
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
Title:  Eulerian Particle Flamelet Modelling of a Bluff-body 

CH4/H2 Flame 
 
Article:  Full-length 
 
1st Author:  Anand Odedra  
 
Affiliation:  Loughborough University 
 
Address:  Wolfson School of Mechanical and Manufacturing Engineering,  
  Loughborough University, Loughborough, UK, LE11 3TU. 
  Phone: +44 (0) 1509 227520 
  Fax    : +44 (0) 1509 227648 
  E-mail: A.Odedra@lboro.ac.uk 
 
2nd Author:  W. Malalasekera (Corresponding author) 
 
Affiliation:  Loughborough University 
 
Address:  Wolfson School of Mechanical and Manufacturing Engineering,  
  Loughborough University, Loughborough, UK, LE11 3TU. 
  Phone: +44 (0) 1509 227556 
  Fax    : +44 (0) 1509 227648 
  E-mail: W.Malalasekera@lboro.ac.uk 
 
 
MODIFIED – 02.07.2007 
 

 

 

 

 

 

 

 

 

Submitted to Combustion and Flame – November 2005, Revised - December 2006, 

February 2007 and July 2007. 

mailto:A.Odedra@lboro.ac.uk
mailto:W.Malalasekera@lboro.ac.uk
mcwm
Typewritten Text
Citation:
Odedra, A and W. Malalasekera, Eulerian Particle Flamelet Modelling 
of a Bluff-body CH4/H2 Combustion and Flame, Volume 151, 
Issue 3, November 2007, Pages 512-531, 
DOI:10.1016/j.combustflame.2007.06.018.


mcwm
Typewritten Text



Abstract 

In this paper an axisymmetric RANS simulation of a bluff-body stabilised 

flame has been attempted using steady and unsteady flamelet models. The unsteady 

effects are considered in a post-processing manner through the Eulerian Particle 

Flamelet Model (EPFM). In this model the transient history of scalar dissipation rate, 

conditioned at stoichiometric mixture fraction is required to generate unsteady 

flamelets and obtained by tracing Eulerian particles. In this approach unsteady 

convective-diffusive transport equations are solved to consider the transport of 

Eulerian particles in the domain. Comparisons of the results of steady and unsteady 

calculations show that transient effects do not have much influence on major species, 

including OH and the structure of the flame therefore can be successfully predicted by 

steady or unsteady approaches. However, it appears that slow processes like NO 

formation can only be captured accurately if unsteady effects are taken into account 

while steady simulations tend to overpredict NO. In this work turbulence has been 

modelled using the Reynolds Stress Model (RSM). Predictions of velocity, velocity 

rms, mean mixture fraction and its rms show very good agreement with experiments. 

Performance of three detailed chemical mechanisms, the GRI Mech 2.11, the San 

Diego mechanism and the GRI Mech 3.0 has also been evaluated in this study. All 

three mechanisms performed well with both steady and unsteady approaches and 

produced almost identical results for major species and OH. However, the difference 

between mechanisms and flamelet models becomes clearly apparent in the NO 

predictions. The unsteady model incorporating the GRI Mech 2.11 provided better 

predictions of NO compared to steady calculations and showed close agreement with 

experiments. The other two mechanisms showed overpredictions of NO with both 

unsteady and steady models. The level of overprediction is severe with the steady 

approach. The GRI Mech 3.0 appears to overpredict NO by a factor of two compared 

to GRI Mech 2.11. The NO predictions by the San Diego mechanism fall between the 

two GRI mechanisms. The present study demonstrates the success of the EPFM 

model and when used with the GRI 2.11 mechanism predicts all flame properties, 

major and minor species very well and most importantly the correct NO levels. 
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1. Introduction 

There are several well-established and validated mathematical models 

available to model turbulent nonpremixed combustion. These include steady laminar 

flamelet model (SLFM) [1, 2, 3], PDF transport model [4] and the conditional 

moment closure model (CMC) [5, 6]. The steady laminar flamelet model has become 

more popular than other methods because it offers a convenient mechanism for 

incorporating realistic chemical kinetics into the calculation of nonpremixed flames. 

In the standard flamelet model three parameters, mean mixture fraction  , its 

variance 2~   and mean scalar dissipation rate ~  (a measure of flame stretch) are used 

to specify the local instantaneous thermo-chemical state in the turbulent flow. In the 

steady flamelet model the time-dependent term is neglected assuming slow variation 

of imposed scalar dissipation rate to generate a parameterized library of flamelet 

profiles. However, if the scalar dissipation rate changes rapidly then the unsteady term 

in the flamelet equations becomes important leading to slow relaxation of the flamelet 

profiles [3] which is the basis of the unsteady flamelet formulation. The steady 

flamelet model successfully predicts major species and certain minor species in some 

cases but clearly fails to capture slow processes like NOx formation.  

The importance of unsteady effects in stretched laminar flamelet models for 

turbulent nonpremixed flames was first identified by Haworth et al. [7]. The study 

showed that the look-up table solution of steady flamelet equations is not always 

justified as flamelet structure cannot respond instantaneously to the scalar dissipation 

changes. Mauss et al. [8] have used transient flamelets to simulate extinction and re-

ignition in turbulent diffusion jet flames and showed that flamelets respond much 

more slowly to changes in scalar dissipation rate than previously assumed. The 

Representative Interactive Flamelet (RIF) concept developed by Peters and co-

workers [3, 9, 10] is an interactive extension of the laminar flamelet model and 

accounts for the transient history of the scalar dissipation rate. It computes the 

unsteady flamelet equations interactively within the main CFD code. The transient 

evolution of a single or several ‘representative’ flamelets is considered in this model. 

Pitsch et al. [10] have employed the RIF model using a single representative flamelet 

in a three-dimensional diesel engine simulation and found reasonable agreement with 

experimental data for pressure, ignition delay, cylinder-averaged major species and 

exhaust gas emissions including NO and soot. In a further application of this model in 
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a diesel engine simulation, results have been shown to be improved by using multiple 

interactive flamelets [11].  

Mainly there are two types of unsteady flamelet models that could be 

successfully implemented either interactively or applied in a post-processing manner, 

the Lagrangian Flamelet Model (LFM) [12] and the Eulerian Particle Flamelet Model 

(EPFM) [13]. In LFM, flamelets are assumed to be introduced at the nozzle inlet and 

allowed to convect downstream. An expression which relates the axial position of the 

flamelet to a Lagrangian flamelet lifetime is used to integrate flamelet equations 

thereby accounting for history effects in the flamelet structure. The EPFM traces mass 

weighted fractions of particles corresponding to flamelets, initialised at particular 

locations according to the stoichiometric mixture fraction value and the scalar 

dissipation field. The EPFM has the advantage that it accounts for spatial variation of 

the scalar dissipation rate in the evolution of multiple unsteady flamelets [11, 13]. 

Application of the LFM is limited to parabolic flows while the EPFM can be used for 

both parabolic and elliptical flows. The post-processing analysis is, however, valid 

only for steady combustion problems.  

Barths et al. [14] have used the EPFM approach to simulate a gas turbine 

combustor operating in steady state. In their study good agreement for the NOx index 

was obtained using the EPFM model but no detailed comparisons were available to 

asses the accuracy of local predictions. Later Coelho et al. [15] have applied EPFM to 

a piloted methane-air jet flame and found good agreement with experiments. They 

also studied the influence of the number of particles, initialisation regions and initial 

conditions on scalar predictions. In a further application Coelho et al. [16] have used 

the EPFM to model  in a recirculating mild combustion burner but detailed 

comparisons of temperature and species were not available due to lack of 

experimental data. The present study uses the EPFM approach in a well documented 

experimental configuration where detailed experimental data is available to study the 

accuracy and capabilities of the EPFM strategy. The experimental configuration used 

here is the bluff-body stabilised CH4/H2 (HM1) flame investigated experimentally at 

Sandia National Laboratories and at the University of Sydney [17].  

The HM1 flame has been the subject of a number of previous numerical 

studies. Among others, these include early studies of Dally et al. [18], Li et al. [19], 

Yan et al. [20], Hossain and Malalasekera [21] and Hossain et al. [22]. The flow field 

calculations using the k   model for turbulence closure with a modified constant 
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1C  (from 1.44 to 1.6) in the dissipation equation has shown to achieve reasonably 

good agreement for the flow and scalar field. Improved flow field predictions have 

been reported with the use of Explicit Algebraic Stress Models (EASM), modified 

k   [20] and Reynolds Stress Models (RSM) [19]. Studies which have used simple 

chemistry [18] and equilibrium chemistry [19] have shown limited success in 

predicting overall flame properties. The use of the laminar flamelet model [20, 21, 22] 

has been shown to give good predictions for major and minor species. In addition to 

major species predictions, Hossain and Malalasekera [21] have used the laminar 

flamelet model with a special procedure for NO and attempted to predict NO in this 

bluff-body flame. Only thermal NO was included in the chemical mechanism and the 

predicted results showed an under-prediction (with unity Lewis number assumption) 

compared to the experimental measurements. 

Kim et al. [23] have applied a first-order CMC model to the HM1 flame and 

obtained good agreement for major species but minor species OH and NO were 

overpredicted. They have attributed discrepancies to the first-order accuracy of the 

CMC model and uncertainties involved in the chemical mechanisms. Later Sreedhara 

et al. [24] have modelled the same flame using a second-order elliptic CMC model 

and showed slight improvement in the predictions of OH and NO. Both studies [23, 

24] have reported that the GRI Mech 3.0 overpredicts NO by a factor of two and 

noted that GRI Mech 2.11 provides better agreement. 

Muradoglu et al. [25] have used the transported PDF model with a simple 

flamelet model to study the sensitivity of the calculations to boundary conditions and 

model constants. Their study was limited to the prediction of flow characteristics and 

the mixing field. More comprehensive PDF simulation for this bluff-body flame has 

been reported by Liu et al [26] who used a reduced mechanism for chemistry derived 

from GRI Mech 2.11. Their results show good agreement near the burner but 

agreement further downstream was not very good for mixture fraction fluctuations, 

temperature and species. More recently Kuan and Lindstedt [27] have used the 

transported PDF approach with a detailed chemistry mechanism, and the Reynolds 

stress model to model HM1 and HM1e flames. Their results show good agreement for 

major species and minor species CO, OH and NO. Slight over-predictions of NO were 

attributed to the adiabatic assumption which as made in this computation. The results 
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presented also include species fluctuation predictions (rms) and conditional PDFs of 

temperature and species including NO. 

Recently Kempf et al. [28] and Raman and Pitsch [29] have reported Large 

Eddy Simulations (LES) for this burner configuration. Kempf et al. [28] have reported 

LES results using a grid which was sufficient to resolve more than 75% of total 

turbulent kinetic energy of the critical part of the flow field. The laminar flamelet 

model was used to obtain thermochemistry. The results showed reasonably good 

agreement for flow field data and subsequent temperature and major species 

predictions were also good. Raman and Pitsch [29] also used LES and the laminar 

flamelet model for thermochemistry and reported very good agreement with data. 

However the study reports that good mixture fraction could be only is achieved by 

tuning inlet boundary conditions. No prediction for NOx was attempted in either of the 

studies. It is worth noting that LES is a very expensive and time consuming technique 

and in terms of application still is not an engineering tool. 

Most CFD based combustion calculations used in the industry still use RANS 

based methodology and post-processing techniques for NO. In this work we use the 

EPFM formulation in the RANS framework to simulate a bluff-body CH4/H2 flame. 

In this work we compare our predictions for all major and minor species with 

experiments including NOx and demonstrate that the current strategy is a cost 

effective way of accurately predicting the flame properties including NOx. 

The basics of laminar flamelet model and its extension to EPFM formulation 

are discussed in the next section. Then a brief overview of the experimental set-up 

used in the experiments considered for validation is given. Then the numerical 

implementation of post-processing type EPFM is described. It is followed by the 

model validation results using different chemical mechanisms and finally conclusions 

are summarised. 

 

2. Mathematical Model 

The modelling approach used in the present study follows the procedures 

outlined in Barths et al [11], Coelho and Peters [15, 16]. The study is divided into two 

stages. The first stage involves the solution of fluid flow and scalar transport 

equations (mean mixture fraction and its variance) and prediction of dependent scalar 

fields. Next the second stage of the calculations is performed in a post-processing 
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manner using the EPFM approach. In this work the governing equations of fluid flow 

are solved using the commercial CFD code FLUENT 6.1 [41]. Turbulence is 

modelled using the Reynolds Stress Model (RSM) in which the pressure strain term is 

approximated according to the linear model proposed by Launder [30, 31]. In this 

study we present results for both the steady laminar flamelet model and the EPFM 

approach and compare the results. The steady/unsteady laminar flamelets used in our 

calculations are obtained externally using the FlameMaster code [32]. In the first 

stage of the calculation procedure a converged SLFM solution is obtained using 

FLUENT. Then the density, mean mixture fraction and its variance predictions from 

the first stage are used to perform the second stage EPFM calculations. Further details 

are outlined below. 

 

2.1 Steady Calculations 

The steady laminar flamelet model used in this study is described in Pitsch and 

Pertes [33]  The FlameMaster code [32] is used to generate the flamelet library for 

varying scalar dissipation rates ranging from a low value close to equilibrium up to a 

large value close to extinction (0.0001s-1 to 55.47s-1 for the present case). The 

chemical mechanism used is GRI Mech 2.11. Pitsch et al. [12] have shown that steady 

flamelet calculations overpredict the radiation heat loss and give unrealistic 

temperature predictions therefore radiation is neglected in the steady laminar flamelet 

calculation. In the calculation process a three-dimensional look-up table containing 

~ , 2~   and ~  is used to update density, temperature and other scalar properties. The 

Favre averaged mean values of the scalars are obtained by integrating over the 

flamelet profiles using the presumed probability density function approach [15]. In the 

calculation the probability density function, )(
~ P  is assumed to be a  -PDF.  

 

2.2 Unsteady Calculations using EPFM 

 Unsteady calculations are performed as a post-processing stage after the 

steady calculations. As this is an uncoupled approach the mixing field (predicted 

mean and variance of the mixture fraction) and the scalar dissipation field are fixed at 

this stage. The turbulent mean values of scalars (temperature and chemical species) 

are computed in the post-processing stage employing the Eulerian Particle Flamelet 

Model (EPFM). In this model different marker particles representing flamelets are 
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introduced into the turbulent flow and transported throughout the flow domain. The 

probability of finding a fluid particle at a given location is calculated by solving an 

unsteady transport equation. Depending on the path of a particle takes through the 

turbulent flow field each particle represent a different flamelet history. Eulerian 

transport equation for the probability of finding a fluid particle representing a flamelet 

can be written as [35] 

 
 i nn t n

j j t j

u II I

t x x

  


   
      

 

x
  (1) 

In Eq. 1 nI
~

 is the probability of finding a particle n and t  is the turbulent Prandtl 

number. As particles are transported through the domain they experience different 

values of the scalar dissipation rate, depending on their position within the flow field. 

A surface averaged value for the scalar dissipation rate conditioned at stoichiometric 

mixture for each particle is calculated following [12] by converting the surface 

integrals into volume integrals. Here it is weighted additionally with nI  the 

probability of finding a particle n the resulting surface averaged scalar dissipation rate 

is given by [35] 
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where st  is the scalar dissipation rate conditioned at stoichiometry [12] 
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where mean scalar dissipation   is modelled according to [34] 

 2~
~
~

~   
k

c  (4) 

where k
~

 is the turbulent kinetic energy, ~  the dissipation rate of turbulent kinetic 

energy, 2~  the mixture fraction variance and a constant 2.0c   [3].  

In Eq. 2 numerator and denominator are integrated over the whole 

computational domain. The surface averaged conditional scalar dissipation rate n,st̂  
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is a function of time as the probability of finding a particle nI
~

 changes with time. 

Equation 2 gives the transient history of the surface averaged scalar dissipation rate.  

In the unsteady flamelet calculations radiation is accounted for by using the 

optically thin approximation with absorption coefficients calculated using RADCAL 

[40]. The rate of radiative heat loss per unit volume Rq   is computed as 

  4 4
,2R a

i

q T T pi p i      (5) 

where   is the Stefan-Boltzmann constant, Ta the ambient temperature, pi and i,p  

are the partial pressure and the absorption coefficient for species i, respectively. The 

species CO, CO2, H2O and CH4 take part in radiation calculations.  

The local steady-state Favre averaged mass fractions can be computed by 

integration over time and summation over the number of particles, weighted by the 

temporal integration of the summation over all marker particles [14] 
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In Eq. 6 tfinal is chosen long enough so that all the particles leave the reaction zone and 

their contribution to integral in Eq. 6 becomes negligible.   

 Temperature rms 2~
T   for the steady case is calculated via a simple integration 

of   2~ TT   weighted by the PDF and for the unsteady case 
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where  nT  is the temperature profile of unsteady laminar flamelet corresponding to 

n,st̂ . 
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3. Experimental Set-up 

The experimental data used in the present study are from the Sydney bluff-

body burner documented in [17, 18]. It has an outer diameter D = 50 mm with a 

concentric fuel jet diameter d = 3.6 mm. The complete burner assembly was housed in 

a square co-flow wind tunnel of cross-section 254254  mm. The fuel used was 1:1 

methane/hydrogen by volume with stoichiometric mixture fraction st  = 0.05. The 

scalar fields were measured by single-point Raman-Rayleigh LIF (Laser Induced 

Fluorescence) at Sandia National Laboratories. For the HM1 flame the fuel jet 

velocity was 118m/s with a co-flow velocity of 40m/s. The velocity data were 

collected by LDV (Laser Doppler Velocimetry) at the University of Sydney for the 

HM1e case where fuel jet velocity was 108m/s and co-flow velocity was 35m/s. 

Flame HM1e is the equivalent flame to HM1. Wind tunnel at the Sydney University 

was unable to generate a uniform 40m/s co-flow (maximum 35m/s). Therefore the jet 

velocity was accordingly reduced from 118m/s to 108m/s so that both HM1 and 

HM1e are at the same proportion from blow-off. 

  

4. Computational Details 

Computational Grid and Boundary Conditions  

Fig. 1 shows the axisymmetric computational grid used in the present study. 

The main domain (excluding upstream extension) is discretised using 

quadrilateral cells. Close to the bluff-body the grid has been adequately 

refined to resolve the recirculation zone. Through grid refinement studies it was 

established that this grid is fine enough to provide grid independent flow predictions 

(see sample results later). The domain is extended upstream to calculate the correct 

velocity profile at the burner exit. The bulk velocities and 10 % turbulence intensity 

are specified as inlet boundary conditions of the extended domain. This approach 

eliminated the uncertainties involved in specifying velocity profiles and length scale 

at the burner exit and proved very successful as shown in the flow field comparisons 

later. Transport equations for velocities, combustion and turbulent quantities were 

discretised using the second-order upwind scheme and the SIMPLE algorithm was 

used for pressure-velocity coupling. Two different simulations were performed 

corresponding to the flow field and scalar measurements [36]. In the first simulation 

fuel jet velocity and co-flow velocity were set to 108 m/s and 35 m/s respectively. 

260170
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Flow field results of this flame are compared with HM1e flame data. The second 

simulation used slightly higher jet velocity of 118 m/s and co-flow velocity of 40 m/s. 

The scalar predictions of this simulation are compared with HM1 measurements.  

 

The EPFM Solution Algorithm 

Schematic of the EPFM solution procedure which involves two stages is 

shown in Fig. 2. First stage CFD calculations are performed using FLUENT while 

second stage calculations are done separately in MATLAB. The first stage simulation 

took around 6 hrs of clock time and second stage EPFM calculations using one 

particle took roughly 3-4 hrs of actual time on a single processor, Pentium 4, 1 GB 

RAM machine. Post-processing calculations begin with a converged SLFM solution. 

The density, mean mixture fraction ~ , its variance 2~   and mean scalar dissipation 

rate ~  values are used in the second stage to calculate conditional scalar dissipation 

rate st
~  (Eq. 3) for each cell. An initialization region (computational cells) near to the 

fuel inlet where st ~~


1n

 is selected [15]. If only one marker particle is considered, the 

initial probability I 
  is set equal to unity in the considered region and zero 

everywhere else. If multiple particles are considered, the initialization region remains 

the same, but it is divided into a number of sub-regions equal to the number of marker 

particles, and each sub-region is assigned to one particle [15]. The initial probability 

of finding a marker particle is then equal to 1 in its own sub-region and equal to 0 

everywhere else. Different types of particles are separated by different initial 

conditions. At this stage only unsteady transport equations (Eq. 1) are solved using 

the flow field data. At each time iteration step probability of finding a particle n , nI
~

 

within the entire domain for each particle is obtained. Usin nIg 
~

 values at each cell 

and the conditional scalar dissipation value, a surface averaged conditional scalar 

dissipation rate, n,st̂  can be calculated at each time step. This transient history of 

n,st̂  is then used to compute unsteady flamelets in FlameMaster. The calculations of 

unsteady flamelet equations also require initial conditions, which are taken from the 

steady solution. For NO calculations, all the species involved with nitrogen chemistry 

except N2 are initially set to zero. Finally the turbulent mean values of scalars are 

calculated employing Eq. 6. The steady flamelet results shown here for comparison 

 11



purposes were calculated in the post-processing stage using only one flamelet, 

corresponding to the steady state value of n,st̂ . Three different reaction mechanisms 

were used to generate steady and unsteady flamelets, GRI Mech 2.11 (49 species and 

277 reactions [37]), GRI Mech 3.0 (53 species and 325 reactions [38]) and San Diego 

mechanism (53 species and 228 reactions [39]). 

 

5. Results and Discussion 

Figures 3a and 3b show calculated streamline contours for HM1e and HM1 

cases respectively. The axial positions where experimental data were measured are 

also shown. Both flames exhibit similar flow characteristics. In both cases the 

recirculation zone is extended up to x/D = 1.8. Two vortices can be seen inside the 

recirculation zone. Eight measurement locations in the case of HM1e and four in the 

case of HM1 fall inside the recirculation zone. First we present flow field results for 

HM1e case. Fig. 4 shows comparison of axial velocity predictions with 

measurements. It can be seen that numerical results show excellent agreement at all 

the axial positions. The numerical results correctly predict the change of axial velocity 

direction indicating that the length and shape of the recirculation zone is predicted 

very well. Radial velocity comparisons in Fig. 5 show good agreement close to the 

burner except for slight under-predictions at downstream positions. Magnitude of the 

radial component is small and the discrepancies are not of similar size as the errors in 

the axial velocity profiles. The rms fluctuations of axial and radial velocity are 

presented in Fig. 6 and 7 respectively. Experimental data of axial velocity fluctuations 

show two distinct peaks corresponding to the two shear layers between the bluff-body 

recirculation region and the fuel jet and the air co-flow, respectively. The numerical 

predictions [Fig. 6] successfully capture first peak but second peak is somewhat 

underpredicted. Radial velocity fluctuations have been accurately predicted at all axial 

locations [Fig. 7].  

The mixing field and combustion statistics are compared for the HM1 case. 

Three different grids coarse )19185(  , medium )260170(   and fine  

have been used to simulate HM1 case. Here only mixture fraction predictions using 

different grids are presented in Fig. 8 for comparison purposes. It can be seen that 

results from all three grids are identical and in good agreement with experiments. This 

suggests that the solution is grid independent and selection of the medium grid 

)520340( 
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(170×260) for further analysis is acceptable. Also Fig. 8 shows the effects of a 

constant ( 1C ) modification in dissipation equation. The standard RSM ( ) 

predicts mixture fraction reasonably well up to x/D = 0.9 but then onwards severe 

over-prediction of spreading rate has resulted into significant underprediction of 

mixture fraction. While the modified RSM (

1 1.44C 

1 1.6C  ) has shown slight 

underprediction of spreading rate up to x/D = 1.3 but much improved predictions can 

be seen at downstream positions. In Fig. 9 the rms fluctuations of mixture fraction 

values are compared. At the first three positions x/D = 0.26, 0.6 and 0.9 the peak 

values are slightly over-predicted but the positions of the peaks are captured very well 

by the calculations. Downstream predictions at x/D = 1.8, 2.4 show remarkably good 

agreement. It could be said that the overall mixing field results of Fig. 8 and 9 taken 

together are very good. This is mainly because we have considered detailed chemistry 

and used bulk velocity values at extended inlets instead of specifying speculative 

velocity profiles at the burner exit. 

st
~ Using the mixing field predictions a conditional scalar dissipation rate  is 

calculated for each cell. Fig. 10 shows the profiles of st
~  at different axial locations. 

Two peaks can be seen, one close to fuel inlet and other at the edge of the bluff-body 

and co-flow inlet. These peaks correspond to the shear layers and they diminish with 

increasing axial distance. Initially only one particle was considered and therefore a 

single passive scalar transport equation (Eq. 1) was solved. Later in the study the 

effects of multiple particles were investigated. Evolution of nI
~

 within the domain was 

stored at each time step and used in conjunction with the conditional scalar dissipation 

field to compute a surface averaged conditional scalar dissipation rate n,st̂ , where n 

represent the particle number. The transient evolution of  1,st̂  is shown in Fig. 11. It 

can be seen that approximately after 40 ms the 1,st̂   reaches a steady state ( 2.34s-1) 

and thereafter does not change with time. A single steady flamelet generated using the 

steady state value scalar dissipation rate of 2.34s-1 in conjunction with the GRI Mech 

2.11, 3.0 and San Diego mechanisms and results were compared with conditional 

experimental measurements. The comparisons are shown in Fig. 12 and 13. All three 

mechanisms considered have produced similar results. It can be seen that overall the 

flamelet profiles accurately follow the experimental data for temperature and species 

in both fuel rich and lean zones. However the OH peak mass fraction has been 
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overpredicted and CO2 profile shows some differences in the fuel rich region. These 

disagreements may have been resulted from uncertainties involved in the reaction 

mechanisms and other factors like the use of unity Lewis number assumption for all 

species. In this case conditional experimental data at different axial locations show 

very similar profiles hence the flame is not subjected to large changes of scalar 

dissipation rate. Therefore steady flamelet results of all the mechanisms have been 

calculated in the post-processing stage using a single flamelet (scalar dissipation rate 

equal to 2.34s-1). 

 The transient history of 1,st̂  is employed to obtain unsteady flamelet solution 

using the FlameMaster code. Here again three mechanisms GRI Mech 2.11, 3.0 and 

San Diego are used to study the influence of mechanisms. The initial condition was 

taken from a steady state solution (scalar dissipation rate equal to 1.85s-1) and initial 

nitrogen species concentrations (except N2) were set to zero. Unsteady evolution of 

NO by all three mechanisms is shown in Fig. 14. The highest level of NO is generated 

by GRI Mech 3.0 almost double the amount of GRI Mech 2.11 and slightly higher 

than San Diego mechanism. Other species and temperature shown in Fig. 15 do not 

show a notable evolution with time as they have been initialised from a steady 

solution and show less sensitivity to the scalar dissipation rate changes. The radiation 

heat loss is accounted for in the unsteady calculations but has negligible effects on 

scalars. Results in Fig. 15 have been generated using GRI Mech 2.11 but very similar 

results (not shown here) have been obtained for the other two mechanisms. 

 Favre averaged temperature and species predicted by all three mechanisms are 

presented in Fig. 16-26. Results also compare performance of steady (SLFM) vs. 

unsteady (EPFM) flamelet model. Fig. 16 shows the temperature predictions. 

Temperature is slightly underpredicted at the centreline partly due to the discrepancies 

of mixture fraction predictions but generally the agreement is very good. Similar 

underprediction of temperature has been reported by Raman and Pitsch [29], who 

were successful in predicting the mixture fraction and concluded that this may be due 

to deviation from flamelet regime. Radiative heat transfer is not significant for the 

selected flame as the unsteady results with radiation and steady results without 

radiation are undistinguishable. All three mechanisms with both flamelet models 

provided almost identical results. Similar behaviour is seen in the case of temperature 

rms and other major species including OH, shown later. Comparison of calculated 
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temperature rms results are shown in Fig. 17. The downstream positions show some 

differences but overall agreement is very good. Successful modelling of temperature 

rms establishes that turbulence and chemistry interactions have been captured well. 

 Figure 18 shows present NO prediction which is the most challenging task in 

combustion simulations. It can be seen that the results of NO predictions by all three 

mechanisms are very different and noticeably affected by the choice of the flamelet 

model. Unsteady GRI Mech 2.11 shows the closest agreement with measurements. 

Although NO is slightly overpredicted at downstream locations by unsteady GRI 2.11 

calculation, the results are very good. The steady flamelet model with GRI Mech 2.11 

still predicts high NO levels and show overpredictions at all locations. The unsteady 

model incorporating the San Diego and GRI Mech 3.0 consistently overpredict NO 

levels at all the positions and steady flamelet results show even severe 

overpredictions. The GRI Mech 3.0 predicts roughly twice the amount of NO 

compared to GRI Mech 2.11. This finding supports the previous studies [23, 24]. The 

crucial prompt NO formation rate for CH + N2 = HCN + N was found by Berg et al. 

[42] to result in under-predictions of NO by 30 to 60%. Similarly, Juchmann et al. 

[43] found that the rate was significantly (~ 250%) too low when applied in the 

context of diffusion flames. Gibaud et al. [44] comment further on the differences 

between the two versions of the GRI mechanisms. They note that the rate constant 

used for the reaction CH2+H = CH + H2 which is the dominant CH formation channel 

is 2.06×1011 m3/kmol/s in GRI Mech 2.11 and 1.71×1011 in GRI Mech 3.0 and note 

that the GRI Mech 2.11 rate is based on low-temperature data extrapolated to 

combustion conditions. Gibaud et al. [44] quoting references therein note that the 

reaction rate value for the temperature range 2200-2600 K varies from 3.2×1010 to 

2.3×1011 m3/kmol/s and the value used in GRI Mech 2.11 appears to be on the higher 

side. Juchmann et al. [43] and Gibaud et al. [44] have used a value of 1.1×1011 which 

is close to the value used in the GRI Mech 3.0. Considering these uncertainties the 

success of the GRI Mech 2.11 should be treated cautiously. However, our study 

clearly demonstrate the capability of the EPFM approach as the other two 

mechanisms, GRI 3.0 and San Diego, give better NO predictions compared to the 

SLFM approach. 

 Figure 19 shows the OH predictions by steady and unsteady methods 

incorporating all three mechanisms. At first position, x/D = 0.26 the OH mass fraction 

is severely overpredicted but further downstream results closely follow the 
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experimental data. Unsteady effects or different mechanisms do not show any 

significant difference. Figure 20 shows the carbon monoxide predictions which are in 

good agreement close to the burner but slightly overpredicted at downstream 

positions. Similar behaviour is seen in the case of carbon dioxide predictions shown in 

Fig. 21. The H2O mass fraction predictions depicted in Fig. 22 shows excellent 

agreement at all the axial positions. Mass fraction of methane shown in Fig. 23 is also 

predicted well. Figure 24 show the comparison of predicted hydrogen mass fractions 

with data. Slight overprediction at the centre line is apparent which may be due to 

overprediction of mixture fraction at the centreline. Very good agreement can also be 

seen in Fig 25 for oxygen mass fraction predictions.  

It can be seen that agreement with experimental results is very good for all 

species including temperature and not sensitive to unsteady effects except in the case 

of NO. All three mechanisms also produce remarkably similar results for major and 

minor species (except NO as mentioned above). 

 The unsteady results discussed so far have been obtained using a single 

particle. To study the impact of multiple particles on scalar predictions, another 

simulation was performed using five particles. In this case the actual computational 

time for the second stage calculations significantly increased from 3-4 hrs to 15-16 

hrs. The NO predictions by a single particle and five particles employing unsteady 

GRI Mech 2.11 are shown in Fig. 26. The results are almost identical. Basically 

multiple particles help to account for the inhomogeneous distribution of scalar 

dissipation field. But the current flame has shown weak dependence on scalar 

dissipation rate in conditional data comparison discussed earlier and therefore results 

of five particles and a single particle are almost the same. Here only NO results are 

presented but similar trend has been seen in the case of temperature and other species 

(not shown here). 

 

6. Conclusions 

 A methane/hydrogen bluff-body flame has been successfully simulated using 

steady and unsteady flamelet models. In this study Eulerian particles are traced using 

a post-processing style EPFM to consider the unsteady effects. Very good agreement 

of velocity statistics confirms the ability of the RSM based axisymmetric RANS 

approach to model such a strongly recirculating flame. The upstream domain 

 16



extension has allowed the use of bulk velocity values at extended inlet instead of 

prescribing velocity profiles at the burner exit. This has eliminated uncertainties 

arising from the velocity boundary condition. The mean and variance of mixture 

fraction were predicted correctly, which show the validity of the laminar flamelet 

model for this study. The predicted temperature profiles using the steady and unsteady 

laminar flamelet approaches agreed well with experiments even at far downstream 

positions. It was found that the radiative heat loss is not significant for the current 

flame as temperature predictions by steady calculations without radiation and 

unsteady calculations with radiation were almost the same. The good agreement 

shown by temperature rms reveals that chemistry (using laminar flamelet model) and 

turbulence-chemistry interactions (using presumed β-PDF) were modelled well. The 

major species and OH predictions by all three mechanisms (GRI Mech 2.11, 3.0 and 

San Diego) using steady and unsteady flamelets were very similar and agreed well 

with experimental data. However, the results of this study show that nitrogen oxide 

predictions are highly sensitive to the unsteady effects and the mechanism considered. 

Only unsteady calculations employing GRI Mech 2.11 showed reasonable agreement 

for NO predictions. Results showed overpredictions even with the GRI Mech 2.11 

when transient effects were neglected. The other two mechanisms namely San Diego 

and GRI Mech 3.0 using unsteady flamelets predicted higher level of NO compared to 

unsteady GRI Mech 2.11 and showed severe over-predictions when steady flamelet 

approach was used. The GRI Mech 3.0 consistently predicted double the amount of 

NO compared to GRI Mech 2.11. The NO predictions by San Diego mechanism 

resulted values between two GRI Mech predictions. The conditional experimental 

data has shown that the current flame does not strongly depend on scalar dissipation 

rate and therefore a single flamelet in the case of steady flamelet model and a single 

particle calculation in the case of unsteady flamelet model were sufficient to simulate 

the flame accurately. 

 

Acknowledgements 

Authors are very grateful to Prof. H. Pitsch and his research group for providing 

FlameMaster code and assistance to use it. Authors would also like to thank Prof. P. J. 

Coelho for valuable discussions of the Eulerian Particle Flamelet Model. 

 17



References 
 

[1] N. Peters, Progress Energy Combust. Sci. 10 (1984) 319-339. 

[2] N. Peters, Proc. Combust. Inst. 21 (1986) 1231-1250.  

[3] N. Peters, Turbulent Combustion, Cambridge Univ. Press, London/New-York, 

2000, p. 212. 

[4] S.B. Pope, Prog. Energy Combust. Sci. 11 (1985) 119-192. 

[5] A.Y. Klimenko, Fluid Dynamics 25 (1990) 327-334. 

[6] R.W. Bilger, Phys. Fluids A 5 (1993) 436-444. 

[7] D.C. Haworth, M.C. Drake, S.B. Pope, and R.J. Blint, Proc. Combust. Inst. 22 

(1988) 589-597. 

[8] F. Mauss, D. Keller, and N. Peters, Proc. Combust. Inst. 23 (1990) 693-698. 

[9] H. Pitsch, Y.P. Wan, N. Peters, SAE Paper 952357 (1995). 

[10] H. Pitsch, H. Barths, N. Peters, SAE Paper 962057 (1996). 

[11] H. Barths, C. Antoni, N. Peters, SAE Paper 982459 (1998). 

[12] H. Pitsch, M. Chen, and N. Peters, Proc. Combust. Inst. 27 (1998) 1057-1064. 

[13] Y.P. Wan, H. Pitsch, N. Peters, SAE Paper 971590 (1997). 

[14] H. Barths, N. Peters, N. Brehm, A. Mack, M. Pfitzner, and V. Smiljanovski, 

Proc. Combust. Inst. 27 (1998) 1841-1847. 

[15] P.J. Coelho, and N. Peters, Combust. Flame 124 (2001) 444-465. 

[16] P.J. Coelho, and N. Peters, Combust. Flame 124 (2001) 503-518. 

[17] B.B. Dally, A.R. Masri, R.S. Barlow, G.J. Fietchner, Combust. Flame 114 

(1998) 119-148. 

[18] B.B. Dally, D.F. Fletcher, and A.R. Masri, Combust. Theory Modelling 2 

(1998) 193-219. 

[19] G. Li, B. Naud, and D. Roekaerts, Flow, Turbulence and Combustion 70 (2003) 

211-240. 

[20] J. Yan, F. Thiele, and M. Buffat, Flow, Turbulence and Combustion 73 (2004) 

1-24. 

[21] M. Hossain and W. Malalasekera, Proc. Inst. Mech. Engrs. Vol. 217, Part A: J 

Power and Energy (2003) 201-210. 

[22] M. Hossain, J.C. Jones and W. Malalasekera, Flow Turbulence and Combustion 

67 (2001) 217-234. 

[23] S.H. Kim, K.Y. Huh, Combust. Flame 130 (2002) 94-111. 

 18



[24] S. Sreedhara, K. Y. Huh, Combust. Flame 143 (2005) 119-134. 

[25] M. Muradoglu, K. Liu, S.B. Pope, Combust. Flame 132 (2003) 115-137. 

[26] K. Liu, S.B. Pope, D.A. Caughey, Combust. Flame 141 (2005) 89-117. 

[27] T.S. Kuan, R.P. Lindstedt, Proc. Combust. Inst. 30 (2005) 767-774. 

[28] A. Kempf, R.P. Lindstedt, J. Janicka, Combust. Flame 144 (2006) 170-189. 

[29] V. Raman, H. Pitsch, Combust. Flame 142 (2005) 329-347. 

[30] B.E. Launder, Inter. J. Heat Fluid Flow 10 (1989) 282-300. 

[31] B.E. Launder, Inter. J. Num. Methods in Fluids 9 (1989) 963-985. 

[32] H. Pitsch, A C++ Computer Program for 0-D and 1-D Laminar Flame 

Calculations, RWTH Aachen (1998). 

[33] H. Pitsch, N. Peters, Combust. Flame 114 (1998) 26-40. 

[34] W.P. Jones, J.H. Whitelaw, Combust. Flame 48 (1982) 1-26. 

[35] H. Barths, C. Hasse, G. Bikas and N. Peters, Proc. Combust. Inst. 28 (2000) 

1161-1168. 

[36] TNF6 Bluff-body flames, Experimental data can be downloaded at: 

http://www.mech.eng.usyd.edu 

[37] C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner, Jr., V. Lissianski, 

G.P. Smith, D.M. Golden, M. Frenklach and M. Goldenberg, 

http://www.me.berkeley.edu/gri_mech/  

[38] Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, 

Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, 

Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin 

http://www.me.berkeley.edu/gri_mech/ 

[39] San Diego Mechanism website, http://maeweb.ucsd.edu/combustion/cermech/ 

[40] TNF workshop website, http://www.ca.sandia.gov/TNF/radiation.html 

[41] FLUENT Manual http://www.fluentusers.com 

[42] P.A. Berg, G.P.  Smith, J.B. Jeffries and D.R. Crosley, Proc. Comb. Inst., 27, 

(1998), 1377-1384. 

[43] W. Juchmann, H. Latzel, D.I. Shin, G. Peiter, T. Dreiter, H.R. Volpp, J. 

Wolfrum, R.P. Lindstedt, and K.M. Leung., Proc. Combut. Inst, 27 (1998), 469-

476. 

[44] C. Gibuad, J.A. Snyder, V. Sick, and R.P. Lindstedt, Proc. Comb. Inst., 30 

(2005), 455-463. 

 19

http://www.mech.eng.usyd.edu/
http://www.me.berkeley.edu/gri_mech/
http://www.me.berkeley.edu/gri_mech/
http://maeweb.ucsd.edu/combustion/cermech/
http://www.ca.sandia.gov/TNF/radiation.html
http://www.fluentusers.com/


Figure Captions 
 

 
Figure 1 Axisymmetric grid used in the simulations. 
 
Figure 2 The EPFM algorithm. 
 
Figure 3 The streamline contours: (a) HM1e case, (b) HM1 case. 
 
Figure 4 Comparison of axial velocity with experimental data at different axial 

stations.  
 
Figure 5 Comparison of radial velocity with experimental data at different axial 

stations.  
 
Figure 6 Comparison of axial velocity rms with experimental data at different 

axial stations.  
 
Figure 7 Comparison of radial velocity rms with experimental data at different 

axial stations.  
 
Figure 8 Comparison of mean mixture fraction with experimental data at 

different axial stations.  
 
Figure 9 Comparison of mean mixture fraction rms with experimental data at 

different axial stations.  
 
Figure 10 Conditional scalar dissipation rate values at different axial positions. 
 
Figure 11 Transient evolution of a surface averaged conditional scalar dissipation 

rate in case of a single particle. 
 
Figure 12 Comparison of conditional experimental data with flamelet profiles.  
 
Figure 13 Comparison of conditional experimental data with flamelet profiles.  
 
Figure 14 Transient evolution of NO using different chemical mechanisms. 
 
Figure 15 Transient evolution of temperature and other species using GRI Mech 

2.11. 
 
Figure 16 Comparison of temperature profiles with experimental data at different 

axial stations.  
 
Figure 17 Comparison of temperature rms profiles with experimental 

measurements at different axial locations.  
 
Figure 18 Comparison of NO mass fraction profiles with experimental data at 

different axial positions.  
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Figure 19 Comparison of OH mass fraction profiles with experimental data at 
different axial stations.  

 
Figure 20 Comparison of CO mass fraction profiles with experimental data at 

different axial stations.  
 
Figure 21 Comparison of CO2 mass fraction profiles with experimental data at 

different axial positions.  
 
Figure 22 Comparison of H2O mass fraction profiles with experimental data at 

different axial stations. 
 
Figure 23 Comparison of CH4 mass fraction profiles with experimental data at 

different axial locations.  
 
Figure 24 Comparison of H2 mass fraction profiles with experimental data at 

different axial stations.  
 
Figure 25 Comparison of O2 mass fraction profiles with experimental data at 

different axial positions.  
 
Figure 26 Comparison of NO mass fraction profiles using single particle and five 

particles with experimental data at different axial stations.  
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