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Abstract—For a narrowband multi-input multi-output
(MIMO) system the singular value decomposition has the ability
to provide multiple spatial channels for data transmission.
We extend this work to obtain spatial diversity techniques
for frequency selective MIMO systems using a polynomial
matrix decomposition known as the sequential best rotation
using second order statistics (SBR2) method. This algorithm
diagonalizes a MIMO frequency selective channel yielding
various spatial modes for data transmission. We evaluate the
diversity performance of the dominant channel provided by
the SBR2 based broadband decomposition and compare it
with a transmit antenna selection method (TAS) and a MIMO
orthogonal frequency-division multiplexing (OFDM) singular
value decomposition (SVD) based approach. Simulation results
show SBR2 significantly outperforms the average bit error rate
(BER) of TAS, making it very suitable for time division multiple
access (TDMA) and code division multiple access (CDMA)
systems. SBR2 and MIMO-OFDM systems are shown to have
identical BER performance, confirming the efficiency of the
proposed low delay spatial-temporal scheme.

I. INTRODUCTION

For a wireless system consisting of Mt transmit antennas
and Mr receive antennas, the noise free channel can be rep-
resented as an Mr×Mt matrix, H . In a narrowband scenario
where the received signals are instantaneously mixed, a scalar
matrix is sufficient to describe the mixing. Paulraj, Nabar
and Gore [1] have shown that for this scenario, performing
the SVD would provide a number of independent spatial
subchannels which can be used to enhance the data rates or
to obtain increased diversity.

In the case of a broadband MIMO system the noise free
multipath channel can be represented as a polynomial matrix,
H(z)

H(z) =
L−1∑
i=0

Hiz
−i (1)

where Hi ∈ C
Mr×Mt is the ith matrix tap of the MIMO

channel of length L, and z−i is the unit delay operator.
Thus the SVD cannot be applied. A typical approach to the

broadband problem is to reduce it to a narrowband form
by using a discrete Fourier transform (DFT) to split the
broadband channel into narrow uniformly spaced frequency
bands and applying the SVD in each band. This is suitable for
OFDM based systems. However, in this paper, we propose the
polynomial matrix decomposition for obtaining various spatial
modes as this is applicable to a range of access schemes such
as TDMA and CDMA.

SBR2 is a novel algorithm [2] for calculating the eigen-
value decomposition (EVD) of a polynomial matrix and its
application allows a true broadband SVD to be performed on
H(z). The motivation therefore is to extend the decomposition
presented in [1] to a broadband MIMO scenario.

We wish to emphasize that unlike DFT based decomposi-
tions (which require storage of data and also incur the associ-
ated block delay at the receiver), the proposed scheme operates
using spatial-temporal filters in the time domain, hence it is
more suitable for decoding continuous streams of data without
requiring storage of signals for DFTs and unnecessary block
delays. Moreover, its sensitivity to frequency offset errors is
likely to be less than for OFDM-schemes.

II. CHANNEL MODEL

In our simulation, without loss of generality we consider
a MIMO system with five antennas at the transmitter and
receiver. The length of the channel between each transmitter
and receiver is five, and the channel coefficients have been
assumed to be unchanged within each data block, but allowed
to change between data blocks according to a complex Gaus-
sian distribution. An exponential power delay profile has been
used for the channel with an exponential decaying factor of
ψ = 0.8, i.e.

hij(k, n) = α exp−ψ(k−1) w(n), k = 1, . . . , 5 (2)

where hij(k, n) is the kth multipath at time index n,
between the ith transmit antenna and jth receive antenna,
w(n) is zero mean complex circular Gaussian noise, and the
parameter α is chosen to normalize the channel gain.
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III. SBR2 ALGORITHM

The input to the SBR2 algorithm is a para-Hermitian
polynomial matrix, which may be expressed as

R(z) =
τmax∑

τ=−τmax

z−τR(τ) (3)

where R(τ) ∈ C
p×p with elements

[R(τ)]kl = rkl(τ) = r∗lk(−τ)
= [R(−τ)]∗lk , k, l ∈ {1, 2, . . . , p} (4)

The SBR2 algorithm will calculate the EVD of R(z) as
in (5) where D(z) is a diagonalized polynomial matrix and
P (z) is a paraunitary diagonalizing matrix and P̃ (z) is its
paraconjugate.

D(z) = P (z) R(z) P̃ (z) (5)

The SVD of the polynomial channel, H(z) is shown in
(6) where U(z) and Ṽ (z) are paraunitary matrices, so that
Ũ(z) U(z) = I and Ṽ (z) V (z) = I and Λ(z) is a
diagonal matrix. By convolving the channel matrix with its
paraconjugate we obtain the set of equations in (7).

H(z) = U(z) Λ(z) Ṽ (z) (6)

H(z) H̃(z) = U(z) Λ(z) Λ̃(z) Ũ(z)

H̃(z) H(z) = V (z) Λ̃(z) Λ(z) Ṽ (z) (7)

Comparing (7) and (5) shows that when R(z) =
H(z) H̃(z), P̃ (z) ≡ U(z) and when R(z) = H̃(z) H(z),
P̃ (z) ≡ V (z). Hence the SVD of the polynomial channel
matrix can be calculated using the SBR2 algorithm.

A. Orthogonal Channels

By analogy with a conventional narrowband SVD beam-
former, the process of passing a signal through a transmit filter
bank vi(z), where i denotes the column index, the channel
H(z) and a receive filter bank ũi(z), where i denotes the row
index, is identical to passing the signal through the appropriate
element of Λ(z), calculated by applying (6). For an Mr = Mt

MIMO system, Λ(z) will be a diagonal matrix containing
Mr orthogonal channels. The SBR2 algorithm will order the
channels in terms of power, hence λ11(z) will be the strongest
channel and λMrMr

(z) the weakest. Typically, the dominant
channel is spectrally majorized resulting in continuous high
gain across the signal bandwidth as shown in Figure 1.
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Fig. 1. Typical frequency response of the spatial subchannels designed by
SBR2

IV. SBR2 OPERATION

A real symmetric matrix A can be diagonalized using Jacobi
rotation matrices [3]. Initially, the largest in magnitude off-
diagonal element of A is located, assumed to be the p, qth

element, i.e. apq = [A]pq. This search can either be in the
upper triangular or lower triangular part of A due to its
Hermitian property. The rotation angle θ which is used to
annihilate the off-diagonal element apq of matrix A is chosen
such that:

cot 2θ =
aqq − app

2apq
(8)

The Jacobi rotation matrix, Q is then given by

Qpq ≡




1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . cpp . . . spq . . . 0
...

...
. . .

...
...

0 . . . −sqp . . . cqq . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1




(9)

where c = cos(θ) and s = sin(θ). This matrix is orthog-
onal by construction. To diagonalize matrix A using Jacobi
rotation matrices a sequence of such orthogonal (similarity)
transformations are applied of the form:

A′ = QT
pq A Qpq (10)

Each application of rotation matrices Qpq and QT
pq will

zero two elements symmetric in the leading diagonal of A
and the sequence of such matrices is chosen so as to eliminate
the dominant off-diagonal elements at each step. Successive
transformations will partially undo previously zeros, but off
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diagonal terms will eventually tend to zero, resulting in a diag-
onal matrix D, whose elements correspond to the eigenvalues
of A:

D = QT
L . . .Q

T
1 A Q1 . . .QL (11)

where L is an unspecified number of iterations. SBR2
expands this rotation matrix approach to para-Hermitian poly-
nomial matrices. Initially, the maximum in magnitude off-
diagonal coefficient of R(z) is located. Once again this search
can either be in the upper triangular or lower triangular part of
R(z) due to its para-Hermitian property. A delay matrix B(z)
is first applied to shift the dominant coefficient to the plane
of order zero. A rotation matrix is then designed to drive the
dominant coefficient to zero resulting in R′(z).

If we denote G(z) the product of the rotation matrix Q and
the delay matrix B(z) then R′(z) is given explicitly by:

R′(z) = G(z) R(z) G̃(z) (12)

This process can be repeated iteratively until the magnitude
of the maximum off-diagonal coefficient is ≈ 0 or sufficiently
small. This is usually determined by the ratio of the maxi-
mum off-diagonal element to the diagonal coefficients of the
diagonalized matrix [2], in which a proof of convergence is
given.

A. Paraunitary Matrices

Defining the paraunitary matrix P̃ (z) as:

P̃L(z) = G̃1(z) G̃2(z) . . . G̃L(z) (13)

where L represents an unspecified number of iterations and
therefore after L iterations (12) results in:

DL(z) = PL(z) R(z) P̃L(z) (14)

allowing a polynomial matrix EVD to be performed. Fig-
ure 2 shows a typical para-Hermitian input, R(z) to SBR2
formed from an exponential channel. Figure 3 shows the
resulting diagonalization, D(z).

B. Limiting the order of polynomial matrices within the SBR2
algorithm

With each delay step, at each iteration of the algorithm, the
order of the polynomial matrix being diagonalized increases,
often after a series of iterations becoming unnecessarily large.
At each iteration new coefficient matrices are created at
both ends of the matrix to accommodate the shifted coeffi-
cients, which now exceed the order of the initial polynomial
matrix[4]. Over a series of iterations the outer coefficient
matrices typically contain only a small proportion of the
Frobenius norm, ‖·‖2

F of the initial R(z) or often entirely
consist of zeros. In the case of a polynomial matrix, ‖·‖2

F

is simply the sum of the squared Frobenius norms for all
coefficient matrices.

The effect of this matrix growth is twofold, firstly compu-
tational complexity increases considerably and the algorithm
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Fig. 2. Coefficients of para-Hermitian matrix R(z)
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Fig. 3. Coefficients of the diagonalized para-Hermitian matrix D(z)

becomes too slow to implement in a wireless communications
system. Secondly, the memory storage requirements become
unnecessarily large. To prevent this we allow a small propor-
tion of the initial Frobenius norm to be lost and trim D(z)
at every iteration. Let M be the order of Di(z) at a given
iteration i. We find the smallest possible positive value for the
lag parameter tlim such that the following condition holds:

2
∑M/2
t=tlim

∑p
j=1

∑p
k=1 |djk (t)|2∑τmax

−τmax

∑p
j=1

∑p
k=1 |rjk (τ)|2 ≤ 1 × 10−7 (15)

where djk denotes the (j, k)th element of the coefficent
matrix D (t) and rjk denotes the (j, k)th element of the input
para-Hermitian matrix R (τ). When a value for tlim is found,
the truncated matrix, Dtrimed

i (z), becomes

Dtrimed
i (z) =

tlim−1∑
t=−tlim+1

Di(t)z−t (16)
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Once the algorithm is complete we calculate the paraunitary
diagonalizing matrix, P (z) from the individual delay and
rotation matrices (13). We apply an identical method of
truncation as described above to the paraunitary matrix at each
iteration.

V. SYSTEM IMPLEMENTATION

The polynomial decomposition provides five spatial sub-
channels λii(z), i = 1, 2, . . . , 5 as shown in Figure 4. We wish
to emphasize that unlike in narrowband systems, these spatial
subchannels are frequency selective, and further processing
is required at the receiver to equalize each subchannel. A
typical subchannel impulse response is shown in Figure 5.
In our simulation we use a Viterbi equalizer at the receiver to
equalize the resulting spatial subchannels. We notice that for
the dominant subchannel, most of the energy is concentrated
in five consecutive taps. Therefore we extract these significant
five taps and pass them to the Viterbi equalizer.

V (z) H(z) Ũ (z)

�� �

s1(n) � � �� y1(n)

λ11(z)

s5(n) � � �� y5(n)

λ55(z)

Fig. 4. SBR2 system diagram showing decomposition into five spatial
subchannels

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

Tap Number

M
ag

ni
tu

de
 (

R
ea

l)

Fig. 5. Typical λ11(z) stem plot showing a polynomial channel produced
by SBR2

A. OFDM scheme

We have used a MIMO-OFDM scheme as a benchmark.
MIMO-OFDM is a DFT based technique that decomposes
the otherwise frequency selective channel of bandwidth B
into N orthogonal frequency flat MIMO channels, each with
bandwidth B/N [1]. The transmitter first performs an inverse
fast Fourier transform (IFFT) operation on the signal to be
transmitted from each individual transmit antenna. A cyclic
prefix (CP) is then added of length L−1 prior to transmission.
At the receiver the cyclic prefix is stripped off and a FFT
applied to the signal received at each antenna.

The cyclic prefix renders the channel impulse response
circulant. If we denote Hc(z) as the circulant channel im-
pulse response then the eigendecomposition of Hcij

(z), the
circulant SISO channel between the ith transmit antenna and
jth receive antenna may be expressed as

Hcij
(z) = DH Ω D (17)

where D represents the unitary discrete Fourier transform
matrix and Ω = diag {ω [0] , ω [1] , . . . , ω [N − 1]}, with

ω [k] =
L−1∑
l=0

Hij (l) exp− j2πkl
N (18)

where k = 0, 1, . . . , N − 1 is the sampled frequency
response of the SISO channel where k represents the tone
index.

Extending this to MIMO, the matrix E [k] is the frequency
response of the narrowband MIMO matrix channel corre-
sponding to the kth tone and is related to H(z) by (19).

E [k] =
L−1∑
l=0

H (l) exp− j2πkl
N (19)

Hence the MIMO frequency selective channel has been de-
composed into N MIMO orthogonal frequency flat channels.
We then apply the standard SVD within each narrowband tone
to provide five spatial subchannels.

VI. SIMULATIONS

The bit error rate has been computed for 1000 Monte
Carlo simulations. We have used a TAS scheme as a TDMA
benchmark. TAS operates by transmitting exclusively through
the best antenna that results in the highest possible SNR at the
receiver, creating a single-input multi-output (SIMO) subset
of the MIMO system. The received signal at each antenna
is then fed into a multiple-input Viterbi equalizer. Identical
channels have been used for SBR2, TAS and OFDM methods.
The modulation scheme used is BPSK. The number of bits
sent, N = 1024. The total transmission power budgets for the
SBR2, TAS and OFDM schemes are identical.

Figure 6 clearly shows the benefit of the SBR2 algorithm.
BER performance is far superior to the TAS scheme, for
example a 4dB reduction in SNR to acheive identical average
BER of 10−3, making SBR2 highly suitable for TDMA and
CDMA applications.

1150

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on November 30, 2009 at 08:04 from IEEE Xplore.  Restrictions apply. 



−12 −10 −8 −6 −4 −2 0 2 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Dominant Mode SBR2
TAS Scheme

Fig. 6. Average BER results for dominant mode SBR2 and TAS schemes
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Fig. 7. Average BER results for dominant mode SBR2 and OFDM schemes

Figure 7 shows that both the SBR2 and MIMO-OFDM
methods perform identically. OFDM transmission incurs on
average a loss in spectral efficiency of (L− 1)/(N + L− 1)
on account of the cyclic prefix. If N � L, this loss is
negligible [1] so this has not been considered. Figure 8 shows
the frequency response of the dominant SBR2 and MIMO-
OFDM mode for one of the channels used. As can be seen
both systems have an identical frequency response. The only
slight difference in performance is due to the trimming of the
polynomial matrices within the SBR2 algorithm. This does not
occur within the MIMO-OFDM system as the DFT and SVD
operations are inherently lossless.

We have therefore shown that our “continuous” time domain
SBR2 approach provides exactly the same performance as the
“discrete” frequency domain approach of MIMO-OFDM.

VII. CONCLUSION

In this paper we have discussed the operation and implemen-
tation of SBR2 into a broadband MIMO scenario. By building
on the work of Paulraj, Nabar and Gore it is demonstrated
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Fig. 8. Frequency response of the dominant mode for SBR2 and MIMO-
OFDM

that the natural extension of the SVD to polynomial matrices,
SBR2 is capable of solving the difficult MIMO broadband
problem and provides identical performance to an OFDM
based solution. However, as SBR2 operates entirely in the time
domain it is potentially suitable for TDMA and CDMA based
applications.

We have not discussed the effect of incorrect channel
estimation. In an OFDM based system this will destroy the
circulant property (17). Hence the N flat fading tones will
no longer be orthogonal and inter-symbol interference (ISI)
will occur between the tones. Due to the Viterbi equalization
strategy used in the SBR2 system, SBR2 will be less sus-
ceptible to subchannel interference. Additionally in a scenario
where accurate channel estimations are unobtainable, only
the dominant mode of SBR2 can be used with a whitening
transformation added to widen the beam width. By using only
the dominant mode this will mitigate the effects of interference
from other SBR2 modes. Using only the dominant mode in a
OFDM system will not remove ISI between tones leading to
unavoidable poor system performance.
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