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Abstract

This paper is concerned with SIR (susceptible → infected → removed) household
epidemic models in which the infection response may be either mild or severe, with the
type of response also affecting the infectiousness of an individual. Two different models
are analysed. In the first model, the infection status of an individual is predetermined,
perhaps due to partial immunity, and in the second, the infection status of an individual
depends on the infection status of its infector and on whether the individual was infected
by a within- or between-household contact. The first scenario may be modelled using
a multitype household epidemic model, and the second scenario by a model we denote
by the infector-dependent-severity household epidemic model. Large population results
of the two models are derived, with the focus being on the distribution of the total
numbers of mild and severe cases in a typical household, of any given size, in the event
that the epidemic becomes established. The aim of the paper is to investigate whether
it is possible to determine which of the two underlying explanations is causing the
varying response when given final size household outbreak data containing mild and
severe cases. We conduct numerical studies which show that, given data on sufficiently
many households, it is generally possible to discriminate between the two models by
comparing the Kullback-Leibler divergence for the two fitted models to these data.
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1 Introduction

The present paper concerns models for infectious diseases in a community of households, in
which the response to disease varies between individuals; we restrict our attention to having
two different responses, denoted mild and severe. One common such situation is for example
where there are asymptomatic cases showing no or hardly any symptoms but still contributing
to the further spread of the disease.

The reason why individuals show different symptoms may vary for different diseases.
In the present paper we focus on two potential explanations. The first explanation is that
the disease response is determined by individual characteristics, for example someone having
partial immunity might become asymptomatic if infected (see e.g. Staalsoe and Hviid (1998)
for malaria and Leroy et al. (2001) in the context of ebola). The second explanation we
consider is where the response depends on the type of infectious contact and/or whom the
individual was contacted by. Examples where this seems to be the case are dengue fever
(Mangada and Igarashi 1998), measles (Morley and Aaby 1997) and varicella (Mehta and
Chatterjee 2010). Ball and Becker (2006) consider the evaluation of vaccination strategies for
a model in which infectious cases may be either mild or severe. However, their analysis is
based on post-vaccination reproduction numbers rather than on mechanistic models such as
those considered in this paper.

The first explanation, where the response is determined by individual characteristics of
the infected person, is suitably modelled using a multitype epidemic household (MT-HH)
model (Ball and Lyne 2001). In the MT-HH model individuals are categorized into different
types; the type of an individual may affect susceptibility to the disease and also response,
in particular infectivity, in the event when the individual becomes infected. Quite often
an individual’s characteristics would not be known, which implies that the proportions of
individuals of the different types in the community are unobserved.

The second explanation can be modelled by extending the so-called infector-dependent-
severity (IDS) epidemic model of Ball and Britton (2007) to an infector-dependent-severity
household (IDS-HH) epidemic model. In the IDS model, the probability of an individual
becoming a mild/severe case depends on the disease response of the person who caused that
individual’s infection. In the IDS-HHmodel this may also depend on whether the contact caus-
ing the infection was a within- or between-household contact; for example, within-household
transmission might have a higher risk of leading to severe infection.

Once the final size distribution of the IDS-HH epidemic model is obtained, together with
known such results for the MT-HH model, it is possible to compare the two distributions.
The motivation for the present paper lies in this comparison. In particular we pose (and
answer) the following question: can final size data from an epidemic outbreak with varying
disease response be used to discriminate between the two candidate explanations for why
infection response varies? Except in a few degenerate cases, the answer to the question is yes,
provided that the household structure is sufficiently rich (see Section 5.1). In particular, it
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is not possible to discriminate between the two models based on final size data if there is no
household structure. Our results are illustrated numerically by showing that, in the limit as
the population size tends to infinity in an appropriate manner, a possible outcome for either of
the models is (usually) inconsistent with the other model. This is done by generating “data”
from the MT-HH (IDS-HH) model and showing that the Kullback-Leibler divergence of the
estimated outbreak probabilities from the “data” is much smaller when inference is based on
the MT-HH (IDS-HH) model than when it is based on the IDS-HH (MT-HH) model. The
final size outcome probabilities for the IDS-HH epidemic are obtained by numerically solving
a set of differential equations, and the final size outcome probabilities for the MT-HH model
are obtained numerically by solving a set of balance equations. Consequently, we have no
analytical results “proving” that the two models are inconsistent – our arguments are instead
based on numerical studies. We also consider data generated from finite populations and use
a simulation study to demonstrate that it is possible to discriminate between the models using
a pseudolikelihood approach.

Discrimination between two possible explanations for varying disease response is useful
not only for increasing understanding of transmission dynamics but also for evaluation of in-
tervention measures such as vaccination. For example, if disease response is determined by
indivudual characteristics and severe individuals have significantly higher transmission rates
than mild individuals, then it makes sense to initially target interventions at severe individ-
uals and hence to research methods for determining an individual’s type prior to infection.
However, if instead an individual’s response is determined by the type of that persons infector
then such research is clearly less worthwhile.

The paper is organised as follows. In Section 2 we define the MT-HH model and review
final outcome results for that model. In Section 3 we define the IDS-HH model and derive an
appropriate determinstic approximation to it. In Section 4 we compare and contrast the final
size outcomes of the two models via simulation studies, which (i) confirm the applicability
of the asymptotic results to finite populations, (ii) strongly suggest that, as proved by Ball
and Lyne (2001) for the MT-HH model, the final outcome of the IDS-HH model satisfies a
central limit theorem and (iii) shed light on some interesting differences between the models.
In Section 5 we show numerically that inference from final outbreak data makes it possible
to distinguish between the two models, using both infinite populations, as described two
paragraphs above, and also finite populations, where a pseudolikelihood approach (cf. Ball
and Lyne 2010) is applied to simulated data. The paper ends with a short discussion in
Section 6.
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2 The multitype household model

2.1 Model definition

The multitype household epidemic was first analysed in depth by Ball and Lyne (2001), see
also Becker and Hall (1996) and Britton and Becker (2000). We now describe this model using
slightly different notation. With the present application in mind, we restrict the model to two
types and exponentially distributed infectious periods.

Each individual is categorized as being a mild or a severe type, with the interpretation that
if infected, the individual will become this type of infective. Additional to this, individuals
reside in households. Let mk,s denote the number of households having k mild and s severe
individuals, let mn =

∑n

k=0mk,n−k denote the number of households of size n, and let m =
∑

∞

n=1mn(=
∑

k,smk,s) denote the total number of households. Further, let N =
∑

∞

n=1 nmn

denote the total population size, which is assumed to be finite. Our analysis is of the limiting
situation in which the total number of households m tends to infinity in such a way that
mn/m → ρn (n = 1, 2, . . .), where

∑

∞

n=1 ρn = 1 and the limiting mean household size µH =
∑

∞

n=1 nρn is finite. It would rarely be the case that the type of an individual is known, so we
assume that each individual is a mild case with probability βM (and severe with probability
1 − βM), with the types of different individuals being mutually independent. It then follows
that the number of mild cases in a household of size n is binomially distributed. Hence, in a
large community, we have that mk,s/mk+s ≈

(

k+s

k

)

βk
M(1− βM)s, and this holds with equality

in the limiting situation described above.

The disease spreads according to the following rules. Initially, a small given number of in-
dividuals are infected (from some external force) and the remaining individuals are susceptible.
During his/her infectious period a mild infectious individual has (global) infectious contacts

with any given other mild individual at rate λ
(G)
MM/N and with any given severe individual at

rate λ
(G)
MS/N . Similarly, an infectious severe individual has (global) infectious contacts with

any given mild individual at rate λ
(G)
SM/N and with any given other severe individual at rate

λ
(G)
SS /N . Additionally, an infectious mild individual has (local) infectious contact with any

given other mild member of his/her household at rate λ
(L)
MM and with any given severe mem-

ber of his/her household at rate λ
(L)
MS. The corresponding rates for local infectious contacts

of an infectious severe individual are λ
(L)
SM and λ

(L)
SS . An ‘infectious contact’ is defined as a

contact which results in infection if the other individual is susceptible – otherwise the contact
has no effect. The infectious period of all individuals follow exponential distributions, with
rates γM and γS for mild and severe infectives, respectively. (Note that although the type
of each individual (mild/severe) may not be known, the distinction is critical as the different
types may have very different transmission properties.) All contact processes are governed by
homogeneous Poisson processes, having rates as above. Further, all infectious periods and all
contact processes (whether or not either or both of the individuals involved are the same) are
assumed to be mutually independent. We assume that infected individuals are able to infect
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other individuals as soon as they have become infected, i.e. there is no latent period. Once an
individual’s infectious period is over, he/she recovers and becomes immune to further infec-
tion. The absence of a latent period, though unrealistic for most, if not all, human diseases,
has no consequence for our present purpose, since the distribution of the final outcome of the
MT-HH model is not changed if an almost surely finite latent period is incorporated (provided
the rest of the model is the same).

The MT-HH model has the following 11 parameters: θ(MT ) = (λ
(G)
MM , λ

(G)
MS, λ

(G)
SM , λ

(G)
SS , λ

(L)
MM ,

λ
(L)
MS, λ

(L)
SM , λ

(L)
SS , γM , γS, βM). Later we consider final size data for this model. In that situation

we can, and hence do, assume without loss of generality that γM = γS = 1. (The final outcome
of a closed-population stochastic SIR epidemic of this type can be obtained by considering
a random directed graph whose vertices are the individuals in the population and, for any
vertices i 6= j, there is a directed edge from i to j if and only if individual i, if infected, has
infectious contact with individual j; see, for example, Pellis et al. (2008). The set of people
who are ultimately infected by the epidemic is given by the those individuals for which there
is a chain of directed edges leading to them from an initial infective. Thus if, for example,
γM 6= 1, we can divide all infection rates from mild infectives by γM and then set γM = 1
without changing the probability measure of the above random directed graph, and hence
without changing the final outcome distribution. Note that this directed random graph also
explains the above comment concerning a latent period.) It is also shown in Ball et al. (2004)
that the 4 global infection parameters are not uniquely identifiable from final size data – what
is identifiable are two separate linear combinations of these four parameters (details are given
at the end of Section 2.2). In conclusion we hence have 7 parameters that are identifiable
from final size data for the MT-HH model.

2.2 Large population properties of the MT-HH model

The MT-HH model is closely related to the model analysed in Ball and Lyne (2001). (The
latter model allows for arbitrarily many types, non-random allocation of types of individuals to
households and arbitrary but specified infectious period distributions.) Using essentially the
same argument as in Ball and Lyne (2001), the MT-HH model possesses a threshold parameter
R∗, a reproduction number for the proliferation of infected households, which determines
whether or not an epidemic started with few initial infectives can become established in a
large population. We now consider the final outcome of such an epidemic that becomes
established, so implicitly we assume that R∗ is above its threshold value of 1. For n = 1, 2, . . .
and rM , rS = 0, 1, . . . such that rM + rS ≤ n, let p

(MT )
n (rM , rS|θ

(MT )) denote the limiting
fraction of households of size n that have rM mild cases and rS severe cases at the end of
an epidemic that becomes established, where the limit is as the total number of households
m → ∞. An outline derivation of a method for determining p

(MT )
n (rM , rS|θ

(MT )) is given
below. It is a slight adaptation of the argument used in Ball and Lyne (2001), which should
be consulted for further details.
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It is fruitful to consider first the following two-type single-household epidemic model pro-
posed by Addy et al. (1991). Suppose that the household is of size n, that it contains k mild
individuals and n − k severe individuals, and that all n individuals are initially susceptible.
During the course of the epidemic, individuals avoid infection from outside of the household
independently, with probabilities πM and πS for mild and severe individuals, respectively. The
local spread within the household is governed by the same disease dynamics as in the MT-HH
model. Write

Λ(L) =

[

λ
(L)
MM λ

(L)
MS

λ
(L)
SM λ

(L)
SS

]

, π = (πM , πS)

and denote this single-household epidemic model by E(n,k)(Λ(L),π). (Recall that we as-

sume that γM = γS = 1.) Let Z
(n,k)
M and Z

(n,k)
S denote respectively the numbers of mild

and severe removed cases in the household at the end of the single-household epidemic, let
p(n,k)(i, j|Λ(L),π) = P (Z

(n,k)
M = i, Z

(n,k)
S = j) (0 ≤ i ≤ k, 0 ≤ j ≤ n − k), µ

(n,k)
M (Λ(L),π) =

E[Z
(n,k)
M ] and µ

(n,k)
S (Λ(L),π) = E[Z

(n,k)
S ]. The probabilities p(n,k)(i, j|Λ(L),π) may be deter-

mined using the following triangular system of linear equations (see Addy et al. (1991, Equa-
tion (4))):

i1
∑

i=0

j1
∑

j=0

(

k−i

i1−i

)(

n−k−j

j1−j

)

p(n,k)(i, j|Λ(L),π)

πk−i1
M πn−k−j1

S (hM(i1, j1))i(hS(i1, j1))j
=

(

k

i1

)(

n− k

j1

)

(0 ≤ i1 ≤ k, 0 ≤ j1 ≤ n− k),

where

hM(i1, j1) =
1

1 + (k − i1)λ
(L)
MM + (n− k − j1)λ

(L)
MS

and

hS(i1, j1) =
1

1 + (k − i1)λ
(L)
SM + (n− k − j1)λ

(L)
SS

.

The means µ
(n,k)
M (Λ(L),π) and µ

(n,k)
S (Λ(L),π) are easily computed once the probabilities

p(n,k)(i, j|Λ(L),π) have been obtained.

Returning to the MT-HH model, suppose that there are few initial infectives, and let zM
and zS denote respectively the proportions of individuals that are ultimately mild removed
and severe removed, respectively. Then, if the total population size N is large, the probability
that a given mild susceptible avoids global infection throughout the course of the epidemic is

approximately πM = exp[−(NzM
λ
(G)
MM

N
+ NzS

λ
(G)
SM

N
)] = exp[−(zMλ

(G)
MM + zSλ

(G)
SM)]. The corre-

sponding probability for a given severe susceptible is πS = exp[−(zMλ
(G)
MS + zSλ

(G)
SS )]. In the

limit as the number of households m → ∞, the approximate probabilities πM and πS become
exact and distinct individuals avoid global infection independently. It follows that, in the
event of an epidemic becoming established, the final outcome within a typical household of
size n, that initially contained k mild and n − k severe susceptibles, is distributed according
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to the final outcome of the single-household epidemic E(n,k)(Λ(L),π), with π = (πM , πS) given
by

πM = exp[−(zMλ
(G)
MM + zSλ

(G)
SM)] and πS = exp[−(zMλ

(G)
MS + zSλ

(G)
SS )]. (2.1)

Note that the expected final number of mild removed cases in a household chosen uniformly
at random is given by µHzM . Thus, by conditioning on first the size of and then the number
of mild individuals in such a randomly chosen household, we have that

µHzM =
∞
∑

n=1

ρn

n
∑

k=0

(

n

k

)

βk
M(1− βM)n−kµ

(n,k)
M (Λ(L),π). (2.2)

A similar argument shows that

µHzS =

∞
∑

n=1

ρn

n
∑

k=0

(

n

k

)

βk
M (1− βM)n−kµ

(n,k)
S (Λ(L),π). (2.3)

After substituting for π from (2.1), equations (2.2) and (2.3) give a pair of non-linear equations
for (zM , zS). These equations always have the solution (zM , zS) = (0, 0). If R∗ ≤ 1 this is the
only solution, whilst if R∗ > 1 there is (subject to very mild conditions on the parameters) a
unique second solution in [0, 1]2, (z∗M , z∗S) say, giving the proportions of individuals that are
ultimately mild and severe removed in the event of an epidemic that becomes established. It
follows that, if π∗ = (π∗

M , π∗

S) is obtained by substituting (zM , zS) = (z∗M , z∗S) in (2.1), then,
for n = 1, 2, . . . and 0 ≤ rM + rS ≤ n,

p(MT )
n (rM , rS|θ

(MT )) =

n−rS
∑

k=rM

(

n

k

)

βk
M(1− βM)n−kp(n,k)(rM , rS|Λ

(L),π∗) (2.4)

Calculating these final size probabilities numerically is relatively straightforward and follows
exactly this procedure. Having substituted for π from (2.1), we first solve (numerically) the
balance equations (2.2) and (2.3) to find (z∗M , z∗S), substitute this into (2.1) to find (π∗

M , π∗

S),

then use (2.4) to calculate the final size distributions {p
(MT )
n (rM , rS|θ

(MT ))}.

Note from (2.1) that any (λ
(G)
MM , λ

(G)
MS, λ

(G)
SM , λ

(G)
SS ) satisfying z∗Mλ

(G)
MM + z∗Sλ

(G)
SM = − log π∗

M

and z∗Mλ
(G)
MS + z∗Sλ

(G)
SS = − log π∗

S yields the same final size probabilities {p
(MT )
n (rM , rS|θ

(MT ))},

so only these two linear combinations of (λ
(G)
MM , λ

(G)
MS, λ

(G)
SM , λ

(G)
SS ) and not the individual global

infection rates are identifiable from final size data. Thus when fitting the MT-HH model we
estimate (πM , πS) rather than (λ

(G)
MM , λ

(G)
MS, λ

(G)
SM , λ

(G)
SS ).

3 The IDS household model

3.1 Model definition

The infector-dependent-severity household model is an epidemic model where infected in-
dividuals may, upon infection, become either severely infected or mildly infected, and the
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probability that an infected individual becomes mildly (or severely) infected may depend on
both the type of its infector and whether the infectious contact is local or global. Addition-
ally, individuals reside in households and the transmission rate is typically appreciably higher
between individuals sharing a household. The model is defined as follows.

Assume that there are N individuals in total, and that each individual resides in a house-
hold. Let mn denote the number of households of size n and let m =

∑

∞

n=1mn denote the
total number of households. We consider the limiting situation in which the population size
tends to infinity in the same way as described in Section 2.1. Initially there are k

(m)
M mild

infectives and k
(m)
S severe infectives, with the remaining individuals assumed to be susceptible.

(The locations of the initial infectives are discussed later.) Mild infectives recover and be-
come immune at rate γM and severe infectives recover and become immune at rate γS. Thus,
the infectious periods of infectives are assumed to follow exponential random variables, with
parameter depending on whether an infective is a mild or a severe case. While infectious, a
mild infective makes global infectious contacts with any given individual at rate λ

(G)
M /N . If

a contacted person is susceptible he/she becomes mildly infected with probability p
(G)
MM and

severely infected with probability 1 − p
(G)
MM ; if a contacted person is already infected then

the contact has no effect. Additionally, a mild infective has contact with any (other) given

household member (local contact) at rate λ
(L)
M , and such a contacted individual, if susceptible,

becomes a mild infective with probability p
(L)
MM and severe infective with probability 1−p

(L)
MM .

Severe infectives have contacts according to the same rules, although with parameters λ
(G)
S /N ,

p
(G)
SM , λ

(L)
S and p

(L)
SM . All contact processes and infectious periods are assumed to be mutually

independent. The epidemic continues until there is no (mild or severe) infective present, when
the epidemic stops.

The parameters of the IDS-HH model are θ(IDS) = (λ
(G)
M , λ

(G)
S , λ

(L)
M , λ

(L)
S , p

(G)
MM , p

(G)
SM , p

(L)
MM ,

p
(L)
SM , γM , γS). Note that rescaling time does not change the final outcome of an epidemic, so,
without loss of generality, we may assume that e.g. γM = 1, whence there are 9 parameters
that are, in principle, identifiable from final outcome data. Note also that the directed random
graph argument used for the final outcome of the MT-HH model fails to hold for the IDS-HH
model, since the distribution of edges emanating from any given individual depends on the
type of that individual, which is not determined at the outset of the epidemic and indeed
depends on the temporal behaviour of the epidemic. Thus, fixing γS as well as γM would
involve a loss of generality and the distribution of the final outcome of the IDS-HH model is
generally not invariant to a latent period.

3.2 Large population properties of the IDS-HH model

Suppose that the epidemic starts at time t = 0 and for t ≥ 0, let X
(m)
n:i,j,k,ℓ(t) denote the number

of households of size n that at time t have i mild infectives, j severe infectives, k mild removed
individuals and ℓ severe removed individuals. Assume now that there is a maximal household
size nmax, so ρn = 0 for all n > nmax. For t ≥ 0, let X(m)(t) be the vector obtained by letting
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n, i, j, k, ℓ vary over all possible feasible values; viz. n = 1, 2, . . . , nmax, 0 ≤ i+ j + k + ℓ ≤ n.
Then {X(m)(t) : t ≥ 0} is a density-dependent Markov population process which can be
analysed using theory developed in Ethier and Kurtz (1986, Chapter 11).

Suppose that m−1
X

(m)(0) → x(0) as m → ∞, where x(0) satisfies
∑nmax

n=1

∑

k,ℓ xn:0,0,k,ℓ(0)
< 1, so a strictly positive fraction of the population is initially infected in the limit as m → ∞.
Then the above-mentioned theory of Ethier and Kurtz (1986) shows that the IDS-HH epi-
demic process scaled by m, X̄(t) := X(t)/m, converges in probability to a vector of deter-
ministic functions defined by a set of differential equations. More precisely, the component
X̄n:i,j,k,ℓ(t) = Xn:i,j,k,ℓ(t)/m = ρnXn:i,j,k,ℓ(t)/mn converges to ρnx̃n:i,j,k,ℓ(t) defined below. The
interpretation of x̃n:i,j,k,ℓ(t) is hence the (asymptotic) fraction of the size-n households that
at time t have i mild infectives, j severe infectives, k mild removed individuals and ℓ severe
removed individuals. Using this notation we can define the (asymptotic) fraction mildly and
severely infected at time t, iM(t) and iS(t) respectively, by

iM(t) =
∑

n,i,j,k,ℓ

iρnx̃n:i,j,k,ℓ(t)/µH

iS(t) =
∑

n,i,j,k,ℓ

jρnx̃n:i,j,k,ℓ(t)/µH .

The functions x̃n:i,j,k,ℓ(t) are defined by the following set of differential equations:

x̃′

n:i,j,k,ℓ(t) =
(

λ
(G)
M p

(G)
MM iM(t) + λ

(G)
S p

(G)
SM iS(t) + λ

(L)
M p

(L)
MM(i− 1) + λ

(L)
S p

(L)
SMj

)

× (n− (i− 1 + j + k + ℓ)) ρnx̃n:i−1,j,k,ℓ(t)

+
(

λ
(G)
M p

(G)
MSiM (t) + λ

(G)
S p

(G)
SS iS(t) + λ

(L)
M p

(L)
MSi+ λ

(L)
S p

(L)
SS (j − 1)

)

× (n− (i+ j − 1 + k + ℓ)) ρnx̃n:i,j−1,k,ℓ(t)

+ γM(i+ 1)ρnx̃n:i+1,j,k−1,ℓ(t)

+ γS(j + 1)ρnx̃n:i,j+1,k,ℓ−1(t)

−
(

λ
(G)
M iM (t) + λ

(G)
S iS(t) + λ

(L)
M i+ λ

(L)
S j

)

(n− (i+ j + k + ℓ))

× ρnx̃n:i,j,k,ℓ(t)

− (γM i+ γSj)ρnx̃n:i,j,k,ℓ(t), (3.1)

with initial values given by xn:i,j,k,ℓ(0) = ρnx̃n:i,j,k,ℓ(0).

The differential equation (3.1) applies to all relevant (n : i, j, k, ℓ), i.e. where each of
the indices are non-negative and i + j + k + ℓ ≤ n. Vector components ‘out of bounds’,
e.g. where some index is negative, are defined to be 0, for example x̃3:0,−1,1,1(t) ≡ 0. The
first four terms in (3.1) are for households entering the state (n : i, j, k, ℓ), explaining why
they have a plus sign. The first term is for a household presently in state (n : i − 1, j, k, ℓ)
having a mild infection and gives the overall rate for such an event to occur. The second
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term is for (n : i, j − 1, k, ℓ)-households having another severe infection, the third term is
for (n : i + 1, j, k − 1, ℓ)-households having a mild removal and the fourth term is for the
severe removals. The remaining terms describe events that cause a household to leave the
state (n : i, j, k, ℓ). The fifth term is the overall rate at which susceptibles in a (n : i, j, k, ℓ)-
households become infected, either mildly or severely, and the last term is the overall rate at
which infectives (mild and severe) in (n : i, j, k, ℓ)-households are removed.

Our goal is to obtain p
(IDS)
n (rM , rS|θ

(IDS)), the limiting fraction of households of size n
that have rM mild and rS severe cases at the end of the epidemic. If the numbers of initial
mild and severe infectives, k

(m)
M and k

(m)
S , are held fixed as m → ∞, then, for large m, the

epidemic can become established only if the household reproduction number R∗ is strictly
larger than one. (The reproduction number R∗ can be obtained by approximating the process
of infected households by a two-type branching process, the type of an infected household
being the type of its initial case; we omit the details as R∗ is not required for the present
paper.) Ideally, we would like to be able to calculate p

(IDS)
n (rM , rS|θ

(IDS)) for an epidemic

that becomes established under these conditions. However, if k
(m)
M and k

(m)
S are held fixed,

then
∑nmax

n=1

∑

k,ℓ xn:0,0,k,ℓ(0) = 1 and the theory of Ethier and Kurtz (1986) cannot be applied
directly. Thus we assume instead that a very small, but strictly positive, fraction of indi-
viduals are initially infected and approximate p

(IDS)
n (rM , rS|θ

(IDS)), by solving the differential
equations (3.1) numerically up to a time when the remaining fraction of infective individuals
is negligible. More specifically, we assume that a fraction fS = 10−5 of the population is
initially severely infective, with these infective individuals being chosen uniformly at random,
so

x̃n:i,j,k,ℓ(0) =

{

(

n

j

)

f j
S(1− fS)

n−j if i = k = ℓ = 0,

0 otherwise.

We stop the numerical integration at the first time t′ when the proportion of the population
that is infective, i.e. iM(t′) + iS(t

′), is less than δ = 10−7 (≪ fS). The final size probabilities

are then given by p
(IDS)
n (rM , rS|θ

(IDS)) = x̃n:0,0,rM ,rS(t
′). However, note that the final size

probabilities are essentially insensitive to the initial conditions, provided that the proportion
of index cases is sufficiently small.

The theory of Ethier and Kurtz (1986, Chapter 11) can also be used to show that, in the
limit as the number of households m → ∞, the fluctuations of the stochastic model X(t)
about its deterministic limit x(t) (defined by xn:i,j,k,ℓ(t) = ρnx̃n:i,j,k,ℓ(t)), after being suitably
scaled, converge to a zero-mean Gaussian process, whose covariance function can, in principle,
be determined. As in Ball and Britton (2007, 2009), this central limit theorem can be extended
heuristically to hold also for the end of the epidemic, the time of which tends to infinity as
m → ∞, by making a random time scale transformation in which the clock runs at rate
m(λ

(G)
M IM(t) + λ

(G)
S IS(t))

−1, where IM(t) and IS(t) are respectively the total number of mild
and severe infectives present at time t in the untransformed process, cf. Ethier and Kurtz (1986,
pp. 466–467). This yields a multivariate central limit theorem for the quantities Zn(rM , rS)
(n ≥ 1, rM , rS ≥ 0, rM+rS ≤ n), where Zn(rM , rS) is the number of households of size n which
ultimately have rM mild removed and rS severe removed individuals. In principle, it is possible
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to compute the covariance matrix of the limiting normal distribution numerically, though in
practice the required computations are prohibitive except for populations comprising only
very small households. For a population with households of sizes 1, 2, . . . , nmax, determining
the deterministic limit x(t) requires solving a system of nmax

E =
(

nmax+5
5

)

−nmax−1 differential

equations and determining the above covariance matrix requires solving a system of
(

nmax
E

+1
2

)

differential equations. For nmax = 1, 2, 3, 4, 5, nmax
E = 4, 18, 52, 121, 246, so while it is perfectly

feasible to solve for x(t) numerically, that may not be the case for the covariance matrix.

4 Numerical illustrations of model behaviour

To illustrate the asymptotic results given in the previous sections and explore some of the
properties of the two models we have presented, we performed simulation studies of both
models and compared some of their final size properties. In order to do this we first needed
to select values for the parameters of our models.

First we address these parameter choices in the MT-HH model. As mentioned in Sec-
tion 2.1, the removal rates can without loss of generality be set to unity: γM = γS = 1.
The fraction of mild types in the community was set to βM = 0.4. This value was chosen so
that approximately one third of all infected are mild cases (reported by Carrat et al. (2008)
to be the case for asymptomatic cases regarding influenza). The global contact rates were

chosen as λ
(G)
MM = 0.25, λ

(G)
MS = 0.8, λ

(G)
SM = 0.8 and λ

(G)
SS = 1.5, so severe infectives are more

infectious and also mild infectives rarely globally infect mild susceptibles. The corresponding
local contact rates were chosen as λ

(L)
MM = 0.2, λ

(L)
MS = 0.4, λ

(L)
SM = 0.4 and λ

(L)
SS = 0.8, so

severe infectives are also more infectious locally and mild infectives have a relatively higher
probability of infecting mild susceptibles when compared with global contacts. The absolute
values of the two contact matrices were chosen so that approximately 50% of the population
becomes infected, this being a realistic value for influenza (see Ferguson et al. (2005)). The
relative magnitude of the global and local contact rates was chosen so that both types of
contact play a significant role in the spread of infection.

The parameters of the IDS-HH model were chosen to be λ
(G)
M = 1, λ

(G)
S = 2, p

(G)
MM = 0.8,

p
(G)
SM = 0.2, λ

(L)
M = 0.5, λ

(L)
S = 1, p

(L)
MM = 0.5, p

(L)
SM = 0.1, γM = 1 and γS = 2. These parameter

values were chosen for the same reasons as the parameters for the MT-HH model, with the
addition that the infectious period was set to be shorter (on average) for severe cases than for
mild cases, having in mind asymptomatic individuals who are less likely to ‘self-quarrantine’
as they are unaware of their infection.

The parameter common to both models is the distribution of household sizes. In this paper
we consider two different population structures. The first is for the case where households
of size 1, 2 and 3 are equally likely and no larger households exist, i.e. ρ1 = ρ2 = ρ3 =
1/3, and is chosen largely for computational convenience. The second population structure
corresponds to the household structure of UK in 2003 (found by typing ‘household sizes’

11



into the search box at http://www.statistics.gov.uk/census2001/census2001.asp), with the
simplification that households of size 5 and larger were truncated and all assumed to have
size 5 (only 2% of the households had larger household size than 5, so this truncation should
have negligible effect). The household structure for this case is given by ρ1 = 0.29, ρ2 =
0.35, ρ3 = 0.15, ρ4 = 0.14, ρ5 = 0.07. For future reference we denote these distributions
by ρ(3) = (1, 1, 1)/3 and ρ(5) = (29, 35, 15, 14, 7)/100. Note that if the population contains
households of sizes 1, 2, . . . , nmax then, as shown in Section 5.1, the minimum value of nmax

for both models to be, in principle, identifiable is 3.

For both models we ran 10,000 simulations of systems with 10,000 households, the sizes
being given by ρ = ρ(5). (We treated ρ as giving the proportions of households of different
sizes, rather than having random household sizes with distribution ρ.) To ensure that major
outbreaks occur with high probability, we initiated the epidemics with 10 infectives, each
randomly chosen in different households of size 5; in the MT-HH model these individuals
may be mild-type or severe-type (with respective probabilities βM and 1 − βM) and in the
IDS-HH model we specified that they are all severe cases. For simulations that result in
more than 0.15 of the population becoming infected we then recorded the overall final size
amongst initial susceptibles and the within-household final sizes amongst households that are
initially completely susceptible. (Inspection of histograms (not shown) of the final proportion
of individuals infected suggests that this cutoff is appropriate for separating minor and major
outbreaks.)

Figures 1 and 2 show histograms of the numbers of individuals ultimately mildly and
severely infected in, respectively, the 9,992 simulations of the MT-HH model and the 9,993
simulations of the IDS-HH model that resulted in major outbreaks. Overlaid on these his-
tograms are probability density functions (scaled so as the area under them matches that
of the histograms) of normal distributions with the same mean and variance. The excellent
agreement between the histograms and density functions in Figure 1 is expected in view of
the central limit theorem for the MT-HH model of Ball and Lyne (2001) and in Figure 2
this lends credence to the central limit theorem discussed in Section 3.2 above for the final
outcome of the IDS-HH model. Though the mean values of these distributions are similar
(µ

(MT )
M ≈ 4,525, µ

(IDS)
M ≈ 4,854; µ

(MT )
S ≈ 9,835, µ

(IDS)
S ≈ 10,008) – indeed the parameter

values were chosen with this intention – it is interesting to note that the variability is rather
different in the two models. The spread of the distribution of the number of mild cases in
the IDS-HH model is appreciably larger than that in the MT-HH model (σ

(MT )
M ≈ 93 and

σ
(IDS)
M ≈ 150) and, though not to the same extent, the distribution of the number of severe

cases is also slightly more spread in the IDS-HH model (σ
(MT )
S ≈ 167 and σ

(IDS)
S ≈ 218). Part

of the reason for this is that in the MT-HH model the types of individuals are determined
in advance, but in the IDS-HH model the types of the infected individuals depend on the
evolution of the epidemic and some feedback may occur (though with different parameters it
might potentially be positive or negative).

Tables 1 and 2 give further information about the within-household outcomes of major
outbreaks in the two models. These tables give, for each household size n, estimates from the
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Figure 1: Histograms of final outcome of major outbreaks in simulations of the MT-HH model
in a community of 10,000 households, with matched normal approximations superimposed.
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Figure 2: Histograms of final outcome of major outbreaks in simulations of the IDS-HH model
in a community of 10,000 households, with matched normal approximations superimposed.

simulations of the probability that a typical individual in a household of size n is ultimately
(i) mildly infected (p̂M), (ii) severely infected (p̂S) and (iii) infected (p̂INF = p̂M + p̂S), and
also of the probability that a case in a household of size n is severe (p̂S/p̂INF). The figures
in parentheses are the corresponding infinite population asymptotic quantities obtained from
{p

(MT )
n (rM , rS|θ

(MT ))} and {p
(IDS)
n (rM , rS|θ

(IDS))}, respectively.

In both cases we observe good agreement between the deterministic and estimated stochas-
tic quantities. Also observe that, in both models, the proportion of individuals infected in-
creases with household size n, which can be explained as follows. For a given individual to
remain susceptible at the end of an epidemic, it must avoid infection from both outside and
within its household. The probability that it avoids infection from outside its household is
independent of its household size n. However, the probability it avoids infection from within
its household decreases with increasing n for two reasons. First, as n increases, the num-
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Table 1: Properties of MT-HH epidemics that become established.

n p̂M p̂S p̂INF p̂S/p̂INF

1 0.1272 (0.1273) 0.3255 (0.3256) 0.4527 (0.4529) 0.7190 (0.7189)

2 0.1585 (0.1585) 0.3751 (0.3753) 0.5336 (0.5337) 0.7030 (0.7031)

3 0.1923 (0.1925) 0.4228 (0.4229) 0.6151 (0.6154) 0.6873 (0.6872)

4 0.2270 (0.2271) 0.4656 (0.4658) 0.6926 (0.6929) 0.6723 (0.6722)

5 0.2602 (0.2603) 0.5020 (0.5021) 0.7621 (0.7624) 0.6587 (0.6586)

Table 2: Properties of IDS-HH epidemics that become established.

n p̂M p̂S p̂INF p̂S/p̂INF

1 0.1815 (0.1822) 0.2870 (0.2865) 0.4685 (0.4687) 0.6126 (0.6113)

2 0.1969 (0.1976) 0.3546 (0.3542) 0.5515 (0.5517) 0.6430 (0.6419)

3 0.2095 (0.2104) 0.4267 (0.4261) 0.6362 (0.6364) 0.6707 (0.6695)

4 0.2190 (0.2196) 0.4980 (0.4975) 0.7169 (0.7171) 0.6946 (0.6937)

5 0.2229 (0.2250) 0.5671 (0.5638) 0.7901 (0.7888) 0.7178 (0.7147)

ber of globally contacted individuals, NG say, in our given individual’s household increases
(stochastically), so the probability that the individual avoids direct local infection from a
globally contacted individual decreases, since the local infection parameters are independent
of n. Second, even if NG were fixed, the probability that the given individual avoids infection
from the ensuing local (within-household) epidemic decreases with increasing n. This prob-
ability can be obtained by conditioning on the size of the local epidemic ignoring the given
individual, the size of which is clearly stochastically increasing with n. Thus local spread is
greater in larger households.

In the MT-HH model the proportion of cases that are severe decreases with n, whereas this
proportion increases with n in the IDS-HH model. In the IDS-HH model this simply reflects
the fact that local infections are very likely to result in severe cases. In the MT-HH model,
however, an individual’s type is determined in advance rather than by the spread of infection
and this results in a ‘saturation effect’ of sorts. Note that the proportion of cases in households
of size 1 that are severe (0.7189) is larger than the proportion of individuals that are of severe
type (0.6). In larger households more local spread is expected than in smaller households

(as λ
(L)
MM , λ

(L)
MS, λ

(L)
SM and λ

(L)
SS are independent of household size, a form of transmission often

referred to as ‘density dependent’ or ‘pseudo mass action’; see e.g. Keeling and Rohani (2008,
p. 17)) and the rates are such that severe types are more likely to be infected. Indeed, in a
very large household we would expect everyone to be infected, in which case the proportion
of cases that are severe must be equal to the proportion of individuals of severe type. For
any household size, the proportion of globally contacted individuals that are severe is 0.7189.
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(This is given by the proportion of cases in households of size 1 that are severe, since in such
households there is no local spread.) However, since local spread increases with household
size and there is greater scope for local infection amongst mild types than severe types (as
relatively fewer are infected globally), the proportion of cases that are severe must decrease
with household size.

Clearly the above phenomena depend on the parameter values chosen in the two models.
For example, in either model, simply interchanging the labels of the two types results in the
opposite effect of household size on p̂S/p̂INF being observed.

5 Model discrimination

Suppose data from a population with household structure given by {ρn} are generated from
one of the two models, with some given parameters θ(MT ) or θ(IDS), as appropriate. An
important inference, or discrimination, problem in light of the two possible models is then
whether it is possible to determine which of the models the data come from. It is hard to
give an analytical answer to this question since the final size probabilities are not explicit.
We address the question with a numerical investigation. For our purposes, the data are the
distributions of within-household final sizes q = {qn(rM , rS), 0 ≤ rM +rS ≤ n, 1 ≤ n ≤ nmax}.
We consider the case where q is the asymptotic (m → ∞) final size distribution derived from
one or other of the models using the methods described in Sections 2.2 and 3.2, in order
to determine whether the two models actually produce different final size distributions. We
also consider the case where q is derived from stochastic simulations of one or other of the
two models (i.e. with m finite), to determine whether or not any difference between the two
models is sufficiently pronounced to be detectable with a dataset that resembles more closely
one available in real life.

In the remainder of this section we describe first, in Section 5.1, how we generate the data
that we use, both from infinite and finite populations, then discuss, in Section 5.2, how we
fit the models to a given final size distribution. In Section 5.3, we describe our main findings
concerning whether the MT-HH and IDS-HH models can be distinguished on the basis of final
size data. In Section 5.4, we motivate our use of the Kullback-Leibler divergence as a tool for
model fitting and discrimination and finally, in Section 5.5, we discuss identifiability issues
that arise in fitting the models to final outcome data.

5.1 Data generation

Final size data for an infinite population are generated using the methods described in the
previous sections. For the MT-HH model we solve equations (2.1)–(2.4) numerically and
for the IDS-HH model we solve the differential equations (3.1) numerically, as described in
Sections 2.2 and 3.2, respectively. To generate final size data for finite populations we simulate
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an outcome of the relevant stochastic process according to the model description in Section 2.1
or 3.1, as appropriate, (with 10 initial severe infectives, each in separate households of size
nmax, to increase the chance of a major outbreak occuring). If a major outbreak does occur
(which we take to be more than 0.15 of the population becoming infected) then we calculate
the empirical final size distribution considering only the households in that simulation that
had no initial infectives. In either case we denote by q = {qn(rM , rS)} the ‘target’ household
final size distributions that we try to reproduce from the model we choose to fit to the data.

Before proceeding further, we show that 3 is the minimum value of nmax for both models
to be, in principle, identifiable from final size data. For r = 0, 1, 2, . . ., the total number of
distinct (rM , rS) satisfying rM+rS = r is n(r) = r+1. Hence, the number of possible outcomes
in a household of size n is

∑n

r=0 n(r) = (n+1)(n+2)/2. However, since
∑

rM ,rS
qn(rM , rS) = 1,

data from households of size n provide df(n) = 1
2
(n + 1)(n + 2) − 1 degrees of freedom for

estimating θ. Thus, the maximum number of parameters that are, in principle, identifiable
from households of sizes 1, 2, . . . , nmax is nI(nmax) =

∑nmax

n=1 df(n) = nmax(nmax+1)(nmax+5)/6.
Hence, nI(1) = 2, nI(2) = 7 and nI(3) = 16. Recall from the final paragraphs of Sections 2.1
and 3.1 that the number of parameters in the MT-HH and IDS-HH models that are, in
principle, identifiable from final size data is 7 and 9, respectively. Thus nmax ≥ 2 is sufficient
for the MT-HH model to be identifiable from final size data but nmax ≥ 3 is required for the
IDS-HH model.

5.2 Model fitting

We now describe the algorithm we use to fit each model to given final size data q = {qn(rM , rS)}.
The goal is to find parameters θ of the model we are fitting so that the distance between the
final size distributions {pn(rM , rS|θ)}, corresponding to θ(MT ) or θ(IDS), and the ‘target’ final
size distributions q = {qn(rM , rS)} is as small as possible. We measure this distance using the
Kullback-Leibler (K-L) divergence

f(θ) = DKL(q||p(θ)) =

nmax
∑

n=1

ρn
∑

rM ,rS

qn(rM , rS) log

(

qn(rM , rS)

pn(rM , rS|θ)

)

. (5.1)

The use of the K-L divergence is motivated by its well-known relationship with likelihood-
based inferential procedures (see, for example, Bishop et al. (1975, pp. 344–348)), which is
discussed in more detail in Section 5.4. We minimise f(θ) numerically using Matlab’s fmincon
constrained optimisation routine. This requires selecting a starting point θ0 for the parame-
ters; we choose these starting values independently at random, the rate parameters from an
exponential distribution with mean 1 and proportion/probability parameters uniformly from
the interval (0, 1). In the case of fitting the IDS-HH model we find that the numerical opti-
misation is more difficult and that it is beneficial to sample several (we use 20) such possible
starting points θ0 and then start the numerical optimisation routine at the best of these points
(i.e. that with smallest f(θ0)), so that the numerical routine is more likely to start at a point in
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parameter space that is at least moderately compatible with the target final size distributions
q. We describe this process of choosing a starting point for and then running the optimisation
routine as a single ‘run’ of our algorithm (i.e. model fitting procedure).

Calculating p(θ) = {pn(rM , rS|θ)} using the methods described in Section 2.2 or 3.2 is
straightforward and in principle evaluating f(θ) is then trivial as long as p has no zero entries,
i.e. as long as the parameter vector θ results in the model being super-critical. However, there
are numerical problems that can arise when calculating the K-L divergence as in equation (5.1).
These problems arise due to so-called ‘catastrophic cancellation’ which occurs when using the
formula (5.1) if q and p differ only slightly. The terms qi log(qi/pi) are all small (since p and
q are close) but are of differing signs (since sometimes qi > pi and sometimes vice-versa),
thus when the sum

∑

i qi log(qi/pi) is close to zero there can be catastrophic cancellation
and the calculated sum can be wildly inaccurate. We resolve this by using the Taylor series
approximation s log(s/t) ≈ (s− t)2/2t about s = t (cf. Bishop et al. (1975, Lemma 14.9-1)),
which implies

f(θ) = DKL(q||p(θ)) ≈
nmax
∑

n=1

ρn
∑

rM ,rS

(qn(rM , rS)− pn(rM , rS|θ))
2

2pn(rM , rS|θ)
. (5.2)

This approximation becomes exact (analytically) as p → q so using it when the calculated
K-L distance is small gives a good approximation and avoids numerical problems. Numerical
experiments comparing the calculated values of f(θ) using (5.1) and (5.2) show good agreement
provided f(θ) is moderately small, improving as f(θ) becomes smaller (precisely as expected).
However, when f(θ) is less than about 10−6 we begin to see significant disagreement, owing
to catastrophic cancellation when using (5.1). Therefore, all our calculations of K-L distance
initially use (5.1) but if the result is smaller than 10−5 we recalculate using (5.2).

The random starting values of θ(MT ) and θ(IDS) in our fitting procedure will sometimes
be poor (i.e. give large values of f(θ)) and result in the optimisation routine staying in a part
of parameter space that gives a very poor fit. Thus, when fitting a model to data we run our
algorithm many times over to ensure that as much as possible of the parameter spaces are
explored. The number of these runs necessary is somewhat variable; this issue is addressed in
Section 5.5.

Initially we focus simply on the smallest of the K-L distances f(θ̂) of the model from the
data that we find for each combination of dataset and model. In Section 5.5 we explore in
more detail the variability of the f(θ̂) from run to run of our algorithm and also examine the
behaviour of the corresponding parameter estimates θ̂.

5.3 Model discrimination

5.3.1 Infinite data

To determine whether or not each model is capable of producing the final size distributions
generated by the other model we fit a given final size distribution to both models, in the
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Table 3: Best fits of each model to final size distributions obtained from all four combinations
of household size distribution and model.

data

ρ = ρ(3) ρ = ρ(5)

MT-HH IDS-HH MT-HH IDS-HH

MT-HH 3.4× 10−11 1.5× 10−3 2.0× 10−11 6.8× 10−3

m
o
d
el

IDS-HH 4.7× 10−5 8.9× 10−9 1.1× 10−4 3.3× 10−8

expectation that the correct model will fit appreciably better. We find that the correct model
can be made to fit as well as we please by tightening the stopping criteria of the numerical
optimisation routine but that there is a definite non-zero lower bound for f(θ̂) when we fit
the wrong model. Further details of this are given in Section 5.5.

We summarise our findings by way of Table 3, which shows the best fits obtained from
100 runs of our algorithm (measured by f(θ̂)) obtained when fitting the IDS-HH and MT-HH
models to the (asymptotic) final size distributions produced from each of the models (with
parameter values as in Section 4) with each of the household size distributions ρ(3) and ρ(5).
Table 3 demonstrates the significant differences in fit obtained when fitting the two models to
each data set (i.e. each column of the table). In Table 3 and the following discussion, ‘data’
refers to the model that generated the given final size distributions we fit to and ‘model’ refers
to the model we fit to these data.

It can be seen that using the household size distribution ρ(5) which includes households
up to size 5 makes no qualitative difference to these conclusions. However, it is interesting
to examine the effect of larger households on the above K-L distances. Table 4 shows the
contribution to the best final K-L distances in Table 3 from households of each size, which
amounts to separating out the summands ρn

∑

rM ,rS
qn(rM , rS) log(qn(rM , rS)/pn(rM , rS|θ)) in

equation (5.1). The breakdown of the best final K-L distances suggests that an apprecia-
bly greater contribution to the K-L distances comes from larger households than would be
expected simply based upon the proportions of households of different sizes present. This
perhaps suggests that data collection effort might be focused somewhat more on larger house-
holds; though of course this depends crucially on our assumption that the same transmission
parameters apply in households of all sizes.

We see (Table 3) that the final size distribution generated by each model using somewhat
realistic parameter values cannot be captured by the other model. To investigate whether
this conclusion holds for the models in general, we need to do this comparison for a range
of (super-critical) parameter values. We expect that the fits will be poor except possibly for
some degenerate cases where the models can produce the same final size distributions.
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Table 4: Breakdown of contribution to final K-L distances by households of different sizes
when ρ = ρ(3).

MT-HH model, IDS-HH model, MT-HH model, IDS-HH model,

n MT-HH data IDS-HH data IDS-HH data MT-HH data

1 4.4× 10−12 7.6× 10−10 2.0× 10−5 2.0× 10−7

2 1.1× 10−11 1.0× 10−9 3.2× 10−5 1.1× 10−5

3 1.8× 10−11 7.1× 10−9 1.4× 10−3 3.6× 10−5

total 3.4× 10−11 8.9× 10−9 1.5× 10−3 4.7× 10−5

To test whether one model can reproduce final size data from the other, we select param-
eters for one model at random, resampling if the corresponding R∗ ≤ 1, and calculate the
corresponding final size distribution, then fit the other model to these ‘data’. When selecting
the random model parameters to use, each parameter is chosen independently, rate parame-
ters from an exponential distribution with mean 1 and probability parameters uniformly on
[0, 1]. We then repeat this experiment many times so that we explore a range of parameter
combinations of the model from which we derive our data. The final K-L distance (best fit)
f(θ̂) that we report for each parameter combination is the best fit obtained in 5 runs of our
algorithm. (When fitting to final size data that is not exactly reproducible by the model we
are fitting, we find that the variability of f(θ̂) between runs is very small and thus 5 runs is
more than sufficient to be confident that we have found the best-fitting model; see Section 5.5
for further details.)

Figure 3 shows histograms of the best K-L distances f(θ̂) obtained when fitting one
model to final size data generated by the other with random parameters and household size
distribution ρ(3). We have fitted the MT-HH model to 10,000 random IDS-HH datasets but
owing to the computational expense of fitting the IDS-HH model we have only fitted it to
1,000 random MT-HH datasets. It can clearly be seen that for most parameter combinations
the final size distributions cannot be reproduced by the wrong model. Of course the correct
model can reproduce these final size distributions and to confirm this we have also fitted the
correct model to many of these data. As expected, the correct model fits appreciably better
than the wrong model except in the degenerate cases discussed below when both models can
be fitted to the data (details not shown).

Further analysis of the cases where the ‘wrong’ model fits the data relatively well (f(θ̂) <
10−6) reveals at least one of the following reasons. In either model, if the process is only
just supercritical, i.e. R∗ is only slightly larger than 1, then many of the quantities qn(rM , rS)
in (5.1) are very small so relatively fewer of the summands contribute to the sum and it is
somewhat easier for the wrong model to be able to fit the data.

19



−10 −8 −6 −4 −2 0
0

100

200

300

400

500

600

700

800
(a) fitting MT-HH model to IDS-HH data

log10 f(θ̂)
−8 −7 −6 −5 −4 −3 −2
0

20

40

60

80

100

120
(b) fitting IDS-HH model to MT-HH data

log10 f(θ̂)

Figure 3: Smallest K-L distances f(θ̂) obtained when fitting the one model to the final size
distributions from the other with random (super-critical) parameters.

In the IDS-HH model, two further situations arise where the wrong (i.e. MT-HH) model
fits the final size data quite well: (i) one or both types of individual makes very few local

contacts, i.e. min{λ
(L)
M , λ

(L)
S /γS} is close to 0 (recall γM = 1) and (ii) local contacts by mild

and severe individuals are approximately equally likely to cause mild/severe cases, i.e. |p
(L)
MM −

p
(L)
SM | is close to 0. In case (i), within-household spread essentially only involves one type of
individual making contacts and the local infection rate and probability can be tuned to produce
almost any local final outcome distribution. In case (ii) local infection processes become like
those in the MT-HH model because each (locally infected) individual becomes mild or severe

(independently) with the same probability p
(L)
MM ≈ p

(L)
SM .

In the MT-HH model there are also two further situations where the wrong (i.e. IDS-HH)
model can reproduce the final outcome data well. The first is if there is essentially only one
type of individual, i.e. βM is close to 0 or 1; if one type is not present it is trivial that the two
models coincide (in the sense that they can produce the same final size distributions). The
second case is where the disease is highly globally infectious amongst one type of individual,
i.e. π has (at least) one element close to 0. Here local transmission is essentially a one-type
process and again the models coincide.

5.3.2 Finite data

We have just seen that it is possible to discriminate between the two models using final size
data from an infinite population. Real data of course never pertains to an infinite population,
so in the present subsection we perform the same type of analysis except that data are now
generated from the stochastic models in a community of m = 10, 000 households. The data,
generated both from the stochastic MT-HH model and the stochastic IDS-HH model, hence
consist of empirical final size distributions rather than the exact asymptotic distributions.

20



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

 

 

IDS−HH model

MT−HH model

f
(θ̂

)
(a) IDS-HH data

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

 

 

MT−HH model

IDS−HH model

f
(θ̂

)
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Figure 4: Smallest K-L distances f(θ̂) obtained when fitting both models to the output of
25 separate empirical final size distributions from simulations of each model, using 10,000
households with ρ = ρ(3).

The model fitting procedure is exactly the same as before but we now use the empirical final
size distribution as the target final size distribution q in (5.1).

From each model, with parameter values as in Section 4 and household size distribution
ρ(3), we generated 25 independent empirical final size distributions taken from simulations on
systems of 10,000 households that resulted in a major outbreak and then fitted both models
to each empirical final size distribution. Figure 4 shows plots of the fit of each model to each
dataset, the fit being measured by the smallest value of f(θ̂) found in 5 runs of our algorithm.
(When fitting to empirical final size distributions we find that the variability of f(θ̂) between
runs is very small and thus 5 runs is sufficient to be confident that we have found the best-
fitting model; see Section 5.5 for further details.) For clarity, the results in the figure have
been ordered according to the best fit of the true model.

From Figure 4 it is immediately clear that, for a system of 10,000 households, the correct
model (i.e. the one that generated the data) has the best fit on most occasions (24 out of 25
for the IDS-HH data and 22 out of 25 for the MT-HH data). It also seems clear that it is
generally easier to rule out the MT-HH model when looking at data from the IDS-HH model
than vice-versa (the gap between the two lines is generally much larger in plot (a) than in
plot (b)). Especially intriguing is the observation that, when the data are from the MT-HH
model there is a clear association between the K-L distances to the best IDS-HH and MT-HH
model; however there is much less, if any, association when the data are from the IDS-HH
model. This may be an artifact of the fact that, as can be seen from Figure 3, the IDS-HH
model is generally able to fit MT-HH data better than the MT-HH model can fit IDS-HH
data.

For a system of 1,000 households, plots (a) and (b) in Figure 5 indicate that for the MT-
HH data the results are broadly similar to those for 10,000 households (the correct model
fitted best on 20 of 25 occasions); however, the results are appreciably worse for the IDS-HH
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(b) MT-HH data, ρ = ρ(3)
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(c) IDS-HH data, ρ = ρ(5)
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(d) MT-HH data, ρ = ρ(5)

Figure 5: Smallest K-L distances f(θ̂) obtained when fitting both models to the output of
25 separate empirical final size distributions from simulations of each model, using 1,000
households with ρ = ρ(3) and ρ = ρ(5).
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model, with the correct model being identified on only 16 of 25 occasions. In plots (c) and
(d) of Figure 5, we show the results of similar comparisons for systems of 1,000 households
using the household size distribution ρ(5). Introducing larger households leads to a marked
improvement with the IDS-HH data, with the correct model being found on 23 of 25 occasions,
but seems to have less of an effect with the MT-HH data (although the correct model fitted
best on 24 of 25 occasions, the overall pattern of plot (d) is very similar to that of plot (b)).
Thus, although the mean household size under ρ(5) (2.35) is slightly larger than that under
ρ(3) (2), it appears that having larger households can have a significant impact on model
discrimination.

5.4 Pseudolikelihood motivation for use of K-L divergence

In this subsection we motivate our choice of the Kullback-Leibler divergence for assessing the
distance between the two models by relating it to a maximum pseudolikelihood estimation
procedure. For ease of presentation our arguments are informal, rather than fully rigorous.
Suppose, as above, that we have data {qn(rM , rS)} from an epidemic in a community of m
households. If we make the approximation that the outcomes in different households are
mutually independent then the likelihood of these data under one or the other of our models
is given by

L(θ) =
nmax
∏

n=1

∏

rM ,rS

[pn(rM , rS|θ)]
mnqn(rM ,rS), (5.3)

where mn is the number of households of size n in the community, and (θ, pn(rM , rS|θ))

is either (θ(MT ), p
(MT )
n (rM , rS|θ

(MT ))) or (θ(IDS), p
(IDS)
n (rM , rS|θ

(IDS))). In reality, (5.3) is a
pseudolikelihood since the outcomes in distinct households are dependent, as they are part of
the same community-wide epidemic, though the dependence is small (the covariance of the
final outcomes in distinct households is of order 1/m for large m; cf. Ball and Lyne (2010)).
The maximum pseudolikelihood estimator of θ, denoted by θ̂, is obtained by maximising L(θ),
or equivalently by maximising l(θ) = logL(θ), which is given by

l(θ) = m
nmax
∑

n=1

ρn
∑

rM ,rS

qn(rM , rS) log pn(rM , rS|θ).

Note that maximising l(θ) is equivalent to minimising the Kullback–Leibler divergence
DKL(q||p(θ)), defined by (5.1). Moreover, the pseudolikelihood ratio goodness-of-fit test statis-
tic, Λm say, for assessing the adequacy of the model for these data is given by

−2 log Λm = 2mDKL(q||p(θ̂)); (5.4)

cf., for example, Bishop et al. (1975, Equation 10.2-6), who consider testing the goodness-of-fit
of a specified multinomial model.
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Now, for example, suppose that these data {qn(rM , rS)} were actually generated by the
IDS-HH model with parameter θ(IDS), but that we fit the MT-HH model. Then (cf. Sec-

tion 3.2) qn(rM , rS)
p

−→ p
(IDS)
n (rM , rS|θ

(IDS)) as m → ∞, whence θ̂(MT ) p
−→ θ

(MT )
∗ as m → ∞,

where θ
(MT )
∗ minimises DKL(p

(IDS)(θ(IDS))||p(MT )(θ(MT ))) with respect to θ(MT ). (Here,
p

−→
denotes convergence in probability.) Hence, using (5.4),

−
1

m
2 log Λm

p
−→ 2DKL(p

(IDS)(θ(IDS))||p(MT )(θ(MT )
∗

)) as m → ∞.

If, instead, we fit the IDS-HH model with parameter θ(IDS), then θ̂(IDS) p
−→ θ(IDS) as

m → ∞ and, since DKL(p
(IDS)(θ(IDS))||p(IDS)(θ(IDS))) = 0, −2m−1

log Λm

p
−→ 0 as m → ∞. In these circumstances, −2 log Λm asymptotically equals the usual

chi-square goodness of fit test statistic

X2 =

nmax
∑

n=1

∑

rM ,rS

(mnqn(rM , rS)−mnp
(IDS)
n (rM , rS|θ̂

(IDS)))2

mnp
(IDS)
n (rM , rS|θ̂(IDS))

.

However, dependencies between the households imply that X2 may not have the usual asymp-
totic χ2 distribution; instead the asymptotic distribution of X2 is a linear combination of d
independent χ2

1 random variables, where d is the degrees of freedom of the usual chi-square
test (cf. Ball and Lyne (2010)). Nevertheless, (5.4) gives a guide for interpreting both our in-
finite and finite population model discrimination results. Moreover, if these data {qn(rM , rS)}
come from a small fraction, ε0 say, of the households among which the epidemic is spreading,
as is often the case in practice, then, if the model is correct, the asymptotic distribution of
X2 is very close to the usual χ2

d distribution, the approximation being exact in the limit as
ε0 ↓ 0 (cf. Ball and Lyne (2010)).

Clearly there are precisely analagous results which hold if the data instead come from the
MT-HH model.

5.5 Identifiability and model fitting

In this subsection we investigate how our model fitting methodology works in practice. We
find that there are two key issues that influence the overall behaviour of our algorithm. The
first is the striking difference in the distribution of final K-L distances f(θ̂) in the situations
where the target final size distribution q can or cannot be captured exactly (to numerical
accuracy) by the asymptotic version of the model we try to fit. The target final size distribution
cannot be captured exactly when either (i) we try to fit the wrong model or (ii) the data is
from a finite population. (This has the important consequence that when fitting a model to
empirical final size distributions we need only run the algorithm a few, say 5–10, times to
be confident that we have found the best possible fit.) We therefore restrict our attention
here to an exploration of seeking to fit the models to ‘data’ which are the asymptotic (m →
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Figure 6: Profiles of final K-L distances obtained when fitting both models to both q(MT ) and
q(IDS).

∞) distributions corresponding to the parameter values given earlier, with household size
distribution ρ(3) = (1, 1, 1)/3. We refer to these data with this household size distribution and
the parameters given previously as q(MT ) and q(IDS). In the course of this we clearly see the
second issue that arises, namely that there are identifiability issues in the IDS-HH model. In
the IDS-HH model as we parameterise it, it seems that some parameters are identifiable while
some are more difficult to identify, though we can find functions of these parameters which
do appear to be identifiable.

5.5.1 Fitting the correct model

Firstly we look at fitting each model to data generated from that same model, so we should
be able to recover the input parameters used to generate the data and find that f(θ̂) is very
close to 0. Figure 6 shows density estimates (essentially smoothed histograms, which we use
for ease of display) of f(θ̂) for the best 90 of 100 runs of our algorithm when fitting each
model to data generated by that model. We use only the best 90% of runs so as to exclude
the poor fits sometimes obtained for the reasons explained in the penultimate paragraph of
Section 5.2. (For comparison, Figure 6 also shows the smallest f(θ̂) values found when fitting
each model to the data generated by the other model; these are displayed as points rather
than densities since, as shown in Section 5.5.3, in these circumstances the variability of f(θ̂)
is very small.) This figure shows that our algorithm consistently finds model parameters θ̂
which quite accurately reproduce the target final size distributions, indicated by the very
small values of f(θ̂). We see shortly why the MT-HH model can be fitted to its own final size
distribution rather better then the IDS-HH model. If we examine the parameter estimates
θ̂ that yield these final K-L distances we see (Table 5) that the MT-HH model recovers the
parameters used to generate q(MT ) with a high degree of accuracy and very little variability,
whereas when we fit the IDS-HH model to q(IDS) we find (Table 6) that several parameters
are estimated quite poorly.
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Table 5: Summary of parameter estimates when fitting the MT-HH model to q(MT ) (best 90
of 100 runs).

Parameter πM πS λ
(L)
MM λ

(L)
MS λ

(L)
SM λ

(L)
SS βM

True value 0.7263 0.5224 0.2000 0.4000 0.4000 0.8000 0.4000
Mean 0.7263 0.5224 0.2000 0.4000 0.4000 0.8000 0.4000

Std. dev. 0.00003 0.00004 0.00004 0.00013 0.00008 0.00022 0.00004

Table 6: Summary of parameter estimates when fitting the IDS-HH model to q(IDS) (best 90
of 100 runs).

Parameter λ
(G)
M λ

(G)
S λ

(L)
M λ

(L)
S p

(G)
MM p

(G)
SM p

(L)
MM p

(L)
SM γS

True value 1.0000 2.0000 0.5000 1.0000 0.8000 0.2000 0.5000 0.1000 1.5000
Mean 1.7805 3.9959 0.5028 4.2510 0.3924 0.4954 0.4935 0.0932 8.5436

Std. dev. 0.6781 3.4214 0.0017 2.4507 0.1662 0.2507 0.0040 0.0046 4.9344

5.5.2 Identifiability in the IDS-HH model

The poorer recovery of input parameters in the IDS-HH model can to a large extent be
explained by issues of identifiability. We mention in Section 2 that it is known that in the
MT-HH model the global rate parameters are not uniquely identifiable from final size data
(Ball et al. 2004) and for this reason we estimate the probabilities π rather than the global rates

(λ
(G)
MM , λ

(G)
MS, λ

(G)
SM , λ

(G)
SS ). However, the IDS-HH model we propose is new so such identifiability

issues have not been explored. Moreover, identifiability is difficult to study rigorously for this
model as there is no analytical expression for the household final size distributions. Careful
examination of the parameter estimates when fitting the IDS-HH model to q(IDS) suggests
that some identifiability issues are present here. In particular, in our parameterisation of the
IDS-HH model there are three combinations of parameters that seem identifiable whilst some
of the individual parameters are very difficult to identify separately.

The first of these combinations is λ
(L)
S and γS; our algorithm estimates the ratio λ

(L)
S /γS

extremely well (see Table 7), but has difficulty identifying the precise values of these param-

eters. The second set of troublesome parameters consists of the global contact rates λ
(G)
M and

λ
(G)
S and the removal rate γS. If the removal rates γM and γS are known then the relationship

πG = exp(−(zMλ
(G)
M /γM + zSλ

(G)
S /γS)), where πG = q1(0, 0) (=

n
√

qn(0, 0) for any n ≤ nmax) is
the probability that a given individual avoids global infection, specifies a linear equation that
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λ
(G)
M and λ

(G)
S must satisfy. If we assume that the removal rates are both known then our algo-

rithm identifies the correct linear combination of global contact rates very easily but finds it
very difficult, though possible, to find the most likely values of these parameters individually.
However, we assume that (one of) the removal rates is unknown and, as just discussed, not es-
timated very well; thus the global rates are generally not estimated very reliably. Nevertheless,
when the initial guess for γS is close to its optimum (correct) value, λ

(L)
S and the above linear

combination of λ
(G)
M and λ

(G)
S are also estimated easily and reasonably accurately, and a very

good fit is obtained. In the latter situation it is also possible to recover the individual rates
λ
(G)
M and λ

(G)
S with our algorithm but this is far more difficult. That zMλ

(G)
M /γM + zSλ

(G)
S /γS

is estimated well is demonstrated in Table 7, in which zM and zS are given by their observed
values in the (infinite) data.

The other parameters with identifiability issues are the global infection probabilities p
(G)
MM

and p
(G)
SM . Some information about these parameters can be obtained by considering households

of size 1 which become infected. Focus on such a household and suppose that there are in
total YM mild and YS severe infectives in the population just prior to its infection. Then the
probability that this infection is mild is

YMλ
(G)
M p

(G)
MM + YSλ

(G)
S p

(G)
SM

YMλ
(G)
M + YSλ

(G)
S

.

Now, YM and YS are random and vary throughout the epidemic. A crude approximation
is to replace the ratio YM/YS by γ−1

M zM/γ−1
S zS, the latter taking into account the different

infectious periods of mild and severe infectives. Thus the proportion of infected households
of size 1 that are mildly infected is approximately

zMλ
(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS

zMλ
(G)
M /γM + zSλ

(G)
S /γS

,

leading to the relationship

p
(IDS)
1 (1, 0|θ(IDS))

p
(IDS)
1 (1, 0|θ(IDS)) + p

(IDS)
1 (0, 1|θ(IDS))

≈
zMλ

(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS

zMλ
(G)
M /γM + zSλ

(G)
S /γS

. (5.5)

We have seen above that the denominator in the right hand side of (5.5) can be estimated
well, hence it is reasonable to expect that the numerator might be too. That this is indeed
the case is borne out in Table 7.

5.5.3 Fitting the incorrect model

We now turn our attention to the situation where we try to fit one of the models to final
size data arising from the other model. Fitting the MT-HH model to IDS-HH data gives
parameter estimates summarised in Table 8. While there is more variation in the MT-HH
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Table 7: Functions of estimated IDS-HH model parameters when fitting IDS-HH model to
q(IDS) (best 90 of 100 runs).

Function zMλ
(G)
M /γM + zSλ

(G)
S /γS λ

(L)
S /γS zMλ

(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS

True value 0.50669 0.50000 0.21340
Mean 0.50672 0.49807 0.21069

Std. dev. 0.00003 0.00113 0.00170

parameter estimates than when we fit to data from the MT-HH model, the variation is still
relatively small. Furthermore, the variation in the final K-L distances f(θ̂) is very small
(mean 1.46× 10−3, st. dev. 1.5 × 10−10), giving confidence that (i) we have found the region
of parameter space where the MT-HH model can best reproduce the data from the IDS-HH
model and (ii) that the best fitting MT-HH model does not reproduce the IDS-HH final size
distribution very well. For comparison, the minimum of these K-L distances is also shown in
Figure 6, as a point rather than a density because the variation is so small.

Table 8: Summary of parameter estimates when fitting the MT-HH model to q(IDS) (best 90
of 100 runs).

Parameter πM πS λ
(L)
MM λ

(L)
MS λ

(L)
SM λ

(L)
SS βM

Mean 0.5210 0.6450 1.3712 0.2561 0.0509 0.8990 0.3373
Std. dev. 0.00003 0.00001 0.00035 0.00003 0.00003 0.00007 0.00002

Lastly we consider fitting the IDS-HH model to the MT-HH data; see Table 9 and Figure 6.
Here we see variations in θ̂ roughly the same as those seen when fitting the IDS-HH model to
data it can reproduce exactly. Again we find that the estimates of λ

(L)
M and the p(L)’s show little

variation and we also see the same identifiability issues present. Although the estimates of γS,
λ
(L)
S , λ

(G)
S and the p(G)’s individually vary wildly we find that λ

(L)
S /γS, zMλ(G)/γM + zSλ

(G)
S /γS

and zMλ
(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS show very little variation (see Table 10). Similarly to

when we fit the MT-HH model to the IDS-HH data, we find very little variability in the final
K-L distances that we find, for the 90 smallest values the mean and st. dev. are 4.69 × 10−5

and 1.0× 10−7, respectively. Though these K-L distances certainly seem bounded away from
zero, suggesting that the IDS-HH model cannot reproduce the MT-HH final size distribution,
they are appreciably smaller than when fitting the MT-HH model to IDS-HH data.
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Table 9: Summary of parameter estimates when fitting the IDS-HH model to q(MT ) (best 90
of 100 runs).

Parameter λ
(G)
M λ

(G)
S λ

(L)
M λ

(L)
S p

(G)
MM p

(G)
SM p

(L)
MM p

(L)
SM γS

Mean 2.3496 4.0997 0.1982 4.2774 0.2351 0.5028 0.2757 0.3470 9.7983
Std. dev. 0.6919 2.2107 0.0001 2.8475 0.1548 0.2579 0.0038 0.0037 6.5202

Table 10: Functions of estimated IDS-HH model parameters when fitting IDS-HH model to
q(MT ) (best 90 of 100 runs).

Function zMλ
(G)
M /γM + zSλ

(G)
S /γS λ

(L)
S /γS zMλ

(G)
M p

(G)
MM/γM + zSλ

(G)
S p

(G)
SM/γS

Mean 0.50504 0.57068 0.13909
Std. dev. 0.00003 0.00023 0.00143

6 Discussion

In this paper we define two candidate models that might explain how an infectious disease
having varying disease response could spread in a community of households. Large population
properties of the two models are presented. These results are used to show by means of
numerical illustrations, that it is generally possible to discriminate between the two models.
More precisely, given final outcome data from a sufficiently large community of households it
is, except in some degenerate cases, possible to determine which of the two explanations to
varying disease response that best explain the data.

In order to perform the model discrimination described in this paper it is assumed that,
although an individual’s type is unobservable pre-infection (indeed in the IDS-HH model
individuals have no type prior to infection), the type of an infected individual is observable
post-infection. For some diseases the types may be directly observable, e.g. from displayed
symptoms, whilst for other diseases it may be obtainable using other methods, e.g. titre
studies. Of course misclassification may occur in the typing of individuals, in which case the
statistical model can be extended accordingly.

We have demonstrated that discrimination between the MT-HH and IDS-HH models from
final size data is relatively easy in the infinite population limit, but that it may be much harder
for a finite population. However, we have also shown that this can be less of an issue when
there are larger households present. It seems very likely that such discrimination would be
made easier by the use of temporal data, although developing suitable inferential methodology
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is likely to be challenging and such data are unlikely to be available unless the types of infected
individuals are straightforward to determine.

Both models could of course be extended towards higher realism. For example, besides
household structure, all individuals are assumed similar whereas it would be more realistic to
distinguish between adults and children having different mixing rates. Similarly, it would be
more realistic to allow for non-exponential infectious periods. These can readily be incorpo-
rated into both model specifications. However, although our analysis of the MT-HH model
can be generalised easily to allow for arbitrary but specified infectious period distributions,
that is not the case for the IDS-HH model, since the density-dependent population process
machinery of Ethier and Kurtz (1986) requires the population process to be Markov. Another
extension would be to allow for more than two different disease responses. It is of course
also possible to come up with other models giving rise to mild and severe infectives. Indeed
both models may fit data poorly, in which case other models need to be explored. However,
we believe that the two models studied capture the perhaps two most likely mechanisms for
determining an individual’s disease response: either the infection status of an individual is
predetermined or else it depends on whom the person was infected by. In the first situation
it could be natural to extend the model to allow this predetermined status to be dependent
between individuals of the same household, for example due to previous exposure to the dis-
ease or genetic effects, in which case the number of mild individuals in a household of given
size may not have a binomial distribution. Another important extension would of course be
to apply the method to real data with the hope to find out more about the underlying reason
for having varying disease response.
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