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Abstract

The signed directed graph (SDG) is the most commonly used type of model forau-

tomated hazard identification in chemical plants. Although SDG models are efficient in

simulating the plant, they have some weaknesses, which are discussed herein relation to

typical process industry examples. Ways to tackle these problems are suggested, and the

view is taken that a state-based formalism is needed, to take account of the discrete com-

ponents in the system, their connection together, and their behaviour over time. A strong

representation for operations and actions is also needed, to make the modelsappropriate

for modelling batch processes. A research prototype for HAZOP studieson batch plants

(CHECKOP) is also presented, as an illustration of the suggested approach to modelling.

Keywords: Model-Based Reasoning, Qualitative Modelling, Simulation,Batch

HAZOP.

1 Introduction

Chemical process plants are very complex systems, and computers have been used for many

years now, to aid their detailed design and operation. Most applications have applied computer

power to graphics or numerical calculations in this domain,such as mass and energy balances,

computer-aided design, numerical simulation, etc.
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In addition to these numerical applications, computers have also been applied to dynamic

modelling of plant behaviour using qualitative approaches. Typical applications of techniques

such as expert systems and qualitative reasoning have included:

• The analysis (and grouping) of alarms during plant operation, to diagnose causes of plant

upsets and help the operators of the plant [1, 2].

• Evaluation of design plans, to find potential sources of operability problems or hazards in

the plant when built [3, 4, 5, 6, 7].

The latter application has been worked on extensively by theauthors and coworkers [8, 9],

in work on developing a software tool for emulating HAZOP studies on chemical plant, and by

other research groups in their own work [6, 10].

The approach used is to build models of equipment types (units), which are capable of pre-

dicting the dynamic behaviour of the equipment items, in normal operation and under deviations

from normal plant operation. Such models have most often been based around a simulation of

the important state variables in the equipment item, together with a range of information to cap-

ture the possible failures of the equipment, and the susceptibility of the equipment to deviations

propagated from elsewhere. The equipment models are connected together to form plant mod-

els, within which the effects of deviations can be assessed by propagation of the disturbances

modelled.

A very important decision in building such models is the knowledge representation to be

used. If a highly complex representation is chosen, it may allow a wide range of phenomena

to be modelled, but will incur penalties because of the extrawork required to build models and

the computational costs of driving simulations. If a simpler representation is used, the models

will be easier to understand and to build, and will execute more efficiently, but may not be

as expressive as the more complex representation. There is therefore a trade-off between the

expressive power of the formalism chosen and the complexityof building models and driving

simulations using it.

In much of the work done historically, a simple graphical representation, the signed directed

graph (SDG), has been used. This has the advantages of being simple to understand and also

very efficient in simulating the propagation of events in theplant – the SDG of the plant is just
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searched for paths between remote locations to find all faultpropagation scenarios predicting

hazards. However, work with SDGs in modelling plants for hazard identification has revealed a

number of disadvantages of choosing this formalism:

• The SDG only readily supports two deviations of a process variable (“more” and “less”),

whereas there can often be a need for more values.

• The SDG doesn’t include any information about the state of the equipment. Thus, it uses

the same model of a healthy unit, even when the unit may have malfunctioned, meaning

that its behaviour might be quite different from that of the healthy model.

• Sequences of events (and so-called “enabling” faults, which cause a condition in which

the plant is susceptible to other failures) are not modelledwell by the SDG, which can

only handle single linear chains of events.

• Ambiguity – It can sometimes be impossible to tell which of a number of scenarios is

actually possible and which impossible, using the SDG model, because the graph does

not capture the constraints operating in the real world closely enough.

• Over-reporting hazards – Because the models do not include all that is known about a

unit (the SDG will not support all this information), hazards are over-reported. Over-

reporting is preferable to missing scenarios, but places a burden on the user of checking

all the predictions to see which ones are realistic and whichare not.

The weakness of the SDG representation is the cause of most ofthese problems – important

features of the real process are missing from SDG models. Thequestion then becomes: How

can the process be better modelled?

In this paper, two cases are examined where the current system is clearly weak. By taking

this approach of analysing the weaknesses, some indicationof how to improve the knowledge

representation can be given. After presenting the case studies, we look at possible ontologies for

process systems and discuss current developments of the ideas presented, in an object-oriented

approach to modelling batch process systems. The new modelling system is then illustrated by

a simple research prototype for batch HAZOP emulation (CHECKOP).

3



LIC

LT

Q1

LCV

L
Setpoint

Q2

Figure 1: Level Control Example Plant

2 Level Control Example

The scenario shown in Figure 1 is a very common one – the level of liquid in the tank is regulated

by varying the output flow using feedback control.

Liquid flows into the tank at a certain flowrate Q1 and flows out of it at flowrate Q2. The

level of liquid in the tank is L. This level is measured by a level transmitter instrument (LT),

and transmitted to a “level indicating controller” (LIC), which compares the level to a setpoint

level (and also provides an indication in the control room ofwhat the level is). Depending on

whether the level of liquid is higher or lower than the setpoint, the controller then instructs a

level control valve (LCV) to open or close, thereby affectingthe output flow, Q2. The LIC seeks

to maintain the level in the tank at the specified setpoint value, despite changes in the input flow,

Q1.

The simplest possible causal model of the tank ignores the presence of the control loop

entirely (i.e. it is an “open loop” model). Here it is in SDG notation:

Q1 + − Q2L

The two relevant hazards, from the point of view of the tank, are overflow and emptying.

These are linked directly to the level node in the model, but could be caused by deviations in

either flow, Q1 or Q2. Note that an additional arc could be added to this “open loop” plant-only

model:

Q1 + − Q2L

+

TheL → Q2 arc models the effect of changes in the level of liquid in the tank on output
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flow induced by the “static head” pressure in the output pipe.1 The validity of this link very

much depends on the conditions in the outlet line from the tank – if there are control valves,

pumps, etc., these may tend to override the “passive” behaviour of the tank + valve + liquid

system. Therefore, the “static head” link will be ignored inthis example.

The behaviour of the control loop can be examined by breakingit down into its component

parts, each of which corresponds to a common item of process equipment. By building models

of each item and connecting them together, the whole plant behaviour can be predicted. The

components of the control loop shown in Figure 1 are:

• Level Transmitter (LT)

• Signal Line from LT to LIC

• Level Controller (LIC)

• Signal Line from LIC to LCV

• Level Control Valve (LCV)

This breakdown doesn’t show very much detail – other equipment items could have been

included if a more refined model was needed, but the high levelmodel serves to cover the overall

structure and function of the loop.

2.1 Level Transmitter (LT)

At a very abstract level, the LT is a device which converts thevalue of a process variable

(here, the level of the liquid in the tank) into a signal representing that value (electrically or

pneumatically). Therefore, we could represent it as a single connection:

L sensL +

The validity of this link really depends on whether the transmitter is operational – the pres-

ence of malfunctions will affect the value transferred toLsens.

1The static head is the pressure generated by the weight of a depth of liquid – the pressure increases for

increased depth of liquid, which might have an effect on the flow out of the tank.
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To identify more accurately what the failure modes could mean for this transmitter, we need

to look at its components and considertheir characteristic failure modes. For the example of

a level transmitter, the equipment involved might include afloat gauge with a transducer for

converting the float position into an electrical signal. Possible failures here include the case

where the float is “stuck”, for some reason, meaning that variations in level are not measured

and transmitted. Alternatively, the transmitter unit may be inoperative due to it being switched

off intentionally, or due to power failure. All these would result in a loss of function for the LT

unit as a whole.

So, the successful production of a signal by the LT depends onthe state of that device being

“on line” (or some other label representing the normal operational state). In other states, a

differentLsens is propagated to the signal line and thence to the LIC.

If we accept the need for modelling states, some of the relevant state values for the trans-

mitter will include:

on line Transmitter in normal operational state, receiving power and transmitting a value which

accurately represents the level in the equipment item it is attached to.

power failed Loss of electrical power (for an electrical transmitter), meaning that the output

of the transmitter does not represent the level accurately.

air failed Instrument air failure (for a pneumatic transmitter), having similar effects to

power failed.

off line Transmitter turned off.

float stuck The level sensing element (here a float inside the vessel) is stuck, meaning that the

transmitter output doesn’t accurately reflect changes in the level of liquid in the vessel.

2.2 Transmission Lines

The signal transmission lines from the LT to LIC, and from the LIC to the LCV, are also prone

to various modes of failure. These depend on whether the signal (and transmission line) is

electrical or pneumatic. Some of the states appropriate forelectrical signal transmission lines

include:
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ok The signal line is in its normal operational state and capable of conveying electrical signals

accurately.

power failed The power supply needed to transmit the signal has failed.

severed The cable has been cut or severed at some point, meaning that no signal transmission

is possible.

Some of the states appropriate for pneumatic signal lines include:

ok The line is operating normally, transmitting the required signal pressure accurately.

instrument air failed The air supply needed to transmit pneumatic signals has failed.

leaking The line is punctured or severed at some point.

overpressurised The line is being supplied with air at too high a pressure.

obstructed The line is blocked or partially blocked somewhere.

2.3 Level Controller (LIC)

The types of failure appropriate for the level indicating controller (LIC) will depend on the

particular controller used in a given case. A number of the states to be expected for a controller

device in general include:

on line Automatically regulating output (i.e. the flow Q2 in the current example) based on

controlling the measured variable (i.e. the level L) to a requested setpoint.

manual Controller output is a constant which may be set by the operator.

off line The controller is switched off and is not providing an outputsignal.
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2.4 Level Control Valve

The control valve is composed of an actuator assembly, attached to a valve body. The valve

body has an input and output process connection, carrying the process fluid whose flow is to

be regulated. The actuator has two inputs, one from the powersupply (electrical power or

pressurised air) and one delivering the signal from the controller to the valve (which again may

be electrical or pneumatic).

The actuator usually has a default intended behaviour upon power failure, which could be

to open the valve, close the valve or keep the valve steady at the last good value. Possible states

for the control valve include:

on line On-line and accepting commands from the signal input.

failed open, failed closed or failedstuck Valve failure modes (each of which may be the de-

fault mode or not).

blocked Process side of the valve is obstructed, restricting or preventing the flow of fluid

through the valve body.

valve air failed The air supply used to move the valve stem has failed (if pneumatically actu-

ated).

valve power failed The power supply used to move the valve stem has failed (if electrically

actuated).

3 Batch Reactor Example

This example deals with the situation when modelling batch plants, where the plant operation

moves through a number of stages, rather than each equipmentitem remaining in a “steady-

state” indefinitely, as is normal for continuously operating plants. The changes in equipment

state over time mean that batch processes are more difficult to model accurately than continuous

processes.

Figure 2 shows the reactor section of a plant in which productP is produced from two

reactantsA andB, using the simple chemical reactionA + B → P . The reaction is exothermic
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Figure 2: Batch Reactor Example Plant

(it produces heat) and is prone to thermal “runaway”, which is one of the main hazards to be

avoided in this plant. An excess of reactantB is used, so that reactantA is completely consumed

in the reactor.

To safely produce the product, a sequence of operating instructions is followed by the human

operators of the plant. A simplified example of such a sequence might be:

1. Charge the reactor with reactantA.

2. Turn on the agitator and the cooling water flow through the cooling jacket.

3. Gradually add a sufficient excess of reactantB to the vessel.2

4. Continue mixing reactor contents for a while, to allow reaction to complete.

5. Pump the product mixture away for separation.

6. When reactor is empty, switch off agitator, product transfer pump and cooling water.

7. Wash reactor internals thoroughly with water.

In order to reason about what could possibly go wrong with such a plant, it is essential that

operating procedures such as this one can be represented. Not only is a knowledge represen-

tation needed, for the actions and quantities involved, butalso some means of representing the

(typically) implicit assumptions associated with each step.

2Note: ReactantB must be added at a controlled rate, because of the exothermicnature of the reaction between

A andB.
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For instance, the above procedure assumes that the reactor is clean and empty at the start

of the batch. If, however, an operator had not adequately washed the reactor, or (worse still)

had not pumped away the product mixture after the last batch had finished, adding reactantA to

the reactor in such a state could have potentially hazardousconsequences (such as a premature

reaction with reactantB present from the last batch).

Predicting such consequences is possible if some way of representing the sequence of ac-

tions in the procedure is available, as well as a way of expressing the assumed state of the plant

items before and after each of the steps. A combination of human error analysis and process

modelling can be used to detect these hazardous situations and to suggest redesign of the plant

to eliminate such dangers.

The points raised in this section point towards enhancing the models used to simulate plant

behaviour by adding, not only equipment states, but also thenotion of sequence and (by im-

plication) time, into the system. These are typically not tackled in any SDG-based modelling

system.

In addition to these, it is clearly important to model the actions of operators, as events

which should take place in the operation of a batch plant. Thevarious details of actions, such as

quantity of material to transfer, time to wait, etc., have animportant but lesser role in identifying

hazards, than modelling the presence or absence of the actions in the required sequence.

4 A Domain Theory for Plant Systems

As a means of capturing knowledge representation issues, a domain theory (or “ontology”)

for chemical plant systems should distinguish between the different sorts of information to be

modelled, and should allow an integration of these different sources. This section sets out some

of the requirements of such a domain theory, while the following section looks at a research

prototype system to implement some of the principles set outhere.

4.1 Classification of Objects

The first thing to do is to draw up a taxonomy of the objects to bemodelled, covering all the

types of information needed to predict plant behaviour. We can start to draw some of the higher
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level types in the hierarchy as a tree (see Figure 3). The placement of objects within this tree

is tentative at this stage and potentially open to modification; nevertheless, it is a good first

framework for the relevant objects in this domain.

The first level distinguishes between “physical objects”, corresponding to tangible entities

in the world, and “abstract objects”, which are the intangible elements which are essential to

know how the plant is operated and how its behaviour is modelled in terms of variables whose

values change over time.

An equipment item is a countable physical object which formspart of the plant. A partial

hierarchy of equipment items, showing the distinction between units and connections between

units, is shown as Figure 4. The thinking behind this is that the Units in a system can be

connected to one another in different ways, which can be modelled as Connection objects of

various types.

Materials are “liquid-like” in the knowledge representation sense of being mass-noun enti-
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ties with particular properties, but are not discretely countable. A distinction is made between

the materials processed by the plant (solid, liquid and gaseous chemicals) and the materials

from which the plant is constructed (steel, glass, plastic,etc.). Some possible process materials,

for the earlier batch plant example, are shown in Figure 5.

The abstract part of the hierarchy in Figure 3 governs all thenon-physical entities which

determine the plant behaviour. Events are things which may cause or be associated with changes

in the physical state of equipment or materials in the plant –three sub-types are given so far.

Operations define the operating instructions of the plant, and can be highly structured (as will

be seen below). Faults are spontaneous failures and Hazardsare potentially dangerous events

which occur due to Faults or other plant disturbances. A Variable is a plant item property such

as a flow, temperature, pressure, etc. Variables will typically be modelled using a Quantity

whose value type is qualitative, rather than numerical. TheConstraint class allows a range

of functional relationships to be modelled, so that causal (or non-causal) constraints between

variables or events can be captured.

4.2 Structure in the Plant

The physical plant itself is modelled as an equipment item – albeit one with a complex structure

and many components. Each component of the plant is an instance of an equipment model. A

similar breakdown is possible at any level for any equipmentmodel – a Unit or a Connection

can be composed of a number of Units, connected together by Connections. Using a standard

breakdown structure like this allows models to be built of equipment sub-components, such

as agitators, motors, cooling jackets, etc. The sub-components can then be reused in many

different models without change.

This compositional modelling approach can also be applied to other parts of the plant mod-

elling problem – to model the interconnection of instrumentsystems (using signal connections)
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or the relation between operating instructions in a plan (using precedence constraints).

4.3 Operating Instructions for Batch Plants

The same type of structure should be used for modelling the operating instructions of the plant,

as for modelling the sequence of events in a scenario (hazardous or otherwise). What is needed

in both cases is a way of organising the events that occur (or should occur, in the case of operat-

ing instructions) so that they can be arranged in either unordered groups or ordered sequences.

The order of events may be governed by a set of precedence constraints in the plan, in the same

way that STRIPS defines operators for planning. This would allow the more flexible discovery

or variation of constraints than would the hard-coding of sequence or parallel into the plan.

In modelling the operating procedures of the batch plant, wefollow a similar framework

to that given in the ANSI/ISA S88 standard for batch process plant [11]. In the breakdown

hierarchy for processes defined by S88 (see Figure 6), a Process is composed of a number of

Process Stages, each of which is in turn composed of a number of Process Operations. The

Process Operations are achieved by a sequence of Process Actions at the lowest level. Process

actions are primitive actions that the operator may perform, such as “open valve”, “switch on

pump”, etc.

Examples of process operations which may be present in a batch process include “charge the

reactor R-101 with 5000 litres of solution A”, or “heat the reactor contents to 85◦C and maintain

temperature for 3 hours”. The operations themselves are composed of a number of process

actions, not necessarily in simple sequence. The process operations therefore correspond most

closely to the level of operating instructions an operator will usually follow, whereas the process
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actions correspond to the detailed activities that he/she will perform in order to achieve the goals

of the stated operation.

The actions comprising a particular process operation (or the process operations comprising

a particular process stage) can be arranged in a partial order using a Petri Net, or some other

partial ordering scheme. It is then possible to reason abouthow different errors in operation

(omitting actions/operations, doing them too late, too early, etc.) may affect the result of a

given operating plan.

At least initially, process stages and higher levels of organisation are not so important to the

representation of detail, and hence to analysing common errors, than the process operations and

actions just mentioned. These higher levels will thereforebe used simply to group operations

together at this time.

4.4 Frames for Process Operations

The operations (whether specified at the “Process Operation” level or the “Process Action”

level) can be defined in terms of a frame-based representation. Each type of operation is repre-

sented by a frame, with a number of slots. Each slot holds information giving more detail about

the operation it belongs to. The set of slots relevant to eachoperation depends on what type

that operation is. A number of action types may be defined, based on generalising the range of

detailed actions seen in a real plant.

As an example, some of the slots which might be used for a “Transfer” operation (“Transfer

5000 litres of reactant B to reactor R-101”) are:

• Preconditions – The conditions to be satisfied before the action starts.

• Postconditions – The conditions which are satisfied when theaction finishes.

• Agent – The Operator, or Team of Operators who perform the action.

• Type – The base name of the action type (e.g. “transfer”, or “charge”).

• Object – The thing, or material, which the operation operates on. In this case, we have a

quantity of process material to transfer:
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– Material – Reactant B.

– Quantity – 5000 litres.

• Source – The starting place for the Object (storage tank?).

• Destination – The finishing place for the Object (reactor R-101).

• Plan = (Subaction*, Constraint*) – A number of subactions which achieve this action,

together with any constraints between them, governing whatorder the subactions may be

performed in.

• Time – The time interval/point over which the event takes place.

The preconditions and postconditions elements of the frameare important in establishing

when an action or operation can be initiated and when it is over. These have impacts on whether

the order of actions is fixed within an operation. Many of the other slots can be missing from

the frame without the sense of the operation being lost.

4.5 Interface between Operations and the Plant Model

The model of the batch plant includes a number of equipment models, for each of the tangible

equipment items on plant, and also a number of operating instructions, for performing specified

Process Stages. When the operating instructions are executed, they cause changes to occur in

the plant, which should be reflected in changes in the model states. We therefore need a formal

way of mapping the actions performed (at the most basic level) to the effects they have on the

plant equipment.

4.6 Petri Nets for representing Process Operation and State Transitions

Petri Nets (PNs) [12] are a mature technology for representing sequences of events in the context

of simulating discrete event systems. It is worthwhile to consider whether Petri Nets are a

suitable representation for the operating instructions inbatch processes. In order to use them,

we need to introduce a correspondence between the elements of a PN and the objects in the

plant system:
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Transitions correspond to actions which cause a change in the state of theplant.

Places correspond to states of the plant and its equipment.

Arcs connect places to transitions and vice-versa.

Tokens correspond to the associated state condition holding in theplant model.

In addition to the above elements (which are standard parts of the classical PN model), to

represent operating procedures we must label one place in the net as the “start” (s) and one

as the “finish” (f). This is necessary, to allow us to know whena given procedure has been

completed. Given the batch plant example introduced earlier, we could represent its operation

as the Petri Net shown in Figure 7, which is shown in the state where we are waiting for the

reaction to complete. When the token (marked as an “x”) reaches the place marked (f), the

procedure is complete.

It is also natural to define some way of decomposing operations into smaller actions or steps

so that commonly repeated operations can be modelled using atemplate or “model” for the

operation. Therefore, using this Petri Net notation, a decomposition of high level actions into

sub-actions is achieved by defining “sub-nets”, each of which corresponds to a single action

type and gives the detailed sequence of actions needed to complete that action.

As an example, consider a refinement of the “Charge B to excess”process operation from

Figure 7, as shown in Figure 8. When the transition “Charge B to excess” is enabled in the

first Petri Net, a sub-net is used, to determine the detailed steps required to achieve the stated

operation. Using this technique, a Petri Net can be seen as a hierarchical structure, where

some operations are achieved by sub-nets, which hide detailfrom the top level view of the PN

transitions.

Petri Nets model the inherent sequence/parallelism in a fully formed plan very well. They

are therefore quite an attractive model for visualising theoperations being modelled. However,

PNs do not allow a flexible enough representation of the “alternative plans” which arise from

deviations from the intended operations of a plant. Thus, ifwe wish to consider what would

happen if the order of two tasks were swapped, we find that it isvery difficult to modify the PN

to take account of this.
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Additionally, an experiment into the use of PNs to model a simple batch process (making

a cup of tea) demonstrated that this type of representation is not best suited to presenting op-

erations in a simple, easy to understand way. The PN constructed was complex and difficult

to interpret, even for such a simple “plant”, due to the inherent complexity of modelling the

process at such a detailed level.

The weakness of Petri Nets for this application is that they integrate the places and transi-

tions (i.e. the states of the plant and the actions that are performed on the plant) very closely. It

is therefore very difficult to reason about the effect of varying elements from either domain:

• Consider what happens when some part of the plant is modified, or new equipment is

added – the PN and the associated operating sequence are verylikely to be wrong, and

not in a simple way.

• If the order of operations in the procedure is changed or new ones are added (whether

intentionally or through operator error), the effects on the PN are likely to be complex to

predict, effectively meaning that a new PN needs to be constructed from scratch.

Given these observations, it is best to use a representationwhich de-couples the operations

from the equipment in a plant, so that variations in either domain can be considered more

cleanly.

Therefore, there are a number of problems with using PNs for this type of plant system, even

without considering the issue of how to interface the PN representation to a potentially contin-

uous plant model and its continuous feedback control loops.These are regrettable difficulties,

as the visual appeal of the PN for simpler systems is undeniable.

For the purposes of our hazard identification system, we aim to model all the possible op-

erating sequences of the plant by using local constraints between actions – without having to

commit to a particular complete plan. This method can be usedto determine if a given whole

plan satisfies the constraints, or (ultimately) to generatean optimal plan sequence for the oper-

ation from a number of actions specified.
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4.7 Other Qualitative Approaches

It is worth considering why the current work has not followedthe methods established in the

wider Qualitative Reasoning (QR) community, as typified by the“confluences” approach of De

Kleer and Brown [13], the qualitative process theory of Forbus [14], or the qualitative simulation

(QSIM) approach of Kuipers [15].

One of the major problems of QR has been the control of ambiguity in the predictions pro-

duced by its models. Many simple arithmetic operations suchas addition are entirely ambigu-

ous when transposed into the qualitative domain. This type of ambiguity results in a severely

branching tree of predicted behaviours, and seriously limits the size of models whose behaviour

can be simulated – and presented to a user in an intelligible way.

For this reason, we chose to develop a more strongly object-oriented, state-based, component-

centred approach to system modelling, in which numerical quantities could be used as well as

supporting qualitative reasoning in the shape of local constraints between objects considered

to be physically connected. Ambiguity of behaviour will doubtless remain within this type of

model, but we hope that it will be better controlled.

5 Batch Process Modelling

A number of the ideas outlined in previous sections have beenimplemented in a computer pro-

gram (“CHECKOP”) to tackle the issue of modelling batch plantsand their operation for hazard

identification. The simple batch reactor plant seen earlierhas been extended for demonstration

purposes, adding more detail to the design of both the plant equipment and the operating in-

structions.

In modelling the batch reactor we want to simulate the plant as it moves through a number

of states during operation. It is important to capture the intended operation sequence of the plant

and also to model how deviations from this can arise. This capability will allow us to perform

automated batch HAZOP analyses and also consider human error in the operation of the plant.
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Deviation Causes Consequences Suggested Actions

More flow LCV fails open or LCV Settling tank overfills Install high level alarmon LIC

in feed to bypass open in error and check sizing of relief

settling opposite liquid overfilling.

tank Incomplete separation of Extend J2 pump suction line

water phase in tank, leading to 12 inches above tank base.

to problems on reaction section.

More Isolation valve closed Transfer line subjected Install kickback on J1 pumps.

pressure in error or LCV closes to full pump delivery or

with J1 pump running surge pressure

Figure 9: Example of Typical HAZOP Output (from [18])

5.1 Batch HAZOP

The commonly used HAZOP technique for hazard identification[16, 17] is a method study used

by a small team of engineers, typically after the majority ofdetailed process engineering design

has been decided for a new plant. The study considers all possible deviations of a plant from

its intended operation, by using deviation guide words (More, Less, No, Other, etc.) applied

to each of the important process variables in the plant in turn. The causes and consequences

of each of these deviations are then examined, and a report ofall the important hazards and

operability problems is prepared (a small example is given as Figure 9). For a continuous

plant, the expected operation of the plant is a single steadystate, and deviations from that

are disturbances in the pressures, temperatures, flows, etc. in the plant. Operations such as

maintenance, startup and shutdown are also usually considered as separate operating regimes.

Batch HAZOP [16, 19, 20] extends this method to consider deviations from the intended

state of the batch plant during each of the stages of its operations. The technique also looks at

variations in the operating instructions of the plant, to consider what would happen if operations

were missed out, performed in the wrong order, for too long a time, etc. A set of extra deviation

guidewords is used to relate to the operations part of the batch HAZOP: No action, Late/Early

action, Other action, etc.

Both HAZOP and Batch HAZOP have been used for many years as conventional team-
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Figure 10: Outline CHECKOP Data Flow

based study techniques, performed by small groups of experienced engineers involved in the

design of process plant. In view of the significant time spentin such studies, there is a strong

incentive to automate them, or to facilitate their efficientexecution.

The guide words used in conventional HAZOP and batch HAZOP meetings are treated most

often as prompts to the group, to “spark off” thinking about deviations in the plant. In contrast,

any computer system for emulating HAZOP by simulation of theprocess has to be precise in

the meanings of the deviations it considers, so that these can be directly related to parameters

in the plant model. For this and other reasons, the style of report produced by a HAZOP team

secretary will usually be different to that produced by a HAZOP emulation program such as the

HAZID software developed at Loughborough.

5.2 CHECKOP

The research prototype for batch process modelling and batch HAZOP is known as

“CHECKOP”. As developed so far, CHECKOP reads a set of operating instructions from one

file and a plant description from another file. It then uses theplant description to build an inter-

nal representation of the plant equipment (including the states of the equipment items). It uses

the operating instructions file to construct a list of Actionobjects, each of which corresponds

to a single operation, and a single line of the file. The data flow within CHECKOP is shown

schematically in Figure 10.

The plant description file is written in the same format that has been used already in the
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HAZID tool for automated HAZOP analysis, developed for analysis of continuous process

plants [8, 9]. The plant description includes declarationsof the equipment items in the plant,

their types and the fluid flow connections between them. The difference between this plant

description and the type given in HAZID for continuous plants, is that the batch plant is (by

convention) given in its “idle” state, with all valves closed and pumps off-line – during opera-

tion, the states of these equipment items are changed, by theaction of the plant operations.

When they are executed, the Actions in the operating procedure change the states of the

Equipment objects in the plant. Warnings are issued if the required preconditions of Actions are

not satisfied. Safety-related conditions of the plant (e.g.having the agitator still running when

the reactor has been emptied) are also monitored, and warnings are issued where necessary.

The internal representation of operating instructions as asequence of Actions allows alter-

native orderings of Actions to be considered by the program.This allows the procedure to be

modified, so that the results on the plant model can be determined. An initial application of this

is to consider the automatic generation of batch HAZOP guidewords for modelling possible

abnormal scenarios.

Batch HAZOP emulation is achieved by driving the simulator engine using deviations of

the given operating instructions, to examine the consequences of “No action”, “Early/Late ac-

tion” and “Early/Late termination” deviations. These are not a complete set of guidewords, but

do cover a number of types of deviation, relating to sequenceof action, which are most easily

modelled by the current system. It is necessary to predict the sequence of plant states resulting

from each deviated operating procedure, and to compare thatto the states of the intended proce-

dure. By making a note of the differences, the important effects of the deviation are captured for

hazard reporting. Two outputs are generated by CHECKOP – the simulation trace gives a step

by step description of the state of the plant as it is simulated, while the batch HAZOP report

gives a tabular summary of the consequences found.

5.3 Application of CHECKOP

The batch reactor plant presented in Section 3 has been extended, by adding further detail to the

equipment set and to the operating instructions given previously. The extended plant is shown

schematically in Figure 11. The associated operating instructions file, for producing one batch
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Figure 11: Extended Model of Batch Reactor Plant

of productP , is as shown in Figure 12. The plant description file is written in the format shown

in Figure 13, which is similar to the format used in the HAZID tool for automated HAZOP

analysis.

It should be noted that within the definition of the operatinginstructions, each of the oper-

ations mentioned in Section 3 is given, with associated primitive level actions. Each numbered

line corresponds to one action in the procedure. Each line specifies the name of the object which

is the main subject of the action first, followed by the name ofthe action and a list of arguments

providing extra information.

Some of the arguments given may seem to be redundant, but theydo play a part as a way

of checking the plant state during operation against the stated intention of the action in the

instructions. For example, in the action “reactor101 fillfrom tank101 with reactantA until

volume 30 percent”, the “with reactantA” part may be considered as a check that tank101is

a source of reactantA – just in case the tank contents have been contaminated, or the action

wrongly executed, for instance.

Note also that some of the actions shown in Figure 12 involve more operator involvement,

and may therefore seem not to be “primitive”, compared to others (e.g. compare “pump101

start” to “reactor101 wash with water”). This is inevitable, but does not prevent simulating the

state of the plant during operation, so long as the preconditions and postconditions of the action

are well-defined.
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charge reactor101 with reactantA: {

(1) valve101 open

(2) pump101 start

(3) reactor101 fill_from tank101 with reactantA until volume 30 percent

(4) pump101 stop

(5) valve101 close

}

start_up reactor101 cooling and agitator: {

(6) agitator turn_on

(7) valve104 open

(8) jacket1 cool_content until temperature 25 degree

}

charge reactor101 from tank102 with excess of reactantB: {

(9) valve102 open

(10) pump102 start

(11) reactor101 fill_from tank102 with reactantB until volume 60 percent

(12) pump102 stop

(13) valve102 close

}

wait until reaction complete: {

(14) agitator stir_content of reactor101 until elapsed_time 20 minutes

}

discharge product mixture for separation: {

(15) valve103 open

(16) pump103 start

(17) reactor101 empty_to tank103 with [reactantB, productP] until volume 0 percent

(18) pump103 stop

(19) valve103 close

}

shut_down reactor101 cooling and agitator: {

(20) agitator turn_off

(21) valve104 close

}

wash reactor101 thoroughly with water: {

(22) valve106 open

(23) valve105 open

(24) reactor101 wash with water

(25) valve105 close

(26) valve106 close

}

Figure 12: Operating Procedure for Batch Plant
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% Plant description for the extended model of the simple batch reactor plant.

instance(tank101 isa tank, [content info [reactantA], outports info [out is [pump101,in]]]).

instance(pump101 isa pump, [status is offline, outports info [out is [valve101,in]]]).

instance(valve101 isa valve, [status is closed, outports info [out is [reactor101, in2]]]).

instance(tank102 isa tank, [content info [reactantB], outports info [out is [pump102,in]]]).

instance(pump102 isa pump, [status is offline, outports info [out is [valve102,in]]]).

instance(valve102 isa valve, [status is closed, outports info [out is [reactor101, in3]]]).

instance(washWaterInlet isa inlet, [content info [water], outports info [out is [valve105,in]]]).

instance(valve105 isa valve, [status is closed, outports info [out is [reactor101,in1]]]).

instance(reactor101 isa stirred_tank_reactor, [

outports info [out1 is [valve103,in], out2 is [valve106,in]],

heatSink info [hout is [jacket101,hin]],

reaction info [reaction_ab_p]

]).

instance(valve103 isa valve, [status is closed, outports info [out is [pump103,in]]]).

instance(pump103 isa pump, [status is offline, outports info [out is [tank103,in]]]).

instance(tank103 isa tank, [content info [reactantB,productP]]).

instance(valve106 isa valve, [status is closed, outports info [out is [drain2,in]]]).

instance(drain2 isa drain, []).

instance(cwInlet isa inlet, [content info [water], outports info [out is [valve104,in]]]).

instance(valve104 isa valve, [status is closed, outports info [out is [jacket101,in]]]).

instance(jacket101 isa cooling_jacket, [outports info [out is [drain1,in]]]).

instance(drain1 isa drain, []).

instance(reaction_ab_p, [thermo_type is exothermic,

reactants info [[reactantA,1],[reactantB,1]],

products info [[productP,1]]]).

Figure 13: Plant Description for Batch Plant
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The plant description given in Figure 13 includes information about the flow connections

and also about the thermal (heat flow) connections between equipment items in the plant. This

allows CHECKOP to infer suitable qualitative models for fluid flow and heat transfer in the

plant. It should also be noted that only very basic information about the reaction is adequate to

give a model of what happens in the reactor when reactantA andreactantB mix.

A sample of the type of simulation trace output produced by CHECKOP, when it is used

to analyse the plant for batch HAZOP purposes, is shown in Figure 14. A single guideword

(“NO”) is being considered in relation to a single operationin the operating instruction (in this

case action (7), which is “valve104 open”); the state of the plant is simulated as the modi-

fied instructions are executed in sequence. It can be seen that CHECKOP detects one of the

consequences of not opening the cooling water supply valve –that the reactor contents cannot

be cooled in step (8). Further warnings are detected later inthe procedure when the reactor

overheats due to lack of cooling – these further warnings arenot shown here due to lack of

space.

The engine can be used to do step by step simulation of the plant state. It can also be

driven by a batch HAZOP procedure, to examine all feasible deviations in the given operating

instructions.

A short excerpt of the type of batch HAZOP output produced by CHECKOP is shown in

Figure 15. It can be seen that the format shown here is similarto that produced in a tradi-

tional HAZOP study, except for the absence of a column for “Causes” (deviations as gener-

ated are deemed to be sufficient cause for the scenarios reported) and for “Suggested Actions”

(CHECKOP does not attempt to advise on how to solve the problemsit detects).

Note that the instructions in the operating procedure are referred to by line number in the

Operation and Consequences columns. If no such number is given in the consequences column,

then the operation referred to by that consequence is the deviated one. This is to reduce the

scope for ambiguity in the report, and allows discovered consequences to be related to the

point in the procedure when the problem arises. For Early/Late action, a number is given in

parentheses after the entry in the Operation column – this gives the number of sequence steps

early or late that the action takes place, for the deviation considered. For Early/Late termination

deviations, the conditions specified in the “until” portionof the action are varied – details of
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Considering guideword "NO" applied to single Action: (7) valve104 open

Processing Procedure...

(1) valve101 open ... OK.

valve101 state:

aperture is: open; upstream is: [pump101,out]; downstream is: [reactor101,in2]

(2) pump101 start ... OK.

pump101 state:

state is: on; upstream is: [tank101,out]; downstream is: [valve101,in]

(3) reactor101 fill_from tank101 with reactantA until volume 30 percent ... OK.

reactor101 state:

level is: 30 percent volume; content is: reactantA; max. level is: 100; min. level is: 0;

content temperature is: 20; upstream is: [valve101,out],[valve102,out],[valve105,out];

downstream is: [valve103,in],[valve106,in]

tank101 state:

level is: 40 percent volume; content is: reactantA; max. level is: 100; min. level is: 0;

content temperature is: 20; upstream is: ; downstream is: [pump101,in]

(4) pump101 stop ... OK.

pump101 state:

state is: off; upstream is: [tank101,out]; downstream is: [valve101,in];

(5) valve101 close ... OK.

valve101 state:

aperture is: closed; upstream is: [pump101,out]; downstream is: [reactor101,in2]

(6) agitator turn_on ... OK.

agitator state:

state is: on; duty is: [reactor101,liquid]

(7) NO (valve104 open) ... OK.

valve104 state:

aperture is: closed; upstream is: [cwInlet,out]; downstream is: [jacket1,in]

(8) jacket1 cool_content until temperature 25 degree ...

*** Warning ***: no coolant flow in jacket1 - cannot cool process.

OK.

jacket1 state:

state is: normal; content is: nil; duty is: [reactor101,liquid]

(9) valve102 open ... OK.

Figure 14: Sample Simulation Trace Output from CHECKOP
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how much are given in brackets after the entry in the “Operation” column.

5.4 Comments on Batch Process Modelling Example

The operating procedure has been modelled as a sequence of actions, each of which has a

number of effects on the plant’s state. Each operation/action also assumes some things about

the prior state of the plant/equipment it relates to.

What happens if the assumptions are not true when the execution of the instructions is

simulated? For example, the instruction “reactor101 fillfrom tank101 with reactantA until

volume 30 percent” assumes that reactant A is present in the tank. If this is not the case, then

a message is printed, which is adequate to identify problemswith the instructions as given in

the input file. Having given a warning, the program then continues to predict the effects of

executing the procedure as given. Two options are possible here:

• Firstly, the Action may not be allowed to complete and the procedure would block. This

would happen if the inventory of A were exhausted and we were to insist that the “30

percent” condition were satisfied.

• Alternatively, the Action may be completed in its erroneousform, and the results simu-

lated. For example, if tank101 instead contains reactantB, the program would simulate

what happens if the reactor were filled to 30 percent with thismaterial instead.

What to do here depends on the application domain of the simulation. For hazard identi-

fication, the policy which most accurately predicts real behaviour in a “credible worst case”

scenario is what should be adopted. Without any heuristics to judge whether the “blocking con-

ditions” are reliably enforced in the system, the best thingto do is to assume that the Action

proceeds in error (i.e. the second option above). This is what is done for the batch HAZOP

procedure in CHECKOP, as far as possible. It should be noted that this type of policy may lead

to unwanted over-reporting of infeasible problems, but should not miss any problems which can

be captured by the simulation.

Further work is required on the deviation generator part of CHECKOP, in order to allow

it to generate the most credible deviations of a given operating instruction. “No action” is
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Keyword Operation Consequences

No action (1) valve101 open (2) pump101 deadheading, equipment damage.

(2) pump101 overheating.

(3) reactor101 cannot be filled from tank101 because there is no

flow path.

(6) agitator running while vessel empty.

Late action (1) valve101 open (+3) as No action (1) valve101 open.

No action (2) pump101 start (3) reactor101 cannot be filled from tank101 because there is no

driving force for flow.

Early action (2) pump101 start (–1) pump101 deadheading, equipment damage.

(1) flow surge into reactor101 – possible overfilling or damage.

Late action (2) pump101 start (+3) (3) reactor101 cannot be filled from tank101 because there is no

driving force for flow.

pump101 deadheading, equipment damage.

No action (3) reactor101 fill from (6) agitator running while vessel empty.

tank101 with reactantA (17) cannot empty [reactantB,productP] from reactor101 to

until volume 30 percent tank103 because content of reactor is [reactantB].

Early action (3) reactor101 fill from reactor101 cannot be filled from tank101 because there is no

tank101 with reactantA flow path.

until volume 30 percent (–2)

Late action (3) reactor101 fill from reactor101 cannot be filled from tank101 because there is no

tank101 with reactantA flow path.

until volume 30 percent (+3)

Early (3) reactor101 fill from no consequence.

termination tank101 with reactantA

until volume 30 percent

(to only 10 percent)

Late (3) reactor101 fill from (17) cannot empty [reactantB,productP] from reactor101 to

termination tank101 with reactantA tank103 because content of reactor101 is [reactantA,productP].

until volume 30 percent (17) contamination in tank103.

(to 50 percent) (17) exothermic reaction in tank103:

reactantA + reactantB→ productP.

Figure 15: Sample Batch HAZOP Output from CHECKOP29



straightforward – there are only a limited number of ways of applying this guideword. “Early

action” and “Late action” present more difficult decisions –how far is it permissible to move

the action? For the illustration above, we have used a maximum of 3 sequence steps (early or

late) in the procedure, but without some sensible limit on this and other deviation guidewords,

exhaustive examination of all deviations could bury the user in unwanted detail.

A useful development of CHECKOP, which we can envisage for the future, is to combine

it with the HAZID engine used for continuous process plant HAZOP emulation. Such a com-

bination would be able to take advantage of the efficient simulation performance of HAZID, to

examine batch process hazards and to check out startup and shutdown procedures of continuous

plants.

5.5 Flow Modelling

CHECKOP solves one of the typical problems encountered in thisand another related area –

Operating Procedure Synthesis (OPS). The problem is that ofhow to determine the effect on

flow of actions involving opening or closing a valve [21]. Forexample, if two valves are present

in sequence in the same line, then opening one of them will notproduce a flow through it if the

other valve is closed. Similarly, if the two valves are in parallel sections, then closing one will

not necessarily prevent fluid from flowing.

This flow modelling problem cannot be solved ahead of time andmust be found during

a run-time simulation of the system. This means that simple STRIPS-style operators (with

associated lists of preconditions and effects) are inadequate for modelling the effects of actions

in this domain, if the effects to be modelled include the facts of flow existing at different places

in the plant.

In its use of state-based simulation and run-time search forflow path connections, CHECKOP

uses the “action synergy” approach to flow modelling and generating the effects of valve oper-

ations, as also explored in the work of Soutter and others [21, 22]. In OPS systems, the action

synergy approach is used to find safe sequences of valve operations to achieve planning goals,

given that the operations will have overlapping and perhapsconflicting effects on the flows in

the plant. In CHECKOP, the aim is to simulate accurately when flows are possible and when

they are not possible.
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6 Discussion

The example scenarios outlined in Sections 2 and 3 above haveshown some problem areas for

the SDG-based modelling approach. Such an analysis is useful in pointing the way to further

improvements in the representation used for modelling the plant.

One thing that is clearly right about the SDG-based approachused to date is the decomposi-

tion of the plant into unit models corresponding to equipment items on the plant. This feature of

the formalism must remain – structural decomposition in this way makes sense from the point

of view of handling complexity and is also the way engineers tend to think about the plant and

its design. Keeping this approach also means that the topology of the model will superficially

resemble that of the plant itself, which may aid understanding.

However, as mentioned above, the decomposition process must be taken further, to allow

components and sub-components to be defined within the equipment models. In previous work

[8, 9], the unit models contained a large number of the “atomic” components in the system

(SDG arcs), which added to their complexity. The task of modelling the unit behaviour can

be simplified by defining components which are smaller than equipment units, but larger than

the “basic unit” of the model system (whatever that might be in the chosen formalism). From

the level control loop example, a level transmitter was composed of a float gauge component

connected to a transducer component.

Most important, for the modelling of malfunctioning units,is the concept of defining the

state of the units (not possible in the SDG approach). Equipment items most often behave ac-

cording to the default “healthy” model, but have different behavioural modes, corresponding

to “off-normal” states (e.g. if the unit is switched off, or not connected to needed information

or power sources). State-based models can support reasoning about “common mode” failures,

which arise due to power or other utility failures across thewhole plant. Common mode failures

are difficult to model using the SDG because of the inability to envisage the parallel develop-

ment of scenarios in different parts of the plant at the same time.

For batch processes, the SDG is particularly poor in capturing the actions needed to operate

the plant and the changes in state which occur during normal operation. To support this, the

representation must include the idea of a sequence of operating instructions, which are operator
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actions which are performed in order. Each action is associated with a set of assumptions about

the state of the plant and an expectation of the results of theaction. Incorporating these fields

will allow the intended function of the plant to be compared with the simulation of what will

actually happen in “normal operation”. Furthermore, by formalising the actions that take place

in the batch plant, we can analyse the most likely human failure modes which lead to hazards

in the plant, to complement an analysis of the process-initiated ones.

Despite the points made above about state dependent models,the most usual mode of op-

eration for units in the plant will correspond to the same type of model previously used when

modelling using the SDG. Therefore, the models will behave in a very similar way, most of the

time. As was seen in the level control example, the connectivity of the loop is only broken when

one of the failure modes takes over in an equipment item.

These improvements are the basis of a representation systemcurrently under development,

and implemented in the “CHECKOP” research prototype, to allowmore accurate process sys-

tem modelling. We have presented the new system in the preceding section – it is based around

a qualitative, object-oriented model of the process equipment and the instructions used to op-

erate it. We have modelled the operating instructions of a number of plants, and one example

is shown here, for a simple batch reactor. The example demonstrates how the state of the plant

can be predicted through time, and how safety-related problems for each equipment item are

monitored and warnings are given when needed. Operating problems, leading to the given in-

structions being impossible to complete, are treated in a similar way. Using this simulation

engine, batch HAZOP can be demonstrated, by considering deviations from the intended se-

quence of operations, and their resulting hazards.

CHECKOP is significant in view of the fact that it incorporates astate-based model of the

process equipment, a separate model of the operating procedure to be followed, and a simulation

method used to predict the evolution of the system state through time. We believe this to be the

first time such an integration has been achieved in the process safety domain. The current

system is still limited, but we see a lot of promise in furtherdeveloping the ideas in it – for

batch HAZOP emulation and for many other application areas.

While the field of application is currently based around the identification of hazards in chem-

ical plants, the techniques being developed can in time be used to tackle the more general prob-
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lem of qualitative physical systems modelling.

7 Conclusions

This paper has discussed some of the knowledge representation issues of particular importance

to the field of hazard identification in chemical plants. It has examined two typical examples,

pointing out where the most commonly used qualitative models, based on the signed directed

graph, have had difficulties. We have made some suggestions for how a range of these problems

can be tackled, in connection with the on-going research programme at Loughborough Univer-

sity, to further develop representations for modelling andsimulating complex systems such as

process plants efficiently.

Some techniques for coping with the complexity of process systems have already been

proven and will be extended further (e.g. the definition of generic models of equipment and

their inter-connection). Modelling the state of a plant andits component units appears to be the

most important open problem in this domain, and forms the focus of current work on a research

prototype for emulating batch HAZOP studies for chemical plant.

Initial work on emulating batch HAZOP has shown the feasibility of simulating the effects

of deviations in operating instructions, and reporting theresulting hazards in a HAZOP-style

output table. Much remains to be done, on extending the typesof deviation guidewords which

can be considered, and on focussing on only the most important deviations to be modelled in

batch HAZOP.

Some of the important messages of this work so far are:

• Concentration on Petri Nets technology for representing operating plans is inappropriate

for this domain. Petri Nets are not sufficiently flexible to model the effect of operations on

a state-based plant model where either the plant or the instructions are subject to variation.

• Modelling actions in the plant with simple STRIPS operators will not work, because the

problem of determining if an action will succeed is a non-local search, initiated at run-

time, wherever flow is concerned.

• The connectivity of a plant may be determined dynamically byrun-time conditions during
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operation of the plant. In domains such as the example of making a cup of tea, connections

may be contingent on spatial relationships between equipment items (e.g. the kettle must

be above the cup in order to pour water from the kettle to the cup).

These points further emphasise that the best way to get realistic qualitative simulations of

process systems is to build state-dependent models of the systems and to evolve their behaviour

step-by-step through operation. CHECKOP is the first step towards achieving this level of

realism and accuracy in hazard identification.
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