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1. Introduction 

 The finite element method is a powerful and flexible numerical modelling tool in the 

engineering field. However, the mesh generation stage has always hampered its efficiency. 

One of the main reasons for seeking to automate mesh generation was the time and money 

spent in the process. This became especially crucial when the problems analysed had 

complicated irregular geometries or large gradient variations across the domain. In recent 

years, many advances have been made in an attempt to facilitate the mesh generation process, 

with the current literature being very extensive and an increasing degree of automation in 

mesh generators available. 

The large variety of mesh generators, along with rapid changes in the field, have 

prompted many researchers to produce literature reviews of the available technology, such as 

Buell and Bush [Buell, Feb. 1973 #257], Shephard [Shephard, 1988 #329], Ho-Le [Ho-Le, 

1988 #284], and more recently El-Hamalawi [El-Hamalawi, 1997 #206] and Frey and George 

[Frey, 2000 #369]. The mesh generation process may be classified into two broad classes; 

structured and unstructured mesh generators. During the initial phases of establishing the 

finite element method, when more emphasis was placed on the mathematical basis of the 

method rather than auxiliary processes, structured mesh generation was the norm. 

Unstructured mesh generators have now superseded structured techniques in most 

engineering applications, due to the flexibility and power they possess over structured 

generators when the object domain is complicated and irregular. Unstructured methods also 

facilitate the production of variable-sized elements from densities specified at random points 

in the mesh, which are the usual end-products of an error-estimation process in adaptive 

remeshing. This is in contrast to the more uniform element size variation across the mesh 

when based upon the densities on the edges of parent elements alone.  

In adaptive mesh refinement, most analysts favour either the Delaunay technique or 

the advancing front method over other techniques when generating meshes due to the quality 

of unstructured meshes generated. The most popular method available for generating 
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triangular unstructured meshes is the Delaunay method [Delaunay, 1934 #372], due to it 

being the most efficient meshing technique available today in terms of speed. A Delaunay 

triangulation has the property that the circumcircle (or circumsphere in three dimensions) of 

every triangle (or tetrahedral) does not contain any other points of the triangulation. Several 

algorithms using the Delaunay property are available, Watson [Watson, 1981 #341] and Loze 

and Saunders [Loze, 1993 #306] algorithms being a favourite choice. Sibson [Sibson, 1973 

#331] introduced the flipping algorithm for two-dimensional domains, where an arbitrary 

triangulation is converted into a Delaunay triangulation by flipping the diagonals of two 

neighbouring triangles. Chew [Chew, 1989 #266] proposed a constrained version of the 

Delaunay method for domains with irregular non-convex boundaries. Several other 

algorithms and variations of the Delaunay method exist. 

The second popular method used to generate unstructured meshes is the advancing 

front method, first proposed by George [George, 1971 #370], with the more current form 

described by Lo [Lo, 1985 #245] and Peraire at al. [Peraire, 1987 #315]. Nodes are generated 

along the domain’s boundary, which constitutes a front. Internal nodes are then generated to 

link sets of double nodes on the front, creating a layer of elements having roughly the same 

shape as the front. The internal nodes are positioned based on the element densities at these 

positions. The front is updated, with the new element edges forming the new front. This 

process is continued, working into the interior of the domain until the whole of the object 

domain has been meshed. Most of the mesh generators utilising advancing front techniques 

have been developed in the past few years. Peraire et al. [Peraire, 1987 #315], along with 

Zienkiewicz and Wu [Zienkiewicz, 1994 #355], managed to control the direction of mesh 

stretching in addition to the element size. More recent triangular mesh generation schemes 

using the advancing front method with modifications have been developed [Cescotto, 1989 

#264; Jin, 1990 #287; Lo, 1994 #242; Qian, 1994 #320; Lau, 1996 #241; Peraire, 1997 #371].  

The main advantage of the advancing front method is that they tend to produce nicely 

graded meshes and high quality triangles that are usually very close in shape to equilaterals. 

The boundary integrity is also preserved, since the discretisation of the domain boundary 

constitutes the initial front. This is in contrast to the Delaunay triangulation, where boundary 

integrity is not usually preserved for complicated domains, which is a key requirement for 

mesh generation procedures. Local mesh modifications can be applied to remedy the situation 

when meshed using the Delaunay method. Exterior elements are removed, and internal points 
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can be created and inserted into the current mesh. The resulting mesh is then optimised. The 

main disadvantage of the advancing front method lies with its efficiency, where processes 

such as checking the intersection of edges/overlapping of elements consume the majority of 

mesh generation time. Complicated domains may also pose some further problems such as 

the method of identifying and selecting optimal points based on a selected front, followed by 

validation of the newly created element. All these problems may affect the convergence of 

the advancing front method. 

To overcome the various problems associated with each of the two methods 

described, an approach combining the Delaunay and advancing front techniques is used. 

Mavriplis [Mavriplis, 1992 #373] suggested an algorithm that utilises the Delaunay method 

to generate elements based on points located by the advancing front method. It allows the 

construction of several elements at a time, and the proper merging of two fronts of different 

element length densities, which would cause the classical advancing front method to fail. 

Recently Frey et al. ([Frey, 1996 #375], [Frey, 1998 #374]) developed a 3D approach based 

on the coupled Delaunay-advancing front method for tetrahedrals. 

In this paper, a new unstructured triangular mesh generator will be described, which 

incorporates and combines both the Delaunay and advancing front methods. The domain 

boundary comprising the initial front is discretised by adding nodes based on pre-specified 

element densities. Internal optimal nodes are then computed from the front such that the latter 

are each located inside the circumscribed Delaunay circle, and an optimum equilateral 

triangle, or near equilateral, is created. The mesh is finally optimised by smoothing, and 

associated boundary conditions found by interpolation. Examples of generated meshes are 

described, with element quality factors presented and used to generate quadrilaterals for a 

mixed element mesh. A stand-alone mesh generator and its source code, DBMesh, based on 

this method, are available and can be obtained free of charge for non-commercial use by 

contacting the author. 

2. Preview of the mesh generator 

 The mesh generation method implemented in this paper comprises seven stages, 

depicted in detail in Figure 1. The process starts with the input of the geometry and boundary 

conditions, along with the element densities hi , which are defined in section 3.1. The domain 
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to be meshed is represented by Ω Ω= U
i i  in the two-dimensional Euclidean space Ε2, with 

boundary Γ, and sub-domains Ωi, where Ωi ⊂ Ω. The domain geometry is also input, with all 

internal boundaries Γint provided in a clockwise direction and external boundaries Γout 

provided in an anti-clockwise direction, where boundaries Γint ∪ Γout = Γ. The boundary 

conditions such as fixities and loads are also input by the user, along with various other 

properties. Boundary nodes Pb ∈ Γ are then generated along the internal and external domain 

boundaries, followed by the interior nodes Pint, which are created using a new method 

modified from the advancing front method. The triangulation algorithm used to form the 

elements is a hybrid of the two most popular methods; the advancing front and the Delaunay 

triangulation methods. Triangular quality factors [El-Hamalawi, 2000 #365] are calculated 

and the mesh smoothed accordingly. If quadrilaterals are required, the extra step of 

calculating quadrilateral factors and then merging triangles into quadrilaterals are taken, as 

will be described in section 5. The mixed mesh is then re-smoothed to ensure the elements 

are not too distorted. The final stages involve generating mesh boundary conditions by 

interpolation from the initial geometry ones, and producing the output files. 

 

Figure 1. A flowchart showing the processes involved in the mixed element mesh generator  

3 The node generation algorithm 

3.1 Element size calculation at a point 

 Before any nodes and elements can be generated in a mesh, the element size hi at any 

point i in the mesh has to be obtained. Several methods exist depending on which definition 

of hi is used. The widely used definition of h for a triangle as the diameter of the smallest 

circle containing the element, as shown in Figure 2(a), is used here. 

 

Figure 2. Definition of element size h 

After some mathematical manipulation, h is found to be equal to 1.755 times the square 

root of the triangular area. No similar definition exists for a quadrilateral element, so h has 

been defined as equivalent to the length of a side of a square, which is the square root of the 

square’s area. This can be thought of as being roughly equivalent to the square root of a 

quadrilateral’s area. The definition of h is not of great importance as long as the same 
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definition is adhered to throughout, such as when transferring computed element sizes from 

an old mesh to the new one when adaptively remeshing, and during the mesh generation 

process. 

A commonly used method in the literature to find hi for an element i from adjacent 

elements is via equation (1), where rij is the distance between points i and j. Another modified 

form that could be used is one proposed by Cescotto and Wu [Cescotto, 1989 #264], defined 

by equation (2), where extra weights wj are added. Equation (1) will be used with j ranging 

from 1 to 4. Using only the four closest points to node i was found by the author to provide 

better density values than the use of all the density points in the mesh, as some previous 

workers had done, since the local behaviour tends to be represented more strongly.  
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3.2 Boundary nodes generation 

 Various schemes exist for generating boundary nodes, however the method adopted in 

this paper is a modification of the one by Cescotto and Wu [Cescotto, 1989 #264]. Nodes are 

generated along the internal openings’ boundaries in a clockwise direction, followed by 

external boundary nodes in an anticlockwise direction. No nodes are however generated 

along the connector lines, which are described in more detail in section 3.3. A typical 

segment AB obtained from splitting the boundary during the data input stage is shown in 

Figure 3(a).  

 

Figure 3. Boundary node generation 

The starting node (i.e. A or B) is chosen based on the lower element size h. The next nodal 

position s is then calculated using a corrector-predictor method in the form of equations (3). 

A predicted provisional position for node i+1 is computed using hi, and then a corrected 
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position found. This is continued until s exceeds segment AB’s length. However, the 

preferred element size will rarely be matched exactly. The nodal positions are thus finalised 

by distributing the discrepancy Δs amongst the various nodes according to their respective 

element sizes as shown in equation (4). 
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The nodes are numbered according to the directions previously mentioned, and their co-

ordinates are stored. This procedure is also applied to straight-lined as well as curved 

segments. One important point to notice is that the order of nodal numbers has to be reversed 

when dealing with nodes on a common boundary between different sub-domains.  

3.3 Interior nodes generation 

 Before interior nodes are generated, connector lines are introduced, linking internal 

openings to the external boundaries, as shown in Figure 4. This forces the holes to become a 

continuous part of the external boundary, and incorporates them into the generation front. 

Sezer and Zeid [Sezer, 1991 #328] provide a method of generating connector lines, where the 

main objective is to connect an interior boundary node to an exterior one via the shortest 

distance. 

 In general, mesh quality is a function of the internal point distribution. This stage of 

the mesh generation process is thus very significant. The first step in this new method of 

generating interior nodes is to assign all the boundary segments of the sub-domain Ωi to the 

generation front Γf. Segment AB is commenced with, and its midpoint M is calculated. A 

candidate node C is then proposed along the left perpendicular bisector of AB by assuming 

that an isosceles triangle ABC is to be formed, with base AB and height MC. The distance 

dMC is obtained by calculating the element size hM at M, and then using equation (5). The 

orientation of the point C with respect to segment AB (i.e. whether left or right) has to be 

checked using the procedure in Section A.1. Section A.2 describes how to check whether a 

proposed node is inside or outside a domain. 

 

Figure 4. Addition of connector lines 
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Figure 5. Addition of proposed node C 

 The feasibility of node C’s position is checked by seeing whether edges AB and AC 

intersect any segments in the generation front Γf using the method in Section A.3. If they do 

intersect, then point C is discarded and the next segment is moved onto after removing 

segment AB from Γf . This method of finding an intersection is also applicable to curved 

edges, which are approximated by short straight-lined boundary segments. Assuming that this 

first check is complied with, the distances between all nodes Pi∈Pint∪Pb and C are computed 

and compared with the minimum element size specified by the user. This is to ensure that C 

is not too close to the boundary or other nodes, which would produce poor quality triangles. 

The distance between a point and a segment can be found using equation (A2) in section A.4. 

If the distance between a boundary node and C is less than the minimum spacing, node C is 

discarded, AB removed from Γf, and the next segment is moved onto. If however Pi∈Pint and 

this check is not satisfied, the average position between C and Pi is found and a replacement 

node for the latter two is located at that position. In this case, the position of the node with 

respect to the sub-domain being triangulated is checked to ensure the node is inside. The edge 

AB is then removed from Γf , the new edges AC and AB added to the front, and C is then 

added to Pint, i.e. { }Γ Γf
new

f
old AC,CB= ∪ and { }P P Cint

new
int
old= ∪ . This procedure is repeated 

until no edges remain in the front Γf . 

 The splitting of the advancing front method into two phases in this paper is useful in 

order to avoid problems associated with the way that interior nodes and elements are 

generated. During the standard advancing front method, nodes and elements are generated 

simultaneously. The main problems encountered during such an approach include 

overlapping triangles upon the creation of a new node in small domain corners and 

connecting regions of elements with large variations in element densities, as shown in Figure 

6. The first problem is avoided by moving the proposed node only, rather than the previously 

generated triangles. The second difficulty is solved by generating the interior nodes first, 

followed by the triangulation procedure.  
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Figure 6. Some common problems with the standard advancing front method 

4 The Delaunay triangulation 

  A popular Delaunay triangulation approach in two dimensions is a version of an 

algorithm proposed by Watson [Watson, 1981 #341]. However, due to the Delaunay 

triangulation representing a convex hull, special consideration has to be paid when dealing 

with non-convex domains. This concern is easily addressed by rejecting elements that are not 

within the domain, which is especially important for domains with internal holes. The use of 

an advancing front from which elements must be on the left of the front, also facilitates this. 

  The triangulation algorithm used here is a modification of Lo’s method [Lo, 1989 

#304]. The domain boundary Γ is represented by a disjointed union of simple closed loops of 

segments. The generation front Γf is split into two sets; a Delaunay (Γd) and non-Delaunay 

front (Γnd), i.e. Γf = Γd ∪ Γnd and Γd ∩ Γnd=∅. Initially, Γf consists of the sub-domain 

boundary segments and Γnd = Γf  and Γd=∅. Γd is the set of all generation front segments that 

are part of triangles satisfying the Delaunay property, while Γnd contains the remainder of the 

generation front segments. 

 The method constitutes examining each segment AB∈ Γnd, and trying to select a node 

C∈Pin∪Pb such that triangle ABC’s circumcircle is the smallest and ABC does not intersect 

the generation front. When such a node is found, the triangle ABC’s Delaunay property is 

checked using the method in section A.5 and the new triangular edges AC and CB are 

classified accordingly. If triangle ABC is non-Delaunay, i.e. some point P∈Pin∪Pb exists 

inside the triangle’s circumcircle, then the non-Delaunay set becomes 

{ }Γ Γnd
new

nd
old AC,CB= ∪ , otherwise { }Γ Γd

new
d
old AC,CB= ∪ . Section A.6 describes how to 

determine the position of a point with respect to a triangle circumcircle. Segment AB is then 

removed from the set Γnd and the element connectivities and nodal arrays are updated. When 

all the non-Delaunay segments have been used, i.e. Γnd=∅, the segments in Γd are treated in a 

similar manner until the generation front Γf =∅. This process is repeated for all the sub-

domains in the problem.  

5 Converting triangles to quadrilaterals 
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Quadrilateral elements are desirable in mechanical-type finite element analyses, as they result 

in increased computational performance and numerical accuracy [Strang, 1973 #333]. The 

ability to produce quadrilaterals based on the triangles generated by the new meshing scheme 

has therefore been implemented into the mesh generator DBMesh, and is described below. 

 

Figure 7. Two methods of creating quadrilaterals from triangular elements 

 Figure 7(a) shows the easiest way of producing a quadrilateral from two adjacent 

triangles. An element quality factor is computed for each triangle in the mesh and the 

neighbouring triangles, and the triangles combined to form quadrilaterals based on the 

optimum element quality factor. Another method is shown in figure 7(b), where a centroidal 

node of a patch of triangles is introduced and new quadrilateral edges (shown as dotted lines) 

added to form three quadrilaterals from the original four triangles. The process of 

transforming triangles into quadrilaterals means that for certain combinations, quadrilaterals 

of inferior quality might form. The use of shape quality measures is therefore a necessary step 

in order to ensure that the elements’ shapes do not act as an extra cause of deterioration in 

finite element analysis accuracy. Several quality factors exist in the literature (e.g. [Frey, 

2000 #369], [Lo, 1985 #245], [Robinson, 1987 #247; Robinson, 1988 #246; Lo, 1989 #244; 

Potyondy, 1995 #316]). The quality factors used here will be ones devised by the author [El-

Hamalawi, 2000 #365], which are easier to visualise and which relate directly to the element 

interior angles. A brief description of this factor follows. 

 The optimum shapes for quadrilaterals and triangles are squares (interior angles of 

90°) and equilaterals (interior angles of 60°) respectively. The main objective would 

therefore be to minimise the deviation δθi (equation (6)) for all interior angles θi. Shape 

factors 
r
fQ  and 

r
fT , defined by equations (7) and (8), are therefore proposed as quality 

measures for quadrilaterals and triangles respectively. 
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 It can be seen that 
r
fQ  would attain a minimum value of zero for a perfect square and 

the acceptable range of 90°±45° defined by Zhu et al. [Zhu, 1991 #240] would correspond to 

(δθi)max equal to π/4 radians, or 
r
fQ ≤π/2. Similarly, 

r
fT ’s minimum value is zero for a 

perfect equilateral, and an arbitrary value of 60°±30° for triangles would lead to (δθi)max 

equal to π/6, or 
r
fT ≤ π 12 . The factors 

r
fQ  and 

r
fT  have been used in section 6 for 

various meshes.   

 After a mesh is produced, the shapes of the elements are improved using what is 

known as a smoothing process. Sezer and Zeid [Sezer, 1991 #328] developed the centroid 

smoothing method, which is the method used in this work with slight modifications, due to its 

suitability with mixed as well as pure element meshes. The formula used to calculate the 

interior node’s new position Pi is given in equation (9), where Aj is the area of element j, Pcj 

is element j’s centroid, and Pc is the centroid of the polygon, and in turn the new position of 

node i. The area Aj is calculated using equation (10) and the centroid using the general 

convex polygon formula (11) with n vertices in anticlockwise direction. 
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 The process is repeated for the rest of the nodes in a similar manner until the 

difference between the old and new nodal positions is small. From the analyses done in this 

paper, it has been found that although the number of iterations is dependent on the mesh, 

three to four iterations of smoothing were sufficient. For hybrid meshes, the extra step of 
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smoothing twice was taken; after triangulation had occurred, and then after the conversion of 

triangles to quadrilaterals. This was to ensure that the elements produced had improved 

aspect ratios, and having well-shaped triangles aids the creation of well-shaped quadrilaterals 

during conversion. 

 In some cases, a pure quadrilateral mesh may be required. In general, the existence of 

a mesh composed of only quadrilaterals is not guaranteed for an arbitrarily shaped domain. A 

solution resulting in a purely quadrilateral mesh based on a triangular mesh can be formed via 

subdividing the remaining triangles into three by introducing centroids and edge midpoints. 

The resulting mesh will comprise pure quadrilaterals and will also be a conforming mesh. 

However the quality of some of the quadrilaterals will be inferior, especially boundary 

elements, and it is advisable to use a pure quadrilateral mesh scheme if that is required.  

6 Examples of meshes generated 

 In this section, sample example meshes generated using the techniques described are 

presented. The quality of the elements generated for each mesh are also assessed using the 

quality factors previously defined. Sudden changes in the element sizes hi have been included 

in the examples by specifying them manually to check the method’s ability to handle such 

situations, which are common-place in adaptive mesh refinement. The examples provided 

here thus serve to act as controlled tests, which rigorously test the mesh generator’s 

capabilities. In doing so, they satisfy the main objective of ensuring that the elements 

produced are compliant with any pre-specified element sizes and are simultaneously of high 

quality. 

Figure 8.  Domain with internal openings and narrow edges  

 The geometry in Figure 8 has been designed to test the algorithm’s performance when 

handling narrow edges and to ensure that the produced elements do not intersect. The 

geometry of the problem could easily be a machine part with two holes of different shapes. 

Initially, a purely triangular mesh was produced, shown in Figure 9, which consisted of 1221 

elements. Figures 10 and 11 show the mesh after one and two smoothing iterations 

respectively. It can be seen that the mesh produced is of a better quality after smoothing than 

before. The maximum and minimum triangular quality factors 
r
fT  in the final mesh were 

found to be equal to 1.013 and 0.004, corresponding to angle ranges of 60°±33.5° and 
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60°±0.1° respectively. These are excellent angle ranges, with the overall mean mesh quality 

factor 0.376 corresponding to an angle range of 60°±12.4°.  

 Figure 12 depicts the same mesh as Figure 11 after the mesh was passed through the 

TRI2QUAD subroutine. This subroutine computes the quadrilateral quality factors 
r
fQ  

resulting from testing different combinations of triangles and converts the latter to 

quadrilateral elements if a pre-specified quadrilateral factor limit is not exceeded. The 

conversion techniques used are the ones described in section 5. A maximum quadrilateral 

interior angle range of 90°±50° was used to generate the mesh in Figure 12, and as can be 

seen in the enlarged section in Figure 13, the quality of most of the quadrilaterals is good, 

with only a few being poor. These few would only be problematic if these elements were 

located in regions of high stress gradients where the variables calculated are of interest to the 

analyst. This could be remedied by using a lower pre-specified quadrilateral factor limit. 

 Triangles Quadrilaterals 
(90°±50°) 

Quadrilaterals 
(90°±45°) 

r
fT min

 

(angle range) 

0.004    
(60°±0.1°) 

0.004   
(60°±0.1°) 

0.004      
(60°±0.1°) 

r
fT max

 

(angle range) 

1.013 
(60°±33.5°) 

1.013 
(60°±33.5°) 

1.201 
(60°±39.7°) 

r
fQ min

 

(angle range) 

 1.523   
(90°±43.6°) 

0.815   
(90°±23.3°) 

r
fQ max

 

(angle range) 

 1.620   
(90°±46.4°) 

1.499   
(90°±42.9°) 

r
fT mean

 

(angle range) 

0.376 
(60°±12.4°) 

0.479     
(90°±15.8°) 

0.412     
(90°±13.6°) 

r
fQ mean

 

(angle range) 

 1.552   
(90°±44.4°) 

1.408  
(90°±40.3°) 

Table 1. Quality factors for the problem in Figure 7 

 

Figure 9. Mesh of domain in Figure 8 

Figure 10. Mesh from Figure 8 after one smoothing iteration 

Figure 11. Final mesh from Figure 8 after two smoothing iterations 
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Figure 12. Hybrid mesh from Figure 8 with maximum interior angles of 90°±50° 

 

Figure 13. A zoom view of the upper part of Figure 12 

 

Figure 14. Hybrid mesh from Figure 8 with maximum interior angles of 90°±45° 

 A lower angle range of 90°±45° was used to produce the mesh depicted in Figure 14. 

Figure 15 demonstrates how the quality of the quadrilaterals has improved by using a lower 

limit on 
r
fQ , with the quality factors shown in Table 1. One point of significance is that 

some of the triangular elements have had their quality factors increased; this is due to 

applying the smoothing procedure after quadrilaterals are produced, but they are still below 

the prescribed maximum 
r
fT max

. However the mean mesh triangular quality factor is still 

relatively low. The number of triangles and quadrilaterals in Figure 12 were 567 and 327 

respectively, with 1107 and 57 in Figure 14. It can also be seen from the previous figures 

how high quality triangular and quadrilateral elements which satisfy the angle ranges 

specified by Zhu et al. [Zhu, 1991 #240] have been generated in the narrow edges and around 

the non-convex edges at the internal holes. These are usually problematic when using 

conventional mesh generation methods. 

 The domains shown in Figures 16(a) and 17(a) represent typical practical problems 

with different materials and openings such as underground tunnels, and have been meshed 

into Figures 16(b) and 17(b) respectively. In Figure 16(b), materials A and C have been 

meshed as mixed element materials, with material B having only triangles. It can be seen that 

the transition of elements between the different materials is gradual even though the changes 

in densities are more sudden. The use of several non-convex edges has also not had any 

marked effect on the quality of elements generated. 

 

Figure 15. A zoom view of the upper part of Figure 14 

 Figure 17(b) has both materials meshed as hybrid element areas. A low 
r
fQ max

limit 

has been imposed, which explains the small number of quadrilaterals generated. However, 
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the quality of quadrilaterals produced is very high, having 
r
fQ mean

equal to 0.209, which is 

equivalent to a quadrilateral interior angle range of 90°±5.9°. 

 

 Figure 16. Opening in a multi-material domain 

  

 Figure 17. Second example of openings in a multi-material domain 

  A final example mesh has been produced which included many curved concave edges 

and a rapid variation of segment lengths. Figure 18 shows that elements of a very high quality 

can be generated for highly concave and curved regions having internal openings. Very small 

element sizes hi were imposed around the “U” hole intentionally compared to the rest of the 

mesh to observe the effect of doing so. The maximum and minimum triangular quality factors 
r
fT  in the final mesh were found to be equal to 1.050 and 0.031, corresponding to angle 

ranges of 60°±34.7° and 60°±1.0° respectively. The overall mean triangular mesh quality 

factor 0.421 corresponds to an angle range of 60°±13.9°, which along with the angle ranges 

above, indicates that the element shapes still remain roughly equiangular even though the 

transition in element sizes is very rapid. As can be seen from the previous examples, the mesh 

generation algorithm is very versatile and can handle any complicated geometries. 

 Figure 18. Domain with multi-curved boundaries  

7 Discussion 

 As can be seen from the previous sections, two-dimensional mesh generation is a 

well-developed area and different mesh generation methods have different features. However 

by combining both the Delaunay and advancing front methods, the new mesh generation 

technique has the advantage of being much more efficient. Several elements are created at a 

time since the elements in the neighbourhood of a point or element being created are known, 

which would require a high computational effort to determine using the classical advancing 

front method. Using the Delaunay criterion facilitates the process of avoiding any potential 

collision of two fronts, and allows them to be merged easily, with a gradual change across 

differing element densities, as shown in the various examples in section 6. 
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 The mesh generator DBMesh can act as a stand-alone mesh generator, where the mesh 

geometry of the external and internal domains, along with the boundary conditions, and 

element densities hi are defined and used to generate the mesh. Alternatively, the element 

densities hi are generated using an error criterion from an adaptive finite element program, 

and a new mesh is generated. The mesh generator only requires specifying the stress and 

boundary conditions either at individual points or on defined segments of the problem 

geometry (internal or external). After element generation, the respective values are 

interpolated accordingly. The mesh generator also accounts for multi-material layers and any 

number of internal holes of any geometry or curvature. These are present in most 

mechanical/structural mesh generators, but are especially important in soil mechanics, where 

soil-interaction problems involving underground structures and variable soil layers are the 

norm. The extra option of specifying the type and polynomial order of elements to be 

generated in the various layers has been added, which is facilitated by the method in which 

nodes and elements are generated. Excavation and construction are an integral part of civil 

engineering processes, and simulating them requires the ability to remove and add layers of 

elements during the analysis. This is achieved by initially defining the different constructed 

layers in question as superimposed domains on the original layers to be excavated, without 

the user having to know the elements/nodes in question. Elements and nodes in these 

additional superimposed layers are then numbered and element properties assigned. 

 The quality of the triangular elements created by the new mesh generation scheme has 

been shown to be of near-equilateral quality. The use of the quality factors is necessary if a 

hybrid element mesh is required, due to the way in which quadrilateral elements are 

generated. Despite the mesh generator having the capability of generating pure quadrilateral 

meshes, it is advisable to use a pure quadrilateral generation scheme. The large variety of 

meshes tested during the development stage, accompanied by the generator’s ability to handle 

with ease any arbitrarily shaped multi-material domain having internal openings and 

vigorously changing element sizes, have thus proven the generator to be both robust and 

versatile. The mesh generator and source code may be obtained free of charge for non-

commercial use by contacting the author. 

Appendix : Some computational geometry concepts 

 In this appendix, several definitions and concepts will be introduced. These are 

required for the mesh generation algorithm.  
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A.1 Orientation of a point C with respect to segment AB 

 When moving around the sub-domains in an anticlockwise direction, one has to 

ensure that the points are to the left of the boundary. If a point C is to the left of a segment 

AB on the boundary, then the area Δ of the counter-clockwise triangle ABC, given by 

equation (A1), would be positive. One point to note is that if point C is co-linear with AB, 

then 2Δ reduces to zero. 
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A.2 Is a point C inside a polygon ? 

 At first sight, a simple solution to such a problem would be to loop over the polygon 

edges and ensure that the point is to the left of the polygon boundary transversed 

anticlockwise. This would be fine for convex polygons, but would not work with non-convex 

ones. A way around this problem would be to make use of the ray-tracing technique. A 

horizontal ray in the positive x-axis direction emanating from point C is assumed and the 

number of intersections of the ray with the polygon boundary edges are recorded. The point 

is inside the domain if the number of intersections is odd and outside if the number is even. 

Two special conditions however have to be taken account of; if the ray is co-linear with one 

of the edges, or hits a vertex. A way of treating these two cases is to ensure that the boundary 

edge-points are on alternate sides of the ray when checking their intersection, as described in 

section A.3. This procedure also applies to domains with internal holes. 

A.3 Intersection of two line segments AB and CD 

 While generating nodes/elements, one must check that a prospective element does not 

cross the domain boundaries. This in effect is a problem of checking the intersection of the 

element edge AB with the domain boundary edge CD. Assuming that no three points of the 

four points are co-linear, point C is compared with segment AB to check whether it is to the 

left of it using equation (A1). If this is the case, then AB intersects CD if point B is left of 

CD. If C is not left of AB but point D is, then the two segments intersect if A is left of CD. In 

Boolean logic, this is written as [ (C left of AB) ⊕ (D left of AB) ] ∧ [ (A left of CD) ⊕ (B 
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left of CD) ]. An alternative form would be to ensure that  ΔABC*ΔABD and ΔCDA*ΔCDB 

are both negative if AB and CD intersect, where Δijk is triangle ijk’s area. However, Figure 

A.1(a) depicts a situation where the above criterion would be satisfied but the two segments 

do not actually intersect, and the need for another check is thus necessary.  

Figure A.1 Special cases of intersection 

This problem is resolved by checking that one endpoint of one of the segments is in between 

the two endpoints of the other segment. This second check would also account for the case 

shown in Figure A.1(b), where three points are in fact co-linear. 

A.4 Distance from a point C to segment AB 

 The distance d between a point C having co-ordinates (xC,yC) and segment AB 

connected by points (xA,yA) and (xB,yB) respectively, can be found using equation (A2). 
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A.5 Delaunay triangulations 

 For a set of points S, a triangulation is mathematically defined as a set of segments 

whose endpoints are in S, which only intersect each other at endpoints, and which partition 

the convex hull of S into triangles. The convex hull of S may be defined as the smallest 

convex polygon, having the smallest perimeter, that encloses all the points in this set. The 

basic property of a Delaunay triangulation is that no points exist inside the circumcircle 

defined by the three corners of the triangles in 2D and no points inside the circumsphere 

defined by the 4 corners of the tetrahedra in 3D. The effect of such a property is to maximise 

the minimum angle over the triangulation.  

 A clever way of checking the Delaunay property was suggested by O’ Rourke [O' 

Rourke, 1995 #313]. An alternative interpretation of the Delaunay triangulation is its 

equivalence to being the projection onto the xy-plane of the lower convex hull of the 

transformal points in three dimensions, transformed by mapping upwards to the paraboloid z 
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= x2 + y2. This means that instead of checking that the triangles’ circumcircle is free of points, 

one could just check that the points are on or above the plane containing the triangle in order 

for it to be Delaunay. This may be done by computing the normal to the triangle ABC, and 

then deciding based on the sign of the dot-product of the normal and a vector between one of 

the triangle’s vertices to the point in question. 

A.6 Position of a point D with respect to triangle ABC’s circumcircle 

 The circumcircle of a triangle is a circle that passes through a triangle’s three vertices 

and is unique to that triangle. Figure A.2 shows a typical triangle ABC, surrounded by its 

circumcircle of centre O. The equation of the circumcircle may be found using the 

determinant in equation (A3). 

Figure A.2 Circumcircle of triangle ABC with centre O 
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The circumcentre is located at the intersection of the perpendicular bisectors of the triangles’ 

sides, which may also be outside the triangle. After mathematical manipulation, the 

circumcentre (xO,yO) is found to be equal to equation (A4), with the diameter equal to the 

product of the three triangle sides’ lengths divided by twice the triangle’s area. 
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 A simple check on the position of any arbitrary point D with respect to the 

circumcircle may be made by computing the distance dDO = d(D,O) between D and the 

circumcentre. If dDO is less than, equal to, or greater than the radius of the circumcircle, then 

the point is inside, on, or outside the circumcircle respectively. 
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