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Abstract 
 
The two-terminal equivalent network of a three-terminal electrochemical cell is 
derived. This reveals, in a particularly clear way, how various artefacts arise from the 
layout of the cell. It is found that the working electrode response appears in series 
with an inductive artefact, and both appear in parallel with a capacitive artefact. 
Advice is given on how to diminish the size of these artefacts. 
 
 
1. Introduction 
 
The present work was motivated by a desire to gain a better understanding of the 
artefacts that arise when measurements are made on three-terminal electrochemical 
cells. 
 
The principal advantage of three-terminal electrochemical cells is that they permit the 
use of potentiostats over a wide range of conditions. But a disadvantage is that they 
introduce some subtle artefacts in recorded data, whose origins are not always 
understood, and whose removal is problematical. To gain insight into these artefacts, 
we here develop a lumped equivalent network model of a typical three-terminal 
electrochemical cell. 
 
Before beginning, it must be emphasized that we are concerned only with artefacts 
that arise inside three-terminal cells, and not at all with artefacts that arise inside 
associated instrumentation. Our purpose is pure: it is to find the absolute limitations 
that the cell design places upon any kind of dynamic measurement, even one made by 
a hypothetically “perfect” (artefact free) instrument. 
 
Of course, the reader will be aware that a vast literature exists on the topic of artefacts 
arising from instrument design, stretching back to the invention of the potentiostat by 
Hickling [1]. This literature is, however, beside the point for present purposes, for we 
seek the equivalent network of a three-terminal cell valid even when it is disconnected 
from any measuring instrument. Instrumental artefacts belong, in fact, to a secondary 
layer of problems, quite distinct from the primary artefacts under consideration here. 
 
To place the present work in its historical context, our goal is to correct a widespread 
misconception of long standing, to the effect that dynamic measurements can be 
carried out on three-terminal electrochemical cells without necessarily introducing 
artefacts. It turns out that you can’t – the best that you can do is minimise them. And, 
as we shall show, the reason that artefacts are unavoidable is that stray capacitances 
cannot be decreased to values less than those caused by the dielectric constant of free 
space. 
  
When we first approached this problem, we feared that the mathematical analysis 
would be too complex for ready comprehension, because we found that the lumped 
equivalent network of a three-terminal electrochemical cell had a three-fold axis of 
symmetry. But then, almost incredibly, we discovered that a two-terminal equivalent 
network could be derived that had the same impedance response at all frequencies as 
the original network. This was entirely unexpected, and was pleasing because it 
contained only series and parallel connections, and hence was very easy to 



 3

understand. The structure of this two-terminal equivalent network forms the central 
result of the present work. 
 
Of course, it is well known that electrochemical cells are systems of spatially 
distributed impedance, so in the very strictest sense they should not be modelled as 
lumped equivalent networks at all. But one has to start somewhere, and one thing that 
can be said in favour of lumped equivalent networks is that they provide powerful 
insights into the mathematical couplings between individual cell components, and 
therefore can be used to improve cell design and minimize experimental artefacts. It is 
also true to say that lumped equivalent networks represent the simplest possible 
couplings between individual cell components, so if you can’t solve the lumped 
equivalent network model, you can’t solve the real thing either.  
 
Given that lumped equivalent networks ignore spatially distributed impedances (and 
hence ignore non-uniform current distributions), we emphasize that the present work 
has the restricted goal of understanding how the couplings between individual cell 
components influence the introduction of artefacts. No claim is made that our lumped 
equivalent network model perfectly represents all possible three-terminal cell designs 
under all conceivable conditions. 
 
Now, three-terminal electrochemical cells typically have three external nodes that are 
accessible to the instrumentation – the working electrode, the counter electrode, and 
the reference electrode. These are connected internally via the electrolyte solution, 
and externally via the instrumentation. Between them are stray capacitances that 
consist, largely, of the input capacitances of the measuring instruments, plus the 
geometrical capacitances arising from the relative placements of the cell components 
in space. This creates six current paths that complicate the acquisition of experimental 
data, and these are shown diagrammatically in Figure 1. 
 

 
Fig. 1.  The three-terminal equivalent network of a three-terminal electrochemical cell.  Note the three-
fold axis of symmetry, which greatly complicates the network analysis. 
 
Closed circles indicate the three accessible nodes. The single, central, open circle 
represents an inaccessible node, which is actually a point in solution just beyond the 
tip of the Luggin capillary (though henceforth, for brevity, we shall refer to it simply 
as “the tip of the Luggin capillary”). The other symbols have their conventional 
significations. 1R  is the sum of the resistances between the working electrode node 
and the tip of the Luggin capillary, 2R  is the sum of the resistances in the reference 
half-cell (including the interior of the Luggin probe itself), and 3R  is the sum of all 
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the resistances between the tip of the Luggin capillary and the counter electrode node. 
The capacitances 4C , 5C , and 6C  are the unavoidable stray capacitances in the 
system. 
 
To make the mathematical analysis tractable, it is necessary to assume that the 
interfacial impedances of the working, reference, and counter electrodes are pure 
resistances. This allows them to be included in 1R , 2R , and 3R , respectively. It turns 
out that if any of the interfacial impedances is complex, then severe mathematical 
difficulties arise. Though frustrating, this is not prohibiting for present purposes, 
because we are more interested in the couplings between electrodes than in their 
impedances per se. 
 
In a typical experiment on a three-terminal electrochemical cell, a time-varying 
voltage appliedV  is applied between the working electrode and the reference electrode, 
and the resulting current observedI  is observed flowing between the working electrode 
and the counter electrode. Since what is sought is a measure of the resistance 1R , the 
usual method of proceeding is to form the quotient 
 

observed
observed

applied R
I
V

=                                                                                    ...(1) 

 
and then to assume that 1observed RR ≈ . But how good is this assumption? We ought 
to know, because virtually all electrochemists make this assumption tacitly while 
plotting voltammograms, fast transients, and impedance plane plots, without ever 
really questioning the validity of the procedure.  Yet the procedure must always be at 
least slightly in error because observedI  and appliedV  are measured across different 
parts of the electrochemical cell. Indeed, on some occasions the procedure must fail 
completely, such as when 2R  and 3R  are much larger than 1R , and the current is 
rapidly varying. In the next section we explore this possibility by deriving the two-
terminal equivalent network that yields exactly the same impedance as the three-
terminal network given in Figure 1, and then investigate how the values of the two-
terminal network elements affect the overall response. 
 
Anticipating our central result, we shall find that the main consequence of measuring 
the current and voltage across different nodes of a three-terminal electrochemical cell 
is to cause both capacitive and inductive artefacts to appear in experimental data at all 
frequencies above zero hertz. The inductive artefact would probably be the most easy 
to recognise, since it would appear as a “loop” in the fourth quadrant of the complex 
plane of impedance (electrochemical convention). The capacitive artefacts might 
perhaps be less easy to recognise, since they would principally appear in the first 
quadrant, and thus might be difficult to distinguish from real data. However, both 
artefacts would severely affect voltammograms at high scan rates, most obviously by 
distorting their hysteresis. 
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2. Results 
 
The conventional method of calculating the impedance of complex networks is to 
treat them as combinations of series and parallel sub-networks. Unfortunately it is not 
possible to do that for the network shown in Figure 1 because of the three-fold axis of 
symmetry, and more powerful mathematical methods must be sought. Kirchhoff’s 
Rules – which state that the algebraic sum of the currents at any node of a network is 
zero, and that the algebraic sum of the potential differences around any loop of a 
network is zero – immediately spring to mind, but in the present case they yield six 
equations in six unknowns. Although these could actually be solved by the method of 
determinants, the solution would still require the evaluation of seven sixth-order 
determinants, which would be an immensely tedious process to carry out. Therefore to 
speed up the analysis we used Maxwell’s Method, which required the calculation of 
only four loop currents. Since it applied both of Kirchhoff’s Rules at the same time, 
this decreased the number of simultaneous equations to four, and thus accelerated the 
solution. 
 

 
Fig. 2.  The two-terminal equivalent network of a three-terminal electrochemical cell.  Note the 
series/parallel arrangement of elements, which greatly simplifies the network analysis. Asterisks (*) 
indicate experimental artefacts. 
 
Omitting details, the result is shown in Figure 2. This shows the two-terminal 
equivalent network that has the same impedance at all frequencies as the three-
terminal network shown in Figure 1. Asterisks indicate measurement artefacts. The 
illustrated network is the canonical one, which is to say, the one that contains the 
minimum number of circuit elements. Note in particular that the resistance 1R  is in 
series with a shunted inductor, and both are in parallel with a pair of capacitors. These 
features correspond closely with those commonly seen in ac impedance 
measurements on three-terminal electrochemical cells, particularly those having high 
electrical resistances due to poorly-conducting electrolyte solutions. 
  
The elements in the two-terminal equivalent network are related to the elements in the 
three-terminal network by the following transformation formulae: 
 

532* CRRL =                                                                                                       ...(2) 
 

32

32*
RR

RR
R

+
=                                                                                                   ...(3) 
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From these equations, the reader may readily write down the full impedance of the 
two-terminal network by inspection. This is of course identical to the impedance of 
the three-terminal network. It is particularly striking that the inductance *L  appears in 
the two-terminal network, even though no inductor exists in the three-terminal 
network. This is interesting philosophically, since it is a rare example of an 
epiphenomenon in the physical sciences. Such an effect is made possible by the multi-
node nature of the three-terminal network. 
 
 
3. Discussion 
 
The above analysis indicates that inductive and capacitive artefacts necessarily 
contaminate all data from three-terminal electrochemical cells, at all frequencies 
above zero hertz. For cases where the interfacial impedances are simple resistors, the 
artefacts are described exactly by Equations (2)-(6). For cases where the interfacial 
impedances are more complex, the artefacts are even more complicated and their 
analysis remains an unsolved problem.  However, we note that the values of *L  and 

*R  are independent of 1R , so the inductive part of the equivalent circuit remains 
unchanged even if 1R  is replaced by a complex impedance 1Z . 
 
From Equations (2)-(6) it is apparent that the inductive artefact can be diminished, but 
not entirely removed, by decreasing 2R  and 3R . Metal reference electrodes, large 
counter electrodes, well-conducting solutions, wide-bore Luggin capillaries, and cells 
without separators, will all help. 
 
The capacitive artefacts are more problematic, since they depend on the absolute sizes 
of 4C , 5C , and 6C , and these cannot generally be decreased below about 10pF due to 
the finite dielectric constant of air. More generally, their values are probably about 
1nF. Moreover, the total parallel capacitance is 
 
 ****

total CCC +=  
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which is much greater than 64 CC +  if the factors ( ) 121 RRR +  and ( ) 131 RRR +  are 
large. In these cases the sizes of the capacitive artefacts could be significantly 
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diminished by decreasing 2R  and 3R . On the other hand, if 1R  is larger than 2R  and 

3R , then the factors ( ) 121 RRR +  and ( ) 131 RRR +  would be approximately unity 
and there would be little to be gained as regards the capacitive artefacts by decreasing 

2R  and 3R . In those cases it would be better to concentrate on decreasing 4C  and 

6C . 
 
Before starting experiments, it would be helpful to have some clear guidelines as to 
how the inductive and capacitive artefacts might be avoided. These can now be 
suggested, based on tracing the possible current paths through the two-terminal 
equivalent network shown in Figure 2. For example, in order to avoid the inductive 
artefact, it suffices for just one of the following three criteria to be met: 
 

2R  << 1R                                                                                                               ...(8) 
 

3R  << 1R                                                                                                               ...(9) 
 
or 
 

532 CRRω  << 1R                                                                                                  ...(10) 
 
where ω  is the frequency of the perturbation. Using the same approach it is possible 
to derive sufficient criteria for avoiding both artefacts at the same time. These turn 
out to be 
 

532 CRRω  << 1R  << 
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C
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This important result can be summed up in one phrase:  to avoid the inductive and 
capacitive artefacts, make everything small except 1R . (By everything we mean the 
values of ω , 2R , 3R , 4C , 5C , and 6C .) The value of 1R , which should henceforth be 
treated as an experimental variable, and which can be varied by changing the 
electrode diameter, should be adjusted until it is roughly midway between the 
inequalities in Equation (11). A satisfying feature of Equation (11) is that the range of 
values available to 1R  increases as ω  decreases, which is what we would have 
predicted. 
 
Another satisfying feature of Equation (11) is that the minimization of the values of 
ω , 2R , 3R , 4C , 5C , and 6C  is the same recommendation as that usually given to 
avoid the occurrence of artefacts in instrumentation such as potentiostats. So no 
compromises are needed in fulfilling these requirements. 
 
Previous work on the theory of artefacts in three-terminal measurements is scant, but 
we make special mention of the earlier work of Göhr et al. [2], whose theoretical 
results (in effect) describe certain fractions of the network shown in Figure 1. We also 
note that the transformation formulae given in ref [3] could be used to derive yet more 
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forms of the two-terminal equivalent network shown in Figure 2, though none would 
be so elegant. Moreover, a conductive shunt could be used to decrease the size of the 
resistance 2R , as pointed out in ref [4]. Overall, we emphasize that all the artefacts 
discussed in the present work arise in the cell and none in the potentiostat, and hence 
would still appear even if the potentiostat were perfect. In fact, it bears repeating that 
the potentiostatic principle is strictly valid only at zero frequency (steady current), and 
that at all other frequencies the three-terminal cell response necessarily includes 
inductive and capacitive artefacts. The onus is therefore on the experimenter to ensure 
that these artefacts are negligibly small. Equation (11) indicates how this can be 
achieved. 
 
We also point out the rather obvious fact that the inductive artefact can be removed 
entirely by (effectively) shorting the reference and counter electrodes, i.e. by reverting 
to a two-electrode configuration, and using a counter electrode much larger than the 
working electrode to make sure that the counter electrode’s potential remained 
constant. Although two-electrode cells are undesirable in many instances, it would 
nevertheless be a useful check that any purported inductive effects were real. 
 
Finally, we remark that Figure 1 is the full equivalent network of a three-terminal 
electrochemical cell, and can therefore readily be adapted for the study of unknown 
systems by replacing 1R  by 1Z , the sought-after impedance of the working electrode. 
Indeed, for those researchers involved in impedance modelling, we advise that, in 
future, the textbook “equivalent circuits” of electrochemical systems be embedded in 
the full equivalent network in Figure 1, to test that cell artefacts are absent, or if they 
are present, to obtain the most accurate modelling of 1Z . 
 
In summary, the moral of the present work is that great dangers lurk in the naive 
interpretation of time-varying data obtained from three-terminal electrochemical cells, 
unless special care is taken to minimize the internal resistance of the reference and 
counter electrode compartments. In fact, the present work suggests that a very large 
fraction of the literature on the ac impedance of corroding systems in pure water and 
dilute solutions must certainly be incorrect. Also, many of the inductive loops in the 
complex plane of impedance, reported widely in the literature, are probably not due to 
interesting electrochemistry, but are simply artefacts caused by excessive values of 

2R  and 3R . These now need to be re-examined on a case-by-case basis.  
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Figure Captions 
 
Fig. 1.  The three-terminal equivalent network of a three-terminal electrochemical 
cell.  Note the three-fold axis of symmetry, which greatly complicates the network 
analysis. 
 
Fig. 2.  The two-terminal equivalent network of a three-terminal electrochemical cell.  
Note the series/parallel arrangement of elements, which greatly simplifies the network 
analysis. Asterisks (*) indicate experimental artefacts. 
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