

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288389128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Precise Scenarios - A Customer-Friendly
Foundation for Formal Specifications

Oliver Au, Roger Stone, and John Cooke

Loughborough University, England,
{o.t.s.au, r.g.stone, d.j.cooke}@lboro.ac.uk

Abstract. A formal specification is beyond the comprehension of the
average software customer. As a result, the customer cannot provide
useful feedback regarding its correctness and completeness. To address
this problem, we suggest the formalism expert to work with the customer
to create precise scenarios. A precise scenario describes an operation by
its effects on the system state with only a few simple Z concepts. The
customer would find a concrete precise scenario easier to understand
than its corresponding abstract schema. The Z expert derives schemas
based on the precise scenarios. Precise scenarios affords user involvement
that improves the odds of a formal specification fully capturing the user
requirements.

Key words: precise scenario, formal method, requirements specifica-
tion, use case, Z

1 Introduction

The most important software project success factor is user involvement [1]. For-
mal specification languages, being hard to read [2], discourage user involvement.
The resulting formal specification may not truly reflect user’s requirements. This
could explain the limited adoption of formal methods [3]. We hope to broaden
the appeal of formal specification by increasing user involvement with precise
scenarios.

Use cases and scenarios may be used to involve customers in requirements
elicitation. There should be a use case for each user task. A use case consists of
several scenarios, one scenario for a particular situation. The most common way
to describe the details of a scenario is by listing a sequence of steps. Each step
describes an actor and its action in a natural language. Due to the ambiguous
nature of natural languages, the formal specification cannot be verified against
the scenario descriptions it was based on.

We propose to describe a scenario by its precise effects on a state. A state is
represented by its actual data expressed in a small subset of the specification lan-
guage Z. For the layman, actual data are easier to understand than their abstract
descriptions. The small number of Z symbols being used make our precise sce-
narios easier to understand than the corresponding schemas. The customers can
participate in the creation of the precise scenarios. But scenarios only partially

describe the infinite behaviour of a software application. A Z expert will need to
generalise the scenarios into schemas that form a complete Z specification.

The idea of creating formal specifications from scenarios is not new. Amyot
et al. expressed scenarios in Use Case Maps (UCM) to be translated into high-
level LOTOS specifications [4]. Whittle and Schumann started out with UML
sequence diagrams and created statechart diagrams from them [5]. Uchitel et al.
[6] and Damas et al. [7] used message sequence charts (MSC) to synthesize la-
beled transition system (LTS). Their work has been limited to system behaviour
made up of sequences of parameterless events. Being based on Z, we can extend
sequences of simple events to general computation in the precise scenarios.

In another strand of research, Grieskamp and Lepper combined use cases
with Z [8]. Use cases benefit from Z for its added precision while a Z specification
benefits from use cases for relating its operations in actual usage. Test dialogues
are built using nondeterministic choice, repetition and interruption. Executing
a test dialogue in ZETA, the final state can be determined [9]. Their focus is on
black-box test evaluation. The added capability has worsened the accessibility by
software customers which contrasts with our research objective.

We use a simple ordering and invoicing problem to demonstrate our approach
[10]. Section 2 describes the problem and a representation of the state space in
Z. Each of sections 3 to 6 describes a user task, its precise scenarios and their use
in the derivation of schemas. Section 7 briefly discusses validation, underspecifi-
cation, overspecification, nondeterminism and tool support. Our conclusions are
stated in section 8.

2 Ordering Problem and State Space

There are four user tasks in our ordering problem: create a new order, invoice an
order, cancel an order and refill the stock. The following statement introduces
basic types OrderId and Product for the identification of individual orders and
products. Once defined, we can use them in the specification without worrying
about their implementation.

[OrderId ,Product]

When an order is newly created, it will be in the state pending . After the
order has left the warehouse, its state changes to invoiced . These are the only
two order states that concern us regarding the scenarios to be discussed. The
following definition could be modified by adding the new state paid to deal with
payment scenarios in an iterative development process which is beyond the scope
of this paper.

OrderState ::= pending | invoiced

We declare the state space with schema OrderSystem which has four vari-
ables, and after a horizontal dividing line, two invariants.

2

OrderSystem
stock : bag Product
orders : OrderId 7→ bag Product
orderStatus : OrderId 7→ OrderState
freeIds : P OrderId

dom orders = dom orderStatus
dom orders

⋂
freeIds = ∅

A bag of Product is equivalent to a partial function from Product to the set
of positive natural numbers N1. We use the function to keep track of a product’s
quantity in stock or in an order. The symbols 7→ and P represent partial function
and power set respectively.

In an arbitrary state, we have 5 nuts and 6 bolts in stock. Order 1 was placed
for 2 nuts and 2 bolts. Order 2 was placed for 3 bolts. Order 1 has been invoiced
and order 2 is still pending. Ids 3 and 4 are free for future use. The state could
be expressed with the following values in the variables of schema OrderSystem.

stock = {nut 7→ 5, bolt 7→ 6}
orders = {1 7→ {nut 7→ 2, bolt 7→ 2}, 2 7→ {bolt 7→ 3}}
orderStatus = {1 7→ invoiced , 2 7→ pending}
freeIds = {3, 4}

The keyword dom stands for domain. The first invariant ensures that an
order id in use must appear in both orders and orderStatus for an order cannot
exist without its status. The second invariant prevents an order id from being
used and at the same time available for new orders. Often, we don’t know all
the constraints until we have explored the scenarios.

After an operation, we want to report whether it was successful. If not, what
was the error?

Report ::= OK | no more ids | order not pending
| id not found | not enough stock

3 New Order

The scenario NewOrder documents a successful order creation using four Z con-
cepts. They are input with the symbol ?, output with !, maplet with 7→, and set
with { } and commas. The input parameter order? places a new order for 4 nuts
and 4 bolts. Below the table headings are the pre-state followed by the post-state.
In the post-state, the 3-dot symbol . . . is used to denote the unchanged function
stock . Functions orders and orderStatus are extended by a map for OrderId 3.
The element 3 is removed from the set freeIds. The output parameters id ! and
report ! return 3 and OK respectively.

3

scenario NewOrder
order? = {nuta 7→ 4b , boltc 7→ 4d}
stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3e , 4}
bolt 7→ 6} 2 7→ {bolt 7→ 3}} 2 7→ invoiced}

. . . {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {4}
2 7→ {bolt 7→ 3}, 2 7→ invoiced ,
3e 7→ {nuta 7→ 4b , boltc 7→ 4d}} 3e 7→ pending}

id ! = 3e , report ! = OK

Values referred in input/output parameters are subscripted allowing us to
relate them to the state. When two pieces of data have the same subscript, for
example, 3e in the post-state of orders and orderStatus, they must be identical.
If two pieces of data have identical value but different subscripts, for example
4b and 4d , their equality is merely a coincidence. Value 4d could have been 5d

throughout the scenario. The values allowed in a scenario are confined by earlier
definitions. For example, 4b and 4d must be taken from the set of positive natural
numbers N1.

To generalise the above scenario to an operation schema, we need a type for
the new order that maps Product to a positive integer.

Order == {order : bag Product | order 6= ∅}

The scenario NewOrder can be converted to the equivalent Z schema below.
The declaration part declares the variables, input/output parameters and their
types. The symbol ∆ alerts us that the state of OrderSystem is changed by
this operation. The predicate part lists the constraints on the variables and
parameters. The trailing symbol ′ is used to denote a value after the operation.

NewOrderScenario
∆OrderSystem
order? : Order
id ! : OrderId
report ! : Report

order? = {nuta 7→ 4b , boltc 7→ 4d}
3e ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {3e 7→ {nuta 7→ 4b , boltc 7→ 4d}}
orderStatus ′ = orderStatus ∪ {3e 7→ pending}
freeIds ′ = freeIds \ {3e}
id ! = 3e

report ! = OK

The first predicate specifies the value of the input parameter order?. The
membership of 3e in set freeIds gives rise to the second predicate. The third
predicate states that stock is unchanged after the operation. The new maplets

4

for 3e , adding to orders and orderStatus, are captured in the fourth and fifth
predicates. The removal of 3e from the set freeIds is expressed next. The values
for the output parameters are specified by the last two predicates.

Subscripted values, used to represent input/output parameters, are not fixed.
For example, instead of picking 3e in the pre-state, we could have picked 4e . By
replacing the subscripted values with the input/output variables they represent,
for example, “3e” with “id !” and “{nuta 7→ 4b , boltc 7→ 4d}” with “order?”, we
have the generalised schema below.

NewOrderGeneralised
∆OrderSystem
order? : Order
id ! : OrderId
report ! : Report

order? = order?
id ! ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {id ! 7→ order?}
orderStatus ′ = orderStatus ∪ {id ! 7→ pending}
freeIds ′ = freeIds \ {id !}
id ! = id !
report ! = OK

The generalised version of the Z schema can be simplified by removing the
two identity predicates that always evaluate to true.

NewOrder
∆OrderSystem
order? : Order
id ! : OrderId
report ! : Report

id ! ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {id ! 7→ order?}
orderStatus ′ = orderStatus ∪ {id ! 7→ pending}
freeIds ′ = freeIds \ {id !}
report ! = OK

We now turn our attention to an unsuccessful attempt to create a new order.
A separate post-state is not shown in the scenario because the state is unchanged.
No subscripts are used because the input/output parameters do not relate to any
piece of data in the state. The pre-condition is the absence of any OrderIds in
freeIds.

5

scenario NoMoreIdsError
order? = {nut 7→ 7}
stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , { }
bolt 7→ 6} 2 7→ {bolt 7→ 3}, 2 7→ invoiced ,

3 7→ {nut 7→ 4, bolt 7→ 4}, 3 7→ pending ,
4 7→ {bolt 7→ 8}} 4 7→ pending}

report ! = no more ids

The symbol Ξ indicates that the state OrderSystem is unchanged by the
schema.

NoMoreIdsError
ΞOrderSystem
order? : Order
report ! : Report

freeIds = ∅
report ! = no more ids

The pre-condition of NewOrder is that there is some element in freeIds.
Conversely, the pre-condition of NoMoreIdsError is that the set freeIds is empty.
The disjunction of the two pre-conditions is true. Therefore NewOrderOp can
handle all situations.

NewOrderOp == NewOrder ∨ NoMoreIdsError

4 Invoice Order

The invoicing operation updates the order status from pending to invoiced and
reduces the stock accordingly. In the next scenario, we use subscripts to help us
express constraints on data values in the state. The two pre-conditions, shown
before the table, require the state to have sufficient stock to fill the order. The two
post-conditions, shown after the table, determine the updated stock quantities.

scenario InvoiceOrder
id? = 2a , 4f ≤ 5c , 3h ≤ 9e

stock orders orderStatus freeIds
{nutb 7→ 5c , {1 7→ {nut 7→ 2}, {1 7→ invoiced , {3, 4}
boltd 7→ 9e} 2a 7→ {nutb 7→ 4f , boltd 7→ 3h}} 2a 7→ pending}
{nutb 7→ 1i , . . . {1 7→ invoiced , . . .
boltd 7→ 6j} 2a 7→ invoiced}

report ! = OK , 1i = 5c − 4f , 6j = 9e − 3h

The Z mathematical toolkit provides the sub-bag symbol v that concisely
expresses multiple ≤ relationships between corresponding quantities in two bags.

6

Likewise, the bag difference symbol −∪ expresses multiple pairwise subtractions.
The updating of the order status to invoiced is expressed with the override sym-
bol ⊕. Round brackets represent function application, for example, orders(2a)
returns {nutb 7→ 4f , boltd 7→ 3h}.

InvoiceOrderScenario
∆OrderSystem
id? : OrderId
report ! : Report

id? = 2a

orders(2a) v stock
orderStatus(2a) = pending
stock ′ = stock −∪ orders(2a)
orders ′ = orders
orderStatus ′ = orderStatus ⊕ {2a 7→ invoiced}
freeIds ′ = freeIds
report ! = OK

After substitution and simplification, we have the following Z schema.

InvoiceOrder
∆OrderSystem
id? : OrderId
report ! : Report

orders(id?) v stock
orderStatus(id?) = pending
stock ′ = stock −∪ orders(id?)
orders ′ = orders
orderStatus ′ = orderStatus ⊕ {id? 7→ invoiced}
freeIds ′ = freeIds
report ! = OK

There are three unsuccessful scenarios for this operation. We will skim the
intermediate steps and explanations of the remaining derivations due to their
similarities to the previous ones.

scenario IdNotFoundError
id? = 3a , 3a 6= 1b , 3a 6= 2c

stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1b 7→ invoiced , {3, 4}
bolt 7→ 9} 2 7→ {bolt 7→ 3}} 2c 7→ pending}

report ! = id not found

7

IdNotFoundErrorScenario
ΞState
id? : OrderId
report ! : Report

id? = 3a

3a /∈ {1b , 2c}
report ! = id not found

IdNotFoundError
ΞState
id? : OrderId
report ! : Report

id? /∈ dom orderStatus
report ! = id not found

scenario OrderNotPendingError
id? = 1a , invoicedb 6= pending
stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1a 7→ invoicedb , {3, 4}
bolt 7→ 9} 2 7→ {bolt 7→ 3}} 2 7→ pending}

report ! = order not pending

OrderNotPendingError
ΞState
id? : OrderId
report ! : Report

orderStatus(id?) 6= pending
report ! = order not pending

scenario NotEnoughStockError
id? = 2a , 9b < 77c

stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
boltd 7→ 9b} 2a 7→ {boltd 7→ 77c}} 2 7→ pending}

report ! = not enough stock

NotEnoughStockError
ΞState
id? : OrderId
report ! : Report

¬(orders(id?) v stock)
report ! = not enough stock

8

We define InvoiceOrderOp to deal with all situations. When multiple errors
happen at the same time, the definition is unspecific about which error report
to return. We will discuss nondeterminism in subsection 7.4.

InvoiceOrderOp == InvoiceOrder ∨ IdNotFoundError ∨
OrderNotPendingError ∨ NotEnoughStockError

5 Cancel Order

A pending order may be cancelled. Its order id is returned to the pool of free
id’s for future use.

scenario CancelOrder
id? = 2a

stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
bolt 7→ 6} 2a 7→ {bolt 7→ 3}} 2a 7→ pendingb}

. . . {1 7→ {nut 7→ 2, bolt 7→ 2}} {1 7→ invoiced} {2a , 3, 4}
report ! = OK

The domain restriction symbol −C is used to remove maplets for order id 2a

from orders and orderStatus.

CancelOrderScenario
∆OrderSystem
id? : OrderId
report ! : Report

id? = 2a

orderStatus(2a) = pending
stock ′ = stock
orders ′ = {2a} −C orders
orderStatus ′ = {2a} −C orderStatus
freeIds ′ = {2a} ∪ freeIds
report ! = OK

We generalise the scenario schema by replacing 2a with id?. After simplifi-
cation, we have schema CancelOrder .

9

CancelOrder
∆OrderSystem
id? : OrderId
report ! : Report

orderStatus(id?) = pending
stock ′ = stock
orders ′ = {id?} −C orders
orderStatus ′ = {id?} −C orderStatus
freeIds ′ = {id?} ∪ freeIds
report ! = OK

It is an error trying to cancel an order that does not exist or have already
been invoiced . We can reuse error detecting schemas to handle all situations.

CancelOrderOp == CancelOrder ∨ IdNotFoundError ∨
OrderNotPendingError

6 Enter Stock

Entering stock is the task of replenishing depleted stock. By assuming that there
is always sufficient storage space, we don’t worry about detecting an error for this
task. The postconditions concerning the updated stock quantities are expressed
with the bag addition symbol].

scenario EnterStock
newStock? = {nuta 7→ 80b , boltc 7→ 70d}
stock orders orderStatus freeIds
{nuta 7→ 5e , {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3, 4}
boltc 7→ 9f } 2 7→ {bolt 7→ 3}} 2 7→ pending}
{nuta 7→ 85g ,
boltc 7→ 79h}

report ! = OK , 85g = 5e + 80b , 79h = 9f + 70d

EnterStockScenario
∆OrderSystem
newStock? : Order
report ! : Report

newStock? = {nuta 7→ 80b , boltc 7→ 70d}
stock ′ = stock] {nuta 7→ 80b , boltc 7→ 70d}
orders ′ = orders
orderStatus ′ = orderStatus
freeIds ′ = freeIds
report ! = OK

10

EnterStock
∆OrderSystem
newStock? : Order
report ! : Report

stock ′ = stock] newStock?
orders ′ = orders
orderStatus ′ = orderStatus
freeIds ′ = freeIds
report ! = OK

7 Analysis

7.1 Validation

We can apply the values of input parameters and pre-states in a scenario to its
operation schema. If the post-state and output parameters obtained are the same
as in the original scenario, we know that the operation schema works correctly
for the scenario.

Another type of validation we can perform is to apply new input parameters
and pre-state values to an operation schema. This exercise in essence creates
new scenarios. If the customer is satisfied with the newly created post-states
and output parameters, we gain confidence that our Z schemas meet the user
requirements. For instance, we can validate the InvoiceOrder schema with the
following input parameter and pre-state different from our scenarios.

id? = 3
stock = {nut 7→ 5, bolt 7→ 9}
orders = {1 7→ {nut 7→ 2},

2 7→ {nut 7→ 4, bolt 7→ 3},
3 7→ {nut 7→ 5, bolt 7→ 6}}

orderStatus = {1 7→ invoiced , 2 7→ invoiced , 3 7→ pending}
freeIds = {4}

The first two predicates in the InvoiceOrder schema specify the preconditions
of the schema. They both evaluate to true. The next four predicates specify
the resulting values of the four tables. The last predicate specifies the output
parameter. To save space, we only show the evaluation of two predicates below.

orders(id?) v stock
orders(3) v {nut 7→ 5, bolt 7→ 9}
{nut 7→ 5, bolt 7→ 6} v {nut 7→ 5, bolt 7→ 9}
true

stock ′ = stock −∪ orders(id?)
stock ′ = {nut 7→ 5, bolt 7→ 9} −∪ {nut 7→ 5, bolt 7→ 6}
stock ′ = {bolt 7→ 3}

11

After evaluating the schema predicates, we have the following new scenario.
Though without subscripts, pre- and post-conditions, there is enough informa-
tion for the customer to decide that the new scenario matches the expectation.

scenario InvoiceOrderNew
id? = 3
stock orders orderStatus ids
{nut 7→ 5, {1 7→ {nut 7→ 2}, {1 7→ invoiced , {4}
bolt 7→ 9} 2 7→ {nut 7→ 4, bolt 7→ 3} 2 7→ invoiced ,

3 7→ {bolt 7→ 5, bolt 7→ 6}} 3 7→ pending}
{bolt 7→ 3} . . . {1 7→ invoiced , . . .

2 7→ invoiced ,
3 7→ invoiced}

report ! = OK

7.2 Underspecification

Underspecification happens when a required condition is missing. Suppose we
had omitted the following precondition of checking for sufficient stock in schema
InvoiceOrder.

orders(id?) v stock

If we validate the schema with excessive ordered quantities, the operation
will still succeed. The customer can easily spot that the new scenario should
have caused an error.

7.3 Overspecification

Overspecification happens when unnecessary conditions are included in a sce-
nario. Recall scenario NewOrder. The quantities of the nuts and bolts in the
input parameter were both 4 by coincidence. In our original scenario, they have
different subscripts b and d to indicate that they need not be the same. Suppose
we had made a mistake by using the same subscript b on both occurrences of 4.
We would have a slightly different scenario.

scenario OverSpecifiedNewOrder
order? = {nuta 7→ 4b , boltc 7→ 4b}
stock orders orderStatus freeIds
{nut 7→ 5, {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {3e , 4}
bolt 7→ 6} 2 7→ {bolt 7→ 3}} 2 7→ invoiced}

. . . {1 7→ {nut 7→ 2, bolt 7→ 2}, {1 7→ invoiced , {4}
2 7→ {bolt 7→ 3}, 2 7→ invoiced ,
3e 7→ {nuta 7→ 4b , boltc 7→ 4b}} 3e 7→ pending}

id ! = 3e , report ! = OK

12

The equality implied by the identical subscripts gives rise to the first predicate
in the following schema. When we validate the schema with order? = {nut 7→
7, bolt 7→ 9}, the new predicate would evaluate to false. Overspecification is
caught when the operation fails on legitimate input and pre-state.

OverSpecifiedNewOrder
∆OrderSystem
order? : Order
id ! : OrderId
report ! : Report

∀ p, q : Product | p ∈ dom order? ∧ q ∈ dom order? •
order?(p) = order?(q)

id ! ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {id ! 7→ order?}
orderStatus ′ = orderStatus ∪ {id ! 7→ pending}
freeIds ′ = freeIds \ {id !}
report ! = OK

7.4 Nondeterminism

Recall that we have defined InvoiceOrderOp to catch errors.

InvoiceOrderOp == InvoiceOrder ∨ IdNotFoundError ∨
OrderNotPendingError ∨ NotEnoughStockError

What if the preconditions of OrderNotPendingError and NotEnoughStockError
are true at the same time? Which error report are we going to get? In this
nondeterministic definition of InvoiceOrderOp, we could get either one. If it is
necessary to distinguish the two errors, we can strengthen their preconditions so
that their conjunction will always be false. This is the general strategy we could
use to eliminate nondeterminism.

7.5 Tool Support

The success of a methodology relies heavily on the availability of good tools.
There are many Z tools around, for example, CADiZ, CZT(Community Z Tools),
Z/EVES, and ZETA. They can be used to check for type conisistency and prove
theorems about a specification. Some allow you to validate operation schemas
against scenarios as we just did [11]. But to use precise scenarios in a practical
setting, we need native support to keep track of subscripts, validate scenarios
against schemas and maintain traceability of schemas to their sourcing scenarios.

13

8 Conclusion

The Z specification we derived in this paper is almost identical to the one found
in [10]. One notable difference is that our specification catches more errors.
It is premature to conclude how the use of precise scenarios would shape a Z
specification. However we do not seem to have lost any capability to create a
generic Z specification.

What evidence do we have in support of our claim that precise scenarios
bridge the gap between customers and formal specifications? Our precise sce-
nario descriptions use simple Z concepts, namely input, output, maplet, set enu-
meration, pre-state and post-state. On the other hand, schemas use additional Z
concepts like set membership, set union, set difference, sub-bag, bag difference,
override, domain restriction, and bag addition. Due to the smaller number of
symbols used, the customers would have an easier time learning to read precise
scenarios. Our experience on other problems taken from the areas of numeri-
cal computation, sorting and telephone system has been similar in that precise
scenarios are representable concisely with significantly less number of concepts
than schemas. Biologists and educationists also suggest that understanding be-
gins with concrete examples [12]. We expect the majority of customers to prefer
dealing with concrete examples rather than abstract descriptions.

The use of precise scenarios for the development and validation of schemas
relates to a software testing technique called equivalence partitioning [13]. The
technique ensures that a scenario is selected from every class of similar situations.
For example, the operation InvoiceOrder can be partitioned into at least two
classes of situations, one for ordered quantities being a sub-bag of stock quantities
and one for otherwise. If necessary, we can divide them into more partitions.
For example, we can add a class of situations that the ordered quantities are
identical to the stock qunatities. Why is testing necessary in the application of
formal methods? Refinement can produce an implementation guaranteed to be
correct according to a formal specification. Therefore the research community
has long held the attitude that formal methods reduce or eliminate the need of
testing. But how do we know the formal specification is complete in the first
place? Even for toy problems, it is hard to be certain that a formal specification
is complete. Though the use of precise scenarios cannot guarantee completeness,
the improved customer involvement can only help.

Formal methods have been focusing on the initial creation of an abstract spec-
ification and its gradual refinement to concrete implementation. Our proposal
challenges the validity of this conventional wisdom. We suggest an approach to
precede the current formal approaches by concrete examples used as a basis for
the abstract specification. The precise scenarios has a dual purpose; serving as
a solid foundation for a formal specification and a bridge between the customers
to the formal specification.

The current paper shows only scenarios with pre- and post-states. Work in
progress includes longer scenarios with intermediate states. We have started
working on alternative representations for the precise scenarios to facilitate the

14

derivation of specifications in languages other than Z. Eventually, we would like
to field-test the approach when suitable tool support becomes available.

References

1. The Standish Group: The CHAOS Report (1994) 5
2. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the Readability of

State-Based Formal Requirements Specification Languages. ICSE’02: 24th Inter-
national Conference on Software Engineering, May (2002) 33-43

3. Glass, R.L.: The Mystery of Formal Methods Disuse. Communications of the ACM,
Vol. 47, No. 8 (2004) 15-17

4. Amyot, D., Logrippo, L., Buhr, R.J.A., Gray, T.: Use Case Maps for the Capture
and Validation of Distributed Systems Requirements. RE’99: 4th IEEE Interna-
tional Symposium on Requirements Engineering, June (1999) 44-54

5. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. ICSE’00:
22nd International Conference on Software Engineering, June (2000) 314-323

6. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios.
IEEE Transactions on Software Engineering, vol. 29, no. 2 (2003) 99-115

7. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating Annotated
Behaviour Models from End-User Scenarios. IEEE Transactions on Software En-
gineering, vol. 31, no. 12 (2005) 1056-1073

8. Grieskamp, W., Lepper, M.: Using Use Cases in Executable Z. Liu, S., McDermid,
J.A., Hinchey, M.G. (ed.) ICFEM 2000: 3rd IEEE International Conference on
Formal Engineering Methods, September (2000) 111-119

9. Büssow, R., Grieskamp, W.: A Modular Framework for the Integration of Het-
erogenous Notations and Tools. Araki, K., Galloway, A., Taguchi, K. (ed.) IFM99:
1st International Conference on Integrated Formal Methods, June (1999) 211-230

10. Bowen, J.P.: Chapter 1 - Z. Habrias, H., Frappier M. (ed.): Software Specification
Methods, ISTE (2006) 3-20

11. Saaltink, M.: The Z/EVES 2.0 User’s Guide. TR-99-5493-06a, ORA Canada (1999)
31-32

12. Zull, J.E.: The Art of Changing the Brain. Stylus Publishing (2002) 102-103
13. Sommerville, I.: Software Engineering, 6th Edition. Addison Wesley (2001) 444-447

15

