

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Simple Component Connection Approach for Fault Tree Conversion to Binary
Decision Diagram

R. Remenyte;
Department of Aeronautical and Automotive

Engineering
Loughborough University; Loughborough,

Leicestershire, England
e-mail: R.Remenyte@lboro.ac.uk

J.D. Andrews;
Department of Aeronautical and Automotive

Engineering
Loughborough University; Loughborough,

Leicestershire, England.
e-mail: J.D.Andrews@lboro.ac.uk

Abstract

Fault Tree Analysis (FTA) is commonly used when
conducting risk assessments of industrial systems. A
number of computer packages based on conventional
analysis methods are available to perform the analysis.
However, dealing with large (possibly non-coherent) fault
trees can expose the limitations of the technique in terms
of accuracy of the solutions and the processing time
required. Over recent years the Binary Decision Diagram
(BDD) method has been developed for the solution of the
fault tree and overcomes the disadvantages of the
conventional FTA approaches. The usual way of taking
advantage of the BDD structure is to construct a fault
tree and then convert it to a BDD. This paper will focus
on the fault tree to BDD conversion process.

Converting the fault tree requires the basic events of
the fault tree to be placed in an ordering. This is critical
to the size of the final BDD and ultimately affects the
qualitative and quantitative analysis of the system and
benefits of this method. Once the ordering is established
several approaches can be used for the BDD generation.
One approach is to apply a set of rules developed by
Rauzy which are repeatedly applied to each gate in the
fault tree to generate the BDD. An alternative approach
can be used when BDD constructs for each of the gate
types are first built and then connected together. A sub-
node sharing feature in the second of these approaches
and a third, hybrid, combined approach will be presented.
Some remarks on the effectiveness of these techniques will
be provided.

1. Introduction

The Binary Decision Diagram (BDD) method [1] has
been developed as an approach for the analysis of fault
trees. This method has been shown to have advantages in

terms of both efficiency and accuracy over the
conventional Kinetic Tree Theory [2], since top event
probabilities can be derived without the need for
approximation and also without the need to evaluate the
minimal cut sets as intermediate results.

The BDD method first converts the fault tree to a
binary decision diagram, which represents the Boolean
equation for the top event. Problems may occur with the
conversion process of the fault tree to the BDD. If the
ordering of the basic events is not chosen suitably, the
size of the final BDD can grow exponentially. It is
impossible to identify an optimum ordering scheme for
producing BDDs for all fault trees. In this paper
alternative conversion methods are presented. These
include new methods where BDDs for each of the gate
types are formed and then joined together according to the
type of the parent gate in the fault tree.

The efficiency of the alternative approaches is
compared with the conventional method developed by
Rauzy [1]. Three efficiency measures are applied while
looking for the optimum connection technique. A sub-
node sharing approach is introduced to the component
connection method during the connection process,
together with the development of the hybrid approach
utilising the advantageous rules of both approaches.

2. Binary decision diagram method

A BDD is a directed acyclic graph, as shown in Figure
1. All paths through the BDD start at the root vertex and
terminate in one of two states – a 1-state (system failure),
or a 0-state (system success). The BDD is composed of
terminal and non-terminal vertices, which are connected
by branches. Terminal vertices correspond to the final
state of the system and non-terminal vertices correspond
to the basic events of the fault tree. By connection, all left
branches leaving a vertex are the 1-branches (component

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

fails), all right branches are the 0-braches (component
functions).

Figure 1. Example of BDD

The BDD encodes the logic function of the system
failure in its disjoint form. In the example of a fault tree
and its equivalent BDD shown in Figure 2 the logic
function is:

Top =x1·(x2 + x3)·(x2 + x4) = x1·x2 + x1·x3·x4 [1]
where “+” represents Boolean operator OR, “·” represents
Boolean operator AND.

Figure 2. Example FT converted to BDD,
ordering x1 < x2 < x3 < x4

In the BDD shown in Figure 2 there are two possible
paths that terminate in a 1 state:

2,1 xx and 4,3,2,1 xxxx [2]
Each path describes a combination of component

conditions where the existence of all of them will result in
system failure. These two paths, when considering only
the failure events, give the two cut sets:

{x1,x2} and { x1,x3, x4}. [3]
Only the vertices that lie on the 1 branches of the paths

are included in the cut sets. The cut sets obtained are
minimal (they contain necessary and sufficient elements),
since the BDD in this example is in its minimal form.
Otherwise, the BDD has to undergo a minimisation
procedure, introduced in [1], in order to obtain minimal
cut sets.

The probability of occurrence of the top event, SYSQ ,
can be expressed as the sum of the probabilities of the
disjoint paths through the BDD, since paths through the

BDD are mutually exclusive. The probability of system
failure in the example is:

() 432121 1 xxxxxxSYS qqqqqqQ −+= [4]
A number of other probabilistic properties of the

system can also be calculated [3].

3. Conventional conversion approach –
Rauzy (approach 1)

A commonly used method of constructing BDDs was
developed by Rauzy [1]. This approach applies an if-then-
else (ite) technique to each of the gates in the fault tree. If
f(x) is the Boolean function for the top event then the
given ite structure ()21,,ite ffX means that if variable X
occurs (fails) then consider 1f , else consider 2f , where

1f and 2f are Boolean functions, known as the residues
of f , with 1=X and 0=X respectively. Therefore, in
the BDD structure 1f lies below the 1-branch of the node
encoding X and 2f lies below the 0-branch.

First of all, a variable ordering for basic events needs
to be established. Then the conversion of every gate to the
BDD is performed according to the following rules:

Let J and H be two nodes in the BDD where
()21,,ite ffXJ = and ()21,,ite ggYG = .

• If X appears before Y in the variable ordering
(YX <) then

J<op>G=ite(X, f1<op> G, f2<op> G) [5]
• if YX = then

J<op>G=ite(X, f1<op> g1, f2<op> g2) [6]
where <op> corresponds to the type of the gate (Boolean
operator) of the gates in the fault tree.

Figure 3. Example FT converted to BDD, using
the ite technique

Consider the example in Figure 3. The ordering x1 <
x2 < x3 < x4 < x5 represents a simple top-down left-right

Top

G2

x2 x4

G1

x2 x3

x1

x11 0

1

0x21

x31 0

1

0
0x41

0

0

Top

G2

x2 x5

x1 G1

x2 x4x3

x11 0

1

0x21

x31 0

1

0x51

0

0

0x41

0

0
x1

1

0

1
0

x2
1

0
terminal node

root vertex

0 branch1 branch

non-terminal
node

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

traversal of the fault tree. The application of the rules give
the expressions for gates G1, G2 and Top:

G1 = x2 + x3 + x4
= ite(x2,1,0) + ite(x3,1,0) + ite(x4,1,0)
= ite(x2,1,ite(x3,1,0)) + ite(x4,1,0)
= ite(x2,1,ite(x3,1,ite(x4,1,0)))

G2 = x2 + x5
= ite(x2,1,0) + ite(x5,1,0)
= ite(x2,1,ite(x5,1,0))

Top = x1·G1·G2
= ite(x1,1,0)·

ite(x2,1,ite(x3,1,ite(x4,1,0)))·G2
= ite(x1,ite(x2,1,ite(x3,1,ite(x4,1,0))),0)·

ite(x2,1,ite(x5,1,0))
= ite(x1,ite(x2,1,ite(x3,f1,ite(x4,f1,0))),0)

where
f1= ite(x5,1,0)

 The resulting BDD is shown in Figure 3 and is an
ordered BDD, where traversing the BDD along any path
from the root vertex will encounter the nodes in the order
specified. For example, the variables in the path 2,1 xx
appear according to the established ordering. Using this
approach the variable ordering is retained throughout the
BDD because every step of the connection is performed
according to the ordering of the elements.

The method automatically uses sub-node sharing
storing each ite structure in the memory only once and
reusing calculated ite structures further in the process.

4. Component connection methods

4.1. Basic approach (approach 2)

The basic method of the second approach, the
component connection method, is presented in [4]. The
method starts by considering those gates which have only
basic events as inputs. These gates are expressed as a
BDD structure, which is known to represent “AND” or
“OR” gate types. It then ascends the fault tree structure
considering any gate whose inputs are already expressed
as BDDs. It builds a BDD for an “AND” gate or an “OR”
gate utilising simple rules of connection. Initially BDDs
for fault trees are constructed without considering the
repetition along the BDD paths of basic events in the fault
tree. The resulting BDD then undergoes a simplification
procedure. The connection and simplification rules with
some alternative strategies are presented in this section.
The ordering of basic events is not necessary for this
approach, since the connection process can be applied
without following any fixed ordering scheme for the
whole system. However, a selection scheme has to be
specified which will define the way in which gate inputs,

either basic events or BDDs, are selected for the
connection process.

The connection rules are:
1. If a gate is an “AND” gate, the BDD nodes

representing its inputs are connected to each other
through the 1-branches of the nodes. If a gate is an
“OR” gate, the BDD nodes are connected through the
0-branches (see Figure 4(i) and (ii)).

2. While merging two BDDs, representing two inputs of
a parent gate, one of them is set to be the main BDD,
according to the rule of selection. Then, if two BDDs
are inputs to an “AND” gate, the secondary BDD is
connected to every terminal 1-node of the main BDD
or if two BDDs are inputs to an “OR” gate, the
secondary BDD is connected to every terminal 0-node
of the main BDD (see Figure 4(iii) and (iv)).

Figure 4. Example of connection rules

BDDs constructed in this way can feature more than
one node representing the same variable on its paths. In
order to avoid contradictory states of the repeated events
in the BDD each path featuring a repeated variable can be
simplified using the following rule:

The first occurrence of the event in the path specifies
the state of the repeated variable. The node, that
represents the second occurrence of the event, then needs
to be replaced by the events below it on either its 1 or 0

0x1

0

1

x2 0

01

1

G1=x1·x2

0

0x3

1

1

x4 0

1

1

0x1

0

1

x2 0

01

1

0

0x3

1

1

x4 0

1

1

main

OR

0x1
1

x2 0

1

1

0

0x3

1

1

x4 0

1

1 0

0x3

1

1

x4 0

1

1

G2=x3+x4

Top=G1+G2

(i) (ii)

(iii)

(iv)

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

branch, depending on the component state specified by its
first occurrence in the path. For example, if the path
passes through the 1-branch of a node, the second
appearance of that event should be replaced by the BDD
structure below the 1-branch of this second node. If the
path passes through the first variable occurrence on its 0-
branch, the second occurrence of the variable is replaced
by the BDD structure on its 0-branch.

A second rule to simplify the BDD can also be applied:
If the BDD structures below the 1 and 0 branches of

any node are the same, this node is irrelevant and needs to
be replaced by the structure below either one of the
branches. In other words, if the state of the system does
not depend on the occurrence of the basic event, the
insignificant node must be removed.

To demonstrate this approach it has been applied to the
fault tree illustrated in Figure 3 resulting in the BDD in
Figure 5. In this example the fault tree is traversed in the
bottom-up manner. When constructing any gate BDD the
variables are considered in a left-right variable ordering
for every gate in a fault tree. The left-most BDD input for
any gate is set to be the main BDD to which the others are
joined.

The connection process starts constructing two BDDs
for gates G1 and G2, shown in Figure 5(i) and Figure 5(ii)
respectively. Since gates G1 and G2 are “OR” gates, the
resulting BDDs are “OR” chains.

Then the top event, which is an “AND” gate is
considered. The left-most BDD, basic event x1, is
selected as the main BDD. Then the two BDDs from
Figure 5(i) and 5(ii) are connected one by one to the 1
branch of the main BDD. The first connection results in
the BDD in Figure 5(iii). The BDD after the last
connection is presented in Figure 5(iv), where all left
branches are 1 branches and right branches are 0
branches.

Finally, the simplification rules are applied. There is
only one repeated event, x2, and its repetitions need to be
removed from three current paths. In the first path F1-F2-
F3-F4 node F3 is replaced by the terminal 1-node, since
this path traverses the 1-branch of node F2, the first
occurrence of the repeated event. In the second path F1-
F2-F5-F6-F7 the repeated event x2 is removed, replacing
node F6 by node F7. In the same way node F9 is replaced
by node F10 in the third path F1-F2-F5-F8-F9-F10. The
final BDD is shown in Figure 5(v).

In this example the basic events were connected
according to the order that they appear in the list of gate
inputs. However, it is possible to apply a defined ordering
scheme for the nodes which will be used during the
construction method. There is a number of structural or
weighted ordering schemes [5], that can be applied. The
chosen ordering schemes can affect the efficiency of the
conversion process.

BDDs were selected according to the order that gate
inputs are listed, i.e. the BDD, presenting the left-most
gate, is set to be the main BDD. Other selection schemes
can be used which can result in a smaller BDD and/or in a
shorter processing time. BDDs can be ordered according
to the position of their root vertex in an ordering scheme
defined for the basic events or according to the smallest
number of available branches where connections will be
made. The efficiency of different strategies can be
analysed comparing the number of nodes in the final
BDD and the processing time.

Figure 5. Example FT converted to BDD, using
the component connection method

The component connection process does not require
the variable ordering applying the described connection
rules. Therefore, even if the variable ordering is set from
the start, i.e. for the conversion of gates including basic
event inputs only, it is not retained when merging two
BDDs. The resulting BDD of the component connection
method is not an ordered BDD as achieved using the
conventional approach. It does however retain the disjoint
path property.

The basic component connection method does not use
the sub-node sharing and it can lead to inefficient memory

0x2

1

1

x3 0

0x4

0

1

1

1

1

G1:

(i)

0x2

1

1

x5 0

01

1

G2:

(ii)

x1

0x2

x3

x4

0

x5

01

1

x5

01

Top: F1

F2

F5

F7 F8

F10

(v)

x1

0x2

x3

x4

0

x2

1 x5

01 x2

1 x5

01 x2

1 x5

01

Top: F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

(iv)

0x2

1

1

x3 0

0x4

0

1

1

1

1

(iii)

0x1

0

1

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

usage. For example, in Figure 5(v) there are two identical
nodes F7 and F10, which could be shared in the BDD
obtained using the ite technique (Figure 3). Therefore, an
extension to the component connection method is made
by introducing a form of sub-node sharing.

4.2. Sub-node sharing (approach 3)

Sub-node sharing adds a significant contribution to the
efficiency of the conventional BDD construction
approach. It can be also implemented in the component
connection method during the connection of two BDDs,
for example, merging two inputs for an “AND” gate, as it
is illustrated in Figure 6.

Figure 6. Sub-node sharing

In this example the left BDD is set to be the main
BDD. It has two available connection points, i.e. two
terminal 1-vertices, that can share the same copy of the
second BDD. This connection is always suitable if the
BDDs contain no repeated events in the fault tree.

The conversion method starts by applying the first
connection rule, presented in the previous section,
considering those gates which have only basic events as
inputs. Then the process continues ascending the fault tree
structure. The second rule is applied while merging the
BDDs representing gate inputs. Applying the sub-node
sharing the secondary BDD can be connected to all
terminal nodes if while descending the BDD from the root
vertex the same branches (1-branches or 0-branches) of
repeated events were traversed. Otherwise, a new copy of
the secondary BDD needs to be used.

The sub-node sharing rule is:
If paths to two terminal vertices (two terminal 1-nodes

for BDDs being inputs to an AND gate and two terminal
0-nodes for BDDs being inputs to an OR gate) traverse
the same branches of repeated events, the same copy of
the second BDD can be connected to both of the two
terminal nodes.

In the example from Figure 5, the BDD in 5(iii) is set
to be the main BDD during the last connection of the two
BDDs (Figure 5(ii), Figure 5(iii)). Since the BDDs
represent two gate inputs to an AND gate the paths from
the root vertex to the three terminal 1-nodes of the main
BDD are investigated. There is only one repeated event

x2 in the fault tree. The first path passes the 1-branch of
node x2, the second and the third paths pass the 0-branch
of node x2. Since the second and the third paths pass the
same branch of the repeated node the second and the third
terminal nodes can be replaced by the same copy of the
secondary BDD. The final BDD is shown in Figure 7(i)
and 7(ii), after the connection and after the simplification
processes respectively.

Figure 7. Application of sub-node sharing to the
component connection method

The resulting BDD in Figure 7(ii) matches the one
obtained using the ite technique, Figure 3.

Note. Applying the sub-node sharing all repeated
events in the system must to be considered, not only those
between the two BDDs under the current connection.

4.3. Hybrid approach (approach 4)

This approach is introduced to utilise the efficient parts
of each algorithm presented. It is clear, that:

i) using the gate constructs for basic events and
branches without repeated events BDDs can be
immediately formulated without any of processing
required by the ite method.

ii) the sub-node sharing feature of the ite method
provides a more efficient representation of the
logic function.

Therefore, a new algorithm has been created based on
the effective features of each approach to obtain the best
efficiency.

As was described before, using the component
connection method does not require the variable ordering.
However, since this new approach also uses the ite
method a variable ordering needs to be introduced to the
component connection method. This then produces
ordered BDDs, which are used for the ite technique.

0

0x1

1

1

x2 0

1

1

0x3

0

1

x4 0

01

1

0

0x1
1

x2 01

0x3

0

1

x4 0

01

1

AND

Top: F1

F2
F3

F4
F5

F8

x1

0x2

x3

x4

0

x2

1 x5

01
x2

1 x5

01

F6

F7
(i)

x11 0

1

0x21

x31 0

1

0x51

0

0

0x41

0

Top: F1

F2

F5

F7 F8

(ii)

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

First of all, a variable ordering needs to be established
which will be used when applying the rules of both
methods. Then the building of BDDs for gates containing
event inputs only starts, where events are put in a chain
according to the type of the gate (component connection
approach). This construction process can be applied
regardless of the number of events into a gate without
breaking them down into pairs, since the rules in the ite
technique deal only with two ite structures at once. The
variable ordering needs to be retained while putting basic
events in a chain. The comparison of the component
connection method and its application in the hybrid
method is shown in Figure 8.

Figure 8. Comparison between the two
methods while converting a gate with event

inputs only

For more complex parts, that do not contain any
repeated events, the straightforward connection can be
also applied. However, the variable ordering needs to be
taken into the consideration, i.e. the merging of the two
BDDs can be applied only if all the events of the main
BDD are before the events of the secondary BDD in the
variable ordering. This situation is shown in Figure 9.

While building the BDD for gates with repeated
events, the ite technique rules are applied.

For example in Figure 3, BDDs for gates G1 and G2
are created placing its basic events in “OR” chains as it
was shown in Figure 5(i) and (ii). Then the BDDs are
merged applying the ite rules, given in equations 5 and 6.

Figure 9. Hybrid approach for the parts
without repeated events

5. Comparison of the methods

The performance of the conversion methods will
depend on the structure of the fault tree. An indication of
any advantages can only be measured over a large range
of problems. The four approaches discussed in this paper
were investigated using a library of 12 fault trees. Their
characteristics are shown in Table 1.

Table 1. Characteristics of example fault trees

Test
FT

Number
of Gates

Number
of Basic
Events

Number
of

Repeated
Events

Number
of

Minimal
Cut Sets

1 48 94 33 6391
2 51 53 2 764
3 52 47 8 122
4 46 64 12 423
5 48 114 64 66083
6 45 100 52 3344
7 46 84 25 1633
8 49 98 44 8113
9 48 72 14 493

10 38 58 15 898
11 54 110 56 200063
12 37 77 38 45505

The first column identifies the example fault tree, then
the next three columns present indications of the
complexity of the fault tree in terms of the number of
gates, the number of basic events and the number of
repeated events. The last column presents the number of
minimal cut sets. Trying to achieve a consistent
comparison of the four methods the variable ordering for

0x1

1

1

x2 0

0x3

0

1

1

1

1

G1:

G1

x1 x2x3
0x1

1

1

x3 0

0x2

0

1

1

1

1

G1:

Component connection
method

Hybrid, x1<x2<x3

Top

G2

x1 x2

G1

x3 x4

x1<x2<x3<x4

0x1

1

1

x2 0

01

1

G2:

0x3

1

1

x4 0

01

1

G1:

main BDD

0x1
1

x2 0

0

1

0x3

1

1

x4 0

01

1

Top:

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

basic events was chosen not only for the conventional
method but also for the component connection method,
even though it is not needed. The modified top-down left-
right approach for the ordering of basic events was
applied [5].

The measurements, that were chosen for the
comparison of the four methods are: the number of nodes
in the final BDD, the maximum number of lines in the
storage array (representing the number of intermediate
calculations performed), and the processing time. The
results obtained by applying the four methods to the fault
trees in the library are shown in Table 2, Table 3 and
Table 4 respectively.

Table 2. Final BDD size of the four
construction methods

Number of nodes in final BDD

Test
FT Ite

Method

Component
Connection

Method

Component
Connection

Method
with

Sharing

Hybrid
Method

1 12470 189823 99046 12470
2 860 3153 2105 860
3 368 1114 899 368
4 1472 3876 2614 1472
5 18460 207800 81068 18460
6 16797 529729 20027 16797
7 1726 11306 5659 1726
8 1945 6980 2762 1945
9 1618 4085 2311 1618

10 1701 13324 11751 1701
11 8026 89466 13040 8026
12 1006 11729 2169 1006

Table 3. Number of intermediate calculations
in the storage array of the four construction

methods

Number of lines in storage array

Test
FT Ite

Method

Component
Connection

Method

Component
Connection

Method
with

Sharing

Hybrid
Method

1 12684 2084163 111880 12668
2 1138 59326 2129 1121
3 579 17752 1051 560
4 1773 359319 2614 1749
5 18639 452066 81933 18629
6 17149 1575967 20827 17134

7 1932 336782 6556 1916
8 2138 257947 2870 2130
9 1951 277230 2315 1930

10 1950 80371 11779 1931
11 8194 414932 13312 8191
12 1138 71507 2179 1129

Table 4. Processing time of the four
construction methods

Conversion time, s

Test
FT Ite

Method

Component
Connection

Method

Component
Connection

Method
with

Sharing

Hybrid
Method

1 2.265 4.125 4.859 2.14
2 0.047 0.14 0.375 0.031
3 0.016 0.031 0.281 0.016
4 0.062 0.344 1.063 0.063
5 5.953 1.031 1.953 5.656
6 5.156 2.235 1.093 4.375
7 0.078 0.328 1.594 0.062
8 0.219 0.469 4.812 0.063
9 0.078 0.328 1.766 0.046

10 0.078 0.265 0.562 0.063
11 1.234 0.641 0.016 0.984
12 0.063 0.11 0.766 0.062

The first construction method (ite method) resulted
in smaller BDDs and smaller number of lines in the
storage array for all the example fault trees than the
component connection method. The processing time was
also shorter for almost all example fault trees, except
three cases, (5), (6) and (11). Results for the basic
approach of the component connection method were
presented in [6].

Using the component connection approach with the
sub-node sharing all the BDDs generated were smaller
than using the basic component connection method, but
the processing time increased, except examples (6) and
(9), due to an extra time taken to identify parts in the
BDD suitable for the sub-node sharing.

The hybrid method resulted in BDDs with the same
number of nodes than the conventional approach.
However, it gave slightly better results in terms of the two
other measurements, the number of lines in the storage
array and the computational time. This was due to the
capability to obtain the BDDs for gates with event inputs
only in a more efficient way, i.e. inputs of a gate were
placed in a chain straightforwardly without the need to do
it one by one. Also, more complex parts of the fault tree

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

without repeated events were converted to the BDD using
the rules of the component connection method. In
summary, using the hybrid method resulted in the same
size of the final BDD as applying the conventional
approach, but a better efficiency was achieved, since the
computational time was shorter and the maximum number
of lines in the storage array was smaller. Therefore, the
hybrid method can be used as an efficient alternative
technique for converting fault trees to BDDs.

6.Conclusions

This paper presents four approaches for the conversion
of fault trees to BDDs. The first method is Rauzy’s ite
method, the second is the basic component connection
method. The third approach is an advanced form of the
component connection method. A hybrid method which
utilises the more efficient features of two basic methods is
also presented. Test fault trees have been used and the
results for the four methods compared. Conversion time,
number of nodes in the final BDD and number of lines in
the storage array were used as efficiency measures while
working on all the methods. It is shown that as a general
fault tree to BDD conversion technique the method
proposed by Rauzy performs well. The component

connection method does not compete with Rauzy’s
method very well even if the sub-node is incorporated.
However, the hybrid method, as a mixture of two
approaches, can provide a good alternative technique for
conversion of fault trees to BDDs.

7. References

[1] A. Rauzy, “New Algorithms for Fault Tree Analysis,”
Reliability Engineering and System Safety, no. 40, 1993, pp.
203-21.
[2] W.E. Vesely, “A Time Dependent Methodology for Fault
Tree Evaluation”, Nuclear Design and Engineering, no. 13,
1970, pp. 337-360.
[3] R.M. Sinnamon, J.D. Andrews, “Improved Accuracy in
Quantitative Fault Tree Analysis”, Quality and Reliability
Engineering International, no. 13, 1997, pp. 285-292.
[4] Y.S. Way, D.Y. Hsia, “A simple component-connection
method for building binary decision diagrams encoding a fault
tree”, Reliability Engineering and System Safety, no. 70, 2000,
pp. 59-70.
[5] K.A. Reay, “Efficient Fault Tree Analysis Using Binary
Decision Diagrams”, Doctoral Thesis, Loughborough
University, 2002.
[6] J.D. Andrews, R. Remenyte, ''Fault Tree Conversion to
Binary Decision Diagrams'' , Proceedings of the 23rd ISSC , San
Diego, USA, August 2005, ISBN 0-9721385-5-2 , [CD-ROM].

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

