

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288389263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A System-on-Chip Vector Multiprocessor for
Transmission Line Modelling acceleration

Vassilios A. Chouliaras, James A. Flint, Yibin Li
Department of Electronic and Electrical Engineering

Loughborough University
Loughborough, Leicestershire, UK

{v.a.chouliaras,J.A.Flint,Y.Li2}@lboro.ac.uk

Jose L. Nunez-Yanez
Department of Electronic Engineering

University of Bristol
Bristol, UK

J.L.Nunez-yanez@bristol.ac.uk

Abstract— We discuss a configurable, System-on-Chip vector
multiprocessor for accelerating the Transmission Line
Modeling (TLM) algorithm with an architecture capable of
exploiting the two primary forms of parallelism in the code,
thread and data level parallelism. Theoretical results
demonstrate an order of magnitude reduction in the dynamic
instruction count for a scalar-processor/vector-coprocessor
configuration at a vector length of sixteen 32-bit single-
precision elements. Furthermore, a multi-vector SoC
architecture consisting of ten such vector accelerators provides
a near-linear theoretical performance benefit of the order of
88% in three out of four benchmark configurations which is
orthogonal to the benefit realized by vectorization alone. We
discuss in detail this potent architecture and present
implementation data for the 2-way multi-processor VLSI
macrocell.

I. INTRODUCTION
Prior attempts to parallelizing the TLM algorithm [1] on

general-purpose programmable architectures targeted either
shared memory, cache coherent multi-processors [2, 3] or
distributed processors [4] with shared- memory machines
typically demonstrating better performance. In addition,
custom architectures for accelerating TLM codes have been
proposed in the past by Stothard and Pomeroy [5].

The TLM is a highly-parallel three-dimensional
numerical algorithm (kernel) which has the potential for
being accelerated along its innermost loop, via vectorization
thus tapping parallelism at the data level (DLP).
Furthermore, the algorithm can be statically ‘sliced’
(threaded) along the second outer loop, and be executed on
the previously mentioned platforms via different processors
executing different iterations. Such parallelism is known as
thread-level-parallelism (TLP) [6] and is currently being
pursued by all major microprocessor vendors.

Successful acceleration of such parallel codes depends
very much on the algorithmic communication pattern which
dictates the level of data sharing across the multiple
processors. In the case of the TLM, data transfer between
individual nodes is very high and in extreme cases the data
transfer during the connect part of the algorithm can be much
more expensive, in terms of CPU cycles, than the numerical
calculations during scattering. The performance differential
between shared memory and distributed machines is often
attributed to such data sharing issues.

The contribution of this work in the area of thread and
data parallel TLM codes is five-fold: a) a three-dimensional
transmission line modeling software kernel (3D-TLM) was
developed in vector form, statically threaded (with shared-
memory semantics) and it’s data and thread parallel
performance evaluated for a number of mesh configurations
on a proprietary exclusive-read, exclusive-write parallel
RAM; b) The architectural model of an open-source CPU [7]
was extended with a context ID register, to allow for the
identification of the CPU context a software application
thread executes on. In addition, a novel, lightweight,
hardware-based synchronization mechanism was introduced
to dispense with the need for atomic-instruction-based
synchronization primitives; c) the single-processor open-
source system was extended to allow for multiple such
modified processors to be instantiated in a bus-based,
symmetric, cache-coherent configuration; d) The basecase
floating-point functionality of an open-source FPU [8] was
extracted and encapsulated in a custom, RISC-like, vector
coprocessor wrapper. That coprocessor was subsequently
introduced, in a tightly-coupled configuration, within each of
the modified processors in the multiprocessor system
resulting in a SoC-based multi-vector architecture capable of
exploiting, per processor, the DLP of the 3D TLM code and
across the multiple-processors the TLP of that workload,
quite unlike earlier work; e) finally, the architecture and
microarchitecture of the developed hardware platform are
highly parameterized via compile-time constants enabling
the system to be utilized not only in the case of the 3D TLM
code but on applications requiring strong floating-point
performance such as molecular simulations and 3D geometry
processing.

II. BENCHMARK
We have utilized a basic implementation of the SCN

TLM algorithm [1] in which no external boundary conditions
were used. In the particular case, a single output node was
used as a diagnostic aid to verify correct operation. We used
the accelerated scatter method of Naylor and Ait-Sadi as
proposed in [9].

The non-vectorized (scalar) algorithm was profiled both
in native mode (X86 Linux) as well as on our simulated
processor for consistency of results. Scalar code profiling
revealed a scatter:connect dynamic instruction count ratio of
63:37, averaging over all the studied configurations.

0-7803-9333-3/05/$20.00 ©2005 IEEE SIPS 2005568

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:41:06 UTC from IEEE Xplore. Restrictions apply.

Our simulation infrastructure is based around the
simplescalar toolset [10] which provides a complete
computer architecture modeling and performance evaluation
environment. The compiler used was GCC 2.7.3 with
optimizations (-O2). The multi-threaded results were
collected on a proprietary Exclusive-Read, Exclusive-Write
(EREW) Parallel-RAM (PRAM) simulator, originally based
on the simplescalar Instruction Set Simulator. Sim-system as
it is known, was developed from the simplescalar code base
and implements a parametric EREW PRAM machine with
parameters being the number of CPU contexts that
participate in a given simulation run. Sim-system produces
dynamic execution traces, per CPU context, which are used
to drive a currently cycle-accurate back end which models
arbitrary, shared-memory, multi-context architectures
including multi-threaded processors, multiprocessors or
multithreaded multiprocessors, as well as arbitrary
interconnect. The simulation infrastructure is elaborated in
[11].

III. VECTOR COPROCESSOR PROGRAMMERS
MODEL

The programmer’s model specifies a parametric number
of vector registers (VRMAX), each consisting of a
parametric number of 32-bit IEEE 754 single-precision
elements (VLMAX).

Figure 1. Vector Coprocessor programmer’s model

TABLE I. TABLE 1 : VECTOR ACCELERATOR ISA

Instruction Description
MVSR2VLEN Transfer scalar register to vector length register (VLEN)
MVSR2CSR Transfer RISC scalar register to coprocessor scalar

register
MVCSR2R Transfer coprocessor scalar register to RISC register
MVSR2CVEL Move RISC scalar register to coprocessor vector element
MVCVEL2R Move coprocessor vector element to RISC scalar register
VLDU Load vector register unaligned under VLEN
VSTU Store vector register unaligned under VLEN
VPERM Three-operand byte-wise vector permute
VSPLAT Splat coprocessor scalar register to coprocessor vector

register
VFPADD.S Vector floating-point add (single precision) under VLEN
VFPSUB.S Vector floating-point sub (single precision) under VLEN
VFPMUL.S Vector floating-point mult (single precision) under

VLEN
VFPMAC.S Vector floating-point multiply-accumulate

There is a scalar register file consisting of a parametric
number of scalar 32-bit elements (SRMAX), used for virtual
address computation, immediate passing and vector splat
operations. Additionally, there are two vector accumulators
each holding VLMAX single-precision elements and finally,
the vector length register (VLEN) which specifies the
number of bytes that will be affected by the currently
executing vector opcode. The ISA of the accelerator includes
standard vector floating point operations except division,
vector load/stores, and a generalized permute instruction.
The programmer’s model and ISA are summarized in Fig. 1
and Table I respectively.

IV. VECTOR COPROCESSOR
MICROARCHITECTURE

The vector coprocessor is tightly-coupled to an open-
source, configurable, extensible, Sparc V8-compliant RISC
CPU. The processor/coprocessor combination communicates
via the AHB On-Chip Bus [12] to the SDRAM controller
which controls the off-chip SDRAM part. A high level
schematic of the scalar processor and vector accelerator is
depicted in Fig. 2:

External
Memory

Scalar CPU Coprocessor

Core CPU

DCACHE

Bus Controller
(AHB Master)

Coprocessor
Datapath

VDCACHE

Bus Controller
(AHB Master)

Cop
I/F

AHB

ICACHE

SDRAM Ctrl
(AHB Slave)

SDRAM
(off-chip)

Figure 2. Single Processor/Coprocessor architecture

As shown in the figure, there exists a bidirectional
communication channel across the scalar processor and the
vector accelerator. Though the open source CPU provides a
coprocessor interface, initial experimentation could not
establish its ability to operate in a pipelined fashion. It was
therefore decided to implement a custom channel in order to
ensure pipelined, lockstep operation of the coprocessor and
CPU and the timely transfer of data across them.

The diagram of Fig. 3 shows a coprocessor data
operation on cycle 1 followed by a host-to-coprocessor
register transfer on cycle 2. In cycle 3, a coprocessor register
is requested by the RISC processor but due to internal stall
conditions, data are made available one cycle later than the
expected time (cycle 5 instead of cycle 4). During that time,
the main processor is held with the holdn signal. Finally, a
second read operation, this time directed to Coprocessor 1, is
initiated in cycle 6. Results are made available to the main
pipeline in cycle 7.

569

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:41:06 UTC from IEEE Xplore. Restrictions apply.

holdn
deasserted

1 2 3 4 5 6 7

data_op mvrc mvcr data_op mvcr

din

dout

dout

holdn asserted

data out valid

data into coproc

clk

pcop_in.cop_no

pcop_in.holdn

pcop_in.valid

pcop_in.opc[19:0]

pcop_in.din[31:0]

pcop_out[1].dout[31:0]

pcop_out[0].holdn

pcop_out[0].dout[31:0]

pcop_out[1].holdn

Figure 3. Processor/Coprocessor I/F Transactions

Figure 4. Detailed scalar and vector core microarchitecture

Fig. 4 depicts the detailed microarchitecture of the
processor-coprocessor combination: Instructions are fetched
from the multi-way set-associative instruction cache and
stored in a single 32-bit register. Typically, high-
performance RISC processors of equal pipeline depth would
extract the source operand fields right after instruction cache
access and set up the synchronous register file.
Unfortunately, this is not the case in the particular processor
which, due to the windowing scheme of the Sparc V8
architecture, requires access to the current-window-pointer
(CWP) register in order to compute a physical register file
address. As a result, source operand addresses are set-up on

the falling edge of the clock in the DECODE stage. During
this stage, the register file is accessed and the two source
registers are retrieved. Operand bypassing takes then place
and the resolved operands are clocked into the ALU input
registers, ready for execution. It is during this stage that the
vector opcodes are identified and dispatched to the tightly-
coupled vector accelerator. Decoding logic in the later
produces a number of control fields which are pipelined
down the control pipeline. Vector operands accesses are
triggered by the falling edge of the clock during decode, for
reasons of symmetry to the scalar pipeline.

During the EXEC stage, the RISC CPU executes the
scalar instruction or computes the virtual address of a
Load/Store operation. In the same stage, the vector
accelerator performs the first stage of the pipelined floating
point computations. In the next stage, scalar data return to
the main processor via the data cache return path whereas the
vector accelerator performs the last stage of execution. Due
to the very tight timing constraints, floating point results are
stored in an intermediate register prior to committing to the
vector register file.

V. VECTOR MULTIPROCESSOR
MICROARCHITECTURE

�
�
��

��
��

�

�
	

�

�
�

�
�
��

��
��

�

�
	

�
�
�

�
�
��

��
��

��

�
	

�
�

��

�
�

�
��

�

�
�

�
��

�

�
�

�
��

�

Figure 5. N-way parametric SoC Multiprocessor architecture:

The multi-processor architecture consists of a
configurable number of such processor-coprocessor pairs
residing on the high performance AHB bus as depicted in
Fig. 5. There is an AHB-to-APB (on-chip high-performance
to on-chip peripheral bus) bridge connecting the streaming
processing subsystem to a number of peripherals. In this
case, CPUs 1 through N-1 do not service interrupts neither
can access the onboard peripherals. CPU 0 is the main
controlling processor executing all I/O. The number of CPUs
and the geometry of the instruction and data caches are
specified via static configuration switches in the RTL source
code.

VI. RESULTS
The reference problem chosen for benchmarking was a

fixed mesh of 1000,000 nodes. This number is convenient as
it gives a prime factorization of 26×56, which allows for the

570

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:41:06 UTC from IEEE Xplore. Restrictions apply.

aspect ratio of the problem space to be varied over a
reasonable range whilst maintaining the same number of
nodes.

We measured the dynamic instruction count of the scalar
code for all configurations of interest. Then, the vectorized
code was run and its instruction count recorded for a
maximum vector length of up to 16 single-precision
elements. Figs. 6 and 7 depict the normalized dynamic
instruction count of the vectorized algorithm over maximum
vector length for various configurations of the 106 nodes
problem space.

�
��
��
��
�
�
	

�
��
�
��
�
�
��

�
�
�
��
��
��
��
�

Figure 6. Vector performance for a Thin-cubic problem

Fig. 6 suggests that the optimal (less computationally
expensive) configuration is where the problem space is thin,
i.e. where the vector length is maximized.

������
������
�������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16

�
��
��
��
�
�
	

�
��
�
��
�
�
��

�
�
�
��
��
�
�
��
�

Figure 7. Vector performance for 80 x 100 x 125 node mesh with

differing alignment relative to the vector direction

Fig. 7 depicts an 80×100×125 configuration compared
with a mesh of 100×125×80, 80×125×100, etc. These
mesh dimensions were chosen as being typical of realistic
model of an electromagnetic scattering situation. Results
demonstrate that vectorization alignment changes only
slightly the complexity (and hence run time) in all
configurations. A vector length of 16 IEEE 754 single-

precision elements showed a speedup of approximately an
order of magnitude thus clearly demonstrating the benefit of
using parallelism at the data level.

We performed a second experiment for the quantifying
the TLP of the application. Fig. 8 demonstrates the relative
dynamic instruction count for meshes of 22 x 10 x 10, 22 x
10 x 50, 22 x 10 x 250 and 22 x 10 x 500 respectively. These
preliminary results clearly show that there is a significant
acceleration potential from exploiting TLP. A very important
observation is that the TLP benefit is orthogonal to that of
DLP. This potentially translates to substantial dynamic
instruction count reduction, per processor-coprocessor
combination, and associated runtime benefits.

Multi-threaded TLM Code Theoretical Perfromance

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

2 3 4 5 6 7 8 9 10

CPU Contexts

R
el

at
iv

e
dy

na
m

ic
 in

st
ru

ct
io

n
co

un
t

22*10*10
22*10*50
22*10*250
22*10*500

Figure 8. TLP Performance for 22x10x10, 22x10x50, 22x10x250 and

22x10x500

VII. VLSI MACROCELL
We implemented the N=2 configuration of the system

depicted in Fig. 5 in a high performance 0.13 um CMOS
process. The Sparc CPU processors have an 8-window scalar
register file, and 4-way set-associative instruction and data
caches of 8KB and 16KB respectively. The vector
accelerator includes a 16x32 scalar register file and a 8X128,
3R1W vector register file.

The design was synthesized for maximum performance
initially on Synopsys Design Compiler and then, read into
Cadence SoC Encounter where floorplanning and power
routing took place. The clusters were exported to Synopsys
Physical Compiler for placement optimization and imported
again into SoC encounter for detailed routing. Figs. 9 and 10
depict the floorplan and final layout of the N=2
configuration. The macrocell implementation data are
tabulated in Table II.

VIII. CONCLUSION
We have developed a two-tier, configurable, extensible

SoC architecture based on open-source intellectual property
cores, for exploiting the major forms of parallelism in the
SCM TLM code. Tier-1 consists of a parametric vector
accelerator exploiting the DLP and demonstrates a ten-fold
performance improvement for a vector register length of
sixteen 32-bit elements. Tier-2 instantiates multiple such

571

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:41:06 UTC from IEEE Xplore. Restrictions apply.

processor-coprocessor pairs in a symmetric, shared memory
configuration and exhibits near-linear theoretical
performance improvement. Both results are orthogonal to
one another clearly showing the very good potential of this
combined DLP-TLP architecture for highly-parallel
applications. Subsequently, we implemented a 2-way vector
multiprocessor architecture utilizing 8-wide vector floating
point coprocessors and residing on the industry standard
AHB bus.

Figure 9. Figure 1: 2-way SMP floorplan

Figure 10. Figure 8: 2-way SoC Multiprocessor layout

TABLE II. TABLE 2: VLSI MACROCELL DATA

Parameter Value
Std cells 110099
RAMs 62
Fmax 158.5 MHz
Size 3424x3426 �m2 (11733569 �m2)

Utilization 83.8% (Top-level)

IX. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the

Department of Electronic and Electrical Engineering of
Loughborough University and the anonymous referees for
their very constructive comments.

X. REFERENCES

1. P. B. Johns, “A symmetrical condensed node for the TLM method”,

IEEE Trans. Microw. Theory Tech., vol. 35, no. 4, pp. 370–377,
1987.

2. J. L. Dubard, O. Benevello, D. Pompei, J. Le Roux, P. P. M. So, and
W. J. R. Hoefer, “Acceleration of TLM through signal processing and
parallel computing”, in Computation in Electromagnetics, pp. 71–74,
IEE, 25–27 November 1991.

3. C. C. Tan and V. F. Fusco, “TLM modelling using an SIMD
computer”, Int. J. Numerical Modelling: Electronic Networks,
Devices and Fields, vol. 6, pp. 299–304, 1993.

4. P. J. Parsons, S. R. Jaques, S. H. Pulko, and F. A. Rabhi, “TLM
modeling using distributed computing”, IEEE Microw. and Guided
Wave Lett., vol. 6, no. 3, pp. 141–142, 1996.

5. D. Stothard and S. C. Pomeroy, “Dedicated TLM array processor”,
Applied Computational Electromagn. Soc. J., vol. 13, no. 2, pp. 188–
196, 1998.

6. J. Henessy, D. A. Patterson “Computer architecture: A quantitative
approach”, Morgan Kaufmann publishers, ISBN 1-55860-329-8

7. “The Leon-2 processor User’s manual, XST edition, ver. 1.0.14”,
http://www.gaisler.com

8. http://www.opencores.org/projects.cgi/web/fpu/overview
9. P. Naylor and R. Ait-Sadi, “Simple method for determining 3-D TLM

nodal scattering in nonscalar problems”, Electron. Lett., vol. 28, no.
25, pp. 2353–2354, 1992.

10. D. Burger, T. Austin, ‘Evaluating Future Microprocessors: The
Simplescalar Tool Set’, http://www.simplescalar.com

11. Ashwin K. Kumaraswamy, V. A. Chouliaras , T. R. Jacobs, and J. L.
Nunez-Yanez, “System-on-Chip Design Framework (SDF) unifying
Specification Capture and Design Modeling”, Proceedings of the
2005 Electronic Design Processes (EDP) Workshop, April 6-8,
Monterey Beach Hotel, Monterey, California, USA

12. “AMBA Specification (Rev 2.0)”, www.arm.com

572

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on May 05,2010 at 15:41:06 UTC from IEEE Xplore. Restrictions apply.

