spread using antenna arrays", IEEE Signal Pro- 
cessingLetters,vol. 4, no. 6, pp. 178-181, 1997. 

[2] J. Mai and A. H. Sayed, "A feedback approach to the 
steady-state performance of fractionally spaced blind 
adaptive equalizers", IEEE Trans. on Signal Process- 
ing, vol. 48, no. 1, pp. 80-91,2000. 

[3] Y. Luo and J. A. Chambers, "Steady state mean- 
square error analysis of the cross-correlation and con- 
stant modulus algorithm in a MIMO convolutive sys- 
tem", Accepted by IEE Proceedings - Ksion, Image 
and Signal Processing, 2002. 

[4] A. Touzni, I. Fijalkow, M.G. Larimore, and J.R. Treich- 
ler, "A globally convergent approach for blind MIMO 
adaptive deconvolution", ZEEE Trans. on Signal Pro- 
cessing,vol. 49,no. 6,pp:116~1178,2001. 

[5] M. Amin, L. He, C. Reed Jr, and R. Malkemes, "A mod- 
ified constant modulus algorithm for adaptive chan- 
nel equalization for QAM signals", in Proc. Ofthe 
IEEE Signal Processing Workshop, Staristical Signal 
Processing,, 2001, pp. 563-566. 

[6] J. G. Proakis, Digital Communications, McCraw Hill, 
1995. 

V -  136 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 7, 2010 at 11:17 from IEEE Xplore.  Restrictions apply. 


