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Abstract

This paper addresses stability and performance of sampled-data
systems with variable sampling rate, where the change between sam-
pling rates is decided by a scheduler. A motivational example is pre-
sented, where a stable continuous time system is controlled with two
sampling rates. It is shown that the resulting system could be unsta-
ble when the sampling changes between these two rates, although each
individual closed-loop system is stable under the designed controller
that minimizes the same continuous loss function. Two solutions are
presented in this paper. The first solution is to impose restrictions on
switching sequences such that only stable sequences are chosen. The
second solution presented is more general, where a piecewise constant
state feedback control law is designed which guarantees stability for
all possible variations of sampling rate. Furthermore, the performance
defined by a continuous time quadratic cost function for the sampled-
data system with variable sampling rate can be optimised using the
proposed synthesis method.

Keywords: Sampled-data systems; hybrid systems; stability; performance

1 Introduction

Sampled-data systems with varying sampling rate arise for different reasons.
The first reason is the optimal usage of central processing unit (CPU) re-
sources (Eker, 1999; Cervin, 2000). In the area of embedded systems which
is of broad interest, several tasks including computing control effort, man-
agement, data processing and fault diagnosis are carried out on the same
CPU. When enough computational resources are available, the control law
is computed more frequently than when the resources are used for other
computations, management or data processing. This leads to variations in
sampling rate. Secondly, it also arises in the situations where sampling rate
depends on certain variables; for example, in brushless DC motor control,
a few hall sensors are used to determine the position of the rotor and the
speed measurement frequency is velocity dependent (Yen et al., 2002). The
third reason is to use sampling rate as an extra control variable; for in-
stance, a wide range of sample interval adaption schemes for stablising a
single-input-single-output (SISO) system were proposed in (Owens, 1996).
Previously, variations in sampling rate were often neglected. In other cases,
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it was assumed that designing a piecewise continuous controller consisting
of controllers which are optimal for the current sampling rate would lead to
reasonable results. This paper shows that such assumptions are not justified
and such a control strategy does not guarantee stability.

A motivational example is first given in this paper, where a stable continuous-
time system is sampled at two different sampling rates. Two controllers are
designed by minimizing the same continuous quadratic loss function and each
individual controlled system is stable at a fixed sampling rate. However, it
is shown that the resulting closed-loop system might be unstable when the
sampling changes between these two rates. It is then pointed out that a
sampled-data system with variable sampling rate is a kind of hybrid system
which attracts considerable attention recently. The stability of this kind of
system not only depends on the continuous control and dynamics but also
the discrete dynamics (switching strategies between different sampling rates)
(Branicky, 1998; Ye et al., 1998; Chen and Ballance, 2002).

To avoid instability of this kind of system as in the motivational exam-
ple, two solutions are suggested in this paper. The first solution shows how
restrictions on switching sequences can be imposed such that only stable
sequences are chosen. This can be achieved by identifying all possible un-
stable switching sequences. However, in engineering, not only stability but
also performance are of concern. Moreover, in some cases, it is impossible
to impose restrictions on the scheduling strategies. Therefore, the second
solution presents an optimal controller design where the bound on the cost
for all possible switching sequences is minimised. This results in a piece-
wise constant state feedback control law and guarantees stability regardless
of switching sequences. The controller synthesis is cast into an LMI, which
conveniently solves the synthesis problem. To illustrate the procedure, the
introduction example is revisited using the proposed LMI synthesis method
and a piecewise constant control law is given, which is stable for all switching
sequences while minimising the bound of the cost.

2 A motivational example

As an example of instability for sampled-data systems with variable sampling
rate, the real-time control of a linear continuous time system
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ẋ(t) = Ax(t) + Bu(t) (1)

is considered, where

A =

[
0 1

−10000 −0.1

]
, B =

[
0
1

]
, (2)

are the system, input and output matrices. The continuous-time system is
stable with poles in the left hand side of the complex plane, p1,2 = −0.05±
100i.

The continuous-time system is discretized with two different zero order
hold circuits, where the sampling times are h1 = 0.002s and h2 = 0.0312s,
respectively. The two discretizations, i.e., discrete-time systems, are repre-
sented by

x(k + 1) = Φqx(k) + Γqu(k) (3)

q ∈ {1, 2}
where

Φq = eAhq , Γq =

∫ hq

0

eA(hq−s)Bds (4)

and q denotes the discretized system obtained with sampling time hq. For the
sake of simplicity, x(k) and u(k) denote the state at the kth sampling instant
with sampling time either h1 or h2. With the data, it can be calculated that

Φ1 =

[
0.98007 0.0019865
−19.8649 0.97987

]
, Γ1 =

[
0.0000

0.0019865

]
, (5)

Φ2 =

[ −0.9982 0.00021558
−2.1558 −0.99822

]
, Γ2 =

[
0.0001998
0.0002125

]
(6)

Both discretisations lead to stable discrete systems with the spectral ra-
dius ρ(Φ1) < 1 and ρ(Φ2) < 1, respectively, where ρ(Φq) denotes the largest
eigenvalue of Φq.

A discrete linear quadratic optimal controller is designed for both dis-
cretizations by minimizing the continuous loss function

J =

∫ ∞

0

(x(t)T Qcx(t) + u(t)T Ru(t))dt (7)
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subject to system’s dynamics (1) sampled at h1 and h2, respectively, where

Qc =

[
20000 0

0 20000

]
R = 50

The discretized performance index at the sampling time hq is given by (Åström
and Wittenmark, 1997)

J =
∞∑
i=1

x(i)T Q1,qx(i) + 2x(i)T Q12,qu(i) + u(i)T Q2,qu(i) (8)

where

Q1,q =

∫ hq

0

(ΦT
s QcΦs)ds (9)

Q12,q =

∫ hq

0

(ΦT
s QcΓs)ds (10)

Q2,q =

∫ hq

0

(ΓT
s QcΓs + R)ds (11)

Φs = eAs (12)

and

Γs =

∫ s

0

eA(s−s1)Bds1. (13)

Solving the discrete algebraic Riccati equation

Pq = ΦT
q PqΦq +Q1,q−(ΦT

q PqΓq +Q12,q)(Γ
T
q PqΓq +Q2,q)

−1(ΓT
q PqΦq +QT

12,q)

gives the state feedback law u = Kqx where

Kq = −(ΓT
q PqΓq + Q2,q)

−1(ΓT
q PqΦq + QT

12,q)

With the data, the feedback control gains for sampling rate h1 and h2 are
given by

K1 =
[

195.401 −19.4121
]
, K2 =

[
1313.1 10.284

]
, (14)

respectively.
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For both discretizations, it can be shown that the closed-loop systems are
stable. However, as shown in figure 1, when the system is sampled with h1

once and then the system is sampled with h2 twice repeatedly, and in each
sampling rate, the corresponding optimal controller (14) is applied, it is found
that the closed-loop system is unstable. Figure 1 shows 240 sampling points
of the continuous trajectory of this unstable system in the phase-plane. The
system (1) is sampled with h1 once, i.e., small distance between initial and
first sample, and twice with h2, i.e., larger distance between first, second and
third sample. It can be seen that the trajectory gets further away from the
origin as time goes. The instability of the closed-loop system with variable
sampling rate is confirmed by checking the spectral radius of the resulting
system ρ((Φ2 + Γ2K2)

2(Φ1 + Γ1K1)
1) > 1, while the spectral radiuses of the

closed-loop system under the optimal control at a fixed sampling rate are
ρ(Φ1 + Γ1K1) < 1 and ρ(Φ2 + Γ2K2) < 1, respectively. The spectral radius
of the resulting system is obtained by writing the solution for sampling at
h1 once as xh1 = (Φ1 + Γ1K1)x0 and sampling at h2 twice as x2h2+h1 =
(Φ2 + Γ2K2)

2xh1 . Substituting the former into the latter gives x2h2+h1 =
(Φ2+Γ2K2)

2(Φ1+Γ1K1)x0. Since this is done repeatedly, it can be considered
as a new system with the spectral radius larger than one, which implies that
the resulting system is unstable.

It turns out that this is not the only sequence between these two sampling
rates which destabilises the system. Table 1 gives other sequences for which
the resulting system is unstable.

Table 1: Unstable sequences

ρ((Φ2 + Γ2K2)
mh2(Φ1 + Γ1K1)

nh1) > 1

n · h1 1 · h1 1 · h1 1 · h1 2 · h1 2 · h1 2 · h1 2 · h1 2 · h1 2 · h1

m · h2 1 · h2 3 · h2 4 · h2 2 · h2 3 · h2 4 · h2 5 · h2 6 · h2 7 · h2

3 Stable scheduling strategies

It should be noticed that sampled-data system with varying sampling rate
can be represented as a hybrid system. In this setting, the same continu-

6



−1 −0.5 0 0.5 1 1.5
−200

−150

−100

−50

0

50

100

150

200

x1

x2 Initial state 

First sample 

Second sample 

200th sample 

Figure 1: Unstable sequence

7



ous time system (1) is discretized at different sampling rates into different
discrete-time systems (3). After the controllers are designed based on each
discrete time model using LQR method, the closed-loop systems under the
designed controllers are different although the same continuous time perfor-
mance index (7) is optimized. The closed-loop system at a fixed sampling
rate can be regarded as a subsystem. When the sampling rate changes, the
controller is switched between the corresponding controllers for different sub-
systems. Therefore, the variation of the sampling rate can be considered as
switching between different subsystems.

One immediately interesting question arising from this example is that
when the controller is switched between two sampling rates, how many
switching sequences lead to unstable scheduled systems. Theorem 1 states
that the number of the possible switching sequences leading to unstable
closed-loop systems, as shown in Table 1, is limited.

Theorem 1: Consider a continuous time system controlled with two sam-
pling rates and the closed-loop system under each controller with a fixed sam-
pling rate is exponentially stable. When the controller is switched between
these two stablising controllers, depending on the corresponding sampling
rate, the number of possible unstable switching sequences used repeatedly,
which result in the new closed loop matrix (Φ2+Γ2K2)

i(Φ1+Γ1K1)
l, is upper

bounded by p = (m−1) ·(n−1), where m and n are sufficiently large positive
integers satisfying

((Φ1 + Γ1K1)
n)T P1(Φ1 + Γ1K1)

n − 1

a
P2 < 0 (15)

((Φ2 + Γ2K2)
m)T P1(Φ2 + Γ2K2)

m − 1

a
P2 < 0 (16)

P1, P2 > 0 and a ∈ R+ is a positive scalar such that aP1 > P2.

Proof: To show that a switching sequence between these two sampling
rates is stable, it is sufficient to find a Lyapunov function candidate for the
resultant closed-loop system. Since for a fixed sampling rate, each discrete-
time closed loop system is exponentially stable, there exists a Lyapunov
function for each system satisfying

(Φq + ΓqKq)
T Pq(Φq + ΓqKq)− Pq < 0 Pq = P T

q > 0 (17)

q ∈ {1, 2}
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where Pq > 0. Since P1 > 0 and P2 > 0, there exists a scalar a ∈ R+ such
that aP1 > P2. We can take a piecewise quadratic Lyapunov function V (x)
as

V (x) =

{
xT aP1x at subsystem 1
xT P2x at subsystem 2

(18)

The Lyapunov function decreases while staying at one subsystem. How-
ever, when switching from one subsystem to another one, the Lyapunov
function might increase. Therefore, to guarantee the overall decrease of the
Lyapunov function, the system shall stay sufficiently long either with subsys-
tem 1 before switching to subsystem 2 or with subsystem 2 before switching
to subsystem 1. Since aP1 > P2, this implies that the Lyapunov function
V (x) decreases when switching from subsystem 1 to subsystem 2, whereas
the Lyapunov function increase when switching from subsystem 2 to 1, which
causes concern. Condition ( 15) implies that after staying subsystem 1 for
n sampling intervals, the associated Lyapunov function is less than that at
the subsystem 2 before it switches to the subsystem 1; condition (16) means
that after staying the subsystem 2 for m sampling intervals, the decrease of
the Lyapunov function is larger than the increase of the associated Lyapunov
function due to switch from subsystem 2 to 1. In both cases, the decrease of
the overall piecewise Lyapunov function is ensured and hence the stability.
In other words, all sequences where subsystem 1 is active for at least n cycles
or subsystem 2 is active for at least m cycles are stable. Therefore, unstable
sequences can only consist of the remaining p = (m−1)·(n−1) combinations.

¤
Theorem 1 indicates that the number of switching sequences that possi-

bly destabilise the sampled-data systems with two sampling rates are upper
bounded by p = (m−1) ·(n−1). Hence, we need to check the spectral radius
of the p combinations ρ((Φ2 + Γ2K2)

i(Φ1 + Γ1K1)
l) > 1, i ∈ {1, . . . , m− 1},

l ∈ {1, . . . , n− 1} to find all switching sequences that are unstable.
As pointed out earlier, a sampled-data systems with variable sampling

rate can be considered as a kind of hybrid system. In many cases, control of
a hybrid system can be implemented by not only continuous control, but also
discrete dynamics (for example, switching sequences). One might choose a
performance index that penalizes continuous and discrete dynamics. In par-
ticular, discrete mode changes need to be penalized to avoid Zeno executions
(Johansson et al., 1999b; Johansson et al., 1999a).
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Unfortunately, our application does not allow the choice of the discrete
dynamics freely since the change of allowable computational resource needs to
be taken into account. That is, the system should be able to switch from fast
to slow sampling at any sampling time if necessary. However, the opposite is
of course not required, i.e., the system can stay with the slow sampling rate
as long as the scheduler wants, although it is desirable, for the sake of good
performance, that the system shall switch back to fast sampling as soon as
possible.

This fact is exploited by imposing sensible restrictions on the schedul-
ing strategies. We proceed with computing a minimum dwelling time for
slow sampling required for guaranteeing the stability of the system, i.e., the
allowable time interval between switching from fast to slow sampling and
switching back to fast sampling again if computational resources allow it. It
will be shown that if such a scheduling strategy for sampling rate is applied,
the scheduled system is stable.

It follows from the proof of Theorem 1 that if the system stay in the
slow sampling for a certain time, then the closed-loop system with variable
sampling rate should be always stable regardless of how long the system stays
in fast sampling. Suppose that h2 is slow sampling. Then it follows from (16)
that the minimum dwelling time should be m ·h2 where m is an integer such
that condition (16) is satisfied.

This approach can be further generalised to system with several sampling
rates. Suppose that the sampling periods are given by hq, q ∈ {1, 2, . . . , N}.
Let P1 be associated with h1 which is the fastest sampling time. Then, the
minimum dwelling time can be calculated as follows: pick an a ∈ R+ such
that aP1 ≥ Pq for all q ∈ {1, 2, . . . , N}, and then solve iteratively for each
mq which satisfies

((Φq + ΓqKq)
mq)T P1(Φq + ΓqKq)

mq − 1

a
Pq < 0 (19)

Hence, the minimum dwelling times for each sampling rate are given by mqhq.
Remark 1: It shall be noticed that the result in Theorem 1 are mainly

for theoretic interests, i.e how many possible unstable switching sequence.
Eq. (15) and (16) together with Eq. (17) form the required conditions for
searching m, n, P1, P2 and a. For a fixed pair (m,n), after re-scaling P2 by
P2/a, these equations can be converted into LMIs and the feasibility can be
tested using existing software package (Boyd et al., 1994). The right pair
of positive number m,n can be found by increasing m and n iteratively and
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test its feasibility until it is feasible. There are more complicated methods
for searching piecewise Lyapunov quadratic functions for hybrid systems like
the variable sampled-data system discussed in this paper; for example see
(Johansson and Rantzer, 1998). In real implementation, to avoid unstable
behavior caused by variable sampling rate, as discussed above, only Eq. (16)
with Eq.(17) are required for finding the minimum dwelling times m. Less
computation is required in this case.

4 Controller design

When restrictions on sampling rate variations are not desirable, a controller
that is stable against the variation in sampling rate has to be found. Further-
more, as in the example in Section 2, not only stability but also performance
are interested in engineering. This section will develop a method to design
control law for sampled-data systems with variable sampling rate, which not
only stabilizes the system at all possible switching strategies but also achieves
optimal performance in certain sense.

To achieve this, instead of minimizing a continuous objective function
over the infinite horizon as in (7), the performance is minimised only over
one sampling interval. To compensate for the remaining cost, a terminal
penalty is added to the performance index. Minimizing the cost over only
one sampling period is more sensible since the sampling rate may change
after one sampling period anyway, i.e., after a sampling interval, a different
subsystem might be chosen. Since the terminal penalty has to be at least as
big as the remaining worst case cost (as will be shown later, this is due to
stability requirement), we have

x(k)T Px(k) ≥ min
u

∫ kh+hq

kh

(x(t)T Qcx(t)+u(t)T Ru(t))dt+x(k+1)T Px(k+1)

(20)

∀ q = {1, 2, . . . , N}
where x(k) denotes the state at the kth sampling time and kh denotes the
time period from initial time to kth sampling, depending on the past sampling
rate history. The solution gives an optimal, piecewise constant state feedback
controller for the hybrid system, which is stable regardless of the scheduling.
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The first step in solving (20) is to discretize the objective function. This
is done similarly as in (Åström and Wittenmark, 1997). The discretized
objective function over one sampling interval with terminal penalty is

x(k)T Px(k) ≥ min
u

(
x(k)T Q1,qx(k) + 2x(k)T Q12,qu(k) + u(k)T Q2,qu(k)

)
+

+ x(k + 1)T Px(k + 1) (21)

∀ q ∈ {1, 2, . . . , N}
where Q1,q, Q12,q and Q2,q are defined in (9-11).

One of the main results in this paper is stated in Theorem 2.
Theorem 2: Consider a continuous time system (1) controlled with

variable sampling period, hq, q ∈ {1, 2, . . . , N}, and the performance index
is given by (7) where non-zero state is detectable. Suppose that there exists
P = P T > 0, Kq, q ∈ {1, 2, . . . , N} such that

(Φq+ΓqKq)
T P (Φq+ΓqKq)−P +Q1,q+Q12,qKq+KT

q QT
12,q+KT

q Q2,qKq ≤ 0

(22)

∀ q ∈ {1, 2, . . . , N}
where Q1,q, Q12,q, Q2,q are defined in (9-11). When at the sampling period
hq, the control law

u(k) = Kqx(k) (23)

is applied, the closed-loop system with variable sampling rate is always stable
for all switching strategies among its sampling rates. Furthermore, the per-
formance of the sampled-data system with variable sampling rate is bounded
by xT

0 Px0 where x0 denotes the initial state.
Proof: At the time instant k, suppose that the sampling period hq is

adopted and the corresponding control (23) is applied where Kq satisfies
condition (22). The corresponding discrete time system at the kth sampling
period is given by

x(k + 1) = Φqx(k) + Γqu(k)

= (Φq + ΓqKq)x(k) (24)

Choose V (x(k)) = x(k)T Px(k) as a Lyapunov candidate for the sampled-
data system with variable sampling rate since P = P T > 0. The difference of
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the Lyapunov function along the trajectory of the dynamic system is given
by

∆V (x(k)) ≡ V (x(k + 1))− V (x(k))

= x(k)T
(
(Φq + ΓqKq)

T P (Φq + ΓqKq)− P
)
x(k)

≤ −x(k)T
[

I KT
q

]
Qq

[
I

Kq

]
x(k) (25)

with

Qq =

[
Q1,q Q12,q

QT
12,q Q2,q

]
, ∀ q ∈ Q = {1, 2, . . . , N} (26)

The last inequality in the above follows from condition (22). After substi-
tuting (9-11) into (26), Eq. (25) becomes

∆V (x(k)) ≤ −x(k)T

∫ hq

0

(Φs + ΓsKq)
T Qc(Φs + ΓsKq)dsx(k)−

x(k)T

∫ hq

0

(ΓsKq)
T R(ΓsKq)dsx(k) (27)

Eq. (27) implies that ∆V (x(k)) ≤ 0. Furthermore, since the non-zero
state is detectable in the performance index, the first item in the left side of
Eq.(27) is equal to zero only when x ≡ 0. This implies that ∆V (x) < 0 for
all non-zero state. Hence, the sampled-data system with variable sampling
period hq, q = [1, . . . , N ], is stable for all possible switching strategies when
the control law (23) is applied under the corresponding sampling rate.

We are now in the stage of showing that the performance defined in (7)
is bounded by xT

0 Px0.
It follows from (22) that

x(k)T Px(k) ≥ x(k)T (Φq + ΓqKq)
T P (Φq + ΓqKq)x(k)

+x(k)T (Q1,q + Q12,qKq + KT
q QT

12,q + KT
q Q2,qKq)x(k)

= x(k + 1)T Px(k + 1) +

+x(k)T Q1,qx(k) + 2x(k)T Q12,qu(k) + u(k)T Q2,qu(k)(28)

By repeating the above process from k = 0 to ∞, one has

xT
0 Px0 ≥ x(∞)T Px(∞) +

∞∑

k=0

x(k)T Q1,qx(k) + 2x(k)T Q12,qu(k) + u(k)T Q2,qu(k)

= x(∞)T Px(∞) +

∫ ∞

0

x(t)T Qcx(t) + u(t)T Ru(t)dt (29)
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It should be noticed that Q1,q, Q12,q, Q2,q in the above equation are not
constant matrices, which varies with the sampling rate employed for each
sampling instant. Since the closed-loop system with variable sampling rate
is stable, x(∞) approaches zero. Hence under all possible switching among
the different sampling rates, following Eq. (29), one has

J =

∫ ∞

0

x(t)T Qcx(t) + u(t)T Ru(t)dt ≤ xT
0 Px0 (30)

which implies that the performance of the sampled-data system with variable
sampling rate is bounded by xT

0 Px0.

¤

Remark 2: Theorem 2 gives the upper bound for the performance of a
sampled-data system switching between different sampling rate and estab-
lishes its stability. This result is obtained based on Eq. (20), i.e trying to
optimise the performance in one step ahead with certain terminal perfor-
mance. At the first glance, it seems it is a bd idea to do one step ahead
optimisation. However as well known in model predictive control literature
(Bitmead et al., 1990), for a linear system, when the terminal term is properly
chosen and there are no constraints on control and state, the same optimal
performance as in LQR can be achieved for this scheme. Actually, when
there is no switch, i.e. q = 1, the solution presented in Theorem 2, i.e. Eq.
(22), reduces to the fake Riccati algebraic equation associated with LQR
with the performance cost xT

0 Px0 (Boyd et al., 1994; Bitmead et al., 1990).
By minimising the cost function (e.g. the trace of the matrix P ) as in the
next section, the optimal LQR is resulted. In other words, the proposed con-
troller reduces to the optimal LQR controller when the sampling rate does
not change.

5 Controller synthesis using LMI’s

Theorem 2 points out that if a piecewise state feedback controller satisfying
(22) is found, it can be guaranteed that the controlled closed loop system is
stable for all variations among hq, q ∈ {1, 2, . . . , N} and then the performance
is bounded by P . This section will develop a procedure to find the feedback
gain, Kq, q ∈ {1, 2, . . . , N}, and the corresponding performance bound.
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Condition (22) can be re-written as




Φq + ΓqKq

I
Kq




T 


P 0 0
0 Q1,q Q12,q

0 QT
12,q Q2,q







Φq + ΓqKq

I
Kq


 − P ≤ 0 (31)

∀ q ∈ {1, 2, . . . , N}
Applying Schur’s complement to the above expression, one obtains




P (Φq + ΓqKq)
T

[
I KT

q

]
(Φq + ΓqKq) P−1 0[

I
Kq

]
0 Q−1

q


 ≥ 0

∀ q ∈ {1, 2, . . . , N}
where

Qq =

[
Q1,q Q12,q

QT
12,q Q2,q

]

Multiplying the above inequality from left and right with




P−1 0 0
0 I 0
0 0 I




and setting W0 = P−1, Wq = KqP
−1, we obtain the controller synthesis

Linear Matrix Inequalities (LMI’s)




W0 (ΦqW0 + ΓqWq)
T

[
W0 W T

q

]
ΦqW0 + ΓqWq W0 0[

W0

Wq

]
0 Q−1

q


 ≥ 0 (32)

∀ q ∈ {1, 2, . . . , N}

in W0 = W T
0 > 0 and Wq. The solution of the LMI’s (32) gives the state

feedback gains Kq = WqW
−1
0 ∀ q ∈ {1, 2, . . . , N}. Applying the state

feedbacks gives a stable closed loop system when the sampling period varies
among hq, ∀ q ∈ {1, 2, . . . , N}.
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However, in addition to stabilizing the system, we also intend to minimize
the cost for driving the states to the origin in terms of the given objective
function (7). Since according to Theorem 2, the performance under the vari-
able sampling rate is bounded by xT

0 Px0. Therefore, we would like to mini-
mize the trace of P = W−1

0 . Unfortunately, this is a non-convex optimization
problem. Instead of minimizing Trace(W−1

0 ),

log det W−1
0 (33)

is minimized subject to (32) (Boyd et al., 1994). It can be shown that this
is a convex optimization problem (Boyd et al., 1994).

Remark 3: The performance cost is proved to be bounded by xT
0 Px0

under all possible switching sequences and the procedure based on the LMIs
is presented to find a set of gains to minimise the bound of the cost function.
This common matrix P is required to satisfy a set of LMIs and sometime
it might be conservative. This is a currently widely used method for many
areas such as robust control (see ?). Since the system considered in this
paper can randomly switch from one sampling rate to another sampling rate
due to available computing resources (similar to time-varying uncertainties),
the result is not very conservative (also see discussed in Remark 2).

6 Illustrative example revisited

This section revisits the illustrative example in Section 2 using the control
synthesis procedure developed in Section 4 and 5.

The same sampling periods are considered, i.e., h1 = 0.002s, h2 = 0.0312s.
Under these sampling rates, the discrete-time system are given by (3) with (5)
and (6). With the same weighting matrices as in the introductory example,
after calculating Q1,q, Q12,q and Q2,q by (9)-(11), the matrix

Qq =

[
Q1,q Q12,q

QT
12,q Q2,q

]

∀ q ∈ {1, 2}
are given by

Q1 =




5329.5 −394.6 −0.529
−394.6 39.5 0.0395
−0.529 0.0395 0.1001


 (34)
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and

Q2 =




3137000 −4.6437 −313.70
−4.6437 309.39 0.000864
−313.70 0.000864 1.5914


 (35)

Solve the minimisation problem (33) subject to (32) obtains W0 = W T
0 > 0

and W1, W2. Then the state feedback gains are calculated by Kq = WqW
−1
0 ,

∀q ∈ {1, 2}, given by

K1 =
[

14847.1 −12.419
]
, K2 =

[
969.386 9.3209

]

Applying these state feedback gains guarantees stability and robustness against
all possible variations of the sampling periods between h1 and h2. Further-
more, the cost under all possible variations of the sampling rate is bounded
by

P = W−1
0 =

[
13959032 134798.2
134798.2 14043.47

]
(36)

The time response of the closed-loop system with the same sampling
sequence as in Fig.1 under the proposed control scheme is shown in Fig. 2,
which clearly indicates that the closed-loop system is stable with satisfactory
performance.

7 Conclusion

This paper concerns optimal control of sampled-data systems with variable
sampling rate. This kind of problem arises from several situations includ-
ing real-time digital control where computing resources are used for different
tasks. It was shown that sampling a continuous-time system at different
sampling rates results in different discrete-time systems and changing the
sampling rate might destroy the stability of the system. This was high-
lighted by an example where controllers was designed by minimizing the
same continuous-time loss function for an open-loop stable system at two
sampling rates. This leads to two stable closed-loop systems, however, it
was shown that the closed-loop system might be unstable when the sampling
changes between these two rates.

Two approaches are adopted to overcome this problem. It was shown that
both of them can guarantee stability of the sampled-data system with variable
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Figure 2: Time response under the developed control scheme with variable
sampling rate
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sampling rate, in particular, the second approach also minimises the bound
of the cost of the system under all possible switching sequences. The first
approach shows that restrictions on switching (scheduling) strategies can be
imposed so as to guarantee stability. For cases where such restrictions cannot
be imposed, a different controller design was proposed. It was suggested that
the objective function had to be minimized only over one sampling period
instead of minimizing over the infinite horizon. It was shown that when a
proper chosen terminal penalty was added, which should be greater than or
equal to the remaining cost for the worst case variations in sampling rate,
the system is always stable under all possible variations of sampling rates.
The results developed in this paper are quite useful for embedded systems
and real-time digital control of continuous-time systems.
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