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SUMMARY  This paper introduces a fresh perspective on product modularisation and proposes a process for 
modular product realisation called Holonic Product Design.  The holon has recently been adopted from Arthur 
Koestler’s work to represent subsystem entities within manufacturing systems and the enterprise chain.  In 
addition, it has been embraced as a philosophy for change that attempts to fashion modern manufacturing 
businesses and manufacturing activity.  This paper demonstrates the holon as being equally valid as an 
approach to product development.  Through research at a number of UK companies Holonic Product Design 
(HPD) is developed and presented as a structured approach to product realisation.  Addressing a total view 
through systems engineering, HPD provides an accessible and customisable modular product development 
workbook.  The efficacy of the new approach is demonstrated through the initial results from a HPD case study.  
Further work remains in refining the integration of HPD elements and thoroughly testing the approach through 
a full new product development process. 
 

1. Introduction 

 

The aims of this paper are to: 

1. Present the case for a modularity based process for enhanced product development. 

2. Present the modularity paradigm and explain its structure and how it supports Holonic Product Design 

(HPD) 

3. Highlight some key features of the HPD workbook 

4. Finally present some initial validation work at a small UK company and conclude. 

 

Case study research on design modularisation has been undertaken across a broad range and scale of product 

manufacturers.  The work carried out highlights a range of issues that must be addressed in order to introduce 

successful new products [1].  These issues can be summarised into four main concerns to which modularity is a 

strategic approach. 

• Efficient deployment of stakeholder requirements 

• A rationalised introduction of new technology 
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• A structured approach to dealing with complexity 

• Responsive manufacturing through flexibility/agility. 

 

This paper will now discuss some of the characteristics of modular products that enhance product realisation and 

highlight why modularity might be a strategic approach to meeting the issues presented. 

 

2. Product Modularity 

 

Modular product architectures are not new and have seen successful application, but have been largely passed 

over outside of a few specific industries.  Constrained by engineering legacy and the lack of a broader view, 

modularity has been consigned to a process of decomposition or demarcation for manufacturing convenience in 

the form of subassemblies [2].  However, the research carried out [1] has determined that modules have a 

number of characteristics fundamentally different to subassemblies: 

• Modules are co-operative subsystems that form a product, manufacturing system, business etc. 

• Modules have their main functional interactions within as well as between modules 

• Modules have one or more well defined functions that can be tested in isolation from the system 

• Modules are independent and self contained and may be combined and configured with similar units to 

achieve a different overall outcome. 

 

It is believed that the lack of modularity application is due to its initial perception as a tool to rationalise variety 

through the partitioning of product functions [3].  However, variety is only one aspect of product modularity.  

One of the most important aspects of modular product development is the potential for efficient flexibility.  

Modularity ultimately provides a means to address product flexibility, in order to efficiently meet a broad range 

of customer requirements, and manufacturing flexibility in the form of cells, parallelism, and late configuration. 

 

3. Holons and Holonic Manufacturing 

 

The term holon is derived from two observations by Koestler [4]. The first is from Simon [5] and is based on the 

parable of the two watchmakers.  The parable concludes that a purely sequential assembly process is highly 

prone to disturbance, and that greater robustness, ease of maintenance and repair can be obtained through the 

use subassemblies, a point echoed by Hansen [6] when dealing with mechanical adjustments.  The second is the 

relativity of hierarchies.  Intermediary structures such as subassemblies have characteristics associated with 

‘parts’ and also with ‘wholes’ depending on the way in which they are viewed.  To represent these entities 

Koestler proposed the term ‘holon’.  Holons are autonomous self reliant units, which have a degree of 

independence and handle contingencies without asking higher authorities for instructions; simultaneously holons 

are subject to occasional control from higher authorities. 

 

Holons have already been adopted at an organisational level in the form of Holonic manufacturing systems 

(HMS).  HMS are part of the Intelligent Manufacturing Systems (IMS) programme that addresses the so called 

‘fragility’ of today’s manufacturing systems [7].  However, taking a system wide approach to manufacturing 

enterprise organisation and operation requires equal consideration of the product system.  In the same way that 
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flexible manufacturing solutions are facilitated through the use of flexible designs [8] so too holonic 

manufacturing concepts can be facilitated through holonic product design.  Indeed parallels can be drawn 

between the issues and requirements for modules and those for holons.  The literature from various areas of 

design and manufacturing highlights the trend towards distributed, co-operative and intelligent modules but also 

highlights the need to bridge the gap between the analytical nature of these observations and the design / 

synthesis of artefacts [9,10,11,12] 

4. Modularity Principles 

 

Case study research has determined that regardless of the approach taken modularity exhibits a number or facts 

or rules that define the principles of a modular approach [13].  An example of these principles includes: 

1. Modularity is inherently based upon a mapping of functional aspects to physical entities and is governed by 

concepts such as the domain theory [14,15] the work of Hubka and Eder [16,17], and Suh’s design axioms 

[11].  The nature of this mapping and the ultimate configuration controls a product’s modularity and 

ultimately its ability to meet requirements. 

2. A number of factors have been identified that influence the mapping of physical to functional elements e.g. 

interactions, geometry, core business, and manufacture, (See Section 6.2). 

3. Some initial metrics have been developed to allow numerical measurement of advantage to be gained and 

suitable level of modularity though further validation is necessary. 

4. Modularity has a negative effect upon assembly when a localised view of assembly operations and fixture 

requirements is taken.  The modular assembly will always take an extra number of assembly operations. 

5. A total view of assembly highlights the overall beneficial effects of modularity.  By using parallel assembly 

total cycle time is reduced and further positive impacts upon flexibility and timeliness attributes are seen. 

6. Modularity provides a rational product flexibility to enhance existing manufacturing flexibility solutions. 

7. Modularity needs the support of a system level framework in order to manage its complexity and broad 

ranging links and interactions.  Modularity cannot be viewed as an isolated process capable of being 

implemented without consideration of the business context in which it is to fit. 

 

5. Holonic Product Design 

 

The principles above highlight the systemic nature of modularity.  In addition, analysis of the work of exponents 

of modularity such as Ulrich and Eppinger [18] supports the need for an equally systemic approach addressing a 

broader scope suited to the needs identified.  Thus, HPD embodies a generic approach from which increasing 

levels of detail on processes and underlying principles can be targeted at increasing resolution of 

implementation.  This hierarchy of modularity forms what has been termed the modularity paradigm (Fig. 1) 

[13] and is largely implementation independent.  The paradigm consists of three levels and combines elements 

of best practice from systems engineering (SE) standards IEEE 1220 [19], EIA 632 [20] and design standards 

such as BS7000 pt2 [21].  Holonic Product Design has been developed in a workbook form [22] as a pragmatic 

implementation of the modularity paradigm and addresses the development of modular products in conjunction 

with the process and organisational issues that accompany them. 

 

5.1. Systems Engineering Framework and Modularity Methodology 
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These areas are not covered in detail here but aim to meet the need for a total view and a means of relating this 

view to the actual process of engineering the product.  The framework supports an approach to modularity from 

the perspective of integrated product and process development (IPPD) [23], where the traditional aspects of 

systems engineering are combined with a truly integrated product and the means by which it is developed and 

manufactured [24].  In the same way that quality function deployment (QFD) can provide a linking mechanism 

between the various stages of the product life cycle, HPD embodies a linking methodology supported by a 

systems level framework for product realisation to provide an integrated and structured product modularisation 

process.  Thus, the processes carried out in one aspect of module realisation must be addressed in the context of 

the lifecycle.  The phases of the methodology (Fig. 1) focus on establishing a corporate stance on modularity to 

guide the strategic modular intent of the company and carrying this intent throughout the product lifecycle. 

 

5.2. Modular Product Development Process 

 

The actual process of developing modular products deals with the engineering activity involved in converting 

the results of the early phases of the methodology into product and process specifications.  The process (Fig. 2) 

was developed to maintain the structured approach outlined by the systems framework by ensuring stakeholder 

requirements, through module criteria, permeate the process and provide traceability for all development 

decisions.  The process then follows a classical functional analysis / physical analysis structure to provide a 

largely unconstrained environment for the designer, to encourage innovation and the opportunity to foster an 

approach to modularity that is not constrained by legacy designs.  The two key stages in this process concern 

interaction analysis, and are performed twice; once at a functional stage and again at a physical stage to ensure 

the optimum consideration of interface interactions. 

 

6. Key Features of HPD 

6.1. Level of Modularity 

 

One of the initial requirements for the modular design process is the level to which the modular architecture is to 

be taken.  Case study work undertaken by the authors has shown that for a modular product there are a number 

of dimensions to the implementation of modularity.  This application difference of modularity has been named 

the level of modularity (LOM) and is classified as a combination of three factors: 

1. Complexity - This is the functional level of modularity for each module.  A module can contain anything 

from a single function to a combination of many functions. 

2. Resolution - This is the number of modules in the product.  The number of modules often relate to 

complexity, where high numbers of modules are likely to have low individual functionality. 

3. Composition - This is the degree to which module complexity varies within a single product, and whether the 

product is a hybrid of an integrated common module and variant modules. 

 

Where products with a high LOM exhibit benefits in terms of flexibility, those with a low LOM act as an 

integrated whole and tend to be products where optimum performance is critical.  The affect of the LOM has 

been identified through a number of additional factors: 
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1. The LOM gives a basis for development to maximise the ability to utilise common modules.  Products of 

greatly differing LOM are unlikely to be compatible due to the module interfaces. 

2. The LOM will affect the flexibility and the performance of the product.  Though highly flexible modular 

solutions can perform extremely well, they are unlikely to exhibit the optimal architecture and performance.  

It must be stressed that this only relates to examples of exacting performance, as non-integrated systems can 

also be designed to function to very high levels. 

3. The LOM will affect the manufacturability of the modules.  The greater the number of common modules the 

more efficient the manufacture.  Also, complex modules will naturally be more complex to manufacture. 

4. The LOM will also affect, complexity, robustness (both in quality and flexibility), and cost. 

 

6.2. Module Definition 

 

Module definition is a complex and largely intuitive process.  However there are a number of factors that may be 

considered to aid in the process: 

• Interactions:  Interactions between elements that are critical may benefit from the elements being grouped as 

may interactions utilising mechanical movement which is not sympathetic to being made to function across 

interfaces.  Electronic interactions are more sympathetic to separation and may even benefit from being in 

separate modules, as in multiplexed systems. 

• Geometric location:  Integrating elements that require precise geometric alignment will benefit from being in 

the same module, as control of the alignment is done in a localised area or by a single component. 

• Function deployment:  When a single physical element can implement a number of functions the elements 

can be grouped.  This may inhibit flexibility as not all of the integrated elements may be used in another 

product.  However there is the possibility of redundancy if advantageous. 

• Supplier capability:  A regular supplier to the company may have a specific area of expertise, elements in 

this area may be grouped to utilise the capability of a supplier to the maximum. 

• Natural Modules:  Groups of elements that naturally complement each other and benefit little from being 

separate are termed natural modules, such as power supply units. 

• Core Business:  The grouping of elements into modules that contain features, functions and expertise that fall 

outside of the core business allows them to be provided by a supplier. 

• Localisation of change:  If change is anticipated in certain elements through, wear, use, obsolescence or 

fashion, then these elements should have their own modules, such that they may be altered, replaced or 

serviced without affecting the whole, as in toner cartridges. 

• Configurability:  Elements should be grouped such that the company may combine modules in differing 

ways to provide variety if desired. 

• Standardisation:  Elements useful to a range of products should be grouped so that modules can be common 

or form a generic platform or architecture.  A generic architecture provides a standard proportion for each 

product, and introduces benefits through flexibility.  Modules can then be developed that provide variety 

when configured with this generic architecture.  Also, designs should consider existing and possible future 

products and how they may be integrated with the current designs, components, processes, facilities etc. 

• Manufacture:  Elements may be grouped that require the same manufacturing processes or combined through 

the use of processes such as injection moulding or casting.  Such groupings may also be mirrored through 
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modular assembly cells.  In addition, elements composed of the same material may be grouped to aid 

manufacturing and also recycling.  Groups can also be formed that encapsulate features of the product that 

allows for these to be introduced to the assembly process late on i.e. late configuration. 

• Failure modes and effect analyses:  If product or process FMEA studies are carried out or previous data is 

available, the results may aid element grouping with a view to minimising the failures and their consequence. 

Once elements have been grouped into modules interactions between modules should be identified.  It cannot be 

taken that the interactions will purely be combinations of those between functions determined previously.  

Module interactions are at a higher level than functional interactions and will arise due to the physical 

implementation of the functional elements or due to the geometric arrangement of the modules.  These 

interactions will probably not appear on the schematic and must be identified to ensure that any detrimental 

effects may be removed.  The outcome of this process provides input for detail specifications to be drawn up for 

modules and interfaces.  Interactions documented in the specifications are very important and may be used to 

structure and manage the remaining development activities.  Modules that have many interactions should be 

developed by teams that are closely tied, or even a single team.  Modules that have few or no interactions can be 

developed by independent teams or outside suppliers. 

 

6.3. Self Analysis 

 

HPD’s pragmatic approach also provides the ability to tailor the process and means by which the user may 

determine metrics from which they can base decisions.  Kohlhase and Birkhofer [25] echo this need through 

their evaluation of modular structures.  HPD provides a set of simple self analysis, checklists, and distilled 

guidelines for quick reference [22].  One such analysis concerns implementation and aims to identify a guideline 

for an appropriate LOM.  The analysis is performed through answering the seven question shown below: 

1. To what extent will the user desire / require configurability of the product? 

2. What is the degree of possible commonality between the product and any other? 

3. To what extent is the product likely to be modified / updated in the future? 

4. How complex is the product and project to be undertaken? 

5. To what extent is the product constrained by manufacturing strategy and processes? 

6. To what extent will the product include elements requiring regular service or replacement? 

7. What is the degree of possible recyclable / reuseable elements within the product? 

 

The results from the analysis provide a LOM metric.  The score indicates a degree of modularity on a scale of 0-

21 ranging from a low level to a high level.  The metric can then be used to determine a broad level of 

complexity and resolution using the LOM Graph for guidance (Fig. 3).  The LOM Graph represents a ‘hot-spot’ 

for optimum LOM and highlights the benefit of a balance within the modular architecture. 

 

A further aid to determining the appropriate LOM is the permutation chart (Fig. 4).  The chart is based on a 

morphological matrix [26] and has been developed as a simple graphical method of exploring the possibilities 

for the levels of modularity.  The actual implications of composition, complexity, and resolution can be mapped 

and a 3 digit value determined that represents the desired LOM.  An example of its use may see a value of 003 

representing a modern personal computer or 301 an automobile. However, this particular analysis is very 
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subjective and highly dependent on its context.  Answers may vary depending on whether the product is 

considered in isolation or part of an existing product family.  Thus any conclusions derived from this analysis 

should only form part of an important discussion on the level of modularity suited to the company’s products. 

 

 

7. Initial Implementation 

 

Initial validation has been carried out through a project based at Sperry-Sun Drilling Services, UK (SSDS) who 

manufacture test equipment for down-hole drilling applications.  A version of HPD was used to aid the 

development of a new business strategy that used modularity as a strategic tool in shaping the long term goals of 

the company.  Within this strategy HPD was used to develop two new products.  The benefits gained from the 

implementation of the new modular strategy have been widespread.  New product development is much 

simplified and responsive.  The re-use of modules reduces the engineering effort required to realise a new 

product and ensures that the customer’s needs are met quickly.  Design changes and upgrades have also 

benefited in the same way through forward compatibility and the ability to upgrade selective modules, 

addressing customer requirements pre-emptively and allowing existing products to be upgraded with greater 

efficiency. 

 

Complexity has been addressed through decomposition into modules, partitioning of dedicated and common 

areas and a reduction in interfaces and provision of generic modules.  This has improved management, design, 

manufacture, service and use of the product.  Modules have simplified and allowed more efficient 

manufacturing and assembly tasks.  This has been achieved through the early involvement of manufacturing but 

also a reduction in part numbers and part variety, thus reducing stock holding, parts inventory, lead times (from 

12-20 weeks to 6-8) and increases in economies of scale and quality (2.5% rejects to 1.2%).  Assembly 

sequences are generic across the majority of products and variety can be introduced late on in the assembly 

process providing flexibility to the build plan.  Testing is simplified as modules can be tested separately and also 

by the supplier ($190,000 saving).  There are also less varieties of products to test and a reduced requirement for 

test tooling and facilities. 

 

The implementation of the process has also seen some general benefits including administration and 

documentation overheads reduced, a closer knit and more motivated development operation with engineers more 

appreciative of functions outside their own and an emphasis on finding and addressing problems early on. 

 

8.  Concluding Remarks 

The concerns summarised at the beginning of this paper relating to variety, complexity, and flexibility demand a 

structured requirements driven approach to product realisation.  Modularity offers this approach, providing a 

timely opportunity to drive integrated product / process development.  To these ends Holonic Product Design 

has been developed as a highly pragmatic approach embodying this total view with the core concepts of 

modularity and the autonomy, flexibility and co-operative nature of holons.  Thus a tiered paradigm has been 

proposed to target the appropriate perspective, detail, and approach to each level.  This paradigm then supports 
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the principles of modularity that can be carried over regardless of application and can be used to determine 

metrics for control and support of the methodology.  To validate this model the work was embodied within a 

Holonic Product Design Workbook [22], accessible by the practitioners of modularity and with all necessary 

tools for implementation and support of the process.  An initial implementation of the workbook has produced 

some positive results and also opportunities for refinement and a planned expanded assessment of the approach 

in terms of its applicability, accessibility and its overall scope. 
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Fig. 1 The Modularity Paradigm. 
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Fig. 2  The Modular Product Development Process Flow. 
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Fig. 3  Level of Modularity Graph. 
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