

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

3rd International IEEE Conference Intelligent Systems, September 2006

Ad-Hoc Networking with OWL-S and CSP
J. I. Rendo Fernandez, I. W. Phillips

Abstract In order to achieve a ubiquitous ad-hoc environ-
ment suitable for any kind and number of compute devices,
information concerning device usability must be stored and
manipulated. Take, for example the home where a large
number of devices - heating, cooking, lighting, entertain-
ment, security all cooperate to provide a suitable environ-
ment for a home resident. This paper proposes a representa-
tion of home devices as OWL-S (Web Service Ontology) ser-
vices, capable of being implemented by means of the formal
algebra CSP (Communication Sequential Process). Because
of the ontological nature of OWL-S and the possibility of
translating CSP equations to lightweight implementations,
this proposal allows a rich semantic description of services
capable of being hosted by a wide range of devices, includ-
ing such ones with low computational resources. The paper
describes the procedure of developing a service in OWL-S,
its translation to CSP and its implementation in occam, an
efficient CSP-based language.

Index Terms ubiquitous, ad-hoc, networking, OWL-S
CSP, occam, JCSP.

I. INTRODUCTION

OWL-S is an upper ontology for modelling web-service
composition which offers a process-based perspective. In
connection with the ontological essence of OWL-S, research
in ubiquitous computing points to service oriented architec-
tures in which device capabilities are exposed through on-
tologies [1]. In light of this, several projects have achieved
pervasiveness by completing classical service discovery pro-
tocols such as Universal Plug and Play (UPnP) [2], Web
Services [3] and Jini [4] by means of OWL-S [5]. How-
ever, these technologies demand devices to participate in
the service discovery protocol, which might be complicated
for simple devices. For example, UPnP and Web Services
require devices capable of interpreting SOAP messages.
A ubiquitous home environment implies the participa-

tion of several devices, involving sensors, actuators and in-
telligent systems. For example, imagine a user watching his
favourite TV program in his lounge, completely unaware of
what is happening in the rest of his house. Suddenly, the
security system detects that someone is trespassing the gar-
den. An intelligent system should alert the home resident
about this event by redirecting the output of the security
camera situated in the garden to the lounge TV. The intel-
ligent system may offer the home resident to automatically
close all home windows and phone the local police.
The nature of a ubiquitous computing scenario, partic-

ularly in a home environment, suggests the study of such
kind of system under the discipline of distributed and em-
bedded systems. On one hand, the necessity of home de-
vices for cooperate, to offer helpful services for the user,
requests the adoption of distributed computing techniques.

J.I. Rendo and I.W.Phillips are with the Research School of In-
formatics, Department of Computer Science, Loughborough Uni-
versity, Loughborough, Leicestershire, LEII 3TU, UK (e-mail:
J.I.Rendo@Olboro.ac.uk, I.W.Phillips@Olboro.ac.uk)

On the other hand, most of these devices participating in
such kind of cooperation are controlled by embedded sys-
tems. During the 70s, both topics, distributed and em-
bedded systems, started to be analysed with formal meth-
ods. Specially interesting are those methods that propose
the study of systems as processes that might communicate
among them. This is the case of CSP (Communicating
Sequential Process), a notation for modelling concurrent
systems devised by C.R.Hoare [6]. CSP specifications are
easily implemented as it is supported by several popular
programming languages, such as Java [7], [8] and C++ [9]
or specific CSP based languages such as occam.

Exploiting the common semantic of a process-based
service implementation and its ontological representation
brings coherence between these two service perspectives.
The service development stage requires designing device
services as a set of OWL-S processes, suitable for being
converted to CSP [10]. At this point, a formal analysis
of the produced service can be done in terms of deadlock,
livelock and determinism. After this analysis, the devel-
oper may choose the desired implementation, based on the
target platform. For example, a switch power service for
controlling the power on/off device functionality can be
represented in OWL-S. Once the service has been proved
correct, the developer may choose between a hardware close
implementation in occam, or to a software one in Java.
The next section introduces the reader to OWL-S and

CSP, focusing in the OWL-S process model and its corre-
spondence with CSP. Further sections present the service
implementation procedure and a protege plugin to auto-
mate all this procedure.

II. BACKGROUND

A. Web Service Ontology (OWL-S)

OWL-S is a proposal based on OWL (Ontology Web Lan-
guage) [11] which specifies an upper ontology for ser-
vice composition, providing three different knowledge types
about a service.
The information about the service capabilities is pro-

vided by class service:ServiceProfile 1. This class specifies
a service as a set of inputs, outputs, preconditions and re-
sults. With this information, web services are composed
by means of class service:serviceModel which gives a pro-
cess view of services. Once services are composed, class
service:ServiceGrounding offers all details about their in-
vocation.
Among other information related to a service, class ser-

vice:ServiceProfile presents what function the service com-
putes. This information is expressed in terms of the

1service is the namespace for http://www.daml.org/services/owl-
s/1. /Service.owl

1-4244-0195-X/06/$20.00 (2006 IEEE 115

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 30, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

transformation that the service produces. Particularly,
the profile specifies the inputs required by the service
and the outputs generated. Moreover, the profile de-
scribes the required preconditions by the service and the
expected effects that result from the service execution.
All this functionality is exposed through properties pro-
file:has1nput2 profile:hasOutput, profile:hasPrecondition
and profile:hasResult.
A service profile is a simplified view of a service, since it

only gives information about what a service does. To give
a more detailed perspective, the service:ServiceModel class
describes services as processes. There exist atomic pro-
cesses that only transform inputs to outputs, and compos-
ite processes that are composed by other processes (atomic
or composite) using control constructs such as Sequence,
If -Then -Else or Choice.
The execution of a OWL-S service can be compared with

a combination of remote procedure calls. The OWL-S
grounding specifies all the semantics of the parameters to
be provided when executing these calls, and the semantics
that is returned in messages when the services succeed or
fail. A software service user should be able to interpret the
grounding class to understand what input is necessary to
invoke the service, and what information will be returned.

B. Communicating Sequential Processes (CSP)
In CSP, the behaviour of a process is described by the se-
quence of events or actions that it may perform. Table I
plot part of the notation used in CSP3.

TABLE I

CSPM OPERATORS

Operator Behaviour
Prefixing (->) a -- P is a process that behaves like P

after doing event a

Sequence (;) P; Q represents a process that behaves like
Q after behaving like P

Choice (I) a -- Plb -- Q is a process which can either

engage in event a and then behave like P,
or do event b and then behave like Q

Parallel) PAIIBQ is a process that behaves as the
concurrent composition of P and Q, but
requires synchronisation between P and Q
in the events belonging to the
intersection of A and B

Important in CSP is the concept of channel. Events of
the form c!v stand for the transmission of message v on
channel c. Each channel has a type which declare the set of
values which can be passed on it. If T is the type of chan-
nel c, then the set of events related with c is {c!t t C T}.

2profile is the namespace for http://www.daml.org/services/owl-
s/1. /Profile.owl
3In this table, it is assumed that a and b are elements of the sets

A and B respectively, which are the alphabets of processes P and
Q respectively. A process alphabet is nothing more than the set of
events that it is allowed to perform

Based on this abstraction, process c!v -> P communicates
the message v on channel c and then behaves like P. Its
symmetrical is process c?x: T -> P(x), which is ready
to communicate any value of x C T and then behave like
P(x).
Example 1: Every DVD player offers several commands

to the user, such as play, pause and stop.

DVD ACTION(play)
DVD-ACTION(pause)
DVD ACTION(stop)

DVD PLAYER

doPlay -> SKIP
doPause -> SKIP
doStop -> SKIP
c?x: T >

DVD ACTION(x);
DVD-PLAYER

Typically, this functionality is accessed by a remote control.

DVD REMOTE c!play -> DVD REMOTE
c!pause -> DVD-REMOTE
c!stop -> DVD REMOTE

Both processes, the DVD player and the remote communi-
cate on a channel called c of type T = {play, pause, stop}.
Hence, the communication between both processes is ex-
pressed by:

DVD DVD-REMOTEC DVDTPLAYER
The power of CSP as specification language comies fromn

the refinement technique. In CSP it is said that a process P
is refined by process Q when the relation Q c P is asserted.
There are two types of refinement: traces and failures. On
one hand, trace refinement (Q CiT P) determines if pro-
cess P at most, engages in the same sequence of events
as process Q does. On the other hand, failure refinement
(Q FIF P) determines if process P, at least, engages in the
same sequence events as process Q does.
Example 2: Process Spec represents the desired be-

haviour of the communication of the remote control and
the DVD player, ensuring that actions invoked in the first
process correspond to actions in the second process.

Spec c.play -> doPlay -> Spec
c.pause -> doPause -> Spec
c.stop -> doStop -> Spec

Because both tests Spec CiT DVD and Spec CF DVD
are asserted as valid, it is possible to ensure that process
DVD satisfies the specification Spec, that is, both pro-
cesses behave in the same way.

III. PROPOSAL

Our aim is to find a procedure that, given a service descrip-
tion in the OWL-S service model, a correct implementation
for the service is obtained. It seems that this goal can
be achieved by exploiting the similarities between OWL-S
and CSP. Both of them specify systems in terms of pro-
cesses and their interfaces (inputs and outputs in OWL-S
and channels in CSP). However, not all OWL-S structures
have their symmetrical in CSP and vice-versa. For this rea-
son, we propose an upper ontology for developing services,

116

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 30, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

mainly based on OWL-S which instances can be automat-
ically translated to CSP and subsequently, to a CSP based
language in order to obtain an implementation.

In our model, a Service is responsible for offering the
functionality of a device. It has a State, which can be
accessed through Actions. Changes in the state iiay be
communicated to other services through special outputs
called Events. Additionally, a service has input an output
ports, called Plugs for data communication.

Example 3: The DVD player functionality can be ac-
cessed through a service called DVD Player Service with
three actions, Play, Pause and Stop. These actions
are responsible for setting the value of a state variable
called TransportState, which ranges with values PLA YING,
PAUSED and STOPPED.

A. OWL-S Service Modelling

The first step to develop our model involves the cre-
ation of classes owlsx:LufService 4, owlsx:LufProfile,
owlsx:LufProccess and owlsx:LufGrounding which are
subclasses of service:Service, service:ServiceProfile, ser-
vice:ServiceModel and service:ServiceGrounding respec-
tively.
The principal elements of an instance of owlsx:LufService,

such as the state, plugs, actions and events are ex-
posed through class owlsx:LufProfile. The state, events,
plugs and actions are attached to the profile with proper-
ties owlsx:hasState Variable, owlsx:hasEvent, owlsx:hasPlug
and owlsx:hasAction, which range to instances of classes
owlsx:State, owlsx:Event, owlsx:Plug and owlsx:Action re-
spectively.

Events and state variables are related through the
property owlsx:events. Actions might declare that
as a consequence of its invocation, a state vari-
able will change or publish its value. These ac-
tion consequences are represented as instances of classes
owlsx:SetStateResult and owlsx:GetStateResults respec-
tively. Both classes relate state variables, inputs, outputs
and literal values by means of the bindings attached to
their properties owlsx:wwithState VariableBinding and pro-
cess:withOutputBinding5.
Example 4: In Figure 1, the DVD Player Service has

an action, GetTransportState for retrieving the value of
the state variable TransportState. This relation is indi-
cated by the instance of class owlsx:GetStateResult. Action
Play is responsible for setting to PLAYING the value
of the state variable TransportState. The same schema
used for action Play can be applied for actions Stop and
Pause. For the purpose of sending video frames, the ser-
vice has an instance of class owlsx:OutputPlug. The ser-
vice will not output any piece of data on this plug un-
less the state variable TransportState changes its value
to PLAYING. This situation is indicated by properties
owlsx:starts WithEvent and owlsx:starts With Value which

4owlsx is the namespace for http://www.lboro.ac.uk/owisextension.ow
5process is the namespace for http://www.daml.org/services/owl-

s/1. /Process.owl

relate a plug with an event, and hence with a state variable.

PaYueDItN

Fig. 1. DVD Player Class Diagram

B. CSP Modelling

Once the service is declared in OWL-S following the previ-
ous layout, it is ready for being translated to a set of CSP
equations. The rules for doing such translation are based
on previous works of how to express Universal Modelling
Language (UML) specifications in CSP [12]. Since a service
is composed of actions, state variables, events and plugs,
we propose to develop a process for each of these compo-
nents, except for events. The service is the composition of
all these processes as it is plotted in Figure 2.

Fig. 2. CSP Model for a LufService

Users can interact with the service through channels call
and return. The first one serves for invoking the desired
action on the service with the required input parameters.
The return channel is used to retrieve the output results.
Actions can interact with the state sending a retrieving
messages from channels set and get respectively. Channels
getR and ack are used to request and confirm a get or set
operation respectively. State changes are communicated on
channel event, on which plugs might be listening in order
to send or read data.
Example 5: The translation of the DVD player service

in OWL-S results in the following piece of CSPM 6 code.

datatype PossibleTransportState = PLAYING PAUSED STOPPED

6CSMM stands for Machine Readable CSP, the usual input for the
CSP tools such as FDR2)

117

-.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 30, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

datatype CALL-PROTOCOL =
call-play call-pause I call-stop call_gettransportstate

datatype RETURN-PROTOCOL =
return-play return-pause return-stop I
return-gettransportstate.PossibleTransportState

datatype GET-PROTOCOL =
get_transportstate.PossibleTransportState

datatype SET-PROTOCOL =
set_transportstate.PossibleTransportState

datatype EVENT-PROTOCOL =
eventtransportstate.PossibleTransportState

channel get GET-PROTOCOL
channel set SET-PROTOCOL
channel event EVENT_PROTOCOL
channel call CALL_PROTOCOL
channel return : RETURN-PROTOCOL
channel outputvideoplug

TransportState(value) =
get.get_transportstate!value -> TransportState(value)

[1 set.set_transportstate?new ->
if (new != value) then
event.eventtransportstate!new -> TransportState(new)

else TransportState(new)

State = TransportState(STOPPED)

OutputVideoPlug(PLAYING) =

outputvideoplug -> OutputVideoPlug(PLAYING)
[1 event.eventtransportstate?new -> OutputVideoPlug(new)

OutputVideoPlug(value) =

event.eventtransportstate?new -> OutputVideoPlug(new)

Plugs = OutputVideoPlug(STOPPED)

Actions =

call.call_play -> set.set_transportstate!PLAYING ->
return.return_play -> Actions

[1 call.call_pause -> set.set_transportstate!PAUSED ->
return.return_pause -> Actions

[1 call.call_stop -> set.set_transportstate!STOPPED ->
return.return_stop -> Actions

[1 call.call_gettransportstate ->
get.get_transportstate?vO ->

return.return_gettransportstate!vO -> Actions

DVD_Player =

(Actions III Plugs)[I{lset, get, eventl}IlState
\{Iset, getl}

For each state variable, a set of channels get, getR, set
and ack are generated. The protocol used over these chan-
nels is derived from the process:parameterType property
of each state variable. In this case, the enumerated class
ProssibleTransportState is mapped to a datatype structure
in CSP, whose members are the components of the enumer-
ated class. The protocol of channel call is the desired action
to invoke followed by its parameters, those are, the OWL-S
inputs of the action. The same reasoning is applied for the
return protocol, with the outputs of the action. Again,
the CSP types are derived from the process:parameterType
property of inputs and outputs. Every time that the value
hold by process TransportState changes, a message with
the new value will be output on channel event. Other pro-
cesses interested on this event should be listening on this

channel. This is the case of process OutputPlug, which is
waiting for reading the value PLAYING in order to com-
municate video frames on channel outputplug. An analysis
with FDR2 (a tool for checking CSP specifications) shows
that the service is deterministic and free of deadlock and
livelock.

C. Implementation

The next step in the service creation routine implies the
realization of the service.
Example 6: We consider an occam implementation of

the DVD player presented before.

PROTOCOL GETR.TRANSPORTSTATE.PROTOCOL IS INT:
PROTOCOL GET.TRANSPORTSTATE.PROTOCOL IS INT:
PROTOCOL SET.TRANSPORTSTATE.PROTOCOL IS INT:

PROTOCOL EVENT.TRANSPORTSTATE.PROTOCOL
CASE

eventtransportstate; INT

PROTOCOL CALL.PROTOCOL
CASE

call.play
call.pause
call.stop
call.gettransportstate

PROTOCOL RETURN.PROTOCOL
CASE
return.play
return.pause
return. stop
return.gettransportstate; INT

PROC DVD.Player(
CHAN OF CALL.PROTOCOL call,
CHAN OF RETURN.PROTOCOL return,
CHAN OF EVENT.TRANSPORTSTATE.PROTOCOL event,
CHAN OF INT outputplug)

CHAN OF GETR.TRANSPORTSTATE.PROTOCOL
getR.transportstate:
CHAN OF GET.TRANSPORTSTATE.PROTOCOL
get. transport state:
CHAN OF SET.TRANSPORTSTATE.PROTOCOL
set. transport state:
CHAN OF EVENT. TRANSPORTSTATE. PROTOCOL
event.outputplug:

PROC TransportState(0
INT value:
INT new:
INT dummy:
SEQ
value:= 0
WHILE TRUE

ALT
getR.transportstate ? dummy

get.transportstate new
set.transportstate ? value

SEQ
IF

value = new
SEQ

event
eventtransportstate; new

event.outputplug
eventtransportstate; new

TRUE
SKIP

118

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 30, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

value := new

PROC State()
PAR

TransportState 0

PROC OutputPlug()
INT dummy:
INT start.value:
INT current . value:
SEQ

start. value := 2
current.value := 0
WHILE TRUE

SEQ
ALT

event.outputplug ? CASE
eventtransportstate; current . value

SKIP
IF

current.value = start.value
outputplug

TRUE
SKIP

D. Supporting tool

To automate the routine of service development, that is,
creating the service in OWL-S, checking it in CSP and fi-
nally obtaining its implementation, authors have developed
a protege plugin as an extension of the OWL-S editor [13].
Basically, the tool integrates the OWL-S extension pro-
posed with FDR2. Developers can check the correctness
of the services that they are designing just clicking in the
CSP button that appears in the OWL-S Editor tab, as it is
shown in Figure 3. At this moment, the tool only supports

PROC Plugs U
PAR

OutputPlug 0

PROC Actions()
INT dummy:
INT output:
WHILE TRUE

call ? CASE
call.play

SEQ
set.transportstate 2
return return.play

call . pause
SEQ

set.transportstate 1
return return.pause

call. stop
SEQ

set.transportstate 0
return return.stop

call . gettransportstate
SEQ
getR.transportstate 0
get.transportstate ? output
return

return. gettransportstate; output

PAR
State()
Actions 0
Plugs()

The translation from CSP to occam is straightforward.
Each process in CSP has its correspondence in occam. In
this implementation, it has decided to use integers to codify
the different values of the TransportState state variable.
In this case, '0', '1' and '2' stand for the values STOPPED,
PAUSED and PLAYING respectively. The reason for
doing that is because of the easier treatment of integer than
strings in occam. The grounding instance of the service

7must indicate this mapping

7The reader should be advised that the former piece of code is not
correct in terms of indentation, a strong requirement in occam

Fig. 3. Developer tool

the translation of an OWL-S representation to CSPM. Fur-
ther work will incorporate automatic code generation from
CSP specifications.

IV. RELATED WORK

Web service composition is a trendy area of research be-
cause of the increasing impact of web services in today
business world. In light of this, several projects attempt to
facilitate web service composition. Business Process Exe-
cution Language for Web Services (BPEL) and XLANG,
together with OWL-S, are exatmples of these projects. The
main difference of BPEL, XLANG and OWL-S is that
OWL-S is an ontology while BPEL and XLANG are not.
As a consequence, BPEL and XLANG lack of the needed
semantics for achieving automatic service composition [14].
The formal verification of web service orchestration is not

new and was tackled applying formal analysis to OWL-S
[15] and BPEL models [16]. These projects translate com-
posed services to Petri nets and process algebra respec-
tively, mainly, for verification purposes.
One hand, it seems seamless the translation of OWL-S

to Petri nets than to a process algebra such as CSP. On the
other hand, process algebras provide better composability
features than Petri nets. Because of this reason, and be-
cause the main purpose of this paper is the achievement of
automatic home device composition, we point to the use of
CSP as the mechanism for formal verification and service

119

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 30, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

implementation.

V. CONCLUSIONS AND FUTURE WORK

The proposed schema is a methodology for describing
rich semantic services, which are correctly implemented
and capable of being deployed in heterogeneous devices.

Firstly, due to the semantics provided by OWL-S, intel-
ligent agents can extract all the needed information about
a service in order to compose more complex ones. Several
projects have tried to apply artificial intelligence techniques
to achieve this goal [17]. The use of OWL-S in this proposal
allows the reuse of this vast knowledge. Moreover, because
of the standardization process of OWL-S these services are
capable of being accessed outside the home environment.

Secondly, the introduction of CSP gives a level of formal-
ity enough to predict the behaviour of a service before their
deployment. Not only developers can detect and fix com-
mon problems of concurrent programming, such as dead-
locks or livelock, but also, due to the refinement technique,
ensure that an implementation satisfies its specification.

Thirdly, the number of possibilities for implementing
CSP specifications is broad enough for being supported
by a wide range of devices. The alternatives range from
lightweight and efficient implementations in hardware to
heavier ones in Java. In fact, the CSP based Java imple-
mentations are more efficient than their rivals, such as Java
Spaces (Jini implements Java Spaces) [18].

Future work is mainly addressed to fix the limitations of
the proposal. Firstly, a rich grounding ontology is needed
to support a wide range of implementations. Secondly, it
is needed a protocol for ensuring interoperation between
services implemented with different technologies. Several
methods such as raw sockets, RMI and CORBA can be
studied to overcome this limitation [19]. Finally, to facili-
tate the employment of this technology, the presented tool
should be improved by integrating automatic code genera-
tion from a CSP specification [20].

[9] N.C Brown and P.H. Welch, "An Introduction to the Kent
c++csp Library," in Communicating Process Architectures
2003, Jan F. Broenink and Gerald H. Hilderink, Eds., 2003, pp.
1-16.

[10] J.I. Rendo and I.W. Phillips, "Pervasive Computing with OWL-
S and a Formal Method," Conference Supplement of the UBI-
COMP 05 hold in Tokyo, Japan, Sep 2005.

[11] "Web Ontology Language, OWL,"
http://www.w3.org/2004/OWL/.

[12] J. Davies and C. Crichton, "Concurrency and Refinement in the
Unified Modeling Language.," Formal Aspects of Computing,
vol. 15, no. 2-3, pp. 118-145, Nov. 2003.

[13] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri,
S. Sadaati, and R. Senanayake, "The OWL-S Editor - A De-
velopment Tool for Semantic Web Services.," in ESWC, 2005,
pp. 78-92.

[14] S. Mcllraith and D. Mandell, "Comparison of DAML-S and
BPEL4WS," Tech. Rep., Knowledge Systems Lab, Stanford Uni-
versity, 2002.

[15] S. Narayanan and S. A. Mcllraith, "Simulation, Verification
and Automated Composition of Web Services," in WWW '02:
Proceedings of the 11th international conference on World Wide
Web, New York, NY, USA, 2002, pp. 77-88, ACM Press.

[16] G. Sala, L. Bordeaux, and M. Schaerf, "Describing and reason-
ing on web services using process algebra," in ICWS '04: Pro-
ceedings of the IEEE International Conference on Web Services
(ICWS'04), Washington, DC, USA, 2004, p. 43, IEEE Computer
Society.

[17] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, "HTN
Planning for Web Service Composition Using SHOP2," Journal
of Web Semantics, vol. 1, no. 4, pp. 377-396, 2004.

[18] N.C. Schaller, S.W. Marshall, and Y. Cho, "A Comparison of
High Performance, Parallel Computing Java Packages," in Com-
municating Process Architectures 2003, Jan F. Broenink and
Gerald H. Hilderink, Eds., 2003, pp. 1-16.

[19] A. Ripke, A.R Allen, and Y. Feng, "Distributed Computing
using Channel Communications in Java," in Communicating
Process Architectures 2000, Andr W. P. Bakkers Peter H. Welch,
Ed., 2003, pp. 1-16.

[20] V. Raju, L. Rong, and G. S. Stiles, "Automatic Conversion
of CSP to CTJ, JCSP, and CCSP," in CPArchitectures 2003,
Jan F. Broenink and Gerald H. Hilderink, Eds., 2003, pp. 63-81.

REFERENCES
[1] S. Helal, "Programming Pervasive Spaces," IEEE Pervasive

Computing, vol. 4, no. 1, pp. 84-87, Jan. 2005.
[2] R. Masuoka, B. Parsia, Y. Labrou, and E. Sirin, "Ontology-

Enabled Pervasive Computing Applications," IEEE Intelligent
Systems, vol. 18, no. 5, pp. 68-72, Feb. 2003.

[3] Y. Lee, S. A. Chun, and J. Geller, "Web-Based Semantic Per-
vasive Computing Services," IEEE Computational Intelligent
Bulletin, vol. 4, no. 2, pp. 4-15, Dec. 2003.

[4] D Chakraborty, F Perich, S Avancha, and A Joshi, "DReggie:
Semantic Service Discovery for M-Commerce Applications," in
Workshop on Reliable and Secure Applications in Mobile En-
vironment, In Conjunction with 20th Sym posium on Reliable
Distributed Systems (SRDS), October 2001.

[5] "OWL-based Web Service Ontology, OWL-S,"
http: //www.daml.org/services/owl-s/.

[6] Hoare, C.A.R, Communicating Sequential Processes, Prentice
Hall International.

[7] P. H. Welch, "Java Threads in the Light of occam/CSP," in Ar-
chitectures, Languages and Patterns for Parallel and Distributed
Applications, P.H.Welch and A.W.P.Bakkers, Eds., Amsterdam,
April 1998, WoTUG, vol. 52 of Concurrent Systems Engineering
Series, pp. 259-284, IOS Press.

[8] G.H Hilderink, A.W.P Bakkers, and J.F Broenink, "A Dis-
tributed Real-Time Java System Based on CSP," in Proceedings
of the Third IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, March 2000, p. 400.

120

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 30, 2009 at 09:58 from IEEE Xplore. Restrictions apply.

