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1 INTRODUCTION

While there have been many academic studies of the efficiency of financial

institutions at the industry level (see Berger et al 1997a), there have been

relatively few studies made of efficiency at the branch level.  This is probably

due to the difficulty in obtaining adequate branch level data, which is typically

not publicly available.  As Berger et al (1997b) point out, however,

“… ..information on branch efficiency may help improve our understanding of

the underpinnings of efficiency at the bank level”.

Aside from the paucity of branch level efficiency studies, those studies that

have been carried out tend to be characterised by relatively small samples.

Sherman and Gold (1985), for example, analysed the relative efficiency of a

small sample of US savings bank branches using the non-parametric

programming methodology, Data Envelopment Analysis (DEA). Similar

studies have also been carried out by: Vassiloglou and Giokas (1990) in

respect of bank branches located in the vicinity of Athens, Greece; Oral and

Yolalan (1990) studied bank branches in Turkey; and Al-Faraj, Alidi and

BuBshait (1993) studied bank branches in Saudi Arabia.

Efficiency studies which have used larger samples have tended to be cost

function studies.  Zarkoohi and Kolari (1994), for example, estimate a

Translog cost function and examine branch level economies of scale and scope

for a sample of 615 savings bank branches in Finland.  Berger et al (1997b),

however, specify and estimate the Fourier flexible form cost function in order

to analyse the efficiency of a sample of over 760 US bank branches.

In respect of the UK, the only previous study into branch level efficiency was

conducted by Drake and Howcroft (1994).  This study calculated indices of

technical efficiency for a sample of 190 UK bank branches.  These indices

were then decomposed into the constituent components - scale efficiency and

technical efficiency.  In common with most other studies which analyse

technical efficiency at the branch level, Drake and Howcroft utilised the non-

parametric approach, DEA.  A potential problem with DEA, however, is that it



is non-stochastic and cannot allow for random error.  Hence, DEA may tend to

overstate the true extent of technical inefficiency, as any deviation from the

efficient frontier is associated with inefficiency.  In contrast, the Stochastic

Frontier Approach (SFA), which is typically applied in the context of cost

functions, assumes a composite error term such that any deviation from the

fitted (cost) frontier is assumed to be a combination of random error (as

captured by a classical symmetric error term), and technical inefficiency (in

the case of a production frontier) or X-inefficiency (in the case of a cost

frontier).  In the latter case, the X-inefficiency would be captured by a strictly

one-sided, positive error term.

An associated potential weakness of DEA is that, as the efficient frontier must

envelop all the units in the sample, some a-typical units may be self-identified

as efficient simply by virtue of the fact that there are no similar units with

which to compare them.  This may be a particular problem for a-typically

large or small units, as the variable returns to scale (production) frontier would

be forced to pass through these observations.

For these reasons, it may be useful to contrast the results obtained from DEA,

with those obtained from a parametric approach such as SFA.  A potential

difficulty here, however, is that, while physical data on inputs and outputs may

be available at the branch level, accurate data on input prices is often not

available, thereby precluding the estimation of a stochastic cost frontier.

Furthermore, where cost frontiers can be specified and estimated, the

deviations from the frontier will represent X-inefficiencies which are

composed of both allocative and technical inefficiencies.  In contrast, although

DEA can be utilised to analyse allocative inefficiency, the basic DEA analysis

usually reported typically focuses only on technical efficiency.

Hence, this paper extends the existing literature by contrasting the non-

parametric technical efficiency results obtained using DEA with those from a

directly comparable parametric approach which utilises the distance function

in conjunction with SFA.  Unlike DEA, which tends to produce a number of

efficient decision making units (DMUs) with relative efficiency scores of



unity, however, the distance function frontier approach typically tends to rank

units between zero and unity, with no DMU ranked as 100% efficient.  For

completeness, DEA is also utilised to produce measures of scale efficiency in

order to examine the nature of the size-efficiency relationship at the branch

level.

A further contribution of this paper is to analyse the relative efficiency of a

sample of building society branches.  Although there have been a number of

studies examining scale and technical efficiency at the industry level (see, for

example, Hardwick, 1989, 1990, Field, 1990, Drake, 1992, Drake and

Weyman-Jones, 1992, 1996), to the author’s knowledge, this is the first study

to examine UK building society efficiency at the branch level.

Finally, it may be argued that an in-depth analysis of the efficiency of UK

building society branches is both timely and important.  There has been a

significant increase in the level of competition within UK retail banking as a

consequence of deregulation measures affecting both banks and building

societies during the 1980s (see Drake, 1990).  Indeed, a number of large

building societies have opted to take advantage of the option provided in the

1986 Building Societies Act to convert from mutual to plc bank status.

Furthermore, the advent of direct banking and other technology driven

distribution channels, together with a trend towards mergers and

rationalisation, has begun to focus increasing attention on the future role of

branch networks in retail banking.

The remainder of the paper is accordingly structured as follows:  Sections 2

and 3 outline the methodology and the data set, respectively.   Section 4

provides details and analysis of the empirical results, and Section 5 provides a

summary of the main conclusions of the paper.



2.  Methodology

2.1.  Non-Parametric Frontier Models

Data Envelopment Analysis (DEA)

Within the DEA framework it is possible to decompose relative efficiency

performance into the categories initially suggested by Farrell (1957) and later

elaborated by Banker, Charnes and Cooper (1984) and Fare, Grosskopf and

Lovell (1985). The constructed relative efficiency frontiers are non-statistical

or nonparametric in the sense that they are constructed through the

envelopment of the DMUs with the "best practice" DMUs forming the non-

parametric frontier. Farrell’s categories are best illustrated, for the single

output-two input case in the unit isoquant diagram, Figure 1, where the unit

isoquant (yy) shows the various combinations of the two inputs (x1, x2) which

can be used to produce 1 unit of the single output (y). The firm at E is

productively (or overall) efficient in choosing the cost minimising production

process given the relative input prices represented by the slope of WW’. A

DMU at Q is allocatively inefficient in choosing an inappropriate input mix,

while a DMU at R is both allocatively inefficient, (in the ratio OP/OQ), and

technically inefficient, (in the ratio OQ/OR) because it requires an excessive

amount of both inputs, x, compared with a firm at Q producing the same level

of output, y.

INSERT FIGURE 1

The use of the unit isoquant implies the assumption of constant returns to

scale. However a firm using more of both inputs than the combination

represented by Q may experience either increasing or decreasing returns to

scale so that, in general, the technical efficiency ratio OQ/OR may be further

decomposed into scale efficiency, OQ/OS, and pure technical efficiency,

OS/OR, with point Q in Figure 1 representing the case of constant returns to

scale. The former arises because the firm is at an input-output combination

that differs from the equivalent constant returns to scale situation. Only the

latter pure technical efficiency represents the failure of the firm to extract the



maximum output from its adopted input levels and hence may be thought of as

measuring the unproductive use of resources. In summary,

productive efficiency =

allocative efficiency x scale efficiency x pure technical efficiency (1)

OP/OR = [OP/OQ] x [OQ/OS] x [OS/OR] (2)

Hence, concentrating on overall technical efficiency, Farrell suggested

constructing, for each observed DMU, a pessimistic piecewise linear

approximation to the isoquant, using activity analysis applied to the observed

sample of DMUs in the organisation/industry in question. This produces a

relative rather than an absolute measure of efficiency since the DMUs on the

piecewise linear isoquant constructed from the boundary of the set of

observations are defined to be the efficient DMUs.

Subsequent developments have extended this mathematical linear

programming approach. If there are n DMUs in the industry, all the observed

inputs, and outputs are represented by the n-column matrices: X and Y. The

input requirement set, or reference technology can then be represented by the

free disposal convex hull of the observations, i.e., the smallest convex set

containing the observations consistent with the assumption that having less of

an input cannot increase output. We do this by choosing weighting vectors, ? ,

(one for each firm) to apply to the columns of X and Y in order to show that

firm's efficiency performance in the best light.

For each DMU in turn, using x and y, to represent its particular observed

inputs and outputs, pure technical efficiency is calculated by solving the

problem of finding the lowest multiplicative factor, ? ? which must be applied

to the firm’s use of inputs, x, to ensure it is still a member of the input

requirements set or reference technology. That is choose



? ? ?? ?  to : min ?  such that: ? x ?  ? ’X

y ?  ? ’Y

? i ?  0, ? ? i = 1, i = 1,..., n 

(3)

To determine scale efficiency, we solve the technical efficiency problem (3)

without the constraint that the input requirements set be convex., i.e. we drop

the constraint ? ? i = 1. This permits scaled up or down input combinations to

be part of the DMUs production possibility set. Figure 2 illustrates this for the

case of a single input and a single output.

In Figure 2, the production possibility set under constant returns to scale is the

region to the right of the ray, OC, through the leftmost input-output

observation. Any scaled up or down versions of the observations are also in

the production possibility set under this assumption of constant returns to

scale.

Imposing the convexity constraint, ? ? i = 1, ensures the production possibility

set is the area to the right of the piecewise linear frontier VV’, which does not

assume constant returns to scale, but allows for the possibility of increasing

returns to scale at low output levels and decreasing returns at high output

levels. The resulting overall technical and pure technical efficiency ratios,

AQ/AR, and AS/AR are illustrated for one of the observations. Scale

efficiency is the ratio of the two results.

INSERT FIGURE 2

In the case of programme (3), the efficiency ratios with and without the

convexity constraint may be labelled ? p and ? ? ? and scale efficiency, ? s is then

? ? /? p. In the subsequent results we refer to overall technical efficiency as OE,

pure technical efficiency as PTE and scale efficiency as SE. As explained

above, it follows that :

OE = PTE x SE, and SE = OE / PTE (4)



Although the scale efficiency measure (SE) will provide information

concerning the degree of inefficiency resulting from the failure to operate with

constant returns to scale, ie, at the minimum efficient scale (MES), it does not

provide information as to whether a DMU is operating above or below the

MES.  Hence, in order to establish whether scale inefficient branches exhibit

increasing or decreasing returns to scale, we simply solve the technical

efficiency problem (3) under the assumption of non-increasing returns to scale

rather than variable returns to scale.  If these two measures of PTE differ, this

indicates that the branch is operating in the region of increasing returns to

scale.  Conversely, if the two measures coincide then the branch is operating

in the region of decreasing returns to scale.

2.2 Parametric Frontier Models

The Stochastic Frontier Approach (SFA)

An alternative approach to the non-parametric frontier methodology is that of

stochastic frontier models suggested by Aigner, Lovell and Schmidt (1977,

henceforth ALS).  This typically involves the specification of a stochastic

production or cost frontier.  In the context of the latter, for example, we might

write the cost function as follows:

? ? itititit w,yClnCln ??? (5)

Where C represents total costs, y is a vector of outputs, w is a vector of input

prices and ?  is a composed error term that reflects both statistical noise and the

X inefficiency of the firms in the sample.

iii ??? ?? i? 0? (6)

The component  i?   is assumed to be symmetrically distributed around a zero

mean but i?  is assumed to be non-negative (non-positive in the case of a



stochastic production frontier).  Hence, i?  represents the deviations above the

minimum cost frontier (X-inefficiency) associated with either technical

inefficiency (excessive use of inputs in the production of outputs) or allocative

inefficiency (the failure to utilise the cost minimising input bundle given input

prices and the level of outputs).  Estimation of such models has largely

followed ALS (1977).  By specifying particular density functions for the

composed error terms, maximum likelihood estimation can be used (see

Bauer, 1990, for details of the likelihood functions).

The Distance Function Approach

Although both stochastic production functions and stochastic cost functions

have been widely used in empirical research, both have drawbacks with

respect to measuring the relative efficiency of building society branches.  The

stochastic production frontier approach has the disadvantage that, as output is

the dependent variable, only a single output production process can be

modeled.  This is clearly not appropriate as building society branches typically

produce a range of outputs or services.  Furthermore, it would be very difficult

to construct an appropriate composite output measure.

The usual solution to this problem in empirical applications is to make use of

the duality between cost and production functions and to specify and estimate

a stochastic cost frontier.  This permits the modeling of a multi-input, multi-

output production process.  A particular drawback in utilizing a cost function

specification in this case, however, is that full and accurate branch level cost

data is often not available.  In particular, the required data on all input prices is

typically problematic.  For example, in respect of capital inputs, an important

element will be the branch premises themselves.  In retail branch banking,

however, these premises will often be a mix of owned and rented premises.

Furthermore, some branches may be high cost or high rent branches simply by

historical accident or by virtue of their location.  Both of these factors are

outside the current control of the branch, but may nevertheless cause such a

branch to appear inefficient.



A further potential drawback of the stochastic cost frontier approach is that

any non-random deviations above the cost frontier will be associated with both

allocative and technical efficiency.  In contrast, the relative efficiency

measures derived from non-parametric methodologies such as DEA typically

relate only to technical efficiency.  Hence, the relative efficiency measures

derived from parametric and non-parametric approaches are often not directly

comparable even though, in principle, DEA can be adapted to analyse

allocative as well as technical efficiency.

A potential solution to these problems, but one which has not been widely

used empirically, it to use employ a parametric approach but to specify and

estimate a stochastic distance frontier rather than a stochastic cost or

production frontier.  The distance function specification has the advantages of

permitting the modeling of a multi-input, multi-output production process, and

being a function only of outputs and inputs.  Hence, the distance function does

not require data on input prices.  Furthermore, as it is a function of outputs and

inputs, the stochastic distance frontier produces a relative efficiency measure

that is directly comparable to the measure of technical efficiency produced by

DEA.

Input Based Distance Function

The input oriented distance function can be interpreted as the greatest radial

contraction of the input vector, with the output vector held fixed, such that the

input vector still remains in the input requirement set V(y).

? ? ? ? ? ?? ?yVxyxDI ?? ?? :max, (7)

The distance function ? ?yxDI ,  will take a value which is greater than or equal

to unity if the input vector, x, is an element of the feasible input set, and will

take a value of unity if x is located on the inner boundary of the input

requirement set.

In order to be consistent with the DEA analysis, we employ the input

orientated distance function.  As this produces a measure which is the inverse



of the Farrell (DEA) efficiency measure, however, we report the reciprocal of

the input distance function measure in order that the results are directly

comparable with the DEA measures.

In this paper we employ the popular Translog flexible functional form, and the

Translog output distance function with 4 outputs and 3 inputs can be expressed

as:

?? ??
?? ??
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(8)

Young’s theorem requires that the second order parameters of the cost

function must be symmetric, that is, jiij ???  for all i, j, and nmmn ???  for all

m, n.  A convenient method of imposing homogeneity upon the Translog

distance function is to follow Lovell et al (1994) and observe that

homogeneity implies that:

? ? ? ? 0any for  ,, ??? yxDyxD II ? (9)

Hence, if we arbitrarily choose the Mth input, and set ? = 1/xM then, using

TL( . ) to

represent the Translog function, we can express the input distance function as:

? ? ? ????? ,,,,,,ln constxMxyTLxMD iiiiIi ?    
i = 1,2,...,N (10)

or ? ? ? ????? ,,,,,,lnln constxMxyTLxMD iiiiIi ?? i = 1,2,...,N
(11)

It follows that we can re-write this Translog distance function as:



? ? ? ? ? ?Iiiiii DxMxyTLxM ln,,,,,ln ??? ????   i = 1,2,...,N
(12)

Hence, if we append a symmetric error term, i?  to account for statistical noise,

and re-write ? ?IiDln  as i? , we can obtain the stochastic input distance

function, with the usual composite error term, iii ??? ?? .

? ? iiiiii xMxyTLxM ?????? ???? ,,,,,)ln( i = 1,2,...,N
(13)

We make the standard assumptions that the i?  are normally distributed

random variables while the i?  are assumed to have a truncated normal

distribution.  As is usual in the stochastic frontier approach, however, the

predicted value of the input distance function for the ith firm, ? ?iIiD ??? exp ,

is not directly observable, but must be derived from the composed error term,

i? .  Hence, predictions for IiD  are obtained using Coelli’s Frontier 4.1

programme, based on the conditional expectation:

? ?? ?iiIi ED ???? (13)

3.    Data

The sample consists of data from the first half year of 1996 for 220 of the

branches of a top 10 national UK building society.  Following consultations

with the senior management of the building society, it was decided that four

outputs (Y) and three inputs (X ) best characterised the operations of the

branches.  These are detailed below:

Y1: No of new and further loan advances.

Y2: No of new deposit accounts.

Y3: No of transactions.

Y4: No of insurance sales.



X1: FTE senior staff.

X2: FTE clerical staff.

X3: Total no of existing loan and deposit accounts

Y1 and Y2 reflect the traditional business of building societies.  Specifically,

raising funds from depositors to intermediate into loans (predominantly

mortgage loans).  What is important from a branch performance perspective,

however, is not the historical level of business, but the new business generated

within the period.  Similarly, whereas the volume of deposit inflows will

reflect factors outside the control of branches, such as the relative

competitiveness of the societies’ deposit rates, branches will typically be

targeted with expanding the number of new deposit (and loan) accounts.

The output, Y3 reflects the fact that building society branches need to service

their loan and deposit accounts via, for example, taking deposits, granting

withdrawals, creating standing orders, etc.  Finally, the output Y4 reflects the

fact that both banks and building societies are diversifying, at the margin,

away from traditional intermediation business, and into “off-balance sheet

business”.  In the case of this particular building society, this reflects the sales

of various types of insurance products, such as property insurance and

payment protection policies.  As with the other outputs, we elect to specify the

number, rather than value of sales, in order to avoid any bias associated with

the use of monetary values.  It would be expected, for example, that both

average mortgage loan values and any associated insurance premiums would

be higher in London and the South-East than elsewhere, simply by virtue of

higher average property prices.

Turning now to the inputs, X1 reflects the full time equivalent (FTE) number

of senior staff working in the branch, while X2 reflects the FTE number of

clerical staff in the branch.  In practice, this distinction was made on the basis

of staff seniority grade rather than job description, ie, manager, cashier, etc.



The final input, X3, is the total number of existing loan and deposit accounts

held by the branch.  This measure was included as no direct measure of branch

size (such as branch area) was available.  Furthermore, no suitable proxy was

available for “other non-labour resource usage”.  Following extensive

discussion with the senior management of the building society, however, it

was felt that X3 would prove to be a particularly relevant input.  As well as

providing some sort of proxy for branch size and non-labour resource

utilisation, the specification of X3 also recognises that branches with large

existing customer bases should be better placed to cross-sell products/outputs

to their existing customers.  For example, insurance products and consumer

loans could be marketed to existing mortgage borrowers.  Similarly, attempts

could be made to market mortgage loans and insurance to non-borrowing

depositors.  While it could legitimately be argued that branches with larger

customer bases will typically encounter correspondingly greater account

servicing demands, this should be taken into account on the output side by Y3,

the number of branch level transactions.

In order to try to provide further insight into the determinants of branch level

relative efficiency, the technical efficiency scores will be regressed against

potential efficiency correlates in a second stage analysis.  These efficiency

correlates include:  loan quality, as proxied by the number of loans more than

two months in arrears (ARREARS); a merger dummy, reflecting whether a

particular branch had been affected by the previous merger activity of the

building society (MERGER); branch location, a percentage score relative to

the prime location for the town in which the branch is located (LOCATION);

staff quality, as measured by the ratio of senior to clerical staff (RATIO);

branch size, proxied by the total number of staff  (STAFF), and finally,

appearance, as proxied by an internal index (1,2,or 3, reflecting poor, average

or good) developed by the building society to reflect the attractiveness of the

branch and its merchandising (APPEAR).

In order to take account of the fact that the relative efficiency score is a

bounded variable taking a value ranging from zero to unity, we utilise Tobit

regression rather than OLS.



4.   Results

In the interests of brevity, the full set of efficiency measures are provided in

Table 1, together with some summary statistics.  As the initial analysis will

concentrate on the parametric and non-parametric distance function measures

of technical efficiency, under the assumption of variable returns, column 1

contains the stochastic distance function results (SDF), while column 2 details

the DEA pure technical efficiency results (PTE).  These alternative measures

are combined in column 3, and this is discussed in more detail below.  The

remaining columns provide details of the DEA measures of overall and scale

efficiency, OE and SE respectively, together with an indication of whether a

branch exhibits increasing (I), decreasing (D), or constant returns to scale (C).

Technical Efficiency

It is clear from a casual inspection of the results in Table 1 that there is, in

general, a good correspondence between the SDF scores and the DEA PTE

results.  Branches units 132 and 119, for example, are the least efficient units

according to DEA, with efficiency scores of  0.45 and 0.48 respectively.  Their

corresponding distance function scores are 0.71 and 0.72 respectively, relative

to the minimum score of 0.70.  Similarly, the lowest ranked branches

according to the distance function estimates are branches 166 and 165 with

scores of 0.696 and 0.699 respectively.  In contrast, these branches record

DEA scores of 0.56 and 0.53 respectively.

At the other end of the spectrum, the most efficient branch according to the

distance function estimate is branch 37 with a score of 0.963.  Not

surprisingly, this branch is ranked as efficient by DEA.  Furthermore, it is

clear from Table 1 that the mean levels of efficiency are also similar as

between the distance function and DEA, at 0.89 and 0.84 respectively.  It is

clear from the minimum scores, however, that the non-parametric nature of

DEA may tend to overstate the true level of inefficiency.  Whereas the

minimum technical efficiency score recorded by the stochastic distance

function is 0.70, it is 0.45 according to DEA.



While the generally good correspondence between the two sets of efficiency

results does suggest that both methods are credible techniques for measuring

relative efficiency, a more formal analysis suggests that it would be unwise to

rely on just one of these techniques as there can be considerable variation

across the two measures.  The correlation coefficient, for example, is 0.64.

Hence, while this supports the notion of a statistically significant positive

correlation between the two sets of distance function measures, it is indicative

of the possibility that a particular branch could be given quite different

efficiency scores and rankings by the two techniques.  This is confirmed by

the scatter plot of the two sets of efficiency scores provided in Figure 3.  In

respect of those units ranked as efficient by DEA, for example, the distance

function scores range from 0.96 to 0.79.  Similarly, a branch with a relatively

high distance function score of 0.95 (relative to the maximum score of 0.96)

can have a DEA efficiency score as low as 0.75.  It is quite clear, therefore,

that in order to guard against erroneous conclusions, the two alternative

distance function measures should be used in parallel rather than as alternative

techniques.

A very simple way of combining the two sets of efficiency estimates is to take

the mean of the parametric and non-parametric scores, as in column 3 of Table

1.  This combined measure ranges from 0.98 to 0.58 and has a mean efficiency

level of 0.86.  Furthermore, this measure tends to preserve the rank ordering at

both ends of the spectrum while “smoothing out” any serious outliers.  Branch

132, for example, has the lowest combined score of 0.58 and this is a

combination of the lowest DEA score (0.45) and the third lowest distance

function score (0.712).  Similarly, branch 37 has the highest combined score

of 0.982 which is composed of a DEA score of 1.0 and the highest distance

function score of 0.963.

Technical Efficiency Correlates

In order to identify possible influences on the technical efficiency scores

reported above, Table 2 reports the results of a Tobit regression of the mean

(combined) efficiency scores from Table 2 (column 3) against the potential

efficiency correlates discussed in Section 3.  It is clear from Table 3 that there



is no significant relationship between branch size and technical efficiency,

when branch size is proxied by the total number of branch staff.  Very similar

results were also obtained when branch size was proxied by the total number

of accounts.  Hence, although there is evidence in the literature that larger

banks are more efficient than smaller banks (see Berger et al, 1997), this

correlation does not seem to apply at the branch level, at least for building

societies.  It is also interesting to note that there appears to be no significant

relationship between technical efficiency and the ratio of senior to clerical

staff.

Turning now to what we might refer to as marketing variables, an interesting

result is that branch appearance appears to have a significant positive impact

upon branch level technical efficiency.  A possible explanation for this may be

that the resources or inputs of a branch are often determined centrally on the

basis of factors such as the physical size of the branch and the number of

accounts held at the branch (which are historically determined).  The success

of a branch in terms of generating new business, however, may well be

influenced by the attractiveness of the branch and its merchandising, as

measured by APPEAR.  Hence, branches which score highly in terms of this

variable seem to be relatively successful in generating new business given the

resources/inputs available.  In contrast, the variable LOCATION, although

positively signed, does not appear to have a significant impact on branch level

efficiency.  This is an interesting result in the sense that branch location is a

variable which, a-priori, is usually considered to have an important impact on

branch level performance.  Considerable attention is typically given to the

location of new branches, for example, with prime locations generally

considered to be in the proximity of key shopping centres or financial centres.

The results in Table 2, however, suggest that, of the 2 marketing variables

considered, the attractiveness of the branch and its merchandising is much

more important than its location in terms influencing technical efficiency.

The merger dummy has a negative sign.  This is in accordance with our a-

priori expectations, as it would be expected that branches affected by previous

mergers would experience some disruption that might adversely affect branch



level performance.  It is clear form Table 2, however, that branch level

efficiency does not seem to be significantly affected by prior merger activity.

Finally, the inclusion of the variable, arrears, is designed to capture the

possible influence of risk and lending quality on branch level efficiency.  The

a-priori expectation is that this variable would be negatively signed, either

because of the resources necessary to monitor problem loans, or simply due to

the fact that relatively inefficient branches might also be expected to be

relatively inefficient at assessing risks in respect of the lending function.  It is

interesting to note from Table 2, therefore, that arrears is not only negative

signed but is also highly significant in a statistical sense.  As intimated above,

however, the explanation for this significant negative relationship between

risk/loan quality and technical efficiency is at the centre of a controversy in

the literature.  Specifically, whether risk should be controlled for in the

analysis of the efficiency of financial firms.  If the negative impact of risk on

efficiency is endogenous and due to poor management, then there is no

rationale for controlling for this impact.  If, however, the impact is due to

exogenous factors outside the institutions or branches control, then it may be

appropriate to control for this negative impact.  As Berger et al (1997) point

out:

“If problem loans are generally caused by ‘bad luck’ events exogenous to the

bank, such as regional specific downturns, then measured cost efficiency may

be artificially low because of the expenses of dealing with these loans (e.g.,

extra monitoring, negotiating workout arrangements, etc).” (P. 194).

It may be, therefore, that the significant negative coefficient on arrears reflects

the impact of regional mortgage/housing market variations on arrears levels,

and the consequent impact of these problem loans on branch level resources

and hence efficiency.  Equally, it may also reflect the general level of

efficiency and staff quality at particular branches.  Hence, it is impossible with

the current data set to determine whether the impact of risk/lending quality is

endogenous or exogenous.  What is clear, however, is that arrears are one of



the most important discernable influences on branch level technical efficiency

in UK building societies.

Scale Efficiency

The analysis so far has focused on technical efficiency, or more correctly, pure

technical efficiency, as all the efficiency scores have been derived under the

assumption of variable returns to scale technology.  It is potentially

informative, however, to analyse scale efficiency in order to examine the

extent to which building society branches deviate from the minimum efficient

scale.  Hence, in this section we calculate the DEA efficiency scores under the

assumption of constant returns to scale technology.  As detailed in Section 2,

this allows us to decompose overall technical efficiency into the constituent

components, scale efficiency and pure technical efficiency.

As mentioned above, the full set of DEA results are presented in Table 1,

together with some descriptive statistics.  The mean level of overall branch

efficiency is 0.78, which is considerably lower than the mean level for UK

bank branches of 0.921 established by Drake and Howcroft (1994).  This is an

interesting result as building societies are often argued to be more efficient

than banks at the industry level, based on data such as comparative cost

income ratios (see Drake, 1990).  With respect to the decomposition of overall

technical efficiency, the results suggest that pure technical inefficiency (PTE)

is a more serious source of inefficiency than is scale inefficiency (SE).

Whereas the mean level of the latter is 0.93, the corresponding value for PTE

is 0.84.  These figures contrast with the figures of 0.937 for PTE and 0.982 for

SE found by Drake and Howcroft (1994).

It is clear from the variation in SE levels, however, that scale inefficiency is a

serious problem for many building society branches.  Table 1 reveals, for

example, that the minimum SE score is 0.57, and that only 14.16% of the

sample exhibit constant returns to scale.  In contrast, 41.1% of the sample

exhibit increasing returns while 44.75% exhibit decreasing returns to scale.



Hence, in order to gain a clearer picture of the size - scale efficiency

relationship operating in building society branches, the data set has been

subdivided into size bands according to the total number of accounts.  These

size bands are as follows:

Band 1 Above 20000

Band 2 10000 – 20000

Band 3 7500 – 10000

Band 4 5000 – 7500

Band 5 4000 – 5000

Band 6 2500 – 4000

Band 7 0 - 2500

Table 3 shows the mean SE levels for these size bands together with the mean

number of accounts and also the mean number of total FTE staff.  The latter is

included to provide a further perspective on the size-scale efficiency

relationship.

It is quite clear from Table 3 that a powerful size efficiency relationship is

operating across building society branches with the largest Band 1 branches

exhibiting a mean SE score of only 0.668.  Not surprisingly, all the branches

in this size band were found to be operating with decreasing returns to scale.

Hence, all these very large branches appear to be operating well above the

minimum efficient scale (MES) of operation.  As branch size falls, however,

mean SE levels clearly rise, which is consistent with a movement closer to

MES.  In fact, the mean SE levels increase smoothly and continuously until

we reach Band 5, with a mean SE score of 0.97.  The branches in this size

band clearly seem to be operating closest the MES as the corresponding mean

SE levels for the adjacent Band 4 and 6 branches are 0.935 and 0.949

respectively.  Finally, the smallest branches (Band 7) exhibit a mean SE figure

of 0.924 with the majority exhibiting increasing returns to scale.

An interesting aspect of the results presented in Table 3 is that the MES for a

building society branch appears to be at a relatively small size scale, with the



implication that a large number of branches are much too large to be scale

efficient.  This result is consistent with the findings of Drake and Howcroft

(1994), however, who found that the MES in bank branches was associated

with a mean total staff number of around nine, in contrast to a mean of 17.20

for the largest branches.  As can be seen from Table 3, the MES appears to be

even lower in this study with the Band 5 branches having a mean total staff

number of around 6, in contrast to the mean of 29 for the largest branches.

Hence, based on staff figures alone, these results suggest that some of the

largest branches are almost five times the optimal size.

Furthermore, the results suggest a considerable asymmetry in the size –

efficiency relationship.  Specifically, the efficiency consequences of being

above the MES appear to be much greater than those of being below the MES.

The mean SE figure of 0.924 for the smallest branches, for example, contrasts

with that of 0.668 for the largest branches.  This finding is consistent with an

“asymmetric U-shaped average cost curve” in building society branching and

is also consistent with the findings of Drake and Howcroft (1994).  These

findings of a relatively low MES at the branch level may also provide at least

a partial explanation for the typical finding that, at the industry level,

economies of scale in building societies tend to be exhausted at relatively low

output levels (see Hardwick (1989, 1990 and Drake, 1992)

5.  Conclusions

This study is innovative in two respects.  First, to the author’s knowledge it is

the first study of the efficiency of UK building society branches.  Secondly, it

is the first study to combine both parametric and non-parametric frontier

distance function analysis in the context of financial sector efficiency.

In respect of technical efficiency, there is a significant positive correlation

between the two sets of distance function measures which suggests that both

are credible methodologies for relative efficiency analysis.  The degree of

correlation appears to be insufficiently high to warrant exclusive reliance, as a

management tool for example, on either technique.  For those branches



deemed efficient according to DEA, for example, the SDF technique produced

efficiency scores ranging from 0.96 to 0.79.  Hence, in order to produce some

consensus regarding the relative efficiency results, the two alternative

measures were combined by taking the mean of the SDF and DEA scores.

This produced technical efficiency measures ranging from 0.98 to 0.58, with a

mean efficiency level of 0.86.  The latter contrasts with the figure of 0.94 for

UK bank branches found by Drake and Howcroft (1994) using DEA.

Furthermore, this relatively high degree of technical inefficiency is somewhat

surprising given the evidence typically provided by cost-income ratios, etc,

suggesting that UK building societies are more cost efficient than UK banks

(see Drake (1989).

A second stage Tobit regression revealed that the most important correlates

with respect to technical efficiency were “branch appearance” and risk/loan

quality, as proxied by the number of loans over two months in arrears.  The

former result confirms the potential importance of the marketing function in

influencing branch level performance and efficiency, while that latter is

consistent with a good deal of empirical literature suggesting that risk/loan

quality can have a significant negative impact on the efficiency of financial

firms.  It should be noted, however, that this finding has typically related to

studies of bank efficiency at the industry level, much of it US based (see, for

example, Mester 97, Berger et al 97).  Hence, the significant negative impact

of arrears on efficiency found in this study is particularly interesting as the

impact is evident at the branch level in a sector where bad debt problems are

typically much less severe than in commercial banking, due to the dominance

of secured mortgage lending.

The latter part of the paper focuses on scale efficiency, and in particular, the

size-efficiency relationship.  In contrast to the technical efficiency results, a

marked size-scale efficiency relationship is evident in building society

branches.  Furthermore, the relationship appears to be asymmetric in the sense

that the scale inefficiencies attributable to operating above the MES appear to

be much greater than those associated with operating with increasing returns

to scale.  Finally, the MES itself appears to be at a mean staff level of around 6



FTEs.  While this optimal scale of operation may seem surprisingly low, the

result is consistent with the findings of  Drake and Howcroft (1994) in respect

of bank branches.  This evidence of a low MES in branch production may also

provide at least a partial explanation for the typical finding that economies of

scale in financial  institutions are exhausted at relatively low asset levels (see

Berger and Humphrey, 1997 and Drake, 1992).
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Table 1

Branch Efficiency
Results

1 2 3 4 5 6
Branch SDF PTE Mean (1 & 2) OE SE Returns to

Scale
1 0.912 1.000 0.956 0.568 0.568 D
2 0.899 1.000 0.950 0.670 0.670 D
3 0.857 1.000 0.928 0.683 0.683 D
4 0.842 0.917 0.879 0.819 0.894 D
5 0.801 0.875 0.838 0.796 0.910 D
6 0.852 0.780 0.816 0.672 0.862 D
7 0.783 0.729 0.756 0.498 0.683 D
8 0.901 0.996 0.949 0.921 0.925 D
9 0.883 0.842 0.862 0.779 0.925 D

10 0.849 0.678 0.764 0.608 0.896 I
11 0.891 0.992 0.941 0.871 0.878 D
12 0.880 0.868 0.874 0.861 0.992 D
13 0.795 0.552 0.673 0.518 0.940 I
14 0.865 0.891 0.878 0.839 0.941 D
15 0.869 1.000 0.935 0.905 0.905 D
16 0.871 0.693 0.782 0.682 0.984 I
17 0.832 0.996 0.914 0.996 1.000 I
18 0.791 0.659 0.725 0.648 0.982 D
19 0.882 0.733 0.807 0.726 0.991 I
20 0.886 1.000 0.943 1.000 1.000 C
21 0.824 0.608 0.716 0.586 0.963 I
22 0.910 1.000 0.955 1.000 1.000 C
23 0.878 0.754 0.816 0.749 0.993 I
24 0.914 1.000 0.957 1.000 1.000 C
25 0.939 0.827 0.883 0.818 0.989 I
26 0.919 1.000 0.959 0.675 0.675 I
27 0.959 1.000 0.980 0.861 0.861 I
28 0.872 0.896 0.884 0.896 1.000 I
29 0.917 1.000 0.958 1.000 1.000 C
30 0.871 0.662 0.767 0.662 1.000 I
31 0.937 0.842 0.890 0.837 0.994 D
32 0.931 0.922 0.926 0.896 0.972 D
33 0.938 0.921 0.929 0.913 0.991 D
34 0.896 0.742 0.819 0.737 0.993 D
35 0.871 0.640 0.755 0.625 0.977 I
36 0.904 1.000 0.952 1.000 1.000 C
37 0.963 1.000 0.982 1.000 1.000 C
38 0.944 1.000 0.972 1.000 1.000 C
39 0.878 1.000 0.939 1.000 1.000 C
40 0.852 0.997 0.924 0.827 0.829 D
41 0.889 0.797 0.843 0.732 0.918 I
42 0.914 0.910 0.912 0.822 0.903 D
43 0.888 0.865 0.876 0.834 0.965 I
44 0.913 0.916 0.915 0.784 0.855 D
45 0.945 1.000 0.973 1.000 1.000 C
46 0.879 0.756 0.818 0.752 0.994 I



47 0.872 0.914 0.893 0.910 0.996 I
48 0.799 0.666 0.732 0.486 0.730 D
49 0.860 0.731 0.795 0.712 0.974 I
50 0.916 0.731 0.823 0.695 0.952 I
51 0.941 0.840 0.891 0.839 0.999 D
52 0.890 0.732 0.811 0.726 0.992 D
53 0.858 0.618 0.738 0.601 0.972 D
54 0.803 0.607 0.705 0.607 0.999 D
55 0.842 0.637 0.739 0.624 0.980 I
56 0.937 0.858 0.898 0.847 0.987 D
57 0.912 0.930 0.921 0.807 0.868 I
58 0.914 0.798 0.856 0.635 0.796 I
59 0.934 0.836 0.885 0.836 0.999 D
60 0.928 0.876 0.902 0.829 0.947 I
61 0.923 0.780 0.852 0.774 0.993 D
62 0.906 1.000 0.953 0.812 0.812 I
63 0.945 1.000 0.972 0.923 0.923 I
64 0.914 0.934 0.924 0.708 0.758 I
65 0.921 0.937 0.929 0.697 0.744 I
66 0.884 0.672 0.778 0.656 0.976 I
67 0.914 0.965 0.939 0.619 0.642 I
68 0.854 1.000 0.927 0.713 0.713 D
69 0.923 0.729 0.826 0.678 0.931 I
70 0.963 1.000 0.981 1.000 1.000 C
71 0.939 0.900 0.919 0.887 0.986 D
72 0.941 0.924 0.933 0.924 1.000 D
73 0.955 0.884 0.919 0.807 0.913 D
74 0.952 1.000 0.976 0.915 0.915 D
75 0.903 1.000 0.951 0.905 0.905 D
76 0.875 1.000 0.938 0.799 0.799 D
77 0.906 0.757 0.831 0.741 0.979 I
78 0.912 0.783 0.848 0.781 0.997 I
79 0.726 0.596 0.661 0.555 0.931 D
80 0.920 1.000 0.960 1.000 1.000 C
81 0.888 0.824 0.856 0.778 0.944 D
82 0.889 0.725 0.807 0.723 0.996 I
83 0.913 0.935 0.924 0.934 0.998 D
84 0.902 0.732 0.817 0.719 0.983 I
85 0.957 1.000 0.979 1.000 1.000 C
86 0.895 0.815 0.855 0.756 0.928 I
87 0.877 0.710 0.793 0.632 0.891 I
88 0.910 0.943 0.927 0.941 0.997 D
89 0.858 0.814 0.836 0.739 0.908 I
90 0.929 0.912 0.921 0.891 0.978 D
91 0.906 0.790 0.848 0.768 0.972 I
92 0.920 0.822 0.871 0.821 1.000 D
93 0.848 0.584 0.716 0.568 0.973 I
94 0.923 0.804 0.864 0.630 0.784 I
95 0.889 0.878 0.884 0.809 0.921 I
96 0.912 0.718 0.815 0.709 0.988 I
97 0.926 0.955 0.940 0.915 0.958 D
98 0.900 0.622 0.761 0.616 0.989 I
99 0.923 0.927 0.925 0.900 0.971 D
100 0.803 0.600 0.701 0.554 0.924 D
101 0.884 1.000 0.942 0.740 0.740 D



102 0.856 0.832 0.844 0.638 0.766 D
103 0.751 0.579 0.665 0.512 0.884 D
104 0.842 0.649 0.746 0.620 0.955 D
105 0.812 0.602 0.707 0.602 0.999 I
106 0.938 1.000 0.969 1.000 1.000 C
107 0.890 0.908 0.899 0.686 0.755 D
108 0.876 0.630 0.753 0.614 0.975 I
109 0.822 0.635 0.729 0.474 0.747 I
110 0.920 1.000 0.960 1.000 1.000 C
111 0.815 0.594 0.704 0.532 0.896 I
112 0.791 0.851 0.821 0.851 0.999 I
113 0.871 1.000 0.935 1.000 1.000 C
114 0.860 0.829 0.844 0.708 0.855 I
115 0.878 0.868 0.873 0.703 0.809 I
116 0.831 0.885 0.858 0.872 0.984 I
117 0.932 1.000 0.966 1.000 1.000 C
118 0.846 0.965 0.905 0.906 0.939 D
119 0.724 0.481 0.602 0.481 1.000 D
120 0.895 0.793 0.844 0.741 0.934 D
121 0.841 0.597 0.719 0.572 0.958 I
122 0.757 0.520 0.638 0.443 0.853 I
123 0.912 0.977 0.944 0.748 0.766 D
124 0.931 0.906 0.918 0.874 0.965 D
125 0.940 1.000 0.970 0.973 0.973 D
126 0.921 1.000 0.961 0.914 0.914 D
127 0.865 0.731 0.798 0.591 0.809 I
128 0.917 1.000 0.958 1.000 1.000 C
129 0.887 1.000 0.944 0.727 0.727 D
130 0.912 0.709 0.810 0.704 0.993 D
131 0.868 0.803 0.835 0.708 0.883 I
132 0.712 0.453 0.583 0.389 0.857 I
133 0.875 0.593 0.734 0.584 0.986 I
134 0.912 0.814 0.863 0.783 0.963 I
135 0.751 0.583 0.667 0.576 0.989 I
136 0.888 0.679 0.783 0.652 0.961 I
137 0.867 0.699 0.783 0.611 0.874 I
138 0.940 0.744 0.842 0.708 0.951 I
139 0.922 1.000 0.961 1.000 1.000 C
140 0.920 0.978 0.949 0.796 0.814 D
141 0.874 1.000 0.937 0.927 0.927 D
142 0.917 1.000 0.958 0.760 0.760 D
143 0.874 1.000 0.937 0.655 0.655 D
144 0.942 0.958 0.950 0.957 0.999 I
145 0.929 0.850 0.889 0.784 0.922 D
146 0.924 1.000 0.962 1.000 1.000 C
147 0.911 0.841 0.876 0.825 0.982 D
148 0.865 0.988 0.926 0.695 0.704 I
149 0.780 0.772 0.776 0.676 0.877 D
150 0.855 0.688 0.771 0.685 0.996 I
151 0.914 0.843 0.879 0.727 0.862 I
152 0.869 0.942 0.905 0.940 0.998 D
153 0.882 0.812 0.847 0.763 0.940 D
154 0.930 0.867 0.899 0.795 0.917 D
155 0.889 1.000 0.945 1.000 1.000 C
156 0.932 0.946 0.939 0.820 0.866 D



157 0.815 0.839 0.827 0.792 0.945 D
158 0.883 0.725 0.804 0.715 0.986 D
159 0.908 1.000 0.954 1.000 1.000 C
160 0.945 1.000 0.972 0.970 0.970 I
161 0.939 0.977 0.958 0.967 0.990 D
162 0.953 1.000 0.976 1.000 1.000 C
163 0.932 0.957 0.944 0.893 0.933 I
164 0.950 1.000 0.975 1.000 1.000 C
165 0.699 0.530 0.615 0.463 0.875 D
166 0.696 0.563 0.629 0.520 0.924 D
167 0.912 0.933 0.922 0.931 0.998 D
168 0.909 0.952 0.930 0.847 0.890 D
169 0.921 0.844 0.882 0.746 0.884 D
170 0.904 0.919 0.912 0.862 0.937 D
171 0.748 0.527 0.638 0.519 0.984 I
172 0.882 1.000 0.941 0.979 0.979 D
173 0.895 0.809 0.852 0.803 0.993 I
174 0.834 0.590 0.712 0.583 0.988 D
175 0.917 0.993 0.955 0.718 0.723 D
176 0.886 0.881 0.884 0.832 0.944 D
177 0.919 1.000 0.959 1.000 1.000 C
178 0.850 0.675 0.763 0.669 0.992 I
179 0.945 1.000 0.973 1.000 1.000 C
180 0.948 1.000 0.974 0.934 0.934 D
181 0.913 0.809 0.861 0.798 0.986 I
182 0.961 1.000 0.981 0.982 0.982 D
183 0.943 0.853 0.898 0.797 0.935 I
184 0.913 0.713 0.813 0.690 0.967 I
185 0.943 0.930 0.937 0.823 0.884 D
186 0.959 0.980 0.969 0.968 0.988 I
187 0.892 0.691 0.792 0.650 0.940 D
188 0.894 1.000 0.947 1.000 1.000 C
189 0.880 1.000 0.940 1.000 1.000 C
190 0.951 0.751 0.851 0.750 1.000 I
191 0.793 1.000 0.897 0.768 0.768 D
192 0.923 1.000 0.962 1.000 1.000 C
193 0.948 1.000 0.974 1.000 1.000 C
194 0.865 0.774 0.819 0.748 0.967 I
195 0.835 0.632 0.734 0.626 0.989 D
196 0.856 0.792 0.824 0.769 0.971 D
197 0.901 0.754 0.827 0.736 0.977 I
198 0.870 0.665 0.767 0.663 0.996 D
199 0.948 1.000 0.974 0.753 0.753 D
200 0.912 0.754 0.833 0.741 0.982 D
201 0.887 0.895 0.891 0.871 0.974 I
202 0.912 0.947 0.929 0.896 0.947 D
203 0.771 0.643 0.707 0.627 0.976 D
204 0.885 0.664 0.775 0.639 0.962 D
205 0.925 0.928 0.927 0.903 0.973 D
206 0.776 0.620 0.698 0.482 0.777 I
207 0.890 1.000 0.945 1.000 1.000 C
208 0.896 0.704 0.800 0.696 0.989 I
209 0.794 0.609 0.701 0.538 0.884 I
210 0.933 0.959 0.946 0.943 0.983 I
211 0.860 0.745 0.802 0.588 0.789 I



212 0.883 0.652 0.767 0.597 0.916 I
213 0.874 0.881 0.877 0.832 0.944 I
214 0.932 0.886 0.909 0.835 0.942 I
215 0.892 0.625 0.758 0.621 0.994 I
216 0.941 0.857 0.899 0.857 1.000 D
217 0.879 0.763 0.821 0.702 0.919 I
218 0.949 0.844 0.896 0.840 0.996 I
219 0.898 1.000 0.949 1.000 1.000 C

Mean 0.887 0.842 0.864 0.781 0.929
Min 0.696 0.453 0.583 0.389 0.642
Max 0.963 1.000 0.982 1.000 1.000



TABLE 2

TOBIT REGRESSION RESULTS

   Coefficient   Standard Error   T-Stat

Constant   0.9156384       0.44503E-01   20.575
  

RATIO      0.1365530E-01   0.12196E-01    1.120

MERGER    -0.1310123E-01   0.15360E-01   -0.853

STAFF      0.1855179E-02   0.16388E-02    1.132
  

APPEAR     0.1918200E-01   0.84504E-02    2.270
  

LOCATION   0.1060088E-05   0.41400E-03    0.003
  

MIA       -0.1165970E-02   0.24110E-03   -4.836

TABLE 3

 SCALE EFFICIENCY AND BRANCH SIZE

(SIZE BAND MEAN LEVELS)

SE FTE Staff Total Accounts

Band 1 0.668433 29.002 32006

Band 2 0.836636 11.99485 12592.08

Band 3 0.905058 9.540069 8339.192

Band 4 0.93527 7.8157 6121.102

Band 5 0.97007 6.107158 4479.394

Band 6 0.948622 5.190943 3209.554

Band 7 0.924295 5.189938 1833.4




