

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288389125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Existence and nonexistence of descriptive patternsI

Dominik D. Freydenbergera, Daniel Reidenbachb,∗

aInstitut für Informatik, Goethe-Universität, Postfach 111932, D-60054 Frankfurt am
Main, Germany

bDepartment of Computer Science, Loughborough University, Loughborough, Leicestershire,
LE11 3TU, United Kingdom

Abstract

In the present paper, we study the existence of descriptive patterns, i. e. patterns
that cover all words in a given set through morphisms and that are optimal in
terms of revealing commonalities of these words. Our main result shows that
if patterns may be mapped to words by arbitrary morphisms, then there exist
infinite sets of words that do not have a descriptive pattern. This answers
a question posed by Jiang, Kinber, Salomaa, Salomaa and Yu (International
Journal of Computer Mathematics 50, 1994). Since the problem of whether
a pattern is descriptive depends on the inclusion relation of so-called pattern
languages, our technical considerations lead to a number of deep insights into
the inclusion problem for and the topology of the class of terminal-free E-pattern
languages.

Keywords: Pattern languages, Descriptive patterns

1. On Patterns Descriptive of a Set of Strings

A pattern is a finite string that consists of variables taken from an alphabet
X and terminal symbols taken from an alphabet Σ. For any pattern α and any
word w over Σ, α is said to cover w if w can be obtained from α by substituting
the variables with appropriate strings of terminal symbols. Whenever α contains
several occurrences of the same variable, the substitution of variables needs to
be “uniform”, i. e. each of the occurrences must be replaced with the same
word over Σ. Therefore, and more formally, such a substitution is simply a
terminal-preserving morphism σ : (Σ∪X)∗ → Σ∗, i. e. a morphism that satisfies
σ(a) = a for every terminal symbol a in the pattern. For instance, the pattern
α := xybxa (where x, y are variables and a, b are terminal symbols) covers the
word w1 := abababa since there is a substitution σ, given by σ(x) := ab and

IA preliminary version of this paper was presented at the conference DLT 2009.
∗Corresponding author.
Email addresses: freydenberger@em.uni-frankfurt.de (Dominik D. Freydenberger),

D.Reidenbach@lboro.ac.uk (Daniel Reidenbach)

Preprint submitted to Theoretical Computer Science April 26, 2010

σ(y) := a, satisfying σ(α) = w. In contrast to this, α does not cover, e. g.,
w2 := bbbbaa.

Due to the simplicity of the concepts involved, the above described notion
of a pattern is studied in a variety of fields of research. The present paper
mainly deals with two quite closely related approaches: Firstly, a pattern α
over Σ ∪X can be regarded as a generator of a formal language L(α), the so-
called pattern language, which simply comprises all words in Σ∗ that can be
obtained from the pattern by arbitrary substitutions. Secondly, for any given
finite or infinite language S, patterns can be used to approximate S; i. e., a
pattern α is sought that is consistent with S (which means that α covers all
words in S or alternatively, in terms of pattern languages, L(α) ⊇ S). The latter
concept is motivated by the fact that if a pattern is consistent with a language
S, then this pattern reveals a common structure of the strings in S. Hence,
and since they are compact devices that can be easily read and interpreted by
humans, patterns can be very helpful when commonalities of data represented
by strings are analysed.

The characteristics of pattern languages have been intensively studied in the
past decades. Therefore, quite a number of basic properties of pattern languages,
e. g. regarding the usual decision problems for classes of formal languages, are
known (cf. the surveys by Mateescu and Salomaa [10] and Salomaa [14] and
our recent paper [6]). Furthermore, pattern languages have been a focus of
interest of inductive inference from the very beginning, investigating whether it
is possible to infer a pattern from the words in its pattern language (see Ng and
Shinohara [11]). It is quite remarkable that many of the corresponding results in
language theory and inductive inference differ for the two main types of pattern
languages that are normally considered, namely the NE -pattern language of
a pattern (introduced by Angluin [1]), which merely consists of those words
in Σ∗ that can be obtained from the pattern by nonerasing substitutions (i. e.
substitutions that do not replace any variables with the empty word), and the E -
pattern language (established by Shinohara [15]), which additionally comprises
those words that can be derived from the pattern by substituting the empty
word for arbitrary variables.

The problem of finding a consistent pattern for an arbitrary set S of strings
is often referred to as (string) pattern discovery, and many of its applications
are derived from tasks in bioinformatics (cf. Brazma et al. [2]). In contrast to
the inductive inference approach to pattern languages, where a pattern shall
be inferred that exactly describes the given language, string pattern discovery
faces the problem that S can typically have many consistent patterns showing
very different characteristics. For instance, both

α1 := xyxyx and
α2 := xaby

2

are consistent with the language

S0 := { ababa,

ababbababbab,

babab},

and the pattern α0 := x is consistent with every set of strings, anyway. Hence,
the algorithms of string pattern discovery require an underlying notion of the
quality of a pattern in order to determine what patterns to strive for. With
regard to the above example set and patterns, it seems quite likely that one
might not be interested in a procedure outputting α0 when reading S0. Con-
cerning α1 and α2, however, it is, a priori, by no means evident which of them
to prefer. Thus, the definition of the quality of a pattern might often depend on
the field of application where string pattern discovery is conducted. In addition
to this, it is a worthwhile goal to develop generic notions of quality of consistent
patterns that can inform the design of pattern discovery algorithms.

In this regard, the descriptiveness of patterns is a well-known and plausible
concept, that is also used within the scope of inductive inference (cf. Ng and
Shinohara [11]). A pattern δ is said to be descriptive of a given set S of strings
if there is no pattern α satisfying L(δ) ⊃ L(α) ⊇ S. Intuitively, this means
that if δ is descriptive of S, then no consistent pattern for S provides a strictly
closer match than δ. Thus, although δ does not need to be unique (as to be
further discussed below), it is guaranteed that it is one of the most accurate
approximations of S that can be provided by patterns. While descriptiveness
is unquestionably an appropriate notion of quality of consistent patterns, it
leads to major technical challenges, as its application requires insights into the
inclusion problem for pattern languages, which is known to be undecidable in the
general case and still combinatorially involved for some major natural subclasses
where it is decidable. This aspect is crucial to the subsequent formal parts of
our paper.

Since the definition of a descriptive pattern is based on the concept of pat-
tern languages, the question of whether NE- or E-pattern languages are chosen
can have a significant impact on the descriptiveness of a pattern. This is re-
flected by the terminology we use: we call a pattern δ an NE-descriptive pattern
if it is descriptive in terms of its NE-pattern language and the NE-pattern lan-
guages of all patterns in (Σ ∪ X)+; accordingly, we call δ E-descriptive if its
descriptiveness is based on interpreting all patterns as generators of E-pattern
languages. In order to illustrate these terms, we now briefly discuss the descrip-
tiveness of the example patterns introduced above (though the full verification
of our corresponding claims is not always straightforward and might require
certain tools to be introduced later). If we deal with S0 and the patterns in the
context of NE-pattern languages, then it can be stated that both α1 and α2 are
NE-descriptive of S0, since no NE-pattern languages can comprise S0 and, at
the same time, be a proper sublanguage of the NE-pattern languages of α1 or
α2. If we study S0 in terms of E-pattern languages, it turns out that α1 is also
E-descriptive of S0, i. e. there is no pattern generating an E-pattern language

3

that is consistent with S0 and strictly included in the E-pattern language of α1.
However, the second NE-descriptive example pattern α2 is not E-descriptive of
S0, since the E-pattern language generated by

α3 := xababy

is a proper sublanguage of the E-pattern language of α2 and comprises S0.
The pattern α3, in turn, is even E-descriptive of S0, but not NE-descriptive,
since it is not consistent with S0 if we disallow empty substitutions. Exactly
the same holds for α4 := xbabay, which also is consistent with S0 if we allow
the empty substitution of variables, generates an E-pattern language that is
strictly included in the E-pattern language of α2 and is E-descriptive, but not
NE-descriptive of S0.

The present paper examines the basic underlying problem of descriptive
pattern discovery, namely the existence of such patterns; this means that we
study the question of whether or not, for a given language S, there is a pattern
that is descriptive of S. To this end, four different cases can be considered:
NE-descriptive patterns of finite languages, NE-descriptive patterns of infinite
languages, E-descriptive patterns of finite languages and E-descriptive patterns
of infinite languages. The problem of the existence of the former three types
of descriptive patterns is either trivial or has already been solved in previous
publications. We therefore largely study the latter case, and our correspond-
ing main result answers a question posed by Jiang, Kinber, Salomaa, Salomaa
and Yu [7]. Our technical considerations do not only provide insights into the
actual topic of our paper, but – due to the definition of descriptive patterns
– also reveal vital phenomena related to the inclusion of E-pattern languages
and, hence, the topology of class of terminal-free E-pattern languages. Due
to the way the inclusion of terminal-free E-pattern languages is characterised,
this implies that we have to deal with combinatorial properties of morphisms in
free monoids. Furthermore, crucial parts of our reasoning are based on infinite
unions of pattern languages, which means that our paper shows additional con-
nections to so-called multi-pattern languages (cf. Dumitrescu et al. [3]). While
[3] features unions of pattern languages where the generating patterns form a
context-free language, our work is essentially based on multi-pattern languages
where the underlying set of patterns – apart from an infinite variable alphabet
we have to use – is defined similarly to an HD0L language (see Kari et al. [9]).

A preliminary version [5] of this paper was presented at the conference DLT
2009.

2. Basic Definitions and Preparatory Technical Considerations

This paper is largely self-contained. For notations not explicitly defined,
Rozenberg and Salomaa [13] can be consulted.

Let N := {0, 1, 2, 3, . . .} and, for every k ≥ 0, Nk := {n ∈ N | n ≥ k}. The
symbols ⊆, ⊂, ⊇ and ⊃ refer to subset, proper subset, superset and proper su-
perset relation, respectively. The symbol∞ stands for infinity. For an arbitrary

4

alphabet A, a string (over A) is a finite sequence of symbols from A, and λ
stands for the empty string. The symbol A+ denotes the set of all nonempty
strings over A, and A∗ := A+∪{λ}. For the concatenation of two strings w1, w2

we write w1 · w2 or simply w1w2. We say that a string v ∈ A∗ is a factor of a
string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. The notation |K|
stands for the size of a set K or the length of a string K; the term |w|a refers
to the number of occurrences of the symbol a in the string w. For any w ∈ Σ∗

and any n ∈ N, wn denotes the n-fold concatenation of w, with w0 := λ.
For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies

h(vw) = h(v)h(w) for all v, w ∈ A∗. Given morphisms g : A∗ → B∗ and
h : B∗ → C∗ (for alphabets A, B, C), their composition h ◦ g is defined by
(h ◦ g)(w) := h(g(w)) for all w ∈ A∗. For every morphism h : A∗ → A∗ and
every n ≥ 0, hn denotes the n-fold iteration of h, i. e., hn+1 := h ◦ hn, where h0

is the identity on A∗.
A morphism h : A∗ → B∗ is said to be nonerasing if h(a) 6= λ for all a ∈ A.

For any string w ∈ C∗, where C ⊆ A and |w|a ≥ 1 for every a ∈ C, the
morphism h : A∗ → B∗ is called a renaming (of w) if h : C∗ → B∗ is injective
and |h(a)| = 1 for every a ∈ C.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ∩X = ∅. We normally assume
{a, b, . . .} ⊆ Σ and {y, z, x0, x1, x2 . . .} ⊆ X. A pattern is a string over Σ∪X, a
terminal-free pattern is a string over X and a word is a string over Σ. The set
of all patterns over Σ ∪X is denoted by PatΣ. For any pattern α, we refer to
the set of variables in α as var(α).

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for every a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called
a substitution. Let S ⊆ Σ∗; then we say that a pattern α is consistent with S
if, for every w ∈ S, there exists a substitution σ satisfying σ(α) = w.

Intuitively, the pattern language of a pattern α is the maximum set of words
α is consistent with. Formally, we consider two types of pattern languages,
depending on whether we restrict ourselves to nonerasing substitutions: the
NE-pattern language LNE,Σ(α) of a pattern α ∈ PatΣ is given by

LNE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution},

and the E-pattern language LE,Σ(α) of α is given by

LE,Σ(α) := {σ(α) | σ : (Σ ∪X)∗ → Σ∗ is a substitution}.

The term pattern language refers to any of the definitions introduced above.
We call a pattern language terminal-free if it is generated by a terminal-free
pattern.

We now can introduce our terminology on the main topic of this paper,
namely the descriptiveness of a pattern. For any alphabet Σ and any language
S ⊆ Σ∗, a pattern δ ∈ PatΣ is said to be NE-descriptive (of S) provided
that LNE,Σ(δ) ⊇ S and, for every α ∈ PatΣ with LNE,Σ(α) ⊇ S, LNE,Σ(α) 6⊂

5

LNE,Σ(δ). Analogously, δ is called E-descriptive (of S) if LE,Σ(δ) ⊇ S and, for
every α ∈ PatΣ with LE,Σ(α) ⊇ S, LE,Σ(α) 6⊂ LE,Σ(δ).

Obviously, the definition of a descriptive pattern is based on the inclusion
of pattern languages, which is an undecidable problem for both the full class
of NE-pattern languages and the full class of E-pattern languages (cf. Jiang et
al. [8], Freydenberger and Reidenbach [6]). A significant part of our subsequent
technical considerations, however, can be restricted to terminal-free E-pattern
languages, and here the inclusion problem is known to be decidable. This di-
rectly results from the following characterisation:

Theorem 1 (Jiang et al. [8]). Let Σ be an alphabet, |Σ| ≥ 2, and let α, β ∈
X+ be terminal-free patterns. Then LE,Σ(α) ⊆ LE,Σ(β) if and only if there
exists a morphism h : X∗ → X∗ satisfying h(β) = α.

While Theorem 1 is a powerful tool when dealing with the inclusion of terminal-
free E-pattern languages, the examination of the descriptiveness of a pattern re-
quires insights into proper inclusion relations, and therefore we use some further
combinatorial results on morphisms in free monoids to give a more convenient
criterion that can replace the use of Theorem 1.

In accordance with Reidenbach and Schneider [12], we designate a terminal-
free pattern α ∈ X+ as morphically imprimitive if there is a pattern β ∈ X∗
satisfying the following conditions: |β| < |α| and there are morphisms g, h :
X∗ → X∗ such that g(α) = β and h(β) = α. Otherwise, α is morphically
primitive. Let α ∈ X+ be morphically primitive. A morphism h : X∗ → X∗

is said to be an imprimitivity morphism (for α) provided that |h(α)| > |α| and
there is a morphism g : X∗ → X∗ satisfying (g ◦ h)(α) = α. Referring to
these concepts, we now can give a characterisation of certain proper inclusion
relations between terminal-free E-pattern languages:

Lemma 2. Let Σ be an alphabet, |Σ| ≥ 2, α ∈ X+ a morphically primitive
pattern and h : X∗ → X∗ a morphism. Then LE,Σ(h(α)) ⊂ LE,Σ(α) if and only
if h is neither an imprimitivity morphism for α nor a renaming of α.

Proof. We firstly consider the if direction: If h is neither an imprimitivity
morphism for α nor a renaming of α, then |h(α)| < |α| or there is no morphism g
mapping h(α) to α. In the latter case, due to Theorem 1, LE,Σ(h(α)) 6⊇ LE,Σ(α).
In the former case, if there is a morphism g mapping h(α) to α, then α is not
morphically primitive, which contradicts the condition of the lemma. Hence,
there is no such morphism, and this again implies LE,Σ(h(α)) 6⊇ LE,Σ(α). Since
Theorem 1 shows that LE,Σ(h(α)) ⊆ LE,Σ(α), we have LE,Σ(h(α)) ⊂ LE,Σ(α).

We proceed with the only if direction: If LE,Σ(h(α)) ⊂ LE,Σ(α), then there
is no morphism mapping h(α) to α. However, the definition of an imprimitivity
morphism mapping α to some pattern β implies the existence of a morphism
mapping β to α again. The same trivially holds for any renaming of α. Thus,
h is neither an imprimitivity morphism for α nor a renaming of α. 2

The question of whether a given morphism is an imprimitivity morphism for a
pattern can be easily answered using the following insight:

6

Theorem 3 (Reidenbach and Schneider [12]). Let α ∈ X+ be a morphi-
cally primitive pattern. Then a morphism h : X∗ → X∗ is an imprimitivity
morphism for α if and only if

1. for every x ∈ var(α), there exists an xh ∈ var(h(x)) such that |h(x)|xh
= 1

and |h(y)|xh
= 0 for every y ∈ var(α) \ {x}, and

2. there exists an x ∈ var(α) with |h(x)| ≥ 2.

Evidently, Lemma 2 can only be applied if there is a tool for checking whether a
terminal-free pattern is morphically primitive. This is provided by the following
characterisation:

Theorem 4 (Reidenbach and Schneider [12]). A pattern α ∈ X+ is mor-
phically primitive if and only if there is no factorisation

α = β0 γ1 β1 γ2 β2 . . . βn−1 γn βn

with n ≥ 1, βk ∈ X∗ and γk ∈ X+, k ≤ n, such that

1. |γk| ≥ 2 for every k, 1 ≤ k ≤ n,
2. var(β0 . . . βn) ∩ var(γ1 . . . γn) = ∅,
3. for every k, 1 ≤ k ≤ n, there exists an xk ∈ var(γk) such that |γk|xk

= 1
and, for every k′, 1 ≤ k′ ≤ n, if xk ∈ var(γk′) then γk = γk′ .

Thus, with Lemma 2, Theorem 3 and Theorem 4 we now have an appropriate
tool for deciding on particular proper inclusion relations between terminal-free
E-pattern languages.

3. Descriptive Patterns and Infinite Strictly Decreasing Chains of
Pattern Languages

Before we state and prove the main results of our paper, we discuss some
simple yet enlightening observations that establish a connection between de-
scriptiveness of patterns and infinite strictly decreasing chains of pattern lan-
guages over some fixed alphabet, i. e. sequences (Li)i∈N of pattern languages
satisfying, for every j ∈ N, Lj ⊃ Lj+1. This aspect is already briefly mentioned
by Jiang et al. [7].

Since, by definition, a descriptive pattern generates a smallest pattern lan-
guage comprising a language S, S does not have a descriptive pattern if and only
if no pattern language L satisfying L ⊇ S is smallest. Hence, the existence of
a descriptive pattern essentially depends on the existence of a pattern language
that is not contained in an infinite strictly decreasing chain:

Observation 5. Let Σ be an alphabet and S ⊆ Σ∗ a language. Then there is
no pattern that is NE-descriptive (or E-descriptive) of S if and only if, for every
pattern α with LNE,Σ(α) ⊇ S (or LE,Σ(α) ⊇ S, respectively) there is

• a sequence of patterns αi ∈ PatΣ, i ∈ N, satisfying, for every j ∈ N,

7

– LNE,Σ(αj) ⊃ LNE,Σ(αj+1) (or LE,Σ(αj) ⊃ LE,Σ(αj+1), respectively)
and

– LNE,Σ(αj) ⊇ S (or LE,Σ(αj) ⊇ S, respectively)

and

• an n ∈ N with LNE,Σ(αn) = LNE,Σ(α) (or LE,Σ(αn) = LE,Σ(α), respec-
tively).

Proof. Directly from the definition of an NE-descriptive (or E-descriptive)
pattern. 2

Consequently, the question of whether there is a descriptive pattern for a lan-
guage S requires insights into the inclusion problem for pattern languages. As
partly stated in Section 2, this problem is undecidable in the general case,
but it is decidable for the class of terminal-free E-pattern languages (though
combinatorially complex and, according to Ehrenfeucht and Rozenberg [4], NP-
complete).

In order to illustrate and substantiate Observation 5 and as a reference
for further considerations in Section 4, we now give some examples of strictly
decreasing chains of pattern languages. We begin with a sequence of patterns
that has almost identical properties for both NE- and E-pattern languages:

Example 6. Let Σ be any alphabet. For every i ∈ N, we define αi := x2i

1 ,
i. e. α0 = x1, α1 = x2

1, α2 = x4
1, α3 = x8

1 and so on. It can be easily seen
that, for every j ∈ N, there is a morphism h : {x1}+ → {x1}+, defined by
h(x1) := x2

1, satisfying h(αj) = αj+1. Since, for both NE- and E-pattern
languages, the existence of such a morphism is a sufficient condition for an
inclusion relation (cf. Lemma 3.1 by Angluin [1] and Theorem 2.3 by Jiang et
al. [7], respectively), LNE,Σ(αj) ⊇ LNE,Σ(αj+1) and LE,Σ(αj) ⊇ LE,Σ(αj+1) are
satisfied. In the given example, it is evident that all inclusions of NE-pattern
languages are strict. The same holds for the inclusion of E-pattern languages;
alternatively, for all but unary alphabets Σ, it is directly proven by Lemma 2
(using Theorem 3 and Theorem 4) given in Section 2. Hence, the sequence
of αi leads to an infinite strictly decreasing chain for NE-pattern languages
as well as for E-pattern languages. Nevertheless, the sequence of patterns is
irrelevant in the context of Observation 5, as the sets SNE :=

⋂∞
i=0 LNE,Σ(αi)

and SE :=
⋂∞
i=0 LE,Σ(αi), i. e. those languages all patterns are consistent with,

satisfy SNE = ∅ and SE = {λ}.

Our next example looks quite similar to Example 6, but here a difference be-
tween NE- and E-pattern languages can be noted:

Example 7. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ N, we de-
fine αi := x2i

1 y
2, i. e. α0 = x1y

2, α1 = x2
1y

2, α2 = x4
1y

2, α3 = x8
1y

2 and
so on. Referring to the same facts as mentioned in Example 6, it can be
shown that the patterns again define one infinite strictly decreasing chain of
NE-pattern languages and another one of E-pattern languages. However, while

8

the set SNE :=
⋂∞
i=0 LNE,Σ(αi) again is empty, SE :=

⋂∞
i=0 LE,Σ(αi) now equals

LE,Σ(y2). Hence, we have a chain of E-pattern languages that are all consistent
with a nontrivial language. Nevertheless, LE,Σ(y2) obviously has a descriptive
pattern, namely δ := y2, and this of course holds for all infinite sequences of
patterns where SE equals an E-pattern language. Consequently, the existence
of a single infinite strictly decreasing chain of E-pattern languages Li satisfying,
for every i ∈ N, Li ⊇ S, does not mean that there is no E-descriptive pattern
for S. Furthermore, it is worth mentioning that we can replace SE with a finite
language and still preserve the above described properties of the αi and δ. For
Σ ⊇ {a, b}, this is demonstrated, e. g., by the language S := {aa, bb}, which
satisfies, for every i ∈ N, S ⊆ LE,Σ(αi) and has the E-descriptive pattern δ.

Our final example presents a special phenomenon of E-pattern languages, namely
the existence of bi-infinite strictly decreasing/increasing chains of such lan-
guages:

Example 8. Let Σ be an alphabet with |Σ| ≥ 2. For every i ∈ Z, we define

αi :=

{
x2−i

1 if i is negative,
x2

1x
2
2 . . . x

2
i+2 else.

Hence, for example, from i = −3 to i = 2 the patterns read α−3 = x8
1,

α−2 = x4
1, α−1 = x2

1, α0 = x2
1x

2
2, α1 = x2

1x
2
2x

2
3, and α2 = x2

1x
2
2x

2
3x

2
4. Us-

ing Theorem 4, it is easy to show that all patterns are morphically primitive.
Theorem 3 demonstrates that all morphisms mapping an αk to an αj , j < k,
are not imprimitivity morphisms. Therefore we can conclude from Lemma 2
that LE,Σ(αj) ⊂ LE,Σ(αk) if and only if j < k. For the given patterns,
SE :=

⋂∞
i=−∞ LE,Σ(αi) equals {λ}, but if we define, for every i ∈ Z, α′i := y2αi,

then these α′i generate a bi-infinite strictly decreasing/increasing chain of E-
pattern languages where SE :=

⋂∞
i=−∞ LE,Σ(α′i) = LE,Σ(y2) is an E-pattern

language.

Note that the example patterns given above are terminal-free merely for the sake
of convenience. They can be effortlessly turned into certain patterns containing
terminal symbols and still showing equivalent properties.

4. The Existence of Descriptive Patterns

In the present chapter we study the existence of patterns that are descriptive
of sets S of strings. According to our remarks in Section 1, four main cases can
be considered, depending on whether S is finite or infinite and whether NE- or E-
descriptiveness is examined. We focus on the existence of E-descriptive patterns
for infinite languages since, for the other three cases, answers are absolutely
straightforward or directly or indirectly provided by Angluin [1] and Jiang et
al. [7]. In order to give a comprehensive description and further explain some
of our formal concepts and statements we nevertheless also briefly describe the
known or trivial cases.

9

Using Observation 5, the question of the existence of NE-descriptive patterns
can be easily answered for all types of languages S. We begin with the case of
a finite S. Here, it is primarily necessary to observe that a word w can only be
covered by a pattern α through nonerasing substitutions if α is not longer than
w. Hence, for any finite alphabet Σ and any word over Σ, there are only finitely
many NE-pattern languages over Σ covering this word; this property of a class
of languages is commonly referred to as finite thickness (cf. Wright [17]). Quite
obviously, the same holds for infinite alphabets Σ, since the number of different
terminal symbols that can occur in patterns covering w is limited by the number
of different terminal symbols in w. With regard to infinite sequences of patterns
(generating languages that all differ from each other) over a fixed alphabet, this
means that none of them can contain infinitely many patterns that cover, e. g.,
the shortest word in a given finite set of strings. This immediately shows that,
for every finite S, there exists an NE-descriptive pattern:

Proposition 9 (Angluin [1]). Let Σ be an alphabet and S ⊆ Σ+ a finite lan-
guage. Then there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Note that Angluin [1] does not explicitly state Proposition 9, but directly stud-
ies more challenging questions by introducing a procedure computing an NE-
descriptive pattern for any finite language S and examining the computational
complexity of the problem of finding such patterns for finite languages.

With regard to NE-descriptive patterns for infinite languages S, the same
reasoning as for finite languages S leads to the analogous result:

Proposition 10. Let Σ be an alphabet and S ⊆ Σ+ an infinite language. Then
there is a pattern δ ∈ PatΣ that is NE-descriptive of S.

Proof. Directly from Observation 5 and the finite thickness of the class of
NE-pattern languages. 2

A closer look at the underlying reasoning proving Propositions 9 and 10 re-
veals that it does not need to consider whether any infinite sequence of patterns
leads to an infinite strictly decreasing chain of NE-pattern languages (as fea-
tured by Observation 5), but can be completely based on the concept of finite
thickness. If we nevertheless wish to examine the properties of such chains,
then we can easily observe that, for every sequence of patterns αi, i ∈ N, with
LNE,Σ(αi) ⊃ LNE,Σ(αi+1), the set SNE :=

⋂∞
i=0 LNE,Σ(αi) necessarily is empty.

Hence, Examples 6 and 7 illustrate the only option possible.
With regard to E-descriptiveness, the situation is more complex. As shown

by Examples 7 and 8, the class of E-pattern languages does not have finite
thickness and there are even finite and infinite languages that are contained in
all E-pattern languages of an infinite strictly decreasing chain. Nevertheless, it
is known that every nontrivial finite language has an E-descriptive pattern:

Theorem 11 (Jiang et al. [7]). Let Σ be an alphabet and S ⊆ Σ∗ a finite
language, S 6= {λ}. Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

10

The proof for Theorem 11 given by Jiang et al. [7] demonstrates that for every
finite language S an upper bound n can be given such that, for every pattern α
consistent with S, there exists a pattern β satisfying |β| ≤ n and S ⊆ LE,Σ(β) ⊆
LE,Σ(α). So if, for any finite S, there is a sequence of patterns αi, i ∈ N, leading
to an infinite strictly decreasing chain of E-pattern languages comprising S –
which implies that there is no upper bound for the length of the αi – then all
but finitely many of these patterns need to have variables that are not required
for generating the words in S. This phenomenon is illustrated by Example 7,
where only the subpattern y2 of all patterns is necessary in order to map the
patterns to the words in SE.

In the proof for Theorem 11, the upper bound n equals the sum of the
lengths of the words in S. Thus, this method cannot be adopted when inves-
tigating the existence of E-descriptive patterns for infinite sets of words. In
fact, as to be demonstrated below, we here need to consider two subcases de-
pending on the number of different letters occurring in the words of S. If the
underlying alphabet is unary, then the descriptiveness of a pattern is related
to the inclusion relation of E-pattern languages over this unary alphabet. The
structure of such E-pattern languages, however, is significantly simpler than
that of E-pattern languages over larger alphabets; in particular, the full class
of these languages is a specific subclass of the regular languages (namely the
linear unary languages). Therefore it can be shown that, for every sequence
of patterns (αi)i∈N leading to an infinite strictly decreasing chain of E-pattern
languages over a unary alphabet, the language SE :=

⋂∞
i=0 LE,Σ(αi) is finite.

Referring to Observation 5, this directly leads to the following result:

Theorem 12. Let Σ be an alphabet, |Σ| = 1, and S ⊆ Σ∗ an infinite language.
Then there is a pattern δ ∈ PatΣ that is E-descriptive of S.

The proof for Theorem 12 is given in Section 5.1.
In contrast to this, Example 7 demonstrates that, for alphabets with at least

two letters, there is an infinite strictly decreasing chain of E-pattern languages
such that the intersection of all these languages is infinite. Since this intersection
is an E-pattern language, Example 7 can nevertheless not be used to establish
a result that differs from those given for the other cases. In order to answer the
question of whether this holds true for all such chains, we now consider a more
sophisticated infinite sequence of patterns, that is defined as follows:

Definition 13. We define the pattern

α0 := y2z2

and the morphism φ : X∗ → X∗ (note that we assume X ⊇ {y, z, x0, x1, x2 . . .})
through, for every i ∈ N,

φ(xi) := xi+1,

φ(y) := y2x1,

φ(z) := x1z
2.

11

Then, for every i ∈ N, the pattern αi+1 is given by

αi+1 := φ(αi) = φi(α0).

This means that, for example,

α1 = y2x1 y
2x1 x1z

2 x1z
2,

α2 = (y2x1y
2x1x2) (y2x1y

2x1x2) (x2x1 z
2x1z

2) (x2x1z
2x1z

2),
α3 = (y2x1y

2x1x2 y
2x1y

2x1x2 x3) (y2x1y
2x1x2 y

2x1y
2x1x2 x3)

(x3 x2x1z
2x1z

2 x2x1z
2x1z

2) (x3 x2x1z
2x1z

2 x2x1z
2x1z

2).

It can be shown that this sequence (αi)i∈N defines an infinite strictly decreasing
chain of E-pattern languages. Furthermore, if we define the morphism ψ : X∗ →
X∗ through ψ(xi) := xi and ψ(y) := ψ(z) := x0, then, for every alphabet Σ with
|Σ| ≥ 2, LΣ :=

⋃∞
i=0 LE,Σ(ψ(αi)) satisfies LΣ ⊆

⋂∞
i=0 LE,Σ(αi). As a side note,

it is worth mentioning that LΣ is a multi-pattern language (cf. Dumitrescu et
al. [3]) where the set {ψ(αi) | i ∈ N} of generating patterns is defined similarly to
an HD0L language (albeit over an infinite alphabet of variables); such a concept
has not been considered by previous literature. Finally, it can be demonstrated
that the sequence (αi)i∈N has a very particular property, since for every pattern
γ with LE,Σ(γ) ⊇ LΣ there exists an αi satisfying LE,Σ(γ) ⊇ LE,Σ(αi). Referring
to Observation 5, this implies the main result of our paper:

Theorem 14. For every alphabet Σ with |Σ| ≥ 2 there is an infinite language
LΣ ⊂ Σ∗ that has no E-descriptive pattern.

The proof for Theorem 14 is given in Section 5.2.
Consequently, when searching for descriptive patterns, the case of E-descrip-

tive patterns of infinite languages over alphabets of at least two letters is the
only one where the existence of such patterns is not always guaranteed. This
directly answers a question posed by Jiang et al. [7].

Finally, it can be shown that, while the proof of Theorem 14 is based on the
particular shape of the infinite union LΣ of E-pattern languages described above,
LΣ can be replaced by a language LtΣ which, for every pattern ψ(αi), i ≥ 0,
contains just a single word. In order to describe this insight more precisely, we
have to introduce the following concept:

Definition 15. A language L is called properly thin if, for every n ≥ 0, L
contains at most one word of length n.

Referring to this definition, we can strengthen Theorem 14 as follows:

Corollary 16. For every alphabet Σ with |Σ| ≥ 2, there is an infinite properly
thin language LtΣ ⊂ Σ∗ that has no E-descriptive pattern.

The proof for Corollary 16 is given in Section 5.3.

12

5. Proof of the Major Theorems

The present section contains the proofs of the major theorems given in this
paper.

5.1. Proof of Theorem 12
Before we give the actual proof of Theorem 12, we introduce some concepts

that are only relevant to this section.
To begin with, we extend the operations addition, subtraction, multiplication

and division from the natural numbers to operations on natural numbers with
sets of natural numbers in the canonical way; i. e., for ? ∈ {+,−, ·, /} and
M ⊆ N, b ∈ N let M ?b := {m?b | m ∈M}. Note that in all cases where we use
division or subtraction, the results will always be natural numbers; furthermore,
we make free use of the commutativity of multiplication and addition and write
b+M or b ·M instead of M + b or M · b, respectively. For any (possibly infinite)
M ⊆ N, let gcd(M) denote the greatest common divisor of all elements of M .

Let n ≥ 1 and M = {m1, . . . ,mn} ⊂ N1. We define the linear hull of
M as lin(M) := {m | m = k1m1 + . . . + knmn for some k1, . . . , kn ∈ N}, and
lin(∅) := {0}.

It is obvious that every unary language L is isomorphic to its Parikh set
P (L) := {|w| | w ∈ L} ⊆ N. We say that a unary language L is linear if there
is a b ≥ 0 and a finite set G ⊂ N such that P (L) = b + lin(G). This allows us
to state the following observation on unary pattern languages:

Proposition 17. A unary language is linear if and only if it is a pattern lan-
guage.

Proof. Let Σ = {a}. We begin with the if direction. Let α ∈ PatΣ with
var(α) = {x1, . . . , xn} for some n ≥ 0. Let b := |α|a and, for 1 ≤ i ≤ n,
gi := |α|xi

; furthermore, we define β := abxg11 . . . xgn
n . As Σ is unary, LE,Σ(α) =

LE,Σ(β) holds, and it is easy to see that P (LE,Σ(β)) = b+ lin({g1, . . . , gn}).
Conversely, if some language L ⊆ Σ∗ is linear, then there exist a b ≥ 0 and

a finite set G = {g1, . . . , gn} ⊃ N (with n ≥ 0) satisfying P (L) = b+ lin(G). If
we define β as above, P (LE,Σ(β)) = b+ lin(G) = P (L) leads to LE,Σ(β) = L.2

Also, note this important fact on linear hulls:

Lemma 18. For every finite M ⊂ N, there exists an n ≥ 1 with lin(M) ⊇
gcd(M) · Nn.

Proof. The case of gcd(M) = 1 is well known, a proof can be found in
Chapter 3.15 of Wilf [16]. If gcd(M) > 1, let M ′ := M/ gcd(M). Then,
as gcd(M ′) = 1, there is an n ≥ 1 such that lin(M ′) ⊇ Nn, and therefore,
lin(M) = gcd(M) · lin(M ′) ⊇ gcd(M) · Nn. 2

Now that all necessary tools have been introduced, we are ready for the proof
of Theorem 12:

13

Proof. Let Σ := {a}. Furthermore, let

b := min(P (S)),
P ′S := P (S)− b,
g := gcd(P ′S),

P ′′S := P ′S/g

and α := abxg1. It is easy to verify that LE,Σ(α) ⊇ S, P (LE,Σ(α)) = b + g · N
and P (S) = b + g · P ′′S . Although α is not necessarily E-descriptive of S, we
shall see that there is always only a finite number of pattern languages between
LE,Σ(α) and S.

Since Σ is unary, we have, for every pattern β ∈ PatΣ with LE,Σ(α) ⊃
LE,Σ(β) ⊇ S,

P (LE,Σ(α)) ⊃ P (LE,Σ(β)) ⊇ P (S).

This, in turn, is equivalent to

b+ g · N ⊃ P (LE,Σ(β)) ⊇ b+ g · P ′′S .

Due to this relation and Proposition 17, we can conclude with some effort that
there is a finite Gβ ⊃ N with P (LE,Σ(β)) = b+ g · lin(Gβ). Therefore,

b+ g · N ⊃ b+ g · lin(Gβ) ⊇ b+ g · P ′′S ,

which is equivalent to
N ⊃ lin(Gβ) ⊇ P ′′S .

As gcd(P ′′S) = 1, there is a finite CS ⊂ P ′′S with gcd(CS) = 1. We observe that

lin(Gβ) ⊇ P ′′S ⊃ CS ,

and, as CS is a finite subset of lin(Gβ),

lin(Gβ) ⊇ lin(CS).

Due to Lemma 18, there is an n ≥ 0 such that lin(CS) ⊇ Nn, and thus, lin(Gβ) ⊇
Nn, which leads to P (LE,Σ(β)) ⊇ b+ g · Nn.

Now, assume that there is an infinite sequence (βi)i≥0 over PatΣ such that
LE,Σ(α) ⊃ LE,Σ(βi) ⊃ LE,Σ(βi+1) ⊃ S for every i ≥ 0. Then there is an infinite
sequence (Gβi

)i≥0 of finite subsets of N with, for every i ≥ 0, P (LE,Σ(βi)) =
b + g · lin(Gβi

) and lin(Gβi
) ⊃ lin(Gβi+1) ⊃ Nn. As Nn is cofinite, such an

infinite sequence cannot exist – therefore, due to Observation 5, there must be
some pattern that is E-descriptive of S. 2

5.2. Proof of Theorem 14
In order to prove Theorem 14, we define LΣ through the infinite sequence

of patterns αi, i ∈ N, given by Definition 13 in such a way that the words of
LΣ are structurally so close to the patterns αi that, for every pattern δ ∈ PatΣ

14

with LE,Σ(δ) ⊇ LΣ, there is a j ∈ N with LE,Σ(δ) ⊃ LE,Σ(αj) ⊃ LΣ. Thus,
regardless of how closely LE,Σ(δ) approximates LΣ, there is always an αj that
provides a better description of LΣ.

Before we define LΣ, we wish to support our subsequent reasoning by stating
that, for sufficiently large i ∈ N, the patterns αi introduced in Definition 13 can
be given as follows:

αi = (((((. . . ((((y2x1)2x2)2x3)2x4)2 . . . xi−4)2xi−3)2xi−2)2xi−1)2xi)2

(xi(xi−1(xi−2(xi−3(xi−4 . . . (x4(x3(x2(x1z
2)2)2)2)2 . . .)2)2)2)2)2.

As briefly introduced in Section 4, LΣ is an infinite union of E-pattern languages.
The corresponding patterns are derived from the patterns αi by a morphism
ψ : X∗ → X∗, defined through

ψ(xi) := xi,

ψ(y) := ψ(z) := x0.

Applying ψ to the patterns αi, we receive an infinite sequence of patterns (βi)i≥0;
i. e., we define, for every i ≥ 0, βi := ψ(αi). As the rather simple structure of
ψ suggests, any pattern βj , j ∈ N, is structurally very close to the patterns αj ,
since the only difference is that both y and z are replaced by the variable x0:

β0 = x2
0 x

2
0,

β1 = x2
0x1 x

2
0x1 x1x

2
0 x1x

2
0,

β2 = (x2
0x1x

2
0x1x2) (x2

0x1x
2
0x1x2) (x2x1 x

2
0x1x

2
0) (x2x1x

2
0x1x

2
0),

β3 = (x2
0x1x

2
0x1x2 x

2
0x1x

2
0x1x2 x3) (x2

0x1x
2
0x1x2 x

2
0x1x

2
0x1x2 x3)

(x3 x2x1x
2
0x1x

2
0 x2x1x

2
0x1x

2
0) (x3 x2x1x

2
0x1x

2
0 x2x1x

2
0x1x

2
0),

...
βi = (((((. . . ((((x2

0x1)2x2)2x3)2x4)2 . . . xi−4)2xi−3)2xi−2)2xi−1)2xi)2

(xi(xi−1(xi−2(xi−3(xi−4 . . . (x4(x3(x2(x1x
2
0)2)2)2)2 . . .)2)2)2)2)2.

Finally, for any alphabet Σ with |Σ| ≥ 2, we define LΣ :=
⋃∞
i=0 LE,Σ(βi).

The relation between the patterns βi can again be expressed by a morphism,
namely µ : X∗ → X∗ given by

µ(xi) :=

{
λ if i = 0,
xi−1 if i > 0,

µ(y) := y,

µ(z) := z.

Figuratively speaking, the morphism µ permits us to move downward in the
sequence (βi)i≥0 (note that µ is given for the variables y and z due to technical
reasons arising later). This is illustrated by Figure 1 and further substantiated
by the following lemma:

15

αi+1
ψ

ψ

-

-

φ

?

µ
6

αi

βi+1

βi

Figure 1: Morphic relations between the elements of the sequences (αi)i≥0 and (βi)i≥0.

Lemma 19. For all i, j ≥ 0, µj(βi+j) = βi.

Proof. If j = 0, the claim is trivially true. We now consider j = 1. By
definition, µ(βi+1) = (µ ◦ψ ◦ φ)(αi). The morphism µ ◦ψ ◦ φ : X∗ → X∗ works
as follows:

(µ ◦ ψ ◦ φ)(x) =

(µ ◦ ψ)(xk+1) if x = xk,
(µ ◦ ψ)((y)2x1) if x = y,
(µ ◦ ψ)(x1(z)2) if x = z

=

µ(xk+1) if x = xk,
µ((x0)2x1) if x = y,
µ(x1(x0)2) if x = z

=

{
xk if x = xk,
x0 if x = y or x = z

= ψ(x).

Therefore, µ(βi+1) = ψ(αi) = βi. For all larger values of j, the claim holds by
induction. 2

Referring to Theorem 1, Figure 1 already illustrates certain inclusion re-
lations between the languages generated by the patterns αi and βj , i, j ∈ N.
The following lemma shows that these inclusions are proper, which in partic-
ular means that the patterns in (αi)i≥0 lead to a strictly decreasing chain of
E-pattern languages (as featured by Observation 5). Additionally, the lemma
describes the relation of the given E-pattern languages to LΣ. A summary of
selected inclusion relations is provided by Figure 2.

Lemma 20. For every i ∈ N, the following statements hold:

1. LE,Σ(αi) ⊃ LE,Σ(αi+1) ⊃ LΣ,
2. LE,Σ(αi) ⊃ LE,Σ(βi),
3. LE,Σ(βi) ⊂ LE,Σ(βi+1) ⊂ LΣ.

Proof. For every i ≥ 0, the proper inclusion relations LE,Σ(αi) ⊃ LE,Σ(αi+1),
LE,Σ(βi+1) ⊃ LE,Σ(βi) and LE,Σ(αi) ⊃ LE,Σ(βi) follow from Lemma 2: By

16

definition, αi+1 = φ(αi) and βi = ψ(αi), and, due to Lemma 19, βi = µ(βi+1).
Furthermore, the following claim holds true:
Claim. For every i ∈ N, the patterns αi and βi are morphically primitive.
Proof of Claim. According to Theorem 4, every morphically imprimitive pattern
γ must – among other requirements that need to be satisfied – contain at least
one variable that, for each of its occurrences in γ, has the same left neighbours
or the same right neighbours. More formally, there must be an x ∈ var(γ) such
that there exists a factorisation

γ = γ̂1 χx,L xχx,R γ̂2 χx,L xχx,R γ̂3 . . . γ̂n−1 χx,L xχx,R γ̂n

with n ≥ 2, χx,L, χx,R, γ̂1, γ̂2, . . . , γ̂n ∈ X∗ \ {x} and χx,L 6= λ or χx,R 6= λ.
If we now consider any pattern αi, i ∈ N, then neither y nor z nor xi can

have that property, because they have squared occurrences. More precisely, for
x ∈ {y, z, xi}, αi = . . . xx . . ., which due to χx,L, χx,R ∈ X∗ \{x} implies χx,L =
λ and χx,R = λ. For every xj ∈ var(αi) \ {y, z, xi}, αi = . . . xjxj+1 . . . and
αi = . . . xjy . . ., and this means that χxj ,R = λ. Furthermore, for every such xj ,
αi satisfies αi = . . . xj+1xj . . . and αi = . . . zxj . . ., and this implies χxj ,L = λ.
In other words, there is no variable in αi that, for each of its occurrences, has
the same left neighbours or the same right neighbours. Consequently, αi is
morphically primitive.

If we substitute x0 for y and z in the above reasoning, then it shows that
every βi, i ∈ N, is morphically primitive, too. This proves the correctness of the
Claim. 2(Claim)
Finally, according to Theorem 3, φ, ψ and µ are not imprimitivity morphisms
for the patterns they are applied to; by definition, none of the morphisms in
question is a renaming of any of the patterns involved. Thus, all conditions
of Lemma 2 are satisfied, and this directly proves the correctness of our initial
statement. In addition to this, these inclusion relations immediately imply
LE,Σ(αi) ⊃ LE,Σ(βj) for all i, j ≥ 0.

For every i ≥ 0, the inclusion LΣ ⊇ LE,Σ(βi) follows from the defini-
tion of LΣ, which in turn immediately leads to LΣ 6= LE,Σ(βi), as otherwise
LE,Σ(βi+1) ⊃ LE,Σ(βi) would not be satisfied.

By definition, for every w ∈ LΣ, there is an i ≥ 0 with w ∈ LE,Σ(βi); and
therefore, w ∈ LE,Σ(αj) for every j ≥ 0, which implies LE,Σ(αj) ⊇ LΣ. Finally,
LE,Σ(αj) = LΣ would contradict LE,Σ(αj) ⊃ LE,Σ(αj+1) ⊇ LΣ. 2

Regarding the possible existence of a pattern δ that is E-descriptive of LΣ,
the language LE,Σ(δ) must, by definition, not be a superlanguage of any of the
E-pattern languages in the strictly decreasing chain established by Lemma 20.
More precisely, for every pattern δ ∈ PatΣ, if there is an i ≥ 0 with LE,Σ(δ) ⊇
LE,Σ(αi), we have

LE,Σ(δ) ⊇ LE,Σ(αi) ⊃ LE,Σ(αi+1) ⊃ LΣ,

which leads to the following lemma:

17

LE,Σ(α0) ⊃ LE,Σ(β0)
∪ ∩

LE,Σ(α1) ⊃ LE,Σ(β1)
∪ ∩

LE,Σ(α2) ⊃ LE,Σ(β2)
∪ ∩

LE,Σ(α3) ⊃ LE,Σ(β3)
∪ ∩

LE,Σ(α4) ⊃ LE,Σ(β4)
∪ ∩
...

...

Figure 2: Inclusion relations between the E-pattern languages of αi and βj , i, j ≥ 0.

Lemma 21. If δ ∈ PatΣ and LE,Σ(δ) ⊇ LE,Σ(αi) for some i ≥ 0, then δ is not
E-descriptive of LΣ.

Therefore, although the language that is generated by a pattern that is E-
descriptive of LΣ (if any) has to contain every language LE,Σ(βi), it may not
contain any single language LE,Σ(αi). The main idea of our construction is that
this requirement is inherently contradictory, as we shall see that whenever a
pattern δ can generate every language LE,Σ(βi), then δ can generate almost all
of the languages LE,Σ(αi) as well.

We now assume to the contrary that there is a pattern δ ∈ PatΣ that is
E-descriptive of LΣ. As λ ∈ LΣ ⊆ LE,Σ(δ), δ cannot contain any terminals.
Therefore, Theorem 1 permits us to describe all relevant inclusion relations
through morphisms.

According to Theorem 1, for every i ∈ N, there is a morphism θi : X∗ → X∗

such that θi(δ) = βi, since LE,Σ(δ) ⊇ LE,Σ(βi) holds by definition. We now
choose an infinite sequence of morphisms (θi)i≥0 such that for every i ≥ 0,

1. θi(δ) = βi, and
2. θi erases as many variables of δ as possible; i. e., for every morphism ρ

with ρ(δ) = θi(δ) = βi,

|{x ∈ var(δ) | ρ(x) = λ}| ≤ |{x ∈ var(δ) | θi(x) = λ}|.

Such a sequence must exist, as var(δ) is finite. Furthermore, we choose integers
m,n such that θm and θm+n erase exactly the same variables of δ; i. e., for all
x ∈ var(δ), θm(x) = λ if and only if θm+n(x) = λ. Again, this is possible due
to var(δ) being finite. Due to technical reasons and without loss of generality,
we assume m,n ≥ 2.

As we shall see, this choice allows us to modify θm+n in such a way that
the resulting morphism maps δ to αm+1, which (according to Lemma 21) leads
to the desired contradiction. Our modification mostly targets those variables

18

in var(δ) that contain occurrences of xn−1 in their images under θm+n. To this
end, we define

X̂ := {x ∈ var(δ) | xn−1 ∈ var(θm+n(x))},

X̂L := {x ∈ X̂ | θm+n(x) contains xn−2xn−1, xn−1xn or xn−1x0 as a factor},

X̂R := {x ∈ X̂ | θm+n(x) contains xn−1xn−2, xnxn−1 or x0xn−1 as a factor}.

In order to construct a well-defined morphism, we need to show that X̂R and X̂L

form a partition of X̂; as we shall see, X̂L contains exactly those variables that
are mapped to occurrences of xn−1 in the left side of βm+n, while X̂R contains
those variables that are mapped to occurrences on the right side. Then we can
use these variables as “anchors” for a modification of θm+n that permits us to
obtain αn+1 from δ.

Our corresponding reasoning is based on the following insight:

Lemma 22. For every x ∈ var(δ), if θm+n(x) contains a variable xi with i < n,
then θm+n(x) also contains a variable xj with j ≥ n.

Proof. To begin with, recall that θm+n(δ) = βm+n and (µn ◦ θm+n)(δ) = βm
(cf. Lemma 19). Assume to the contrary that there is an x ∈ var(δ) such that
var(θm+n(x)) 6= ∅ and var(θm+n(x)) ⊆ {x0, . . . , xn−1}. Note that for all n ≥ 0,

µn(xi) =

{
λ i < n,

xi−n i ≥ n.

Therefore, µn(xi) = λ if and only if i < n; and thus (µn ◦ θm+n)(x) = λ.
Moreover, for every y ∈ var(δ), if θm+n(y) = λ, then (µn◦θm+n)(y) = λ. But

θm and θm+n erase exactly the same variables of δ. Thus, although µn ◦ θm+n

erases more variables than θm, (µn ◦ θm+n)(δ) = βm = θm(δ) holds, which is a
contradiction to the second criterion in our choice of (θi)i≥0. 2

Note that this implies that, for all x ∈ X̂, |θm+n(x)| ≥ 2. Now we can prove
that X̂L and X̂R form a partition of X̂:

Lemma 23. X̂L ∪ X̂R = X̂ and X̂L ∩ X̂R = ∅.

Proof. To see that X̂L ∪ X̂R = X̂ must hold, recall the shape of βm+n:

βm+n =((. . . (((. . . ((x0)2x1)2 . . . xn−2)2xn−1)2xn)2 . . .)2xm+n)2

(xm+n(. . . (xn(xn−1(xn−2 . . . (x1(x0)2)2 . . .)2)2)2 . . .)2)2.

Due to Lemma 22, |θm+n(x)| ≥ 2 for each x ∈ X̂. Thus, every θm+n(x) contains
not only an occurrence of xn−1, but at least one left or right neighbour. If some
occurrence of xn−1 lies in the left half of βm+n, its left neighbour is always an
occurrence of xn−2 (recall that n ≥ 2), and its right neighbour is either xn or
x0. On the other hand, if it lies in the right half of βm+n, its right neighbour is

19

always xn−2, and its left neighbour is either x0 or xn. Thus, if some x ∈ X̂ is
mapped to an occurrence of xn−1 in the left half of βm+n, θm+n(x) contains a
factor xn−2xn−1, xn−1xn or xn−1x0, and x ∈ X̂L. Likewise, if it is mapped to
an occurrence in the right half, θm+n(x) contains xn−1xn−2, xnxn−1 or x0xn−1,
and x ∈ X̂R. Therefore, X̂L ∪ X̂R = X̂.

In order to prove disjointness, we make another structural observation: We
can safely assume that every variable in δ occurs at least twice – otherwise
LE,Σ(δ) = Σ∗ ⊃ LE,Σ(α0) would hold, and δ would not be E-descriptive of
LΣ according to Lemma 21. Thus, there is no variable x such that xm+nxm+n

is a factor of θm+n(x), as xm+nxm+n occurs only once in βm+n. This means
that xm+nxm+n forms an insurmountable barrier: For every occurrence of a
variable from var(δ), its image under θm+n lies either in the left or the right
half of βm+n. But if this image is longer than a single letter, the images of
all occurrences of this variable must be mapped to the same side of βm+n.
According to Lemma 22, this is true for all variables of X̂. Therefore, for every
x ∈ X̂, either x ∈ X̂L or x ∈ X̂R holds, which implies X̂L ∩ X̂R = ∅. 2

This permits us to define a morphism ρ : X∗ → X∗ through

ρ(x) :=

(ρ̂L ◦ θm+n)(x) if x ∈ X̂L,
(ρ̂R ◦ θm+n)(x) if x ∈ X̂R,
θm+n(x) otherwise,

where the morphisms ρ̂L, ρ̂R : X∗ → X∗ are given by

ρ̂L(x) :=

{
y if x = xn−1,
x otherwise,

ρ̂R(x) :=

{
z if x = xn−1,
x otherwise.

According to Lemma 23, the morphism ρ is well-defined, and, as to be proven
next, (µn−1 ◦ ρ)(δ) = αm+1. Applying ρ to δ leads to

ρ(δ) =((. . . (((. . . ((x0)2x1)2 . . . xn−2)2y)2xn)2 . . .)2xm+n)2

(xm+n(. . . (xn(z(xn−2 . . . (x1(x0)2)2 . . .)2)2)2 . . .)2)2,

and, as (m+ n)− (n− 1) = m+ 1 and µ(xi) = λ for every i ≤ n− 2, we obtain

(µn−1 ◦ ρ)(δ) = ((. . . ((y)2x1)2 . . .)2xm+1)2(xm+1(. . . (x1(z)2)2 . . .)2)2

= αm+1.

The morphism µn−1◦ρ maps δ to αm+1, and, thus, Theorem 1 immediately leads
to LE,Σ(δ) ⊇ LE,Σ(αm+1). Therefore, due to Lemma 21, the pattern δ cannot
be E-descriptive of LΣ. This contradiction concludes the proof of Theorem 14.
2

5.3. Proof of Corollary 16
Our proof of Corollary 16 is based on the following technical lemma, that is

given by Jiang et al. [8] in the context of their proof of Theorem 1:

20

Lemma 24 (Jiang et al. [8]). Let Σ be an alphabet, Σ ⊇ {a, b}, and let
α, β ∈ X+ be terminal-free patterns, k := |β|. Let the morphism τk : X∗ → X∗

be given by, for every i ∈ N,

τk(xi) := abki+1a abki+2a . . . abki+k−1a abki+ka.

Then τk(α) ∈ LE,Σ(β) if and only if there exists a morphism h : X∗ → X∗

satisfying h(β) = α.

Furthermore, we wish to point out that the patterns αi and βi, i ∈ N, referred to
in the present section are defined in Definition 13 and Section 5.2, respectively.

We prove Corollary 16 by giving a thin language LtΣ ⊂ LΣ such that for
every δ ∈ PatΣ with LE,Σ(δ) ⊇ LtΣ and for infinitely many i ≥ 0, there is a
morphism θi : X∗ → X∗ with θi(δ) = βi. Then for every such δ, there is a j ≥ 0
with LE,Σ(δ) ⊃ LE,Σ(αj) ⊃ LtΣ.

Proof. Let a, b ∈ Σ with a 6= b. For every n ≥ 1, we define a substitution
τn : X∗ → Σ∗ by

τn(xi) := abni+1a abni+2a . . . abni+n−1a abni+na,

and we assume that τ0 denotes the constant λ-function. We then define

LtΣ :=
∞⋃
n≥0

τn(βn).

It is easy to see that LtΣ is properly thin, as for every n ≥ 0, |τn(βn)| <
|τn+1(βn+1)|.

We assume to the contrary that there is a pattern δ ∈ PatΣ that is E-
descriptive of LtΣ. First note that – since LE,Σ(αi) ⊃ LE,Σ(αi+1) ⊃ LΣ ⊃ LtΣ
for every i ≥ 0 (see Lemma 20) – there is no j ∈ N with LE,Σ(δ) ⊇ LE,Σ(αj) (as
described by Lemma 21). Furthermore, as τ0(β0) = λ, λ ∈ LtΣ ⊆ LE,Σ(δ) holds,
and therefore δ must be terminal-free.

According to Lemma 24, for every δ ∈ X+ and every n ≥ |δ|, τn(βn) ∈
LE,Σ(δ) if and only if there is a morphism θn : X∗ → X∗ such that θn(δ) = βn.
Furthermore, for every m < n and the morphism µ introduced in Section 5.2,
(µn−m ◦ θn)(δ) = µn−m(βn) = βn−(m−n) = βm holds. Thus, there is an infinite
sequence (θi)i≥0 with θi(δ) = βi for all i ≥ 0, which allows us to construct a
morphism that maps δ to some αj just as in the proof for Theorem 14. Thus,
LE,Σ(δ) ⊃ LE,Σ(αj) ⊃ LtΣ, and this contradicts our assumption of δ being
E-descriptive of LtΣ. 2

6. Conclusions and Further Directions of Research

In the present paper, we have studied the existence and nonexistence of
patterns that are descriptive of a set of strings. We have explained that this
question is related to the existence of infinite strictly decreasing chains of pattern

21

languages. Our main result has demonstrated that there exist infinite languages
over alphabets of at least two letters that do not have an E-descriptive pattern.

This insight leads to the question of characteristic criteria describing infi-
nite languages without an E-descriptive pattern. Our main proof has given one
example of such languages, namely a particular infinite union of E-pattern lan-
guages. Although we have demonstrated that an infinite properly thin language
can be substituted for this union, we anticipate that only very special languages
(and very special infinite strictly decreasing chains of E-pattern languages) can
be used for such a proof. Thus, we expect the nonexistence of E-descriptive pat-
terns to be a rare phenomenon. In addition to the said criteria, we consider it
worthwhile to further investigate the existence of efficient procedures finding de-
scriptive patterns of given languages (for those cases where descriptive patterns
exist). So far, this question has only been answered for NE-descriptive patterns
of finite languages (see Angluin [1]), demonstrating that no such procedure can
have polynomial runtime (provided that P 6=NP). We feel that a more pleasant
result might be possible for E-descriptive patterns.

References

[1] Angluin, D., 1980. Finding patterns common to a set of strings. Journal of
Computer and System Sciences 21, 46–62.

[2] Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D., 1998. Approaches to
the automatic discovery of patterns in biosequences. Journal of Computa-
tional Biology 5, 279–305.

[3] Dumitrescu, S., Păun, G., Salomaa, A., 1996. Languages associated to finite
and infinite sets of patterns. Revue Roumaine de Mathématiques Pures et
Appliquées 41, 607–625.

[4] Ehrenfeucht, A., Rozenberg, G., 1979. Finding a homomorphism between
two words is NP-complete. Information Processing Letters 9, 86–88.

[5] Freydenberger, D., Reidenbach, D., 2009. Existence and nonexistence of
descriptive patterns. In: Proc. 13th International Conference on Devel-
opments in Language Theory, DLT 2009. Vol. 5583 of Lecture Notes in
Computer Science. pp. 228–239.

[6] Freydenberger, D., Reidenbach, D., 2010. Bad news on decision problems
for patterns. Information and Computation 208, 83–96.

[7] Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S., 1994. Pattern
languages with and without erasing. International Journal of Computer
Mathematics 50, 147–163.

[8] Jiang, T., Salomaa, A., Salomaa, K., Yu, S., 1995. Decision problems for
patterns. Journal of Computer and System Sciences 50, 53–63.

22

[9] Kari, L., Rozenberg, G., Salomaa, A., 1997. L systems. In: Rozenberg,
G., Salomaa, A. (Eds.), Handbook of Formal Languages. Vol. 1. Springer,
Ch. 5, pp. 253–328.

[10] Mateescu, A., Salomaa, A., 1997. Patterns. In: Rozenberg, G., Salomaa,
A. (Eds.), Handbook of Formal Languages. Vol. 1. Springer, Ch. 4.6, pp.
230–242.

[11] Ng, Y., Shinohara, T., 2008. Developments from enquiries into the learn-
ability of the pattern languages from positive data. Theoretical Computer
Science 397, 150–165.

[12] Reidenbach, D., Schneider, J., 2009. Morphically primitive words. Theoret-
ical Computer Science 410, 2148–2161.

[13] Rozenberg, G., Salomaa, A., 1997. Handbook of Formal Languages. Vol. 1.
Springer, Berlin.

[14] Salomaa, K., 2004. Patterns. In: Martin-Vide, C., Mitrana, V., Păun, G.
(Eds.), Formal Languages and Applications. No. 148 in Studies in Fuzziness
and Soft Computing. Springer, pp. 367–379.

[15] Shinohara, T., 1982. Polynomial time inference of extended regular pattern
languages. In: Proc. RIMS Symposia on Software Science and Engineering,
Kyoto. Vol. 147 of Lecture Notes in Computer Science. pp. 115–127.

[16] Wilf, H., 1994. generatingfunctionology, 2nd Edition. Academic Press, New
York.

[17] Wright, K., 1989. Identification of unions of languages drawn from an iden-
tifiable class. In: Proc. 2nd Annual Workshop on Computational Learning
Theory, COLT 1989. pp. 328–333.

23

