
 
 
 

This item was submitted to Loughborough’s Institutional Repository by the 
author and is made available under the following Creative Commons Licence 

conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288389104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Under consideration for publication in J. Fluid Mech. 1

Reflecting tidal wave beams and local
generation of solitary waves in the ocean

thermocline

By T. R. AKYLAS1, R. H. J. GRIMSHAW2,

S. R. CLARKE3
AND ALI TABAEI1

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

2Department of Mathematical Sciences, Loughborough University, Leics LE11 3TU, England
3School of Mathematical Sciences, Monash University, Vic. 3800, Australia

(Received )

It is generally accepted that ocean internal solitary waves can arise from the interaction
of the barotropic tide with the continental shelf, which generates an internal tide that in
turn steepens and forms solitary waves as it propagates shorewards. Some field observa-
tions, however, reveal large-amplitude internal solitary waves in deep water, hundreds of
kilometers away from the continental shelf, suggesting an alternative generation mecha-
nism: tidal flow over steep topography forces a propagating beam of internal tidal wave
energy which impacts the thermocline at a considerable distance from the forcing site
and gives rise to internal solitary waves there. Motivated by this possibility, a simple
nonlinear long-wave model is proposed for the interaction of a tidal wave beam with
the thermocline and the ensuing local generation of solitary waves. The thermocline is
modelled as a density jump across the interface of a shallow homogeneous fluid layer
on top of a deep uniformly stratified fluid, and a finite-amplitude propagating internal
wave beam of tidal frequency in the lower fluid is assumed to be incident and reflected
at the interface. The induced weakly nonlinear long-wave disturbance on the interface is
governed in the far field by an integral–differential equation which accounts for nonlinear
and dispersive effects as well as energy loss owing to radiation into the lower fluid. De-
pending on the intensity of the incident beam, nonlinear wave steepening can overcome
radiation damping so a series of solitary waves may arise in the thermocline. Sample
numerical solutions of the governing evolution equation suggest that this mechanism is
quite robust for typical oceanic conditions.

1. Introduction

Internal solitary waves are commonly observed in the coastal oceans and are often

modelled by evolution equation of the Korteweg–de Vries type, appropriate for shallow

waters (see, for instance, Grimshaw 2001 and Helfrich & Melville 2006). In coastal re-

gions it is generally accepted that these can be generated through the interaction of
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the barotropic tide with the continental shelf, generating an internal tide that in turn

steepens and forms internal solitary waves as it propagates shorewards.

However, based on field observations in the Bay of Biscay, New & Pingree (1990) first

suggested that ocean internal solitary waves may instead arise from the interaction of

a propagating internal tidal beam with the thermocline. According to this scenario, the

internal tidal beam is itself generated by tidal flow over steep topography near the shelf

break, but impacts the thermocline at a considerable distance from the forcing site and

thereby generates internal solitary waves propagating offshore in deep water. Their field

data, in particular, revealed large-amplitude solitary waves about 150 km away from the

shelf break, making it rather unlikely for these waves to have travelled this far along

the thermocline without experiencing significant dissipation. Instead, New & Pingree

(1990, 1992) argued that these waves were generated locally by a propagating beam of

internal tidal energy which had originated at the topography and, after reflecting from

the bottom, encountered the thermocline close to the position where the solitary waves

were found. While the original observations had focused on the northern and central

parts of the Bay of Biscay, recently Azevedo, da Silva & New (2006) presented evidence

from satellite images that the southern part of this bay is also a site with high-level

internal solitary-wave activity, and the same local generation mechanism is applicable

there as well.

Gerkema (2001) studied theoretically the local generation of solitary waves by internal

tides in a two-layer flow configuration, representing the thermocline as a density jump

across the interface of a relatively shallow homogeneous fluid layer on top of a finite-depth

stratified fluid. The bottom topography had a smooth shelf profile, and a time-harmonic

current of tidal frequency was used as forcing. Gerkema (2001) computed the linear

hydrostatic response as an expansion in terms of the long-wave modes of this two-fluid
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system, and argued that local generation of solitary waves is the result of a two-stage

process: an internal tidal beam originating at the topography first hits the thermocline

and, via an essentially linear mechanism, excites an appreciable long-wave disturbance

there, only if the thermocline is moderately strong – a condition that apparently was

met in the Bay of Biscay according to the field data. Then, in the course of propagating

along the thermocline, the disturbance triggered by the beam experiences the effects of

dispersion and nonlinearity, thereby forming solitary waves. This scenario is supported

by numerical simulations using a coupled equation system that allows for dispersive and

nonlinear effects in the modal expansion of the response; the solitary waves gradually

decay though, owing to leakage of energy in the lower fluid as they propagate along the

thermocline.

In the present study, the thermocline again is modelled as a density jump across the

interface of a homogeneous layer lying on top of a stratified fluid. However, attention is

focused on the reflection of a tidal beam that is incident at the interface from the lower

fluid, assumed to be infinitely deep, as well as on the evolution of the resulting interfacial

disturbance, ignoring the process by which the beam is generated. This simplified ap-

proach accounts for the essential ingredients of the mechanism responsible for the local

generation of solitary waves, while avoiding a modal expansion.

Internal wave beams derive from the anisotropic nature of wave propagation in strat-

ified fluids, since gravity provides a preferred direction. Ocean internal wave beams, in

particular, are excited by tidal flow over bottom topography as demonstrated by theo-

retical models (Bell 1975, Khatiwala 2003, Lamb 2004) as well as field measurements.

In the Bay of Biscay, for instance, Pingree & New (1989) report observations of a tidal

wave beam with amplitudes ranging from approximately 150m near the shelf break to

100m further out into the deep ocean.
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In the two-fluid configuration considered here, apart from internal waves propagating

in the lower fluid with frequencies less than the buoyancy (Brunt–Väisälä) frequency, it

is also possible to have interfacial waves; these propagate without leaking energy into

the lower fluid, however, only for frequencies above the Brunt–Väisälä frequency. As a

result, ignoring nonlinear effects, interfacial disturbances owing to a tidal wave beam,

that is incident and reflected at the interface, would be attenuated far from the region

of forcing. This suggests that solitary waves could arise from the interaction of a beam

with the thermocline only if radiation damping is relatively light, thus allowing nonlinear

steepening to come into play.

Assuming that interfacial disturbances are long relative to the depth of the upper fluid

layer, a condition that is met for the upper well-mixed layer of the ocean, we find that

light radiation damping results under flow conditions analogous to those of a moderately

strong thermocline defined by Gerkema (2001). In this flow regime, nonlinear-steepening

and dispersive effects can be brought into balance with radiation damping, and the

far-field evolution of the interfacial disturbance induced by a finite-amplitude incident

and reflected wave beam is governed by an integral–differential equation of the type

derived in Maslowe & Redekopp (1980). Based on numerical solutions of this evolution

equation, subject to forcing from the incident and reflected wave beam, it is concluded

that nonlinear steepening can overcome radiation damping and solitary waves may form

under typical oceanic conditions, supporting the local generation mechanism suggested

by New & Pingree (1990, 1992) and Gerkema (2001).

It appears that the nonlinear long-wave model proposed here could be generalized to

account for the Earth’s rotation, which is expected to modify the propagation direction

of tidal wave beams and also to contribute to the attenuation of solitary waves via the
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Figure 1. Sketch of the two-fluid configuration. The upper fluid layer is homogeneous with
density ρ = ρ0(1 − ∆). The lower fluid is uniformly stratified and Boussinesq with reference
density ρ0 and constant buoyancy frequency N0.

generation of dispersive tails (Grimshaw et al. 1998). These effects are not likely to alter

the local generation mechanism of solitary waves in an essential way, however.

2. Flow model and linear response

Our analysis is based on an inviscid two-fluid configuration sketched in figure 1. A

homogeneous fluid of depth h (0 < z < h), representing the upper well-mixed layer of the

ocean, is bounded by a rigid lid and lies on top of an infinitely deep fluid (−∞ < z < 0)

which, for simplicity, is taken to be uniformly stratified with (constant) Brunt–Väisälä

frequency N0, and the Boussinesq approximation is made. Denoting the reference density

in the lower fluid by ρ0 and the constant density of the upper layer by ρ0(1 − ∆), the

density jump ρ0∆ across the interface z = 0 represents the thermocline.

This two-fluid system supports interfacial gravity waves owing to the density jump
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at z = 0 as well as internal gravity waves owing to the buoyancy force in the lower

fluid; the former are akin to trapped waves propagating along the ocean thermocline,

while the latter can form wave beams similar to those induced by tidal flow over bottom

topography. Our interest centres on the possible generation of interfacial solitary waves

by an internal wave beam that is incident and reflected at the interface. To address this

issue, we shall study the reflection of a finite-amplitude beam at the interface and the

subsequent evolution of the resulting interfacial disturbance.

We begin by summarizing the salient features of the linear response; while nonlin-

ear wave steepening is necessary for the formation of solitary waves, the linear response

provides motivation for the appropriate scaling of the nonlinear problem in §3. In dimen-

sionless variables, using h as length scale and h/c0 as time scale, c0 =
(

gh∆/(1−∆)
)1/2

being the long-interfacial-wave speed, the governing equations for linear disturbances

consist of Laplace’s equation

φxx + φzz = 0 (0 < z < 1) (2.1)

for the velocity potential φ(x, z, t) in the upper fluid layer, and

(ζxx + ζzz)tt + µ2ζxx = 0 (−∞ < z < 0) (2.2)

for the vertical particle displacement ζ(x, z, t) in the lower fluid, where

µ =
N0h

c0
. (2.3)

These equations are subject to the boundary condition

φz = 0 (z = 1) (2.4)

at the rigid lid and the following interfacial conditions

ηt = φz = ζt (z = 0), (2.5)

ηxx − φtxx −
1

1 −∆
ζztt = 0 (z = 0). (2.6)
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It is clear from (2.2) that harmonic plane waves, ζ = f(z) exp{i(kx−ωt)}, propagating

along x but confined close to the interface, f(z) → 0 as z → −∞, can be found only if

ω > µ. (2.7)

This condition is also brought out by the dispersion relation of interfacial waves,

ω2 =
k tanh k

1 + (1−µ2/ω2)1/2

1−∆ tanh |k|
, (2.8)

that can be readily obtained from the equation system (2.1)−(2.6), taking ζ → 0 as

z → −∞. According to (2.8), µ is a cut-off frequency below which k is complex, implying

that interfacial waves are evanescent rather than propagating along x when ω < µ.

According to the field observations (New & Pingree 1990), interfacial disturbances are

long compared to h so k $ 1; in this limit, (2.8) can be approximated as

ω2 = k2

{

1 −
(1 − µ2/ω2)1/2

1 −∆
|k| + . . .

}

. (2.9)

Note that, since ω2 ∼ k2 $ 1, ω2 $ µ2 in general; long interfacial waves, therefore, are

strongly evanescent unless µ ∼ k or, in terms of the disturbance horizontal length scale

L,

µ = O(h/L) ⇒ N =
N0L

c0
= O(1). (2.10)

The condition N = O(1), under which long waves can propagate along the interface,

may be interpreted as the interfacial-wave time scale L/c0 being comparable to 1/N0,

the time scale of internal waves propagating in the lower fluid. In this sense, (2.10) is

analogous to the condition of a moderate-strength thermocline suggested by Gerkema

(2001) on the basis of his linear hydrostatic model.

Consider next a propagating harmonic plane internal wave in the lower fluid incident

on the interface at an angle θ to the horizontal (figure 2). The appropriate expressions

for ζ, η and φ are
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Figure 2. A propagating harmonic plane internal wave incident from the lower fluid on the
interface at an angle θ to the horizontal and reflected there. The group velocity cg of the
incoming wave points towards the interface, while that of the reflected wave points in the opposite
direction. The phase speed c is perpendicular to cg.

ζ = exp {i(kx − lz − ωt)} + B exp {i(kx + lz − ωt)} , (2.11)

η = A exp {i(kx − ωt)} , (2.12)

φ = D cosh k(z − 1) exp {i(kx − ωt)} , (2.13)

where k, l > 0 and ω = µ sin θ = µk/(k2 + l2)1/2 according to the familiar dispersion

relation of internal waves. Note that, in keeping with causality, the wavevectors in (2.11)

have been chosen such that the group velocity (and hence the direction of energy trans-

port) associated with the incoming wave points towards the interface, while that of the

reflected wave points in the opposite direction.

The undetermined coefficients A, B and D in (2.11)–(2.13) are found by imposing the

interfacial conditions (2.5) and (2.6). The reflection coefficient, in particular, satisfies

|B|2 = 1 and is consistent with the expression of Delisi & Orlanski (1975) in the short-

wave limit (k ' 1). Of more interest here is A, the amplitude of the induced interfacial
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wave, which in the long-wave limit (k $ 1) can be approximated as

A = −i
sin 2θ

1 −∆

kµ2

k2 − µ2 sin2 θ − i
2kµ2 sin 2θ/(1 −∆)

. (2.14)

As expected, when µ $ 1 so condition (2.10) is satisfied, the poles of A are close to the

real k-axis, corresponding to slightly evanescent interfacial waves.

The interfacial disturbance induced by the reflection of an internal wave beam, incident

on the interface at an angle θ to the horizontal, can be readily found by superposition.

Specifically, an incoming beam with frequency ω = µ sin θ takes the form

ζinc =
e−iωt

2π

∫

∞

0
Q(k) exp{ik(x − z cot θ)}dk, (2.15)

where Q(k) is related to the specific beam profile and k is restricted to k > 0, so that

energy is transported towards the interface in accordance with figure 2. The induced

interfacial disturbance then is

η =
eiωt

2π

∫

∞

0
Q(k)A(k)eikxdk, (2.16)

where A(k) is the known interfacial amplitude for plane-wave reflection, given by (2.14)

in the long-wave limit.

Since the poles of A(k) are away from the real k-axis, the linear response (2.16) is

locally confined, η → 0 as x → ±∞. However, as remarked earlier, in the case µ $ 1, A

has a pole at k = k∗ slightly above the positive k-axis:

k∗ = ω + i
ωµ cos θ

2(1 −∆)
, (2.17)

which provides the far-field response for x → ∞:

η ∼
µ2 sin 2θ

2(1 −∆)
Q(ω) exp

(

−
ωµ cos θ

2(1 −∆)
x
)

eiω(x−t) (x → ∞). (2.18)

According to (2.18), under flow conditions for which µ $ 1, the far-field response at

the interface propagates to the right of the incident beam only, and is in the form of

a long sinusoidal wave with slowly decaying amplitude owing to leaking of energy into
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the lower fluid. A similar interfacial response was predicted by the linear hydrostatic

model of Gerkema (2001) for a thermocline of moderate strength and, moreover, solitary

waves were seen to form when nonlinear and dispersive effects were included under this

flow condition. As remarked earlier, the condition of moderate-strength thermocline in

Gerkema (2001) is analogous to µ ∼ h/L $ 1 in the present model, and the possibility

that nonlinear steepening may overcome the radiation damping of the linear response

(2.18) to give rise to solitary waves is examined below.

3. Nonlinear response

3.1. Reflection of tidal wave beam

Based on the linear analysis of §2, long interfacial waves of wavenumber k and frequency

ω are subject to light radiation damping, so nonlinear steepening is likely to be more

effective, when k ∼ ω ∼ µ $ 1. This suggests treating µ as a small parameter and

re-scaling x and t as follows:

X = µx, T = µt (µ $ 1). (3.1)

Furthermore, from (2.18), such lightly damped interfacial waves are triggered by wave

beams incident on the interface from below at an angle θ to the horizontal, where θ = O(1)

in general. In the lower fluid, therefore, the vertical coordinate is scaled in sympathy with

X:

Z = µz. (3.2)

The vertical particle displacement ζ(X,Z, T ) then is governed, to leading order in µ, by

a linear equation analogous to (2.2):

(ζXX + ζZZ)TT + ζXX = 0 (−∞ < z < η), (3.3)

even for finite-amplitude disturbances.

Turning next to the interfacial elevation η(X,T ), according to (2.14), for long waves
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with k = O(µ), the ratio of the interfacial amplitude to the incident-wave amplitude

is O(µ). This suggests that the interfacial disturbance induced by a finite-amplitude

long-wave beam is weakly nonlinear, namely

η = µη̃; (3.4)

as a result, to leading order in µ, the linearized interfacial conditions (2.5) and (2.6) on

z = 0 continue to hold:

φz = µζT = µ2η̃T (z = 0), (3.5)

η̃XX − φTXX −
1

1 −∆
ζZTT = 0 (z = 0). (3.6)

Furthermore, the velocity potential in the upper fluid layer, φ(z;X,T ), which satisfies

Laplace’s equation (2.1) and the rigid-lid condition (2.4), can be expanded as

φ = a(X,T ) −
1

2
µ2(z − 1)2aXX + · · · . (3.7)

Therefore, according to (3.5), η̃T = aXX = φXX so (3.6) becomes a forced wave equation

for η̃(X,T ):

η̃XX − η̃TT =
1

1 −∆
ζZTT |Z=0. (3.8)

The forcing on the right-hand side of (3.8) derives from the incident and reflected

internal wave beam at the interface. Specifically, for a finite-amplitude beam incident at

an angle θ to the horizontal with frequency Ω = sin θ, it follows from equation (3.3) that

ζ = {q(X − Z cot θ) + r(X + Z cot θ)} e−iΩT + c.c., (3.9)

where c.c. stands for the complex conjugate. However, according to (3.5), ζ = O(µ) on

Z = 0, implying that the incident beam is nearly perfectly reflected at the interface, so

r(X) = −q(X) to leading order; hence,

ζZTT |Z=0 = 2Ω2 cot θ qX e−iΩT + c.c., (3.10)
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where

q(X) =
1

2π

∫

∞

0
q̂(k) eikXdk (3.11)

so, in accordance with the radiation condition noted earlier (see figure 2), the incoming

and reflected beam profiles q(X) and r(X) involve plane waves with k > 0 only.

Finally, inserting (3.10) in (3.8), the interfacial response η̃(X,T ) satisfies

η̃XX − η̃TT =
sin 2θ

1 −∆
qX e−iΩT + c.c.. (3.12)

This forced wave equation can be readily solved by taking Fourier transform in X. The

response propagates to the right of the incident beam (X > 0) only and, assuming that

the forcing owing to the incident and reflected beam is turned on at T = 0, is given by

η̃(X,T ) ∼
sin 2θ

2(1 −∆)
q̂(Ω)eiΩ(X−T )H(T − X) + c.c. (X → ∞), (3.13)

where H(X) stands for the Heaviside function.

According to (3.13), to leading order in µ, the reflection of a finite-amplitude beam at

the interface gives rise to a weakly nonlinear sinusoidal long wave there, which propagates

to the right of the incident beam. Upon comparison with the linear response (2.18),

radiation damping is not present in (3.13); it comes into play for X = O(1/µ), along

with the nonlinear and dispersive effects as it turns out. A far-field analysis that takes

into account these effects is presented below.

3.2. Far-field evolution

For the purpose of analyzing the far-field response, we shall adopt a reference frame

moving with the interfacial linear-long-wave speed, Θ = X − T , and introduce ξ =

µX = µ2x so that ξ = O(1) in the far field. In terms of these variables, the near-field

response (3.13) may be viewed as an ‘inner’ solution valid as ξ → 0, and the far-field

response η(Θ, ξ) (−∞ < Θ < ∞, ξ > 0), which is the ‘outer’ solution, obeys the matching
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condition:

η̃ →
sin 2θ

2(1 −∆)
q̂(Ω) eiΩΘH(−Θ) + c.c. (ξ → 0). (3.14)

As the incident and reflected beam is not present in the far field, η̃(Θ, ξ) thus propagates

as a free disturbance for ξ > 0, and (3.14) provides the necessary connection with the

forcing owing to these beams.

We now derive an equation that governs the evolution of the far-field response for

ξ > 0. Consider the lower fluid first. Since no forcing is present, the far-field vertical

particle displacement accompanying η̃(Θ, ξ) is weakly nonlinear, ζ = µζ̃(Θ, Z, ξ) and,

from (3.3), satisfies the linear equation

ζ̃ΘΘ + ζ̃ZZ + ζ̃ = 0 (−∞ < Z < 0), (3.15)

to leading order in µ.

Turning next to the upper fluid layer, using Laplace’s equation (2.1) along with the

rigid-lid condition (2.4), the velocity potential φ(z; Θ, ξ) has an expansion analogous to

(3.7):

φ = ã(Θ, ξ) −
1

2
µ2(z − 1)2ãΘΘ − µ3(z − 1)2ãΘξ + · · · . (3.16)

Imposing the kinematic conditions at the interface z = µη̃ and making use of (3.16)

then yields

ãΘ = −η̃ − µη̃2 − 2µãξ + O(µ2), (3.17)

ζ̃|Z=0 = η̃ + O(µ2). (3.18)

Finally, the dynamic condition requires the pressure to be continuous at the inter-

face z = µη̃. For our two-fluid system, Thorpe (1998) has derived an approximation to

this condition, correct to third order in the amplitude, that can be applied at z = 0.
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Implementing the long-wave scalings valid here, this leads to

(η̃ + ãΘ)Θ + µ
(

η̃ξ + ãΘξ −
1

2
(ã2

Θ)Θ −
1

1 −∆
ζ̃ΘZ |Z=0

)

= O(µ2). (3.19)

Using then (3.17) to eliminate ã from (3.19) results in the following evolution equation

for η̃(Θ, ξ):

2η̃ξ − 3η̃η̃Θ −
1

1 −∆
(ζ̃Z |Z=0)Θ = 0. (3.20)

The third term in (3.20), which accounts for the presence of the lower fluid, can be

expressed in terms of η̃ by solving equation (3.15) subject to the boundary condition

(3.18) on Z = 0 and the appropriate radiation condition as Z → −∞. Specifically,

taking Fourier transform in Θ,

η̂(κ; ξ) =

∫

∞

−∞

e−iκΘ η̃(Θ, ξ) dΘ, (3.21)

one has

ζ̃Z |Z=0 =
1

2π

∫

∞

−∞

im eiκΘ η̂(κ; ξ) dκ, (3.22)

where

m =







−i (κ2 − 1)
1

2 (κ2 > 1)

sgnκ (1 − κ2)
1

2 (κ2 < 1).
(3.23)

The choice of the branch of the square root in (3.23) is dictated by causality; it ensures

that, as Z → −∞, the disturbance in the lower fluid either decays (for κ2 > 1) or

transports energy away from the interface (for κ2 < 1), resulting in radiation damping

of η̃.

Combining (3.20) with (3.22), the evolution equation governing the far-field response

η̃(Θ, ξ),

2η̃ξ − 3η̃η̃Θ +
1

1 −∆

1

2π

∫

∞

−∞

κm eiκΘ η̂(κ; ξ) dκ = 0, (3.24)

is an integral–differential equation of the type derived earlier by Maslowe & Redekopp

(1980) for the purpose of discussing the radiation damping of weakly nonlinear long waves
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in stratified shear flows of large depth. If the lower fluid is not stratified so radiation

damping is absent, (3.23) is replaced by m = −i|κ| and (3.24) reduces to the familiar

Benjamin–Davis–Ono (BDO) equation for the propagation of long interfacial waves in

deep fluids. As is well known, the BDO equation admits solitary-wave solutions with

algebraic profiles.

In the present context, equation (3.24) is to be solved subject to the ‘initial’ condition

(3.14) at ξ = 0 that ensures matching with the near-field response. Ignoring nonlinearity,

the far-field response eventually decays via radiation damping as implied by (2.18), and

the question of interest here is whether nonlinear steepening, represented by the second

term in (3.24), can reverse this trend so that the disturbance induced by the tidal beam

can give rise to solitary waves. This issue is now taken up by solving equation (3.24)

subject to (3.14) numerically.

4. Numerical results

In our computations, the incident tidal beam is taken to have a profile of the form

ζinc =
C

2
exp(−|χ|/α)e−iΩT + c.c., (4.1)

where χ denotes the cross-beam coordinate, and the parameters C and α control the

peak amplitude and the width of the wave beam, respectively. For a beam incident on

the interface at an angle θ to the horizontal, χ = X sin θ−Z cos θ, and (4.1) leads to the

following expression for q in (3.9)

q(X) =
C

2
exp

(

−
Ω

α
|X|

)

, (4.2)

where Ω = sin θ; its Fourier transform is given by

q̂(k) =
αC

Ω
(

1 + (α2k2)/Ω2
) , (4.3)
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so

q̂(Ω) =
αC

Ω(1 + α2)
. (4.4)

The evolution equation (3.24) for η̃(Θ, ξ) is solved numerically as an initial-value prob-

lem, treating the matching condition (3.14) as initial condition at ξ = 0 and advancing η̃

in ξ > 0. For this purpose, we employ a pseudospectral technique in which, at each step

∆ξ, the nonlinear term in (3.24) is advanced by a forward Euler finite-difference scheme

while the linear term is treated by Fourier transform using the fast Fourier transform in

a finite computational domain Θ−∞ < Θ < Θ+∞.

Inserting (4.4) in (3.14), the initial condition applied at ξ = 0 is

η̃(Θ, ξ = 0) =
2αC cos θ

(1 −∆)(1 + α2)
sin(ΩΘ)H(−Θ), (4.5)

where the phase of the incident wave beam has been chosen so as to avoid a discontinuity

at Θ = 0. Moreover, in implementing (4.5) numerically, η̃(Θ, ξ = 0) was tapered off as

Θ → −∞ so that the disturbance goes to zero and does not reach the boundaries of the

computational domain. Note that while the parameter µ does not affect η̃(Θ, ξ), it plays

an important part in transforming the spatial evolution η̃(Θ, ξ) to the temporal evolution

η̃(X,T ), as well as in determining the interface elevation, η = µη̃.

Figure 3 displays results at different values of ξ from a sample run using a com-

putational domain Θ+∞ − Θ+∞ = 1536 with 8192 grid points along Θ and step size

∆ξ = 0.0001, for the choice of parameters θ = 100, C = 1.5 and α = 1.0. Each station

ξ specifies a fixed location along the interface, and η̃(Θ, ξ) furnishes the corresponding

time history of the response there. The sinusoidal disturbance triggered by the beam

initially steepens in a typical hyperbolic fashion owing to the nonlinear term in (3.24)

and, as dispersive effects become important, trains of solitary waves are seen to emerge,
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Figure 3. The far-field response η̃(Θ, ξ) at various stations ξ along the interface for the choice
of parameters θ = 100, C = 1.5 and α = 1.0. The bottom plot is the ‘initial’ condition (4.5) at
ξ = 0, and ξ increases upwards by steps of 2.

but eventually radiation damping comes into play, causing the solitary waves to decay

far from the region of forcing.

Next we apply our model to the local generation of solitary waves in the ocean ther-

mocline. For the tidal period τ = 12hrs, the angle θ at which the incoming beam

hits the thermocline is fixed by the dispersion relation of internal waves in the lower

fluid, sin θ = τ/(2πN0). In the ocean, the buoyancy frequency N0 is in the range 1–

3 × 10−3sec−1, so θ varies between roughly 30 and 80. Moreover, taking h = 60m and

∆ = 1.5×10−3 as in Gerkema (2001), it follows from (2.3) that the parameter µ is in the

range 0.06 − 0.2. We chose N0 = 2 × 10−3sec−1, the value of N0 assumed by Gerkema

(2001), which implies θ = 4.170 and µ = 0.128. We also took α = 0.65, corresponding to

an incoming beam of width roughly 25 km along the horizontal, as suggested by figure 3

of Gerkema (2001). Finally, we used a computational domain Θ+∞ −Θ+∞ = 2048 with

8192 points along Θ and step size ∆ξ = 0.0001.
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Figure 4. Snapshots of the far-field interfacial response induced by a tidal beam incident on
the thermocline at an angle θ = 4.170 to the horizontal, under flow conditions corresponding
to µ = 0.128. The interface elevation η is displayed every 1.5 hrs within a tidal period, 42 hrs
after the beam has been turned on (time increases from top to bottom). The beam profile has
fixed width, corresponding to α = 0.65 in (4.1), and the amplitude parameter C is varied: (a)
C = 1.5; (b) C = 2.0; (c) C = 2.5.
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Figure 4 shows snapshots every 1.5 hrs within a tidal period of the interface elevation

η in dimensional variables for three values of the amplitude parameter, C = 1.5, C = 2

and C = 2.5. These values of C correspond to peak vertical displacement amplitudes of

90m, 120m and 150m for the incoming beam, which fall in the low, middle and high end,

respectively, of the range of observed beam amplitudes reported by Pingree & New (1989)

in the Bay of Biscay. Clearly, the generation mechanism of solitary waves is sensitive to

the beam strength; increasing the amplitude of the incoming beam from 90m to 150m

causes the generated solitary waves to become significantly steeper and to occur closer to

the region where the beam reflects at the thermocline. While no direct comparison can

be made with the simulations in Gerkema (2001), the evolution depicted in figure 4(b)

for a beam with peak amplitude 120m is qualitatively similar with the evolution of the

interface shown in his figure 8 for a moderate-strength thermocline. Note, in particular,

that the first solitary wave appears on a trough of the induced disturbance, roughly

35 km from the position where the beam impacts the thermocline, and attains a peak

amplitude of about 25m before radiation damping sets in, as seen in the simulation.

The simple theoretical model proposed here adds to the understanding of the mech-

anism responsible for local generation of solitary waves in the ocean thermocline. Con-

sistent with the two-stage process envisaged by Gerkema (2001), a finite-amplitude tidal

beam reflecting at the thermocline first induces a weakly nonlinear disturbance there

which, under conditions of light damping, then forms trains of solitary waves owing to

the combined action of nonlinearity and dispersion, as it propagates away from the region

of forcing. Although results were presented for flow conditions corresponding to those in

Gerkema (2001), we also carried out computations for other parameter values typical

of oceanic conditions, confirming the qualitative scenario of local generation of solitary

waves illustrated in figure 4. Our computations, in particular, reveal that the intensity of
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the incoming beam plays a key part in determining where the solitary waves form as well

as their steepness. This suggests that a strong enough incoming beam could still generate

solitary waves when the additional dispersive effects owing to the Earth’s rotation are

taken into account.
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