

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288389275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2001 3" International Conference on Computational Electromagnetics and Its Applications Proceedings

Parametric Da ta-Parallel Architectures for TLM Acceleration

Vassilios A Chouliaras James A Flint Yibin Li
V.A.Chodiaras@lboro.ac.uk J.A.Rint@lboro.ac.uk Y.LiZ@lboro.ac.uk

Department of Electronic and Electrical Engmeering, Loughborough University,
Ashby Road, Loughborough, Leicestershire, LE1 1 3TU, UK.

Tel: +44 1509 227113, Fax: 4 4 1509 227014

AbstracC We discuss the architecture and
microarchitecture of a scalable, parametric vector
accelerator €or the TLM algorithm Architecture-
level experimentation demonstrates a n order of
magnitude complexity reduction f o r vector
lengths of 16 32-bit singleprecision elements. W e
envisage the proposed architecture replicated in B

SOC environment thus, forming a multiprocessor
system capable of tapping parallelism at the
thread level 3 s well as the data level.

1, Introduction

Prior attempts to implement the TLM algorithm [I]
on general-purpose architectures have fallen into two
major categories: Shared memory, cache coherent
multi-processors 12, 31 and distributed.processors [4]
with shared- memory machines often demonstrating
better performance. ;

The TLM is a highly-parallel three-dimensional
numerical algorithm which has the potential for being
accelerated along its innermost loop via vectorization
thus, tapping parallelism at the data level (DLP).
Furthermore, the algorithm can be statically 'sliced'
(threaded) along the second outer Loop, and be
executed on the previously mentioned platforms via
dfferent processors executing different iterations.
Such parallelism is known as thread-level-parauelism
[5] and is currently being pursued by all major
microprocessor vendors.
Successful acceleration of such parallel codes
depends very much on the algorithmic
communication pattern which dictates the level of
data sharing across the multiple processors. In the
case of the TLM, data transfers between individual
nodes is very high and i n extreme cases the data
transfer during the toiinecf part of the algorithm can
be much more computationally expensive than the
numerical calculations during scatrering. The
performance differential between shared memory and
distributed machines is often attributed to such data
sharing issues.
Custom architectures €or accelerating TLM codes
have been proposed in the past by Stathard and
Pomeroy [6]. Our work proposes a custom vector
approach to accelerating the inner loop of TLhl
codes, quite unlike this earlier work. I n our case, an

0-7803-8562-4/04/$20.00 02004 I EEE. 5 69

embedded 32-bit processor IS augmented with a
configurable, extensible custom vector accelerator
and resides on an on-cbip-bus [7] thus, forming a
finely-tuned SoC computation kernel for the TLM
algorithm.

2, Vector architecture

The programmer's model of the parametric vector
acczlerator for TLM is depicted i n Figure 1:

Figure 1: Vector aceelemlor programmer's model

The programmer's model specifies a parametric
number of vector registers (VRMAX), each
consisting of a parametric number of 32-bit single-
precision elements (VLMAX). There is a scalar
register file consisting of a parametric number of
scalar 32-bit elements (SRMAX), used for virtual
address computation, immediate passing and vector
splat operations. Additionally, there are two vector
accumulators each holdmg VLMAX singe-precision
elements and finally, the vector length register
(VLEN) which specifies the number of bytes that will
be affected by the currently executing vector opcode.
The Instruction Set Architecture (ISA) of the
accelerator includes standard vector floating point
operations except &vision, vector LoadlStores, and a
generalized permute instruction. A large number of
sub-element manipulation instructions (including
vector splat instructions) can be synthesized basad on
the three-operand permute infrastructure. The ISA is
summarized in Table 1

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:48:02 UTC from IEEE Xplore. Restrictions apply.

mailto:V.A.Chodiaras@lboro.ac.uk
mailto:J.A.Rint@lboro.ac.uk
mailto:Y.LiZ@lboro.ac.uk

IT&& (vu&
MVSR2CSR Transfer RISC scalar register to

MVCSRZR TransEa

MVSR2CVEL Move RISC scalar register to

MVCVELZR Bhve c q x m s o r ve&m etemeat

Load vector register unaligned

CPU provides a coprocessor interface, it was decided
to implement that channel in order to ensure
pipelined, lockstep operation of the accelerator and
timely transfer of data to and from the main CPU.
Typical transactions on the developed channel are
depicted in Figure 3.

dk

pmp-h mp-m

poop-1n.M

W-l".Mlld

aop_l".opojl9 01

pmpJndinl31 : O)

W-~lV wfi -01

w-cm

~ m-w11.* I
~~~~~~~ 

VFPADD.S Vector floating-point add (single 

3, Vector microarchitecture 

The proposed vector extensions are implemented as a 
tightly-coupled vector accderator attached to an 
open-source, configurable, extensible, Sparc V8- 
compliant RISC CPU [8]. The processor/coprocessor 
combinatmn conunumcates via the AHB On-Chip 
Bus to the SDRAM controller which controls the off- 
chip SDRAM part. A high level schemabc of the 
scalar processor and vector accelerator is deplcted in 
Figure 2. 

Figure 2: TLM computation kemd 

As shown in the figure, there exists a bidirectional 
. ' communication channel across the scalar processor 

and the vector accelerator. Though the open source 

Figure 3: Processor-Copmcemor communication channel 

The detailed microarchitecture of the com!dned 
scalar processor/vector coprocessor for a vector 
length of two 32-bit (single-precision) elements is 
depicted in Figure 4. 

Y 
Figure 4: Detailed mkroarchitecture 

Instructions are fetched from the multi-way set- 
associative instruction cache and stored in a single 
32-bit register. Typically, high-performance RISC 
processors of equal pipeline depth would extract the 
source operand fields right after instruction cache 
access and set up the synchronous register file. 
Unfortunately, that is not the case in the particular 
processor which, due to the windowing scheme of the 
Sparc V8 architecture, requires access to the current- 

570 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:48:02 UTC from IEEE Xplore.  Restrictions apply. 



windowpointer (CWP) register in order to compute 
a physical register file address. As a result, source 
operand addresses are set-up on the falling edge of 
the clock in the DECODE stage. During this stage, 
the repster file is accessed and the two source 
registers are rebieved. Operand bypassing takes then 
place and the resolved operands are clocked into the 
ALU input registers, ready for execution. It is during 
t h i s  stage that the vector opcodes are idenhfied atid 
dispatched to the tightly-coupled vector accelerator. . 
Decoding logic in the later produces a number of 
control fields which are pipelined down the control 
pipeline. Vector operand accesses are triggered by 
the falIing edge of the clock during decode, for 
reasons of symmetry to the scalar pipeline. 
During the EXEC stage, the RISC CPU executes the 
scalar instruction or computes the virtual address of a 
Loadstore operation. In the same stage, the vector 
accelerator performs the first stage of the pipelined 
floating point computations. In the next stage, scalar 
data return to the main processor via the data cache 
return path whereas the vector accelerator performs 
the last stage of execution. Due to the very tight 
timing constraints, floating point results are stored in 
an intermediate register prior to committing to the 
vector register file. 

4. Methodology 

We have applied a basic implementation of the SCN 
TLM algorithm 111 i n  which no external boundary 
condtions were used. In the particular case, a single 
output node was used as a diagnostic aid to verify 
correct operation. We used the accelerated scatter 
method of Naylor and Ait-Sadi as proposed in [9]. 
The non-vectorized (scalar) algorithm was profiled 
both i n  native mode (IA32'Linux) as well as on our 
simulated processor for consistency of results. Scalar 
code profiling revealed a scatterconnect compiexity 
ratio of 63:37, averaging over all the studied 
configurations. 
Our simulation infrastructure is based around the 
simplescalar toolset 1101 which provides a complete 
computer architecture modelling and performance 
evaluation environment. The compiler used was GCC 
2.7.3 with optimizations (-03).  

5. Results 

The reference problem chosen for benchmarking was 
a fixed mesh of lo6 nodes. This number is convenient 
as it gives a prime factorisation of 26X56, which 
allows for the aspect ratio of the problem space to be 
varied over a reasonable range whilst maintairiing the 
same number of nodes. 
We measured the absolute complexity (dynamic 
instruction count) of the scalar code for all 
configurations of interest. Then, the vectorized code 
was run and its complexity recorded for a maximum 

vector length of up to 15 single-precision elements. 
Figures 5 and 6 depict the normalized complexity of 
the vectorized algorithm over maximum vector 
length. 

0.6 Normalized complexity over I,, , Max Vector Length 
0 5  

04 

03 

0.2 

' -0.1 

0 
4 2 6 8 10 12 14 16 

Vector length 

Figure 5 - Benchmnrking using a'fhin and a cubic 
problem space. 

Figure 5 suggests that the optima1 (less complex) 
configuration is where the problem space is thin, i.e. 
where the vector length is maximised. 

Normalized complexity over 
Max Vector Lengtb 

o's 0.4 1 \ 

. .  2 4  6 8 10 12 14 16 
Vector length 

Figure 6 - Irerun" time fur 80 x 100 x 125 node 
mesh with differing alignment relative to the vector 

direction. All of these results show a similar 
speedup 

Figure 6 depicts a 80xlOOX125 configuration 
compared with a mesh of 100X125X80, 
80X125X100, etc. These mesh dimensions were 
chosen as being typical of realistic model of an 
electromagnetic scattering situation. Results 
demonstrate that vectorization alignment changes 
only slightly the complexity (and hence run time) in 
all configurations. A vector length of 16 single- 
precision elements showed a speedup of 
approximately an order of magnitude thus clearly 
demonstrating the benefit of using parallelism at the 
data level. 

571 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:48:02 UTC from IEEE Xplore.  Restrictions apply. 



6,  Conclusions [ lo]  D. Burger, T, Austin, ‘Evaluaring Future 
Microprocessors: The Simplescalar Tool Set’, 

We have proposed a parametric vector accelerator to httd/www.simplescalar.com 
exploit the significant amount of data level 
parallelism whch is inherent within the TLM code. 
Our results demonstrate an order-of-magnitude 
performance improvement can be achieved for a 
vector length of 16 single-precision elements. Such a 
configuration is realizable with current VLSI 
technology. We are also actively investigahng 
thread-level paraltehsm as the second major source 
of parallelism in the workload. Our scalable 
architecture can be replicated thus, creating a cache 
coherent, embedded multiprocessor for TLM 
acceleration providing further performance benefits. 

References 

P. B. Johns, “A symmetrical condensed nodefor 
the TLM method”, IEEE Trans. Microw. Theory 
Tech., vol. 35, no. 4, pp. 370-377, 1987. 

J. L. Dubard, 0. Benevello, D. Pompei, 5. Le 
Roux, P. P. M. So, and W. 5. R. Hoefer, 
“Acceleration of TLM through signal processing 
and parallel computing“, i n  Computation in 
Electromagnetics, pp. 71-74, IEE, 25-27 
November 1991. 

C. C. Tan and V. F. Fusco, “TLM modelling 
using an SIMD computer“, Int. I. Numerical 
Modelling: Elecctronic Networks, Devices and 
Fields, vol. 6 ,  pp. 299-304, 1993. 

P. J. Parsons, S. R. Jaques, S .  H. Pulko, and F. 
A. Rabbi, ‘7” modeling using distributed 
computing”, IEEE Microw. and Guided Wave 
Len, vol. 6, no. 3, pp. 141-142, 1996. 

J. Henessy, D. A. Patterson “Compurer 
architecture: A quantitative approach”, Morgan 
Kaufmann publishers, ISBN 1-55860-329-8 

D. Stothard and S. C. Pomeroy, “Dedicated 
TLM array processor”, Applied Computational 
Electromagn. Soc. J., vol. 13, no. 2, pp. 188- 
196,1998. 

“AMBA Specijication (Rev 2.0)”, www.arm.com 

“The Leon-2 processor User’s manual, XST 
edition, ver. i.0.14”, httdlwww.aaisler.com 

P. Naylor.and R. Ait-Sadi, “Simple method for 
determining 3 - 0  TLM nodal scattering in 
nonscalar problems”, Electron. Lett., vol. 28, 
no. 25, pp. 2353-2354, 1992. 

572 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:48:02 UTC from IEEE Xplore.  Restrictions apply. 

http://httd/www.simplescalar.com
http://www.arm.com
http://httdlwww.aaisler.com

