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Abstract: Coupled extensional–torsional behaviour of axially pre-loaded helically wound steel
cables (wire ropes and/or spiral strands) under specific forms (i.e. unit-step, triangular, and
half-sine) of impact loading are considered in some detail. The final closed-form formulations
can handle both the no-slip and/or the traditionally used full-slip coupled extensional/torsional
constitutive equations for helically wound cables, and describe the various characteristics of
the resulting pairs of axial or torsional waves at any location along the cable with one end
fixed against movement and the other end subjected to impact loading. By using extensive
numerical results, which cover the full range of current manufacturing limits for the lay
angle (with this being the sole controlling geometrical parameter as far as the axial/torsional
stiffnesses are concerned), it is shown that significant differences exist between a number of
axial/torsional wave characteristics, depending on whether the no-slip or the full-slip version
of the constitutive relations is used in the analysis. It is demonstrated that modest increases
in the magnitudes of the lay angles can lead to significant increases in the differences between
the no-slip and the full-slip wave propagation characteristics. The present findings may have
significant practical implications in relation to the currently adopted techniques used by
industry for calibrating the electronic boxes, which are subsequently used as permanently
installed devices, for the in situ detection of individual wire fractures under, say, fatigue loading
associated with cable-supported structures.

Keywords: wire ropes, spiral strands, friction, stiffness, axial, torsional, impact loading,
non-destructive methods, bridges, overhead transmission lines

1 INTRODUCTION Over the past, say, 25 years, substantial improve-
ments have been made in the understanding of the
behaviour of helically wound steel cables, in whichIn recent years, there has been a growing need for
the term ‘cables’ includes spiral strands and wireprogressively larger diameter steel cables (wire ropes
ropes. Spiral strand, or strand, is (in British parlance)and/or spiral strands) for the new generation of
a group of wires laid helically in successive layerscable-supported bridges. Larger and longer wire ropes
over a straight central King wire (or an equal layand spiral strands have also been used (as, for
core). Wire rope consists of (typically) six strands laidexample, moorings) in offshore applications. The
helically over a central core, which may itself consisttraditional methods of cable analysis and design
of twisted fibres or a smaller independent wire rope.are based largely on practical experience relating
Unlike the individual wires in a wire rope which areto significantly smaller diameter cables, and, there-
laid as double helices, the wires in a spiral strandfore, there has been a pressing need for their
follow a simple helical path with lay angle, a. Wirere-examination.
rope is, therefore, a little more axially flexible than a
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so widely used as tractive elements over pulleys, the predictions based on the invariably frictionless
thin rod models of Costello and his associateswinch drums, and fairleads in various applications.
(e.g. [6, 7]), Velinsky [8], and Jiang [9], with theseSpiral strands, on the other hand, are often employed
models only leading to predictions of the full-slipas, for example, hangers in suspension bridges or
(in the present terminology) coupled axial–torsionalstays in cable-stayed bridges.
stiffness coefficients, with their predictions for largeThe orthotropic sheet theory has previously been
diameter wire ropes with IWRC not correlating wellreported by Raoof and his associates (for example,
with experimental results (e.g. see [3]).see references [1–3]) for obtaining reliable estimates

Helically wound steel cables are used in manyof the coupled axial–torsional stiffnesses for axially
cases (e.g. aircraft landing arresting gears in navalpre-loaded spiral strands, which have been found
aircraft carriers) to resist impact loads, and until fairlyto vary between the two limiting values of full-slip
recently the classical approaches to the dynamicand no-slip, as a function of the external axial
problem for taut lines ignored the torsional effectsand/or torsional load perturbations superimposed
associated with the axial loading (e.g. [10–12]). It wason a mean axial load. Very briefly, the axial and
Samras and his associates [13, 14] who first pointedtorsional stiffnesses for small load changes have
out the importance of taking the coupled extensional–been shown to be significantly larger than for large
torsional behaviour of wire ropes under dynamicload changes, because small external axial and/or
loading conditions into account. In their work, Samrastorsional load disturbances do not induce interwire
and his associates did not use any theoretical meansslippage. In the presence of interwire friction, and
of obtaining the stiffness matrix for wire ropes butfor sufficiently small external load disturbances
made use of experimentally obtained constitutive(which, for example, in the axial case, correspond
constants in their dynamic analysis. In particular,to axial load range–mean axial load ratios less than,
they only addressed the full-slip case which relatessay, 2 per cent [2]), the wires stick together, and the
to conventional static load–deformation behaviour.axially pre-loaded spiral strand will effectively behave
Phillips and Costello [15] used an idealized friction-as a solid rod (with allowance being made for the
less model of a single-layer spiral strand with no core

presence of gaps between the individual wires);
wire to investigate the axial (and associated rotational)

these conditions are known as the no-slip regime.
response of the steel cable to impact loading. Leech

When large variations in the external load take place,
and Overington [16] used a different technique to

with its associated large changes in the interwire
solve the basic equations for frictionless cables

contact forces within the various layers of helical
derived in reference [15]. Unlike reference [15],

wires, the tangential force changes between the Leech and Overington [16] also conducted some
round wires in line-contact will be large enough experiments on single-layer strands which appeared
to overcome interwire friction and induce sliding to support their theory in a qualitative manner. In a
movements on the interwire line-contact patches; recent paper, Martin and Berger [17] used the con-
these conditions are known as the full-slip regime. stitutive relationships for frictionless multilayered
Obviously, a large number of axial stiffness results spiral strands, based on the semi-continuous model
have traditionally been provided by the cable of Cardou and his associates (e.g. [18]), to give a
manufacturers based on their shop measurements, better insight into the problem of wave propagations
but because of the large load ranges involved, such in spiral strands, taking the coupled axial–torsional
results invariably relate to the full-slip axial stiffness behaviour into account.
in the present terminology. Raoof et al. [19] followed the general approach

The carefully conducted and large-scale experi- recommended by Jiang et al. [20] to develop closed-
ments of Strzemiecki and Hobbs [4] have demon- form solutions for predicting the extensional–
strated that axially pre-loaded wire ropes with torsional wave speeds and displacements in axially
independent wire rope cores (IWRC) also exhibit pre-loaded spiral strands experiencing specific forms
the no-slip and/or full-slip stiffness characteristics. of impact loading at one end with the other end
Guided by this observation, Raoof and Kraincanic [3] fixed; the impact loading functions considered in
have developed a theoretical model for predicting reference [19] were of the unit-step and the triangular
the coupled no-slip and/or full-slip axial–torsional type. Raoof et al. [19] argued that unlike the
stiffness coefficients for axially pre-loaded wire ropes traditional methods that had invariably assumed a
with IWRC, with encouraging correlations found unique (full-slip) force–displacement stiffness matrix,
between the predictions based on this model and the the ever-present interwire friction necessitates the

use of an alternative (no-slip) stiffness matrix fortest data reported by others [5]. This is in contrast to
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sufficiently small levels of external load disturbances strand, with wide variations (within the current
manufacturing limits) in the other geometrical para-in the presence of substantial levels of mean axial
meters having a secondary influence on the no-slipload in fully bedded-in helically wound cables. In
coupled axial–torsional stiffnesses.particular, numerical results for a 39 mm outside

As regards the new developments as reported indiameter multilayered spiral strand as reported by
the present paper, bearing in mind the first-orderRaoof et al. [19] strongly suggested the significant
(controlling) role of the lay angle on the no-slipdifference that the use of no-slip constitutive relations
and/or full-slip coupled axial–torsional stiffnesses, in(instead of the traditionally used full-slip values) can
what follows, by using the constructional details formake to the pattern of extensional–torsional wave
three different 127 mm outside diameter (i.e. realistic)speeds and deformations in axially pre-loaded spiral
spiral strands with lay angles of 12, 18, and 24°strands subjected to small levels of impact loading.
(as designed and made available to the first author,As fully discussed later, such cases are of relevance
some years ago, by the wire rope manufacturerto the in-service (non-destructive) methods for wire
‘Bridon Ropes’), numerical results will be presentedfracture detection in cables subjected to, say, axial
that will demonstrate the controlling (i.e. first-order)fatigue loading: in such cases, the fracture of an
effect of the lay angle on the no-slip and/or full-slipindividual wire within a helically wound cable applies
coupled axial–torsional wave propagation character-a small (but measurable) form of impact loading on
istics of axially pre-loaded spiral strands experiencingthe cable whose resulting coupled axial–torsional
a range of different impact loading functions (i.e. unit-waves are picked up by non-destructive detection
step, triangular, and half-sine), with the presentlydevices whose output signals may be significantly
adopted range of lay angles (i.e. 12–24°) very nearlyaffected by the higher levels of stiffness in connection
covering the full range of lay angles as currentlywith the no-slip cable characteristics.
offered by the manufacturers. Such results will thenAlthough the specific type of impact loading
be used to highlight the possible shortcomings ofinduced as a result of an individual wire fracture in
calibration methods currently used for certain non-a helically wound cable is (at least for the present)
destructive monitoring ‘electronic boxes’ for the

extremely difficult (if at all possible) to identify with
detection of individual wire fractures under service

any degree of certainty, a reasonable insight may be
conditions in, say, bridging applications, as well as

obtained into the patterns of extensional–torsional
overhead transmission lines (among others). As a

wave speeds and deformations within an axially pre-
prerequisite to this, the next section will present

loaded cable by considering the solutions for a range
(for completeness) the salient features of the

of different types of impact loading functions. In theoretical model of Raoof et al. [19] for unit-step
what follows, by using the same approach as that and triangular impact loading functions with the
adopted by Raoof et al. [19], who addressed the cases theoretical formulations extended to include the
of unit-step and triangular impact loading functions, half-sine impact loading case (with this being a new
closed-form formulations will be reported for the development). In what follows, inclusion of the final
case of a half-sine impact loading function, hence formulations for the unit-step and triangular loading
enabling the numerical results to be compared for a functions not only provides the present authors
wide range of impact loading functions. with the opportunity to correct certain minor typo-

Moreover, theoretical parametric studies reported graphical errors in some of the final formulations as
by Raoof [21], which covered a wide range of spiral presented in reference [19] but also enables the
strand (and wire) diameters, lay angles, number of reader to better understand (and appreciate) the
wires in each layer, and number of layers of helical subsequent developments.
wires, have demonstrated that the full-slip coupled
axial–torsional stiffnesses of multilayered spiral
strands are a sole function of the lay angles in

2 THEORYthe various layers, with the other geometrical para-
meters having a secondary influence on the spiral

2.1 Constitutive relations for helically woundstrand’s axial–torsional stiffnesses. Similar extensive
steel cablestheoretical parametric studies reported by Raoof and

Kraincanic [22], on the other hand, have strongly This topic has been addressed in considerable detail
suggested that the no-slip coupled axial–torsional elsewhere [1, 21–24]. For the extreme cases of either
stiffnesses only depend on the lay angles in various no-slip and/or full-slip, for the constitutive equations

relating the cable tension, F, and torque, M, to thelayers and the level of mean axial strain on the spiral
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cable deformations, it has been postulated that with the no-slip stiffness coefficients being a function
of the mean axial tension on the helically wound

F=A
1
e+A

2
C (1) cable.

M=A
3
e+A

4
C (2)

2.2 Dynamic analysis
where A

1
, A

2
, A

3
, and A

4
are constitutive constants 2.2.1 Equations of motion

dependent on both the cable material and con-
The equations of motion for a coupled system withstruction. In equations (1) and (2), e=axial strain=
constitutive relations, as defined in the previousqu/qx and C= twist per unit length=qh/qx.
section, are [13]Experimental measurements have verified the

postulated linear form of the constitutive equations
m
q2u
qt2
=A
1
q2u
qx2
+A
2
q2h
qx2

(3)for the full-slip case. In particular, it is shown that
within experimental accuracy, A

2
#A

3
, which is com-

patible with the Maxwell–Betti reciprocal theorem I
q2h
qt2
=A
3
q2u
qx2
+A
4
q2h
qx2

(4)
for linear elastic structures. Raoof and Hobbs [1, 23]
provide accurate (although mathematically rather where h is the angular rotation of the cable whose
complex) means of obtaining the no-slip and full- longitudinal displacement is u and t=time. For a
slip predictions of A

1
–A

4
for axially pre-loaded spiral spiral strand, m is the mass per unit length

strands, while Raoof and Kraincanic [3] give a detailed
m=Asr (5)account of a theoretical model for estimating the

no-slip and full-slip values of A
1
–A

4
for axially pre- with r being the density of steel and A

s
denoting the

loaded wire ropes with an independent wire rope net area of the steel (including the core wires) [19],
core. It should be noted that reasonably accurate while I is the mass moment about the strand axis,
values of the full-slip A

1
–A

4
coefficients for axially per unit length of the structure in the unloaded

preloaded spiral strands may also be obtained by configuration
the very simple (hand-based) formulations reported

I=2I
xx
r (6)by Raoof [21]. As regards simple determination of

the no-slip stiffness coefficients, however, although where
Raoof and Kraincanic [22] have, on the basis of
extensive theoretical parametric studies, already I

xx
= ∑
N

i=1
I
ni

reported simple (hand-based) formulations for
determining the no-slip A

1
–A

4
stiffness coefficients

= ∑
N

i=1
G p2256

[(2r
i
+D
i
)4−(2r

i
−D
i
)4 ]H (7)for axially preloaded spiral strands, due to the subtle

variations of the lay angles in various layers of
In the above, N denotes the total number of layersthe usually nominally torsionally balanced spiral
in a spiral strand excluding the core wire(s), withstrands in practice (which is based on commercially
i=1 for the outermost layer. Equation (6) assumesconfidential experience), only their simple estimates
that for spiral strands with, say, N�2, the con-of the coefficients A

1
and A

4
are (for torsionally

tribution of the core wire(s) to I
xx

is sufficiently smallbalanced spiral strands) sufficiently accurate for use
to be ignored.in the impact loading formulations reported in the

following sections. As pointed out by Raoof and
2.2.2 Response to impact loadingKraincanic [22], their simple estimates of the no-slip

A
2

and A
3

stiffness coefficients do not enjoy general Jiang et al. [20] considered a coupled system, with
reliability. For the present purposes, therefore, the one end fixed at x=0 and subjected to sinusoidal
only means of obtaining accurate estimates of forms of the excitation functions for axial force F

0
(t)

the A
2

and A
3

stiffness coefficients (as defined by and torque M
0
(t) at the other end x=h, assuming

Raoof and Kraincanic [22]) is by using the complex the following boundary conditions
formulations of Raoof and Hobbs [1, 23]. For more

u(0, t)=0, h(0, t)=0 (8)information about this point, the interested reader
may refer to reference [24].

A
1
qu
qx
+A
2
qh
qxK
x=h
=F
0
(t) (9)Finally, as discussed in the previous section, for

a given cable construction, the full-slip stiffness
coefficients have been found to be, for all practical A

3
qu
qx
+A
4
qh
qx K
x=h
=M

0
(t) (10)

purposes, independent of the cable mean axial load,
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while at time t=0 there was assumed to be no where i=1, 2, with the negative and positive signs
motion, with the associated boundary conditions in equations (20) and (21) corresponding to cases

with i=1 and i=2 respectively. Thus, for a given
u(x, 0)=0, h(x, 0)=0 (11) excitation, i.e. with F

0
(t) and M

0
(t) defined, the values

of u(x, t) and h(x, t) may be found.
In what follows, three different types of impactqu(x, 0)

qt
=0,

qh(x, 0)

qt
=0 (12)

loading functions of the general form

For the above boundary conditions, the solution to
F
0
(t)=F

0
g(t) (22)the equations of motion [i.e. equations (3) and (4)]

is given by Jiang et al. [20] as
M
0
(t)=M

0
g(t) (23)

u(x, t)= ∑
2

i=1
[a
i
F
i
(x, t)+c

i
M
i
(x, t)] (13)

are considered, where F
0

and M
0

are the amplitudes
of the external load disturbances. Three distinctly
different cases of g(t) are used. In the first instance,h(x, t)= ∑

2

i=1
[b
i
F
i
(x, t)+d

i
M
i
(x, t)] (14)

a unit-step function for g(t) defined as

with

g(t)=G1, 0∏t∏A (24a)

0, A<t<2 (24b)F
i
(x, t)=

4v
i
p
∑
2

n=0

(−1)n

2n+1
sin

(2n+1)px

2h

is assumed. Using equations (22), (23), and (24a)
×P t
0

F
0
(t−z) sin

(2n+1)pz

2v
i

dz (15) and (24b), the following has been found by Raoof
et al. [19]

and

u(x, t)= ∑
2

i=1
(F
0
a
i
+M

0
c
i
)w
i
(x, t) (25)

M
i
(x, t)=

4v
i
p
∑
2

n=0

(−1)n

2n+1
sin

(2n+1)px

2h

h(x, t)= ∑
2

i=1
(F
0
b
i
+M

0
d
i
)w
i
(x, t) (26)

×P t
0

M
0
(t−z) sin

(2n+1)pz

2v
i

dz (16)

with
where

w
i
(x, t)=A4vip B2 ∑2

n=0

(−1)n

(2n+1)2a
i
=

1

2mhC1± IA
1
−mA

4
√(IA

1
−mA

4
)2+4mIA

2
A
3
D (17)

×sin
(2n+1)pA

4v
i

sin
(2n+1)px

2hb
i
=

±A
3

h√(IA
1
−mA

4
)2+4mIA

2
A
3

(18)

×sin
(2n+1)p(2t−A)

4v
i

, i=1, 2 (27)

c
i
=

±A
2

h√(IA
1
−mA

4
)2+4mIA

2
A
3

(19)

In the above, A is the duration of the impact loading
and h is the length of the cable.In the above, i=1, 2, with the positive and negative

For a triangular impact function, g(t) in equationssigns in equations (17) to (19) corresponding to cases
(22) and (23) may be expressed in the formwith i=1 and i=2 respectively, and

d
i
=

1

2IhC1A IA
1
−mA

4
√(IA

1
−mA

4
)2+4mIA

2
A
3
D (20)

g(t)=G−1

A
(t−A), 0∏t∏A (28a)

0, A<t<2 (28b)
v2
i
=

h2 [(IA
1
+mA

4
)A√(IA

1
−mA

4
)2+4mIA

2
A
3
]

2(A
1
A
4
−A
2
A
3
)

The solution for u(x, t) and h(x, t) can be expressed
in the same form as those in equations (25) and (26)(21)
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with the formulations for parameter w
i
(x, t) given as where

w
i
(x, t)= ∑

2

n=0
sin

(2n+1)px

2h
k=

(2n+1)p

2h
(33)

and
×GC (4v

i
)3(−1)n

2A(2n+1)3p3
cos

(2n+1)(2t−A)p

4v
i l

i
=

(2n+1)p

2v
i

, i=1, 2 (34)

×sin
(2n+1)pA

4v
i
D The speeds of either the axial or the torsional waves,

C
1

and C
2
, are given by

+
(4v
i
)2(−1)n

(2n+1)2p2
sinC(2n+1)pA

4v
i
D C

i
=
l
i

k
, i=1, 2 (35)

×sinC(2n+1)p

4v
i

(2t−A)D or

C
i
=

h

v
i
, i=1, 2 (36)

−
8v2
i
(−1)n

(2n+1)2p2
cos

(2n+1)(t−A)p

2v
i
H

For the triangular impact loading function, on the
(29) other hand, equation (29) may be rewritten as

Alternatively, for a half-sine impact function, g(t) in
w
i
(x, t)= ∑

2

n=0

(−1)n

l2
i
A 2

Al
i

sinAliA2 Bequations (22) and (23) may be expressed in the form

×GsinCkx−l
iAt−A

2 BDg(t)=Gsin
pt

A
, 0<t<A (30a)

0, A<t<2 (30b)

+sinCkx+l
iAt−A

2 BDHThe solution for u(x, t) and h(x, t) can also be
expressed in the same form as those in equations
(25) and (26), with the parameter w

i
(x, t), for this

+2 sinAliA2 Bform of impact loading function, in equations (25)
and (26), given by

×GcosCkx−l
iAt−A

2 BDw
i
(x, t)=

8Av
i

p2
∑
2

n=0

(−1)n

(2n+1){1− [(2n+1)A/(2v
i
)]2}

−cosCkx+l
iAt−A

2 BDH×cos
(2n+1)pA

4v
i

sin
(2n+1)px

2h

−{sin[kx−l
i
(t−A)]

×sin
(2n+1)p(2t−A)

4v
i

(31)

+sin[kx+l
i
(t−A)]}B

(a) Speed of axial and torsional waves. For the
unit-step, triangular, and half-sine impact loading (37)
functions, the equations defining w

i
(x, t) may be For the half-sine impact loading function, the

rewritten in alternative forms. For the unit-step alternative form of equation (31) is given as
impact loading function, the alternative form of
equation (27) is given as

w
i
(x, t)=

4Av
i

p2
∑
2

n=0

(−1)n

(2n+1){1− [(2n+1)A/(2v
i
)]2}

w
i
(x, t)= ∑

2

n=0

2(−1)n

l2
i

sin
l
i
A

2
×cos

l
i
A

2 GcosCkx−l
iAt−A

2 BD
×GcosCkx−l

iAt−A

2 BD
−cosCkx+l

iAt−A

2 BDH
−cosCkx+l

iAt−A

2 BDH (32)
(38)
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As expected, the speeds of wave propagations do 3 RESULTS
not depend on the type of externally applied impact

Numerical results have been obtained for threeloading, and the values of C
1

as well as C
2

for either
different 127 mm outside diameter axially pre-loadedthe axial or the torsional waves are the same for the
multilayered spiral strands: the three strand con-unit-step, triangular, and half-sine impact loading
structions have lay angles of 12°, 18°, and 24°, withfunctions. It should be noted that if there is a
their other geometrical parameters kept very nearlytorsional wave, propagating at speed C, then it will
the same. The construction details for these threebe accompanied by an axial wave propagating at the
strands are given in Tables 1 to 3.same speed and with the same shape, but with a

For the present purposes, the spiral strands aredifferent amplitude [17]; in other words, there are
all assumed to be 10 m in length, with the threetwo possible torsional waves with speeds C

1
and C

2
127 mm spiral strands experiencing a mean axialassociated with which there are two axial waves with
strain S∞

1
=0.002 867, which roughly corresponds tospeeds C

1
and C

2
respectively.

one-third of their ultimate tensile strengths. TheFinally, the ratios of torsional to extensional
Young’s modulus for steel E

s
=200 kN/mm2 andamplitudes, R

1
and R

2
, are [13]

the corresponding Poisson’s ratio n=0.28, with the
density of steel r=7850 kg/m3.

R
1,2
=
h

u
=

mC2
1,2
−A
1

A
2

(39)
The full-slip and no-slip constitutive constants for

the three 127 mm outside diameter spiral strands, as
In the above, R

1
relates to torsional and axial waves, calculated using the more accurate (but complex)

both of which have speed C
1
, and R

2
relates to version of the orthotropic sheet theory as reported by

torsional and axial waves, both of which have Raoof and Hobbs [1, 23], are given in Table 4, where,
d

1
=A

1
/E

s
, d

2
=A

2
/E

s
, d

3
=A

3
/E

s
, and d

4
=A

4
/E

s
. Itspeed C

2
.

Table 1 Construction details for the 127 (a=12°) mm outside diameter spiral strand

Number of Wire diameter Lay angle Pitch circle radius Net steel area
Layer wires n Lay direction D (mm) (deg) (theoretical) r (mm) A

ni
(mm2)

1 56 RH 6.60 12.00 60.17 1958.67
2 50 LH 6.60 12.00 53.73 1748.81
3 44 LH 6.60 12.00 47.29 1538.96
4 38 RH 6.60 12.00 40.85 1329.10
5 32 LH 6.50 12.00 33.89 1085.58
6 26 RH 6.50 12.00 27.56 882.03
7 20 LH 6.50 12.00 21.23 678.49
8 14 RH 6.60 12.00 15.15 489.67
Core 7 — 4.00 8.57 — 85.05

7 — 5.20 8.03 — 144.33
7 — 5.20 4.92 — 147.02
1 — 7.10 — — 39.59

Table 2 Construction details for the 127 (a=18°) mm outside diameter spiral strand

Number of Wire diameter Lay angle Pitch circle radius Net steel area
Layer wires n Lay direction D (mm) (deg) (theoretical) r (mm) A

ni
(mm2)

1 54 RH 6.55 18.0 59.22 1913.31
2 48 LH 6.55 18.0 52.64 1700.72
3 42 LH 6.55 18.0 46.07 1488.13
4 36 RH 6.55 18.0 39.50 1275.54
5 31 LH 6.55 18.0 34.02 1098.38
6 25 RH 6.55 18.0 27.46 885.79
7 19 LH 6.55 18.0 20.90 673.20
8 14 RH 6.30 18.0 14.85 458.90
Core 7 — 3.90 13.07 — 77.29

7 — 5.10 12.20 — 133.53
7 — 5.25 7.62 — 142.55
1 — 7.00 — 38.49
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Table 3 Construction details for the 127 (a=24°) mm outside diameter spiral strand

Number of Wire diameter Lay angle Pitch circle radius Net steel area
Layer wires n Lay direction D (mm) (deg) (theoretical) r (mm) A

ni
(mm2)

1 54 RH 6.40 24.0 60.23 1901.58
2 48 LH 6.40 24.0 53.54 1690.29
3 42 LH 6.50 24.0 47.58 1525.58
4 36 RH 6.50 24.0 40.79 1307.64
5 30 LH 6.60 24.0 34.53 1123.49
6 24 RH 6.60 24.0 27.64 898.79
7 18 LH 6.80 24.0 21.38 715.57
8 14 RH 6.10 24.0 14.94 447.87
Core 7 — 3.90 17.89 — 72.07

7 — 5.10 16.75 — 125.56
7 — 5.25 10.58 — 143.94
1 — 7.00 — — 38.49

Table 4 Values of the full-slip and no-slip constitutive of the counter-laid layers in order to predict the
constants for the three 127 mm outside overall values for the whole strand has led to
diameter spiral strands, with lay angles of 12°, such apparent (although not practically significant)
18°, and 24°

anomalies. Indeed, in these nominally torsionally
balanced spiral strands, the axial–torsional couplingLay

angle d
1

d
2

d
3

d
4 is very weak. Because of the very small values of the

(deg) (mm2) (mm3) (mm3) (mm4)
coupling terms A

2
and A

3
, even when using the

Full-slip 12 8837 −2576 −3012 928 782 complex (but more accurate) formulations of Raoof
18 6860 −3603 −4326 1 838 043 and Hobbs [1, 23], the computer program needed to24 4520 −4889 −5193 3 104 408

be run with double precision in order to obtain
No-slip 12 9380 −1325 −784 3 447 433

reasonable values of the no-slip stiffness coefficients18 8374 −1770 −429 3 878 215
24 7491 −2879 −827 4 693 255 A

2
and A

3
.

Table 5 gives estimates of the parameters,v
1

andv
2
,

axial or torsional wave speeds, C
1

and C
2
, as well

as the ratios of torsional to extensional amplitudes,should be noted that, particularly, the no-slip values
R

1
and R

2
, corresponding to both the no-slip andof d

2
and d

3
in Table 4 are (at first sight) not close to

the full-slip regimes for the three 127 mm outsideeach other. This is due to the rather small values of
diameter spiral strands. Practically significant differ-these constants in the nominally torsionally balanced
ences are found between the no-slip and full-slipspiral strands in which, although the no-slip d

2
and d

3
solutions in all cases, with Table 5 showing the ratherconstants for individual layers, as fully reported by
significant extent by which certain wave character-Kraincanic [24], were, indeed, found to be fairly
istics (such as amplitudes and speeds) differ forsimilar, the accumulation of small errors in the

course of algebraically adding up the contributions 12°∏a∏24°, depending on whether the full-slip or

Table 5 Numerical results for the axial or torsional wave speeds C
1

and C
2
, the

ratios of torsional–extensional amplitudes R
1

and R
2
, and the para-

meters v
1

and v
2
, for the three 127 mm outside diameter and axially

pre-loaded spiral strands, based on the no-slip and full-slip
assumptions

127 mm outside diameter spiral strand

a=12° a=18° a=24°

Full-slip No-slip Full-slip No-slip Full-slip No-slip

C
1

(m/s) 4197.18 4324.20 3742.83 4134.65 3023.36 3889.41
C

2
(m/s) 1080.25 2082.23 1567.88 2279.13 1988.52 2448.77

R
1

−0.230 −0.069 −0.502 −0.048 −1.283 −0.109
R

2
3202.91 5439.06 1569.83 3293.49 524.02 1570.37

v
1

(s) 0.002 383 0.002 313 0.002 672 0.002 419 0.003 308 0.002 571
v

2
(s) 0.009 257 0.004 803 0.006 378 0.004 388 0.005 029 0.004 084
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the no-slip solution is adopted. It should be pointed Figures 2(d) to (f) show the corresponding rotational
displacements, as a function of time, at the centre ofout that all the axial–torsional wave characteristics

given in Table 5 are independent of the specific form this same cable for the three impact loading functions,
based on the full-slip and no-slip regimes.of impact loading at the end of the spiral strand.

Before presenting the rest of the numerical results Figures 3(a) to (c) and 4(a) to (c) and Figs 3(d) to (f)
and 4(d) to (f) show the variations of the axial andrelating to various wave propagation characteristics

of the 127 mm diameter strands (which follow next), rotational displacements respectively, as a function
of the distance along the cable and as a function ofit is perhaps worth mentioning that, for the present

purposes, it will (in all cases) be assumed (as a time at the centre of the cable, for the 127 mm
(a=18°) diameter cable. Similarly, Figs 5(a) to (c) andreasonable first step) that F

0
is finite and M

0
=0;

i.e. a purely axial type of impulse will be assumed. 6(a) to (c) and Figs 5(d) to (f) and 6(d) to (f) show
the variations of the axial and rotational displace-This, obviously, only models the situation where

(strictly speaking) the straight King wire in a strand ments respectively, as a function of the distance
along the cable and as a function of time at thebreaks. In practice, however, for breakages of indi-

vidual helical wires in any layer of a spiral strand, M
0

centre of the cable, for the 127 mm (a=24°) diameter
cable. In all the plots in Figs 1 to 6, the same values ofis not zero and will vary depending upon the location

in the strand and the direction of lay. The presently F
0
=50 kN, M

0
=0, A=0.000 52 s, and t=0.001 163 s

have been assumed. It is, perhaps, worth mentioningproposed formulations can, however, cater for those
cases when M

0
is not zero. In such cases, the simple that the time t=0.001 163 s and the assumed values

of F
0
=50 kN, M

0
=0, and A=0.000 52 s are the sameapproach proposed by Hruska [25] may be used

(for a given strand axial strain) to calculate a reason- as those used for the numerical results presented in
reference [19] which related to a 39 mm outsideable value of the axial force in a given helical wire in

layer i of the spiral strand, F
i
, with diameter spiral strand with different magnitudes

of lay angles in its various layers. This is meant to
F
0
=F
i
cos a

i
(40)

facilitate the comparison of the plots in reference
[19] and in the present paper.and, following Hruska [26],

Once again, from the graphical results it is evident
M
0
=F
i
r
i
sin a

i
(41)

that some rather significant differences exist between
the full-slip and no-slip wave propagation charac-where r

i
and a

i
are the helix radius and the lay angle

respectively for layer i, with a being positive for teristics. An important observation is that as the
lay angle increases, within the practical limits, thethe right-hand lay. Once F

0
and its associated M

0
are estimated, equations (22) and (23) [with the differences between the corresponding full-slip and

no-slip wave propagation characteristics becomeappropriate form of g(t)] may then be used to define
the resulting impulse. increasingly more pronounced.

Bearing the above comments in mind, for illustra-
tive purposes, Figs 1(a) to (c) show the variations of
the axial displacements at time t=0.001 163 s along 4 DISCUSSION
the length of the 127 mm (a=12°) diameter cable for
both the full-slip and the no-slip regimes, with the Traditional theoretical solutions have invariably

adopted the full-slip assumption which, althoughend of the cable, at position X=0, fixed and the other
end of the cable at X=10 m subjected to unit-step, valid for large levels of external loading and/or newly

manufactured (but prestretched) helically woundtriangular, and half-sine impact loading functions
respectively, with the duration of the impact load cables [27], fail to provide accurate predictions for

cases when the amplitudes of externally appliedA=0.000 52 s, F
0
=50 kN, and M

0
=0. Figures 1(d) to (f)

show the corresponding rotational displacements impact loads on fully bedded-in and axially pre-
loaded cables are fairly small. Such cases occur inalong the length of this same cable for the three load-

ing functions respectively, at time t=0.001 163 s, connection with the calibration of non-destructive
monitoring devices for in situ detection of individualbased on the full-slip and the no-slip regimes, as a

function of the distance, X, along the cable. Figures wire fractures under, say, axial fatigue loading,
whereby the fracture of an individual wire sends a2(a) to (c) compare the variations of the axial

displacements, as a function of time, at the centre small but measurable shock wave(s) along the cable
which is picked up by the electronic boxes. Most(X=5 m) of the 127 mm (a=12°) diameter cable for

the unit-step, triangular, and half-sine impact loading importantly, the present results throw considerable
doubt on the validity of the traditional methodsfunctions for both the full-slip and no-slip regimes.
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Fig. 1 Comparison of the axial and rotational displacements, along the cable at time
t=0.001163 (s), subjected to an impact load of duration A=0.00052 (s) for the no-slip
and full-slip conditions: (a, d) unit-step loading function; (b, e) triangular loading function;
and (c, f) half-sine loading function −127 mm (a=12°) spiral strand

for calibrating such electronic boxes. Very briefly, discriminators such as the frequency components
of singular wire fractures within a rope), which areinstrumentation experts calibrate their devices by

picking up what they call significant effects (such (under laboratory conditions) often simulated by
deliberately fracturing a wire in a newly manufacturedas amplitudes or other effective acoustic signal
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Fig. 2 Comparison of the axial and rotational displacements, at the middle point of the cable
X=5 m, as a function of time, subjected to an impact load of duration A=0.00052 (s)
for the no-slip and full-slip conditions: (a, d) unit-step loading function; (b, e) triangular
loading function; and (c, f) half-sine loading function −127 mm (a=12°) spiral strand

and axially loaded cable at the end of which the centrated on the acoustic emission amplitude distri-
butions and the frequency components of singularelectronic box signals (waves) are picked up

(e.g. [28–30]). In this context, the works of Casey wire fractures within a wire rope and concluded
that high amplitude hits could be associated withet al. (e.g. [28, 29]) may be mentioned, which con-
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Fig. 3 Comparison of the axial and rotational displacements, along the cable at time
t=0.001163 (s), subjected to an impact load of duration A=0.00052 (s) for the no-slip
and full-slip conditions: (a, d) unit-step loading function; (b, e) triangular loading function;
and (c, f) half-sine loading function −127 mm (a=18°) spiral strand

wire fractures – attaining a one-to-one correlation wire carrying a small fraction of the total axial
load on the cable) the amplitudes and speeds of thebetween hits and wire breaks. However, in old and

fully bedded-in cables in practice, the cable structure axial and torsional waves released by the fracture
of an individual wire are governed (because ofis compacted in such a way that (with an individual
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Fig. 4 Comparison of the axial and rotational displacements, at the middle point of the cable
X=5 m, as a function of time, subjected to an impact load of duration A=0.00052 (s)
for the no-slip and full-slip conditions: (a, d) unit-step loading function; (b, e) triangular
loading function; and (c, f) half-sine loading function −127 mm (a=18°) spiral strand

their small magnitudes) by the no-slip stiffnesses, electronic boxes. It is therefore suggested that caution
should be exercised in interpreting the data obtainedwhich are significantly different from the full-slip

stiffnesses that govern the behaviour of newly manu- from such devices under service conditions using
the traditional methods of calibration based on thefactured cables [27] originally used for calibrating the
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Fig. 5 Comparison of the axial and rotational displacements, along the cable at time
t=0.001163 (s), subjected to an impact load of duration A=0.00052 (s) for the no-slip
and full-slip conditions: (a, d) unit-step loading function; (b, e) triangular loading function;
and (c, f) half-sine loading function −127 mm (a=24°) spiral strand

full-slip behaviour of newly manufactured cables. In sponding no-slip wave characteristics for a number of
assumed (namely unit-step, triangular, and half-sine)the previous section, the full-slip wave characteristics,

such as amplitudes and speeds, are theoretically loading functions. It is therefore suggested that such
electronic devices should be calibrated using wellshown to be significantly different from the corre-
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Fig. 6 Comparison of the axial and rotational displacements, at the middle point of the cable
X=5 m, as a function of time, subjected to an impact load of duration A=0.00052 (s)
for the no-slip and full-slip conditions: (a, d) unit-step loading function; (b, e) triangular
loading function; and (c, f) half-sine loading function −127 mm (a=24°) spiral strand

bedded-in (old) helically wound cables that have fracture of a wire inside the cable obviously remains
unpredictable and very difficult (if at all possible)seen service conditions for a number of years. It

is, perhaps, also worth mentioning that the exact to determine, using the currently available experi-
mental techniques. However, the use of widelyform of the loading function relating to the sudden
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different forms of impact loading functions, as closed-form solutions for predicting the various
adopted in the present work, should reasonably characteristics of coupled extensional–torsional waves
cover the range of possibilities, and the final results induced by unit-step and triangular forms of impact
based on all three types of such impact loading loading at one end of helically wound steel cables
functions have invariably supported the view that (spiral strands and wire ropes) with the other end
the no-slip wave propagation characteristics are, fixed against any movement, to include the solution
indeed, significantly different from the corresponding for half-sine types of impact loading. Detailed
full-slip ones, and therefore the non-destructive numerical results based on three different 127 mm
monitoring ‘electronic boxes’ should be calibrated by outside diameter spiral strands with widely varying
using fully bedded-in samples. lay angles (within the current manufacturing limits)

Finally, it should be noted that the numerical are presented, which demonstrate the significant
results presented in the previous section are for 10 m effects of variations in the lay angle on the various
long spiral strands. In offshore applications, however, wave propagation characteristics of axially pre-loaded
steel cables are typically hundreds of metres long and spiral strands.
not straight. There may also be a variation in tension Significant differences have been found between
along the cable owing to its own self-weight. These a number of axial–torsional wave characteristics
are not, however, an issue with bridge cables. The induced in axially pre-loaded spiral strands subjected
underlying reason for choosing a 10 m (i.e. not to unit-step, triangular, and half-sine forms of impact
very long) spiral strand in the present numerical loading functions, depending on whether the no-slip
examples is the fact that, in practice, due to the ever- or the traditionally adopted full-slip version of the
present significant levels of interwire friction and constitutive relations are used in the analysis. It is
intrinsic material damping in helically wound steel argued that, due to the ever-present interwire friction,
cables, there will be a very significant degree of wave for sufficiently small levels of load perturbations
attenuation particularly in very long cables. Because (due to the fracture of an individual wire) applied to
of the neglect of damping in the present proposed fully bedded-in (old) and axially pre-loaded cables,
formulations, the results will only be applicable the no-slip version of the constitutive relations
to fairly short cables such as those employed in should be used. The use of the no-slip version of
bridging applications. The present authors are the the constitutive relations is shown to become more
first to admit that the present work does not critical as (for a given spiral strand) the lay angles
provide answers to all the questions as regards wave increase. The present findings may have significant
propagations in cables. They do, however, believe

practical implications in relation to the currently
that the present work constitutes an advancement

adopted techniques by industry for calibrating the
over what was previously available in the literature.

electronic boxes, which are subsequently used for the
Although damping is, for example, ignored in the

in situ detection of individual wire fractures under,
present work, the nature of the presently proposed

say, fatigue loading associated with cable supportedformulations makes inclusion of damping in the
structures. It has now been demonstrated thatpresent work mathematically tractable, and this will
such systems should be calibrated by using fullybe the subject of future work. For the time being, the
bedded-in (as opposed to newly manufactured butpresent work has clearly demonstrated, for example,
pre-streched) samples, with their associated wavethat the electronic boxes should be calibrated by
propagation characteristics governed by the no-slipusing fully bedded-in (old) samples, which becomes
(rather than the full-slip) cable stiffness character-a more critical issue as the magnitudes of the lay
istics. This issue becomes more critical with increasingangles in a spiral strand increase. Although, at first
magnitudes of the lay angle in various layers of asight, perhaps not surprising, it should be borne
spiral strand.in mind that these crucial facts had, as evident in

the available literature, previously been completely
ignored in the rather elaborate experimental and/or
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h length of the cable t time
I mass moment of inertia about the u axial displacement of the cable

cable axis x coordinate along the cable
k =(2n+1)p/(2h)
m mass of cable per unit length a

i
lay angle in layer i

M torque C twist per unit length=qh/qx
M

0
torsional amplitude of external e cable axial strain=qu/qx
impact loading h rotational amplitude of the

n
i

number of wires in layer i torsional wave
N total number of layers of wires in l

i
=(2n+1)p/(2v

i
)

a spiral strand excluding the core n Poisson’s ratio
r

i
helix radius in layer i r density of steel

R =h/u
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