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AbstracC We discuss the architecture and 
microarchitecture of a scalable, parametric vector 
accelerator €or the TLM algorithm Architecture- 
level experimentation demonstrates a n  order  of 
magnitude complexity reduction f o r  vector 
lengths of 16 32-bit singleprecision elements. W e  
envisage the proposed architecture replicated in B 

SOC environment thus, forming a multiprocessor 
system capable of tapping parallelism at  the 
thread level 3 s  well as the data level. 

1, Introduction 

Prior attempts to implement the TLM algorithm [ I ]  
on general-purpose architectures have fallen into two 
major categories: Shared memory, cache coherent 
multi-processors 12, 31 and distributed.processors [4] 
with shared- memory machines often demonstrating 
better performance. ; 

The TLM is a highly-parallel three-dimensional 
numerical algorithm which has the potential for being 
accelerated along its innermost loop via vectorization 
thus, tapping parallelism at the data level (DLP). 
Furthermore, the algorithm can be statically 'sliced' 
(threaded) along the second outer Loop, and be 
executed on the previously mentioned platforms via 
dfferent processors executing different iterations. 
Such parallelism is known as thread-level-parauelism 
[5] and is currently being pursued by all major 
microprocessor vendors. 
Successful acceleration of such parallel codes 
depends very much on the algorithmic 
communication pattern which dictates the level of 
data sharing across the multiple processors. In the 
case of the TLM, data transfers between individual 
nodes is very high and i n  extreme cases the data 
transfer during the toiinecf part of the algorithm can 
be much more computationally expensive than the 
numerical calculations during scatrering. The 
performance differential between shared memory and 
distributed machines is often attributed to such data 
sharing issues. 
Custom architectures €or accelerating TLM codes 
have been proposed in the past by Stathard and 
Pomeroy [6]. Our work proposes a custom vector 
approach to accelerating the inner loop of TLhl 
codes, quite unlike this earlier work. I n  our case, an  
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embedded 32-bit processor IS augmented with a 
configurable, extensible custom vector accelerator 
and resides on an on-cbip-bus [7] thus, forming a 
finely-tuned SoC computation kernel for the TLM 
algorithm. 

2, Vector architecture 

The programmer's model of the parametric vector 
acczlerator for TLM is depicted i n  Figure 1: 

Figure 1: Vector aceelemlor programmer's model 

The programmer's model specifies a parametric 
number of vector registers (VRMAX), each 
consisting of a parametric number of 32-bit single- 
precision elements (VLMAX). There is a scalar 
register file consisting of a parametric number of 
scalar 32-bit elements (SRMAX), used for virtual 
address computation, immediate passing and vector 
splat operations. Additionally, there are two vector 
accumulators each holdmg VLMAX singe-precision 
elements and finally, the vector length register 
(VLEN) which specifies the number of bytes that will 
be affected by the currently executing vector opcode. 
The Instruction Set Architecture (ISA) of the 
accelerator includes standard vector floating point 
operations except &vision, vector LoadlStores, and a 
generalized permute instruction. A large number of 
sub-element manipulation instructions (including 
vector splat instructions) can be synthesized basad on 
the three-operand permute infrastructure. The ISA is 
summarized in Table 1 
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CPU provides a coprocessor interface, it was decided 
to implement that channel in order to ensure 
pipelined, lockstep operation of the accelerator and 
timely transfer of data to and from the main CPU. 
Typical transactions on the developed channel are 
depicted in Figure 3. 
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3, Vector microarchitecture 

The proposed vector extensions are implemented as a 
tightly-coupled vector accderator attached to an 
open-source, configurable, extensible, Sparc V8- 
compliant RISC CPU [8]. The processor/coprocessor 
combinatmn conunumcates via the AHB On-Chip 
Bus to the SDRAM controller which controls the off- 
chip SDRAM part. A high level schemabc of the 
scalar processor and vector accelerator is deplcted in 
Figure 2. 

Figure 2: TLM computation kemd 

As shown in the figure, there exists a bidirectional 
. ' communication channel across the scalar processor 

and the vector accelerator. Though the open source 

Figure 3: Processor-Copmcemor communication channel 

The detailed microarchitecture of the com!dned 
scalar processor/vector coprocessor for a vector 
length of two 32-bit (single-precision) elements is 
depicted in Figure 4. 

Y 
Figure 4: Detailed mkroarchitecture 

Instructions are fetched from the multi-way set- 
associative instruction cache and stored in a single 
32-bit register. Typically, high-performance RISC 
processors of equal pipeline depth would extract the 
source operand fields right after instruction cache 
access and set up the synchronous register file. 
Unfortunately, that is not the case in the particular 
processor which, due to the windowing scheme of the 
Sparc V8 architecture, requires access to the current- 
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windowpointer (CWP) register in order to compute 
a physical register file address. As a result, source 
operand addresses are set-up on the falling edge of 
the clock in the DECODE stage. During this stage, 
the repster file is accessed and the two source 
registers are rebieved. Operand bypassing takes then 
place and the resolved operands are clocked into the 
ALU input registers, ready for execution. It is during 
t h i s  stage that the vector opcodes are idenhfied atid 
dispatched to the tightly-coupled vector accelerator. . 
Decoding logic in the later produces a number of 
control fields which are pipelined down the control 
pipeline. Vector operand accesses are triggered by 
the falIing edge of the clock during decode, for 
reasons of symmetry to the scalar pipeline. 
During the EXEC stage, the RISC CPU executes the 
scalar instruction or computes the virtual address of a 
Loadstore operation. In the same stage, the vector 
accelerator performs the first stage of the pipelined 
floating point computations. In the next stage, scalar 
data return to the main processor via the data cache 
return path whereas the vector accelerator performs 
the last stage of execution. Due to the very tight 
timing constraints, floating point results are stored in 
an intermediate register prior to committing to the 
vector register file. 

4. Methodology 

We have applied a basic implementation of the SCN 
TLM algorithm 111 i n  which no external boundary 
condtions were used. In the particular case, a single 
output node was used as a diagnostic aid to verify 
correct operation. We used the accelerated scatter 
method of Naylor and Ait-Sadi as proposed in [9]. 
The non-vectorized (scalar) algorithm was profiled 
both i n  native mode (IA32'Linux) as well as on our 
simulated processor for consistency of results. Scalar 
code profiling revealed a scatterconnect compiexity 
ratio of 63:37, averaging over all the studied 
configurations. 
Our simulation infrastructure is based around the 
simplescalar toolset 1101 which provides a complete 
computer architecture modelling and performance 
evaluation environment. The compiler used was GCC 
2.7.3 with optimizations (-03).  

5. Results 

The reference problem chosen for benchmarking was 
a fixed mesh of lo6 nodes. This number is convenient 
as it gives a prime factorisation of 26X56, which 
allows for the aspect ratio of the problem space to be 
varied over a reasonable range whilst maintairiing the 
same number of nodes. 
We measured the absolute complexity (dynamic 
instruction count) of the scalar code for all 
configurations of interest. Then, the vectorized code 
was run and its complexity recorded for a maximum 

vector length of up to 15 single-precision elements. 
Figures 5 and 6 depict the normalized complexity of 
the vectorized algorithm over maximum vector 
length. 
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Figure 5 - Benchmnrking using a'fhin and a cubic 
problem space. 

Figure 5 suggests that the optima1 (less complex) 
configuration is where the problem space is thin, i.e. 
where the vector length is maximised. 
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Figure 6 - Irerun" time fur 80 x 100 x 125 node 
mesh with differing alignment relative to the vector 

direction. All of these results show a similar 
speedup 

Figure 6 depicts a 80xlOOX125 configuration 
compared with a mesh of 100X125X80, 
80X125X100, etc. These mesh dimensions were 
chosen as being typical of realistic model of an 
electromagnetic scattering situation. Results 
demonstrate that vectorization alignment changes 
only slightly the complexity (and hence run time) in 
all configurations. A vector length of 16 single- 
precision elements showed a speedup of 
approximately an order of magnitude thus clearly 
demonstrating the benefit of using parallelism at the 
data level. 
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6,  Conclusions [ lo]  D. Burger, T, Austin, ‘Evaluaring Future 
Microprocessors: The Simplescalar Tool Set’, 

We have proposed a parametric vector accelerator to httd/www.simplescalar.com 
exploit the significant amount of data level 
parallelism whch is inherent within the TLM code. 
Our results demonstrate an order-of-magnitude 
performance improvement can be achieved for a 
vector length of 16 single-precision elements. Such a 
configuration is realizable with current VLSI 
technology. We are also actively investigahng 
thread-level paraltehsm as the second major source 
of parallelism in the workload. Our scalable 
architecture can be replicated thus, creating a cache 
coherent, embedded multiprocessor for TLM 
acceleration providing further performance benefits. 
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