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ABSTRACT  
 
A range of transport telematics applications and services 
require continuous and accurate positioning information 
of the vehicles traveling on the road network. Examples 
are in-car navigation systems, dynamic route guidance, 
fleet management, incident management, public transport 
management and on-board emissions monitoring systems.  
Most of these services also need the vehicle to be 
displayed on a map in real time in an error-free fashion. 
Two types of information are essential for such telematics 
applications and services. These are the determination of 
the vehicle position and the determination of the physical 
location of the vehicle on the road network.  Most 
common devices used for vehicle positioning are based on 
GPS, Dead-Reckoning (DR) sensors, Map Matching 
(MM) and microwave beacons. The use of these devices 
either in isolation or combination depend on the Required 
Navigation Performance (RNP) parameter specifications 

(accuracy, integrity, continuity and availability). 
Furthermore, the capability to identify the physical 
location of a vehicle is a key requirement in transport 
telematics applications. In order to achieve the RNP, 
system and sensor complementarity, such as in the case of 
the integration of GPS, DR and digital map data could be 
used to enhance geometric positioning capability. MM not 
only enables the physical location of the vehicle to be 
identified but also improves the positioning capability if a 
good digital map is available. A key factor in the 
integration of different devices is the knowledge of the 
various failure modes (error sources). 
 
This paper develops two integrated positioning algorithms 
for transport telematics applications and services. The 
first is an Extended Kalman Filter (EKF) algorithm for 
the integration of GPS and low cost DR sensors to 
provide continuous positioning in built-up areas. The 
second takes this further by integrating the GPS/DR 
output with map data in a novel a map-matching process 
to both identify the physical location of a vehicle on the 
road network and improve positioning capability. The 
proposed MM algorithm is validated using a higher 
accuracy reference (truth) of the vehicle trajectory as 
determined by high precision positioning achieved by the 
carrier phase observable from GPS 
 
The results demonstrate a 90% coverage in a typical built-
up environment over a 4-hour duration for a stand-alone 
GPS employing a single frequency high sensitivity 
receiver/antenna assembly. The integrated GPS/DR 
approach employing the EKF gives 100% coverage at an 
accuracy level better than 30m (2σ). The MM validation 
results show that about 100% link identification is 
achieved by the proposed MM algorithm. The vehicle 
positions determined from the MM results are within 6m 
of the truth positions. The results also demonstrated the 
importance of the quality of the digital map data to the 
map matching process.  
 



INTRODUCTION  
 
A range of transport telematics applications and services 
such as in-car navigation systems, dynamic route 
guidance systems, fleet management, collision avoidance 
systems, advanced traveler information and on-board 
emission monitoring require continuous accurate 
positioning information on motor vehicles traveling on 
the road network.  Many services also require real-time 
display of the vehicle location on a map in an error-free 
fashion. Two essential components commonly used for 
such applications and services are, (1) sensors to 
determine the geometric position of the vehicles, and (2) 
Geographic Information Systems (GIS) based digital 
maps for the identification of the physical location of the 
vehicles. An interesting but challenging problem is to 
integrate positioning sensor data with digital map data to 
improve the accuracy with which the vehicle location on a 
road link is determined.  
 
Common devices used for land vehicle navigation are 
Dead Reckoning (DR) sensors, ground-based (Terrestrial) 
radio frequency systems, satellite based radio navigation 
systems such as GPS, and integrated navigation systems 
such as GPS and DR. These state-of-the-art navigation 
systems usually rely on various types of sensors. Even 
with very good sensor calibration and sensor fusion 
technologies, inaccuracies are often inevitable.  
Moreover, there is also imprecision with GIS-based 
digital road maps due to plotting errors, map resolution 
and piece-wise linear links to approximate road curvature.  
As a result of such inaccuracies in the positioning system 
and the digital base map, actual geometric vehicle 
positions do not always map onto the spatial road map, 
when the vehicle is known to be on the road network. 
This phenomenon is known as spatial mismatch.  The 
spatial mismatch is more severe at junctions, roundabouts, 
complicated fly-overs and built-up urban areas with 
complex route structures.  These environments also 
decrease the level of performance achievable with GPS. 
 
Therefore, Map Matching (MM) algorithms are usually 
used to reconcile the inaccurate locational data with 
inaccurate digital road network data.  If both digital maps 
and vehicle location are perfectly accurate, the algorithm 
is simple and straightforward based on simply snapping 
the locational data to the nearest node or link in the 
network.  However, in most cases it is not possible to use 
such simple algorithms.  Therefore, more complex MM 
algorithms are a required component for vehicle location 
and navigation systems. 
 
The complexity of the MM algorithms depends on the 
nature of the application and the availability of data 
inputs. Previous research by the authors developed a 
simple MM algorithm appropriate for motorways and 
relatively sparse road networks (Quddus et al. 2003). The 

algorithm was also designed for low accuracy digital base 
maps where the source map resolution was 1:10,000 or 
below.  The research presented in this paper builds on this 
previous work to develop a MM algorithm for all types of 
digital base maps and road networks. The new algorithm 
takes into account the error sources associated with the 
positioning sensors, the historical trajectory of the 
vehicle, the topological information on the road network 
(e.g., connectivity and orientation of links), and the 
heading and speed information of the vehicle, for the 
precise identification of the correct link on which the 
vehicle is traveling.  Furthermore, an optimal estimation 
of the vehicle position is established by taking into 
consideration error sources associated with both the 
navigation systems and the digital map database. No 
validation studies assessing the performance of MM 
algorithms have been reported in the literature.  A MM 
algorithm can be validated using a higher accuracy 
reference (truth) of the vehicle trajectory.  Therefore, this 
paper also presents a validation technique for MM 
algorithms using a reference trajectory determined from 
the high precision carrier phase observable from GPS.  
 
This paper is organized is as follows. First we provide a 
brief description of literature review on MM algorithms. 
This is followed by a short introduction of an algorithm 
for integrating GPS with DR employing with an extended 
Kalman filter (EKF). The next section describes a 
proposed MM algorithm. This is followed by a 
description of a validation strategy for MM algorithms. 
The next section describes the implementation of the 
algorithms using real-world data and a presentation of 
results. The paper ends by conclusions and 
recommendations for further avenues of study.  
 
 
LITERATURE REVIEW 
 
MM algorithms are often used to determine the accurate 
position of a vehicle on a road map.  Most of the 
formulated algorithms utilize navigation data from GPS, 
DR, or integrated GPS/DR and the digital road network 
data.  One of the common assumptions found in the 
literature for implementing MM is that the vehicle is 
essentially constrained to a finite network of roads.  Most 
of the studies (e.g., Zhao, 1997) also reported that the 
digital map used for MM must be quite robust in order to 
generate the position outputs in an error-free fashion.  
Procedures for MM vary from those using simple search 
techniques (Kim et al., 1996), to those using more 
complex mathematical techniques such as Kalman Filters 
(KF) (Tanaka et al., 1990).   
 
The most commonly used geometric MM approach is 
based on a simple search concept.  In this approach, each 
positioning point matches to the closest ‘node’ or ‘shape 
point’ in the network.  This is also known as point-to-



point matching (Bernstein and Kornhauser, 1996).  A 
number of data structures and algorithms exist to identify 
the closest node (or shape point) from a given point in a 
network (e.g., Bentley and Maurer, 1980; Fuchs et al., 
1980).  These methods are easy to implement, although 
they are very sensitive to the way in which the network 
was digitized, hence leading to errors.  
 
Another geometric MM approach is point-to-curve 
matching (e.g., Bernstein and Kornhauser, 1996; White et 
al., 2000; Taylor et al. 2001).  In this approach, the 
positioning point from the navigation system is matched 
with the closest curve in the network.  Each of the curves 
comprises line segments which are piece-wise linear.  
Distance is calculated from the positioning point to each 
of the line segments.  The line segment which gives the 
smallest distance is selected as the one on which the 
vehicle is assumed to be traveling.  Although this 
approach gives better results than point-to-point 
matching, it does have several shortcomings that make it 
inappropriate in practice (in some cases), such as 
generating very unstable results in dense urban networks.   
Another geometric approach is to compare the vehicle’s 
trajectory against known roads.  This is also known as 
curve-to-curve matching (Bernstein and Kornhauser, 
1996; White et al., 2000).  In this approach, firstly the 
candidate node using point-to-point matching is 
identified.  Then, given a candidate node, piecewise linear 
curves are constructed from the set of paths that originate 
from that node.  Secondly, piece-wise linear curves are 
then constructed using the vehicle’s trajectory. The 
distance between the curve along the vehicle trajectory 
and the curve corresponding to the road network is then 
determined. The road arc which is closest to the curve 
formed from the vehicle trajectory is taken as the one on 
which the vehicle is apparently traveling.  This approach 
is quite sensitive to outliers and depends on point-to-point 
matching, sometimes giving unexpected results 
(Greenfeld 2002).   
 
Taylor et al. (2001) propose a novel method of map 
matching using GPS, height aiding from the digital road 
map and virtual differential GPS  (VDGPS) corrections, 
referred to as the road reduction filter (RRF) algorithm. 
Due to the use of height aiding, the paper reports that one 
less satellite is required for the computation of the vehicle 
positions (i.e., height aiding removes one of the unknown 
parameters) using GPS. The initial matching process of 
this algorithm is based on the geometric curve-to-curve 
matching proposed by White (1991) which is quite 
sensitive to outliers.  The proposed algorithm does not 
consider link connectivity information which could 
improve the performance of the algorithm especially in 
the initial matching process.  It is well known that the 
vehicle heading from GPS is not good if the vehicle speed 
is low.  Although the proposed algorithm is based on the 
bearing of the vehicle, there was no indication how to 

deal with the situation when the vehicle was stopped on a 
road segment for a few seconds.  Moreover, the 
orthogonal projected location of the GPS fixes on the arc 
is used to determine the vehicle positions.  However, 
Greenfeld (2002) described that the orthogonal projection 
of the position fixes on the arc are different from the 
actual location of the vehicle on the arc.  
 
Greenfeld (2002) reviews several approaches for solving 
the map matching problem and proposes a weighted 
topological algorithm. The algorithm is based on 
assessing the similarity between the characteristics of the 
street network and the positioning pattern of the user. The 
paper reports that the procedure computes correct matches 
virtually everywhere. Quddus et al. (2003) tested this 
algorithm for a relatively sparse road network and 
concluded that sometimes the algorithm identifies 
incorrect road segments. Greenfeld (2002) also suggests 
that additional research is required to verify the accurate 
performance of the algorithm and to make an accurate 
position determination on a given road segment.  
 
Xu et al. (2002) proposed a new MM method based on 
intersection information stored in a map database. The 
method identified whether the vehicle is near intersections 
or between intersections or whether a turn is detected 
using DR sensors.  However, the study did not take into 
account speed information and error sources associated 
with DR sensors. The algorithm also failed to deal with 
parallel roads and possible U-turns at junctions.  
Moreover, it does not determine the vehicle location on 
the road segment. This is one of the key improvements 
made by the algorithm developed in this paper.  
 
 
ALGORITHM 1: INTEGRATION OF GPS AND DR 
 
In a variety of transport telematics applications and 
services, the vehicle position on the road network is 
usually determined by the positioning systems, e.g., DR, 
GPS and the integrated GPS/DR system. Each of these 
navigation systems has various sources of error that lead 
to the need to apply MM. The next section briefly 
describes these navigation systems and their error sources 
following by a brief description of integrated GPS/DR 
system.  
 
Global Positioning System (GPS)   
 
GPS is a satellite-based radio-navigation system owned 
and operated jointly by the US Department of Defense 
(DoD) and Department of Transportation (DoT). The 
system achieved full operational capability (FOC) in 1995 
with a constellation of 24 active satellites (28 in March 
2000). Theoretically, three or more GPS satellites are 
always visible from most points on the Earth Surface. The 
original objectives of GPS were the instantaneous 



determination of position and velocity (i.e., navigation), 
and the precise coordination of time (i.e., time transfer). 
GPS provides 24-hour, all-weather 3D positioning and 
timing all over the world, with a predicted horizontal 
accuracy of 22m (95%) [US DoD, 2001].  However, GPS 
suffers both systematic errors or biases and random noise 
e.g., satellite related errors such as clock bias and orbital 
errors, propagation related errors such as ionospheric 
refraction and tropospheric refraction, and receiver related 
errors such as multipath and clock bias.  
 
Dead Reckoning (DR) 
 
The DR is based on the integration of an estimated or 
measured displacement vector. Usually, it is composed of 
two or more sensors that measure the heading and 
displacement of a vehicle.  A gyroscope is the main 
device used to measure the rate of rotation in an inertial 
navigation system such as DR.  The odometer uses the 
wheel rotation sensor to measure wheel revolutions.  The 
wheel revolutions are then transformed into the distance 
traveled.  Using time between two consecutive 
observations, the speed or velocity of the vehicle can also 
be determined.   Errors associated with the rate gyroscope 
are gyro bias drift, gyro scale factor error, installation 
misalignment, temperature, and vibration and electro-
mechanical properties of the operational environment.  
The most significant error is the bias drift that depends on 
the manufacturing process and the quality of the 
gyroscope.  Factors affecting the odometer output 
accuracy are the scale factor error, status of the road and 
pulse truncation.  The most significant error is the scale 
factor error that is caused by calibration error, tire wear 
and tear, tire pressure vibration and vehicle speed.  The 
scale factor error is not significant over a short period of 
travel.  
 
Integration of GPS and DR  
 
In order to achieve the RNP in some areas e.g., urban 
canyons, streets with dense tree cover, and tunnels, GPS 
can be augmented with DR with the use of a Kalman 
Filter (KF) (Zhao et al., 2003).  An understanding of the 
navigation errors involved is required to do this.  
 
The KF is a set of mathematical equations that provides 
an efficient computational solution of the least-squares 
method.  It is a linear minimum mean-square error 
(MMSE) filtering for combining noisy sensor outputs 
(i.e., GPS receivers, gyroscopes, odometers) to estimate 
the state of a system (i.e., position, velocity, heading, 
acceleration of a vehicle) with uncertain dynamics (i.e., 
unpredictable disturbances of the host vehicle, 
unpredictable changes in the sensor parameters).  The 
nonlinear application of KF is known as the Extended 
Kalman Filter (EKF).  An EKF algorithm can be used to 
estimate the optimal result of system states by integrating 

GPS and DR (Figure 1).  A fuller description of this EKF 
algorithm can be found at Zhao et al (2003). 
 
In this integrated navigation system, DR readings are 
calibrated when GPS is available using an EKF algorithm. 
If the GPS receiver suffers signal mask or the horizontal 
dilution of precision (HDOP) is greater than 10, which is 
an indication that navigation satellite geometry is not 
good enough to get a high accuracy position, the 
calibrated DR readings are used to measure the state of 
the vehicle as shown in Figure 1.  
 

GPS

DR

EKF Positions, speed, heading
if HDOP<10

Positions, speed, heading
if HDOP>10

 
 
Figure 1: Integrated navigation system for the vehicle 
dynamic model 
 
ALGORITHM 2: MAP MATCHING  

Description of Algorithm Inputs 
 
The inputs of the MM algorithm developed here are the 
locational data and topological information from the road 
network data.  The locational data include position (e.g., 
easting and northing), speed, heading, and associated 
error variances. Locational data sources for this work 
included GPS, DR sensors (low cost gyro and odometer) 
and an integrated GPS/DR system employing an 
Extended Kalman Filter (EKF).  A digital spatial road 
network database was the source of topological 
information. Error variances associated with the map 
resolution of the digital road network can also be taken as 
an input.  
 
The algorithm makes use of the positioning data as well 
as the heading and speed information. Information on the 
historical trajectory of the vehicle is used to avoid sudden 
switching of the mapped locations between the 
unconnected road links. The topological aspects of the 
road network and the heading and speed information 
allow improvements in performance of the algorithm, 
especially at junctions.  In addition, the physical location 
of the vehicle on the selected link is determined from an 
optimal estimation technique.  Finally, the errors 
associated with the heading of the link (due to various 
error sources in the digital base map) and positioning 
sensors are applied to determine the physical location of 
the vehicle on the link.  There are two main stages of the 
algorithm, namely the identification of the actual link, and 
the determination of the vehicle position on the selected 
link. These are explained below. 



Identification of the Actual Link 
 
The most complex element of any MM algorithm is to 
identify the actual link among the candidate links 
(Greenfeld, 2002; Quddus et al. 2003).   Two distinct 
processes are defined for the identification of the correct 
link, namely (a) the initial matching process  (IMP) and 
(b) the subsequent matching process (SMP).  The 
function of the IMP is to identify an initial correct link for 
an initial position fix. Since the vehicle is expected to 
travel on this initial road segment for a few seconds, the 
subsequent position fixes are matched to this road 
segment.  Therefore, after successfully identifying a 
correct link for an initial GPS or GPS/DR fix, the SMP 
starts matching the subsequent position fixes.  In the 
SMP, the fixes are matched to the same road segment 
identified in the IMP given that specified criteria (as 
explained in SMP) are fulfilled. Otherwise, the algorithm 
goes back to the IMP for the identification of a new road 
segment for the last non-matched position fix. Both of 
these processes are explained below. 
 
 Initial Matching Process (IMP) 
 
The IMP selects an initial road segment for the initial 
position fix. If an initial matching is incorrect then the 
subsequent matching will also be incorrect.  Therefore, a 
sophisticated method is required for the IMP. The basic 
characteristic of the IMP is the use of an elliptical or 
rectangular confidence region around a position fix based 
on error models associated with GPS or GPS/DR. Road 
segments that are within the confidence region are taken 
as the pseudo candidate segments.  If the confidence 
region does not contain any segments, then it is assumed 
that the vehicle is off the known road segments. In such a 
situation, the derived GPS or GPS/DR positions are used 
as the final locations of the vehicle. In a situation where 
the confidence region contains one or more pseudo 
candidate segments, a connectivity test or a filtering 
process is carried out based on the difference in heading 
between the pseudo candidate link and the derived vehicle 
heading to obtain the candidate road segments. If there is 
only one candidate segment, then the final selection 
process is very straightforward.  However, in the case of 
more than one candidate segment, the link connectivity, 
vehicle heading relative to the candidate segments, 
closeness, and the historical information on vehicle 
location are used to select the most appropriate segment. 
In every application of the IMP, the algorithm selects a 
new road segment.  The process is summarized in the 
flow chart in Figure 2.       

Construct an error region based on error variance-
covariance matrix from the positioning sensors

No segments? Vehicle is off the known
road segments

Identify all segments within the error region

Identification of candidate segments based on the
difference between vehicle heading and segment
heading

Only one
segment?

Perform network
connectivity test

Confirm? Actual segment

Increase error  confidence
region and start IMP

Filtering process based on historical
information and network connectivity

Only one
segment?Actual segment

Identify a segment based on its proximity
and orientation relative to  the position fix

YES

NO

YES

YES

YES

NO

NO

NO

 
 
Figure 2: The identification of the actual segment in 
the initial matching process 
 
Many methods are available for calculating the error 
region around a position fix.  Variance-covariance 
information associated with GPS receiver outputs is often 
used to define an error ellipse. If an EKF algorithm is 
used for the integrated navigation system (GPS/DR), the 
variance-covariance information is available as a by-
product of the filter computation.  According to Zhao 
(1997), the error ellipse can be derived as 
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where 2
xσ  and 2

yσ  are the positional error variances 

from the integrated GPS/DR, xyσ  is the covariance, a 
and b are the semi-major and semi-minor axis of the 
ellipse, φ  is the orientation of the ellipse relative to the 

North (Figure 3a), and 0σ̂  (>1) is the expansion factor. 
The expansion factor is a term that compensates for the 
error associated with GPS due to orbital instability, 
atmospheric propagation, multipath, and receiver noise.  
To obtain a 99% confidence level, the value of the 
expansion factor should be taken as 3.03 (Zhao, 1997).  
 
In addition to the positioning sensor errors, there are also 
uncertainties associated with the digital road network data 
which could have errors due to plotting, errors in the 
original sources, measurement errors and processing 
mistakes. Hence, it is required to multiply the derived 
error region by another expansion factor to get a higher 
confidence level (Zhao, 1997).  For simplicity, an error 



rectangular can be used in place of the error ellipse as 
shown in Figure 3(b). In the case represented by Figure 3, 
the IMP selects ‘link 3’ for both cases, as the initial road 
segment for the position fix ).,( yxP  
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(a) (b)  

Figure 3: Error ellipse and rectangular around a 
position fix 
 
Subsequent Matching Process (SMP) 
 
The SMP is used to match the following position fixes on 
the previously selected road segment, which is identified 
using IMP. Several factors need to be considered for 
matching the subsequent position fixes to the link. These 
are the speed of the vehicle, whether there is a turning 
maneuver, or a maneuver through a junction.  The speed 
of the vehicle needs to be taken into account since GPS or 
GPS/DR derived headings are not sufficiently accurate 
when the speed is low. On the other hand, the detection of 
a turning maneuver or a maneuver through a junction is a 
good indication that the vehicle no longer located on the 
original segment. If the vehicle speed is lower than the 
threshold for the minimum speed and there is no 
indication of any maneuvering through a junction by the 
vehicle, the SMP process continues. In such cases, the 
vehicle heading needs to be re-calculated to be equal to 
the heading of the road segment obtained from the map 
database. The new calculated vehicle heading is used to 
identify any turning maneuver for the next position fix. 
Field tests are necessary to determine a threshold for the 
minimum speed and this is explained in the next section.   
 
In case of speeds higher than the threshold minimum 
speed, the SMP also continues if there is neither a turning 
maneuver nor junction crossing. The criterion to 
determine a turning maneuver is also explained in detail 
in the next section with some field test results. The 
decisive factor to determine whether the vehicle crosses 
any junction (in the case of maneuvers through a junction) 
can be determined from the relative position of the current 
GPS or GPS/DR fix compared to the previously selected 
road segment. The complete flow chart for the 
identification of the link on which a vehicle is traveling is 
presented in Figure 4.  
 

Link data

Node data

INPUT

Stockfile of position fixes

IMP for i  th position fix

get information on i th position fix

get information on  (i +1)th position fix

The minimum speed?
 &

No maneuver through
Junction?

SMP:
Match (i +1)th position fix with the

previously selected link
i =i +1

YES

i >total position fixes

YES

EXIT

No turning maneuver?
&

No maneuver through
Junction?

NO

NO

NO

i =
i +

1

YES

 
 
Figure 4: Flow chart for true road segment 
identification  
 
Determination of a turning maneuver and the minimum 
speed 
 
The MM algorithm makes use of the vehicle heading to 
identify whether there is a turning maneuver at a junction. 
A turning maneuver is an indication that the vehicle may 
have switched road segments. Therefore, the algorithm 
searches for a new road segment (using IMP) if a turning 
maneuver is confirmed. However, at low speed the error 
associated with vehicle heading is usually unacceptably 
low.  Hence, it is essential to determine the minimum 
speed at which the MM algorithm should not rely on 
vehicle heading (either from GPS or integrated GPS/DR).   
 
A field test was carried out to determine the minimum 
speed at which GPS or GPS/DR derived vehicle headings 
are not reliable. The test vehicle was driven on known 
road segments.  Since the vehicle traveled on known road 
segments, the actual vehicle headings were calculated 
from the digital map database. The absolute deviation of 
vehicle heading was obtained from the difference between 
the calculated actual heading and the observed/estimated 
GPS or GPS/DR heading. The deviation of heading was 
then plotted against the corresponding vehicle speed (see 
Figure 5) for both GPS and GPS/DR system. For this case 
the difference in heading was always less than 30 degrees 
when the vehicle speed exceeded 3 m/sec (i.e., 10.8 
km/hr) for both GPS and the GPS/DR systems i.e., the 
vehicle headings derived from the GPS and the road 
segment heading on which the vehicle is travelling is 
correlated when the vehicle speed is above 10.8 km/hr. 
Taylor et al. (2001) reports that the correlation is low 
when the vehicle is travelling at 8 km/hr or below. The 
satellite geometry was good since HDOP was always less 
than 2.0. Therefore, the algorithm can rely on the vehicle 
heading information, which is useful for determining a 



turning maneuver, if the vehicle speed is greater than 3 
m/sec. Hence the minimum speed threshold is set to 
3m/sec (i.e., 10.8 km/hr).  It is worthwhile to note that the 
threshold for the minimum speed may vary according to 
the types of GPS receivers and their error characteristics.  
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Figure 5: The absolute deviation of vehicle heading vs 
speed 
 
In order to find out the threshold for the vehicle heading 
that could be used for detecting a turning maneuver, it is 
also necessary to know how the vehicle heading changes 
on a straight road segment. To determine this, another 
field test was carried out on a straight road segment. The 
vehicle was intentionally driven with a lot of overtaking 
maneuvers to examine the effects on heading changes. 
Figure 6 shows the change in vehicle headings on a 
typical straight road when the speed is greater than 3 
m/sec. In all cases, HDOP was less than 2.0. The 
maximum difference between observed vehicle headings 
was 20 degrees for GPS and 15 for GPS/DR. The reason 
for such a large difference in heading on a straight road 
may be due to the overtaking maneuvers. However, 
neither an increasing nor decreasing trend was observed 
for the heading.  
 

145

150

155

160

165

170

175

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time (sec)

H
ea

di
ng

 (D
eg

re
es

)

Integrated System
GPS standalone

 
Figure 6: Characteristics of GPS/DR and GPS 
headings when the vehicle is traveling on a straight 
road. 
 
Another field test was carried out to examine the change 
in vehicle headings during a turning maneuver at junction. 
This test was also useful for determining the time needed 
to complete a turning maneuver. Figure 7 shows the 
changes in observed vehicle heading during a right 

turning (British-style) i.e., left-turn elsewhere maneuver 
of a vehicle at a four-legged junction when the vehicle 
speed is above the minimum speed and HDOP less than 
2.0. Clearly, there is a trend (in this case an increasing 
trend) of heading during the turning maneuver. Time to 
complete a right- or left-turning maneuver usually 
depends on speed and the size of the junction.  In this 
case, the time to complete a right-turning maneuver was 4 
sec.  
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Figure 7: Characteristics of GPS and GPS/DR 
headings during a right turning maneuver of a vehicle 
at junction 
 
Based on these above test results, the following 
conditions satisfy a turning maneuver (left, right or U-
turn) of a vehicle at a junction.  
 

• Increasing or decreasing trend in heading for 
about 2 to 5 sec 

• Absolute difference in heading between the 
current and the last fix (assumed as )α  is more 
then 30 degrees (for both GPS and GPS/DR) 

• Absolute difference in heading between the 
current and the second last fix (assumed as )β  
is more then 35 degrees (for both GPS and 
GPS/DR) 

 
Determination of Vehicle Location on the Selected 
Link 
 
Assuming that the correct link has been identified as per 
the IMP and/or SMP, the physical location of the vehicle 
on the link can be determined in two ways with the 
available data. One way is to use map data and vehicle 
speed from the positioning sensors and the other is to 
adopt the perpendicular projection of GPS or GPS/DR fix 
on to the link.  Since both methods are associated with 
errors, an optimal estimation procedure is needed to 
determine the final location of the vehicle on the road 
segment. 
 
The azimuth of the selected road segment and the vehicle 
speed ( v ) from the positioning unit can be used to 
calculate the vehicle position on a road segment.  Suppose 



Pt and Pt+1 represent the vehicle position on a link at time 
t and t+1 respectively (Figure 8).  The initial easting and 
northing of the vehicle at point Pt is known.  From the 
bearing of the link (i.e., θ ) and speed of the vehicle at 
Pt+1, the increment in easting and northing can be 
obtained as follows: 
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Therefore, the position of the vehicle at point Pt+1 can be 
calculated as follows:  
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Figure 8: Determination of vehicle position using map 
data and vehicle speed 
 
The other method for determining position is from the 
positioning sensor (Figure 9). Suppose the navigation unit 
locates the vehicle at point PS with easting, Se  and 

northing, Sn .  The projected easting ( 2e ) and northing 

( 2n ) on the link can be obtained as follows: 
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Figure 9: The vehicle location on a particular road 
segment from two methods 
 

In Figure 9, the identified road segment for a position fix 
SP  is AB. The vehicle location Pmap ( 11 ,ne ) on AB is 

measured from the digital base map and speed from the 
navigation system and PP ( 22 ,ne ) is measured from the 

perpendicular projection of SP  on AB. Both techniques 
have random and unbiased measurement errors.  Since 
both methods are associated with errors, an optimal 
estimation procedure is used to determine the final 
location of the vehicle on the road segment. The optimal 
easting ( ê ) and northing ( n̂ ) for a particular epoch are 
expressed as 
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where 2
mapσ is the error covariance associated with map 

data, 2
,egpsσ  and 2

,ngpsσ  are the easting and northing 
components of the error covariance associated with the 
navigation sensor. The error variance associated with ê  
can now be expressed as 
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where 2

,emmσ  is the error variance associated with 

optimal estimation of ê . Note from equation (9) that 
2

,emmσ  is less than either 2
mapσ  or 2

,egpsσ . That is, the 
uncertainty in estimation of the vehicle position using 
optimal estimation is decreased by combining two 
measurement methods. The error variance associated with 
the optimal estimation of n̂  can also be derived from the 
equation (9).  
 
 
VALIDATION STRATEGY FOR MM 
ALGORITHMS 
 
The input to MM algorithms are usually obtained from 
GPS SPS based on single frequency (L1) C/A code-
ranging. The main reason is that the SPS is designed for 
civilian use. Furthermore, the receivers that support SPS 
are also relatively cheap. However, the positioning data 
from GPS C/A code measurements need to be augmented 



with a Dead Reckoning (DR) sensor in order to achieve 
continuous vehicle location data in some areas, especially 
urban areas with urban canyons, streets with dense tree 
cover, and tunnels (Ochieng et al., 2003). Although the 
integration of GPS and DR improves the level of 
coverage (ability to obtain a position fix), it does not 
improve accuracy (position fixing with a desired level of 
accuracy) (Zhao et al., 2003).  
 
The output of a MM algorithm is the link on which the 
vehicle is traveling and the physical location of the 
vehicle on that link.  In order to validate the results of a 
MM algorithm, a higher accuracy reference (truth) of the 
vehicle trajectory is essential. The reference of the vehicle 
trajectory is determined by the carrier phase observables 
from GPS with a high degree of precision. From this 
reference trajectory, the actual (truth) link on which the 
vehicle is traveling and the correct physical location (at 
the centimeter level) of the vehicle on that link are then 
determined.   
 
The next step is to compare the results (both the 
identification of the link and the physical location of the 
vehicle) obtained from the MM algorithm and the 
reference trajectory.  Since the location data used in the 
MM algorithms and the reference trajectory is obtained 
from two different receivers, time synchronization is a 
crucial issue. This can be resolved if both sensors are 
based on the same time reference e.g., GPS time or 
Coordinated Universal Time (UTC). It should be noted 
that GPS time is 13 seconds ahead of UTC time in 2004. 
Once time synchronization is achieved between the 
receivers, the comparison can be performed.  

 
Figure 10: Determination of Error in MM 

 
Figure 10 shows a road segment in which the vehicle 
position from GPS (C/A code-ranging) is denoted by the 
point D, the corresponding position estimated from the 
MM results (on the road centerline) is represented by the 
point A (x2, y2) and the truth position of the vehicle from 
GPS (carrier phase observable) is indicated by the point B 
(x1, y1) for a particular epoch t. Since the actual position 
of the vehicle at epoch t is at the point B, the error in the 
easting coordinate is AC and the error in the northing 

component is BC. The horizontal error at epoch t ( )tHE , 
therefore, is given by, 
 

22 )21()21( yyxxHEt −+−=                        (10) 
 
A series of such horizontal errors can be derived using 
equation (10) for all epochs. The associated statistics 
derived from these errors (e.g., mean, standard deviation 
and RMS of the easting and northing component of the 
error) can be used to determine the relative performance 
of the MM algorithm.  
 
Most of the road network map data contains only road 
centerline information. In this case MM algorithms take 
the centerline of the road segment as a reference and 
subsequently match the vehicle location data to it.  Since 
the vehicle’s actual position is not always constrained to 
be on the road centerline, a correction is required to the 
position of the vehicle matched onto the centerline.  

 
Figure 11: Corrections for Road Centerline 
 
In Figure 11, the line MN represents a road centerline on 
which the MM process matches a vehicle position at point 
A(x2, y2) at a particular epoch t. The corresponding truth 
position of the vehicle at the same epoch is at point B(x1, 
y1). Line PQ (parallel to line MN) is drawn through point 
B. Point A is then orthogonally projected onto line PQ. 
Therefore, the final location of the vehicle position is at D 
(x, y) on the line PQ. Now the task is to determine the 
new easting, x, and northing, y, coordinate of the point D.   
The new easting coordinate is given by 
 

θαθ sin)cos(22 +−=−= ABxCDxx               (11) 
 
The new northing coordinate is given by 
 

θαθ cos)cos(22 ++=+= AByACyy               (12) 



where θ  can be derived from the heading of the road 
segment MN and can be obtained from the map data. The 
line AB is the known distance between A and B, α  can 
be derived from AEB∆ . The equations (11) and (12) are 
derived for a particular orientation of A and B (i..e, the 
truth position and the position estimated from the MM 
results). For other orientations of A and B, these 
equations can easily be derived.  
 
The horizontal error after adjusting for the road centerline 
at epoch t ( atHE ) is therefore given by 
 

22 )1()1( yyxxHEat −+−=                      (13) 
                  
 
The difference between equations (10) and (13) can be 
viewed as the bias introduced by the MM algorithms for 
matching the location data on the road centerline.  
 
 
 
APPLICATIONS AND RESULTS 
 
The testing of the two positioning algorithms (i.e., EKF 
algorithm for the integration of GPS/DR and the MM 
algorithm) is essential to evaluate its performance in real-
world applications. A comprehensive field test is required 
to collect the positioning data from various road 
environments. This is necessary because the performance 
of MM algorithms depend on road network 
characteristics.  The route in London was chosen carefully 
to have a good mix of important spatial urban 
characteristics including open spaces, urban canyons, tall 
buildings, tunnels, bridges, and potential sources of 
electromagnetic interference. The duration of data 
collection was about 4 hrs.  In order to validate the 
proposed positioning algorithms, the carrier phase 
observables from GPS are essential.  For this purpose, the 
route was chosen carefully to have good satellite visibility 
as GPS carrier phase observables require observations 
from a large number of GPS satellites for reliable and 
correct ambiguity resolution. The duration of GPS carrier 
phase data collection is about 2 hrs.  
 
 A vehicle was equipped with a navigation platform 
consisting of a 12-channel single frequency (L1) high 
sensitivity GPS receiver (for C/A code-ranging), a low-
cost rate gyroscope and the interfaces required to connect 
to the vehicle speed sensor (odometer) and back-up 
indicator.  In order to obtain the reference (truth) 
trajectory by GPS carrier phase observables, the vehicle 
was also equipped with a 24-channel dual-frequency 
geodetic receiver consisting of L1 and L2 with C/A code 
and P code-ranging.  
 

The positioning data (easting and northing), speed, and 
heading were collected at a one second interval directly 
from the GPS receiver. Corresponding data together with 
the associated error variances were also obtained from the 
integrated navigation system (GPS/DR) employing an 
EKF algorithm.   
 
In order to see the level of coverage and the accuracy 
offered by GPS and the integrated system, the position 
fixing data was overlaid onto a high-resolution digital 
road network base map. The statistics generated from the 
field data show that GPS coverage was obtained for 90% 
of the mission duration, while that of the integrated 
system was 100%. The longest period of GPS outage was 
found to be 100s.  
 

 
Figure 12: Travelling inside Blackwall Tunnel 

Figure 12 shows the vehicle travelling inside the 
Blackwall tunnel where there was a GPS outage for a 
period of 100s.  It was found that 49% of the fixes were 
within 10m of the centreline of the road and 100% of the 
fixes were within 30m. This is a measure of the 
performance of the dead reckoning unit working on its 
own but using calibration factors derived when GPS 
position fixing capability was available. 
 

The MM algorithm can be used with locational data from 
either GPS or the integrated GPS/DR system and any 
large-scale digital spatial road network data  (source scale 
1:1 to 1: 24,000). Maps for ITS (i.e., Transport telematics) 
applications may be at scales between 1:5,000 to 1:10,000 
in cities and at smaller scales along the major roads 
outside metropolitan areas (Zhao, 1997).  In order to see 
the performance of the algorithm, various scenarios were 
tested. Since the locational data from the integrated 
GPS/DR system are more reliable than GPS (Zhao et al. 
2003), the performance of the algorithm has been tested 
using the navigation data from the integrated GPS/DR 
system.  A large-scale digital spatial road network data 
(source scale 1:2500) supplied by Saturn Technologies 
UK is used to test the performance of the algorithm.  
 



The algorithm was tested for various scenarios with 
different network characteristics and with different traffic 
maneuvers. These were a complex urban road network 
where the distance between roads was very small (Figure 
13), and traveling through a roundabout (Figure 14).   
 
Each of the black round dots in the Figures (13 and 14) 
represents the vehicle position before MM.  The arrow 
symbols in the figures show the path followed by the 
vehicle on the network.  
 
The semi-major axis (i.e., a) and the semi-minor axis (i.e., 
b) of the error ellipse (see equation 1)  can be seen to be  
between 20m to 50m and 15m to 46m respectively  
whenever IMP is required. The rectangular confidence 
region constructed from the major and minor axis of the 
error ellipse always contains one or more road segments. 
This is an indication that the vehicle was not traveling off 
the known road segments. The threshold values for the 
minimum speed is taken as 3m/sec, α  is taken as 300, 
and β  is taken as 350. These values are used to detect 
any maneuvers at junctions. 100% correct link 
identification is achieved for all scenarios.   
 

 
(Presentation map scale 1 cm : 20 m) 
Figure 13: Map Matching Results on Complex Urban 
Road Network 
 
Each of the triangular symbols on the road segments 
represents the vehicle position after MM.  The position of 
the vehicle on a selected road segment was estimated 
using two positioning methods (estimation using map data 
with the vehicle speed information from the positioning 
unit and the other is from the orthogonal projection of the 
GPS/DR fix on the road segment).  The optimal 
estimations (7) and (8) of easting and northing 
coordinates respectively.  
 

 
(Presentation map Scale: 1cm: 24m) 
Figure 14: Map matching results at roundabout 
 
The MM algorithm was validated using a validation 
strategy explained in the previous section. GPS carrier 
phase observables were processed in relative mode to 
reduce errors.  Therefore, the raw data was needed from 
both a reference (static) station and also from the geodetic 
receiver (roving).  The applicable static station for this 
study was ‘LOND’ (located in London) which is an 
Ordnance Survey (OS) active station operating within the 
UK National GPS Network (http://www.gps.gov.uk). The 
raw data from this station for the 5th of July 2004 (at 15 s 
sampling interval), was extracted from the OS internet 
enabled data archives. All available data sets from the 
geodetic receiver and the reference station were processed 
in a kinematic on-the fly (KOF) post-processing mode 
using the SkiPro GPS post-processing package.  The 
satellite positions were computed using broadcast 
ephemerides. The integer ambiguity (for GPS kinematic 
positioning) was resolved for all baselines involving all 
satellites in view (elevation cut-off 100), having detected 
and resolved all cycle slips at every 15s intervals.   
 
The quality of positional data from carrier phase 
measurements largely depends on a reliable and correct 
determination of integer ambiguities. Unsuccessful 
ambiguity resolution, when passed unnoticed, may lead to 
unacceptable errors in the positioning results. Normally 
when processing an individual baseline, two types of 
double difference solutions result. One is a float solution 
in which the ambiguities are solved as real numbers, 
instead of integers, and the other is a fixed solution in 
which the ambiguities are fixed by basically exploring 
those integers close to the float solution of the 
ambiguities. Under normal circumstances, the fixed 
solution is better than a float solution. In open spaces and 
in static surveys, a fixed solution should be routine. 
However, float solutions cannot be avoided in kinematic 
surveys especially in the built-up urban areas.  The 
variance-covariance matrix of the least squares estimation 
of the ambiguities contains the information necessary to 

http://www.gpd.gov.uk/�


infer the quality and reliability of ambiguity estimation. 
The SkiPro GPS post-processing package used in this 
study gives a number of quality indicators for each 
position estimate, including the variance from the 
variance-covariance matrix. A threshold value for the 
standard deviation of the horizontal positioning can be 
used to select the float solution position estimates to use 
as reference or truth alongside ambiguity fixed position 
estimates.  
 
In our test route, both fixed and float solutions were 
obtained corresponding largely to open and built-up areas 
respectively.  However, the positioning quality indicator 
in the form of the standard deviation of the horizontal 
position given by the SkiPro GPS post-processing 
package was used to select good float solutions used with 
the fixed solutions to provide the reference (truth) of the 
vehicle trajectory. It was found that the values of the 
standard deviation of the horizontal position were always 
less than 0.03 if the positioning fixes were from the fixed 
solutions. In the case of the float solutions, this value 
varied from 0.4 to 26.0. To select a threshod value for the 
standard deviation, which could identify good carrier 
phase observations by the float solutions of the 
ambiguities, the position fixing data from both solutions 
was overlaid onto a high resulotion digital base map 
(Figure 15).  
 

 
 
Figure 15: The Reference Trajectory of the Vehicle 
from GPS Carrier Phase Observables 
 
The positioning fixes from the float solutions were 
sometime offset by more than 20m from the road 
centerline when the standard deviation was large. It was 
found that the postioning fixes identified by a threshold 
value of 2.0 aggreed reasonably with the positioning fixes 
from the fixed solutions relative to the road centerline. 
Therefore, this threshold value of the standard deviation 
was employed to select all good carrier phase 
observations from GPS. 
 

Based on the reference of the vehicle trajectory obtained 
from the GPS carrier phase measurements, a set of correct 
links on which the vehicle was traveling is identified. 
Another set of links is identified for the corresponding 
epochs from the MM results. From this a 100% correct 
link identification was achieved by the new MM 
algorithm. In terms of physical location of the vehicle, 
different categories of horizontal positioning errors could 
be derived. The errors associated with the positions from 
the GPS C/A code-ranging augmented with DR are shown 
in Figure 16.  The maximum horizontal error of this 
category is 34m i.e., all GPS positions are within 34m 
relative to the truth positions. The average error is 7.01m 
and the standard deviation is 6.23m. The root mean 
square (RMS) of the easting component of this error is 
8.84m and the northing component is 7.79m. 
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Figure 16: Horizontal Errors of Stand-alone GPS 
Positions Relative to the Reference (truth) of the 
Vehicle Trajectory  
 
The next step is to compute the horizontal errors 
associated with the positions estimated from the MM 
results. This is shown is Figure 17.  
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Figure 17: Horizontal Errors of Positions from the 
MM results Relative to the Reference (truth) of the 
Vehicle Trajectory  
 
The errors are calculated by equation (10). It was found 
that all MM positions on the road centerline are within 
11m (maximum error) of the truth positions of the 
vehicle. The average of the errors is now 5.6m and the 
standard deviation is 2.26m whereas the RMS of the 
easting component of the error is 5.12m and the northing 



component of the error is 6.37m. Therefore, a significant 
improvement in the estimation of the vehicle positions on 
the map is achieved by the MM algorithm.  
 
The horizontal errors were also calculated after correction 
for the road centerline using equation (13). This is also 
shown in Figure 17. The maximum horizontal error is 
now only 6m implying that the final positions of the 
vehicle are within 6m of its true positions. The average of 
these horizontal positioning errors is 2.03m and the 
standard deviation is 1.48m. The RMS of the easting 
component of this error is now only 3.03m and the 
northing component is 4.03m.  Therefore, a further 
improvement in the estimation of the vehicle position can 
be achieved after adjusting for the road centerline.  
 
Clearly the quality of the vehicle positions estimated from 
the MM algorithm largely depends on the quality of the 
digital base map. If a good digital network map is not 
used in the MM process, the positions estimated from the 
MM process may get worse than the positions from stand-
alone GPS.  
 
Most of the MM algorithms in the literature (e.g., 
Greenfeld, 2002, White et al., 2000, Quddus et al, 2003) 
used epoch-by-epoch heading information from GPS in 
order to identify the correct link among the candidate 
links. Therefore, one can compare the GPS heading and 
the GPS/DR heading with the actual link heading which is 
calculated from the map data whereas the actual link is 
identified by the GPS carrier phase observations. The 
results are shown in Figure 18.  
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Figure 18: Errors in GPS and GPS/DR Heading 
Relative to the Truth Link Heading 
 
The heading from the stand-alone GPS is significantly 
different from the true heading. The difference is higher 
when the speed of the vehicle is very low. On the other 
hand, the vehicle heading from the integration of GPS/DR 
is very close to the true heading. Therefore, the heading 
derived from the stand-alone GPS SPS should be used 
with caution within MM algorithms.   
 
 
 

CONCLUSION 
 
The integration of low cost DR sensors and GPS was 
achieved employing an EFK algorithm. This integrated 
navigation system gives continuous vehicle position fixes 
(including urban canyons, streets with dense tree cover 
and tunnels). However, the vehicle positions derived from 
the integrated system do not always map to the actual 
vehicle position.   Therefore, a novel MM algorithm was 
developed and demonstrated. This algorithm was 
validated using a higher accuracy reference (truth) of the 
vehicle trajectory as determined by high precision 
positioning achieved by the carrier phase observable from 
GPS 
 
Probabilistic approaches were applied in the MM 
algorithm for both identification of the actual road 
segment on which the vehicle was traveling and the 
determination of the vehicle position. The algorithm was 
tested on various complex urban roadways and traffic 
scenarios with a relatively high-resolution digital map of 
the road network. The validation results revealed that 
about a 100% correct link identification was achieved by 
the MM algorithm. It was found that the horizontal 
position of the vehicle estimated from GPS C/A code-
ranging deviated at most from 34m of its true positions, 
with an average error of about 7m. The horizontal 
position of the vehicle was 11m from its true position 
after the application of the MM algorithm indicating that 
MM improved the mapping of vehicle positions on a link. 
The average horizontal error was 5.6m.  The estimate is 
further improved to within 6m in the estimation of the 
vehicle positions after adjusting MM results for the road 
centerline, with an average error of 2m.  
 
One of the interesting findings, therefore, was that the 
matching of the vehicle positions on the road centerline 
introduced additional error. If a good digital map is not 
used in MM algorithms, the estimation of the vehicle 
positions may become worse than the positions from GPS 
C/A code-ranging. Another finding was that the vehicle 
heading derived from the stand-alone GPS was 
significantly different from the true heading of the link 
especially at very low speed. Therefore, the heading 
information needs to use MM algorithms carefully. 
 
Future research will consider the integrity of map 
matching. This will include the specification of a metric 
for measuring the quality (and level of confidence of map 
matching) and the detection of anomalies (in raw and 
positional data). 
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