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Abstract 
 

This paper describes tailpipe emissions results generated by the Vehicle Performance and 

Emissions Monitoring System (VPEMS).  VPEMS integrates on-board emissions and 

vehicle/driver performance measurements with positioning and communications 

technologies, to transmit a coherent spatio-temporally referenced dataset to a central base 

station in near real time. These results focus on relationships between tailpipe emissions of 

CO, CO2, NOx and speed and acceleration. Emissions produced by different driving modes 

are also presented. Results are generally as one would expect, showing variation between 

vehicle speed, vehicle acceleration and emissions.  Data is based upon a test run in central 

London on urban streets with speeds not exceeding about 65 km/hr.  The results presented 

demonstrate the capabilities of the system. Various issues remain with regard to validation of 

the data and expansion of the system capability to obtain additional vehicle performance data.   

Keywords: on-board emissions monitoring, on-board sensors, GPS, environmental impact, 
traffic flow, modal emissions 
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Introduction 
 
This paper reports tailpipe measurement results from on-board vehicle measurements of both 

tailpipe emissions and vehicle performance.  Relationships between emissions of CO, NOx, 

and CO2 are evaluated against vehicle speed, acceleration rates, and elapsed journey time.  

The objective of this paper is to demonstrate the capability of measuring on-board emissions 

using a low-cost monitoring device, the Vehicle Performance and Emissions Monitoring 

System (VPEMS). 

Development of the VPEMS is a collaborative effort between the Imperial College 

Centre for Transport Studies (CTS) and two industrial partners, SIRA Ltd and Saturn 

Technologies.  The key objective of this project is the development of a cost-effective on-

board data collection device.  VPEMS has two main components: the Mobile Unit (VPEMS-

MU) and the Master Control Centre (VPEMS-MCC). The VPEMS-MU is installed on the 

vehicle to capture real-time second-by-second spatio-temporally referenced vehicle/driver 

performance and emissions data (both from tailpipe exhaust and in-cabin). Data captured by 

the VPEMS-MU is then transmitted to VPEMS-MCC via the Global System for Mobile 

(GSM) technology for storage, analysis and display.  Ochieng et al. (2003) provide additional 

detail on the system design and specification. 

The VPEMS could potentially satisfy the needs of a diverse set of users such as 

academic and government-based research institutions, transport and environmental planners 

and fleet operators. This is because it has a flexible architecture that allows flexible 

functionality through a set of modular subsystems. The sub systems include navigation, 

processor, performance, emissions, human-machine interface (HMI), communication and 

master control centre. A detailed description of VPEMS high-level architecture can be found 

in Ochieng et al. (2003).  
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In this paper, we first provide a short review of emission measurement techniques and 

associated modelling issues, to provide some context for the objectives of this project and our 

analysis of the data. We then describe the test route used for data collection, discuss our 

analysis, and outline further research objectives in this area.  

 
Emissions Measurement and Modelling Issues 
 
Vehicle exhaust emissions can vary by an order of magnitude within the space of a few 

seconds, with the response frequently non-linear, due to enrichment or enleanment of the air-

fuel mixtures. Therefore, second-by-second emissions data provides a better method for the 

development of models for estimating vehicle emissions.  New measurement methods 

provide the capability for the development of this type of data.  On-board emissions 

measurements by instrumented vehicles are one such method.  While still in their infancy, 

previous work in this area has generally been with relatively expensive systems expressly 

designed for research purposes. Several studies have examined on-board measurement 

methods in recent years with a limited number of instrumented vehicles (e.g. De Vlieger 

1997; Cicero-Fernandez et al 1997; Ensfield 2001; Unal et al 2003;).  

Typical emissions models currently in use are the EMFAC series of models in 

California developed by the California Air Resources Board (CARB), the EPA MOBILE 

model used in the rest of the U.S., and the UK DMRB method as described in the Design 

Manual for Roads and Bridges (Highways Agency, 1999).  These are all based upon 

standardized driving cycles based on running vehicles on dynamometers.  More recently, a 

microscopic modal emissions model, the Comprehensive Modal Emissions Model (CMEM), 

has been developed (Barth et al. 1996, 1997, 1999, 2001; An et al. 1997).  This allows 

evaluation of traffic operational improvements such as ramp metering, signal coordination, 

and changes in traffic parameters (Stathoupoulos & Noland, 2003).  This model is based on 

second-by-second tailpipe emissions data from 300 vehicles tested under a variety of 
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laboratory driving cycles on a new dynamometer emissions testing protocol.  The 

MEASURE model (Guensler et al. 1998) is also based on different driving cycles developed 

for modelling purposes.  Another modal emissions database is the European MODEM model, 

although this data was collected in the early 1990’s and is unrepresentative of current vehicle 

fleets. 

Dynamometer tests are usually conducted on a dynamometer under laboratory 

conditions using pre-defined driving cycles. A driving cycle, which is used to represent 

driving under different conditions, is a combination of the vehicle’s operating modes such as 

idle, steady-state-cruises, accelerations and decelerations and is usually characterized by an 

overall time-mean speed (TRB 1995; NRC, 2000).  For better quantification of emissions, a 

driving cycle needs to be representative of real-world driving behaviour. Various problems 

have been identified with existing driving cycles, such as the underestimation of acceleration 

effects (US EPA, 1995), the underestimation of the time spent in cold transient mode  

(Venigalla et al. 1995), and the overestimation of the time spent at stop and at cruise between 

40 km/h and 56km/h (St. Denis et al, 1994). Therefore, a common concern with the driving 

cycles is that they may not be sufficiently representative of real-world emissions (Barth et al. 

1996, NRC 2000) and also are unable to allow evaluation of the impact of policies that 

change driving cycles by changing traffic flow dynamics.  Subsequently, emissions 

measurements from dynamometer tests are characteristically non-representative of actual 

emissions. 

To counter criticisms of dynamometer based measurements and to utilize rapidly 

developing technology improvements, on-board emissions measurement techniques, 

including VPEMS, are being developed. This offers the benefit of collecting modal second-

by-second emissions data under real-world driving conditions. Using on-board emissions 

measurement, variability in vehicle emissions as a result of variation in vehicle performance, 
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driver behaviour, and road and traffic characteristics can be represented and analyzed with 

more detail.  However, while providing this benefit, problems remain with designing and 

building low-cost and robust measurement devices, a hurdle that VPEMS overcomes. 

A number of recent studies have used on-board emissions devices.  The measured 

species are mainly CO, CO2, HC, NOx and O2. Particulate data has not been routinely 

collected although a system capable of doing so is presented in Vojtisek-Lom and Allsop 

(2001).  Most studies also collected data from the engine diagnostic and management system 

(EMDS), which is synchronized with emissions data.  None of the studies considered 

collecting GPS data except Nam et al. (2003). It is worthwhile to note that GPS data is 

important for analysis of the spatial distribution of emissions on the road network once it is 

synchronized with emissions and EMDS data.  Some of these studies are reviewed below and 

summarized in Table 1.  

Cicero-Fernandez et al. (1997) discussed the effects of road grade and other loads on 

vehicle exhaust emissions based on second-by-second on-board emissions measurements. For 

the development of more accurate mobile source emissions inventories, estimation of 

emission rates on different road grades is very important. This study found that exhaust 

emissions of HC and CO increased significantly when driving on grades of approximately 

3% or higher and speeds between 35 to 55 mph. One of the limitations of this study is that 

on-board emissions data were collected from one instrumented vehicle in a restricted domain 

of pre-determined speeds, low accelerations, and grades.  

Holmen and Niemeier (1998) characterized the effects of driver variability on real-

world vehicle emissions. This study hypothesized that the variability associated with 

individual driving styles would produce statistically significant differences in measured 

vehicle exhaust emissions for the same vehicle under similar road conditions on a single 

route. This study conducted a field study on 24 randomly selected drivers. The results showed 
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significant (95%) variations in CO and NOx emissions among those 24 drivers. The results 

also suggested that the intensity of vehicle operation within a given mode explains more 

variability in emissions among drivers than the modal frequency.  For example, the percent 

time spent accelerating may be less important than the intensity of acceleration events.  These 

type of parameters are measured by the VPEMS device. 

Tong et al. (2000) analyzed on-board exhaust emissions, speed and fuel consumption 

data collected from four different types of instrumented vehicles such as passenger cars, 

petrol vans, diesel vans and double-decker buses. The results suggested that fuel-based 

emission factors (g/kg fuel) varied much less than the time- and distance-based emission 

factors (g/sec and g/km) with instantaneous speed. The results also indicated that the exhaust 

emissions during transient driving modes such as acceleration and deceleration were 

significantly higher than the steady-state driving modes such as cruise and idle in terms of 

g/km and g/sec, except for buses.  

Rouphail et al. (2000) investigated the effects of traffic flow on vehicle emissions by 

evaluating the relationship between vehicle emissions and control delay. This study also 

evaluated the rate of vehicle emissions during each mode of travel, acceleration, deceleration, 

cruise and idle. The results found that vehicle exhaust emissions are the highest during 

acceleration events followed by cruise, deceleration and idle events.  Results shown below 

from our measurements are similar, with some variation between pollutant type. 

Frey et al. (2001) demonstrated on-board emissions measurement techniques and 

collected real-world representative emissions data that can be used to assist in the design and 

management of traffic facilities, as well as, monitoring, modelling and planning of air quality. 

One of the key objectives of this study was to understand the variability in emissions from 

one trip to another for the same vehicle, route and similar traffic conditions. The results 

suggested that there is substantial variability in emissions from one run to another.  This 
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suggests the need for extensive data collection to properly characterize relationships.  The 

study found that the emissions during the acceleration mode are significantly higher than for 

any other driving mode for all the pollutants measured.  

Unal et al. (2003) evaluated the effect of changes in arterial traffic signal timing and 

coordination with respect to level of service (LOS) and emissions. The study conducted a 

total of 824 one way runs representing 100 hours and 2020 vehicle miles of travel on two 

signalized arterials in Cary, North Carolina. Modal analysis of the collected data showed that 

emissions rates are highest during acceleration followed by cruise, deceleration and idle. One 

of the key results from this study was that signal coordination improvements yielded 

measurable improvements in arterial LOS and reductions in emissions.  

Nam et al. (2003) illustrated a comparison of real-world and modelled emissions 

under conditions of variable driver aggressiveness. The results suggested that aggressive 

driving produced significantly more emissions.  

This review illustrates the wide variety of research objectives that can be investigated 

by on-board emissions monitoring equipment, especially when combined with other 

instruments.  It also illustrates the potential uses of this type of data both for further research 

and the development of more accurate emissions models. VPEMS integrates travel, 

vehicle/driver performance and emissions data into a coherent spatially and temporally 

referenced database. The relevance of the data to a real world situation can then be directly 

determined through analysis in a Geographical Information System (GIS). Previous studies 

have also been limited in their scope, due in part to the high costs associated with running 

numerous instrumented vehicles simultaneously. VPEMS is intended to be a compact and 

cost effective solution with a system architecture designed to allow numerous mobile units to 

download data ‘on the fly’ to a master control center. This allows far greater flexibility in 
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terms of experiment design and greater insight into the dynamics of traffic situations 

involving multiple vehicles. 

Data Collection 
 
We are currently capturing real data with test runs of one vehicle fitted with VPEMS.  This 

vehicle is a 1998 Citroen Synergy minivan.  Vehicle performance data can be obtained 

directly from the engine management and diagnostic system (EMDS). To do so requires an 

interface with the standard Controller Area Network (CAN) serial bus used by the vehicle 

systems to communicate with one another. However, the codes used to transmit data on the 

CAN bus are proprietary and not standardized in Europe. As an alternative, a number of 

electromechanical sensors are fitted throughout the vehicle to record various vehicle 

performance data.  A diesel powered Ford Focus, for which we have received information on 

the EMDS data formats, has recently been fitted with a VPEMS device allowing a CAN 

interface to extract engine performance data. 

A GPS receiver currently records the navigation data. Research is on going to 

integrate GPS with Dead Reckoning (DR) and Map Matching (MM) to obtain better 

navigation data (Quddus et al., 2003). Two types of instruments are currently used to measure 

both emissions and in-cabin air quality. This is the iRidium 5-gas analyzer (2 units) and the 

other is a spectrograph (1 unit). One iRidium analyzer is used to monitor in-cabin air quality 

at intervals of about every 2-3 seconds while the second iRidium analyzer is used to monitor 

exhaust emissions at one second intervals. The spectrograph is used to monitor in-cabin air 

quality at 5 second intervals. The measured pollutants include CO, CO2, HC, NOx and O2 

with each iRidium bench and CO, CO2 and HC with the spectrograph.  In the future VPEMS 

will also contain a particulate sensor based on optical obscuration from particulates in the 

exhaust flow that will provide a measure of total particulates at one second intervals. 
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The vehicle fitted with VPEMS can record navigation data (time, location, speed, 

direction of travel), spatio-temporal referenced vehicle/driver performance data (clutch & 

brake pedal presses, accelerator position (%), engine speed, fuel flow, vehicle speed) and 

emissions data (exhaust emissions and in-cabin/ambient air quality).  The data collected for 

the experiment presented here included tailpipe emissions (CO, NOx, and CO2 only) and GPS 

navigational data. 

The test route used to collect the data presented in this paper is shown in Figure 1.  It 

forms a 5.52km (3.45mi) loop running through Hyde Park from the Imperial College campus 

at South Kensington, up to Marble Arch and then back down to the campus. The data set 

includes maneuvering in the car park at each end of the trip, three sections of signalized 

urban streets, the run through the park (featuring six raised pedestrian crossings/speed bumps 

in each direction) and an open avenue with little traffic or obstruction.  Driving speeds on this 

route are generally quite moderate, not exceeding about 65 km/hr.  The test was conducted 

late morning. The weather was overcast but dry, with a temperature of around 23̊ C.  

Results 
 
The emissions measurements presented here may be affected by a number of error sources 

relating to the sampling apparatus as currently installed in the prototype vehicle. In these 

tests, the gas sample is extracted via a t-fitting in the side of the tailpipe after the catalytic 

converter. This is assumed to be representative of the exhaust in general. The sample is then 

filtered and dried in several stages before entering the IRidium bench. During this process, 

reactions will continue to occur in the sample gas (particularly for NOx and HC). Moreover, 

in this prototype system parts of the apparatus are linked by silicone tubing, which although 

chemically inert, may retard or retain the HC fractions in the sample. For these reasons, data 

for the HC emissions are not presented here. The time for the sample to travel through the 

system will also introduce an offset. This is currently accounted for by a constant value that 
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may not be appropriate for all conditions. Further work, not presented here is analyzing these 

error sources as part of the validation process for the VPEMS device. 

 Results are displayed graphically in the figures that follow.  We focus on examining 

the changes in emissions over time (since vehicle start) for the test run, correlations with 

speed, and correlations with accelerations. 

 To calculate the speed of the vehicle we use both GPS and wheel revolution 

measurements.  This was done because of some GPS blockages and positioning errors.  These 

will be fixed by using Dead Reckoning and Map Matching as described in Quddus et al. 

(2003).  Wheel revolution measurements provided a comparison with the GPS data.  Figure 2 

shows that these match quite well and Figure 3 displays the correlations between these 

measurements. 

 Figures 4-6 display tailpipe measurements of CO, NOx and CO2, expressed as percent 

of each pollutant.  Calculation of pollutants by g/sec will require data on fuel flow, engine 

speed, and various assumptions on the combustion process.  This data is available either from 

the EMDS via a CAN interface or a commercial off-the-shelf fuel flow meter and engine 

speed sensor.  This paper reports on pollutant concentrations from the tailpipe, before this 

conversion. 

 Figure 4 shows reasonable values for the CO emissions.  There is a large spike when 

the engine is turned on due to sub-optimal operating temperatures in the catalytic convertor.  

Various other spikes correspond to the conditions encountered during the test drive.  NOx 

emissions are shown in Figure 5 and do not show a major effect at the start of engine 

operations, although emissions are relatively high for the first 100 seconds of operation.  

There is one noticeable spike at the 425 second mark which may be due to an acceleration 

from a stopped position.  CO2 emissions also show variable behavior over time, most likely 

due to changes in speeds and accelerations. 
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 Figures 7-9 plot emissions results against speed.  Average emissions have been 

distributed against speed bins of 3 km/hr.  The range of speeds omits high-speed operations, 

since the test run did not have speeds exceeding about 65 km/hr, which is fairly 

representative of speeds in central London.  CO emissions show a small upward trend as 

speeds increase, while CO2 emissions are generally flat.  We would expect both of these to 

increase above about 60 km/hr.  NOx emissions show an upward spike around the 60 km/hr 

bin.  This is not unexpected as we would expect NOx emissions to increase rapidly at higher 

speeds (compared to the other pollutants measured). 

 Analysis of similar emissions plots versus acceleration levels generally did not show 

significant correlations for this test run.  However, a disaggregation of the data by driving 

mode (idle, cruise, acceleration, and deceleration) did show expected results.  The definition 

of each driving mode is arbitrary to some extent.  For this analysis, zero speed and zero 

acceleration are taken to indicate idling, positive speed and positive acceleration (>1.0 

kmh/sec) are taken to indicate acceleration, positive speed and negative acceleration (<-1.0 

kmh/sec) are taken to indicate deceleration and all other cases are considered cruising. 

Second-by-second emissions data were divided into these four modes and the average 

emissions for each mode were determined using the above definitions.  Initial start conditions 

were omitted (about the first 30 seconds of vehicle operation).  Results are shown in Figures 

10-12. 

 For CO emissions (Figure 10), average emissions are highest during acceleration 

modes and lowest during idling.  CO2 emissions (Figure 11) show less variation between the 

various modes, but are lowest during idling.  NOx emissions (Figure 12) show the highest 

level during accelerations and very low levels during idling.  These patterns are generally 

what we would expect, although if the data contained more hard accelerations and higher 

speeds we might see additional variation. 
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Conclusions and Future Research 
 
The results presented in this paper are derived from the VPEMS device as fitted in our first 

test vehicle. The objective of this analysis was to demonstrate the ability of a low cost on-

board emissions monitoring device to track vehicle emissions in real-time.  Our results are 

consistent with other work that consistently demonstrates the increase in emissions associated 

with acceleration events and the variation in emissions with instantaneous speed.  The 

VPEMS device also measured emissions spikes during initial engine start conditions due to 

sub-optimal performance of the emission control system. 

 The key conclusion of this analysis is to demonstrate the capabilities of low cost 

emissions sensors that can be integrated with vehicle tracking technologies and engine and 

vehicle performance data.  This opens up substantial future research opportunities by 

enabling larger scale deployments of emissions monitors (and in-cabin air quality sensors).  

Future work will include the deployment of sensors on additional vehicles, measurement of 

particulates, and correlation of emissions effects with traffic conditions.  Better 

characterization of emissions inventories by accounting for modal emissions effects is an 

additional goal that can be achieved by deployment of on-board emissions devices.  
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Table 1: Summaries of studies based on near real-time on-board emissions 
measurement 
 

Author (s), 
year 

Instrument/ 
Technique for 
emissions 
measurement 

Type of emissions 
data collected 

Type of other data collected Vehicles/type 

Cicero-
Fernadez et 
al. (1997) 

MPSI Model-
9000/Infrared 
spectroscopy and 
electrochemical cell 

CO, HC and O2 EMDS: Manifold absolute pressure, 
throttle position, engine speed, coolant 
temp, manifold temp, vehicle speed  
Roadway characteristics: road grade 

1/LDV 

Holmen and 
Niemeier 
(1998) 

OTC 5-gas monitor CO, CO2, HC and 
NOx  

EMDS: Engine speed, vehicle speed 1/LDV 

Tong et al. 
(2000) 

Flux-2000/NDIR and 
Electrochemical 
transducers 

CO, CO2, HC, NOx 
and O2 

EMDS: Vehicle speed, fuel 
consumption 

4/car, petrol 
van, diesel van, 
bus 

Rouphail et 
al. (2000) 

OEM-2100/NDIR CO, CO2, HC, NOx 
and O2 

EMDS: Vehicle speed, engine speed, 
manifold absolute pressure, intake air 
temp, coolant temp, intake mass air 
flow, %wide open throttle, open/closed 
loop flag, fuel consumption.  
 

4/LDV 

Frey et al. 
(2001) 

OEM-2100/ 
NDIR 

CO, CO2, HC, NOx 
and O2 

EMDS: Vehicle speed, engine speed, 
manifold absolute pressure, intake air 
temp, coolant temp, intake mass air 
flow, %wide open throttle, open/closed 
l  fl  
 

Several/LDV 

Brown et al. 
(2002) 

CEM system gas 
analysers/NDIR, 
Magneto-Pneumatic, 
Chemiluminescence , 
Heated Flame 
Ionization  

CO, CO2, THCs, 
NOx and O2 

EMDS: Operating temperatures, shaft 
speed and torque, vehicle speed and 
power  

1/HDDV 

Unal et al. 
(2003) 

OEM-2100/NDIR CO, CO2, HC, NOx 
and O2 

EMDS: Various engine data  
Outside temperature and humidity, 
vehicle information e.g., model year, 
make, vehicle identification number 
(VIN), engine size, odometer reading, 
time at which the vehicle crossed the 
intersections or entered queues. 

8/LDV 

Nam et al. 
(2003) 

NDIR analyser and 
UV analyser 

CO, CO2, HC and 
NO 

EMDS: Mass, engine displacement, 
engine speed, gear, fiction, torque, 
efficiency 
GPS data: latitude/longitude 

1/LDV 
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Figure 1: Test route in Central London 
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Figure 2: Comparison between GPS speed and wheel sensor measurements 
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Figure 3: Correlation coefficient between GPS speed and wheel sensor measurements 
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Figure 4: CO emissions versus time trace 
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Figure 5: NOx emissions versus time trace 
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Figure 6: CO2 emissions versus time trace 
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Figure 7: Average CO emissions versus 3 km/hr speed bins 
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Figure 8: Average CO2 emissions versus 3 km/hr speed bins 
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Figure 9: Average NOx emissions versus 3 km/hr speed bins 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0-3 6-9 12-15 18-21 24-27 30-33 36-39 42-45 48-51 54-57 60-63

 Speed bins (km/h)

Av
er

ag
e 

NO
x 

Ee
m

is
si

on
s 

(%
)

 
 
 



 21 

Figure 10: CO emissions by different driving modes 
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Figure 11: CO2 emissions by different driving modes 
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Figure 12: NOx emissions by different driving modes 
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