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ABSTRACT

A novel approach using non-negative matrix factorization
(NMF) for onset detection of musical notes from audio sig-
nals is presented. Unlike most commonly used conventional
approaches, the proposed method exploits a new detection
function constructed from the linear temporal bases that are
obtained from a non-negative matrix decomposition of mu-
sical spectra. Both first-order difference and psychoacousti-
cally motivated relative difference functions of the temporal
profile are considered. As the approach works directly on
input data, no prior knowledge or statistical information is
thereby required. A practical issue of the choice of the fac-
torization rank is also examined experimentally. Numerical
examples are provided to show the performance of the pro-
posed method.

1. INTRODUCTION

The aim of onset detection is to locate the starting point of
a noticeable change in intensity, pitch or timbre of sound. It
plays an important role in a number of music applications,
such as automatic transcription, content delivery, synthesis,
indexing, retrieval and low bit-rate audio coding. Due to
several major difficulties, e.g., identifying changes in dif-
ferent notes with wide range of temporal dynamics, distin-
guishing vibrato from changes in timbre, detecting fast pas-
sages of musical audio, and extracting onsets generated by
different instruments, onset detection remains an open prob-
lem demanding further research effort.

A variety of approaches have been proposed in the lit-
erature, with most of them sharing an approximately com-
mon procedure, as depicted in Fig.1(a). A musical audio
track may be initially pre-processed to remove the unde-
sired noises and fluctuations. Then, a so-called detection
function is formed from the enhanced signal, such that the
occurrence of a note is made more distinguishable as com-
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Fig. 1. Diagram of the onset detection: (a) the general
scheme, (b) the proposed reduction strategy, i.e., the scheme
for deriving the detection functions in this work.

pared with the steady-state of note transition. Finally, the
locations of onsets are determined by a peak-picking algo-
rithm [1]. Undoubtedly, the detection function is of great
importance to the overall performance of an onset detection
algorithm. For the onsets to be easily detected, a good de-
tection function should reveal sharp peaks at the locations
of those onsets, which would effectively facilitate the sub-
sequent peak-picking process.

Although similar concepts relevant to human perception
have been used in most existing approaches to detect onset
changes, they are essentially very distinctive as regards to
the various information of signals being employed in the
construction of detection functions. These include the in-
tensity change based methods using temporal features, e.g.
[2] [3]; the timbre change based methods using spectral fea-
tures, e.g. [4]; model based detection methods using statis-
tical properties, e.g. [5], and methods based on phase and
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pitch information of signals, e.g. [6] [7], among many oth-
ers (see e.g. [1] for a recent review and more references
therein).

In this paper, we propose a novel approach for onset
detection. This approach is essentially based on the rep-
resentation of audio content of the musical passages by a
linear basis transform, and the construction of the detection
function from the bases learned by non-negative decompo-
sition of the musical spectra. The overall detection scheme
is shown in Fig. 1(b). In this scheme, musical magnitude (or
power) spectra of the input data are firstly generated using
a discrete Fourier transform (DFT). Then, the non-negative
matrix factorization (NMF) algorithm is applied to find the
crucial features in the spectral data. With the transformed
data, the individual temporal bases are exploited to recon-
struct an overall temporal feature function of the original
signal. The detection function is thereby derived by taking
the first-order difference (or relative difference) of the fea-
ture function whose sudden bursts are converted into nar-
rower peaks for easier detection.

The proposed approach has several promising proper-
ties. First of all, the proposed technique is a data-driven
approach, no prior information is needed, as otherwise re-
quired for many knowledge based approaches. Secondly,
the algorithm works directly on the original data, hence it
avoids a frequently used pre-processing stage in some state-
of-the-art approaches. Additionally, thanks to the temporal
features obtained implicitly from the NMF decomposition,
explicit computation of the signal envelope or energy func-
tion, which is required for many existing intensity based de-
tection approaches, is no longer necessary. Moreover, the
NMF based temporal feature is more robust for both first-
order difference and relative difference as compared with
direct envelope detection based approaches (more will be
demonstrated in the subsequent simulation section).

The remainder of this paper is organized as follows. The
concept of NMF and the algorithm used in this work are
briefly reviewed in Section 2. The method for generating
the non-negative spectral matrix from the input data is pre-
sented in Section 3, where the method of how to apply the
NMF learning algorithm is also included. The proposed de-
tection functions based on respectively the first-order dif-
ference, the relative difference, and a constant-balanced rel-
ative difference, are described in Section 4. Section 5 is
dedicated to the experimental verification of the proposed
approach. Finally, the paper is summarized in Section 6.

tive matrices W R~>O,M R and H O,R> N, such that

X WH (1)

where R is the rank of the factorization, generally chosen to
be smaller than M (or N), or akin to (M + N)R < MN,
which results in the extraction of some latent features whilst
reducing some redundancies in the original data. To find the
optimal choice of matricesW and H, we should minimize
the reconstruction error between X and WH. Several error
functions have been proposed for this purpose [8]-[1 1]. For
instance, an appropriate choice is to use the criterion based
on the Euclidean distance,

(W, H) = arg min X -WHKF
W,H

(2)

whereW and H are the estimated optimal values ofW and
H, and 11 l1F denotes the Frobenius norm. Alternatively, we
can also minimize the error function based on the extended
Kullback-Leibler divergence,

M N

(W, H) = arg min E E Dmn
W,H m= in=1

where Dmn is the mn-th element of the matrix D which is
given by

D = X (D log[X 0 (WH)] -X +WH (4)
where (D and 0 denote the Hadamard (element-wise) prod-
uct and division respectively, i.e., each entry of the resultant
matrix is a product and division of the corresponding en-
tries from two individual matrices respectively. Although
gradient decent and conjugate gradient approaches can both
be applied to minimize these cost functions, we are particu-
larly interested in the multiplicative rules developed by Lee
and Seung [9] [10]. In compact form, the multiplicative up-
date rules for minimizing criterion (2) can be re-written as

H <- H @ (WTX) 0 (WTWH) (5)

W < W (XHT)( TWHH ) (6)
where (.)T is the matrix transpose operator, and <- denotes
iterative evaluation. Comparatively, these rules are easy to
implement and also have good convergence performance.
Additionally, a step size parameter which is normally re-
quired for gradient algorithms, is not necessary in these rules.
The iteration of these update rules is guaranteed to converge
to a locally optimal matrix factorization [10]. The rules (5)
and (6) are used in the following analysis of our work.

(3)

3. NON-NEGATIVE DECOMPOSITION OF
MUSICAL SPECTRA

NMF is an emerging technique for data analysis that was

proposed recently [8] [9]. Given an M x N non-negative
matrix X cR>O,M N, the goal ofNMF is to find nonnega-

For the NMF algorithm to be applied, we should first pre-

pare a non-negative matrix that contains an appropriate rep-

resentation of the original data to be analyzed. Unlike the

448

2. NMF

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on December 2, 2009 at 06:46 from IEEE Xplore.  Restrictions apply. 



image data analyzed in [9], musical audio data can not be
directly used as they contain negative-valued samples. In
our problem, the non-negative matrix X is generated as the
magnitude spectra of the input data, similar to [13]. We de-
note the original audio signal as s(t), where t is the time
instant. Using a T-point windowed DFT, a time-domain
signal s(t) can be converted into a frequency-domain time-
series signal as

S(f,k)
T-1

s(k6+T)w(T)e j2'f -T (7)

where w(T) denotes a T-point window function, j 1,
d is the time shift between the adjacent windows, and f is
a frequency index, f = 0, 1, ***, T - 1. Clearly, the time
index k in S(f, k) is generally not a one-to-one mapping to
the time index t in s (t). Ifthe whole signal has, for instance,
L samples, then the maximum value of k, i.e. K, is given
as K = L(L -T)18], where Lij is an operator taking the
maximum integer no greater than its argument'. Let S(f, k)
be the absolute value of S(f, k), we can then generate the
following non-negative matrix by packing S(f, k) together,

S(0, 0) S(0, 1) ... S(O, K - 1)
S(I, 0) S(I, 1) .. S(1, K - 1)

S(T/2,0) S(T/2,1) S(T/2, K - 1)
(8)

where only half frequency bins (from 0 to T/2 + 1) are used
since the magnitude spectra are symmetrical along the fre-
quency axis, and the dimension of X, i.e. M x N, then
becomes (T/2 + 1) x K. This non-negative matrix contain-
ing the magnitude spectra of the input signal will be used
for decomposition.

Using the learning rules (5) and (6), X in (8) can be ef-
fectively decomposed into the product of two non-negative
matrices, denoted as W C O,(T 2 1) R and HO C
>O,R> K i.e., the corresponding local optimum values of
W and H respectively, which are obtained when the learn-
ing algorithm converges. An advantage of exploiting spec-
tral matrix (8) is that both the obtained basis matrices WV
and HO have meaningful interpretation. That is, HO is a
dimension-reduced matrix which contains the bases of the
temporal patterns while W° contains the frequency patterns
of the original data. For musical audio, these patterns can
be interpreted as the time-frequency features of individual
notes as the NMF learns a parts-based representation ofX
[9]. It is worth noting that whether the learned parts re-
veal the true (very often latent) patterns of the input data
depends on the choice of R, for which, there has been no

1In practice, zero-padding may be required to allow the remaining p
(O < p < 8) samples in the end of the signal to be covered by the analysis
window.

generic guidance for different application scenarios. How-
ever, this issue turns out not to be crucial in our application,
as verified in our simulations.

4. CONSTRUCTION OF DETECTION FUNCTIONS

By combining all the single parts together, we can recon-
struct the following time series

R

h°(k) = Z Hrk
r=l

(9)

where k = 0, ..., K - 1. By simulation, we found that,
h°(k) actually contains a good approximation of the over-
all temporal profile (envelope) of the original signal. (As a
result, the column vector ho = [hog ho _J]T E O,K
describes the temporal profile ofthe original signal.). There-
fore, h°(k) in (9), k = 0, . , K - 1, provides an alternative
approach for the construction of a detection function for on-
set detection. To enhance the sudden changes in the signal
to be detected, we take the first-order difference of ho (k) as
a detection function, that is

ha(k) = dkh°(k), k =0, ,K 1- (10)

where d is a diference operator for discrete series (taken
from its continuous counterpart derivative). This function
takes the absolute difference between the neigbouring sam-
ples of h°(k), hence it is able to reveal sudden intensity
changes in the signal. However, there exists psychoacous-
tic evidence showing that a human's hearing is generally
more sensitive to the relative than to the absolute intensity
changes [12]. Therefore, we can also use a detection func-
tion based on the first-order relative difference, that is

hrd(k) h (k)h,()-ho(k) (1 1)

Note that, the major difference between h' (k) in (11) and
the detection function proposed by Klapuri [3] lies in the
different strategies taken for the construction of the tempo-
ral profile. In [3], it is formed directly from the energy or
amplitude envelope of the original signal.

To consider a trade-off between the performance by the
above two functions, we also introduce a constant-balanced
detection function,

(12)

where r1 is a positive constant. By adjusting the constant
rq, we can obtain the desirable performance in the interim
that may be achieved by (10) and (11) independently. To
see this, we consider two extreme cases. If r1 takes values
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approaching to zero, i.e. r1 -> 0, in other words, r1 < h° (k),
we have h (k) hr(k). On the otherhand, ifr1> h°(k),
we have ho(k) (1 /r)ho (k), which means ho (k) will have
the same profile as that of ho (k), with the only difference
of a scaling factor. All the above three detection functions
are examined in our simulations. In fact, r1 has practical
advantage of preventing the denominator in (11) being zero.
Effectively, (12) can also be written as the logarithm,

ho (k) = dk log(TI+ ho°(k)) (13)

which is a psychoacoustic-relevant expression implying that
a human's hearing ability is not perceptually equal over the
intensity changes in the sound signal.

5. NUMERICAL EXPERIMENTS

5.1. Detection example for a percussive audio signal

To illustrate the detection method described above, we first
apply the proposed approach to the onset detection of a sim-
ple audio signal which was played by a violin and con-
tains three consecutive music notes G4, A3 and E5 (see
Fig. 2 (a)), whose note numbers are 55, 45 and 64 respec-
tively, and whose frequencies are 196.0Hz, 110.0Hz, and
329.6Hz respectively2. The sampling frequency fs for this

Fourier transform (FFT) is set to 4096 samples, i.e., the fre-
quency resolution is approximately 5.4Hz. The signal is
segmented by a Hamming window with the window size be-
ing set to 400 samples (approximately 18ms), and the time
shift d to 200 samples (approximately 9ms), that is, a half-
window overlap between the neighboring frames is used.
Note that, the choice of the window size is slightly different
from that in (7), for which the window size is identical to
FFT frame length T. The small size of the signal segments
is chosen to guarantee a sufficient time resolution, and each
segment is then zero-padded to have the same size as T for
FFT operation. The factorization rank R is set to 3, i.e., ex-
actly the same as the total number of the notes in the signal.
The matrices W and H were initialized as absolute values
of two random matrices. The NMF algorithm was running
100 iterations. In fact, the algorithms only took 11 itera-
tions to converge to a local minimum in this experiment.
The generated non-negative magnitude spectrum matrix X
is visualized in Fig. 2(b). Fig. 3 demonstrates the process
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Fig. 2. The waveform of the original audio signal (a) and
the generated non-negative magnitude spectrum matrix X
(b). The onset locations are marked manually with arrows.

signal is 22050Hz. The whole signal has L = 149800 sam-
ples with an approximate length of 6794ms. This signal is
transformed into the frequency domain by the procedure de-
scribed in Section 3, where the frame length T of the Fast

2The MIDI specification only defines note number 60 as "Middle C",
and all other notes are relative. The absolute octave number designations
can be arbitrarily assigned. Here, we define "Middle C" as C5.

100 200 300 400
Time in frames

500 600 700

Fig. 3. Detection results of the signal depicted in Fig. 2.
(a)-(c) are the visualizations of row vectors of the matrix
H°; (d) denotes the temporal profile of h°(k), i.e., eqn. (9);
(e) visualizes the detection function (13); and (f) represents
the final onset locations.

described in Section 3 and 4 (see also Fig. 1 (b)), where the
detection function (13) was applied, and the constant r1 is set
to 0.01. From Fig. 3 (a)-(c), it is clear that the NMF algo-
rithm has learned the parts of the original signal, and these
three parts represent the individual notes in this case. By
summing these three parts using Eqn. (9), the overall tem-
poral profile h° (k) of the original signal is reconstructed, as
shown in Fig. 3 (d). After applying Eqn. (13) to this profile,
the detection function h' (k) reveals apparent peaks on the
locations where the notes start to attack, see Fig. 3 (e). The
onset locations can thereby be easily determined by thresh-
olding the local maxima of hV(k), see Fig. 3 (f), which are
630ms, 3016ms and 5574ms respectively.

450

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on December 2, 2009 at 06:46 from IEEE Xplore.  Restrictions apply. 



5.2. On choice of factorization rank R

The rank R was chosen to be 3 in the above experiment, as
we know exactly how many latent parts are contained in this
case. In many practical situations, however, the number of
hidden parts are not known a priori. Either a greater or a
smaller value of R than the real number of the latent parts
in the signal to be learned may be used for the factoriza-
tion. Unfortunately, there is no generic guidance on how to
choose optimally the rank R. Here, we show experimentally
the effect ofR on the performance of our detection method.
We use the same experimental set-up for the parameters as
above, except for R, which we change from 1 to 5. Fig. 4
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Fig. 4. The visualization of row vectors of the matrix H=
forrankR =2.
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Fig. 6. Temporal profile h° (k) changes with various R vary-
ing from I to 5.

R. We can see clearly that the profiles are very similar for
different R and only differ from their amplitude, especially
the change points of the intensity remain the same for dif-
ferent R. This implies that various R still gives the same
detection result.
5.3. Comparisons with RMS approach

In this section, we compare the proposed approach with the
approach based on the direct detection of the signal enve-
lope using the root-mean-square (RMS), i.e.

hRMS(k) = (s[k + T])2 (14)

0
0.1
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0
0.1 0
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o 0.05

0 100 200 300 400 500 600 700
0.1

& 0 05
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Fig. 5. The visualization of row vectors of the matrix H°
for rank R = 4.

and Fig. 5, are the visualizations ofmatrix H° with R equal
to 2 and 4 respectively. Fig. 4 (b) indicates that the total
parts have not been fully separated, as there are two parts
bound together in one row. Fig. 5 shows that although all
parts have been separated as shown in (a) (c) and (d), there is
an extra row that may contain the weighted components of
all latent parts. Fortunately, these side effects are not crucial
in our application. Fig. 6 plots h° (k) changing with various

where d is the time shift, k denotes the frame index, and T is
the frame length. For simplicity, the detection functions de-
rived from (14), corresponding to those described by Eqn.
(10), (11) and (13) respectively in Section 4, are denoted
as hRMS (k), hRMS (k), and hRMS (k) respectively, which
are obtained simply by replacing h°(k) with hRMS (k). To
make an appropriate comparison, the parameters are set to
be identical for both approaches, as in Section 5.1. In practi-
cal implementation, Eqn. (11) is approximated by Eqn. (13)
through setting r1 to be 10"22 (a trivial value approximating
zero). Fig. 7 shows the results. From this figure, we can
see that, surprisingly, although the temporal profiles look
similar for both RMS andNMF approaches, the derived de-
tection functions are relatively different, especially the be-
haviors of h7(k) and hRMS (k) are very different. ho (k)
tends to be more balanced over the different onsets, while
hRMS (k) is seriously unbalanced which would make the fi-
nal step "peak-picking" depicted in Fig. 1 (a) much more
difficult, an optimal threshold is not easy to be accurately
predefined as the subsequent onset peaks may easily fall
down to the similar levels of noise components. Addition-
ally, by comparing Fig. 7 (a) and (e), it appears that ho (k) is
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less sensitive to the window size selection as both methods
are using the same window size. This is a good property for
h°(k), as compared with hRMS(k), as we find from Fig.
7 (b) and (f) that the fluctuations in (b) may be too large
to apply global thresholding for peak-picking. The similar
properties have also been found for other signals, such as
the signals played by piano and guitar (the results are omit-
ted here). Note that, the analysis of the constant-balanced
detection function described in Section 4 is also confirmed

Onset Time (s) G4 A3 E5
Estimated by (10) 0.630 3.016 5.583
Estimated by (11) 0.612 3.007 5.556
Estimated by (13) 0.630 3.016 5.574
Marked Manually 0.614 3.009 5.560

Table 1. Onset detection results by the proprosed approach
as compared with the true values marked manually.
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presented. Feasible detection functions constructed from
the non-negative basis learned from the factorization of the
magnitude spectrum have been proposed. As the approach

200 400 600 is a data-driven technique, no statistical knowledge or prior
information is required. The proposed technique has also
been compared with the RMS envelope based approach and

200 400 600 shown its advantages. Practical selection of the factoriza-
tion rank is also examined numerically. The provided de-
tection examples have demonstrated the good performance
of the proposed technique for onset detection.
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200 400 600
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Fig. 7. Comparison between the results of the proposed de-
tection method and that based on RMS, where the plots are
(a) hRMS(k), (b) haRMS(k), (C) hrRMS(k), (d) h RMS(k)
(e) h°(k), (f) ha(k), (g) ho (k), and (h) ho (k), respectively.

To show the accuracy of the proposed approach, we list
in Table 1 the estimated locations of the onsets in Fig. 7
(f)-(h) as compared with the values marked manually (i.e.,
the true values). From this table, it is observed that the on-
sets estimated by the difference function have slight delays
from the true values, while the relative difference function
provides more accurate estimates (i.e., they are closer to the
true values). The constant-balanced detection function of-
fers an intermediate performance that may be useful if there
is a dramatic unbalance across the amplitude of the various
onset peaks in the relative difference function. The maxi-
mum estimation error for the relative difference function is
less than 5ms, which means the detection accuracy is perfect
in this case, as the human auditory system is not capable of
detecting gaps in sinusoids under 5ms [12]. Although the
difference function appears to be less accurate, considering
that the window size and overlap are relatively large (18ms
and 9ms) in our experiment, the accuracy of the first-order
difference function is also acceptable.
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