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Shubnikov–de Haas effect in multiband quasi-two-dimensional metals

I. O. Thomas,1 V. V. Kabanov,2 and A. S. Alexandrov1

1Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom
2Josef Stefan Institute, 1001 Ljubljana, Slovenia

�Received 1 November 2007; revised manuscript received 20 December 2007; published 28 February 2008�

We analyze the behavior of the longitudinal conductivity �zz in a field perpendicular to the highly conduct-
ing plane of a quasi-two-dimensional multiband metal in the case of a closed system where chemical potential
oscillations may be observed compared with the case of an open system for various forms of scattering. In all
but one case, we find that there are mixing frequencies present. However, they exhibit different qualitative
behaviors, as befits their different origins, and in the case of interband scattering in an open system, may in fact
be absent in the de Haas–van Alphen oscillations of that system.
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I. INTRODUCTION

The use of magnetic quantum oscillations1 as a means of
analyzing the Fermi surfaces of low-dimensional materials
has received interest in recent years, particularly with res-
pect to organic compounds such as the metallic varieties of
the charge transfer salts bis�ethylenedithio�tetrathiafulvalene
�BEDT-TFF� �see reviews by Singleton2 and Kartsovnik3�
and also with respect to high temperature superconductors.4

One interesting feature of such systems is that the magnetic
quantum oscillations can render measurable an apparent dif-
ference between the canonical �closed� and grand canonical
�open� ensembles �in which the density of electrons ne and
the chemical potential � are fixed, respectively�. In the
former case, the chemical potential � will oscillate, and this
will have a noticeable effect on the behavior of the magnetic
oscillations of a two-dimensional or quasi-two-dimensional
system.

In two-dimensional multiband metals, frequency mixing
in the de Haas–van Alphen effect resulting from chem-
ical potential magneto-oscillations has been predicted,5

studied analytically and numerically,5–12 and observed
experimentally3,13,14 in closed systems. The theoretical de-
scription has been generalized to the more realistic quasi-
two-dimensional �quasi-2D� case.15 Recently, it was pro-
posed that finite amplitudes due to mixing between extremal
cross sections of the warped Fermi surface of a single-band
closed quasi-2D system might also be observed.16 Unlike the
previous examples, this particular mixing effect cannot be
replicated by a magnetic breakdown.3,17

Attention has recently turned to the Shubnikov–de Haas
�SdH� oscillations of the longitudinal conductivity of
quasi-2D single-band metals, with quantum transport theory
being used by Champel and Mineev18 to examine the ultra-
high field 2D limit and by Grigoriev19 to examine the inter-
mediate �quasi-2D� field limit. While much about the de-
tailed physics of the former case remains obscure,20 an
analysis of the latter case while taking into account scattering
in the self-consistent Born approximation with t�TD, where
TD is the Dingle temperature and t the interplane transfer
integral, has resulted in a proposed explanation of a few
oddities in the observed oscillations—namely, the existence
of slow oscillations and the field dependent phase shifts of
the beats of the conductivity.

In what follows, we examine the behavior of the longitu-
dinal conductivity �zz in a field perpendicular to the highly
conducting plane of a quasi-2D multiband metal. We begin
by deriving an expression for the conductivity of a two-band
metal in the absence of any scattering or chemical potential
oscillations in Sec. II A. We then �Sec. II B� derive an ex-
pression for the self-energy of a system in the Born approxi-
mation where there exists scattering between two bands,
which we will have need of in some of our following calcu-
lations.

In the section following that, we calculate the effects of
chemical potential oscillations and different forms of scatter-
ing on the system. First, in Sec. III A, we consider a closed
system with a fixed relaxation time �, then in Sec. III B an
open system with oscillations in � arising from intraband
scattering �this is merely a two-band generalization of
Grigoriev’s19 result�, in Sec. III C a closed system with os-
cillations in � arising from intraband scattering, in Sec. III D
an open system with oscillations in � arising from interband
scattering, and, finally, in Sec. III E a closed system with
oscillations in � arising from interband scattering. In all cases
other than the second, we discover some measure of fre-
quency mixing, though the precise behavior of such mixing
varies according to its origin. Interestingly, as argued at the
beginning of Sec. III, one would probably not expect fre-
quency mixing due to interband scattering to be very signifi-
cant in the de Haas–van Alphen �dHvA� effect; that it is
present in open systems in the SdH effect seems to indicate
that one distinction between open and closed low-
dimensional thermodynamic systems is slightly blurred in
the case of conductivity.

II. SHUBNIKOV–DE HAAS EFFECT WITH FIXED
RELAXATION RATE

A. General expression for longitudinal conductivity

A quasi-2D metal in a longitudinal magnetic field has the
following energy spectrum:2,3

���n,kz� = 	��n + 1/2� − 2t cos�kzd� , �1�

where � labels the band, d is the distance between layers, n
labels the Landau level, kz is the momentum in the perpen-
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dicular direction, and 	�=eB /m� is the cyclotron frequency,
m� being the effective mass for that band, and 
=c=kB=1.

We may calculate the conductivity from the Kubo
formula21

�zz =
�e2

V
�

−�

�

d�− nF����Tr��� − H�v̂z�� − H�v̂z� , �2�

where v̂z is the velocity operator for the z direction, nF� is the
derivative of the Fermi function, the trace is taken over all
the single particle states �= �n ,kz ,ky ,����� ,��, the spin V
is the volume of the system, and the bar denotes the averag-
ing over the random distribution of impurities in the sample.
We may, if the impurities are pointlike, their concentration is
low, and t�TD, neglect the vertex corrections to the average
and replace ��−��� with IGR��� ,� /�, where

GR���,� =
1

 − �� − ����
, �3�

is the retarded Green’s function and ����=L���− i���� is
the retarded self-energy �L��� and ���� being real�, to ob-
tain

�zz =
2e2

V�
� d�− nF����	

�
	
�

vz�,�
2 �IGR���,�,��2. �4�

This is simply the initial conductivity formula of Refs. 18
and 19, only now generalized so that it sums over multiple
bands. Restricting our interest to the case of two bands with
different masses m1 and m2, and since t�TD, we may use the
approximation ����
���, making the calculation analyti-
cally tractable�. Then, we may generalize the single-band
result18,19 as

�zz =
e2Ntd2

�
� d�− nF����	

�
	

k=−�

�
�− 1�k

k
J1�4�kt

	�
�

�exp�2�ik*

	�
�� 1

���
+

2�k
	�

�R��k,� . �5�

Here, J1�x� is the first-order Bessel function, *=− L̃��,
L̃�� being the oscillating portion of L��, N=eB /2d�, and

R��k,� = exp�− 2����k
	�

� . �6�

One should use the expansion J1�kx� /k=x /2 for the k=0
harmonic. This expression is relatively general but is not
complete until the behavior of * and ��� is specified. In
what remains of this subsection, we make use of a simple
specification of their behavior in order to continue; more
complex behaviors of these quantities are analyzed in Sec.
III.

To begin with, let us assume that the quantum oscillations
in the self-energy are suppressed, with the result that we can

ignore the oscillatory contribution to * and ���= �2��−1

=�TD, where � is the mean scattering time and TD is the
associated Dingle temperature. This is justified in the pres-
ence of a field and size independent reservoir of states,15,18

for example, which suppresses both chemical potential oscil-
lations and any oscillations in the self-energy. Having made
this assumption, we integrate over  �using the delta-
function-like behavior of nF��� near the Fermi energy at
small T to obtain the first term, and �−�

� cos�ax�cosh−2�x�dx
=a� /sinh�a� /2� to obtain the damping factor for the oscil-
latory terms� and so acquire

�zz = ��1 + 	
�

m�

M 	
k=1

�
�− R��k

k
J1�4�kt

	�
�

��	�

�t
+

2�kTD

t
�cos�2�k�

	�
���2�2kT

	�
�� , �7�

where �= �e2dt2M� / ��2TD�, M =m1+m2, R�

=exp�−2�2TD /	�� is the Dingle reduction factor, and
��y�=y /sinh�y� is the usual Lifshitz–Kosevitch reduction
factor. If 4�t�	�, we can use the asymptotic

J1�4�kt

	�
� 
� 	�

2k�2t
sin�4�kt

	�

−
�

4
� , �8�

and so obtain

�zz = ��1 + M−1	
�

m�	
k=1

�

Ak
� cos�2�k�

	�
���2�2kT

	�
�� ,

�9�

where

Ak
� =

�− R��k

k
� 	�

2k�2t
�	�

�t
+

2�kTD

t
�sin�4�kt

	�

−
�

4
� .

�10�

We can see then that the conductivity oscillates with two
fundamental periods, one corresponding to the first band and
one to the second. In the quasi-three-dimensional �quasi-3D�
limit, one will observe the splitting of each fundamental in
the Fourier transform of the conductivity into a pair of peaks
�a low-frequency “neck” peak and a high-frequency “belly”
peak�, which is evidence of the slight warping of the Fermi
surface such that there are two extremal orbits present.1

B. Self-energy with interband scattering

If scattering between bands is possible, then the self-
energy of the particles in any given band will contain contri-
butions from all other bands in addition to that due to intra-
band scattering. In that case, in order to obtain the
conductivity in the self-consistent Born approximation in the
two-band case, we must include the impurity diagrams from
both bands in ����,22
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�R�� = W	
�

	
�

GR���,�,� , �11�

where W is the square of the scattering amplitude, which is
proportional to the impurity concentration and set equal to
the same constant in every band for simplicity. It also in-
cludes a factor of 2 from the summation over the spin. Fol-
lowing Ref. 19, we find that

	
�

GR���,�,�

= −
Vm�

2�d�A�� − 2�	
k=1

�

�− 1�kJ0�4�kt

	�
�

�sin�2�k*

	�
�R��k,� + i��1 + 2	

k=1

�

�− 1�kJ0�4�kt

	�
�

�cos�2�k*

	�
�R��k,��� . �12�

From this, we can see that there is an oscillatory contri-
bution from the real part of the self-energy that must be
taken into account in our calculations and a slowly varying
part A�� which may be ignored. Using our symmetric ap-
proximation �Eq. �11�� and setting WVM /2�d=�TD �as the
average Dingle temperature is simply related to the average
value of the imaginary part of the self-energy due to scatter-
ing�, we may write the imaginary and oscillating real parts of
the self-energy as follows:

��� = �TD�1 + 2M−1	
�

m�	
k=1

�

�− 1�kJ0�4�kt

	�
�

�cos�2�k*

	�
�R��k,�� , �13�

L̃�� = 2�TDM−1	
�

m�	
k=1

�

�− 1�kJ0�4�kt

	�
�

�sin�2�k*

	�
�R��k,� . �14�

Equation �13� is a nonlinear equation for ���, which can be
solved approximately in the strong damping limit
R��k ,��1, as we shall see in Sec. III D.

III. EFFECTS OF SCATTERING AND OSCILLATING �
ON THE CONDUCTIVITY

In this section, we discuss the effects of chemical poten-
tial oscillations and of various kinds of scattering on the
conductivity. Before we begin, however, we shall make some
general observations regarding our results.

This analysis takes place in a region where there is strong
damping of the amplitudes by the factor R�—we do not work
in the region where the processes giving rise to mixing fre-
quencies are at their strongest, and given that the effects we
are interested in are of the second order in R� �Eqs. �22�,

�33�, �44�, and �46��, they may be quite small. However, it
has been noted �by comparison to numerical results� that in
the case of dHvA oscillations,9,16 a reasonable level of accu-
racy may be maintained even if one allows the Dingle damp-
ing factor to tend toward unity, assuming that one is in the
appropriate limit regarding the behavior of �, so our results
regarding mixing due to oscillations in � may well still be
valid in this limit.

It would also be surprising if our analysis of the systems
where mixing due to interband scattering is present �Secs.
III D and III E� were not even qualitatively correct �with re-
gard to the presence of frequency mixing at the very least�
outside of the region where R��1 since from Eq. �5� the
SdH amplitudes contain a denominator ���, which becomes
more important as it becomes smaller, and R�,—which is
dependent on ���—approaches unity. Interestingly, this
would not be the case with regard to dHvA oscillations. As
can be seen from Eq. �68� of Ref. 23, ��� enters only
through the Dingle damping factor and the cosine function.
Since R� approaches 1, the oscillating portions of ��� be-
come negligible, it is therefore doubtful that one would be
able to observe frequency mixing due to scattering in the
dHvA oscillations of any but the dirtiest systems. �This
would entail the absence of measurable mixing frequencies
in the dHvA oscillations of the system examined in Sec.
III D, for example.�

With regard to the slow oscillations of the conductivity
�which are found in all the systems analyzed below�, it
should be noted that it has been observed24 that macroscopic
inhomogeneities in the sample increase the damping of the
fast oscillations over and above that expected by simple scat-
tering; this can be modeled by replacing the Dingle tempera-
ture in the R� factors of those oscillations with a new, larger
Dingle temperature T

D
* that will enhance the damping of their

amplitudes. In order to simplify our discussion though, we
ignore this complication for now, though it should be taken
into account in any physical measurement.

A. Canonical ensemble: Oscillating �, fixed �

In closed systems, the particle density is fixed, and we
work in the canonical ensemble. As a result of this, the
chemical potential � of the system may oscillate as a func-
tion of the magnetic field. In three dimensions, these oscilla-
tions are negligible; however, as mentioned previously, in the
case of multiband 2D and quasi-2D metals with two bands,
one discovers additional harmonics corresponding to fre-
quency mixing between bands. In this section, we discuss the
effects of these oscillations on the conductivity of a system
in which scattering effects are suppressed. This situation is
physical if the oscillations in � are suppressed due to a large
amplitude of scattering from quantized bands to the reser-
voir, which is consistent with the existence of a small enough
reservoir density of states for the oscillations in � to remain
significant.

Following Ref. 15, we divide the chemical potential into
an oscillating part �̃ and a nonoscillating part �0,

� = �0 + �̃ , �15�

where
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�̃ = −
1

�
� ��̃

��
� , �16�

with �̃ being the oscillatory portion of the thermodynamic
potential �, �=�bg+	���, �bg being the unquantized back-
ground density of states, which we treat as being negligible,
and �� being the quantized density of states for the band �.
Using formula �14� of Ref. 15 and the 2D density of states
��=m� /�, we acquire

�̃ = − 	
�

	
k=1

�

Bk
� sin�2�k��0 + �̃�

	�
���2�2kT

	�
� , �17�

where

Bk
� =

2eB�R��k

�Mk
J0�4�kt

	�
�



2eB�R��k

�Mk
� 	�

2k�2t
cos�4�kt

	�

−
�

4
� , �18�

which follows from the use of the asymptotic

J0�4�kt

	�
� 
� 	�

2k�2t
cos�4�kt

	�

−
�

4
� . �19�

Let us assume that the system is strongly damped:
R��1, and we keep only the oscillating terms of second
order in R� or less. It follows that �̃ /	��1, so we may
expand Eq. �9� in �̃ and approximate �0 with �. We then
insert Eq. �17�, again approximating the argument of the sine
function as �
�0, and so obtain

�zz = �zz
ord + �zz

mix, �20�

where �zz
ord represents the unmixed portion of the conductiv-

ity and �zz
mix is the mixed portion. �zz

ord is given by

�zz
ord

�
= 1 + M−1	

�
�m�A1

���2�2T

	�
�cos�2��

	�
�

+ �m�A2
���4�2T

	�
� + C����2�2T

	�
�2�cos�4��

	�
�

− C����2�2T

	�
�2� , �21�

which shows that the oscillations in �̃ modify the second
harmonics and also create additional slow oscillations due to
the effect of the warping of the Fermi surface on the behav-
ior of the scattering,24 as predicted for the single-band case
by Grigoriev.19 This slow oscillation is not seen in dHvA
oscillations �such as those of Ref. 16, for example�; in those
cases, one sees only the fast oscillations whose frequencies
are determined by t and � together, with no slow oscillations
whose frequencies are determined by t alone.

The mixed component of the conductivity is given by

�zz
mix

�
= M−1�C12 + C21���2�2T

	1
���2�2T

	2
�

��cos�2��

	+
� − cos�2��

	−
�� , �22�

where

1

	�

=
1

	2
�

1

	1
, �23�

and it is this term that gives rise to the frequency mixing
induced by the chemical potential oscillations.

The amplitudes induced by the chemical potential oscilla-
tion are given by

C�� =
2eBm�a1,�

M�2t
R�

2 sin�2�4�t

	�

−
�

4
�� , �24�

in the case where �=��, and

C��� =
2eBm�a1,�

M�2t � m�

m��
�1/2

R�R���cos�4�t

	+
� � sin�4�t

	−
�� ,

�25�

in the mixed ������ case, where

ar,� =
1

2
� 	�

r�t
+

2�TD

t
� , �26�

and we take the positive sign in front of the sine when
��=1 and the negative when ��=2. One important feature of
the mixing amplitudes in this case is that they are identical
for both the additive and the subtractive mixing frequencies.
This does not generally hold, as we shall see in what follows.

B. Grand canonical ensemble: Intraband scattering

Working in the self-consistent Born approximation, let us
assume that there is no scattering between the bands and that
we work in an open system described by the grand canonical
ensemble. In this case, the only diagrams contributing to the
self-energy of an electron in band � will be those corre-
sponding to intraband scattering, and there are no chemical
potential oscillations that could also result in a mixing of
oscillation frequencies. This is the situation described by
Grigoriev.19 Here, we simply generalize it to the case of mul-
tiple bands. Keeping all terms up to and including O�R�

2�, we
obtain

�zz = ��1 + M−1	
�

m��D1
���2�2T

	�
�cos�2��

	�
�

+ D2
���4�2T

	�
�cos�4��

	�
� + DS

��� , �27�

where
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D1
� = 2� 	�

2�2t
�1 + �a1,��2�R� cos�4�t

	�

−
�

4
+ �1,�� ,

D2
� =

4TD

t
�1 + �a1,��2�R��2 cos�4�t

	�

−
�

4
�

�cos�4�t

	�

−
�

4
+ �1,�� + �R��2�	�

�2t
�1 + �a2,��2�

�cos�8�t

	�

−
�

4
+ �2,�� + DS

�, �28�

DS
� =

	��R��2

2�2t

���1 + � 	�

2�t
�2

cos�2�4�t

	�

−
�

4
+ �S��� + 1� ,

�29�

�r,� = arctan�ar,��, �S,� = arctan� 	�

2�t
� , �30�

and ar,� is given by Eq. �26�.

C. Canonical ensemble: Oscillating �, Intraband scattering

When the system is closed, we must take into account the
effects of the oscillations in � as well as that of scattering.
We can do this by applying the procedure outlined in Sec.
III A to Eq. �27�, assuming that R��1.

Having performed the expansion in terms of �̃, we may
write our result as

�zz = �zz
ord + �zz

mix, �31�

where

�zz
ord

�
= 1 + M−1	

�

m��D1
���2�2T

	�
�cos�2��

	�
�

+ �D2
���4�2T

	�
� − C����2�2T

	�
�2�cos�4��

	�
� + DS

�

+ C����2�2T

	�
�2� , �32�

and

�zz
mix

�
= M−1�m1C12 + m2C21���2�2T

	1
���2�2T

	2
�

��cos�2��

	−
� − cos�2��

	+
�� . �33�

The amplitudes due to the chemical potential oscillations
are given by

C�� =
eBR�

2

M�2t
�1 + �ar,��2

��cos��1,�� + cos�2�4�t

	�

−
�

4
+

�1,�

2
��� �34�

when �=�� and by the following when ����:

C��� =
eBR�R��

M�2t � m�

m��
�1/2

�1 + �ar,��2

��cos�4�t

	−
� �1,�� − sin�4�t

	+
+ �1,��� , �35�

where the argument of the cosine function contains a “�” if
�=2 and a “�” if �=1.

In this case, we find that we have two terms contributing
to the slow oscillations, one of which is temperature depen-
dent, and that �as one might expect from Sec. III A� we have
additional frequencies due to the mixing of bands by the
oscillations in the chemical potential.

D. Grand canonical ensemble: Interband scattering

In order to proceed with our calculation of the effects of
interband scattering on the behavior of the system in the
grand canonical ensemble, we expand Eq. �13� in the strong
damping limit R��k ,��1, where we make the approxima-
tion

R��1,� 
 R��1 +
4�2TD

	�M
	
��

m��J0�4�t

	��
�cos�2�

	��
�R���,

R��2,� 
 R�
2 . �36�

We can then expand out the cosine terms for small L̃��
and find that for k=1,

cos�2�*

	�
�R��1,�


 cos�2�

	�
�R� +

4�2TD

	�M
�R��2m�J0�4�t

	�
�cos�4�

	�
�

+
4�2TD

	�M
R�R�̄m�̄J0�4�t

	�̄
�cos�2�

	+ � , �37�

where if �=1,2, then �̄=2,1, and that for k=2,

cos�4�*

	�
�R��2,� 
 cos�4�

	�
�R�

2 . �38�

The conductivity in this approximation is given by �after the
substitution of Eq. �13� into Eq. �5��
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�zz = 	
�

��� d�− nF�����1 −
	�

�t
J1�4�t

	�
�cos�2�*

	�
�R��1,� +

	�

2�t
J1�8�t

	�
�cos�4�*

	�
�R��2,��

��1 + 2M−1	
��

R���1,�m��J0�4�t

	��
�cos�2�*

	��
� − 2M−1	

��

R���2,�m��J0�8�t

	��
�cos�4�*

	��
�

+ �2M−1	
��

R���1,�m��J0�4�t

	��
�cos�2�*

	��
��2�

+
2�2TD

	�
�− J1�4�t

	�
�cos�2�*

	�
�R��1,� + J1�8�t

	�
�cos�4�*

	�
�R��2,�� , �39�

where ��= �e2dt2m�� / ��2TD�.
Substituting Eqs. �36�–�38� into Eq. �39�, integrating over

, replacing the Bessel functions with their asymptotics, and
gathering all the terms together, we finally obtain

�zz = ��1 + 	
�
�D1

� cos�2��

	�
���2�2T

	�
�

+ D2
� cos�4��

	�
���4�2T

	�
� + DS

��
+ D12

+ cos�2��

	+
���2�2T

	+
�

+ D12
− cos�2��

	−
���2�2T

	−
�� . �40�

Here, the unmixed amplitudes are

D1
� = 2

m�
1/2

M
� eB

2�2t
�1 + �a1,��2�R� cos�4�t

	�

−
�

4
+ �1,�� ,

�41�

D2
� =

�R��2m�

M
�4m�TD

Mt
�1 + �a1,��2

�cos�4�t

	�

−
�

4
�cos�4�t

	�

−
�

4
+ �1,��

+ 2� 	�

4�2t
�1 + �a2,��2� cos�8�t

	�

−
�

4
+ �2,��� + DS

�,

�42�

and

DS
� =

eB�R��2m�

2�2M2t
��1 + � 	�

2�t
�2

�cos�2�4�t

	�

−
�

4
+ �S��� + 1� . �43�

As in the case of oscillating �, we observe mixed frequen-
cies as well,

D12
+ =

eBR1R2
�m1m2

M2t�2 �1 +
2�2TD

	+
���1 + �y−�2

�cos�4�t

	−
+ �y−� + �1 + �y+�2 sin�4�t

	+
+ �y+�� ,

�44�

where

y� = � �	2 � 	1�
4�t

+ 2�2TD�a1,2

	2
�

a1,1

	1
��

��1 +
2�2TD

	+
�−1

, �y� = arctan�y�� , �45�

and

D12
− =

eBR1R2
�m1m2

M2t�2 ��1 + �q−�2 cos�4�t

	−
+ �q−�

+ �1 + �q+�2 sin�4�t

	+
+ �q+�� , �46�

where

q� =
�	2 � 	1�

4�t
, �q� = arctan�q�� . �47�

As before, the values of ar,� and �r,� and �S� are given by
Eqs. �26� and �30�, respectively.

E. Canonical ensemble: Oscillating �, interband scattering

Let us now treat the above system as though it were
closed, and so allow � to oscillate. The only terms of interest
to us will come from the expansion of the terms proportional
to D1

�. From an examination of Eqs. �28� and �41�, we can
see that

D1
� =

m�

M
D1

�, �48�

and it follows that the amplitudes due to the chemical poten-
tial oscillations are

C̄�� =
m�

M
C��, C̄��� =

m�

M
C��� �49�

and that the expression for the conductivity is
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�zz = ��1 + 	
�
�D1

� cos�2��

	�
���2�2T

	�
� + �D2

���4�2T

	�
� − C̄����2�2T

	�
�2�cos�4��

	�
� + DS

� + C̄����2�2T

	�
�2�

+ �D12
+ ��2�2T

	+
� − �C̄12 + C̄21���2�2T

	1
���2�2T

	2
��cos�2��

	+
�

+ �D12
− ��2�2T

	−
� + �C̄12 + C̄21���2�2T

	1
���2�2T

	2
��cos�2��

	−
�� . �50�

In this case, all the second order terms are modified by the
chemical potential oscillations.

IV. DISCUSSION

Figures 1–4 display some illustrative Fourier transforms
of the oscillatory components �̄zz of ��zz−�� /� given by the
expressions in the previous sections. The inclusion of plots
of the behavior of the Dingle and temperature reduction fac-

tors in the figures should facilitate the extrapolation of the
results given here to regimes where R��1, where our ana-
lytic calculations are more valid; however, it would be sur-
prising if the qualitative elements of our results were not
preserved even at values of R� near unity. For the purposes
of reference to a real material the measurements by Cole et
al.25 of the effective mass in the two-band system of GaAs-
�Ga, Al�As heterojunctions indicate a ratio of masses some-
where in the region 0.3� �m2 /m1��0.45.

FIG. 1. �Color online� A graph showing the Fourier transform of the SdH oscillations from 0.9�B0 /B�0.95 where the frequencies are
given in terms of B /B0, alongside plots of how the damping factors evolve as their respective temperatures are increased. Due to the small
size of the window, the slow oscillations are poorly resolved. The y axis has been rescaled by a factor of 100. The following parameters are
used: �=500t, �	1 /	2�= �m2 /m1�=0.9, kBTD=0.026t, and kBT=0.000 05t, setting our unit of measurement to be B0=m1t /2
e, which is
around 45 T if t=0.01 eV and m1=me. The legend in the Fourier transform plots should be interpreted as follows: A—closed system, fixed
�; B—open system, interband scattering; C—closed system, intraband scattering; D—closed system, interband scattering; E—open system,
intraband scattering. The legend in the temperature damping plots should be interpreted as a—value of ��2�2T /	��; b—value of
��2�2T /	1���2�2T /	2�. The legend in the dingle damping plots should be interpreted as: I—value of R�; II—value of R1R2; III—value of
R�

2 .

FIG. 2. �Color online� A graph showing the
Fourier transform of the SdH oscillations from
0.9�B0 /B�0.95 with �	1 /	2�= �m2 /m1�=0.75,
alongside plots of how the damping factors
evolve as their respective temperatures are in-
creased. Due to the small size of the window, the
slow oscillations are poorly resolved. The y axis
has been rescaled by a factor of 100. Except as
otherwise noted, all parameters and legends are
identical to those in Fig. 1.
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Note that in order to clean up the signal and remove
spurious �ringing� due to the finite window size, the data
were passed through a Hanning window prior to the opera-
tion of the numerical Fourier transform �see, for example,
Ref. 26�.

Details of the mixing frequencies are shown in Figs. 5 and
6. Perhaps the most obvious and interesting feature is that
the signature of the two kinds of mixing is not the same: The
amplitudes of the f2+ f1 and f2− f1 mixings are identical
in the cases where the mixing is due to only oscillations
in �, but in cases where mixing through interband scat-
tering is present, the f2− f1 mixing amplitude is less than
that of the f2+ f1 mixings �the exception is case C at
a ratio of 0.9, most likely due to the small size of its
amplitude and its being interfered with by neighboring
peaks�. In general, the amplitude of the mixing peaks grows
more pronounced as the two bands become less similar �that
is, as m2 becomes smaller than m1�, at least for these values
of m2, apart from case A at a ratio of 0.4, where a splitting
of the peaks reduces their size. It should also be noted
from the structure of the Lifschitz-Kosevich factors in the
mixing terms of Eqs. �20� and �40� that the amplitudes be-
have differently with respect to the temperature and that
this provides a further method of distinguishing between the
two sources of oscillation �see Ref. 27 for the relevance

of this point in the context of the theory of magnetic break-
down�.

Our calculations can also be applied to quasi-three-
dimensional metals, where t is less than or comparable
to �. Figure 7 shows the Fourier transform of �̄zz when
�=5t, �	1 /	2�= �m2 /m1�=0.75, kBT=2.5�10−7t, B0

=m1t / �200
e�, and we have set TD to be zero, in order to
clarify the harmonic behavior of the amplitudes. In this case,
our results correspond to a Fourier series truncated after the
second harmonics of each band, and we can see that the
mixing effects due to scattering or chemical potential oscil-
lations are suppressed in this limit. We can observe that the
ratio between the first and second harmonics is 
21/2 in the
cases where we have scattering and 
23/2 in the case of
oscillating � alone. This difference is due to our neglect of
the contribution from scattering to the oscillations in the lat-
ter case, which, as we can see from a comparison of the
amplitudes in the graphs, is the dominant source of oscilla-
tions in three dimensions �as one might expect from the re-
sults of calculations in 3D metals28�. Naturally, at finite tem-
peratures, the amplitudes will decay correspondingly more
quickly due to the effect of the temperature and Dingle
damping factors, which can be extrapolated from their re-
spective plots displayed in the figure.

FIG. 3. �Color online� A graph
showing the Fourier transform of
the SdH oscillations from
0.9�B0 /B�0.95 with �	1 /	2�
= �m2 /m1�=0.6, alongside plots of
how the damping factors evolve
as their respective temperatures
are increased. Due to the small
size of the window, the slow oscil-
lations are poorly resolved. The y
axis has been rescaled by a factor
of 100. Except as otherwise noted,
all parameters and legends are
identical to those in Fig. 1.

FIG. 4. �Color online� A graph
showing the Fourier transform of
the SdH oscillations from
0.9�B0 /B�0.95 with �	1 /	2�
= �m2 /m1�=0.4, alongside plots of
how the damping factors evolve
as their respective temperatures
are increased. Due to the small
size of the window, the slow oscil-
lations are poorly resolved. The y
axis has been rescaled by a factor
of 100. Except as otherwise noted,
all parameters and legends are
identical to those in Fig. 1.
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V. CONCLUSION

We have examined possible sources of frequency mixing
in the SdH oscillations of multiband quasi-2D metals in the
canonical and grand canonical metallic ensembles in the in-
termediate values of the field where 4�t�	�. We considered
a closed system with a fixed relaxation time �, an open

system with oscillations in � arising from intraband scatter-
ing, a closed system with oscillations in � arising from intra-
band scattering, an open system with oscillations in � arising
from interband scattering, and, lastly, a closed system with
interband scattering with oscillations in � arising from inter-
band scattering.

In all cases other than the second, we discover some
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FIG. 5. �Color online� Figures
showing the details of the f2− f1
amplitudes of �m2 /m1� values of
�a� 0.9, �b� 0.75, �c� 0.6, and �d�
0.4.
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FIG. 6. �Color online� Figures
showing the details of the f2+ f1
amplitudes of �m2 /m1� values of
�a� 0.9, �b� 0.75, �c� 0.6, and �d�
0.4.
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measure of frequency mixing. However, the behavior of the
mixing amplitudes are slightly different for each case where
they occurred, which may allow the mechanisms involved in
experimental systems to be distinguished. In the fourth and
fifth cases, we observe frequency mixing due to scattering,
which is interesting as we would expect such an effect in the

dHvA oscillations to be virtually negligible �as argued in
Sec. III�.
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