

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288389129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multi-step transactions specification and verification
in a mobile database community

Rafat Alshorman
Department of Computer Science

Loughborough University
Loughborough, LE11 3TU, UK

Email: R.Alshorman@lboro.ac.uk

Walter Hussak
Department of Computer Science

Loughborough University
Loughborough, LE11 3TU, UK
Email: W.Hussak@lboro.ac.uk

Abstract—Executions of concurrent multi-step transactions
interleave steps in ways that improve the throughput of the
particular transactions processing system. In this paper, we use
temporal logic to specify and verify formally the correctness of
local and mobile transactions executing concurrently on a mobile
database. The correctness condition is that of serializability which
we specify in CTL (Computational Tree Logic). The reason
for using a temporal logic such as CTL, is that the method
can be extended to verifying infinite schedules modelling mobile
environments such as MDBCs (mobile database communities).
The verification is carried out using the symbolic model checking
NuSMV. We verify that a local scheduler based on timestamps
serializes local and mobile multi-step transactions.

I. INTRODUCTION

In a MDBC (mobile database community), autonomous,
distributed, heterogenous and mobile databases are intercon-
nected through a wireless communication infrastructure such
as a MANET (mobile ad hoc network). There are two kinds
of transactions to be executed concurrently on any mobile
database participating in the MDBC, mobile transactions and
local transactions. Formally, a MDBC consists of:

1) a set MDBC = {mdbs1,mdbs2,mdbs3, . . . ,mdbsk}
of mobile databases systems, k > 1;

2) a set L = {L1, . . . ,Lk} of sets of local transactions,
where each Lh denotes the set of local transactions
executing at the mobile database system mdbsh, and;

3) a set M = {M1, . . . ,Mp} of mobile transactions.
In 1) we assume that the mobile databases in the MDBC
comprise pairwise disjoint sets of objects (or data items).
Also, that any mobile transaction update of an object in one
mobile database does not depend on the state of other mobile
databases. As in [1], a mobile transaction Mi, here, is module-
structured, i.e. its operations are grouped into subsequences,
called modules, where each module contains the operations
for one mobile database participating in the MDBC. For
example, let mdbsi and mdbsj participate in the MDBC, such
that mdbsi contains the set of data items {a, b, c, d}, mdbsj

contains the set data items {e, f, g, h}. An instance of Mi as
a module-structured transaction with modules is given below:

Mi = ri(a)wi(a)ri(b)wi(b)︸ ︷︷ ︸
module1

module2︷ ︸︸ ︷
ri(f)wi(f)ri(g)wi(g)

The correctness criterion for the concurrent execution of
these transactions is that of serializability. Serializability in
this context means that the concurrent transactions (local and
mobile) should execute in a schedule or history whose effect
is equivalent to a serial execution of the transactions. The
basic problem is to determine whether histories, generated by
some scheduler, are serializable. A serializable history is a
history S, if it is equivalent to some serial history of the same
transactions. This definition of serializable history requires us
to define the equivalence of two histories. Basically, we say
that the two histories are equivalent if they produce the same
final database state, and every read operation reads the same
write operation in the both histories (see, for example, [5]).
The objective of this paper is to specify the correctness of
transactions (local and mobile) executing concurrently on a
mobile database in terms of serializability using specifications
written in CTL (Computational Tree Logic). The reason for
using a temporal logic such as CTL, is that the method can
be extended in order to verify infinite schedules as occur
in mobile environments where transactions are incoming and
outgoing in a continuous stream. The importance of temporal
logic in computer science is clear, especially in the speci-
fication and verification of critical reactive systems. Model
checkers such as NuSMV of many variants of temporal logics
have been developed to the extent that they can deal with a
huge number of states and verify real-world systems.

This paper is organized as follows. In Section II, we give
concurrency techniques used to ensure the serializability of
histories in terms of protocols that guarantee serializability.
Our multi-step transactions definition and model is given in
Section III. The encoding into CTL is given in Section IV.
Section V contains the verification and implementation in
NuSMV of the multi-step transactions model. We give some
conclusions in Section VI.

II. CONCURRENCY TECHNIQUES FOR ENSURING
SERIALIZABILITY

Basically, there are two main kinds of protocols used to
ensure the serializability of concurrent transactions, locking
protocols and protocols using timestamps [6]. Locking proto-
cols lock objects (data items) to prevent multiple transactions
from accessing the objects concurrently, as we discuss in the

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

next subsection. Timestamp protocols use a timestamp, as a
unique identifier associated with every transaction and gener-
ated by the system, to ensure the serializability of concurrent
transactions by ordering transactions timestamps.

A. Locking Protocols

One of the most popular locking protocols is Two-Phase
Locking (2PL). It is used to manage concurrent transactions
accessing database systems ensuring that the history produced
from these transactions is serializable. The idea behind this
protocol is to associate a lock and waiting queue with every
object (the object size depends on the object or data item
granularity that has been used) in the database. When a
transaction Ti tries to access the data item x, the scheduler first
checks the associated lock. If there is no transaction holding
the lock, then the scheduler grants the lock to Ti. Otherwise
the transaction Ti is added to the waiting queue associated
with x. This means that, the scheduler will not grant Ti the
lock until Tj gives it up [2]. Deadlock may occur which such
a locking technique. As such, deadlock prevention schemes
based on timestamps [6], have been developed to deal with
transactions involved in a deadlock situation.

B. Timestamp Protocols

Timestamp-based concurrency control is a method of non-
lock concurrency control; hence, deadlock cannot occur. In this
paper we choose a scheduler based on a timestamp protocol
which we implement in NuSMV in Section V and check
whether histories generated satisfy the correctness condition
of serializability. We use the basic timestamp ordering (TO)
algorithm as a scheme to ensure that the histories produced are
guaranteed to be ‘conflict’ serializable. A history S is conflict
serializable if it is ‘conflict equivalent’ to some serial history
of the same transactions. Two histories are conflict equivalent
if the order of any conflicting operations is the same in
both. Two operations are conflicting if they are from different
transactions, they are on the same object or data item and at
least one of them is a write operation [2]. The idea of the basic
timestamp ordering (TO) algorithm is to order the transactions
according to their timestamps. We will denote the timestamp of
transaction Ti as TS(Ti). A transaction Ti obtains a timestamp
TS(Ti) when it starts, i.e. when the first step of transaction Ti

has arrived. Consequently, TS(Ti) < TS(Tj) when Ti starts
before Tj and we say that Ti is older than Tj . The history pro-
duced by the TO algorithm is equivalent to the serial order of
transactions corresponding the order of their timestamps. The
TO algorithm associates two timestamps with every object x,
a read timestamp and a write timestamp denoted by RTS(x)
and WTS(x), respectively. RTS(x) is the largest timestamp
among all transactions that have successfully read object x.
This means that RTS(x) = TS(Ti), if Ti is the youngest
transaction to have read object x successfully. WTS(x) is the
largest timestamp among all transactions that have successfully
written to object x. This means that WTS(x) = TS(Ti),
if Ti is the youngest transaction to have written to object x
successfully. The basic TO algorithm compares the timestamps

of transactions with RTS(x) and WTS(x) to make sure that
the timestamp order of the transactions is not violated as
follows:

1) Ti issues a write operation on object x:
• If RTS(x) > TS(Ti) or if WTS(x) > TS(Ti),

then abort and rollback Ti and reject the write
operation on object x.

• If the above condition is not satisfied, execute the
write operation and WTS(x) = TS(Ti).

2) Ti issues a read operation on object x:
• If WTS(x) > TS(Ti), then abort and rollback Ti

and reject the read operation on object x.
• If WTS(x) ≤ TS(Ti), execute the read operation

and RTS(x) = Max{TS(Ti), RTS(x)}.
There is another reason to choose a scheduler based on the
basic TO algorithm to be implemented in our NuSMV model
- it can be used to give any transaction higher priority than
the others. This is useful in our model as we will discuss in
Section III.

III. MULTI-STEP TRANSACTIONS MODEL

Dividing the transactions into sets of steps improves system
throughput and allows transactions interleaving to gain more
parallelism. An example of a multi-step transaction is a user
entering data using a sequence of forms. At the end of the
sequence, the application processes the input data. Desktop
applications using wizards to simplify operations are a good
example of multi-step transactions. In an e-commerce site, the
checkout flow can be seen as a multi-step transaction where
a user, starting from the shopping cart page, goes through the
shipping, billing, confirmation and finally a thank you page.
Formally, a database system consists of a set D of data items
and a set T = {T1, . . . , Tn} of transactions. A read step ri(x),
and a write step wi(x) is defined for x ∈ Z ⊆ D. We propose
multi-step transactions with m data items of the form:

Ti = ri(x1)wi(x1)ri(x2)wi(x2) . . . ri(xm)wi(xm)

for 1 ≤ i ≤ n. These execute in the mobile database system
asynchronously at any point of time. A local transaction
scheduler in any mobile database system must decide on-line
if it can grant each arriving read and write request immediately
without violating the serializability correctness criteria. We
assume that the mobile transactions have higher priority than
local transactions. The reason for our priority assumption
is that at any time a mobile transaction may transiently
disconnect from the network (due to communication disruption
or to save power), so it is reasonable to give it priority over
local transactions in the history.

IV. ENCODING INTO CTL

A. Multi-step Serializability

In line with the definition of multi-step transactions in
Section III, we assume that we have n − 1 transactions with
m data items contending to execute at the local host for the
mobile database mdbsi, all with the same priority, and one

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

mobile transaction denoted by Mn, similar to the local ones
(the same operations sequence) but with higher priority, such
that:

T1 = r1(x1)w1(x1) . . . r1(xm)w1(xm)
T2 = r2(x1)w2(x1) . . . r2(xm)w2(xm)

...
Tn−1 = rn−1(x1)wn−1(x1) . . . rn−1(xm)wn−1(xm)
Mn = rn(x1)wn(x1) . . . rn(xm)wn(xm)

We assume that the history should satisfy the following
condition to be conflict serializable:

1) If a transaction Ti begins executing a read operation on
data item xj , no read or write operation on data item
xj by any other transactions occurs (executes) until the
write operation of Ti completes its execution on data
item xj , i.e.:

ri(xj)︸ ︷︷ ︸
no rk(xj) or wk(xj)

wi(xj)

2) If Ti precedes Tk in accessing a data item xj in a history,
then Ti should precede Tk in accessing all other data
items for both read and write operations. For example,
assume that we have 3 transactions with m = 2 (two-
step transactions), i.e.:

T1 = r1(x1)w1(x1)r1(x2)w1(x2)
T2 = r2(x1)w2(x1)r2(x2)w2(x2)
T3 = r3(x1)w3(x1)r3(x2)w3(x2)

and suppose that T1 precedes T2 and T2 precedes T3 in
arriving at the scheduler. The following history S would
be conflict serializable:

S = r1(x1)w1(x1)r1(x2)r2(x1)w2(x1)w1(x2)
r3(x1)w3(x1)r2(x2)w2(x2)r3(x2)w3(x2)

As T1 precedes T2 and T3 in accessing a data item x1

in a history S, every data item operation (read/write)
belonging to T1 should precede (in the history) the
operations belong to T2 and T3 on the same data item.
As T2 precedes T3 a similar condition should hold for
them.

B. Computational Tree Logic (CTL)

Computational Tree Logic (CTL) is a temporal logic where
the model of time is a like-tree structure in which the future
is not determined. This means, there are different paths in
the future. It is useful to specify and verify the correctness
of computer systems, whether they are hardware, software,
or a combination [7] and achieves polynomial-time model
checking [4]. It is worthwhile using CTL to specify multi-
step transactions to gain polynomial-time model checking and
as a first step to specifying infinite histories of multi-step
transactions.

C. Encoding Serializability Into CTL

The encoding of the serializability conditions of section IV
into CTL will be as follows:∧

1≤i≤n

∧
1≤j≤m

∧
1≤k≤n,k 6=i

AG[ri(xj) =⇒

A((¬rk(xj) ∧ ¬wk(xj))Uwi(xj))] (1)

∧
1≤i≤n

∧
1≤j≤m

∧
1≤k≤n,k 6=i

∧
1≤l≤m,l>j

AG[(wi(xj)∧

EXrk(xj)) =⇒ A(¬rk(xl)Uwi(xl))] (2)

The CTL formula (1) represents the serializability condition
1. It specifies that at any point of time for all paths always
(AG), if ri(xj) is true then, for all paths (A) no read or
write operation on the data item xj will occur by any other
transactions until (U) wi(xj) occurs. The CTL formula (2)
represents the serializability condition 2. At any point of time,
for all paths always, if a write operation of Ti on data item
xj , wi(xj), occurs and there exists a path such that at the next
point in time (EX) a read operation belonging to a different
transaction Tk, on the same data item xj , rk(xj) occurs then,
for all paths (A) no read operation of Tk on any subsequent
data item xl (l > j) should occur until the write of Ti to xl

wi(xl) occurs. Therefore, if Ti precedes Tk on the first data
item x1 in a history, then Ti should precede Tk for accesses
to all other data items xl, where l > 1.

V. VERIFICATION OF THE MULTI-STEP TRANSACTIONS
MODEL

In NuSMV, the system to be verified is modeled as a finite
state transition system, and the specifications are expressed
in either CTL or LTL (Linear Temporal Logic). Then, by
exploring the state space of the state transition system, it is
possible to check automatically if the implementation satisfies
the specification. The termination of model checking is guaran-
teed by the finiteness of the model. One of the most important
features of model checking is that, when a specification is
found not to hold, a counterexample is produced [8]. We
specify and verify our multi-step transactions model as a
finite state machine in the input language of NuSMV [8] in
Subsection D. We make additional assumptions on the read
and write steps of multi-step transactions as follows:

1) If a write operation on xj has completed execution, it
becomes false at the next point of time. This means that
any write operation is true during execution and then
becomes false at the next point of time and remains
false to the end of schedule. Formally, in CTL∧

1≤i≤n

∧
1≤j≤m

AG[wi(xj) =⇒ AX¬wi(xj)] (3)

2) If the write operation to xj has occurred, a corre-
sponding read operation to xj should have occurred
beforehand. This means there are no occurrences of

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

writes before reads to the same data item by the same
transaction. Formally, in CTL∧

1≤i≤n

∧
1≤j≤m

AG[wi(xj) =⇒ ri(xj)] (4)

We use keywords in the NuSMV model having the following
meaning:

• MODULE : Either the main module or a subroutine.
• VAR : Defines variables.
• SPEC : Specifies the serializability conditions in CTL.
• ASSIGN : Defines transition relations for variables.
• init : Defines initial conditions of the variables.
• next : Defines a relationship between values of variables

in a particular state and its successor state.
• Process: Defines a collection of parallel processes, whose

actions are interleaved asynchronously.
• - - : Indicates a comment.

In our NuSMV model, given in Subsection D, there are
two multi-step transactions - a local transaction and a mobile
transaction (lines 90-91). They are contending to execute on
the local host for the mobile database mdbsi.

A. The Model Variables

The operations of the transactions are declared as ops1 and
ops2 in the main module (lines 77-78) so that every transaction
contains four steps (operations). We denote r1(x1) and w1(x1)
by r1x and w1x, respectively. We denote x2 by y, therefore
r1(x2) is r1y in the NuSMV model. The variables opt1 and
opt2 (line 1) in module Tran are the formal parameters that
receive ops1 and ops2, respectively.

We assume that the system timestamp is a counter TS taking
values from 0 to 16 (line 80) and that every transaction may
rollback at any operation a multiple of times; so the maximum
number of rollbacks for every transaction will be 4 (number
of operations) multiplied by 2 (number of transactions). Each
transaction has a timestamp as given in lines 82-83. The
timestamp TS l2 (line 83) is for the mobile transaction TM
(line 91). It takes the values 15..16 so as to give the mobile
transaction priority over the local transaction T1 (line 90).

Every data item has two timestamps, a read and a write
timestamp, denoted by RTS x (or RTS y) and WTS x (or
WTS y), respectively (lines 85-88). The local variable abort
(line 3) takes the value true if the transaction has to rollback;
otherwise it is false. A variable corresponding to a scheduler
action sch is declared in line 89. The required properties of
the scheduler including serializability are given in the SPEC
section in lines 107-113.

B. Implementation Of The Timestamp Protocol

As we mentioned in Section II, the basic TO algorithm is
a scheme to ensure that the histories produced are conflict
serializable. The basic TO algorithm compares the timestamps
of transactions with RTS(x) and WTS(x) to make sure that
the timestamp order of the transactions is not violated. When

the transaction Ti issues a read operation on data item x (or
y) first of all, it should check if the write timestamp of the
data item x is greater than the timestamp of the transaction Ti

(WTS(x) > TS(Ti)). If so, the transaction Ti should abort.
We encode this condition in the variable abort (lines 58-61).
The variable abort takes the value true at the next point of time
if the previous condition is satisfied and then this will affect
the value of opt1 (or opt2) which will return to the value none
as in lines 8 and 16. This means that the transaction Ti aborts
and returns to the initial state. Moreover, it will not be added
to the schedule (or history) (line 69) and the timestamp of
the transaction Ti will be affected at the next point of time,
when the value of opt1 (or opt2) change from none to r1x (or
rmx). This implies that it should set a new timestamp to the
transaction Ti as in lines 25 and 30.

If the condition (WTS(x) > TS(Ti)) is not satisfied, then
the operation should be executed as in lines 9-12 and 17-20.
Consequently, the transaction timestamp will be unchanged
(lines 26 and 31) and the schedule sch will add the operation
(lines 71-72). The read timestamp of the data item RTS(x)
(or RTS(y)) will take the maximum value of TS(Ti) and
RTS(x) as is encoded in lines 34-37 and 41-44. When the
transaction Ti issues a write operation on data item x (or y)
the basic TO algorithm checks whether RTS(x) > TS(Ti)
or WTS(x) > TS(Ti) are satisfied or not. If one of them is
satisfied, then the transaction Ti aborts (lines 62-65) and opt1
will return to the none state (line 8 of subsection D) and the
timestamp will be set to a new value in the next point of time
(lines 25 and 30). The schedule sch will remain in the same
state without adding the operation (line 69). On the other hand,
if the condition (RTS(x) > TS(Ti) or WTS(x) > TS(Ti))
is not satisfied, then the operation will execute (lines 9-13
and 17-20). The timestamp will remain as in its previous state
(lines 26 and 31) and the write timestamp of data item x (or
y) will take the timestamp of the transaction (lines 48-49 and
53-54). The schedule sch will add the operation as at lines 71
and 72.

C. Example Of The Model Run

In this subsection we describe, briefly, runs of the model
in the NuSMV model checker. The CTL specifications are
evaluated by NuSMV in order to determine their truth or
falsity in the finite state machine model. When a specification
is discovered to be false, NuSMV constructs and prints a
counterexample, i.e. a trace of the FSM that falsifies the
property. In NuSMV a CTL specification is given as a CTL
formula introduced by the keyword SPEC (lines 107-113).
For our example, we specify the formulae (1) and (2) in
NuSMV in lines 107-109. The run of NuSMV produces true
which means that the serializability conditions are true on the
histories produced by the basic TO algorithm here. Formulae
(3) and (4) are specified in lines 110-112.

Assume that the condition 2 of conflict serializability is

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

exchanged for the condition:∧
1≤i≤n

∧
1≤j≤m

∧
1≤k≤n,k 6=i

∧
1≤l≤m,l>j

AG[(wi(xj)∧

EXrk(xj)) =⇒ E(rk(xl)Uwi(xl))]. (5)

This allows for Ti to precede Tk in accessing a data item xj

and yet for Ti to not necessarily precede Tk in accessing all
other data items in both read and write operations. We specify
formula (5) in NuSMV in line 113. We find the specification is
false and a counterexample is produced to show that the new
serializability condition is not true on the histories produced
by the basic TO algorithm.

D. NuSMV Code

1 MODULE Tran(Tran no,opt1,TS,RTS x,WTS x,RTS y,
WTS y,sch,TS l1,TS l2,opt2)

2 VAR
3 abort:boolean;

4 ASSIGN
5 init(abort):=0;
6 −−When abort =1, the opt should return to none value

7 next(opt1):=case
8 (next(abort)=1):none;
9 (opt1=none)&(next(abort)!=1)& (Tran no=0d3 1) : r1x;
10 (opt1=r1x)&(next(abort)!=1)& (Tran no=0d3 1) : w1x;
11 (opt1=w1x)&(next(abort)!=1)& (Tran no=0d3 1) : r1y;
12 (opt1=r1y)&(next(abort)!=1)& (Tran no=0d3 1) : w1y;
13 1 : opt1;
14 esac;

15 next(opt2):=case
16 (next(abort)=1) :none;
17 (opt2=none)&(next(abort)!=1)& (Tran no=0d3 2) : rmx;
18 (opt2=rmx)&(next(abort)!=1) & (Tran no=0d3 2) : wmx;
19 (opt2=wmx)&(next(abort)!=1)& (Tran no=0d3 2) : rmy;
20 (opt2=rmy)&(next(abort)!=1) & (Tran no=0d3 2) : wmy;
21 1 : opt2;
22 esac;

23 next(TS l1):=
24 case
25 (next(opt1)=r1x)& (Tran no = 0d3 1) & (TS<16):TS+1;
26 1 :TS l1;
27 esac;

28 next(TS l2):=
29 case
30 (next(opt2)=rmx)& (Tran no = 0d3 2) :16;
31 1 :TS l2;
32 esac;

33 next(RTS x):= case
34 ((next(opt1)=r1x))& (WTS x <= next(TS l1))&

(RTS x >next(TS l1)) : RTS x;
35 ((next(opt1)=r1x))& (WTS x <= next(TS l1))&

(RTS x <=next(TS l1)): next(TS l1);
36 ((next(opt2)=rmx))& (WTS x <= next(TS l2))&

(RTS x >next(TS l2)) : RTS x;
37 ((next(opt2)=rmx))& (WTS x <= next(TS l2))&

(RTS x <=next(TS l2)): next(TS l2);
38 1 : RTS x;
39 esac;

40 next(RTS y):= case
41 ((next(opt1)=r1y))& (WTS y <= next(TS l1))&

(RTS y >next(TS l1)) : RTS y;
42 ((next(opt1)=r1y))& (WTS y <= next(TS l1))&

(RTS y <=next(TS l1)): next(TS l1);
43 ((next(opt2)=rmy))& (WTS y <= next(TS l2))&

(RTS y >next(TS l2)) : RTS y;
44 ((next(opt2)=rmy))& (WTS y <= next(TS l2))&

(RTS y <=next(TS l2)): next(TS l2);
45 1 : RTS y;
46 esac;

47 next(WTS x):= case
48 (next(opt1)=w1x) & (WTS x <= next(TS l1)) &

(RTS x <= next(TS l1)) : next(TS l1);
49 (next(opt2)=wmx) & (WTS x <= next(TS l2)) &

(RTS x <= next(TS l2)) : next(TS l2);
50 1 : WTS x;
51 esac;

52 next(WTS y):= case
53 (next(opt1)=w1y) & (WTS y <= next(TS l1)) &

(RTS y <= next(TS l1)) : next(TS l1);
54 (next(opt2)=wmy) & (WTS y <= next(TS l2)) &

(RTS y <= next(TS l2)) : next(TS l2);
55 1 :WTS y;
56 esac;

57 next(abort):= case
58 (opt1=r1x)& (WTS x > TS l1) : 1;
59 (opt2=rmx)& (WTS x > TS l2) : 1;
60 (opt1=r1y)& (WTS y > TS l1) : 1;
61 (opt2=rmy)& (WTS y > TS l2) : 1;
62 (opt1=w1x)& ((RTS x > TS l1)|(WTS x > TS l1)) : 1;
63 (opt2=wmx)& ((RTS x > TS l2)|(WTS x > TS l2)) : 1;
64 (opt1=w1y)& ((RTS y > TS l1)|(WTS y > TS l1)) : 1;
65 (opt2=wmy)& ((RTS y > TS l2)|(WTS y > TS l2)) : 1;
66 1 : 0;
67 esac;

68 next(sch):=case
69 (next(abort) = 1) : sch;
70 ((opt1=w1y)&(opt2=wmy)) : sch;
71 (Tran no=0d3 1)&(next(abort) = 0) : next(opt1);
72 (Tran no=0d3 2)&(next(abort) = 0) : next(opt2);
73 1 : sch;

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

74 esac;

75 MODULE main

76 VAR
77 ops1 : {none,r1x,w1x,r1y,w1y};
78 ops2 : {none,rmx,wmx,rmy,wmy};
79 −−Global time stamp
80 TS : 0..16;
81 −−transactions timestamps
82 TS 1 : 0..16;
83 TS 2 : 15..16;
84 −−Read/Write time stamp to data item X and Y
85 RTS x : 0..16;
86 WTS x : 0..16;
87 RTS y : 0..16;
88 WTS y : 0..16;
89 sch : {none,r1x,w1x,r1y,w1y,rmx,wmx,rmy,wmy};

90 T1 : process Tran(0d3 1,ops1,TS,RTS x,WTS x,RTS y,
WTS y,sch,TS 1,TS 2,ops2);

91 TM : process Tran(0d3 2,ops1,TS,RTS x,WTS x,RTS y,
WTS y,sch,TS 1,TS 2,ops2);

92 ASSIGN
93 init(ops1) :={none};
94 init(ops2) :={none};
95 init(TS) :=1;
96 init(TS 1) :=1;
97 init(TS 2) :=16;
98 init(RTS x) :=0;
99 init(WTS x) :=0;
100 init(RTS y) :=0;
101 init(WTS y):=0;

102 next(TS):= case
103 TS<16 :TS+1;
104 1 :TS;
105 esac;

106 init(sch):=none;

107 SPEC AG (sch=r1x − > A [(sch!=rmx & sch!=wmx)
U sch=w1x])

108 SPEC AG (sch=rmx − > A [(sch!=r1x & sch!=w1x)
U sch=wmx])

109 SPEC AG ((sch=wmx & EX sch=r1x) − > A[sch!=r1y
U sch=wmy])

110 SPEC AG (sch=wmx − > AX sch!=wmx)
111 SPEC AG (sch=w1x − > AX sch!=w1x)
112 SPEC AG (sch=w1x − > sch=r1x)
113 SPEC AG ((sch=wmx & EX sch=r1x) − > E[sch=r1y

U sch=wmy])

114 FAIRNESS
115 running

116 −−By adding the declaration:FAIRNESS running
117 −−to the module, we can effectively force every instance

of the module to execute infinitely often.

VI. CONCLUSION

In this paper, we have shown that serializability conditions
can be easily encoded into CTL demonstrating how sched-
ulers can be verified using such model checkers. In fact the
verification runs in polynomial time, i.e. if we are given a
scheduler specified by a transition system of size n and a
serializability condition expressed as a CTL formula of size
m, then the CTL model checking algorithms runs in O(nm)
time [7]. This is a first step towards specifying infinite histories
of multi-step transactions using temporal logic and extending
previous work on two-step transactions [5] and [3]. Infinite
histories are growing in importance with the emergence of
new technologies such as mobile transactions. It is useful to
conduct proofs of such infinite histories using fully automated
techniques to avoid numerous disadvantages of manual proofs.
Further work will look to extend the NuSMV model checker
by adding scripts to generate CTL specifications automatically
for such kinds of problems.

ACKNOWLEDGMENT

We would like to thank ZPU (Zarqa Private University) for
its grant in making this work possible.

REFERENCES

[1] A. Brayner, J.A. Filho, Increasing Mobile Transaction Concurrency in
Dynamically Configurable Environments, Proceedings of the 25th IEEE
International Conference on Distributed Computing Systems Workshops,
ICDCS Workshops 2005, 637-641.

[2] C.H. Papadimitriou, The Theory of Database Concurrency Control. Com-
puter Science Press, Pockville, Maryland, 1986.

[3] W. Hussak, Specifying Strict Serializability of Iterated Transactions in
Propositional Temporal Logic, International Journal of Computer Science,
2(2), 2007, 150-156, ISSN 1306-4428.

[4] Ph. Schnoebelen, Specifying Systems, The Complexity of Temporal Logic
Model Checking, Advances in Modal Logic, Volume 4, 1-44, 2002, by
World Scientific Publishing Co. Ltd.

[5] W. Hussak, Serializable Histories in Quantified Propositional Temporal
Logic, International Journal of Computer Mathematics, 81(10), 2004,
1203-1211, ISSN 1029-0265.

[6] R. Elmasri, S. Navathe, Fundamental of Database Systems Addison-
Wesley, Fourth Edition , ISBN 0-8053-1755-4.

[7] E. Clarke Jr., O. Grumberg, and D. Peled Model checking. The MIT
press,Cambridge, Massachusetts 1999.

[8] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, NuSMV: A New Sym-
bolic Model Verifier. In Proceedings of 11th Conference on Computer-
aided Verification, Lecture Notes in Computer Science, Springer, Trento,
Italy, vol. 1633, 1999, 495-499.

[9] Ph. Schnoebelen, The Complexity of Temporal Logic Model Checking,
Advances in Modal Logic 2002, 393-436.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 29, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

