
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288388756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 1

a-posteriori error estimation in axisymmetric geotechnical analyses 
A. EL-HAMALAWI 1 AND M.D. BOLTON 2 

Abstract 
 In this paper, an a-posteriori error estimator suitable for use in axisymmetric 

geotechnical analyses has been developed. The consolidation superconvergent patch recovery 

with equilibrium and boundaries (CSPREB) method, developed for plane-strain coupled-

consolidation problems, is extended to axisymmetric analyses. The use of pore pressures in 

the error estimator was found to improve results when predicting consolidation. Collapse 

loads under undrained soil conditions are known to be over-predicted due to “locking”, 

especially in axial symmetry where there are further displacement constraints. The proposed 

solution technique reduced locking slightly, but could not eliminate it, as it is inherent in the 

displacement formulation for lower order elements. 

Keywords : error estimation, axisymmetric geotechnical finite element analysis, adaptive 

mesh refinement. 

1. Introduction 
For the majority of applications in geotechnical engineering, the finite element 

analysis of soil behaviour requires a lot of effort and time. Subjective assumptions can be 

made based on experience regarding the relative sizes of elements in a mesh, but in most real 

cases where time-dependency and multi-layered soils are involved, prior knowledge is 

lacking. Other situations occur where at one stage of the analysis, certain areas require 

refinement, while at a later stage, de-refinement is needed. Adaptive mesh refinement (AMR) 

is therefore a suitable environment in which to model such problems, where no assumptions 

of the anticipated failure mechanisms and behaviour of soil have to be made in advance.  
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Adaptive mesh refinement has been used in fields other than geomechanics. In 

geotechnical engineering, Zienkiewicz et al. [1] managed to capture both ideal and softening 

plastic behaviour of the soil for two undrained problems using adaptive remeshing. Hicks [2] 

analysed an undrained biaxial test, using adaptive mesh refinement with an error estimator 

based on strains. All these analyses however have been either short-term (undrained) or long-

term (drained), where the intermediate stages of consolidation have not been taken into 

consideration. A wealth of literature exists on structural criteria, but no pore pressures 

included, which can be used for drained and undrained analyses. However, minimal attention 

has been focused on time-dependent geotechnical problems, which was the main reason 

behind the lack of use of AMR in consolidation analyses. El-Hamalawi and Bolton [3], [4] 

introduced the CSPREB method, where an error estimator incorporating pore pressures was 

developed for consolidation-based plane-strain problems. In this paper, the CSPREB method 

is extended to axisymmetric problems. The full formulation is described, followed by 

numerical examples to demonstrate the use and effectiveness of this criterion. 

The non-linear time-dependent problem is analysed and the error criterion is checked 

at either every increment, or every group of increments as defined by the user. The mesh is 

then adapted if required. The analysis is either continued using the smoothed parameters 

based on the new error criterion, in addition to the updated constitutive D matrix, or the 

problem is re-analysed based on the newly adapted mesh. If the re-analysis option is chosen 

by the user, the analysis starts from the last point at which the mesh was previously adapted. 

2. Theory 

2.1 Governing equations 

 Consider the two-dimensional equilibrium and continuity equations (1) and (2) 

respectively, over a domain Ω with boundary Γ. For axisymmetric problems, cylindrical 

instead of rectangular co-ordinates are used, where the x, y and z axes are equivalent to the r, 
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z and θ axes respectively. The differential operator [Leq] is thus defined by equation (3a), 

while the stress vector {σ}, body forces {ω}, and pore pressures {σpp}, are defined by 

equation (3b). kr and kz are the permeabilities in the r and z directions respectively, γw is the 

unit weight of water and εv is the volumetric strain. The boundary Γσ is subject to the natural 

boundary conditions { } { } { }bn  ⋅ σ = σ , and the essential displacement conditions u = {ub} act 

on the boundary Γu , where {n} is the outward unit normal vector. The excess pore pressure 

{ }pp ppbσ = σ , acts on the Γpp boundary segment at time t. 
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 The constitutive relation used is Hooke’s law, represented in matrix form by 

{ } [ ]{ }εσ D= , where [D] is the constitutive matrix and {ε} the strain (equation (4)). For elasto-

plastic materials, the constitutive relation still holds, but with [D] becoming the elasto-plastic 

matrix [Dep] defined by equation (5) rather than the elastic [De]. Compressive stresses are 

assumed positive in the derivations that follow.  
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Biot [5] developed the theory of coupled consolidation by coupling both equations (1) 

and (2). The finite element matrix format is derived by applying Galerkin’s weighted residual 

method to the equilibrium and continuity equations in turn. The first equation is obtained by 

starting with the equilibrium equation. The equivalent weak form is shown in equation (6). 

T T T
bd u  d u  d

Ω Ω Γ

ε σ Ω = ω Ω + σ Γ∫ ∫ ∫                     (6) 

The total stress vector {σ} is equal to the sum of the effective stress {σ′} and pore water 

pressures vector {σpp}. This is substituted into equation (6), resulting in equation (7). 

              T T T T
pp bd d u  d u  d

Ω Ω Ω Γ

′ε σ Ω + ε σ Ω = ω Ω + σ Γ∫ ∫ ∫ ∫         (7) 

The displacements {u} are approximated with the product of the nodal displacements {u} 

and shape functions [Nu], where the strain {ε}=[Lε]{u}=[Lε][Nu]{u}=[B]{u}. The effective 

stress vector {σ′} becomes equal to [D]{ε}=[D][B]{u}. The pore pressures σpp are also 

approximated using { } { }pp pp ppN⎡ ⎤σ = σ⎣ ⎦ , where { }ppσ  are the nodal pore pressures and [Npp] 

are the pore pressure shape functions. Composite displacement-pore pressure elements based 

on Sandhu and Wilson [6] are used, where the pore pressure variation is one order less than 
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the displacement. Substituting these into equation (7) results in the first equation of the 

coupled consolidation matrix formulation shown in equation (8). 

   T T T T
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Using the Galerkin weighted residual method, the product of equation (2) and an 

arbitrary function in the form of Npp is integrated by parts, resulting in equation (9), where 

{vn} is the seepage velocity normal to the boundary. Equation (10) shows the weak form of 

equation (2) after some mathematical simplification. 
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To simplify the time differential, equation (10a) is integrated with respect to time 

from time t to time t + Δt using equation (11). Following Britto and Gunn [7] and based on 

Booker and Small [8], θ = 1 is assumed in order for the integration scheme to remain 

unconditionally stable. 
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This results in the second equation of the coupled consolidation matrix form shown in 

equation (12) in incremental form. Upon coupling with the incremental weak form of the 

equilibrium equations (8) and writing in matrix format, the final finite element coupled 
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consolidation equations are reduced to         

    pp 1
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The above equations are solved for the incremental displacements uΔ  and pore pressures 

ppΔσ , and marched forward in time to find a solution at time t + Δt based on the solution at 

time t. 

2.2 Axisymmetric version of the CSPREB method 

 Several error estimation methods and smoothing criteria exist in the literature, such as 

the Zienkiewicz and Zhu Z2 stress smoothing method [9] and superconvergent patch recovery 

method (SPR) [10], or the SPRE [11] and SPREB [12] methods by Wiberg and AbdulWahab, 

to name a few. A more detailed review of the criteria currently available is present elsewhere 

(e.g. [3], [4]). These methods have been shown to be suitable for structural problems, or for 

geotechnical problems where either pore pressures are non-existent, or are a function of the 

volumetric strain as in geotechnical undrained non-consolidation problems. However, the 

introduction of time-dependent changing pore pressures as extra unknown primary variables 

during the finite element analysis necessitates some extra parameters. The authors [4] have 

previously described the basis of the consolidation superconvergent patch recovery method 

incorporating equilibrium and boundary conditions (CSPREB) for plane strain problems. It 

involves fitting a least squares polynomial of one order higher than the shape functions for 

the displacements, and another for pore pressures at their optimal points in a patch of 

elements in order to obtain improved values of the latter. Variables such as strains, stresses 

and elasto-plasticity parameters are then updated based on the improved smoothed values. 

The main difference between this method and other error estimation methods developed is the 

introduction of pore pressures as an important parameter during adaptive mesh refinement, 
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whose significance appears when performing coupled consolidation analyses. In this section, 

a modified formulation, applicable to axisymmetric problems, is outlined. 

  Equation (2) is simplified by integrating with respect to time in order to eliminate the 

partial time derivative, resulting in : 
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where mTε is the volumetric strain, and the Δ operator indicates an incremental approach. The 

sum of the squares of the various residuals are defined by the functional S : 

eq
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The functional comprises several component residuals, and weightings have been 

added to each residual in order to control their effect on the overall functional. The first three 

components constitute the effective stress residual at the reduced integration points for 

quadrilaterals (or optimum points for triangles), the displacement residual at the displacement 

nodes, and the pore pressure residual at the pore pressure nodes respectively. For the 

weighting of the displacement components w2, vertex nodes have a weighting of three or four 

times that of element internal nodes, as suggested by Wiberg and AbdulWahab [11]. The 

weighting w1 is taken as the inverse of the elastic modulus, while w2 and w3 are taken as equal 

to 2 for vertex nodes and 0.5 for non-vertex nodes. Boundary fixed displacement and pore 

pressure nodes are also given a much higher weighting. The finite element solution satisfies 

essential boundary conditions, hence a high weighting is used in order to ensure that the 

improved displacements and pore pressures at the respective nodes are as close as possible, if 

not, equal to the actual boundary values. The fourth residual comprises the boundary traction 
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conditions at the boundary nodes. It has however been found from numerical experimentation 

[3] that this condition can be too rigid a condition to satisfy, as excessive element refinement 

occurs near the boundary, so w4 may be assumed to be equal to zero for most analyses. 

Included in the functional is an equilibrium equation residual w5, which tries to satisfy 

equilibrium locally in the element patches in a least squares sense. In general, the finite 

element method does not always satisfy the equilibrium equations locally, but does globally. 

This weighting acts as a penalty number, which can be thought of as the relative weight of the 

equilibrium residual with respect to the stress residual. It has been empirically found [3] that 

the weighting w5 of 100 provides a good solution for most problems. The last term in the 

functional, weighted by w6, is the continuity equation, which similar to the equilibrium 

equation, the CSPREB method tries as much as possible to satisfy in a local sense, rather than 

just globally. 

Polynomials of one order higher than Nu and Npp are assumed for the displacements 

{ } [ ]{ }*
au P= a  and the pore pressures { } [ ]{ }*

pp bPσ = b  in the patch respectively, as shown in 

equation (16). Pa and Pb are the co-ordinate term matrices and a and b are the unknown 

coefficient vectors. The smoothed effective stresses are substituted in the form 

{ } [ ][ ]{ } [ ][ ][ ]{ } [ ]{ }* *
aD L u D L P Mε ε′σ = = =a a  where [ ] [ ][ ][ ]aM D L Pε= , [Lε] is the strain 

operator and σ σ σ* * *= ′ + pp . 
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The functional S thus becomes: 
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In matrix form, the above system becomes [A]{X}={B}: 

11 12 1

21 22 2

A A B
A A B

⎡ ⎤ ⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥
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a
b

 where matrix orders are a a a b a a

b a b b b b

2n x2n 2n xn 2n 2n
n x2n n xn n n

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭
  (19) 

na and nb are the number of terms in the assumed polynomials Pa and Pb respectively. The 

singular value decomposition (SVD) method is used to find a and b in preference to other 

equation-solving methods. These vectors are then substituted into the equations for u*, ε* or 

σ'* and *
ppσ  respectively to obtain improved values. For nonlinear analyses, the terms 

2 2
x ppk  x∂ σ ∂  and 2 2

y ppk  y∂ σ ∂  in equation (18) become incremental, i.e. 

( )2 2
x ppk  x∂ σ ∂Δ  and ( )2 2

y ppk  y∂ σ ∂Δ  respectively, where the difference Δ is taken 

between two increments or two groups of increments. 
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2.3 Error estimation 

 As with the plane strain case, the same modified error estimators will be used in order 

to predict new element sizes based on the old ones. In contrast to the energy norm, the L2 

norm is independent of the [D] matrix. This avoids the problem of successively smoothing 

the latter in every increment for elasto-plastic applications, where the [D] matrix is a function 

of the stresses. Another ramification of the usage of the L2 norm is the generalisation of the 

method to accommodate multi-material problems, where otherwise material boundaries 

would have had to be treated differently due to the natural presence of different stresses on 

the same boundary between different layers. The L2 norms will therefore be used to compute 

the overall percentage displacement and pore pressure errors, ηu and ηpp in equations (20a) 

and (20b) respectively. The final overall percentage error η is taken as the maximum of ηu 

and ηpp, which is used to determine if the results from the current mesh are within the 

specified tolerance η ≤ η . 

                               i
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i 1
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e
u u ud

= Ω
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e

u d
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σ − σ σ − σ Ω
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                           (20b) 

Average displacement and pore pressure errors are defined as 2 2u
av u ue ( u e ) NEL= η +  

and 
2 2pp

av pp ppe ( u e ) NEL= η + respectively, where NEL is the number of elements in the 

mesh.  
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          u uu i i
i u2 2

avu u

e e
e( u e )

NEL

ξ = =
+η

                (21a) 

pp pppp i i
i pp2 2

av
pp pp

e e

e( u e )
NEL

ξ = =
+

η

           (21b) 

The ratio iξ  defined in equation (21) is calculated for each element i, and a-priori asymptotic 

convergence estimates are used to predict the new element size new
ih  from the old size old

ih . 

The new element size hi is finally chosen as the minimum of both values in equation (22), 

where p is the order of the displacement elements used. One point to note is that the 

exponents of h in the a-priori estimates (equation (22)) indicate a higher rate of displacement 

convergence compared to the pore pressures convergence rate. 

                    ( ) ( )
old old

new newi i
i iu ppu pp

i i
p 1 p

h hh  and h
+

= =
ξ ξ

                                (22) 

2.4 Modifications for non-consolidation problems 

For non-consolidation problems covering either undrained or drained soil responses, a 

different functional is defined, where time is not an issue and only the equilibrium equations 

govern the response. As a result, displacements are the only nodal degrees of freedom. The 

difference from a standard structural mechanics problem lies in the extra pore pressure 

parameters. This is equal to the in-situ pore pressures if the analysis is drained, and the 

product of the volumetric strain and water’s bulk modulus Kw for an undrained analysis, as 

described by Britto and Gunn [7]. Only a best-fit displacement polynomial is thus required, 

where { } [ ]{ }*
au P= a , and [Pa] is one order higher than the assumed displacement shape 

functions as before. The functional S becomes: 
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eq

2 * 2 2 * 2 2 * 2 2 * 2
1 2 3 PP pp 4 b

IP unod IP bnod
2 T * 2
5

IP

1S [ w ( ) w (u u) w ( ) w (n )
2

     w (L ) ]

′ ′= σ − σ + − + σ − σ + ⋅σ − σ

+ σ + ω

∑ ∑ ∑ ∑

∑
    (23) 

The pore pressure residuals are calculated at the integration points (or optimal points for 

triangles), and not at the pore pressure nodes as done previously, due to the pore pressures 

being a function of the volumetric strain. The weightings used are the same as before, but w3 

is equal to zero for drained analyses. 

Assuming { } [ ]{ }*
au P= a , with { } [ ]{ }* M′σ = a  where [ ] [ ][ ][ ]aM D L Pε= , 

σ σ σ* * *= ′ + pp , and the volumetric strain εv equal to { } [ ][ ]{ }T
w aK m L Pε a  where Kw is the 

bulk modulus of water previously discussed, S becomes : 

    

2 2 2 2 2 T 2
1 2 a 3 w a pp

IP unod IP
2 T 2 2 T T 2
4 w a b 5 eq w a

bnod IP

1S [ w (M ) w (P u) w (K m L P )
2

     w (n(M K m L P ) ) w (L (M K m L P ) ) ]

ε

ε ε

′= − σ + − + − σ

+ + − σ + + + ω

∑ ∑ ∑

∑ ∑

a a a

a a a a
          (24) 

Minimising S with respect to the unknown coefficient vector a and collecting terms: 

( ) ( )

( )

T2 T 2 T 2 T T 2 T T T
1 2 a a 3 w a w a 4 w a w a

IP unod IP bnod
2 T T T T T
5 eq w a eq w a

IP

T2 T 2 T 2 T 2
1 2 a 3 w a pp 4

IP unod IP

w M M w P P w K m L P K m L P w (n(M K m L P )) (n(M K m L P ))
 (25)

w (L (M K m L P ) (L (M K m L P ))

w M w P u w K m L P w (n(M K

ε ε ε ε

ε ε

ε

⎛ ⎞+ + + + +⎜ ⎟
⎜ ⎟
+ + +⎜ ⎟

⎝ ⎠

′σ + + σ + +

∑ ∑ ∑ ∑

∑

∑ ∑ ∑

a

= T T 2 T T T
w a b 5 eq w a

bnod IP
m L P )) w (L (M K m L P )ε ε

⎡ ⎤σ + + ω⎢ ⎥⎣ ⎦
∑ ∑

 

The above system can be written in matrix form as 

               [ ]{ } { }A B=a  where matrix orders are:[ ]{ } { }a a a a2n x2n 2n 2n=              (26) 

As before, na is the number of terms in the assumed polynomial Pa. This set of matrices is 

solved for the vector a using the singular value decomposition (SVD) method. The vector a is 

then substituted into the equations for {u*}, {ε*} or {σ'*}, and if the analysis is undrained, 

{ }*
ppσ . Only the L2 displacement errors need to be computed and used as a criterion for 
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further refinement. This is obvious for a drained analysis. For undrained analyses, the 

displacements, of which pore pressures are a function, are the primary variable being 

improved, and so it is logical to try to quantify the errors based on this primary variable 

alone. A final point worth mentioning is that for axisymmetric undrained analyses where 

there is no volume change, the finite element mesh may lock if low order elements are used. 

This will be discussed in the examples section, where an undrained elasto-plastic circular 

footing is shown to lock, even with the use of adaptive mesh refinement, although some 

improvement is observed. 

3. Numerical examples 

 Two examples in this section are presented to demonstrate the effectiveness of the 

criterion. The actual implementation of the criterion into a finite element package has been 

described in detail elsewhere [3], [4]. The elements used in both problems are composite 

elements comprising quadratic displacement-based elements, i.e. 8-noded quadrilaterals and 

6-noded triangles, and linear pore pressure functions, i.e. 4-noded quadrilateral and 3-noded 

triangles. In both examples, the meshes were remeshed whenever the errors exceeded the 

specified error tolerance, and then re-analysed from the last refinement stage. However, the 

meshes included here are examples of intermediate ones at two different stages, as it would 

not be possible to include every single mesh of the analyses. 

3.1 Cryer consolidation problem 

 In this section, the Cryer problem [13], comprising a water-saturated sphere of soil 

subjected to hydrostatic pressure, is used as a means of testing the consolidation aspect of the 

criterion by comparing the results with the closed-form solution. A uniform load p of 100 kPa 

is applied to a spherical soil sample of radius a=1.0m, which has a permeable outer boundary. 

An initial unrefined mesh in Figure 1 representing the sample, which makes use of symmetry, 
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has 192 degrees of freedom (dof). The coefficient of permeability is 10-8 m/s and the soil’s 

modulus of elasticity E is 104 kPa. 

Fig. 1. Initial mesh representing the Cryer sphere (ηu= 17.5 %, ηpp= 46.9 %) 

 Equation (27) provides a closed-form solution during time t, derived by Cryer, for the 

excess pore pressures generated at the centre of the sphere. μ is assumed equal to 0.5, and is 

defined by equation (27c), where k, γw and cv are the soil permeability, unit weight of water 

and consolidation coefficient respectively,. 

    n(s T)n n
pp 2

n 1 n

8 2(4 s ) cos( s )
p e

s 12 16

∞
−

=

⎛ ⎞− μ + μ −
σ = ⎜ ⎟⎜ ⎟− μ + μ⎝ ⎠

∑             (27a) 

      nwhere s -s, and s are roots of (s 4 )sinh( s) 4 s cosh( s)= + μ − μ           (27b) 

v
2 2

c t 1T  and 
a 2(1 3 )

= μ =
− ν

              (27c) 

Fig. 2. Remeshing of the Cryer problem with (a) ηtol =5 % and (b) ηtol =1 % 

The analysis was split into 90 equal sized time increments, covering 90% of the 

duration of the consolidation process, which is of most interest to geotechnical engineers. 

When the load is applied to the soil in Figure 1, large pore pressure gradients start to form. 

The soil consolidates causing water to flow towards the permeable curved boundary.  

Figure 2(a) shows the mesh generated after the first stage of refinement, i.e. after 5% 

consolidation has occurred. The high pore pressure gradients at the permeable boundary have 

resulted in the latter being heavily refined, with the mesh having a total of 4890 dof. At this 

early stage of the analysis, where the soil has had little time to deform significantly, a 

negligible improvement in horizontal and vertical displacement contours due to refinement 

was observed. Figures 3(a) and 3(b) depict the pointwise displacement errors at this stage, 

where (0,0,0) in the 3D plots represents the bottom left-hand corner of the mesh. Although 

the shape of these graphs might raise some concern, the actual scale of error is very small 
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when compared with the magnitude of displacements, i.e. about one thousandth of the actual 

displacements. However, the pore pressure pointwise errors in figures 4(a) and 4(b) show a 

different story. These are initially very high at the permeable boundary due to the high pore 

pressure gradients and coarseness of the initial mesh. Even though epp in figure 4(b) has not 

been reduced to a value close to zero, the main objective of reducing and equalising all errors 

across a mesh has been achieved within the percentage tolerance specified.  

During the first stage of analysis, the excess pore pressures had dictated where 

refinement would occur. However, by the end of the analysis, all excess pore pressures had 

dissipated, playing a minor role in deciding where refinement is to occur, while 

displacements became the main factor controlling refinement. For the final stage of 

consolidation, i.e. after 85% of consolidation had occurred, a tolerance of 1.0% was specified, 

which would guarantee refinement based on displacements and pore pressures. The number 

of degrees of freedom in figure 2(b) has declined to about a third of the previous stage, and 

the distribution of element sizes has changed considerably, with larger elements existing in 

place of what was previously a region of high pore pressure at the boundary. However, 

element sizes increase in size towards the sphere's centre, where the deformation is less than 

on the outer boundary. The pore pressure error surfaces in figures 3(c) and 4(c) have also 

become flatter, as shown in figures 3(d) and 4(d) respectively. 

Figure 5 shows the history of pore pressures with time as the consolidation 

progresses. At time t=0, upon applying the load, the pore pressures jump everywhere to a 

value equal to the applied load. The pore pressures then start to increase at the centre of the 

sphere, while decreasing in other areas. As time passes and consolidation occurs, the pore 

pressures dissipate. This feature involving an initial jump followed by a decrease in pore 

pressures is known as the Mandel-Cryer effect. The solid curve represents the exact Cryer 

solution, while the dotted line represents the initial unrefined mesh had the analysis continued 



 

 16

with no adaptive mesh refinement. The elongated broken line represents the response of the 

mesh that had undergone mesh refinement. Remeshing has brought the normalised pore 

pressures into virtual agreement with the theoretical curve in figure 5, while the Mandel-

Cryer effect is more pronounced. The maximum normalised pore pressure σpp/p decreased 

from a value of 1.474 for the initial mesh to 1.446 for the final mesh due to remeshing, which 

is very near the closed-form solution of 1.442. The time at which these maximum pore 

pressures occurred has also moved closer from the square root of Tv (time factor) equal to 

0.222 for the initial mesh to the square root of Tv equal to 0.259 for the regenerated mesh, 

which is the same as the exact solution. 

Timewise, the whole analysis, remeshing, and post-processing used 2.5 minutes on a 

Pentium-500 processor. In contrast, assuming that the analyst has no prior knowledge of the 

areas requiring refinement, a very fine mesh constituting 7710 dof required 8 minutes, even 

though the latter mesh satisfied a higher error tolerance of 5%. The time aspect would be 

much more significant for more complex problems with more stages and more increments. 

Fig. 3. Pointwise displacement errors 

Fig. 4. Pointwise pore pressure errors 

Fig. 5. The Cryer effect clearly shown during remeshing 

Fig. 6. Very fine Cryer mesh 

3.2 Smooth rigid circular footing on an undrained Tresca material 

The numerical prediction of collapse loads for undrained axially symmetric loading 

situations is very problematic. For displacement-based finite element analyses, enforcing 

incompressibility rigidly at each point in the mesh without the use of cubic strain elements or 

higher, leads to locking. This overestimation of the failure load would result in erroneous 

designs. In this section, the effect of mesh refinement using the non-consolidation 
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formulation on the behaviour of a circular footing under undrained conditions will be 

investigated. 

Fig. 7. Plastic collapse mechanism of a circular footing on an undrained soil 

 The footing in Figure 7 is of diameter b=2m, applying a surcharge p on an isotropic 

homogeneous and weightless clay soil, with no previous stress history, behaving according to 

the Tresca yield criterion. The foundation’s smoothness is such that no shear stresses exist 

between the soil and foundation. The bearing capacity of the clay is dependent on the 

continuous plastic flow that occurs underneath the footing. Shield [14] proposed the 

mechanism shown in Figure 7, resulting in a bearing capacity factor of Nc=p/Su=5.69, where 

Su is the undrained shear strength of the soil.  

Fig. 8. Rigid circular footing on a 2-layered Tresca material (ηu= 4.97 %) 

Fig. 9. The two-staged remeshing of the circular footing with ηtol =0.5 % 

 Half the problem is modelled due to symmetry, resulting in the initial mesh depicted 

in figure 8, having 502 degrees of freedom. Due to the footing being rigid and the soil elastic 

perfectly-plastic, the load was applied in 50 equal-sized vertical displacement increments. 

The refined mesh shown in Figure 9 is one that had been refined at an intermediate stage of 

the analysis at the initial onset of yielding. Figure 9(a) shows the result of refining the initial 

mesh for the latter stage, with a prescribed tolerance of 0.5%. Very fine elements have been 

created underneath the edge of the footing, where localised yielding has been initiated. 

Slightly coarser elements have formed under the rest of the footing, where stresses are high, 

but no yield has been reached. As expected, the regions further away from the footing have 

large elements. The generalised deviatoric stresses in Figures 10(a) and 10(b) have improved, 

with the yielded region’s contours expanding after refinement. These deviatoric stresses are 

defined by  

  22 2 2
r z z r rz

1q ( ) ( ) ( ) 6
2 θ θ= σ − σ + σ − σ + σ − σ + σ  (28) 
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Underneath the footing, the magnitude of the improved stresses is actually larger than before 

refinement. The jump in pointwise displacement errors at the edge of the footing has also 

been subdued in Figures 11(a) and 11(b), where (0,0,0) in the 3D plots represents the bottom 

left-hand corner of the mesh. 

Fig. 10. Generalised deviator stress contours in kPa for remeshed geometries 

Fig. 11. Pointwise displacement errors 

As the load increases and yielding spreads through the soil, the refined region starts 

expanding and moving deeper. Figure 9(b) shows the final mesh at the end of the analysis, 

where complete yielding has occurred. Refined elements have gradually moved outwards in 

unison with the yield zone, progressing towards the footing centreline and upwards. The 

deviatoric stress contours for this stage in Figures 10(c) and 10(d) have changed in character, 

with their relative shapes and positions varying. Mesh refinement has also reduced the errors 

in the 3D pointwise displacement error graphs, as can be seen in Figures 11(c) and 11(d), but 

this change is not as drastic as for the initial stage due to the region below the footing being 

already refined. 

Fig. 12. Bearing capacity of a circular footing on an undrained Tresca material 

 Figure 12 shows the history of upward reactions to the footing as the soil beneath 

displaces vertically by an amount uz. The initial behaviour of these curves is fairly straight, 

albeit with different slopes. This is due to the soil behaving elastically during the initial stages 

of the analysis. As the load increases and some of the elements underneath the footing start 

yielding, the errors start increasing, causing the lines to start deviating. The deviation of the 

initial bearing capacity curve in Figure 12 from the refined curve is very visible. An 

overestimated value of Nc=6.98 was 22.671% in error from the exact value of Nc=5.69, where 

the bearing capacity factor Nc=p/Su. Upon remeshing, this value improved to within 4.569 % 

of the exact solution, with a value of 5.950. As can be seen, remeshing has somewhat reduced 
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locking, but has still not brought it in line with the exact solution. It is therefore advisable to 

use adaptive remeshing with higher order elements, or use the mixed element formulation, 

when predicting collapse loads in undrained axisymmetric problems. 

4. Concluding remarks 

 In this paper, an extension to the CSPREB for axisymmetric problems has been 

described. Two problems with known closed-form solutions were analysed to validate the 

various features of the adaptive mesh refinement system. The three dimensional error plots 

and stress contours illustrate the significant reduction in pointwise errors and smoothing that 

occur as a consequence of refinement. The consolidation problem clearly demonstrates the 

importance of including pore pressures in the error estimation process. Had the SPREB 

method been used, the initial high pore pressure gradients that formed at the permeable 

boundary would not have been identified and no subsequent refinement would have occurred. 

The importance of adaptive mesh refinement, and the associated time-saving, 

becomes visible when analysing multi-layered soils, where solutions are not easily 

obtainable. The use of a uniformly fine mesh for the same accuracy would be too time-

consuming and practically not feasible. However, when predicting collapse loads in 

undrained axisymmetric situations, it was found that locking was reduced slightly, but still 

posed as a problem. This is due to the association of locking with the finite element 

displacement formulation itself rather than the discretization errors. Adaptive mesh 

refinement should therefore be used either alongside higher order elements such as cubic 

strain elements, which do not experience locking, or with the benefit of the mixed element 

formulation. It is thus hoped that the work described here would help in acquiring a better 

understanding of soil-structure interaction, and estimating correctly and remedying a major 

source of errors in geotechnical finite elements analysis. 
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Figure Captions 

Fig. 1. Initial mesh representing the Cryer sphere (ηu= 17.5 %, ηpp= 46.9 %) 

Fig. 2. Remeshing of the Cryer problem with (a) ηtol =5 % and (b) ηtol =1 % 

Fig. 3. Pointwise displacement errors 

Fig. 4. Pointwise pore pressures errors 

Fig. 5. The Cryer effect clearly shown during remeshing 

Fig. 6. Very fine Cryer mesh 

Fig. 7. Plastic collapse mechanism of a circular footing on an undrained soil 

Fig. 8. Rigid circular footing on a 2-layered Tresca material (ηu= 4.97 %) 

Fig. 9. The two-staged remeshing of the circular footing with ηtol =0.5 % 

Fig. 10. Generalised deviator stress contours in kPa for remeshed geometries 

Fig. 11. Pointwise displacement errors 

Fig. 12. Bearing capacity of a circular footing on an undrained Tresca material 

 

 


