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Abstract: Two actuation mechanisms are considered for the comparison of performance capabilities
in improving the yaw–sideslip handling characteristics of a road vehicle. Yaw moments are generated
either by the use of single-wheel braking or via driveline torque distribution using an overdriven active
rear differential. For consistency, a fixed reference vehicle system is used, and the two controllers are
synthesized via a single design methodology. Performance measures relate to both open-loop and
closed-loop driving demands, and include both on-centre and limit handling manoeuvres.
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1 INTRODUCTION reapportioning the torque supplied to the wheels.
The ABC system on the other hand can only reduce

Electronic traction and stability control systems torque and therefore cannot operate without slowing
are becoming standard fitment on top end perform- the vehicle down and therefore tends to be restricted
ance motor vehicles. The majority of such systems to limit handling scenarios.
currently in production utilize throttle and brake There are many examples of controlled differential
intervention apportion driving torques at each of the systems in the literature. The vast majority employ
wheels with the aim of improving traction or develop- an LSD similar to the passive gerodisc type [5]
ing a yaw moment that will improve vehicle stability. where a friction clutch is employed effectively to
In this study the relative capabilities of controlled provide a connection between the two driveshafts.
limited slip differentials (LSD) are investigated. The distinguishing feature of this type of LSD is that

The ability of the limited slip differential to improve it will always transfer torque to the slower wheel.
traction is relatively well documented [1–3]. However, Such control systems thus have no control over the
recent advances in differential design have opened up direction of torque transfer and are only able to
the possibility of controlled differentials being used modulate the magnitude that is being applied. The
in the field of active vehicle dynamics [4]. As yet, the general objective is therefore to emulate and optimize
extent of the capabilities of controlled differentials the positive aspects of passive LSD performance
in this field is not widely appreciated. For example, while eliminating the negative aspects [2, 6].
it is unclear whether they could replace or simply The advent of the ‘overdriven’ differential [4, 7],
augment brake intervention based or active brake however, makes it possible to control both the
control (ABC) systems. However, it would appear magnitude and direction of torque transfer. This
likely that such devices may have an inherent allows the direction of the resulting yaw moment to
advantage over ABC because they operate by directly be controlled and has led to the development of

active yaw control systems [7, 8] which utilize con-
trolled torque transfer. Details of the full capabilities
of such systems are scarce, however. In one case an* Corresponding author: Jaguar Research, Engineering Centre,
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mhancoc1@jaguar.com system with a brake intervention based stability
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control system, but the relative merits of the two
systems and the benefits gleaned from integration
are not discussed in great detail [8].

The present paper investigates the potential of
an active overdriven differential to control the yaw
moment of a vehicle and offers a comparison with a
brake-based system.

2 VEHICLE MODEL

2.1 Chassis model

To facilitate the investigation, a vehicle handling
Fig. 1 Overdriven differential schematicmodel was created. The main features of this model

are highlighted below (a more detailed description
can be found in Appendix 2):

engaged. Provided a sufficient speed difference is(a) four degrees of freedom (4DOF): longitudinal,
present, the target torque transfer will be achievedlateral, yaw, and roll;
(see section 3.4.1).(b) rear-wheel drive;

The relationship between the input torque, clutch(c) non-linear tyres (utilizes version 94 of the magic
torques, and driveshaft torques can be described asformula tyre model);
follows [8](d) longitudinal and lateral weight transfer;

(e) compliance in the steering system.
Tl=

Ti
2
−

z
1
z
5

2z
4
z
2
DTcr+

z
1
z
6

2z
3
z
4
DT
cl

(1)

Note that aerodynamic drag and driveline dynamics
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torques are thus applied directly to the wheels). The
SAE sign convention was employed and is used

These relationships were used to represent an over-throughout this paper.
driven differential in the vehicle model, and theirTo facilitate the analysis of the behaviour of the
derivation is detailed in Appendix 3.vehicle model, a simple driver model was also

employed. The objective of this model was to control
the steering of the vehicle to follow any predefined

3 CONTROLLER DESIGNtrajectory as precisely as possible. The demanded
trajectory is defined as a series of points, and the

In order to analyse the potential impact thatmodel operates by selecting the most appropriate
controlled differentials can have on yaw–sideslip‘target point’ ahead of it using a variable preview
dynamics, it is firstly necessary to develop ansystem. A proportional, integral, and derivative (PID)
appropriate yaw moment control algorithm.controller then uses the error between the yaw angle

required to reach this point and the actual yaw rate
3.1 Design structureto give the required steering angle.

It was considered essential that the yaw moment
controller be designed using a formal methodology,

2.2 Differential model
particularly in the light of the planned comparison
with ABC. Such an approach was intended to ensureA schematic of the type of overdriven differential

considered in this paper is shown in Fig. 1. The that a meaningful evaluation of the abilities of the
actuator (and not the controller) could be made. Todifferential uses two clutches (Cl and Cr in the

schematic) to control the magnitude and direction this end, linear optimal control theory was used to
design a reference model based controller.of torque transfer between the driveshafts. If torque

transfer to the left-hand wheel is desired, the left- The design of the yaw moment controller is based
on the methodology developed for a rear wheelhand clutch is engaged. If torque transfer to the

right-hand wheel is desired, the right-hand clutch is steer control system [9]. Here, a linear quadratic
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regulator [10] (LQR) is applied to the non-linear where
vehicle model using a reference model controller. The
controller is designed and applied at two different F

yf=C
afAdd−V+br

U B (5)
levels as illustrated in Fig. 2. The reference model is
controlled by the primary feedback which is designed

andusing cost functions describing the desired perform-
ance of the vehicle. However, since the reference

F
yr=C

arA−V+cr

U B (6)model is linear, a secondary feedback (also designed
using linear optimal control theory) is also required
to minimize the errors between the vehicle and the Also, assuming a uniform coefficient of friction
reference model. Note that the primary feedback
is also applied to the non-linear vehicle model,

F
xl=

Ti
rr
+
DT

rr
(7)in addition to the reference model, to provide a

feedforward element to the controller.

F
xr=

Ti
rr
−
DT

rr
(8)

3.2 Primary feedback
where T

i
is the input torque and DT is the torque

3.2.1 Reference model transfer. Substituting equations (5) and (6) into
equation (3) yields the following expression for theThe reference model is a 2DOF linear yaw–sideslip
lateral dynamicsmodel. The equation of motion for the lateral

dynamics is

M(V̇+Ur)=C
afAd−V+br

U B+C
arA−V+cr

U BF
yf+F

yr=M(V̇+Ur) (3)

(9)
A limited slip differential creates unequal left and
right longitudinal forces, and so the equation of

M(V̇+Ur)=A−C
af−C

ar
U BVmotion for yaw rotation is

+A−bC
af+cC

ar
U B r+C

afdd (10)I
zz

ṙ=bF
yf−cF

yr+
t

2
F
xl−

t

2
F
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Fig. 2 Yaw moment controller structure
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which is of the form steer input, d
d

, as an additional state

M(V̇+Ur)=Y
V

V+Y
r
r+Y

d
d (11)

Similarly, substitution of equations (5) to (8) into C ḋdV̇ṙ D=C−0.0001 0 0
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U B r The additional state is not controllable, but the use
of a very slow decay rate makes it possible to stabilize
the system, as is required by the LQR method [10].+bC

afdd+
t

rr
DT (13)

This allows cost functions to be designed so that
minimization will result in a desired steady state

which is of the form for any given d
d

. The states will still be driven to
zero, but choosing a very slow first-order dynamic

I
zz

ṙ=N
V

V+N
r
r+N

d
dd+N

DT
DT (14) [as indicated in equation (17)] for d

d
ensures that the

system is regulated to settle into a steady state
In state-space form, equations (11) and (14) may be cornering condition.
written as follows During initial testing of the primary feedback

design it became apparent that this representation of
the driver’s behaviour may be improved. As intimated
above, equation (17) assumes that, following anCV̇ṙ D=CYVM

Y
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D [DT ] initial input, the steering angle will effectively settle

to a constant value. However, a more reasonable
assumption would be that the driver continues with
transient steering behaviour, and a second additional
state, ḋ

d
, is therefore introduced as follows
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which is a standard form with control input u=DT
and disturbance w=d

d
.

+C 0

0

0

N
DT

I
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D [DT ] (18)

3.2.2 Problem posed by regulation

In minimizing a proposed cost function, a regulator
tends to drive all states to zero. This is clearly not
acceptable in the case of the reference model Here, the coefficient c

ḋ
represents a relatively fast

first-order dynamic which indicates that, followingdescribed in the previous section, as the vehicle
would simply be forced to drive in a straight line. an initial input, ḋ

d
will reduce to zero. A second

coefficient, c
r
, is also included to provide a linkThe method proposed by Komatsu et al. [9] to

address this problem was to include the demanded between d̈
d

and the control input, without which
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the LQR gain generated for ḋ
d

would be zero. This appropriate functions could have been chosen here.
However, the aim of this paper is not to specify howeffectively models an aspect of expected driver

behaviour in that the presence of yaw rate will pro- the ‘ideal’ vehicle should behave but, rather, how it
can be made to behave through the use of a con-duce a reduction in the rate of change in steering

angle. Since c
r

is small, the coupling is relatively trolled differential. The two cost functions chosen
here should provide ample scope for this to beweak, but informal testing showed that the overall

closed-loop performance is undoubtedly improved. achieved.
Note that equation (18) is used only for the

generation of the LQR gain matrix. During operation,
3.3 Secondary feedbackthe reference model reverts to the form of equation

(15), and thus this representation of driver behaviour The purpose of the secondary controller is to
is removed and replaced by the known steering input minimize the deviation in yaw behaviour between
and its time derivative. the reference and vehicle models. Errors will occur

owing to the extra complexity in the vehicle model
3.2.3 Cost function design (for example, additional degrees of freedom) and,

more significantly, owing to the fact that the vehicleThe primary feedback is designed using a quadratic
model is non-linear. Application of linear optimalcost function which attempts to create a neutral steer
control theory requires models to be representedcharacteristic by utilizing the definition of steady
in (linear) state-space form. Therefore, in order tostate yaw rate gain
allow the secondary feedback also to be designed
using LQR, Matlab’s ‘linmod’ function is employed tor

dd
=

U

l+(KU2)/g
(19)

linearize the non-linear vehicle model. The combined
reference and vehicle model can thus be represented

For neutral steer, the understeer coefficient K is zero
as a single linear system with the secondary feedback

and the following condition must be satisfied
torque transfer as its input (Fig. 3). Linearizing this
system yields its state-space representation, which

r=
U

l
dd (20) can then be used to design the secondary feedback

controller.
Accordingly, the neutral steer cost is defined as Since the objective of the secondary feedback is

to minimize the error between the yaw rates of the
J=P Ar−U

l
ddB2dt+P A 1u2

m
B u2dt (21) reference and vehicle models, the following cost

function is employed
The second term costs the control action via an
‘input scaling’, u

m
, the value of which is tuned to

J=P (rr−rv)2dt+P A 1u2
m
B u2dt (22)

allow the controller to request the maximum yaw
moment that can be generated by the differential
without saturating the tyres. where the subscripts ‘r’ and ‘v’ represent the reference

and vehicle models respectively. An input scaling, u
m

,The choice of cost function is clearly dependent
upon the characteristics that are desired in the con- was chosen in the same way as described for the

primary feedback.trolled vehicle and it is likely that other equally

Fig. 3 Combined linear system
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3.4 Implementation Having obtained a desired yaw moment, it is
necessary to decide how the brakes should be3.4.1 Controlled differential
applied to generate it. Single-wheel braking only is

Upon receiving a torque transfer demand from the used here, and four simple rules are used to deter-
yaw moment controller, it is necessary to engage the mine which brake is chosen. It is clear from Fig. 4
appropriate clutch to allow the differential to transfer that, if the desired yaw moment is positive, one of
the desired level of torque. A series of simple logical the right-hand brakes should be employed, whereas,
rules can be used to achieve this. However, it is firstly if it is negative, one of the left-hand brakes should
necessary to define the sliding speed of the two be employed. Whether that brake is at the front or
clutches the rear is determined via analysis of the vehicle yaw

rate. From the definition of the neutral steer cost in
vsr=vcr−vr (23)

section 3.2.3, the condition for neutrality was given as

vsl=vr−vcl (24)
rn=

U

l
d (26)

The sign of the sliding speed is significant in deciding
whether or not it is possible to transfer torque in a Hence, if |r|>|r

n
|, the vehicle may be assumed to

particular direction. For example, if (negative) torque be oversteering and so the rear slip angles may be
transfer to the right-hand wheel is required, then assumed to be larger than the front slip angles.
the right-hand clutch should be engaged, provided Since the front tyres will therefore typically have
that T

cr
is positive. However, T

cr
will only be positive more longitudinal force capacity (depending on the

if shaft A (Fig. 1) is travelling faster than the right- vertical load, which is not considered here), the front
hand driveshaft and hence if v

sr
is also positive. If it brakes are used. Similarly, if |r|<|r

n
|, the vehicle may

is not, then engaging the right-hand clutch will only be assumed to be understeering and the rear brakes
serve to reduce the speed of the right-hand wheel are used. These four rules can be combined to give
(and thus reduce the torque flowing to it), and so the brake selection logic shown in Table 2. The one
the clutch should be disengaged. Similarly, when exception to the logic shown in the table is when
attempting to transfer torque to the left-hand wheel, the driver is applying opposite lock (identified as
shaft B must be travelling slower than the right-hand when the steering angle and yaw rate are in different
driveshaft and hence v

sl
must be positive. The rules directions). Using the logic above, opposite lock could

for clutch selection are thus as shown in Table 1. be interpreted as understeer, and so an additional
Note that, when torque transfer to the slower wheel

is being attempted, the sliding speed will always be
in the required direction. However, when attempting
to transfer torque to the faster wheel, this will depend
on the gear ratios employed.

3.4.2 Active brake control

Precisely the same yaw moment controller is used
for ABC. Although the output from this controller is
torque transfer, this is equivalent to demanding a
yaw moment which can be obtained from

Nd=DT
t

rr
(25)

Fig. 4 Application of a positive yaw moment via the
right front brake

Table 1 Overdriven differential operation

Table 2 Brake selectionTorque transfer
logicdemand v

sr
v

sl
Action

N
d
<0 N

d
>0+ NA + Engage left-hand clutch

+ NA − Disengage both clutches
|r |>|r

n
| 1 3− + NA Engage right-hand clutch

− − NA Disengage both clutches |r |<|r
n
| 2 4
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rule states that, if such a condition is detected, only identical manner—by creating different longitudinal
forces on each side of the vehicle. However, theone of the front wheels may be chosen.

The braking torque that should be applied to differential achieves this by increasing the longi-
tudinal force on one side and reducing it on the other,the chosen wheel is calculated assuming there is

sufficient coefficient of friction at the road/tyre inter- while the ABC system simply reduces the longitudinal
force on one side of the vehicle. The ABC systemface, thus allowing the braking force generated at a

single tyre to be written as also has the option of using the front tyres to produce
a required yaw moment while the differential is
restricted to using the rear tyres only. As a result ofFb=

Tb
rr

(27)
these differences (and the non-linear nature of the
tyres), the performance of the two systems is notThe yaw moment generated by this braking force
always identical, as will be illustrated via analysis ofmay be written as
four different manoeuvres in the following sections.

N=
t

2
Fb (28)

4.1 Understeer coefficient manoeuvreHence, the braking torque required at the chosen
wheel is given by

Here the speed of the vehicle is held at 20 m/s
while the steering wheel angle is increased at 2 deg/sTb=

2Ndrr
t

(29)
(0.035 rad/s) until the limit of the vehicle is reached.
The understeer coefficient is then obtained by sub-
tracting the neutral steer hand wheel angle from the
actual hand wheel angle. Since the passive vehicle4 PERFORMANCE EVALUATION
understeers (Fig. 5a), the applied yaw moment must
be in the direction in which the vehicle is turning.An active differential and an ABC system both

attempt to create a desired yaw moment in an almost The active differential achieves this by transferring

Fig. 5 Comparison of actuators during a 20 m/s constant speed understeer coefficient test
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torque to the outside rear wheel, while the ABC the direction of torque transfer to the inside wheel.
system applies a braking torque to the inside rear The understeer generated is sufficient to reduce the
wheel. In spite of the inside wheel being more lightly steering correction required from the driver by 97 per
loaded, it can be seen from Fig. 5b that the ABC cent. In spite of its expected superiority (see above),
system is able to generate an almost identical yaw the ABC system does not quite achieve the same
moment to the active differential and therefore an improvement in stability and the driver has to apply
almost identical reduction in understeer coefficient around double the steering correction to compensate
(Fig. 5a). It should also be noted from Fig. 5c that, for the oversteer experienced when the brakes are
with both systems, this improvement in neutral steer applied (Fig. 6a). This is due to the fact that, prior
characteristics comes at the expense of increased to brake application, the ABC is applying braking
sideslip velocity and therefore sideslip angle. torque to the inside rear wheel to reduce understeer.

Unfortunately, when the brakes are applied, this
4.2 Braking in a turn manoeuvre immediately becomes the worst possible course of

action since it is excessive (braking) slip on the insideIn scenarios where yaw stability is compromised, it
rear wheel that is associated with the instabilityis crucial to be able rapidly to generate understeer by
experienced by the passive system. The yaw momentapplying a yaw moment that opposes the direction
controller takes around 0.1 s to react to the over-in which the vehicle is turning. It may be anticipated
steer that ensues from the brake application, and sothat the ABC controller would have an advantage
during this time the ABC is only serving to degradeover the active differential in such circumstances
stability further by braking the ‘wrong’ wheel. It is,because it uses the heavily loaded outside wheel to
of course, also true that during the same periodgenerate understeer. However, a closed-loop braking-
the active differential is transferring torque in thein-a-turn manoeuvre demonstrates that this will
wrong direction. However, this appears to be lessnot always be the case. During this manoeuvre the
of a problem, because, although this still leads tovehicle is driven at a constant speed of 40 m/s into
additional braking torque being applied to the insidea 185 m radius corner, yielding a lateral acceleration
rear wheel, it is only approximately half the amountof ca 0.9g. After 10 s (when the vehicle has settled
applied by the ABC (the other half being applied asinto a steady state cornering condition) a constant
positive torque to the outside wheel).braking torque is applied to the wheels, yielding a

It should also be noted that for this test it wasdeceleration of approximately 0.5g.
necessary to reduce the secondary feedback inputAs can be seen from Fig. 6b, up to the point where
scaling by 50 per cent for the ABC in order to preventthe brakes are applied, the two actuators apply an
it from locking one of the wheels after the brakes hadalmost identical yaw moment as they attempt to
been applied (note that in reality, anti-lock brakingreproduce neutral steer characteristics. Once the
system (ABS) functionality would be included in thebrakes are applied, the vehicle begins to oversteer

and the active differential therefore rapidly switches controller, making it unnecessary to retune the input

Fig. 6 Comparison of actuators for a closed-loop braking in a turn test from 40 m/s on a constant
185 m radius—vehicle turns into the corner at 1 s and the brakes are applied at 10 s
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scaling). This highlights a further disadvantage of functionality, the input scaling on both the primary
and secondary feedbacks had to be reduced to pre-the ABC. When the driver is applying the brakes, it
vent wheel locking. The applied yaw moment thusreduces the scope for the ABC to generate a yaw
peaks at around 50 per cent of that applied by themoment, since the amount of additional braking
active differential (Fig. 7b). It would therefore appeartorque that can then be applied before saturation
that, in this case, any advantage accruing from theoccurs obviously decreases. As indicated above, this
vehicle being slowed down is cancelled out by theproblem is compounded by the fact that the ABC
lower yaw moment capacity of the ABC system atattempts to generate all of the required yaw moment
high lateral accelerations (in cases where the insidethrough one wheel. By contrast, the active differential
wheels are being employed). It is also worth notingspreads the torque it applies across two wheels, and
that, except where the handling limit of the vehicleso it is generally less likely to spin/lock one of its
is exceeded, slowing the vehicle down is not alwayswheels. This perhaps suggests that the ABC controller
regarded as a desirable effect.would be improved by allowing application of two

brakes where possible.

5 ENERGY CONSIDERATIONS
4.3 Lane change

Having illustrated the differences between the two
The manoeuvres described above were all carried out

actuation systems in terms of vehicle dynamic per-
at constant speed, the throttle being modulated to formance, this section will focus on their relative
compensate for any loss in speed owing to cornering efficiency by analysing the energy balance of the
or control action. Without this constraint, the fact vehicle. The energy sources and sinks present in
that the application of ABC will reduce vehicle speed the vehicle model can be broken down into a number
may be an advantage when the vehicle is at the of components, each of which are detailed in Table 3.
limit. However, this is not necessarily the case, as can Additionally, mechanical energy may be stored
be demonstrated with a closed-loop lane change (and released) via the kinetic energy of the wheels
manoeuvre (Fig. 7). Here, the steering of the vehicle and body. It should be noted that the kinetic and
is controlled to follow a lane change trajectory, heat energy dissipated should be equal to the energy
defined by twice integrating a sinusoidal lateral input, and this was accurately validated in the
acceleration profile. At 40 m/s the manoeuvre should simulation.
yield a peak lateral acceleration of 0.9g. However, in Using the expressions in Table 3, the energy
an attempt to push the vehicle closer to the limit, an balance for the three manoeuvres from the previous
initial speed of 50 m/s is set and then allowed to fall section have each been analysed. The results are
freely as the vehicle goes through the manoeuvre described below.
(Fig. 7c). This results in a peak lateral acceleration of
just over 1.0g (Fig. 7d).

As can be seen from Fig. 7c, the ABC system
Table 3 Energy sources and sinks for the 4DOFdoes reduce the vehicle speed more than the active

vehicle model. Note that the vehicle isdifferential (by an additional 0.8 m/s). In spite of this,
assumed to roll about its x axis

the performance of the ABC controller is significantly
inferior to the active differential. This is illustrated in Sources Calculation (J)

Figs 7e and f where it may be seen that the active
Kinetic

differential succeeds in generating a near neutral
steer yaw rate while the peak yaw rate for the ABC Powertrain P T

i
v

c
dt

controller is only just over half that required for an
Heatideal neutral steer response. This results in a higher

driver workload for the ABC vehicle (Fig. 7a). Tyre longitudinal slip ∑
4

n=1
P F

x
n

(r
r
v

n
−U

t
n

) dt
The principal reason that the ABC controller is

less effective here again appears to be related to its Tyre lateral slip ∑
4

n=1
P F

y
n

V
t
n

dt
use of a single wheel to generate the required yaw
moment. This problem is magnified on a manoeuvre Brakes ∑

4

n=1
P T

b
n

v
n

dt
such as this where it is the more lightly loaded
inside wheels that are braked (to reduce understeer). Differential P 2DT

cl
v

sl
dt+P 2DT

cr
v

sr
dt

Again, since the controller does not include ABS
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Fig. 7 Comparison of actuators during a closed-loop lane change manoeuvre commenced at
50 m/s

5.1 Understeer coefficient manoeuvre As can be seen from Fig. 8b, the energy required
for the ABC vehicle to complete the manoeuvre is

The energy account for the understeer coefficient over twice that consumed by the passive and active
manoeuvre described in section 4.1 is shown in differential vehicles (Fig. 8b). It turns out that, in
Fig. 8. Note that the energy allocated to the vehicle order to produce the same improvement in neutral
and wheels in Fig. 8a represents the final kinetic steer, around 9 times more energy is dissipated in
energy of the vehicle. Since the initial kinetic energy the brakes than in the clutches of the differential
is zero for this test, the sum of the bars in Fig. 8a is (Fig. 8a). It should also be noted that, by transferring

torque to the more heavily loaded outside wheel, theequal to the energy input shown in Fig. 8b.
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Fig. 8 Energy account for a constant speed (20 m/s) understeer coefficient test

overdriven differential actually reduces the amount offset by more efficient use of the tyres (this appears
to be due to torque transfer to the more heavilyof energy required to complete this manoeuvre

(compared with the passive vehicle) by making more loaded wheel in the first phase of the manoeuvre).
efficient use of the tyres (Fig. 8a).

5.2 Braking in a turn manoeuvre 5.3 Lane change

In the lane change manoeuvre of section 4.3, a speedThe relative inefficiency of the ABC system is also
demonstrated in the energy account for the braking- controller was not employed and additional energy

was therefore not supplied to the vehicle once thein-a-turn manoeuvre of section 4.2 (Fig. 9). As before,
the energy allocated to the vehicle and wheels in manoeuvre had commenced. Figure 10 shows the

energy dissipated from when the manoeuvre com-Fig. 9a represents the final kinetic energy of the
vehicle, and, since the initial kinetic energy is again menced at a speed of 50 m/s. It can be seen from

the chart that, without the need to counteract thezero, the sum of the bars in Fig. 8a is equal to the
energy input shown in Fig. 8b. additional driving torque being supplied to the wheels

(to maintain a constant speed), the relative energyFrom Fig. 9 it may be seen again that the additional
energy dissipated in the brakes (as a result of ABC) loss in the brakes is lower here than for the previous

two manoeuvres. However, in another illustrationis over 9 times that dissipated in the differential
(Fig. 9a), and the ABC vehicle needs almost 50 per of its greater efficiency, the energy loss in the

differential is still only 25 per cent of that lost in thecent more energy than the passive vehicle to com-
plete the manoeuvre (compared with 6 per cent more brakes, in spite of the fact that it is applying a peak

yaw moment that is more than double that appliedwith the active differential, Fig. 9b). Again some of
the additional energy consumed by the differential is by the ABC system (see Fig. 7a, section 4.3).
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Fig. 9 Energy account for a 40 m/s 0.9g braking-in-a-turn manoeuvre

Fig. 10 Energy account for a closed-loop lane change manoeuvre commenced at 50 m/s

6 CONCLUSIONS the same control structure. It has been shown that
the two systems produce a similar vehicle dynamic
performance, although the active differential appearsThe development of a yaw moment controller using

linear optimal control theory allowed the comparison to possess some distinct advantages. These arise
principally because the active differential creates theof an overdriven differential with an active brake

control (ABC) system implemented with precisely demanded yaw moment using two wheels instead of
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APPENDIX 1hydraulic actuation system and also by its relatively
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Notationinvestigation. However, the results obtained here
suggest that active differentials have the potential a

y
lateral acceleration (m/s2)

to offer a more efficient and in many cases more b longitudinal distance from the
front axle to the centre of mass (m)effective means of applying yaw moment control.
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v
l
, v
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left/right-hand wheel speed (rad/s) Yaw motion
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left/right-hand clutch sliding speed
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APPENDIX 2

Lateral motion

This appendix describes the 4DOF model used for M(V̇+Ur)=F
y
f

+F
y
r

(32)
the development of the LQR controller. The four

Roll motiondegrees of freedom are longitudinal, lateral, yaw, and
roll motion, and the sign convention used is SAE. (I

xx
−eI
xz

)p−I
xz

ṙ+Mh
1
V̇

The structure of the model is shown in Fig. 11.
=−MUh

1
r+(Mgh

1
−K
w
f

−K
w
r

)wThe model has four inputs: steering wheel angle
(deg), driving torque (N m), torque transfer (N m), +(−B

w
f

−B
w
r

)p+(hf−ho)Fy
f

+(hr−ho)Fy
rand braking torque (N m). The vehicle dynamics is
(33)calculated in the ‘state-space’ subsystem which is

supplied with tyre forces from the ‘tyre model’ sub- These equations can be written in state-space form
system. The tyre model in turn is supplied with as follows
lateral and longitudinal slip from their respective

MẊ=A∞X+B∞u (34)subsystems. Each subsystem is described in detail in
the following section.

where

State-space subsystem

This subsystem calculates the vehicle dynamics in
state-space form. A state-space model is formed from
the equations of motion for each degree of freedom. X=CUrVw

p
D and u=

t
N
N
N
N
N
N
N
N
v

F
x
1

F
x
2

F
x
3

F
x
4

F
y
f

F
y
r

u
N
N
N
N
N
N
N
N
w

(35)
These are as follows:

Longitudinal motion

M(U̇+Vr)=F
x
1

+F
x
2

+F
x
3

+F
x
4

(30)

Fig. 11 Structure of the 4DOF model
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and The output vector is thus

y= [U r V w a
y

Lf Lr ]T (42)

M=CM 0 0 0 0

0 0 M 0 Mh
1

0 −I
xz

Mh
1

0 I
xx
−eI
xz

0 I
zz

0 0 −I
xz
+eI
zz

0 0 0 0 0
D (36) Longitudinal slip subsystem

The calculation of longitudinal slip first requires
calculation of wheel speed. The equation of motion
for each wheel is

Iwv̇n=TD
n

−F
x
n

rr (43)

Longitudinal slip can then be calculated fromA∞=C0 MV 0 0 0

0 −MU 0 0 0

0 −MUh
1
r 0 Mgh
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0 0 0 0 0

0 0 0 0 1
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(44)

(37) where U
n

is the forward velocity of the vehicle body
at corner n. This is calculated from

U
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=U+C t2 t

2
−
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2
−

t

2DTr (45)
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0 0 0 0 0 0
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N
N
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N
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w

(38)

Lateral slip subsystem

The front and rear slip angles are calculated in the
lateral slip subsystem fromIn addition to the state vector, the output vector y is

also returned by the state-space subsystem. This is
calculated from a

n
=d
n
−

V
n

U
n

(46)

y=CX+Du (39)
where U

n
is obtained from equation (45) andwhere

V
n
=V+ [b −c b −c]Tr (47)

Note that a non-linear function (which accounts
for Ackermann) is used to convert hand wheel angle
into the road wheel angles, d

n
, which are then alsoC=
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(40)
adjusted for static toe and compliance steer.

Tyre model subsystem

The magic formula tyre model has four inputs. The
first two, longitudinal and lateral slip, are calculatedand
in the subsystems described in the previous two
sections. The remaining two, camber and tyre load,
are calculated in the tyre model subsystem.

The camber angle is calculated using static camber
and roll angle. For the left-hand wheels it is therefore
given byD=

t
N
N
N
N
N
N
N
N
N
N
N
v

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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(41)

c
n
=cs
n

+w (48)

and for the right-hand wheels by

c
n
=cs
n

−w (49)
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The tyre loads must take account of lateral and
longitudinal load transfer. Front lateral load transfer
is obtained from

DF
zf
lat

=
1

t
Lf+

hf
t

F
y
f

(50)

and similarly lateral load transfer is obtained from

DF
zr
lat

=
1

t
Lr+

hr
t

F
y
r

(51)

where the roll moments, L
f

and L
r
, can be obtained

from the output vector, y, of the state-space subsystem
[equation (42)].

The calculation used for longitudinal weight trans-
fer is dependent on whether the vehicle is braking
or accelerating. Under acceleration

Fig. 12 Tyre coordinate transformation

DF
z
long

=
hg−rr

2l
F
x

(52)

Note that, on exiting the tyre model subsystem, the
and under braking two front and rear lateral forces are summed to

obtain the total front and rear lateral forces that are
used in the state-space subsystem.DF

z
long

=
hg
2l

F
x

(53)

where F
x

is the total longitudinal force applied to
the vehicle. The individual tyre loads can thus be APPENDIX 3
calculated as follows

The key drawback in terms of controllability of con-
ventional differentials is that they will always transferF

z
1

=
Wf
2
+DF

zf
lat

−DF
z
long

(54)
torque to the slower rotating wheel. For yaw control
applications, it is desirable to have control over the
direction as well as magnitude of the torque transfer.F

z
2

=
Wf
2
+DF

zr
lat

+DF
z
long

(55)
Overdriven differentials make this desirability a reality.
A schematic of such a differential is shown in Fig. 1.
Its operation can be illustrated by considering theF

z
3

=
Wf
2
−DF

zf
lat

−DF
z
long

(56)
governing equation of a bevel gear type differential
where the left and right wheel speeds, v

l
and v

r
, are

related to the differential cage speed, v
c
, as followsF

z
4

=
Wf
2
−DF

zr
lat

+DF
z
long

(57)

vl+vr=2vc (60)
Once supplied with these four inputs, the magic
formula outputs longitudinal force, lateral force, and The gear ratios indicated in Table 4 (see Fig. 1 for
aligning moment. For use in the state-space sub- gear positions) allow the right- and left-hand inner
system, these tyre forces need to be resolved into clutch plates also to be expressed in terms of the
vehicle coordinates. From Fig. 12 it can be seen that differential cage speed
the longitudinal vehicle forces will be given by

F
x
n

=F
xt
n

cos d
n
−F
yt
n

sin d
n

(58) vcr=
z
1
z
5

z
4
z
2
vc (61)

and, similarly, the lateral forces will be given by

vcl=
z
1
z
6

z
3
z
4
vc (62)

F
y
n

=F
xt
n

sin d
n
+F
yt
n

cos d
n

(59)

D12203 © IMechE 2005 Proc. IMechE. Vol. 219 Part D: J. Automobile Engineering



326 M J Hancock, R A Williams, T J Gordon, and M C Best

Table 4 Differential gear teeth Because the bevel gears of the differential will always
numbers [8] supply an equal amount of torque to their left- and

right-hand output shaftsGear Number of teeth

z
1
, z

2
, z

3
42 Tl=Tr−DTcr (66)

z
4

32
z

5
36

These relationships can then be combined with az
6

28
torque balance on the differential case

Ti−T
x
−Tl−(Tr−DTcr)=0 (67)

Substituting the teeth numbers shown in Table 4
to giveyields

Tl=
Ti
2
−

z
1
z
5

2z
4
z
2
DTcr (68)vcr=1.125vc (61)

vcl=0.875vc (62) A similar rearrangement of these equations can then
be used to yield the following expression for the

thus confirming that the right-hand clutch is ‘speeded right-hand wheel torque
up’ relative to the differential cage and the left-hand
clutch is slowed down. It therefore follows that, if the

Tr=
Ti
2
+A1− z

1
z
5

2z
4
z
2
BDTcr (69)right-hand clutch is locked

vr=vcr=1.125vc (63) and substituting the tooth numbers shown in Table 4
gives

and to satisfy equation (60), the left-hand wheel
speed must be

Tl=
Ti
2
−0.5625DTcr (70)

vl=2vc−1.125vc=0.875vc (64)

Tr=
Ti
2
+0.4375DTcr (71)

If the vehicle is considered to be travelling in a
straight line, so that initially v

l
=v

r
=v

c
, it can thus

It can thus be seen that an overdriven differentialbe seen that the right-hand wheel will be speeded
removes more torque from one wheel than it addsup by 12.5 per cent while the left-hand wheel will be
to the other, and that the total torque flowing to theslowed down by 12.5 per cent.
wheels is reduced according toIt is thus clear that the maximum wheel speed

difference that can be generated with these gear ratios
is 25 per cent. Provided the wheel speed difference Tl+Tr=Ti+A1− z

1
z
5

z
2
z
4
BDTcr[Ti−0.125DTcrfalls within this range, it is possible to control which

wheel is speeded up and which is slowed down by
(72)selectively operating the two clutches.

The relationship between the torque transfer at The difference in the torque applied to the two
the clutches and the torque transfer between the wheels is still, however, simply the clutch torque
wheels can be illustrated via separate analysis of
torque balances across the three-gang gearing, the Tl−Tr=−DTcr (73)
differential gearing, and the differential case respect-
ively (Fig. 1). Consider engagement of the right-hand Clutch torque capacities in excess of 1000 N m are
clutch alone; a torque introduced at this clutch feasible [2]. Note that this represents the maximum
plate, DT

cr
, will induce a reaction torque, through the torque difference that can be achieved. The actual

three-gang gearing, on the differential case T
x
, with torque difference that can be achieved at any given

the relationship time is the torque that is required to lock the clutch
pack. This may well be less than the clutch torque
capacity when, for example, the vehicle is on a lowz

4
z
1

T
x
−

z
5

z
2
DTcr=0 (65)

m surface.
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A similar analysis of the torque balance during Although no advantage is to be gained from engaging
both clutches simultaneously, delays in the actuatorleft-hand clutch engagement yields the following
time response make such a scenario possible. Com-expressions for left-hand, right-hand, and total wheel
bining equations (68) and (74) (for the left-hand side)torques
and equations (69) and (75) (for the right-hand side)
therefore gives the complete expression for wheel

Tl=
Ti
2
+

z
1
z
6

2z
3
z
4
DTcl[

Ti
2
+0.4375DTcl (74) torque

Tl=
Ti
2
−

z
1
z
5

2z
4
z
2
DTcr+

z
1
z
6

2z
3
z
4
DTcl (78)

Tr=
Ti
2
−A1− z

1
z
6

2z
3
z
4
BDTcl[

Ti
2
−0.5625DTcl (75)

Tr=
Ti
2
+A1− z

1
z
5

2z
4
z
2
BDTcr−A1− z

1
z
6

2z
3
z
4
BDTcl

Tl+Tr=Ti−A1− z
1
z
6

z
3
z
4
BDTcl[Ti−0.125DTcl (79)

Note that these equations show that, as with a con-
(76) ventional differential, control over the lateral torque

difference at the wheels is independent of engine
torque.Tl−Tr=DTcl (77)
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